
LSU EE 7722 Homework 3 Due: 1 April 2019

Basic Setup
Follow the instructions for class account setup on https://www.ece.lsu.edu/gp/proc.html.
Code for this assignment is in directory ../hw/gpm/2019/hw03.

If the class account has been set up properly, the code can be built from within Emacs by
pressing F9 when visiting any file in the .../2019/hw03 directory or when in an Emacs shell

buffer (which can be entered using Alt -x shell Enter ). The code can be built from the command

line using the command make -j 4 (assuming .../2019/hw03 is the current directory). Either
method runs a makefile that builds all examples in the directory. It builds two versions of each
program, one taking the base name of the main file, such as hw03, and one with the suffix -debug,
such as hw03-debug. The versions with the -debug suffix are compiled with host optimization
turned off, which facilitates debugging. At the moment GPU debugging can only be enabled by
editing the makefile: Put a -G on the line of CUCC_ONLY_FLAGS.

Running make on a clean directory will produce a large amount of output. The make program
and the file it reads, Makefile, are designed to build executables in a lazy fashion, meaning that
they only create a file if it is not present or if its prerequisites have changed. Therefore a second
run of make will take much less time.

The makefile will compile code for a GPU on the system it was run. If there are multiple
GPUs the makefile will compile for a GPU that’s not connected to a display. Re-run make when
moving to a different system. The Makefile should automatically detect whether the GPU and
CUDA version for which the executable was built matches the GPU on the current system, and
re-build if needed.

Overview of vtx xform sparse and hw03
The code in hw03.cu is based on the vtx_xform_sparse code. The description below applies to
this assignment, hw03, and vtx_xform_sparse.

The code in vtx-xform-sparse.cu contains several kernels that compute a matrix/vector
product calculation using a constant M × N matrix A applied to S N -component input column
vectors, producing S M -component output column vectors. The values of N and M are hard-coded
in the file, whereas S is a command-line argument. Vector components and matrix elements are of
type Elt_Type, which is hardcoded to float.

Constant variable d_app.d_in points to an SN -element array of Elt_Type. That array holds
S vectors, each vector has N components.

Unlike the vtx-xform-size code, in vtx-xform-sparse there is an S-element array d_op

which is used to determine whether or not to perform a calculation. Each element of d_op is a
uniformly distributed random number. A calculation is to be performed for element h if d_op[h]
<= d_app.norm_threshold, otherwise element h is skipped. Boolean variables with names like
work are true if a calculation is to be performed.

The value in d_app.norm_threshold is called the threshold (of course) and is set based on a
work density. The work density, w, is in the range [0, 1]. If w = 1 then d_app.norm_threshold

is set to the maximum possible random number, and so a calculation will be performed for every
array element. If w = 0 d_app.norm_threshold is set below the minimum random number, so no
work is done, etc.

All of the kernels in vtx-xform-sparse are based on the ochunk kernel from vtx-xform-

size. In the ochunk kernel each matrix/vector multiply (calculation) is performed by one thread.
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(In contrast, kernel mxv_o_per_thd each calculation is performed by M threads, one thread per
output component.) To avoid request underutilization threads in ochunk cooperate when loading
and storing input and output vectors.

The Five Kernels
The hw03.cu file runs five kernels, named mxv, mxv_atomic, mxv_pfx_shared, mxv_pfx_ballot,
and mxv_pfx_prob1.

Kernel mxv handles sparsity in a simple way and is only efficient when density is close to 1. In
mxv an individual thread will skip work when it needs to, but this does not reduce execution time
unless all threads in a warp skip work. When the density is 0.5 on average half the threads are
idle. A warp ballot instruction (intrinsic __all_sync) is used to detect when none of the threads
have work, in which case no work will be done.

In part using templates, the code constructs three kernels: mxv_atomic, mxv_pfx_shared, and
mxv_pfx_ballot. Each of these is an instantiation of mxv_compress with a different compress
function. At each iteration the compress function writes a work assignment array, worka. It is
set so that thread threadIdx.x operates on the same element that thread worka[threadIdx.x]

would have.

