
LSU EE 7722 Homework 2 Solution Due: 16 March 2018

Basic Setup
Follow the instructions for class account setup found on
http://www.ece.lsu.edu/gp/proc.html. This assignment does not rely upon code in a hw direc-
tory, instead use the code in file .../cuda/intro-vtx-transform/vtx-xform-size.cu.

If the class account has been set up properly, the code can be built from within Emacs by
pressing F9 when visiting any file in the .../cuda/intro-vtx-transform directory or when in

an Emacs shell buffer (which can be entered using Alt -x shell Enter ). The code can be built from

the command line using the command make -j 4 (assuming .../cuda/intro-vtx-transform is
the current directory). Either method runs a makefile that builds all examples in the directory.
It builds two versions of each program, one taking the base name of the main file, such as vtx-

xform-size, and one with the suffix -debug, such as vtx-xform-size-debug. The versions with
the -debug suffix are compiled with host optimization turned off, which facilitates debugging. At
the moment GPU debugging can only be enabled by editing the makefile, but that should not be
a problem for this assignment.

Running make on a clean directory will produce a large amount of output, including warnings.
The make program and input Makefile are designed to build executables in a lazy fashion, meaning
that they only create a file if it is not present or if its prerequisites have changed. Therefore a second
run of make will take much less time. (The Makefile in the intro-vtx-xform directory prints a
diagnostic message about the presence of a Phi. When run a second time that’s the only output.)

Quickly check whether the build is successful with the command ./vtx-xform-size. It should
produce output ending with a line starting mxv_sh_ochunk.

The makefile will compile code for a GPU on the system it was run, favoring the GPU that’s
not connected to a display. For this assignment multiple types of GPU need to be used. Re-run
make when moving to a different system. The Makefile should automatically detect whether the
GPU for which the executable was built matches the GPU on the current system, and re-build if
needed.

Using vtx-xform-size
The code in vtx-xform-size.cu contains several kernels that compute a matrix/vector product
using a constant M ×N matrix A applied to S N -component input column vectors, producing S
M -component output column vectors. The values of N and M are hard-coded in the file, whereas S
is a command-line argument. Vector and matrix elements are of type Elt_Type, which is hardcoded
to float.

The vtx-xform-size program takes three command-line arguments. The first indicates how
many blocks to launch. If the argument is zero then the number of blocks will be set to the number
of multiprocessors (which is the default). If the argument is negative then the number of blocks
will be −aP , where a is the argument value and P is the number of MPs.

The second argument is the number of threads per block to try to use to launch each kernel. If
the argument is omitted 1024 threads are tried. If the argument is omitted or positive, the actual
number of threads used in a launch is the minimum of this argument and the kernel’s maximum.
(For example, when the second argument is 512, but kernel foo has a limit of 256 threads, foo will
be launched with 256 threads.) When the second argument is 0 (zero) or p then each kernel will be
launched multiple times starting with 4 warps, incrementing by 4 warps until the kernel maximum
is reached. When p is used additional performance data is shown, which is interesting but it can
slow things down.
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The third argument specifies the number of mibions input vectors to use. One mibion is 220.
This is the premier usage of this term. The default is 1 mibion (1,048,576) vectors. If a3 is the
value of the third argument, the input size will be a32

20 vectors. The third argument is read as a
floating-point number, so “0.5” will result in a 219 vectors input.

Here are some examples: Run with 256 threads per block: ./vtx-xform-size 0 256. Run
with 512 threads per block and twice as many blocks as MPs: ./vtx-xform-size -2 512. Run
with 256 threads per block and 10 blocks: ./vtx-xform-size 10 256. Run each kernel multiple
times using an input size of 1 bibion (230 vectors): ./vtx-xform-size 0 0 1024.

Program Output
A run of vtx-xform-size produces the following output:

A stray message about a CUDA API call.

[koppel@dmk-laptop intro-vtx-transform]$ ./vtx-xform-size

Call of cuDeviceGetCount, cbid 4, serial 1

Ignore it (the Call message).

Information about each GPU connected to the system, followed by a line showing the chosen
GPU.

