
LSU EE 7722 Homework 2 Due: 27 March 2019

Basic Setup
Follow the instructions for class account setup on https://www.ece.lsu.edu/gp/proc.html.
Code for this assignment is in directory ../hw/gpm/2019/hw02.

If the class account has been set up properly, the code can be built from within Emacs by
pressing F9 when visiting any file in the .../2019/hw02 directory or when in an Emacs shell

buffer (which can be entered using Alt -x shell Enter). The code can be built from the command

line using the command make -j 4 (assuming .../2019/hw02 is the current directory). Either
method runs a makefile that builds all examples in the directory. It builds two versions of each
program, one taking the base name of the main file, such as hw02, and one with the suffix -debug,
such as hw02-debug. The versions with the -debug suffix are compiled with host optimization
turned off, which facilitates debugging. At the moment GPU debugging can only be enabled by
editing the makefile: Put a -G on the line of CUCC_ONLY flags.

Running make on a clean directory will produce a large amount of output. The make program
and the file it reads, Makefile, are designed to build executables in a lazy fashion, meaning that
they only create a file if it is not present or if its prerequisites have changed. Therefore a second
run of make will take much less time.

Quickly check whether the build is successful with the command ./hw02. It should show the
run time of each of several kernels:
Launching with 20 blocks of up to 1024 threads.

mxv_g_only 32 wp 3366 s 179.418 GF 59.806 GB/s 1.13 I/F 12.5%

mxv_vec_ld 32 wp 1326 s 455.452 GF 151.817 GB/s 1.11 I/F 50.0%

mxv_o_per_thd 32 wp 2375 s 254.313 GF 84.771 GB/s 3.09 I/F 12.5%

mxv_o_per_thd_sol 32 wp 2383 s 253.422 GF 84.474 GB/s 3.09 I/F 12.5%

mxv_sh_ochunk 20 wp 1033 s 584.672 GF 194.891 GB/s 1.50 I/F 100.0%

mxv_sh_ochunk_sol 20 wp 1032 s 585.161 GF 195.054 GB/s 1.50 I/F 100.0%

The makefile will compile code for a GPU on the system it was run, favoring the GPU that’s
not connected to a display. Re-run make when moving to a different system. The Makefile should
automatically detect whether the GPU for which the executable was built matches the GPU on
the current system, and re-build if needed.

Using hw02
The code in hw02.cu is based on the vtx_xform_size code. The description below applies to this
assignment, hw02, and vtx_xform_size.

The code in vtx-xform-size.cu contains several kernels that compute a matrix/vector prod-
uct using a constant M×N matrix A applied to S N -component input column vectors, producing S
M -component output column vectors. The values of N and M are hard-coded in the file, whereas S
is a command-line argument. Vector and matrix elements are of type Elt_Type, which is hardcoded
to float.

The vtx-xform-size program takes three command-line arguments. The first indicates how
many blocks to launch. If the argument is zero then the number of blocks will be set to the number
of multiprocessors (which is the default). If the argument is negative then the number of blocks
will be −aP , where a is the argument value and P is the number of MPs.

The second argument is the number of threads per block to try to use to launch each kernel. If
the argument is omitted 1024 threads are tried. If the argument is omitted or positive, the actual

1

https://www.ece.lsu.edu/gp/
https://www.ece.lsu.edu/gp/proc.html

number of threads used in a launch is the minimum of this argument and the kernel’s maximum.
(For example, when the second argument is 512, but kernel foo has a limit of 256 threads, foo will
be launched with 256 threads.) When the second argument is 0 (zero) or p then each kernel will
be launched for different block sizes (measured in warps). The block sizes will be 1, 2, 3, 4, 8, 12,
. . . warps. The maximum block size is based on the kernel. (A kernel that uses few registers can
launch with a block size of 32, if more registers are used the maximum number of warps is lower.)
When p is used additional performance data is shown, which is interesting but it can slow things
down.

The third argument specifies the number of mibions input vectors to use. One mibion is 220.
The default is 1 mibion (1,048,576) vectors. If a3 is the value of the third argument, the input size
will be a32

20 vectors. The third argument is read as a floating-point number, so “0.5” will result
in a 219 vectors input.

Here are some examples: Run with 256 threads per block: ./vtx-xform-size 0 256. Run
with 512 threads per block and twice as many blocks as MPs: ./vtx-xform-size -2 512. Run
with 256 threads per block and 10 blocks: ./vtx-xform-size 10 256. Run each kernel multiple
times using an input size of 1 bibion (230 vectors): ./vtx-xform-size 0 0 1024.

Program Output
A run of vtx-xform-size produces the following output:

A stray message about a CUDA API call.

[koppel@dmk-laptop intro-vtx-transform]$./vtx-xform-size

Call of cuDeviceGetCount, cbid 4, serial 1

Ignore it (the Call message).

Information about each GPU connected to the system, followed by a line showing the chosen
GPU.

