
LSU EE 7722 Homework 1 Due: 6 March 2020

Basic Setup
Follow the instructions for class account setup on https://www.ece.lsu.edu/gp/proc.html.
Code for this assignment is in directory ../hw/gpm/2020/hw01.

If the class account has been set up properly, the code can be built from within Emacs by
pressing F9 when visiting any file in the .../2020/hw01 directory or when in an Emacs shell

buffer (which can be entered using Alt -x shell Enter ). The code can be built from the command

line using the command make -j 4 (assuming .../2020/hw01 is the current directory). Either
method runs a makefile that builds all examples in the directory. It builds two versions of each
program, one taking the base name of the main file, such as hw01, and one with the suffix -cuda-

debug, such as hw01-cuda-debug. The versions with the -cuda-debug suffix are compiled with
host optimization turned off and CUDA debugging turned on, which facilitates debugging and slows
down execution. To debug CUDA or host (CPU) code use cuda-gdb. Note that the -cuda-debug

versions will run much more slowly than the regular versions.

Running make on a clean directory will produce a large amount of output. The make program
and the file it reads, Makefile, are designed to build executables in a lazy fashion, meaning that
they only create a file if it is not present or if its prerequisites have changed. Therefore a second
run of make will take much less time.

Quickly check whether the build is successful with the command ./hw01. It should produce
output ending with a line something like K conv_inbuf_b 32 wp 100.096 s 335.222

GFLOPS 83.808 GB/s.

The makefile will compile code for a GPU on the system it was run, favoring the GPU that’s
not connected to a display. Re-run make when moving to a different system. The Makefile should
automatically detect whether the GPU for which the executable was built matches the GPU on
the current system, and re-build if needed.

Using hw01
The code in hw01.cu contains several kernels that compute the convolution of an input array,
dapp.d_in, with a short vector, dapp.d_w. See the problems for a description of the kernels.

The hw01 program takes three command-line arguments. The first indicates how many blocks
to launch. If the argument is zero then the number of blocks will be set to the number of multipro-
cessors (which is the default). If the argument is negative then the number of blocks will be −aP ,
where a is the argument value and P is the number of MPs on the GPU.

The second argument is the number of threads per block to try to use to launch each kernel. If
the argument is omitted 1024 threads are tried. If the argument is omitted or positive, the actual
number of threads used in a launch is the minimum of this argument and the kernel’s maximum.
(For example, when the second argument is 512, but kernel foo has a limit of 256 threads, foo will
be launched with 256 threads.) When the second argument is 0 (zero) or p then each kernel will be
launched multiple times starting with 4 warps, incrementing by 4 warps until the kernel maximum
is reached. When p is used additional performance data is shown, which is interesting but it can
slow things down. Note: p does not work on this assignment.

The third argument specifies the size of the array, in mibiions. (One mibion is 220.) The
default is 1 mibion (1,048,576) elements. If a3 is the value of the third argument, the input size will
be a3220 elements. The third argument is read as a floating-point number, so “0.476837158203”
will result in a 500,000 elements.
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Here are some examples: Run with 256 threads per block: ./hw01 0 256. Run with 512
threads per block and twice as many blocks as MPs: ./hw01 -2 512. Run with 256 threads per
block and 10 blocks: ./hw01 10 256. Run each kernel multiple times using an input size of 1
billion (109 elements): ./hw01 0 0 953.674.

Program Output
Starting a run of hw01 . . .

[koppel@dmk-laptop hw01]$ ./hw01

. . . produces the following output:

The first thing printed is information about each GPU connected to the system, followed by a
line showing the chosen GPU:

GPU 0: GeForce RTX 2080 SUPER @ 1.81 GHz WITH 7982 MiB GLOBAL MEM

GPU 0: L2: 4096 kiB MEM<->L2: 496.1 GB/s

GPU 0: CC: 7.5 MP: 48 CC/MP: 64 DP/MP: 2 TH/BL: 1024

GPU 0: SHARED: 49152 B/BL 65536 B/MP CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 5576 SP GFLOPS 174 DP GFLOPS COMP/COMM: 45.0 SP 2.8 DP

Using GPU 0

Most lab computers have two GPUs, please pay attention to the GPU that is actually being
used, GPU 0 above.

