
LSU EE 7722 Homework 1 Due: 12 February 2019

Basic Setup
Follow the instructions for class account setup on https://www.ece.lsu.edu/gp/proc.html.
Code for this assignment is in directory ../hw/gpm/2019/hw01.

If the class account has been set up properly, the code can be built from within Emacs by
pressing F9 when visiting any file in the .../2019/hw01 directory or when in an Emacs shell

buffer (which can be entered using Alt -x shell Enter ). The code can be built from the command

line using the command make -j 4 (assuming .../2019/hw01 is the current directory). Either
method runs a makefile that builds all examples in the directory. It builds two versions of each
program, one taking the base name of the main file, such as hw01, and one with the suffix -debug,
such as hw01-debug. The versions with the -debug suffix are compiled with host optimization
turned off, which facilitates debugging. At the moment GPU debugging can only be enabled by
editing the makefile.

Running make on a clean directory will produce a large amount of output. The make program
and the file it reads, Makefile, are designed to build executables in a lazy fashion, meaning that
they only create a file if it is not present or if its prerequisites have changed. Therefore a second
run of make will take much less time.

Quickly check whether the build is successful with the command ./hw01. It should produce
output ending with a line like Run completed, total errors: 0.

The makefile will compile code for a GPU on the system it was run, favoring the GPU that’s
not connected to a display. Re-run make when moving to a different system. The Makefile should
automatically detect whether the GPU for which the executable was built matches the GPU on
the current system, and re-build if needed.

Using hw01
The code in hw01.cu contains several kernels that operate on an array of structures. See Problem
1 for a description of the kernels.

The hw01 program takes three command-line arguments. The first indicates how many blocks
to launch. If the argument is zero then the number of blocks will be set to the number of multipro-
cessors (which is the default). If the argument is negative then the number of blocks will be −aP ,
where a is the argument value and P is the number of MPs.

The second argument is the number of threads per block to try to use to launch each kernel. If
the argument is omitted 1024 threads are tried. If the argument is omitted or positive, the actual
number of threads used in a launch is the minimum of this argument and the kernel’s maximum.
(For example, when the second argument is 512, but kernel foo has a limit of 256 threads, foo will
be launched with 256 threads.) When the second argument is 0 (zero) or p then each kernel will be
launched multiple times starting with 4 warps, incrementing by 4 warps until the kernel maximum
is reached. When p is used additional performance data is shown, which is interesting but it can
slow things down.

The third argument specifies the size of the array, in mibiions. (One mibion is 220.) The
default is 1 mibion (1,048,576) elements. If a3 is the value of the third argument, the input size
will be a32

20 elements. The third argument is read as a floating-point number, so “0.5” will result
in a 219 elements.

Here are some examples: Run with 256 threads per block: ./hw01 0 256. Run with 512
threads per block and twice as many blocks as MPs: ./hw01 -2 512. Run with 256 threads per
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block and 10 blocks: ./hw01 10 256. Run each kernel multiple times using an input size of 1
billion (109 elements): ./hw01 0 0 953.674.

Program Output
A run of hw01 produces the following output:

A stray message about a CUDA API call.

[koppel@dmk-laptop hw01]$ ./hw01

Call of cuDeviceGetCount, cbid 4, serial 1

Ignore it (the Call message).

Information about each GPU connected to the system, followed by a line showing the chosen
GPU.

GPU 0: Quadro M2200 @ 1.04 GHz WITH 4010 MiB GLOBAL MEM

GPU 0: L2: 1024 kiB MEM<->L2: 88.1 GB/s

GPU 0: CC: 5.2 MP: 8 CC/MP: 128 DP/MP: 4 TH/BL: 1024

GPU 0: SHARED: 49152 B/BL 98304 B/MP CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 1061 SP GFLOPS 33 DP GFLOPS COMP/COMM: 48.2 SP 3.0 DP

Using GPU 0

Most lab computers have two GPUs, please pay attention to the GPU that is actually being
used, GPU 0 above.

