
LSU EE 7722 Homework 3 Due: 9 April 2018

Basic Setup
Follow the instructions for class account setup found on
http://www.ece.lsu.edu/gp/proc.html. This assignment uses code in the hw03 directory, file
hw03.cu is to be modified.

If the class account has been set up properly, the code can be built from within Emacs by
pressing F9 when visiting any file in the .../hw03 directory or when in an Emacs shell buffer

(which can be entered using Alt -x shell Enter). The code can be built from the command line

using the command make -j 4 (assuming .../hw03 is the current directory). The makefile builds
three versions of each program, named hw03, hw03-debug, and hw03-cuda-debug. The versions
with the -debug suffix are compiled with host optimization turned off, which facilitates debugging.
The hw03-cuda-debug version is compiled for CUDA kernel debugging, using cuda-gdb. It runs
without performance data (such as the data plotted under I/op) and is not optimized. Use hw03-
cuda-debug when using cuda-gdb to debug kernel code. Host code can be debugged that way too,
but execution is faster when gdb is used on hw03-debug.

Quickly check whether the build is successful with the command ./hw03. It should produce a
table showing data on runs of several kernels. The last few lines should look something like:
mxv_sh_ochunk_sol_mn 32 wp 598991 s 7.170 GF 0.896 GB/s 2.59 I/F

mxv_sh_ochunk_mn 32 wp 23329 s 11.507 GF 5.753 GB/s 6.84 I/F

mxv_sh_ochunk_mn 32 wp 100838 s 10.648 GF 2.662 GB/s 3.28 I/F

mxv_sh_ochunk_mn 32 wp 597686 s 7.186 GF 0.898 GB/s 2.59 I/F

The makefile will compile code for a GPU on the system it was run, favoring the GPU that’s
not connected to a display. Re-run make when moving to a different system. The Makefile should
automatically detect whether the GPU for which the executable was built matches the GPU on
the current system, and re-build if needed.

Using hw03
The code in hw03.cu is based on vtx-xform-size.cu and accepts the same command-line argu-
ments. It runs multiple kernels based on mxv_sh_ochunk from vtx-xform-size.cu. Recall that
vtx-xform-size.cu contained many kernels that multiplied vectors by a fixed matrix M ×N ma-
trix. The hw03 code operates only on square (N ×N) matrices, but uses multiple matrix sizes in
a single run.

Each kernel reads S n-component input vectors and writes S n-component output vectors.
The value of S is specified by a command-line option (see below), and is the same for all kernels in
a run. The vector size, n, varies from kernel to kernel. It is shown in parenthesis after the kernel
name, such as mxv_sh_ochunk_mn(32,32). Vector components and matrix elements are of type
Elt_Type, which is hardcoded to float.

Routine mxv_sh_ochunk is a templated routine based on the routine with the same name
from vtx-xform-size.cu. The template argument indicates the matrix size, the code runs three
specializations named mxv_sh_ochunk_16, mxv_sh_ochunk_32, and mxv_sh_ochunk_64. The com-
piler does a good job with mxv_sh_ochunk_16 and mxv_sh_ochunk_32 but does poorly with kernel
mxv_sh_ochunk_64.

Routine mxv_sh_ochunk_mn is similar to mxv_sh_ochunk except that the matrix size is read
from d_app.n. The advantage is that the code can run for any matrix size (actually, any n that’s
a multiple of 8 and not greater than 64). The disadvantage is that the compiled code will not be
nearly as efficient because the compiler does not know the matrix size. See Problem 1 for more

1

http://www.ece.lsu.edu/gp/
http://www.ece.lsu.edu/gp/proc.html

details. Routine mxv_sh_ochunk_sol_mn is initially identical to mxv_sh_ochunk_mn. Modify the
former for your solution and compare against the later.

The hw03 program takes three command-line arguments. The first indicates how many blocks
to launch. If the argument is zero then the number of blocks will be set to the number of multipro-
cessors (which is the default). If the argument is negative then the number of blocks will be −aP ,
where a is the argument value and P is the number of MPs.