Most fields are self-explanatory. For example, L2 is the size of the level-2 cache and CC
indicates that the device is of compute capability 7.5 (Turing). The MEM<->L2 field shows the off-
chip bandwidth. MP indicates the number of multiprocessors, also called streaming multiprocessors
(SM’s). CC/MP indicates the number of CUDA cores (single-precision functional units) per MP,
DP/MP indicates the number of double-precision functional units per MP, and TH/BL is the maximum
number of threads per block.

The amount of shared memory available is shown per block (B/BL) and per MP, this does not
indicate whether any particular kernel is using that much shared memory or could use that much.
The same line shows the amount of constant memory, and the number of registers available.

The next line, PEAK, shows FP operation bandwidth in which a fused multiply-add is counted
as one operation. (Most of the rest of the world counts a multiply-add as two operations, but in this
class it’s one.) The COMP/COMM line gives the computation to communication ratio in floating-point
operations per floating-point element transfers. (The information above was collected in part using
the runtime library’s cudaGetDeviceProperties function.)

The program will next print information about each kernel:

CUDA Kernel Resource Usage:

For conv_simple:

0 shared, 192 const, 0 loc, 58 regs; 1024 max threads per block.

For conv_efficient:

0 shared, 192 const, 0 loc, 62 regs; 1024 max threads per block.

For conv_wbuf:

0 shared, 192 const, 0 loc, 62 regs; 1024 max threads per block.

For conv_inbuf_a:

0 shared, 192 const, 0 loc, 64 regs; 1024 max threads per block.

For conv_inbuf_b:

0 shared, 192 const, 0 loc, 64 regs; 1024 max threads per block.

The max threads per block shown above is based on the kernel and reflects register usage.
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Though it does not happen above, it is possible that a kernel can be limited to less than 1024
threads per block because it uses more than 64 registers (on a CC 5.2 device).

Next, the program provides information on the input size and launch configuration.

Array size: 16777216 elements, num weights 32

Launching with 48 blocks of up to 1024 threads.

The array size can be changed using command-line arguments, that is explained further below.
Variable Dj near the top of the file controls the number of weights (the size of the w array).

The program can either launch each kernel once, with a particular configuration (number of
blocks and number of threads per block), or it can launch each kernel multiple times, each with a
different block size. Without arguments is runs each kernel once and prints one line per kernel.

Launching with 48 blocks of up to 1024 threads.

K conv_simple 32 wp 140417.664 µs 3.823 GFLOPS 0.956 GB/s

K conv_efficient 32 wp 860.032 µs 624.245 GFLOPS 156.062 GB/s

K conv_wbuf 32 wp 858.720 µs 625.199 GFLOPS 156.300 GB/s

K conv_inbuf_a 32 wp 587.392 µs 913.991 GFLOPS 228.498 GB/s

K conv_inbuf_b 32 wp 579.552 µs 926.355 GFLOPS 231.589 GB/s

The µs values are the execution time, the GFLOPS shows the computation rate measured in
billions of FP operations per second, and the GB/s value is the off-chip data throughput. Recall
that a multiply-add is counted as one FP operation.

When run with a 0 as the second argument, such as ./hw01 0 0, the program, launches each
kernel multiple times, starting with 4 warps per block, up to 32 warps per block. Run time and
other information will be shown for each launch. An excerpt for one kernel appears below:

Kernel conv_simple:

wp ac t/µs FP GB/s Data BW Util---------------------------------------------

1 1 463 72 18 **

2 2 314 107 27 ***

3 3 395 85 21 **

4 4 342 98 25 **

8 8 428 78 20 **

12 12 856 39 10 *

16 16 980 34 9

20 20 1192 28 7

24 24 1079 31 8

28 28 981 34 9

32 32 885 38 9 *

The wp column shows the number of warps per block that the kernel was launched with. The
ac column shows the number of warps assigned to an MP (which is the product of the number
of warps per block and the number of active blocks per MP). The number in the ac column is
computed by an NVIDIA API using information about the kernel and the GPU. In the example
above the wp and ac numbers are the same because the number of blocks is the same as the number
of MPs and so there is no way to have more than one block per MP.

