LSU EE 7722 Homework 2 Due: 6 April 2020

Problem 1: As we discussed in class an important factor in GPU performance is the number of
resident warps in an MP (also called an SM). There are several factors that determine the number
of resident warps per MP, including the block size, grid size, the amount of shared memory used
per block, and the number of registers used per thread.

(a) Consider conv_inbuf_block from the Homework 1 solution. This kernel lazily sizes in_buffer
to 2048 elements, which wastes a considerable amount of memory.

Find the number of resident warps per SM on a RTX 2080 if this kernel is launched with a
grid size of 48000 blocks and block size of: 32 threads, 64 threads, 256 threads, and 1024 threads.
Hint: This is an easy problem.

(b) What is the maximum value on Dj for kernel conf_wbuf from Homework 27 (Base this on the
kernel, not limits used elsewhere in the file.) Hint: The limit is due to the address space used for w.


https://www.ece.lsu.edu/gp/

Problem 2: A GeForce RTX 2080 (TU104) has an off-chip data bandwidth of ©,;, = 496.1 GB/s
and a single-precision floating-point bandwidth of O = 5576 SP GFLOPS, with a multiply /add
counted as one operation.

(a) Find the off-chip data bandwidth, ©,, and single-precision floating-point bandwidth, O, for a
Volta V100 GPU and a Pascal P100 GPU. Remember to count a multiply/add as one instruction.

(b) Let Opr denote the throughput of integer type conversions of size up to 32 bits. (For example,
converting a 32-bit integer to an 8-bit integer.) Find Ot the following GPUs: Turing TU104, Volta

V100, and a Pascal P100.



Problem 3: The kernels in hw02.cu compute the same kind of convolution as those from Home-
work 1 but they are compiled for several values of Dj, and they are also compiled for specific block
sizes. Let J indicate the value of Dj (the number of weights) and N indicate the array size (value
of app.array_size). The amount of computation per element (one value of h) in the code is J
multiply /adds, the number of data items read is 2J (counting both the inputs and weights), and
one output element is written. Of course we know that a well-written routine will read fewer than
2JN items. For a large N the number of items read and written per thread will approach 2N.

For a given value of J and N two lower bounds on execution time can be computed, one
using data bandwidth and the other using FP bandwidth. They are tj;(N) = 2N (4B)/O and
tp(N,J) = NJ/O. The t)(N) bound is closer to reality for CC 7.X GPUs because it is easy
to predict the amount of data crossing the chip boundary. The ¢t bound above is much less
realistic because it only counts multiply /add instructions. On CC 3.X to CC 6.X GPUs ¢,(N) will
underestimate conv_wbuf because the dapp.d_in accesses won’t use an L1 cache. On all GPUs we
have considered tyr will be way off because we are only considering multiply /add instructions.

(a) Suppose conv_wbuf and conv_inbuf_block were launched on CC 7.5 (Turing) GPUs.

Which would better approximate conv_wbuf’s run time in a one-block-per-MP launch config-
uration, max{ ¢ty (N), tg(N,J) } or tpr(N) + tp (N, J)? Explain.

Which would better approximate conv_inbuf_block’s run time in a one-block-per-MP launch
configuration, max{ ty;(N), tp(N,J) } or tpr(N) +trp(N,J)? Explain.

Suppose now each kernel were launched in a configuration with 4 blocks per MP and the block
size chosen so that 4 blocks can be resident. (That is, four blocks can be active on one MP at the
same time.) How does that change the answers to the questions above?



(b) Suppose t(N, J) = max{ty(N), tp(N,J) } was a good bound on execution time. A modeled ex-
ecution is called compute-bound when tp;(N) < tp(N, J) and data-bound when tp;(N) > tp(N, J).
(Those terms are also used for actual executions.)
For a compute-bound execution, effort to increase data bandwidth will have no effect on
execution time, and for a data-bound execution effort to improve execution rate will have no effect.
Using the bounds above find the value of J for which execution is neither compute- nor data-
bound. (Don’t worry about J not being an integer.)

(¢) The bound ¢ is crude because the kernels execute more than floating-point instructions. Based
on an inspection of the SASS code there is a load instruction for each multiply /add (which makes
sense). For conv_wbuf the load is from global memory, and for conv_inbuf_block the load is from
shared memory.

Find a bound ¢;(N, J) that accounts for both the multiply/add and the load instructions. Use
class materials and other resources to find the throughput of load and store instructions.

Use this new bound to find J for which the instruction time bound and data time bound are

equal.



	Problem 1
	Part char 97
	Part char 98

	Problem 2
	Part char 97
	Part char 98

	Problem 3
	Part char 97
	Part char 98
	Part char 99