__shared__ short worka[MAX_BLOCK_SIZE]; // Work assignment.

for ( int hb = bl_start; hb<stop; hb += num_threads ) {

const bool work = d_app.d_op[hb + threadIdx.x] <= d_app.norm_threshold;

CData work_info = compress(work,worka);

const int work_pos = work_info.amt_work;

const bool skip = threadIdx.x >= work_pos;

The three compress functions are compress_atomic, compress_prefix_shared, and com-

press_prefix_ballot. The compress_atomic function is simplest. A shared variable, n_w_work,
which is initialized to zero, indicates how many thread wrote worka so far. Threads with work use
an atomic add to increment n_w_work, the return value (the value before the increment) indicates
the position in which to write worka:

__device__ CData compress_atomic(bool have_work, short* const &worka) {

__shared__ int n_w_work; // Number of threads with work.

__syncthreads();

if ( threadIdx.x == 0 ) n_w_work = 0;

__syncthreads();

if ( have_work ) worka[atomicAdd(&n_w_work,1)] = threadIdx.x;

}

This code works well if the atomicAdd library function is efficiently implemented. Rather than
relying on atomicAdd the code in compress_prefix_shared computes its own prefix sum. It uses a
straightforward, but not well tuned parallel prefix sum algorithm. A more efficient prefix sum algo-
rithm is used in compress_prefix_ballot. Efficiency is improved over compress_prefix_shared
by using warp ballot and population count instructions to find the prefix within a warp, taking
advantage of the fact that the prefix sum is of one-bit values.

See the code for additional details.

Running vtx xform sparse and hw03

The hw03 and vtx_xform_sparse code takes up to three arguments. The first, arg1 indicates
the desired number of blocks per SM. A value of 2 on a device with 20 SMs will launch a kernel
with 40 blocks. The second argument, arg2, indicates the block size, in warps, and whether
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performance data should be collected. If arg2 starts with a p then detailed device data, such as
request utilization, will be collected. The remainder of arg2 is the number of warps per block
to launch. If both arg1 and arg2 (after the p) are 0, the launch configuration will be chosen to
maximize the number of warps per SM. If arg1 is 0 then the number of blocks will be chosen to
maximize the number of active blocks per SM. If arg2 is 0 then the block size will be set to the
largest value for which there will be arg1 active blocks per SM.

Suppose hw03 is run on a GPU with 20 SMs. Running ./hw03 2 32 will launch 40 blocks,
each with 32 warps. The number of active blocks per SM in this case may be 1 or 2, depending on
the amount of shared memory and number of registers in the respective kernel. Running ./hw03

2 0 will guarantee 2 blocks per SM, and the block size will be the largest for which 2 blocks fit on
an SM. (A CUDA API routine is used to determine the number of active blocks per SM. Nothing
actually forces that number of blocks to be resident, nor is the number of active blocks checked.
Therefore, if the API routine is wrong then the number of active blocks per SM will be wrong.)

Running ./hw03 2 p32 will do the same kind of launch as a previous example, but will collect
detailed data. Running ./hw03 2 0 will will launch 40 blocks and choose the largest block size,
say 16 warps, for which 2 blocks can be active. Running ./hw03 0 0 will pick the block size and
number of blocks that will maximize the number of warps per SM.

The third argument, arg3, specifies the number of vectors per SM. A value of v indicates
that there should be v220 vectors per SM. (That means the input array has Nv220 floats and the
output array has Mv220 floats.) For example, Running ./hw03 0 0 2.5 will run with 20×2.5×220

vectors.

Setting arg3 too high will overflow the signed 32-bit integers used to index the various arrays.

Program Output
A run of vtx-xform-sparse and hw03 produces the following output:

A stray message about a CUDA API call.

[koppel@dmk-laptop intro-vtx-transform]$ ./vtx-xform-size

Call of cuDeviceGetCount, cbid 4, serial 1

Ignore it (the Call message).

