
LSU EE 7722 Homework 5 Due: 1 May 2019 16:00 CDT

In class we covered NVIDIA GPUs which are reasonably well suited to DNN (deep neural network)
computations, especially the CC 7.X devices. The NVIDIA GPUs are successful commercial products and
are the result of several generations of refinement and evolution. For that reason we can assume that the
design is effective and that features work as intended for graphics and typical scientific workloads. For
example, we can feel safe concluding that having a large number (2048!) of thread contexts per SM is a good
way of hiding memory latency despite the huge area taken by the registers.

The three papers assigned towards the end of the semester (see the end of this assignment for a complete
reference) describe designs for DNN accelerators of various maturity. The Google TPU described by Jouppi et
al [3] is used in production so we can assume it is effective. It describes a straightforward way of implementing
DNNs and one robust enough to handle production work and certainly devoid of complex ideas that would
add to development time and have a risk of limited effectiveness.

Chen, Elmer, and Sze [1], introduce a CNN dataflow, row stationary, and compare it to some previously
described dataflows. In their comparison methodology they configure implementations of each dataflow by
optimizing modeled energy consumption. The idea is to obtain for comparison high-quality configurations of
each dataflow under similar hardware constraints. The row-stationary dataflow is not revolutionary, but the
equal-footing comparison methodology makes it interesting. Also, the paper is from a project to fabricate a
working DNN accelerator chip, Eyeriss, and so one can expect that the design is workable.

The third paper, by Hegde et al [2], is the most interesting but also describes results which are less likely
to be practical in the end. Their idea is to exploit repeated weights in a filter by computing w1(a1 + a2)
instead of w1a1+w2a2 when w1 = w2. The ostensible benefit is fewer multiplies and handling fewer weights.
The big question is whether the effort needed to deliver the inputs in the right order to the now unique
weights is greater than the benefits.

The loop below computes one layer of a CNN.
for ( int n=0; n<N; n++ )

for ( int m=0; m<M; m++ )

for ( int c=0; c<C; c++ )

for ( int x=0; x<X; x++ )

for ( int y=0; y<Y; y++ )

for ( int i=0; i<I; i++ )

for ( int j=0; j<J; j++ )

o[n][m][x][y] += w[m][c][i][j] * i[n][c][x+i-ih][y+j-jh];

In class we used the shorthand FnFmFcFxFyFiFj to indicate this ordering of loops. We’ll call the
shorthand a schedule. It should be clear from the schedule above that the loop body executes NMCXY IJ
times. Since the weights, w, are indexed using m, c, i, j there are MCIJ distinct elements (here elements are
counted as distinct even if their values are identical) an each element is used NMCXY IJ

MCIJ
= NXY times. So

far we have not taken into account the places that the element is stored and how it is moved.

To show assignment of calculations to processing elements (which we called threads for convenience) an
F in the schedule above would be replaced by a τ , say τx. A τx indicates that the value of x is based on
the position of a PE. The PE assignments (the τ ’s) would always be in the left-most position. For example,
schedule τxτyFnFmFcFiFj indicates that the output activation x and y indices match the column and row
number of the PE. See the code below:
int x = PE_Index.x; // We are assuming such a variable exists.

int y = PE_Index.y; // We are assuming such a variable exists.

for ( int n=0; n<N; n++ )

for ( int m=0; m<M; m++ )

for ( int c=0; c<C; c++ )

for ( int i=0; i<I; i++ )

for ( int j=0; j<J; j++ )

o[n][m][x][y] += w[m][c][i][j] * i[n][c][x+i-ih][y+j-jh];
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Using Chen’s notation [1] the schedule τxτyFnFmFcFiFj is output stationary and the assignment
τiτjFnFmFcFxFy is weight stationary. An input-stationary schedule can be expressed by replacing iter-
ator x and y (output activation indices) with x′ and y′ (use these for input activation indices). Then in the
loop body compute x = x′ − i+ I/2.

