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Problem 1: [70 pts] Appearing below are the results of kernels from the Homework 3 solution. (The
plots were generated using commit a05027eea3deaaa55fff3db06bd9ef229cc62caa and run on an RTX
2080 [TU104]). The output of the baseline kernel, conv_wbuf, is shown first for reference. The next two
kernels, conv_prob2_inefficient and conv_prob28, are two possible solutions to Problem 2, the one in
which a single loaded input element is to be used to compute n_per_thd outputs. For both n_per_thd

is eight. Kernel conv_prob2_inefficient does poorly, worse than conv_wbuf at larger block sizes. But
conv_prob28 performs well. Excerpts from code for the two kernels appears on the following pages and is
available in the repo. The compute portion of the utilization bars are based on FMA instructions only (they
don’t account for the load and store instructions).

GPU 0: GeForce RTX 2080 SUPER @ 1.81 GHz WITH 7982 MiB GLOBAL MEM

GPU 0: L2: 4096 kiB MEM<->L2: 496.1 GB/s

GPU 0: CC: 7.5 MP: 48 CC/MP: 64 DP/MP: 2 TH/BL: 1024

GPU 0: SHARED: 49152 B/BL 65536 B/MP CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 5576 SP GFLOPS 174 DP GFLOPS COMP/COMM: 45.0 SP 2.8 DP

Out array size: 85 * 98304 elements, num weights max 16 * 16

Launching with 48 blocks of up to 32 warps.

Kernel conv_wbuf:

r c wp ac t/µs FP θ GB/s --- Utilization: ++Compute++ **Data** ----------

16 16 1 1 11981 179 6 *+

16 16 2 2 6217 344 12 *++

16 16 3 3 4515 474 16 **++

16 16 4 4 3975 538 18 **+++

16 16 8 8 2879 743 25 ***++++

16 16 12 12 2728 784 27 ***++++

16 16 16 16 2802 763 26 ***++++

16 16 20 20 2593 825 28 ***+++++

16 16 24 24 2465 868 30 ***+++++

16 16 28 28 2469 866 30 ***+++++

16 16 32 32 2541 842 29 ***+++++

Kernel conv_prob2_inefficient: (n_per_thd = 8)

r c wp ac t/µs FP θ GB/s --- Utilization: ++Compute++ **Data** ----------

16 16 1 1 4088 523 18 **+++

16 16 2 2 2973 719 25 ***++++

16 16 3 3 2819 759 26 ***++++

16 16 4 4 2798 765 26 ***++++

16 16 8 8 2739 781 27 ***++++

16 16 12 12 2736 782 27 ***++++

16 16 16 16 2722 786 27 ***++++

16 16 20 20 2722 786 27 ***++++

16 16 24 24 2741 780 27 ***++++

16 16 28 28 2756 776 27 ***++++

16 16 32 32 2765 774 26 ***++++

Kernel conv_prob28: (This is conv_prob2t instantiated with n_per_thd = 8)

r c wp ac t/µs FP θ GB/s --- Utilization: ++Compute++ **Data** ----------

16 16 1 1 2449 873 30 ***+++++

16 16 2 2 1272 1681 57 ******+++++++++

16 16 3 3 917 2334 80 ********+++++++++++++

16 16 4 4 713 3001 103 ***********++++++++++++++++

16 16 8 8 620 3453 118 ************++++++++++++++++++++

16 16 12 12 635 3369 115 ************+++++++++++++++++++

16 16 16 16 565 3785 129 *************++++++++++++++++++++++

16 16 20 20 664 3221 110 ***********++++++++++++++++++

16 16 24 24 610 3505 120 ************++++++++++++++++++++

16 16 28 28 713 3002 103 ***********++++++++++++++++

16 16 32 32 626 3416 117 ************+++++++++++++++++++
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template <int w_nr, int w_nc> __global__ void conv_wbuf() {

const int block_dim = blockDim.x;

const int n_threads = block_dim * gridDim.x;

const int tid = threadIdx.x + blockIdx.x * block_dim;

const int n_elt = dapp.out_nr * dapp.out_nc;

for ( int h=tid; h<n_elt; h += n_threads ) {

const int ro = h / dapp.out_nc, co = h % dapp.out_nc;

float s = 0;

for ( int rw=0; rw<w_nr; rw++ ) for ( int cw=0; cw<w_nc; cw++ ) {

const int ri = ro + rw;

const int ci = co + cw;

const int iidx = ri * dapp.in_nc + ci;

const int widx = rw * w_nc + cw;

const float din = dapp.d_in[iidx];

s += din * dapp.w[widx];

}

dapp.d_out[h] = s;