The second argument is the number of threads per block to try to use to launch each kernel. If
the argument is omitted 1024 threads are tried. If the argument is omitted or positive, the actual
number of threads used in a launch is the minimum of this argument and the kernel’s maximum.
(For example, when the second argument is 512, but kernel foo has a limit of 256 threads, foo will
be launched with 256 threads.) When the second argument is 0 (zero) or p then each kernel will be
launched multiple times starting with 4 warps, incrementing by 4 warps until the kernel maximum
is reached. When p is used additional performance data is shown, which is interesting but it can
slow things down.

The third argument specifies the number of mibions input vectors to use. One mibion is 220.
The default is 1 mibion (1,048,576) vectors. If a3 is the value of the third argument, the input size
will be a32

20 vectors. The third argument is read as a floating-point number, so “0.5” will result
in a 219 vectors input.

Here are some examples: Run with 256 threads per block: ./hw03 0 256. Run with 512
threads per block and twice as many blocks as MPs: ./hw03 -2 512. Run with 256 threads per
block and 10 blocks: ./hw03 10 256. Run each kernel multiple times using an input size of 1
bibion (230 vectors): ./hw03 0 0 1024.

Program Output
A run of hw03 produces the following output:

A stray message about a CUDA API call.

[koppel@dmk-laptop hw03]$./hw03

Call of cuDeviceGetCount, cbid 4, serial 1

Ignore it (the Call message).

Information about each GPU connected to the system, followed by a line showing the chosen
GPU.

GPU 0: Quadro M2200 @ 1.04 GHz WITH 4010 MiB GLOBAL MEM

GPU 0: L2: 1024 kiB MEM<->L2: 88.1 GB/s

GPU 0: CC: 5.2 MP: 8 CC/MP: 128 DP/MP: 4 TH/BL: 1024

GPU 0: SHARED: 49152 B/BL 98304 B/MP CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 1061 SP GFLOPS 33 DP GFLOPS COMP/COMM: 48.2 SP 3.0 DP

Using GPU 0

Most lab computers have two GPUs, please pay attention to the GPU that is actually being
used, GPU 0 above.

Most fields are self-explanatory. For example, L2 is the size of the level-2 cache and CC
indicates that the device is of compute capability 5.2 (a cheap Maxwell). The MEM<->L2 field
shows the off-chip bandwidth. MP indicates the number of multiprocessors, also called streaming
multiprocessors (SM’s). CC/MP indicates the number of CUDA cores (single-precision functional
units) per MP, DP/MP indicates the number of double-precision functional units per MP, and TH/BL

is the maximum number of threads per block.

The amount of shared memory available is shown per block (B/BL) and per MP, this does not

2

indicate whether any particular kernel is using that much shared memory or could use that much.
The same line shows the amount of constant memory, and the number of registers available.

The next line, PEAK, shows FP operation bandwidth in which a fused multiply-add is counted
as one operation. The COMP/COMM line gives the computation to communication ratio in floating-
point operations per floating-point element transfers. (The information above was collected in part
using the runtime library’s cudaGetDeviceProperties function.)

The program will next print information about each kernel:

CUDA Kernel Resource Usage:

For mxv_sh_ochunk_16:

4096 shared, 16456 const, 0 loc, 56 regs; 1024 max threads per block.

For mxv_sh_ochunk_32:

4096 shared, 16456 const, 0 loc, 160 regs; 384 max threads per block.

For mxv_sh_ochunk_64:

4096 shared, 16456 const, 1200 loc, 255 regs; 256 max threads per block.

For mxv_sh_ochunk_sol_mn:

4096 shared, 16456 const, 32 loc, 40 regs; 1024 max threads per block.

For mxv_sh_ochunk_mn:

4096 shared, 16456 const, 32 loc, 40 regs; 1024 max threads per block.