For convenience we usually assumed a 2D array of PEs of just the size we needed. But it is easy enough
to tile the assignment to fit any size array. For a w × h PE array (w columns, h rows) a variable assigned
to a PE row or column could be split. For example, set x0 = x mod w and x1 = ⌊x/w⌋. In this case x1 is
the tile number and x0 is the position within the tile. Here a tile is sized to fit the PE array but iterations
can be tiled to fit storage. The following schedule would work when the activation and PE array dimensions
don’t match: τx0

τy0
FnFmFcFx1

FiFy1
Fj . This corresponds to loop nest:

int x0 = PE_Index.x; // We are assuming such a variable exists.

int y0 = PE_Index.y; // We are assuming such a variable exists.

int X1 = (X+PE.w-1)/PE.w, Y1 = (Y+PE.h-1)/PE.h;

for ( int n=0; n<N; n++ )

for ( int m=0; m<M; m++ )

for ( int c=0; c<C; c++ )

for ( int x1=0; x1<X1; x1++ )

for ( int i=0; i<I; i++ )

for ( int y1=0; y1<Y1; y1++ )

for ( int j=0; j<J; j++ )

{

int x = x0 + PE.w * x1, y = y0 + PE.h * y1;

uint xi = x + i - Il, yj = y + j - Jl;

o[n][m][x][y] += w[m][c][i][j] * i[n][c][xi][yj];

}

It is important to specify and analyze the buffering and movement of weights, inputs, and partial sums.
This will be shown in by adding buffering indicators to the schedule. A buffering indicator consists of an
array symbol (w for weights and i for input activations) either in parenthesis if it is being written into a
register file or braces if it is written into the global buffer. The position in the schedule indicates when the
elements are buffered and which elements are buffered. For example, consider τx0

τy0
FnFmFc(w)Fx1

FiFy1
Fj .

In this case w is buffered when a particular value of m and c are available. So only IJ elements need to be
loaded:
int x0 = PE_Index.x; // We are assuming such a variable exists.

int y0 = PE_Index.y; // We are assuming such a variable exists.

int X1 = (X+PE.w-1)/PE.w, Y1 = (Y+PE.h-1)/PE.h;

for ( int n=0; n<N; n++ )

for ( int m=0; m<M; m++ )

for ( int c=0; c<C; c++ )

{

for ( int i=0; i<I; i++ ) for ( int j=0; j<J; j++ ) RF.w[i][j] = w[m][c][i][j];

for ( int x1=0; x1<X1; x1++ )

for ( int i=0; i<I; i++ )

for ( int y1=0; y1<Y1; y1++ )

for ( int j=0; j<J; j++ )

{

int x = x0 + PE.w * x1;

int y = y0 + PE.h * y1;

const int xi = x + i - Il, yj = y + j - Jl;

o[n][m][x][y] += RF.w[i][j] * i[n][c][xi][yj];

}
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}

From the schedule shorthand, τx0
τy0

FnFmFc(w)Fx1
FiFy1

Fj , it is easy to determine things like how
much storage is needed for w, and how much throughput is needed. The amount of storage is determined
by dividing the total storage, MCIJ by the indices that appear in enclosing loops (or to the left in the
shorthand). In the example, that’s m and c, so divide by MC. Elements w[m][c][I][J] are loaded (a lower
case index means one index, say m=1, upper case means all valid indices, say I=0,1,2,..). None of the
indices are computed from the PE index, so all PEs load the same value so not much bandwidth is needed
from the global buffer (or DRAM). (At this point we haven’t specified where the data is coming from.) The
buffering of w is enclosed by the n, m, and c loops so it is done NMC times. Including redundancy the
number of times each PE loads a value is NMCIJ . If we are accounting for energy use and those values are
in the global buffer, then there are NMCIJ global buffer reads (each value read is used by all wh PEs) and
whNMCIJ register file writes. The number of register file reads is whNMCX1IY1J = XYNMCIJ .

Now consider τx0
τy0

FnFmFcFx1
Fi(w)Fy1

Fj . In this case each RF stores just J weights. However
each RF file is loaded NMCX1I times. This works out to a factor of X1I times more than for the
τx0

τy0
FnFmFc(w)Fx1

FiFy1
Fj schedule but the amount of data loaded is only X1 times higher.

If we wanted to minimize both storage and redundancy for weights, while ignoring everything else, we
could use schedule τx0

τy0
FmFcFiFj(w)FnFx1

Fy1
. Each weight is loaded just once and the amount of RF

storage needed is 1. However the amount of storage needed for partial sums and inputs is higher.

Problem 2: Note: There is no Problem 1. Problem 2 is the first problem. Use the shorthand described
above to show scheduling and buffering for each of the following dataflows (using Chen’s terminology [1]).
Show register file buffering only. If the scheduling (loop order) can’t be determined from the paper, make a
good choice. Tile iterations to fit storage, as suggested in the paper.

WS

SOC-MOP OS

MOC-MOP OS

NLR

RS

Problem 3: Answer the following question about the row-stationary dataflow adapted to NVIDIA GPUs.
Should each PE correspond to: a single thread, a single warp, or a single block. Describe the best choice
and explain why it is best. Consider the amount of storage needed and the ease of communication.
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