Most fields are self-explanatory. For example, L2 is the size of the level-2 cache and CC
indicates that the device is of compute capability 5.2 (a cheap Maxwell). The MEM<->L2 field
shows the off-chip bandwidth. MP indicates the number of multiprocessors, also called streaming
multiprocessors (SM’s). CC/MP indicates the number of CUDA cores (single-precision functional
units) per MP, DP/MP indicates the number of double-precision functional units per MP, and TH/BL

is the maximum number of threads per block.

The amount of shared memory available is shown per block (B/BL) and per MP, this does not
indicate whether any particular kernel is using that much shared memory or could use that much.
The same line shows the amount of constant memory, and the number of registers available.

The next line, PEAK, shows FP operation bandwidth in which a fused multiply-add is counted
as one operation. The COMP/COMM line gives the computation to communication ratio in floating-
point operations per floating-point element transfers. (The information above was collected in part
using the runtime library’s cudaGetDeviceProperties function.)

The program will next print information about each kernel:

CUDA Kernel Resource Usage:

For ss_g_only:

0 shared, 48 const, 0 loc, 23 regs; 1024 max threads per block.

For ss_l1ro:

0 shared, 48 const, 0 loc, 25 regs; 1024 max threads per block.

For ss_sh:

0 shared, 48 const, 0 loc, 25 regs; 1024 max threads per block.

The max threads per block shown above is based on the kernel and reflects register usage.
Though it does not happen above, it is possible that a kernel can be limited to less than 1024
threads per block because it uses more than 64 registers (on a CC 5.2 device).

Next, the program provides information on the input size and launch configuration.

Array size: 1048576. Grid: 13 blocks of 1024 thds. Structure Size: 36 B, slen = 28
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Launching with 13 blocks of up to 1024 threads.

The array size can be changed using command-line arguments, that is explained further below.
Variable slen controls the size of the structure.

The program can either launch each kernel once, with a particular configuration (number of
blocks and number of threads per block), or it can launch each kernel multiple times, each with a
different block size. Without arguments is runs each kernel once and prints one line per kernel.

Launching with 20 blocks of up to 1024 threads.

ss_g_only 32 wp 712 µs 45.650 GF 106.026 GB/s 4.33 I/F 12.5%

ss_l1ro 32 wp 847 µs 38.366 GF 89.107 GB/s 4.26 I/F 12.5%

ss_sh 32 wp 389 µs 83.537 GF 194.021 GB/s 5.27 I/F 100.0%

The µs values are the execution time, the GB/s value is the off-chip data throughput, and I/F

is a rough measure of how many instructions are executed.

The I/F value is computed by actually measuring the number of instructions executed using
event counters built in to the GPU, and dividing that count by a hand computed ideal number of
instructions. A value of exactly 1 for I/F would be suspiciously low because that would mean there
could be no load instructions to read the input nor stores to write the output.

The last column, showing percents, shows read request utilization.

When run with a 0 as the second argument, such as ./hw01 0 0, the program, launches each
kernel multiple times, starting with 4 warps per block, up to 32 warps per block. Run time and
other information will be shown for each launch. An excerpt for one kernel appears below:

Kernel ss_g_only:

wp ac t/µs I/op GB/s Data BW Util-----------------------------------------------

4 4 786 4.3 96 *****************

8 8 766 4.3 99 ******************

12 12 758 4.3 100 ******************

16 16 742 4.3 102 ******************

20 20 730 4.3 103 *******************

24 24 731 4.3 103 *******************

28 28 717 4.3 105 *******************

32 32 727 4.3 104 *******************

The wp column shows the number of warps per block that the kernel was launched with. The
ac column shows the number of warps assigned to an MP (which is the product of the number
of warps per block and the number of active blocks per MP). The number in the ac column is
computed by an NVIDIA API using information about the kernel and the GPU. In the example
above the wp and ac numbers are the same because the number of blocks is the same as the number
of MPs and so there is no way to have more than one block per MP.