GPU 0: Quadro M2200 @ 1.04 GHz WITH 4010 MiB GLOBAL MEM

GPU 0: L2: 1024 kiB MEM<->L2: 88.1 GB/s

GPU 0: CC: 5.2 MP: 8 CC/MP: 128 DP/MP: 4 TH/BL: 1024

GPU 0: SHARED: 49152 B/BL 98304 B/MP CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 1061 SP GFLOPS 33 DP GFLOPS COMP/COMM: 48.2 SP 3.0 DP

Using GPU 0

Most lab computers have two GPUs, please pay attention to the GPU that is actually being
used, GPU 0 above.

Most fields are self-explanatory. For example, L2 is the size of the level-2 cache and CC
indicates that the device is of compute capability 5.2 (a cheap Maxwell). The MEM<->L2 field
shows the off-chip bandwidth. MP indicates the number of multiprocessors, also called streaming
multiprocessors (SM’s). CC/MP indicates the number of CUDA cores (single-precision functional
units) per MP, DP/MP indicates the number of double-precision functional units per MP, and TH/BL

is the maximum number of threads per block.

The amount of shared memory available is shown per block (B/BL) and per MP, this does not
indicate whether any particular kernel is using that much shared memory or could use that much.
The same line shows the amount of constant memory, and the number of registers available.

The next line, PEAK, shows FP operation bandwidth in which a fused multiply-add is counted
as one operation. The COMP/COMM line gives the computation to communication ratio in floating-
point operations per floating-point element transfers. (The information above was collected in part
using the runtime library’s cudaGetDeviceProperties function.)

The program will next print information about each kernel:

CUDA Kernel Resource Usage:

For mxv_g_only:

0 shared, 1088 const, 0 loc, 32 regs; 1024 max threads per block.

For mxv_i_lbuf:

0 shared, 1088 const, 0 loc, 32 regs; 1024 max threads per block.

For mxv_o_lbuf:

0 shared, 1088 const, 0 loc, 32 regs; 1024 max threads per block.
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For mxv_o_per_thd:

0 shared, 1088 const, 0 loc, 31 regs; 1024 max threads per block.

For mxv_vec_ld:

0 shared, 1088 const, 64 loc, 40 regs; 1024 max threads per block.

For mxv_vls:

16384 shared, 1088 const, 0 loc, 48 regs; 1024 max threads per block.

For mxv_sh:

36864 shared, 1088 const, 0 loc, 32 regs; 1024 max threads per block.

For mxv_sh_ochunk:

4096 shared, 1088 const, 0 loc, 54 regs; 1024 max threads per block.

The max threads per block shown above is based on the kernel and reflects register usage.
Though it does not happen above, it is possible that a kernel can be limited to less than 1024
threads per block because it uses more than 64 registers (on a CC 5.2 device).

Next, the program provides information on the input size and launch configuration.

Matrix size: 16 x 16. Vectors: 1048576. 8 blocks of 1024 thds.

The input size can be changed using command-line arguments, that is explained further below.

The program can either launch each kernel once, with a particular configuration (number of
blocks and number of threads per block), or it can launch each kernel multiple times, each with a
different block size. Without arguments is runs each kernel once and prints one line per kernel.
Launching with 8 blocks of up to 1024 threads.

mxv_g_only 32 wp 6118 µs 43.873 GF 21.937 GB/s 1.21 I/F 12.5%

mxv_i_lbuf 32 wp 6836 µs 39.266 GF 19.633 GB/s 1.22 I/F 12.5%

mxv_o_lbuf 32 wp 6905 µs 38.873 GF 19.437 GB/s 1.22 I/F 12.5%

mxv_o_per_thd 32 wp 4602 µs 58.331 GF 29.166 GB/s 3.44 I/F 12.5%

mxv_vec_ld 32 wp 4144 µs 64.776 GF 32.388 GB/s 1.22 I/F 50.0%

mxv_vls 32 wp 2606 µs 103.017 GF 51.509 GB/s 1.50 I/F 100.0%

mxv_sh 32 wp 4084 µs 65.733 GF 32.867 GB/s 4.14 I/F 100.0%

mxv_sh_ochunk 32 wp 2598 µs 103.337 GF 51.669 GB/s 2.00 I/F 100.0%

The µs values are the execution time, the GF values show the floating point throughput (as-
suming NM FP operations per input vector), and the GB/s value is the off-chip data throughput,
assuming that 4(N +M) B crosses the chip boundary for each element.