GPU 0: Quadro M2200 @ 1.04 GHz WITH 4010 MiB GLOBAL MEM

GPU 0: L2: 1024 kiB MEM<->L2: 88.1 GB/s

GPU 0: CC: 5.2 MP: 8 CC/MP: 128 DP/MP: 4 TH/BL: 1024

GPU 0: SHARED: 49152 B/BL 98304 B/MP CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 1061 SP GFLOPS 33 DP GFLOPS COMP/COMM: 48.2 SP 3.0 DP

Using GPU 0

Most lab computers have two GPUs, please pay attention to the GPU that is actually being
used, GPU 0 above.

Most fields are self-explanatory. For example, L2 is the size of the level-2 cache and CC
indicates that the device is of compute capability 5.2 (a cheap Maxwell). The MEM<->L2 field
shows the off-chip bandwidth. MP indicates the number of multiprocessors, also called streaming
multiprocessors (SM’s). CC/MP indicates the number of CUDA cores (single-precision functional
units) per MP, DP/MP indicates the number of double-precision functional units per MP, and TH/BL

is the maximum number of threads per block.

The amount of shared memory available is shown per block (B/BL) and per MP, this does not
indicate whether any particular kernel is using that much shared memory or could use that much.
The same line shows the amount of constant memory, and the number of registers available.

The next line, PEAK, shows FP operation bandwidth in which a fused multiply-add is counted
as one operation. The COMP/COMM line gives the computation to communication ratio in floating-
point operations per floating-point element transfers. (The information above was collected in part
using the runtime library’s cudaGetDeviceProperties function.)

2

The program will next print information about each kernel:

CUDA Kernel Resource Usage:

For mxv_g_only:

0 shared, 1088 const, 0 loc, 32 regs; 1024 max threads per block.

For mxv_i_lbuf:

0 shared, 1088 const, 0 loc, 32 regs; 1024 max threads per block.

For mxv_o_lbuf:

0 shared, 1088 const, 0 loc, 32 regs; 1024 max threads per block.

For mxv_o_per_thd:

0 shared, 1088 const, 0 loc, 31 regs; 1024 max threads per block.

For mxv_vec_ld:

0 shared, 1088 const, 64 loc, 40 regs; 1024 max threads per block.

For mxv_vls:

16384 shared, 1088 const, 0 loc, 48 regs; 1024 max threads per block.

For mxv_sh:

36864 shared, 1088 const, 0 loc, 32 regs; 1024 max threads per block.

For mxv_sh_ochunk:

4096 shared, 1088 const, 0 loc, 54 regs; 1024 max threads per block.

The max threads per block shown above is based on the kernel and reflects register usage.
Though it does not happen above, it is possible that a kernel can be limited to less than 1024
threads per block because it uses more than 64 registers (on a CC 5.2 device).

Next, the program provides information on the input size and launch configuration.

Matrix size: 16 x 16. Vectors: 1048576. 8 blocks of 1024 thds.

The input size can be changed using command-line arguments, that is explained further below.

The program can either launch each kernel once, with a particular configuration (number of
blocks and number of threads per block), or it can launch each kernel multiple times, each with a
different block size. Without arguments is runs each kernel once and prints one line per kernel.
Launching with 8 blocks of up to 1024 threads.

mxv_g_only 32 wp 6118 µs 43.873 GF 21.937 GB/s 1.21 I/F 12.5%

mxv_i_lbuf 32 wp 6836 µs 39.266 GF 19.633 GB/s 1.22 I/F 12.5%

mxv_o_lbuf 32 wp 6905 µs 38.873 GF 19.437 GB/s 1.22 I/F 12.5%

mxv_o_per_thd 32 wp 4602 µs 58.331 GF 29.166 GB/s 3.44 I/F 12.5%

mxv_vec_ld 32 wp 4144 µs 64.776 GF 32.388 GB/s 1.22 I/F 50.0%

mxv_vls 32 wp 2606 µs 103.017 GF 51.509 GB/s 1.50 I/F 100.0%

mxv_sh 32 wp 4084 µs 65.733 GF 32.867 GB/s 4.14 I/F 100.0%

mxv_sh_ochunk 32 wp 2598 µs 103.337 GF 51.669 GB/s 2.00 I/F 100.0%

The µs values are the execution time, the GF values show the floating point throughput (as-
suming NM FP operations per input vector), and the GB/s value is the off-chip data throughput,
assuming that 4(N +M) B crosses the chip boundary for each element.

The I/F value shows the number of instructions executed divided by a reference number of
instructions. The reference number is based on the number of instructions we expect a good
compiler to emit, perhaps simplifying things a bit. The reference is currently set to MN + N +
M + 4 + 3. Search for num_ops in the main routine.

A value of 2.00 means that about twice as many instructions were actually executed than we
expected. The I/F value is computed by actually measuring the number of instructions executed
using event counters built in to the GPU, and dividing that count by the number by SNM , the
number of multiply-add instructions expected for S inputs. A value of exactly 1 for I/F would be

3

great, but there is no guarantee that the reference number is attainable.

