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Problem 1: [50 pts] In Homework 3 there were several variations on a kernel that performed sparse work.
The goal was to find efficient ways to concentrate work so that all threads in a warp would keep busy. In
the original assignment package the baseline kernel, mxv, would not try to keep all threads in a warp busy.
That kernel did poorly as sparsity dropped. However, the kernel had one major flaw which has since been
fixed: data was read and written even if no operation was to be performed. (The mxv kernel was fixed in
commit 2b32ea6.)

If execution time were determined only by data volume all kernels in the Homework 3 assignment code would
have the same execution time since they each read and write the same amount of data. Two other factors
can determine execution time: instruction throughput and interval latency.

(a) Model the code in mxv using convenient simplifying assumptions. To the same for the compression
kernels: mvx_pfx_ballot, which at each iteration concentrates work found in all threads in a warp, and for
mvx_pfx_prob1, in which each warp concentrates work over multiple iterations until there 32 work items.
Avoid tedious models. Model intervals with and without work and estimate run time using these.

The model should show that at a high density (labeled work in the tables) the code should be bandwidth-
limited and so mxv should perform as well as the compression kernels. Find a value of density (use d) at
which each compression kernel is faster than mxv (based on the model). Explain why they are faster.

Using the model show that at lower densities latency should dominate and so the compression kernels should
dominate.
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(b) On the next page data from runs of mxv and two compression kernels are shown: mxv_pfx_ballot and
a tuned Homework 3 solution. These runs show that mxv does well at higher densities.

The first set of runs were configured to maximize the number of resident warps for each kernel. The second
set were configured for active 32 warps per MP, and the third set for 8 warps per MP. For each set look at
the speedup of the prob1 kernel over mxv at density .021. In the first set the speedup is a mere 1247µs

1187µs
= 1.05.

The second and third are 1273µs

1167µs
= 1.09 and 2746µs

1762µs
= 1.56.

At density 1 the speedups are 1.00, 1.00, and 1.03, indicating that the prob1 kernel has at best a small
advantage at high densities and fewer warps.

Use the model to explain the speedups and other data. In particular explain why the speedup at low density
is so much higher for the 8-warp configuration than the configurations with more warps.
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The data below was run on nereid.ece.lsu.edu using commit 2e397d8.
GPU 1: GeForce GTX 1080 @ 1.73 GHz WITH 8119 MiB GLOBAL MEM

GPU 1: L2: 2048 kiB MEM<->L2: 320.3 GB/s

GPU 1: CC: 6.1 MP: 20 CC/MP: 128 DP/MP: 4 TH/BL: 1024

GPU 1: SHARED: 49152 B/BL 98304 B/MP CONST: 65536 B # REGS: 65536

GPU 1: PEAK: 4438 SP GFLOPS 139 DP GFLOPS COMP/COMM: 55.4 SP 3.5 DP

Using GPU 1

CUDA Kernel Resource Usage:

For mxv:

32800 shared, 336 const, 0 loc, 27 regs; 1024 max threads per block.

For mxv_pfx_ballot:

34852 shared, 336 const, 0 loc, 40 regs; 1024 max threads per block.

For mxv_pfx_prob1:

40992 shared, 336 const, 0 loc, 40 regs; 1024 max threads per block.

Matrix size: 8 x 8. Vectors: 20971520.