The I/F value shows the number of instructions executed per expected multiply-add. A value
of 2.00 means that 2NM instructions are executed for each input vector. Presumably one of those
instructions is a multiply-add. The I/F value is computed by actually measuring the number of
instructions executed using event counters built in to the GPU, and dividing that count by the
number by SNM , the number of multiply-add instructions expected for S inputs. A value of exactly
1 for I/F would be suspiciously low because that would mean there could be no load instructions
to read the input vector nor stores to write the output vector. Including these would give a ratio
of MN+M+N

MN
= 1 + 1

M
+ 1

N
or 1.125 for M = N = 8.

The last column, showing percents, shows read request utilization.
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When run with a 0 as the second argument, such as ./vtx-xform-size -1 0, the program,
launches each kernel multiple times, starting with 4 warps per block, up to 32 warps per block.
Run time and other information will be shown for each launch. An excerpt for one kernel appears
below:

Kernel mxv_o_per_thd:

wp ac t/µs FP θ GB/s Bandwidth Util-------------------------------------------

4 4 24269 11 6 ***

8 8 13178 20 10 ******

12 12 8574 31 16 **********

16 16 6741 40 20 ************

20 20 6059 44 22 **************

24 24 5198 52 26 ****************

28 28 4935 54 27 *****************

32 32 4439 60 30 *******************

The wp column shows the number of warps per block that the kernel was launched with. The
ac column shows the number of warps assigned to an MP (which is the product of the number
of warps per block and the number of active blocks per MP). The number in the ac column is
computed by an NVIDIA API using information about the kernel and the GPU. In the example
above the wp and ac numbers are the same because the number of blocks is the same as the number
of MPs and so there is no way to have more than one block per MP.

The t/µs column shows the measured execution time. The FPθ column shows the FP through-
put based on the measured execution time and the assumption that SMP floating point operations
were performed. The number under GB/s is the minimum off-chip bandwidth, computed by di-
viding 4S(M + N) by the measured execution time. The stars in last column show bandwidth
utilization based on the GB/s number. If the stars extend to the maximum length (shown by the
hyphens to the right of Bandwidth Util in the column heading) then off-chip bandwidth is being
saturated. Note that this number is computed using measured time and an ideal amount of data
crossing the chip boundary.

When run using a p instead of a 0, vtx-xform-size collects hardware utilization data related
to load and store instructions. A sample is shown below.
Kernel mxv_o_per_thd:

wp ac t/µs FP θ Ld eff L2rθ L2wθ DRrθ DRwθ GB/s Bandwidth Util------------

4 4 24520 11 12.5% 23.7 2.7 4.6 2.7 5 *

8 8 12458 22 12.5% 45.0 5.4 7.3 5.4 11 ***

12 12 8820 30 12.5% 62.9 7.6 9.6 7.6 15 ****

16 16 8167 33 12.5% 67.4 8.2 9.8 8.2 16 ****

20 20 6189 43 12.5% 88.7 10.8 12.8 10.8 22 ******

24 24 6336 42 12.5% 86.4 10.6 12.3 10.6 21 ******

28 28 5065 53 12.5% 107.8 13.2 15.1 13.2 26 *******

32 32 5364 50 12.5% 101.8 12.5 14.1 12.5 25 *******

The Ld eff column indicates the average percentage of each load request that is used. The
12.5% value shown above is what one would expect for scattered accesses to 4-byte values. The L2rθ
column shows the throughput from the L2 caches to the MPs due to load instructions, in GB/s.
The L2wθ column shows the throughput from the MPs to the L2 caches due to store instructions,
also in units of GB/s. The DRrθ and DRwθ columns show the throughput from DRAM (off chip)
to the L2 cache and the L2 cache to DRAM, respectively, in GB/s. These four throughput values
are based on request sizes, not on how much of those requests are actually needed. This data is
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collected using event counters.

Problem 1: In class we noted that kernels mxv_i_lbuf and mxv_o_lbuf suffer from request under-
utilization but noted that their performance was actually better than what one would expect if only
1
8 of off-chip bandwidth carried useful data. We attributed this better-than-expected performance
to the the level 2 (L2) cache.

Indicate whether data from runs using the commands described above provides evidence that
the L2 cache is helping. Do so for a CC 3.5 device (there are two in the lab) and a CC 6.X device.
Use the event counter data (the data provided when the p option is present) to justify your answer.
In your solution indicate the type of GPU, show the performance data, and explain what the L2
cache is doing based on the data.

Based on the data indicate what might be limiting performance.