}

}

template <int w_nr, int w_nc> __global__ void conv_prob2_inefficient() {

constexpr int n_per_thd = 8;

const int block_dim = blockDim.x;

const int n_threads = block_dim * gridDim.x;

const int tid = threadIdx.x + blockIdx.x * block_dim;

const int h_0 = tid * n_per_thd;

const int n_elt = dapp.out_nr * dapp.out_nc;

for ( int h=h_0; h<n_elt; h += n_threads*n_per_thd ) {

const int ro = h / dapp.out_nc, co = h % dapp.out_nc;

float s[n_per_thd] = { 0 };

for ( int rw=0; rw<w_nr; rw++ ) for ( int cw=0; cw<w_nc+n_per_thd-1; cw++ ) {

const int ri = ro + rw, ci = co + cw;

const int iidx = ri * dapp.in_nc + ci;

const float din = dapp.d_in[iidx];

// Compute output for each of n_per_thd rows.

for ( int k=0; k<n_per_thd; k++ ) {

// Find column number of weight array to use for output k.

const int cwk = cw - k;

const int widxk = rw * w_nc + cwk;

if ( cwk >= 0 && cwk < w_nc ) s[k] += din * dapp.w[ widxk ];

}}

// Write output for n_per_thd rows.

for ( int k=0; k<n_per_thd; k++ ) dapp.d_out[h+k] = s[k];

}

}
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template <int w_nr, int w_nc, int n_per_thd> __device__ void conv_prob2t()
{

const int tid = blockIdx.x * blockDim.x + threadIdx.x;

const int n_threads = blockDim.x * gridDim.x;

// Each thread operates on n_per_thd outputs at a time.

// The n_per_thd outputs are in consecutive rows and the same column.

// Each thread operates on an entire column.

for ( int co = tid; co < dapp.out_nc; co += n_threads )

for ( int ro = 0; ro < dapp.out_nr; ro += n_per_thd )

{

const int oidx = ro * dapp.out_nc + co;

float s[n_per_thd] = { 0 };

for ( int rw=0; rw<w_nr+n_per_thd-1; rw++ ) for ( int cw=0; cw<w_nc; cw++ )

{

const int ri = ro + rw, ci = co + cw;

const int iidx = ri * dapp.in_nc + ci;

const float din = dapp.d_in[iidx];

// Compute output for each of n_per_thd rows.

for ( int k=0; k<n_per_thd; k++ ) {

// Find row number of weight array to use for output k.

const int rwk = rw - k;

const int widxk = rwk * w_nc + cw;

if ( rwk >= 0 && rwk < w_nr ) s[k] += din * dapp.w[ widxk ];

}}

// Write output for n_per_thd rows.

for ( int k=0; k<n_per_thd; k++ ) dapp.d_out[ oidx + k * dapp.out_nc ] = s[k];

}

}
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(a) Based on the measured performance of the kernels, is there evidence that cache size (either L1 or L2)
is a factor in the performance of any of the kernels? Explain. Note that the level 1 (per SM) cache size is
64 kiB and the level 2 cache size is given in the output above. (This part is based on measured performance
[the bar charts appearing above], the next part [on the next page] is analytic.)

Based on measured performance of conv wbuff cache size is/isn’t a factor because:

Based on measured performance of conv prob2 inefficient cache size is/isn’t a factor because:

Based on measured performance of conv prob28 cache size is/isn’t a factor because:
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(b) One possible reason that the inefficient kernel runs slowly is that it is making inefficient use of the level 1
cache. For each kernel compute the amount of cache storage needed by one block to compute one h iteration
in conv_prob2_inefficient and one ro iteration in conv_prob2t. Do so in terms of B, the block size, wr

and wc, the number rows and columns in the weight array, and n, the value of n_per_thd.

If the amount of needed cache storage were actually available and the cache were perfect, then the second
time element din.d_in[x] were accessed it would be found in the cache and so latency of the second (and
subsequent accesses) to x would be low.

Cache size needed for an h iteration in conv prob2 inefficient in terms of B, wr, wc, and n.

Cache size needed for an ro iteration conv prob2t in terms of B, wr, wc, and n.

6



(c) Which kernel, conv_prob2_inefficient or conv_prob2t, makes better load and store request utiliza-
tion? Compute the request utilization of important memory accesses for each. Comment on whether the
impact of this might be significant. Compute these in terms of n (value of n_per_thd).

Request utilization (a percent or fraction) by conv prob2 inefficient is:

Request utilization (a percent or fraction) by conv prob2t is:

(d) Is there evidence that poor request utilization affected the performance of any of the kernels above?
Explain.

Poor request utilization seemed to (did not seem to) affect the kernels because:
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(e) In class we used interval analysis to determine the number of threads needed to saturate a resource.
What would be an appropriate code to base an interval on in the conv_prob2t kernel. Make the interval no
larger than is needed.