The max threads per block shown above is based on the kernel and reflects register usage.
The number to the left of loc shows the amount of local memory used per thread, and the number
of the left of regs is the number of registers used. For the kernels used in this assignment any use of
local memory is bad. The solution should be coded so that the compiler emits code using registers
for expressions using the local address space. This is what happens with mxv_sh_ochunk_16 and
mxv_sh_ochunk_32.

Next, the program provides information on the input size and launch configuration.

Max matrix: 64 x 64. Num vectors (S): 1048576. Grid size: 8 blocks.

Elements per thread: 1024.0 (4 wp) - 128.0 (32 wp)

The input size can be changed using command-line arguments, that is explained further below.

The program can either launch each kernel once, with a particular configuration (number of
blocks and number of threads per block), or it can launch each kernel multiple times, each with a
different block size. Without arguments is runs each kernel once and prints one line per kernel.
Launching with 8 blocks of up to 1024 threads.

mxv_sh_ochunk_16 32 wp 2614 s 102.680 GF 51.340 GB/s 2.00 I/F

mxv_sh_ochunk_32 12 wp 5179 s 207.310 GF 51.828 GB/s 1.33 I/F

mxv_sh_ochunk_64 8 wp 162291 s 26.465 GF 3.308 GB/s 2.16 I/F

mxv_sh_ochunk_sol_mn 32 wp 24161 s 11.110 GF 5.555 GB/s 6.84 I/F

mxv_sh_ochunk_sol_mn 32 wp 101836 s 10.544 GF 2.636 GB/s 3.28 I/F

mxv_sh_ochunk_sol_mn 32 wp 600334 s 7.154 GF 0.894 GB/s 2.59 I/F

mxv_sh_ochunk_mn 32 wp 25267 s 10.624 GF 5.312 GB/s 6.84 I/F

mxv_sh_ochunk_mn 32 wp 101971 s 10.530 GF 2.632 GB/s 3.28 I/F

mxv_sh_ochunk_mn 32 wp 597203 s 7.192 GF 0.899 GB/s 2.59 I/F

The µs values are the execution time, the GF values show the floating point throughput (as-
suming N2 FP operations per input vector), and the GB/s value is the off-chip data throughput,
assuming that 8N B crosses the chip boundary for each element.

The I/F value shows the number of instructions executed per expected multiply-add. A value
of 2.00 means that 2N2 instructions are executed for each input vector. Presumably one of those

3

instructions is a multiply-add. The I/F value is computed by actually measuring the number of
instructions executed using event counters built in to the GPU, and dividing that count by the
number by SN2, the number of multiply-add instructions expected for S inputs. A value of exactly
1 for I/F would be suspiciously low because that would mean there could be no load instructions
to read the input vector nor stores to write the output vector. Including these would give a ratio

of N
2
+2N

N2 = 1 + 2

N
or 1.125 for M = N = 16.

When run with a 0 as the second argument, such as ./hw03 -1 0, the program, launches each
kernel multiple times, starting with 4 warps per block, up to 32 warps per block or the kernel’s
maximum. Run time and other information will be shown for each launch. An excerpt for one
kernel appears below:
Kernel mxv_sh_ochunk_32(32,32):

wp ac t/s I/op GB/s FP FP Utilization--------------------------------------

4 4 10084 1.3 27 106 *****

8 8 6813 1.3 39 158 *******

12 12 5154 1.3 52 208 **********

The wp column shows the number of warps per block that the kernel was launched with. The
ac column shows the number of warps assigned to an MP (which is the product of the number
of warps per block and the number of active blocks per MP). The number in the ac column is
computed by an NVIDIA API using information about the kernel and the GPU. In the example
above the wp and ac numbers are the same because the number of blocks is the same as the number
of MPs and so there is no way to have more than one block per MP.

The t/µs column shows the measured execution time. The FPθ column shows the FP through-
put based on the measured execution time and the assumption that SN2 floating point operations
were performed. The number under GB/s is the minimum off-chip bandwidth, computed by divid-
ing 4S(2N) by the measured execution time. The stars in last column show FP utilization based
on the FP θ column. If the stars extend to the maximum length (shown by the hyphens to the
right of FP Utilization in the column heading) then FP computation is being saturated. Note
that this number is computed using measured time and an ideal amount of data crossing the chip
boundary.