Data collected from a K20c (CC 3.5) and a GTX 1080 (CC 6.1) appear below. For the K20c the peak throughput

is 41GB/s which is 41
208 = .197 peak, which is higher than what would be possible with 1

8 = .125 request utilization.
However, the event counters show that the combined read and write throughput between the L2 cache and DRAM is about
122GB/s which is feasible and is what we would expect if 1

8 of a request is begin used. That is, a total of 220 × 16
elements are read, each using an entire 32B request, for a total of 220× 16× 32B ≈ 536.9MB. That is transferred
over 3259µs for a throughput of 536.9MB/3259µs = 164.7GB/s which matches the L2 read throughput. The
read throughput between the SMs (MPs) and the L2 cache is 164.8GB/s, compared to 20.6GB/s from L2 to DRAM,

a factor of 164.8
20.6 = 8 difference, which is exactly what one would expect if a 32-byte chunk from DRAM were retained

in the L2 cache long enough for all of it to be written. In contrast the L2 cache is doing less to reduce write throughput
between the L2 cache and DRAM. The results for the 6.1 device are similar.

The performance counter data show that off-chip (L2 to DRAM) bandwidth is not being saturated. The K20c can
execute 33.9 SP (single-precision) instructions per single precision value transferred. For a 16× 16 matrix there are 16
FMAs per 2 elements (one from vin and one from vout), or 8 FMA per element. The number of instructions per FMA is

1.2. That would work out to 16.2 = 16 + 3.2 instructions. Rounding 3.2 up to 4, and assuming 1
3 the throughput for

such instructions makes that the equivalent of 16 + 4× 3 = 28 instructions. Even so, that’s 28/2 = 14 instructions
per element which is below FP saturation.

Another possibility is that there is a limit on the data bandwidth between SMs and the L2 cache.

-- Data Collected from a K20c, CC 3.5, Data BW 208 GB/s

Matrix size: 16 x 16. Vectors: 1048576. 13 blocks of 1024 thds.

Launching with 13 blocks of up to 1024 threads.

Kernel mxv_i_lbuf:

-L2 Cache-- ---DRAM----

wp ac t/µs I/op Ld eff Rd θ Wr θ Rd θ Wr θ FP θ GB/s Data BW Util---------

4 4 6968 1.2 12.5% 77.1 77.1 9.6 61.8 39 19 *

8 8 4332 1.2 12.5% 123.9 123.9 15.5 82.0 62 31 ***

12 12 3494 1.2 12.5% 153.7 153.7 19.2 98.0 77 38 ***

16 16 3326 1.2 12.5% 161.4 161.4 20.2 104.5 81 40 ****

20 20 3330 1.2 12.5% 161.2 161.2 20.2 103.4 81 40 ****

24 24 3291 1.2 12.5% 163.1 163.1 20.4 107.3 82 41 ****

28 28 3218 1.2 12.5% 166.8 166.8 20.9 111.3 83 42 ****

32 32 3259 1.2 12.5% 164.8 164.7 20.6 111.5 82 41 ****

Kernel mxv_o_lbuf:

-L2 Cache-- ---DRAM----

wp ac t/µs I/op Ld eff Rd θ Wr θ Rd θ Wr θ FP θ GB/s Data BW Util---------

4 4 6879 1.2 12.5% 78.1 78.1 9.8 56.6 39 20 *
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8 8 4366 1.2 12.5% 123.0 123.0 15.4 81.4 61 31 ***

12 12 3504 1.2 12.5% 153.2 153.2 19.2 96.1 77 38 ***

16 16 3329 1.2 12.5% 161.3 161.3 20.2 106.3 81 40 ****

20 20 3263 1.2 12.5% 164.5 164.5 20.6 115.0 82 41 ****

24 24 3300 1.2 12.5% 162.7 162.7 20.3 113.6 81 41 ****

28 28 3232 1.2 12.5% 166.1 166.1 20.8 116.3 83 42 ****

32 32 3365 1.2 12.5% 159.6 159.6 20.0 111.7 80 40 ****

-- Data Collected from a GTX 1080, CC 6.1, Data BW 320 GB/s

Kernel mxv_i_lbuf:

-L2 Cache-- ---DRAM----

wp ac t/µs I/op Ld eff Rd θ Wr θ Rd θ Wr θ FP θ GB/s Data BW Util---------

4 4 1493 1.2 12.5% 359.6 359.6 45.0 45.1 180 90 *****

8 8 1446 1.2 12.5% 371.4 371.4 46.4 46.5 186 93 ******

12 12 1419 1.2 12.5% 378.4 378.3 47.3 47.6 189 95 ******

16 16 1404 1.2 12.5% 382.4 382.4 47.8 48.9 191 96 ******

20 20 1386 1.2 12.5% 387.4 387.4 48.4 52.0 194 97 ******

24 24 1367 1.2 12.5% 392.7 392.7 49.1 61.9 196 98 ******

28 28 1387 1.2 12.5% 387.2 387.1 48.6 61.9 194 97 ******

32 32 1395 1.2 12.5% 384.9 384.8 48.4 70.4 192 96 ******

Kernel mxv_o_lbuf:

-L2 Cache-- ---DRAM----

wp ac t/µs I/op Ld eff Rd θ Wr θ Rd θ Wr θ FP θ GB/s Data BW Util---------

4 4 1475 1.2 12.5% 363.9 363.9 45.5 45.6 182 91 *****

8 8 1437 1.2 12.5% 373.5 373.5 46.7 46.8 187 93 ******

12 12 1446 1.2 12.5% 371.3 371.3 46.4 46.7 186 93 ******

16 16 1401 1.2 12.5% 383.2 383.2 47.9 49.2 192 96 ******

20 20 1397 1.2 12.5% 384.4 384.3 48.0 52.8 192 96 ******

24 24 1377 1.2 12.5% 390.0 390.0 48.8 60.9 195 97 ******

28 28 1385 1.2 12.5% 387.6 387.6 48.6 65.0 194 97 ******

32 32 1386 1.2 12.5% 387.5 387.5 48.7 76.1 194 97 ******

Kernel mxv_o_per_thd:

-L2 Cache-- ---DRAM----

wp ac t/µs I/op Ld eff Rd θ Wr θ Rd θ Wr θ FP θ GB/s Data BW Util---------

4 4 4671 3.4 12.5% 114.9 14.4 14.4 14.4 57 29 *

8 8 2690 3.4 12.5% 199.6 24.9 24.9 25.0 100 50 ***

12 12 1970 3.4 12.5% 272.5 34.1 34.1 34.1 136 68 ****

16 16 1597 3.4 12.5% 336.2 42.0 42.0 42.0 168 84 *****

20 20 1409 3.4 12.5% 381.0 47.6 47.6 47.7 190 95 ******

24 24 1304 3.4 12.5% 411.6 51.4 51.4 51.5 206 103 ******

28 28 1221 3.4 12.5% 439.7 55.0 55.0 55.0 220 110 *******

32 32 1166 3.4 12.5% 460.5 57.6 57.6 57.6 230 115 *******

Problem 2: The number of threads needed in a kernel launch can be determined using a technique
called GPU interval analysis. Interval analysis starts with an interval which is the time during the
execution of one iteration of a well-chosen loop. The loop is well chosen if the execution time of
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the program is some multiple of the time for an execution of the loop.

For the mxv_o_lbuf kernel the interval will be one iteration of the h loop.

The first step in GPU interval analysis is to compute the latency for a thread executing one
iteration of the loop while assuming no resource contention due to other threads. Compute this
latency so that if Lι is the latency of one iteration, then the time needed for x iterations of the
loop by a thread is xLι.

For this assignment estimate the interval latency by accounting for instruction issue rate and
exposed operation latency. The instruction issue rate will be used to compute the earliest time that
the instruction can be issued based on instruction throughput and assuming one warp.

Consider Maxwell- and Pascal-generation devices. Most have four warp schedulers per MP,
128 single-precision functional units per MP, and 64 load/store (LDST) units per MP, or 32 SP
FP units per scheduler and 16 LDST units per scheduler. Assume that at most one instruction per
cycle can be issued. Then for a thread SP FP instructions, such as FFMA, will be issued at a rate
of one per cycle. (Remember that we are assuming only one warp of threads for purposes of issue.)
For memory instructions (loads and stores) instructions will be issued every two cycles. See the
code excerpt and pipeline diagram below, where FFMA instructions advance at one per cycle but
LDG advance at half that rate.