The t/µs column shows the measured execution time. The number under GB/s is the minimum
off-chip bandwidth, computed by dividing the size of the input and output arrays by the measured
execution time. The stars in last column show bandwidth utilization based on the GB/s number.
If the stars extend to the maximum length (shown by the hyphens to the right of Bandwidth Util

in the column heading) then off-chip bandwidth is being saturated (fully utilized). Note that this
number is computed using measured time and an ideal amount of data crossing the chip boundary.
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Problem 1: In the unmodified code conv_wbuf is the same as conv_efficient, and so suffers
from the same problem: Repeated access to the weights in the expression dapp.d_w[j]. Fix this
by loading the weights in to an array in the local address space before the h loop and accessing
that local array in the loop. Do not use dapp.w[j] in this problem.

A correct solution to this problem will result in a 5× speedup on a Pascal (CC 6.x) or earlier
device but only a modest 1.5× speedup on Turing (CC 7.5) devices. The workstation lab has
both types of machines, see https://www.ece.lsu.edu/koppel/gpup/sys-status.html to find a
machine with they type of GPU you would like to use.

Hint: This is an easy problem.

Problem 2: In the unmodified code conv_inbuf_a is similar to conv_efficient except that it
computes (but does not use) warp and lane IDs for the thread and it uses constant memory for
weights, dapp.w[j]. (In this problem don’t change the code loading weights.) The execution time
of an unmodified conv_inbuf_a should be about the same as a correctly solved conv_wbuf.

Notice that in conv_inbuf_a and in all of the other unmodified kernels most elements of
dapp.d_in are each accessed Dj times. That’s not a problem on Turing (CC 7.5) devices because
only the first access to a particular element of dapp.d_in will consume off-chip bandwidth and
suffer large latencies. Subsequent accesses will likely hit the L1 cache and so will have low access
latency and not use MP-to-L2 cache nor off-chip pathways. But Pascal (CC 6.X) and older devices
lack a low-latency L1 cache and so performance on these devices will be poor. (The texture cache
latency is about 3× higher than Turing L1 cache latency, and is not automatically used.)

For this problem modify conv_inbuf_a so that each element of dapp.d_in is loaded just once
and placed in shared memory where it will be accessed as many times as needed (which is Dj times).
Solve this by assigning a contiguous portion of the array to each warp. Let B denote the number
of threads per block, G the number of blocks, W = 32 the warp size, and n the number of elements
in the array. Then there are BG/W warps, and so c =

⌈
nW
BG

⌉
array elements per warp. Modify

conv_inbuf_a so that warp 0 (threads for which wp_idx==0) accesses elements 0, 1, . . . , c−1, warp
1 accesses c, c+ 1, . . . , 2c− 1, and so on. Write the code for Dj≤ 32. Each warp should compute 32
elements of dapp.d_out per h iteration (one per thread) and will need to buffer 32+Dj-1 elements
of the input array in shared memory. (For simplicity buffer 64 elements.) (The amount of shared
memory needed per block is based on the number of warps in the block.) Each thread should load
one element of the input array per output element computed (except for the first output element,
in which case it need to load two input elements).

Kernels conv_inbuf_a and conv_inbuf_b are identical and both can be used for solving this
problem. For example, one might try to use conv_inbuf_a to access elements in the correct order
(assigning each warp a contiguous slice of the array) and use conv_inbuf_b to buffer elements in
shared memory (but without changing access order). When both are working combine the solutions.
in either kernel, preferably a.

See prior semesters’ homework for examples. The solutions to all programming assignments
are in the repo, with file names like hw01-sol.cu.

Problems of this type are best solved using a debugger. In fact, if you don’t use a debugger
you will be wasting time and suffering needless frustration. See the course procedures page for
basic steps on using the CUDA debugger.
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