When run using a p instead of a 0, hw03 collects hardware utilization data related to load and
store instructions. A sample is shown below.
Kernel mxv_sh_ochunk_32(32,32):

wp ac t/s I/op Ld eff SM eff L2r L2w FP% GB/s FP FP Utilization-----------

4 4 1883 1.3 100.0% 40.0% 71.3 142.5 13.0% 143 570 *****

8 8 1464 1.3 100.0% 40.0% 91.7 183.4 18.4% 183 733 ******

12 12 1459 1.3 100.0% 40.0% 92.0 183.9 19.1% 184 736 ******

The Ld eff column indicates the average percentage of each load request that is used. The
100% value shown above reflects the efficient use of requests made by the ochunk kernels.

The L2rθ column shows the throughput from the L2 caches to the MPs due to load instructions
in GB/s. The L2wθ column shows the throughput from the MPs to the L2 caches due to store
instructions, also in units of GB/s. These two throughput values are based on request sizes, not
on how much of those requests are actually needed.

The SM eff value is the number of shared-memory access instructions divided by the number
of executions of these instructions. A value of 100% indicates no bank conflicts. A value of 50%
indicates an average of 2 distinct accesses to each bank. The ideal value for access to 32-bit data is
100%, the ideal for 64-bit data is 50%, and for 128-bit data is 25%. The compiler will sometimes

4

group 2 or 4 accesses to 32-bit items into one access to a 64-bit or 128-bit item. In such cases the
lower SM eff does not reflect unrealized potential because executing, say, two instructions with
100% efficiency will use as much issue bandwidth as one access with 50% efficiency. That is the
case with the ochunk code. The efficiency of 40% reflects a mixture of 32-bit and larger accesses.

The value in the FP\% column is the FP utilization reported by the NVIDIA CUPTI library.
The value in the FP θ column is computed using measured time and assuming Sn2 FP operations.

Problem 1: Summary: make mxv_sh_ochunk_sol_mn fast. It should work correctly for values of
8 ≤ n ≤ 64 that are powers of 2. Please do not use separate code for each value of n. That is,
don’t do something like this:
extern "C" __global__ void mxv_sh_ochunk_sol_mn() {

#define C(n) case n: mxv_sh_ochunk<n>(); break;

switch(d_app.n){ // DON’T DO THIS.

C(8); C(16); C(32); C(64);

default: return;

}

#undef C

}

Keep in mind that for N ≥ 32 the code should be FP bound, so don’t waste time on reducing
off-chip memory throughput.

Currently, mxv_sh_ochunk_sol_mn is similar to mxv_sh_ochunk except that the matrix size is
read from d_app.n rather than a template argument eN (or from a #define macro, N, as in the
vtx-xform-size examples from class). The significance of this is that to the compiler d_app.n is
a variable that can take on any value, whereas the compiler has the exact value when n is provided
as a template argument or a macro.

As can be seen by running the code, the consequences are extreme. For a 16× 16 matrix the
execution time is over ten times slower without compile-time constants on a K20, almost 20 times
slower on a GP100. This loss of performance is due to the way in which mxv_sh_ochunk_sol_mn

is written.

There are several factors resulting in the loss of performance. These include:

The use of local memory rather than registers for local address space accesses. This occurs with
arrays vin and vout. Notice the use of STL in the code below:

for (auto& v: vout) v = 0; // CUDA C code.

/*00f0*/ MOV R4, RZ;

/*00f8*/ MOV R5, RZ;

/*0108*/ MOV R6, RZ;

/*0110*/ MOV R7, RZ;

/*0120*/ STL.128 [R15], R4; // Local store.