Let LF denote the latency of a floating-point operation, and LM denote the minimum latency of
a load instruction that misses the L2 cache. For Maxwell- and Pascal-generation devices LF = 6 cyc
and a typical value is LM = 400 cyc. Note that LF is a fixed duration, meaning that once an
instruction is dispatched to the functional unit a dependent instruction can be dispatched LF

cycles later and expect to find its source value ready. In contrast LM holds for a load to uncached
data on a lightly loaded system. The actual latency would be higher if there were contention for,
say, off-chip bandwidth, or lower if the load hit the L2 cache. For interval analysis contention is
usually assumed to be zero, but whether an accesses hits the L2 cache is part of the analysis.
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In the code fragment below F0 depends on L0, and so stalls for 394 cycles. Instruction F8

depends on F0, but since the issue time is larger than latency there is no stall.
L0: LDG.E R16, [R2];

L1: LDG.E R12, [R14];

L2: LDG.E R11, [R14+0x4];

...

F0: FFMA R13, R16, c[0x3][0x4], RZ; // Issue: t = 0, avail t = 6

F1: FFMA R17, R16, c[0x3][0x24], RZ;// Issue: t = 1, avail t = 7

F2: FFMA R18, R16, c[0x3][0x44], RZ;// ...

F3: FFMA R19, R16, c[0x3][0x64], RZ;

F4: FFMA R21, R16, c[0x3][0x84], RZ;

F5: FFMA R22, R16, c[0x3][0xa4], RZ;

F6: FFMA R14, R16, c[0x3][0xc4], RZ;

F7: FFMA R15, R16, c[0x3][0xe4], RZ;

F8: FFMA R13, R12, c[0x3][0x8], R13;// Issue:

...

S0: STG.E [R4], R2;

S1: STG.E [R4+0x4], R14;

S2: STG.E [R4+0x8], R13;

...

Time 0 1 2 3 4 5 6 ... 400 401 402 403 404 405 406 407 408

wp0: [L0 ] [L1 ] [L2 ] F0 F1 F2 F3 F4 F5 F6 F7 F8

Consider a modified version of the mxv_o_lbuf kernel in which the entire input vector is read
before performing arithmetic:

for ( int h=start; h<stop; h += inc )

{

Elt_Type vout[M]; for ( int r=0; r<M; r++ ) vout[r] = 0;

Elt_Type vin[N]; for ( int c=0; c<N; c++ ) vin[c] = d_app.d_in[ h * N + c ];

for ( int c=0; c<N; c++ )

for ( int r=0; r<M; r++ ) vout[r] += d_app.matrix[r][c] * vin[c];

for ( int r=0; r<M; r++ ) d_app.d_out[ h * M + r ] = vout[ r ];

}

Accounting only for the load, multiply/add, and store instructions we get Lι(K0) = LM+MN+
M if N ≥ LF and LM ≥ N/2, whereK0 is a shorthand name for the modified kernel and its assumed
code. For values M = N = 16 and the latencies above we get Lι(K0) = 400 + 256 + 16 = 672 cyc.

Once the latency for an interval is computed, it is possible to bound the number of threads that
can be executed in parallel by using resource constraints. For example, let dι denote the amount
of off-chip data read or written by a thread during one iteration and let ΘM indicate the off-chip
bandwidth. Let P indicate the number of threads in a launch. The amount of data read during
the interval is Pdι, the data throughput would be Pdι

Lι

, solving Pdι

Lι

= ΘM yields P = ΘM
Lι

dι

, the
number of threads needed to saturate off-chip bandwidth.

For our matrix/vector kernels, dι = 4(M +N) B. Then P = ΘM
(LM+MN+M) cyc

4(M+N) B . For N = M

(square matrices) we have P = ΘM
(LM+N2+N) cyc

8N B = ΘM

8 (LM

N
+N +1) cyc

B for N ≥ LF. Notice that
this expression has a minimum at N =

√
LM, or 20 for our default global memory latency. As N
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shrinks below 20 more and more threads are needed because each thread is loading less data but the
iteration time, Lι, can’t fall below LM. When N grows above 20 the computation time, N2, grows
quadratically while data grows linearly, so more threads are needed. Note that ΘM is often given
in GB/s while the latency is given in cycles. Cycles can be converted to seconds by dividing by the
clock frequency, often denoted φ. In that case Lι(K0) = (LM+MN+M) cyc = 1

φ
(LM+MN+M) s.