The t/µs column shows the measured execution time. The number under GB/s is the minimum
off-chip bandwidth, computed by dividing 4S(36 + 36) by the measured execution time. The stars
in last column show bandwidth utilization based on the GB/s number. If the stars extend to the
maximum length (shown by the hyphens to the right of Bandwidth Util in the column heading)
then off-chip bandwidth is being saturated. Note that this number is computed using measured
time and an ideal amount of data crossing the chip boundary.
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When run using a p instead of a 0, hw01 collects hardware utilization data related to load and
store instructions. A sample is shown below.

Kernel ss_g_only:

Req U % -L2 Cache-- ---DRAM----

wp ac t/µs I/op Ld St Shx Rd θ Wr θ Rd θ Wr θ GB/s Data BW Util----------

4 4 672 4.3 12 13 0.0 56.2 449.7 56.2 56.1 112 *******

8 8 644 4.3 12 13 0.0 58.6 468.6 58.6 58.8 117 ********

12 12 646 4.3 12 13 0.0 58.4 467.2 58.4 58.6 117 ********

16 16 636 4.3 12 13 0.0 59.4 475.2 59.4 59.7 119 ********

20 20 623 4.3 12 13 0.0 60.6 484.5 60.6 61.6 121 ********

24 24 632 4.3 12 13 0.0 59.7 477.7 59.7 63.2 119 ********

28 28 613 4.3 12 13 0.0 61.6 492.9 61.6 62.6 123 ********

32 32 613 4.3 12 13 0.0 61.6 492.5 61.6 62.4 123 ********

The two columns under Req U % indicate the average percentage of each load and store request
that is used. The 12% value shown above is what one would expect for scattered accesses to 4-byte
values. The Shx column shows the number of times shared memory is read for each shared load.
Zero indicates that shared memory isn’t being used. Otherwise, 1 is ideal and higher numbers
indicate serialization due to bank conflicts. For example, a 2 would indicate that on average shared
loads have to be done twice.

The columns under -L2 Cache-- show the throughput from the L2 caches to the MPs due
to load and store instructions, in GB/s. The columns under ---DRAM--- show the throughput
from DRAM (off chip) to the L2 cache and the L2 cache to DRAM, respectively, in GB/s. These
four throughput values are based on request sizes, not on how much of those requests are actually
needed. This data is also collected using event counters.
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Problem 1: The kernels ss_g_only, ss_l1r0, and ss_sh each have an input ss_in which is the
address of an array of structures, and ss_out which is the address of another array of structures.
Both arrays have app.n_elts elements (the element is a structure). Kernel ss_g_only is written
so that the read-only cache will be used for the input array, whereas with ss_l1r0 there is no MP
caching. Those two kernels are to be compared for this problem. Kernel ss_sh is to be used in the
next problem.

The kernels read in an element perform an operation, and write out the modified structure.
The structure and one of the kernels appears below:

const int slen = 28;

struct Some_Struct

{

float f0, f1;

char str[slen];

};

extern "C" __global__ void ss_l1r0(Some_Struct* ss_out, const Some_Struct* ss_in)

{

const int tid = threadIdx.x + blockIdx.x * blockDim.x;

const int num_threads = blockDim.x * gridDim.x;

for ( int h=tid; h<d_app.n_elts; h += num_threads )

{

Some_Struct elt = ss_in[h];

Some_Struct elt_out;

bool ord = elt.f0 <= elt.f1;

elt_out.f0 = ord ? elt.f0 : elt.f1;

elt_out.f1 = ord ? elt.f1 : elt.f0;

int delta = elt.f0 == elt.f1 ? 0 : ord ? -1 : 1;

for ( int i=0; i<slen; i++ ) elt_out.str[i] = elt.str[i] + delta;

ss_out[h] = elt_out;

}

}

The method used to assign array elements to a thread (the way that h is computed) is the same
method used elsewhere in this course, for example, the code samples in vtx_xform_size. If ss_in
were an array of floats, then requests would be used efficiently. However the default structure size
is 36B, and the compiler will use 36/4 = 9 load instructions to load ss_in[h] from global memory.
(The compiler is smart enough to use a 32-bit load to load 4 consecutive elt.str elements. The
data below show that as expected, the request utilization (Req U %) is about 1/8.