The last column, showing percents, shows read request utilization.

When run with a 0 as the second argument, such as ./vtx-xform-size -1 0, the program,
launches each kernel multiple times, starting with 4 warps per block, up to 32 warps per block.
Run time and other information will be shown for each launch. An excerpt for one kernel appears
below:

Kernel mxv_g_only:

wp ac t/µs Lw/µs I/op FP GB/s Data BW Util---------------------------------

1 1 4439 2.7 1.1 136 45 ******

2 2 2413 2.9 1.1 250 83 ***********

3 3 1964 3.6 1.1 308 103 **************

4 4 1765 4.3 1.1 342 114 ****************

8 8 1749 8.6 1.1 345 115 ****************

The wp column shows the number of warps per block that the kernel was launched with. The
ac column shows the number of warps assigned to an MP (which is the product of the number
of warps per block and the number of active blocks per MP). The number in the ac column is
computed by an NVIDIA API using information about the kernel and the GPU. In the example
above the wp and ac numbers are the same because the number of blocks is the same as the number
of MPs and so there is no way to have more than one block per MP.

The t/µs column shows the measured execution time. The Lw/µs column is the latency of
computing one matrix/vector multiplication. To be precise, it is the run time (for example, 4439µs)
divided by the number of multiplications performed by each thread. For the mxv_g_only kernel that
would be S

BG
. For the mxv_o_per_thd kernel, in which M threads perform the same computation,

the total time is divided by SM

BG
.

The FPθ column shows the FP throughput based on the measured execution time and the
assumption that SMP floating point operations were performed. The number under GB/s is the
minimum off-chip bandwidth, computed by dividing 4S(M +N) by the measured execution time.
The stars in last column show bandwidth utilization based on the GB/s number. If the stars extend
to the maximum length (shown by the hyphens to the right of Bandwidth Util in the column
heading) then off-chip bandwidth is being saturated. Note that this number is computed using
measured time and an ideal amount of data crossing the chip boundary.

When run using a p instead of a 0, vtx-xform-size collects hardware utilization data related
to load and store instructions. A sample is shown below.
Kernel mxv_sh_ochunk:

R-Eff-% -L2-Cache-- ---DRAM----

wp ac t/µs Lw/µs I/op Ld St Rd Wr Rd Wr FP GB/s Data BW Util-

1 1 6008 0.5 1.5 100 50 18.8 33.5 18.8 16.8 101 34 *

2 2 3294 0.5 1.5 100 50 32.3 61.1 32.6 30.6 183 61 **

3 3 2365 0.5 1.5 100 50 44.6 85.1 44.6 42.6 255 85 ***

4 4 1926 0.6 1.5 100 50 54.4 104.5 54.3 52.3 314 105 ****

8 8 1145 0.7 1.5 100 50 90.0 175.9 89.9 88.0 528 176 *******

The R-Eff-% columns show the average percentage of each load and store request that is used.
The 100% for loads is ideal. The columns under -L2-Cache-- show the throughput from the L2
caches to the MPs due to load and store instructions, in GB/s. (Load instructions result in read
requests, store instructions result in write requests.) The columns under ---DRAM---- show the
throughput from DRAM (off chip) to the L2 cache and the L2 cache to DRAM, respectively, in

4

GB/s. These four throughput values are based on request sizes, not on how much of those requests
are actually needed. This data is collected using event counters.

Problem 1: Kernel mxv_o_per_thd performs poorly due to load request underutilization. Initially
kernel mxv_o_per_thd_sol is identical to mxv_o_per_thd. Modify mxv_o_per_thd_sol so that it
loads the input vector components as an Elt_Type4 rather an Elt_Type. See kernel mxv_vec_ld for
an example of how to load and use this data type. Like mxv_o_per_thd, kernel mxv_o_per_thd_sol
should still assign M threads per matrix/vector multiplication. The only difference should be is in
how it loads its input vector components.

A correct solution should result in higher performance.

Problem 2: Kernel mxv_sh_ochunk uses shared memory to distribute input vector components
to threads, enabling it to avoid read request underutilization. It also assigns 8 (the value of
mxv_sh_ochunk_CS) threads to each matrix/vector multiplication.

Modify mxv_sh_ochunk_sol (which is initially identical to mxv_sh_ochunk) so that it uses
warp shuffle instructions to distribute input vector components instead of using shared memory.

Spoiler Alert: A correct solution should result in about equal performance.

Problem 3: One might expect mxv_sh_ochunk_sol to run faster because the store to shared
memory:

vxfer[threadIdx.x] =

d_app.d_in[(hb + thd_v_offset) * N + c + thd_c_offset];

is no longer needed. We still need to use the warp shuffle instructions to read the value, and maybe
we can expect that there will be one warp shuffle in the solution kernel for each shared load in the
original kernel. Based on this we might expect there to be fewer instructions and for the interval
latency to be lower.

Determine how the following factors effect these expectations:

• The number of shuffle functional units.

• The actual instructions generated by the compiler.

• Differences in critical path.

5