Another limiter is instruction throughput. For that one must compute the time needed during
an interval to issue the instructions. Let ΘIF indicate the bandwidth of FP instructions and ΘIM

indicate the bandwidth of load and store instructions on a multiprocessor. Let nIF and nIM indicate
the number of instructions of the respective type executed by a thread in the interval. Then the
time for Q threads to issue for one interval is Q( nIF

ΘIF

+ nIM

ΘIM

) and based on this instruction issue limit

Q = Lι/
(

nIF

ΘIF

+ nIM

ΘIM

)

. Note that Q is the number of active threads on a multiprocessor, which is

some multiple of the block size.

For K0 we have nIF = MN and nIM = M +N . Substituting these values and Lι gives

Q(K0) =Lι/

(

nIF

ΘIF
+

nIM

ΘIM

)

=(LM +MN +M) /

(

MN

ΘIF
+

M +N

ΘIM

)

=
(

LM +N2 +N
)

/

(

N2

ΘIF
+

2N

ΘIM

)

=(LM/N +N + 1) /

(

N

ΘIF
+

2

ΘIM

)

=
(

LM/N2 + 1 + 1/N
)

/

(

1

ΘIF
+

2

NΘIM

)

For large N the interval time is dominated by the N2 instructions so the number of threads
is based on FP instruction bandwidth ΘIF. When N is smaller load latency determines the thread
count.

(a) Does the interval analysis above explain the behavior of the mxv_o_lbuf kernel obtained on a
CC 6.1 device? If not, provide a possible explanation and suggest a way of modifying the analysis.

The calculations below show that for a GTX 1080 the iteration latency would be 388.4 ns so to saturate the
320.3GB/s bandwidth would require 971.9 threads or just 48.6 threads per MP. To saturate instruction issue assuming
only N loads, N stores, and N2 multiply/adds would require 268.8 threads per MP.

The performance counters show 1.2 instructions per FMA, or a total of 256× 0.2 = 51.2 non-FMA instructions.
We’ve already accounted for 32 loads and stores, so there are just 19 extra instructions. Assume that these add 19 cycles
to latency (which means that they are before the first loads or after the first FMA). Including those extra instructions
only slightly changes P and Q.

The execution on the GTX 1080 reaches a peak at 4 wp / MP or 128 thds per MP, which is consistent with this.

This problem was for a 6.1 device, but let’s consider a 3.5 device anyway. A similar analysis for the K20 finds
118 threads per MP are needed to saturate off-chip bandwidth. That is inconsistent with observed behavior where a
configuration with 4 wps (128 threads) per MP yielded just 1/2 the performance of larger blocks. Inspection of the SASS
code shows that dependent FMA instructions are closer together than LF and so the latency of these instructions is
exposed.

% Solution Calculations
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% For a GTX 1080. MP: 20. Data 320.3 GB/s

% Clock: 1.73 GHz

% Theta_IF = 128

% Theta_IM = 64

% n_IF_1 = 16 * 16 = 256

% n_IM_1 = 16 + 16 = 32

% Extra: 256 * .2 = 51. Assume same thpt as IF

%

% N = 16

% Latency/iter: 400 + N^2 + N = 672 cyc = 388.4 ns

% Latency/iter (correct store II): 400 + N^2 + 2N = 688 cyc = 397.7 ns

% Data/iter: 4(16+16) = 128 B

% Theta_M = 320.3 GB/s

% P = 320.3 GB/s 388.4 ns / 128 B = 971.9

% => 971.9 / 20 = 48.6 thds / MP

% Issue Time Ideal:

% 256/128 + 32 / 64 = 2.5 cyc

% Q = 672 / 2.5 = 268.8 thds per SM

% Accounting for 1.2 I/op.

% Latency/iter: 400 + N^2 + N + 19 = 691 cyc = 399.4 ns

% P = 320.3 GB/s 399.4 ns / 128 = 999 = 50 thds / MP

% Issue Time based on 1.2 I/op (which is 51 insn total or 51-32= 19 non l/s)