Show code forming interval below.

template <int w_nr, int w_nc, int n_per_thd> __device__ void conv_prob2t()
{

const int tid = blockIdx.x * blockDim.x + threadIdx.x;

const int n_threads = blockDim.x * gridDim.x;

for ( int co = tid; co < dapp.out_nc; co += n_threads )

for ( int ro = 0; ro < dapp.out_nr; ro += n_per_thd )

{

const int oidx = ro * dapp.out_nc + co;

float s[n_per_thd] = { 0 };

for ( int rw=0; rw<w_nr+n_per_thd-1; rw++ ) for ( int cw=0; cw<w_nc; cw++ )

{

const int ri = ro + rw, ci = co + cw;

const int iidx = ri * dapp.in_nc + ci;

const float din = dapp.d_in[iidx];

for ( int k=0; k<n_per_thd; k++ ) {

// Find row number of weight array to use for output k.

const int rwk = rw - k;

const int widxk = rwk * w_nc + cw;

if ( rwk >= 0 && rwk < w_nr ) s[k] += din * dapp.w[ widxk ];

}}

for ( int k=0; k<n_per_thd; k++ ) dapp.d_out[ oidx + k * dapp.out_nc ] = s[k];

}

}

(f) Consider the computation of the interval latency. Part of that computation is the time needed by a warp
scheduler to dispatch threads. That would take two cycles per FMA (fused multiply/add) and eight cycles
per load on a Turing device. When n is small the latency might depend on something else, depending on
whether the compiler chooses to change the order of some computation. (Changing the order is algebraically
correct but will change the result with typical floating-point representations.) What is it that the latency
depends on, and how can changing the order effect things?

What does the latency depend on?

How can algebraic re-ordering avoid the latency impact?
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Problem 2: [30 pts] As has been pointed out in class, the seven-level loop nest used to describe computation
in CNN layers is fairly simple and one might expect that a straightforward textbook procedure could be
used to design an optimal CNN accelerator. But no. Many papers describing CNN accelerators claim an
optimal design, but only optimal within a constrained set of possibilities. Both Parashar [1] and Yang [2]
try to look at broader set of possible designs and draw conclusions about which accelerator hardware design
or accelerator software design (dataflow, blocking) is best.

(a) Consider representing the CUDA GPU model using Yang or Parashar’s representation. Important issues
to consider are storage levels, computation elements (by which I mean PEs, MACs, and stuff on a GPU),
and communication. To understand CUDA communication issues think about ways in which one thread
can obtain a value computed by another. How that’s done depends upon the two threads’ thread and block
indices.

First, what CUDA construct should be represented as a PE (using either Yang or Parashar’s definition)?

Which would be best represented as a PE: a thread, a warp, a warp scheduler, a functional unit, or an SM?
Explain.
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(b) Yang uses A|B to describe an assignment of work to a 2-D array of PEs such that the horizontal position
(or column number or x-axis value) indicates a value of A (say the left most PE uses a = 0, the next one
a = 1, etc) and the vertical position indicates a value of B. This is intended for CNN (or TPU) accelerators in
which the PEs are arranged in a 2-D array and in which communication takes advantage of this arrangement.
Suppose the thread index of a CUDA thread were used as the horizontal position and the block index were
used as the vertical position. So for a A|B dataflow a=threadIdx.x and b=blockIdx.x.

Is that a good way of representing CUDA threads in Yang and Parashar’s models? If not explain what about
the performance of the CUDA code would not match the performance as modeled by these schemes (making
needed adjustments to model the GPU). Propose a better way of mapping threads, warps, and blocks into
these representations.

Is it a good idea to use thread index for the horizontal position and block index for the vertical position?
Explain. Describe any problems with this representation.

Propose an alternative mapping, one which provides 2-D PE-array-like communication. (Remember that we
are describing how the CUDA model of a GPU is represented, we are not changing the GPU itself.)

(c) Figure 5 in Parashar and Listing 2 in Yang show how a blocking of the loop relates to storage levels. An
important part of their analyses is determining how many time each level is read and written.

CUDA shared memory, as we all know, is private to a block. Can Yang and Parashar’s representation handle
this? If so, how (other than making a block the equivalent of a PE)?

Can, and if so how can, per-block storage be represented in Yang’s and Parashar’s representations?

10



References:

[1] Parashar, A., Raina, P., Shao, Y. S., Chen, Y., Ying, V. A., Mukkara, A., Venkatesan, R., Khailany, B.,
Keckler, S. W., and Emer, J. Timeloop: A systematic approach to DNN accelerator evaluation. In 2019
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS) (2019),
pp. 304–315. https://ieeexplore.ieee.org/abstract/document/8695666.

[2] Yang, X., Gao, M., Liu, Q., Setter, J., Pu, J., Nayak, A., Bell, S., Cao, K., Ha, H., Raina, P., Kozyrakis,
C., and Horowitz, M. Interstellar: Using Halide’s scheduling language to analyze DNN accelerators.
In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (New York, NY, USA, 2020), ASPLOS 20, Association for Computing
Machinery, p. 369383. https://doi.org/10.1145/3373376.3378514.

11

https://ieeexplore.ieee.org/abstract/document/8695666
https://doi.org/10.1145/3373376.3378514