Information about each GPU connected to the system, followed by a line showing the chosen
GPU.

GPU 0: GeForce GTX 1080 @ 1.73 GHz WITH 8119 MiB GLOBAL MEM

GPU 0: L2: 2048 kiB MEM<->L2: 320.3 GB/s

GPU 0: CC: 6.1 MP: 20 CC/MP: 128 DP/MP: 4 TH/BL: 1024

GPU 0: SHARED: 49152 B/BL 98304 B/MP CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 4438 SP GFLOPS 139 DP GFLOPS COMP/COMM: 55.4 SP 3.5 DP

GPU 1: GeForce GTX 1080 @ 1.73 GHz WITH 8111 MiB GLOBAL MEM

GPU 1: L2: 2048 kiB MEM<->L2: 320.3 GB/s

GPU 1: CC: 6.1 MP: 20 CC/MP: 128 DP/MP: 4 TH/BL: 1024

GPU 1: SHARED: 49152 B/BL 98304 B/MP CONST: 65536 B # REGS: 65536

GPU 1: PEAK: 4438 SP GFLOPS 139 DP GFLOPS COMP/COMM: 55.4 SP 3.5 DP

Using GPU 0

Most lab computers have two GPUs, please pay attention to the GPU that is actually being
used, GPU 0 above.

Most fields are self-explanatory. For example, L2 is the size of the level-2 cache and CC indicates
that the device is of compute capability 6.1 (a cheap Pascal). The MEM<->L2 field shows the off-
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chip bandwidth. MP indicates the number of multiprocessors, also called streaming multiprocessors
(SM’s). CC/MP indicates the number of CUDA cores (FP32 or single-precision functional units) per
MP, DP/MP indicates the number of double-precision (FP64) functional units per MP, and TH/BL

is the maximum number of threads per block.

The amount of shared memory available is shown per block (B/BL) and per MP, this does not
indicate whether any particular kernel is using that much shared memory or could use that much.
The same line shows the amount of constant memory, and the number of registers available.

The next line, PEAK, shows FP operation bandwidth in which a fused multiply-add is counted
as one operation. The COMP/COMM line gives the computation to communication ratio in floating-
point operations per floating-point element transfers. (The information above was collected in part
using the runtime library’s cudaGetDeviceProperties function.)

The program will next print information about each kernel:

CUDA Kernel Resource Usage:

For mxv:

32800 shared, 336 const, 0 loc, 24 regs; 1024 max threads per block.

For mxv_atomic:

34852 shared, 336 const, 0 loc, 40 regs; 1024 max threads per block.

For mxv_pfx_shared:

34852 shared, 336 const, 0 loc, 40 regs; 1024 max threads per block.

For mxv_pfx_ballot:

34852 shared, 336 const, 0 loc, 40 regs; 1024 max threads per block.

For mxv_pfx_prob1:

34852 shared, 336 const, 0 loc, 46 regs; 1024 max threads per block.

The max threads per block shown above is based on the kernel and reflects register usage.
Though it does not happen above, it is possible that a kernel can be limited to less than 1024
threads per block because it uses more than 64 registers (on a CC 6.1 device).

Next, the program provides information on the input size.

Matrix size: 8 x 8. Vectors: 20971520.

The input size shown above is the entire input size. Using the command-line arguments the
input size per SM is specified. So in the example above the input size per SM is 20971520/20 =
1048576. The input size can be changed using command-line arguments, that is explained further
below.