% (256+19)/128 + 32/64 = 2.648 cyc

% Q = 691 / 2.648 = 261 thds per SM

% For a GTX K20c. MP: 13. Data 208.0 GB/s

% Clock: .71 GHz

% Theta_IF = 128

% Theta_IM = 64

% n_IF_1 = 16 * 16 = 256

% n_IM_1 = 16 + 16 = 32

% Extra: 256 * .2 = 51. Assume same thpt as IF

%

% N = 16

% Latency/iter: 400 + N^2 + N = 672 cyc = 946.5 ns

% Data/iter: 4(16+16) = 128 B

% Theta_M = 208.0 GB/s

% P = 208.0 GB/s 946.5 ns / 128 B = 1538

% => 1538 / 13 = 118

% Issue Time Ideal:

% 256/128 + 32 / 64 = 2.5 cyc

% Q = 672 / 2.5 = 268.8 thds per SM

% Issue Time based on 1.2 I/op

% (256+51)/128 + 32/64 = 2.898 cyc

% Q = 672 / 2.898 = 231.8 thds per SM
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(b) Using interval analysis as described above, determine the minimum number of threads needed
to saturate off-chip bandwidth and instruction issue for kernel mxv_o_lbuf assuming that the order
of machine (SASS) instructions follows the order of instructions in the CUDA code. That is, don’t
assume the entire input vector will be loaded before starting on the multiply-adds. In your analysis
assume that the level 2 cache is effective. Use LM = 400 cyc for the latency of a load that misses
and L2 = 200 cyc for the latency of a load that hits the level 2 cache. Also use LF = 6 cyc for
instruction latency of non-memory instructions.

Show the number of threads needed as expressions, and compute actual values for one of the
Pascal CC 6.1 GPUs.

One advantage of following the order of instructions in the CUDA code is that N − 1 fewer
registers are needed. Is this worth it?

The CUDA C code loads an element and uses it in N FMA instructions, then loads the next element, etc. Using
an element size of 4 bytes and a request or line size of 32 bytes, we would expect that 1

8 of the loads would miss the L2
cache and 7

8 would hit. The time for an iteration accounting for the loads and FMAs would be LM +N + L2 +N +
· · ·LM + · · · = 1

8NLM + 7
8NL2 +N2. Assuming that the stores issue at one per cycle the total iteration time is

Lι(K1) = 1
8NLM + 7

8NL2 + N2 + N . The expressions for the amount of data and issue time are the same as
those used in part a.. So:

P = ΘM

(

1
8NLM + 7

8NL2 +N2 +N
)

cyc

8N B

= ΘM

(

1
8LM + 7

8L2 +N + 1
)

cyc

8B

= 320.8GB/s

(

1
8400 +

7
8200 + 16 + 1

)

cyc

8B
= 5609.4

This works out to 280 threads or 8 warps per MP.

That’s substantially more but still easily attainable. That means the compiler can conserve per-thread registers.
That doesn’t save per-block registers because more threads per block are needed.

(c) Perform the interval analysis on kernel mxv_o_per_thd. When working out the analysis don’t
forget that each thread is computing only one component of the output vector and that neighbors
are using the same input vector. Take that into account when computing dι.

Show the number of threads needed as expressions, and compute actual values for one of the
Pascal CC 6.1 GPUs.

Consider an iteration of the h loop:

Elt_Type vout = 0;

for ( int c=0; c<N; c++ ) vout += d_app.matrix[r][c] * d_app.d_in[ h * N + c ];

d_app.d_out[ h * M + r ] = vout;

Assuming that the c loop is unrolled, there will be N loads followed by N FMA instructions. Notice that the N
FMA instructions are dependent on each other (since they are adding to vout), so the iteration latency includes the load
latency plus N FMA latencies, and one issue time for the store: Lι = LM +NLF + 1.

Each thread loads 4N B of data, but because M threads are accessing the same data item the contribution of one
thread to the amount of data accessed is dι = 4(N

M
+ 1)B, or 8B when N = Mand assuming that the L2 cache is

effective.

The number of threads to saturate latency is:
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P = ΘM

LM +NLF + 1 cyc

8B

= 320.8GB/s
(400 + 16× 6 + 1) cyc

8B

= 11502

This works out to 575 threads per MP or 18 warps per MP (remembering that a 1080 has 20 MPs).

The number of threads is consistent with the data from Problem 1 in which performance improvement for mxv o per thd

starts leveling off between 16 and 20 warps.

Iter Latency:

L_M + N L_f + 1

400 + 16 6 + 1 = 497 cyc = 287.3 ns

Data: 8 B

P = 320.3 GB/s 287.3 ns / 8 B = 11502 = 575 / MP = 18 wp / MP
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