Kernel ss_l1r0:

Req U % -L2 Cache-- ---DRAM----

wp ac t/µs I/op Ld St Shx Rd θ Wr θ Rd θ Wr θ GB/s Data BW Util----------

4 4 778 4.3 12 13 0.0 388.2 388.1 48.5 48.7 97 ******

8 8 756 4.3 12 13 0.0 399.6 399.6 49.9 50.1 100 ******

12 12 741 4.3 12 13 0.0 407.8 407.8 51.0 51.1 102 *******

16 16 731 4.3 12 13 0.0 413.3 413.3 51.7 51.9 103 *******

20 20 714 4.3 12 13 0.0 423.0 423.0 52.9 53.1 106 *******

24 24 713 4.3 12 13 0.0 423.8 423.7 53.0 53.5 106 *******

28 28 705 4.3 12 13 0.0 428.4 428.4 53.5 54.0 107 *******

32 32 713 4.3 12 13 0.0 423.5 423.5 52.9 53.8 106 *******

Run the code on one of the workstation computers. In the answers below, indicate which
machine you are using.
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(a) What looks like its limiting the performance of each kernel? Use the performance counter data
in your answers.

(b) What kind of advantage is the L1 read-only cache providing? Use the performance counter data
in your answers.

See 2018 Homework 2 problem 1 for a roughly similar problem.

Problem 2: Initially, the code in kernel ss_sh is almost identical to ss_l1r0. Modify ss_sh so
that it uses shared memory to avoid request under-utilization. Notice that in the ss_sh a shared
array and some punned pointers have been declared:

extern "C" __global__ void ss_sh(Some_Struct* ss_out, const Some_Struct* ss_in)

{

const int tid = threadIdx.x + blockIdx.x * blockDim.x;

const int num_threads = blockDim.x * gridDim.x;

const int ss_size_words = sizeof(Some_Struct) / sizeof(uint32_t);

__shared__ Some_Struct ss_blk[1024];

// Cast pointers to Some_Struct to pointers to integers so that

// Some_Struct data can be moved around as a simple array of integers.

uint32_t* const ss_blk_wds = (uint32_t*) &ss_blk[0];

uint32_t* const ss_in_wds = (uint32_t*) &ss_in[0];

uint32_t* const ss_out_wds = (uint32_t*) &ss_out[0];

Modify the code so that it copies elements from global memory using pointer ss_in_wds into
shared memory using pointer ss_blk_wds, performs the operation using pointer ss_blk, and then
writes the result out using pointers ss_blk_wds and ss_out_wds. If the problem is solved correctly
request utilization for loads and stores should be 100% and performance should be higher. For
example,

Req U % -L2 Cache-- ---DRAM----

wp ac t/µs I/op Ld St Shx Rd θ Wr θ Rd θ Wr θ GB/s Data BW Util----------

4 4 421 5.3 100 100 1.0 89.8 89.7 89.7 89.8 179 ************

8 8 410 5.3 100 100 1.0 92.1 92.0 92.0 92.1 184 ************

12 12 400 5.3 100 100 1.0 94.4 94.3 94.3 94.4 189 ************

16 16 399 5.3 100 100 1.0 94.7 94.7 94.7 94.8 189 *************

20 20 398 5.3 100 100 1.0 94.9 94.9 94.9 94.9 190 *************

24 24 394 5.3 100 100 1.0 95.9 95.8 95.8 95.9 192 *************

28 28 396 5.3 100 100 1.0 95.3 95.3 95.3 95.3 191 *************

32 32 395 5.3 100 100 1.0 95.5 95.4 95.5 95.4 191 *************

The output will be tested for correctness, make sure that no errors are reported.
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