The program will launch each kernel several times, the first launch at a density (work) of 1,
with subsequent launches at lower densities, with the last launch at a density of zero. The density
is shown under the work column. Each line shows the result of one run.
Kernel mxv:

wp ac work t/s I/op GB/s Data BW Util----------------------------------------

32 32 1.000 7651 1.8 186 ******************************

32 32 0.750 7712 2.3 141 **********************

32 32 0.500 7717 3.3 98 ***************

32 32 0.250 7813 5.8 54 ********

32 32 0.021 4151 9.9 27 ****

32 32 0.004 1412 4.7 63 **********

32 32 0.000 545 2.4 154 ************************

The wp column shows the number of warps per block that the kernel was launched with. The
ac column shows the number of warps assigned to an SM (which is the product of the number
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of warps per block and the number of active blocks per SM). The number in the ac column is
computed by an NVIDIA API using information about the kernel and the GPU. In the example
above the wp and ac numbers are the same because the number of blocks is the same as the number
of SMs and so there is no way to have more than one block per SM.

The t/µs column shows the measured execution time, the GB/s value is the off-chip data
throughput, assuming that 4S +4Sw(N +M) B crosses the chip boundary, where S is the number
of vectors, w is the work density and N and M are the number of components in the input and
output vectors.

The I/op value shows the number of instructions executed divided by a reference number
of instructions. The reference number is based on the number of instructions we expect a good
compiler to emit, perhaps simplifying things a bit. The reference is currently set to w(MN +N +
M) + 4 + 3. Search for num_ops in the main routine.

A value of 2.00 means that about twice as many instructions were actually executed than we
expected. The I/op value is computed by actually measuring the number of instructions executed
using event counters built in to the GPU, and dividing that count by the number by the reference
amount. A value of exactly 1 for I/op would be great, but there is no guarantee that the reference
number is attainable.

The stars in last column show bandwidth utilization based on the GB/s number. If the stars
extend to the maximum length (shown by the hyphens to the right of Data BW Util in the column
heading) then off-chip bandwidth is being saturated. Note that this number is computed using
measured time and an ideal amount of data crossing the chip boundary.

When the first character of the second argument is a p additional data will be collected and
shown. The output from a run using ./hw03 0 p appears below:

Kernel mxv:

R-Eff-% -L2-Cache-- ---DRAM----

wp ac work t/s I/op SM eff Ld St Rd θ Wr θ Rd θ Wr θ GB/s Data BW Util-

32 64 1.000 7707 1.8 100.0% 100 50 98.0 174.1 98.0 87.1 185 *******

32 64 0.750 7700 2.3 93.7% 100 50 98.0 174.3 98.0 87.2 142 *****

32 64 0.500 7700 3.3 87.5% 100 50 98.1 174.3 98.1 87.2 98 ***

32 64 0.250 7695 5.8 81.3% 100 50 98.1 174.4 98.1 87.2 55 **

32 64 0.021 4122 9.9 76.1% 100 50 101.9 163.0 101.9 81.6 27 *

32 64 0.004 1367 4.7 75.8% 100 50 123.1 123.4 123.1 61.9 65 **

32 64 0.000 475 2.4 78.4% 100 50 176.6 0.1 176.5 2.1 176 *******

Kernel mxv_atomic:

R-Eff-% -L2-Cache-- ---DRAM----

wp ac work t/s I/op SM eff Ld St Rd θ Wr θ Rd θ Wr θ GB/s Data BW Util-

24 48 1.000 7531 3.0 74.1% 100 48 100.3 183.8 100.3 89.1 189 *******

24 48 0.750 6744 3.2 70.8% 100 49 87.5 152.1 87.2 74.7 162 ******

24 48 0.500 4874 3.5 66.4% 100 49 86.7 141.5 86.4 69.0 155 ******

24 48 0.250 3262 4.2 55.9% 100 47 78.1 108.6 77.8 51.6 129 *****

24 48 0.021 1242 6.9 16.5% 100 34 81.6 34.5 81.5 12.3 91 ***

24 48 0.004 1056 7.1 6.6% 100 13 85.8 21.0 85.8 3.6 85 ***

24 48 0.000 670 6.1 3.2% 100 39 125.2 0.0 125.2 1.5 125 *****

Kernel mxv_pfx_shared:

R-Eff-% -L2-Cache-- ---DRAM----

wp ac work t/s I/op SM eff Ld St Rd θ Wr θ Rd θ Wr θ GB/s Data BW Util-

24 48 1.000 7637 5.5 69.1% 100 48 98.9 181.2 98.9 87.9 187 *******
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24 48 0.750 6813 6.5 66.0% 100 49 86.6 150.5 86.2 73.9 160 ******

24 48 0.500 5022 8.1 62.2% 100 49 84.1 137.3 83.7 66.9 150 ******

24 48 0.250 3801 12.2 55.9% 100 47 67.0 93.2 66.5 44.3 110 ****

24 48 0.021 3410 32.6 45.7% 100 34 29.7 12.6 29.1 4.5 33 *

24 48 0.004 3306 38.5 45.5% 100 13 27.4 6.7 26.5 1.1 27 *

24 48 0.000 3054 39.3 47.4% 100 39 27.5 0.0 27.5 0.3 27 *

Kernel mxv_pfx_ballot:

R-Eff-% -L2-Cache-- ---DRAM----

wp ac work t/s I/op SM eff Ld St Rd θ Wr θ Rd θ Wr θ GB/s Data BW Util-

24 48 1.000 7546 2.9 74.1% 100 48 100.1 183.4 100.1 89.0 189 *******

24 48 0.750 6769 3.1 70.8% 100 49 87.2 151.5 86.9 74.4 161 ******

24 48 0.500 4855 3.3 66.4% 100 49 87.0 142.1 86.7 69.2 156 ******

24 48 0.250 3284 3.8 55.9% 100 47 77.6 107.9 77.3 51.3 128 *****

24 48 0.021 1137 6.6 13.3% 100 34 89.1 37.7 89.0 13.4 99 ****

24 48 0.004 958 7.5 3.9% 100 13 94.6 23.2 94.6 3.9 93 ***

24 48 0.000 600 6.9 1.1% 100 39 139.9 0.0 139.9 1.6 140 *****

The SM eff column shows the efficiency of shared loads. Lower values indicate more bank
conflicts. The R-Eff-% columns show the average percentage of each load and store request that
is used. The 100% for loads is ideal. The columns under -L2-Cache-- show the throughput from
the L2 caches to the MPs due to load and store instructions, in GB/s. (Load instructions result in
read requests, store instructions result in write requests.) The columns under ---DRAM---- show
the throughput from DRAM (off chip) to the L2 cache and the L2 cache to DRAM, respectively, in
GB/s. These four throughput values are based on request sizes, not on how much of those requests
are actually needed. This data is collected using event counters.

Problem 1: None of the kernels perform well when the density is low. The reason is that the
amount of work in an entire block is too low to keep the device busy. For example, at a density
of 1− 32

√

1/2 there is a probability of (1− (1− 32

√

1/2))32 = .5 that a warp has no work, and the

expected number of threads with work is B(1− 32

√

1/2) = 0.0214B, where B is the block size. For
a 1024-thread block on average 21.9 threads will be active, not even a single warp. The underlying
problem is that compress routine gathers work from B candidates (one per thread), which is too
few when the density is low.

For this problem improve on the situation by modifying mxv_compress_prob1 so that it exam-
ines input elements until it finds enough work to keep all threads in a warp busy (or until it reaches
the end of the array). The code in mxv_compress_prob1 is similar to the mxv_compress kernel,
except that the there is no call to a compress function. Instead, the compress_prefix_ballot

code has been copied in.

One way to solve this is to have each warp gather its own work. At each hb iteration threads
in a warp will add their work to worka (or some other array). When a warp has 32 elements it
computes the products. The advantage of having each warp gather its own work is that there will
be no need for frequent __syncthreads calls.

When analyzing the performance of the sparse kernels, pay attention to the number of iterations
of the hb loop. The default vector size is 220 elements per SM. Consider a launch with one 1024-
thread block per SM and a density of 1 −

32

√

7/8 = 0.00416. In that case there will be just 4
elements per hb iteration and only about four “full” iterations of work.
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