Kernel mxv:

R-Eff-% -L2-Cache-- ---DRAM----

wp ac work t/µs I/op SM eff Ld St Rd θ Wr θ Rd θ Wr θ GB/s Data BW Util-

32 64 1.000 7713 2.2 100.0% 100 50 97.9 174.0 97.9 87.0 185 *******

32 64 0.750 6611 2.9 81.4% 100 54 88.8 140.4 88.8 76.2 165 ******

32 64 0.500 4940 4.1 64.5% 100 67 84.9 101.9 84.9 68.0 153 ******

32 64 0.250 4326 7.1 52.0% 100 86 58.2 44.9 58.2 38.9 97 ***

32 64 0.021 1247 11.8 48.4% 100 100 78.8 11.6 78.8 12.2 90 ***

32 64 0.004 659 5.1 48.6% 100 100 131.7 4.3 131.6 5.7 136 *****

32 64 0.000 479 2.1 53.3% 100 -5 175.2 0.0 175.2 2.1 175 *******

Kernel mxv_pfx_ballot:

R-Eff-% -L2-Cache-- ---DRAM----

wp ac work t/µs I/op SM eff Ld St Rd θ Wr θ Rd θ Wr θ GB/s Data BW Util-

24 48 1.000 7532 2.9 74.1% 100 48 100.2 183.8 100.2 89.1 189 *******

24 48 0.750 6751 3.1 70.8% 100 49 87.4 151.9 87.1 74.6 162 ******

24 48 0.500 4877 3.3 66.4% 100 49 86.6 141.4 86.3 68.9 155 ******

24 48 0.250 3277 3.8 55.9% 100 47 77.7 108.1 77.5 51.4 128 *****

24 48 0.021 1134 6.6 13.3% 100 34 89.4 37.8 89.3 13.4 99 ****

24 48 0.004 951 7.5 3.9% 100 13 95.4 23.3 95.3 4.0 94 ***

24 48 0.000 599 6.9 1.1% 100 39 140.1 0.0 140.1 1.7 140 *****

Kernel mxv_pfx_prob1:

R-Eff-% -L2-Cache-- ---DRAM----

wp ac work t/µs I/op SM eff Ld St Rd θ Wr θ Rd θ Wr θ GB/s Data BW Util-

24 48 1.000 7744 2.4 92.3% 100 50 97.5 173.3 97.5 86.7 184 *******

24 48 0.750 7695 2.5 91.5% 100 50 76.3 130.8 76.3 65.4 142 *****

24 48 0.500 6755 2.6 89.9% 100 50 62.1 99.4 62.1 49.8 112 ****

24 48 0.250 5716 2.8 85.5% 100 50 44.1 58.7 44.0 29.5 73 **

24 48 0.021 1187 3.3 57.9% 100 50 82.9 24.3 82.8 12.8 95 ***

24 48 0.004 616 2.9 50.7% 100 51 140.9 9.3 140.7 5.9 145 *****

24 48 0.000 516 2.7 77.8% 100 64 162.6 0.0 162.6 2.0 163 ******
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Kernel mxv:

R-Eff-% -L2-Cache-- ---DRAM----

wp ac work t/µs I/op SM eff Ld St Rd θ Wr θ Rd θ Wr θ GB/s Data BW Util-

32 32 1.000 7691 2.2 100.0% 100 50 98.2 174.5 98.2 87.3 185 *******

32 32 0.750 6448 2.9 81.4% 100 54 91.1 143.9 91.1 78.1 169 ******

32 32 0.500 4809 4.1 64.5% 100 67 87.2 104.7 87.2 69.9 157 ******

32 32 0.250 3564 7.1 52.0% 100 86 70.6 54.5 70.6 47.3 118 ****

32 32 0.021 1273 11.8 48.4% 100 100 77.2 11.3 77.2 12.0 89 ***

32 32 0.004 751 5.1 48.6% 100 100 115.4 3.7 115.4 5.0 119 ****

32 32 0.000 542 2.1 53.3% 100 -5 154.7 0.0 154.7 1.9 155 ******

Kernel mxv_pfx_ballot:

R-Eff-% -L2-Cache-- ---DRAM----

wp ac work t/µs I/op SM eff Ld St Rd θ Wr θ Rd θ Wr θ GB/s Data BW Util-

32 32 1.000 7498 2.9 74.2% 100 49 100.7 183.2 100.7 89.5 190 *******

32 32 0.750 6709 3.1 71.2% 100 49 87.9 152.1 87.6 75.1 163 ******

32 32 0.500 4784 3.3 66.9% 100 49 88.2 143.2 87.9 70.3 158 ******

32 32 0.250 2854 3.8 56.7% 100 48 89.0 122.5 88.8 59.0 147 *****

32 32 0.021 1557 6.3 14.7% 100 36 64.6 25.4 64.6 9.8 72 **

32 32 0.004 1355 7.3 3.6% 100 13 65.8 15.7 65.8 2.8 66 **

32 32 0.000 862 6.9 1.1% 100 12 97.3 0.0 97.3 1.2 97 ***

Kernel mxv_pfx_prob1:

R-Eff-% -L2-Cache-- ---DRAM----

wp ac work t/µs I/op SM eff Ld St Rd θ Wr θ Rd θ Wr θ GB/s Data BW Util-

32 32 1.000 7676 2.4 92.3% 100 50 98.4 174.9 98.4 87.4 186 *******

32 32 0.750 7093 2.5 91.5% 100 50 82.8 141.9 82.8 71.0 154 ******

32 32 0.500 5473 2.6 89.9% 100 50 76.7 122.6 76.6 61.4 138 *****

32 32 0.250 4829 2.8 85.6% 100 50 52.1 69.5 52.1 34.9 87 ***

32 32 0.021 1167 3.3 58.2% 100 50 84.3 24.7 84.3 13.0 97 ***

32 32 0.004 658 2.9 50.9% 100 51 131.8 8.5 131.7 5.5 136 *****

32 32 0.000 542 2.7 68.4% 100 109 154.9 0.0 154.9 1.9 155 ******
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Kernel mxv:

R-Eff-% -L2-Cache-- ---DRAM----

wp ac work t/µs I/op SM eff Ld St Rd θ Wr θ Rd θ Wr θ GB/s Data BW Util-

8 8 1.000 8141 2.2 100.0% 100 50 92.7 164.9 92.7 82.4 175 *******

8 8 0.750 7028 2.9 81.4% 100 54 83.6 132.0 83.6 71.7 155 ******

8 8 0.500 5792 4.1 64.5% 100 67 72.4 86.9 72.4 58.0 130 *****

8 8 0.250 5179 7.1 52.0% 100 86 48.6 37.5 48.6 32.5 81 ***

8 8 0.021 2746 11.8 48.4% 100 100 35.8 5.3 35.8 5.6 41 *

8 8 0.004 1722 5.1 48.6% 100 100 50.4 1.6 50.3 2.2 52 **

8 8 0.000 1373 2.1 53.3% 100 -5 61.1 0.0 61.1 0.7 61 **

Kernel mxv_pfx_ballot:

R-Eff-% -L2-Cache-- ---DRAM----

wp ac work t/µs I/op SM eff Ld St Rd θ Wr θ Rd θ Wr θ GB/s Data BW Util-

8 8 1.000 8212 2.9 73.2% 100 46 91.9 178.8 91.9 81.7 174 *******

8 8 0.750 7491 3.2 68.3% 100 47 79.6 142.8 78.7 67.2 146 *****

8 8 0.500 6356 3.5 63.0% 100 46 67.4 115.1 66.7 52.9 119 ****

8 8 0.250 5717 4.1 51.4% 100 42 45.6 69.7 45.2 29.5 73 **

8 8 0.021 4524 8.2 8.3% 100 14 23.6 22.2 23.6 3.4 25 *

8 8 0.004 3704 8.6 4.8% 100 13 26.4 6.1 26.4 1.0 24

8 8 0.000 2458 6.9 1.1% 100 12 34.1 0.0 34.1 0.4 34 *

Kernel mxv_pfx_prob1:

R-Eff-% -L2-Cache-- ---DRAM----

wp ac work t/µs I/op SM eff Ld St Rd θ Wr θ Rd θ Wr θ GB/s Data BW Util-

8 8 1.000 7900 2.4 92.3% 100 50 95.6 169.9 95.6 85.0 181 *******

8 8 0.750 6976 2.5 91.5% 100 50 84.2 144.3 84.2 72.2 156 ******

8 8 0.500 5148 2.6 90.0% 100 50 81.5 130.4 81.5 65.3 147 *****

8 8 0.250 3446 2.8 85.7% 100 50 73.0 97.4 73.0 48.9 122 ****

8 8 0.021 1762 3.3 58.6% 100 50 55.8 16.3 55.8 8.6 64 **

8 8 0.004 1480 2.9 52.4% 100 50 58.6 3.8 58.6 2.5 60 **

8 8 0.000 1374 2.7 43.1% 100 120 61.1 0.0 61.1 0.7 61 **
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Problem 2: [50 pts] Hegde proposes UCNN, a CNN accelerator design that exploits repeated weights [2].
In UCNN the order in which inputs are read is determined by the weight values applied to them, enabling
inputs to be summed first, and then multiplied by their common weight. This requires as few as one register
for accumulating the sum, but requires each PE to buffer the entire input, or else a group of PEs to be fed
parts of a long contiguous read. The iiT array maps an index (perhaps a simple loop iterator) to an input
number.

In UCNN a PE, using q=0,1,2, as an iterator, computes a += i[n][c][x+iiTx[m][c][q]][y+iiTy[m][c][q]]

and during this computation sets o[n][m][x][y] += a * wiT[m][c][]; a = 0; at group boundaries
(details not shown).

Consider the following alternative design, CNNU. The weight index table array wiT[M][C][I][J] holds
weight indices and the weight value table wvT[M][C][U] holds weight values, where M is the number of
output channels, C is the number of input channels, I and J are the number of rows and columns in the
filter, and U is the maximum number of distinct weights per filter (per m, c pair).

Instead of accessing w[m][c][i][j] to retrieve the weight for output channel m, input channel c, filter
coordinate i, j, this system could access wvT[m][c][ wiT[m][c][i][j] ].

A PE for an output-stationary dataflow would have U registers, a[U], for each output, these would be
initialized to zero. Input and wiT values would be stored in or streamed to the PEs. The PE would compute
a[ wiT[m][c][i][j] ] += i[n][c][x+i][y+j] for each I and J. Finally, the weights would be applied:
o[n][m][x][y] += a[u] * wvT[m][u] .

Here are some important differences: A PE would need U to GU accumulators instead of 1 to G. Each entry
in the wiT would require only ⌈lgU⌉ bits.

Note: CNNU was made up for this exam. However, it’s a fairly obvious way to exploit weight re-use and so
the idea probably has been described already in the literature.

Answer questions on the next page, which are about UCNN as described by Hegde and about CNNU as
described here.
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(a) Compare the amount of storage needed for weights and the indirection tables (before loading them onto
the chip) between UCNN and CNNU. Consider systems designed for a few unique weights and lots of unique
weights. Make up values for U and IJ (number of weights per filter) for your answer.

(b) It seems as though with UCNN each PE must use a different input element than its neighbors. This
would require each PE to store an entire input channel, or the global buffer would have to provide a different
value to each PE (which would be costly), or, as the paper suggests, groups of PEs share a banked memory.
But in all of these situations each input value is read from a medium-sized to large memory and used once.

In an ordinary output-stationary CNN one input value can be used to compute multiple output channels,
so long as the PE has storage for those channels. Explain why that can’t be done using UCNN but is still
possible using CNNU.

(c) How easy would it be to apply UCNN to the row-stationary dataflow of Chen [1]. What sort of shapes
would work well and poorly?

(d) Consider the convolutional layer shapes for AlexNet as tabulated in [1] in Table II. Pay attention to the
size of the filter and the number of channels. What are the implications of the small filter sizes? How might
UCNN be modified to accommodate them?
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