Frequent access to constant memory in which different threads in a warp access different constant

memory locations. In the sample below this occurs in accesses to d_app.matrix[r][c+cc] because
of r:

const int thd_r_offset = threadIdx.x % CS;

const int r = rr * CS + thd_r_offset;

for (int cc=0; cc<CS; cc++)

if (c+cc < n) // If needed when n not a multiple of CS.

vout[rr] += d_app.matrix[r][c+cc] * vin[cc];

5

/*02f0*/ @!P2 LDC R27, c[0x3][R25+0x14];

/*02f8*/ @!P2 LDL R31, [R26];

/*0308*/ ISETP.GE.AND P1, PT, R28, c[0x3][0x1040], PT;

/*0310*/ @!P2 FFMA R27, R4, R27, R31;

/*0318*/ @!P2 STL [R26], R27;

A high instruction overhead. That is, mxv_sh_ochunk_16 executes 2.0 instructions per FMA
(including the FMA), whereas mxv_sh_ochunk_mn(16,16) executes 6.8 instructions per FMA (see
the values in the I/op column). The reason the instruction overhead of mxv_sh_ochunk_16 is low
is because it pre-loads matrix elements into registers and because its loops are completely unrolled
and so there is no need to check the number of iterations, compute new addresses for each vector
component, etc.

In your solution try the following approaches to fix the problem:

Avoid the use of local memory for local address-space accesses. For example, with vin, make sure
that all indices to arrays are compile-time constants (after loop unrolling). Also, be sure to write
every element of such arrays, even if some may not be written.

Whether any local memory is used can be found under the Kernel Resource Usage report
printed at the start of each run. Examination of the hw03.sass code may help identify what local
memory is used for, look for LDL and STL instructions.

Copy d app.matrix into shared memory. Also avoid bank conflicts when reading shared memory.
At times the compiler will group multiple 32-bit accesses into a single 64- or 128-bit access, and
such an access will result in bank conflicts. For example,

/*0330*/ LDS.U.128 R8, [R48];

Such bank conflicts are not bad because re-executing a 128-bit access four times uses no more
instruction bandwidth than avoiding bank conflicts with four 32-bit shared memory accesses.

Read one element of the matrix from shared memory and use it on several input vectors. (This
requires some thought.) That is, the way the code works now is a group of 8 (CS) threads computes
vout[h*n] = matrix * vin[h*n], then vout[h*n+S] = matrix * vin[h*n+S], then vout[h*n+2S]

= matrix * vin[h*n+2S], Each matrix element might be read from shared memory (or constant
memory) once for each of the computations. Instead, one might operate on element h, h+S, and
h+2S at the same time, so each matrix element could be used 3 times (3 is just an example, it’s not
necessarily optimal).

A second benefit is that for access to vin[h*n], vin[h*n+S], and vin[h*n+2S], only the
address for vin[h*n] will need to be computed. The address for the other two are a constant
distance away (S and 2S) which can be offsets in the load instructions, so long as S is a compile
time constant.

(a) Run hw03-cuda-debug under cuda-gdb. For instructions on how to use gdb see Program-
ming Homework Work Flow on the course procedures page. Be sure to use cuda-gdb rather than
gdb when debugging kernel code. Set a breakpoint on the line in mxv_sh_ochunk_mn that writes
vout[rr] to global memory. Print out the value of vout[rr]. Do not attempt the parts below
without first doing this.

(b) Make mxv_sh_ochunk_sol_mn run quickly using the approaches described above, and others
that you can think of. Do not change the layout of vin and vout and do not write specialized code
for each size.

(c) An important quality indicator is the number of instructions per FMA, I/op in the table.

6

Show an example of where you reduced instruction count. Explain what you did at the CUDA
C source level and show SASS code excerpts from the unmodified mxv_sh_ochunk_mn kernel and
your solution kernel illustrating the reduction. The SASS code should be relevant to what you did,
don’t show the entire routine.

(d) Show an example of instruction use that is higher than you think it could be. An example
might be computation of addresses. Show the SASS code and discuss any untried approaches to
reducing it further.

7

