
LSU EE 7722 Homework 3 Due: 29 March 2017

Problem 0: Read the following information about the assignment package, and follow instructions
on course procedures page, http://www.ece.lsu.edu/gp//proc.html, for account setup and Pro-
gramming Homework Workflow. Try compiling and running the code and familiarize yourself with
the command line arguments described below.

The Program
The code in hw03.cu computes matrix products. The input is two arrays of S (default S =

16384) N×N matrices (default 8×8) of floats. Let A and B denote element i, 0 ≤ i < S, from each
of the inputs. Element i of the output is set to the matrix product AB. The kernels in hw03.cu

compute a matrix product using a method based on an algorithm in Volkov 2008.
When the program is run without arguments (typing ./hw03 at the command line) it will

launch each kernel multiple times with different block sizes. Arguments can be given to control the
number of blocks, the block size, and the data size. The program output starts with data about
the GPUs that it will use:

GPU 0: GeForce GTX 1080 @ 1.73 GHz WITH 8113 MiB GLOBAL MEM

GPU 0: L2: 2048 kiB MEM<->L2: 320.3 GB/s

GPU 0: CC: 6.1 MP: 20 CC/MP: 128 DP/MP: 4 TH/BL: 1024

GPU 0: SHARED: 49152 B/BL 98304 B/MP CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 4438 SP GFLOPS 139 DP GFLOPS COMP/COMM: 55.4 SP 3.5 DP

GPU 1: Tesla K20c @ 0.71 GHz WITH 5060 MiB GLOBAL MEM

GPU 1: L2: 1280 kiB MEM<->L2: 208.0 GB/s

GPU 1: CC: 3.5 MP: 13 CC/MP: 192 DP/MP: 64 TH/BL: 1024

GPU 1: SHARED: 49152 B/BL 49152 B/MP CONST: 65536 B # REGS: 65536

GPU 1: PEAK: 1761 SP GFLOPS 587 DP GFLOPS COMP/COMM: 33.9 SP 22.6 DP

Using GPU 1

Most lab computers have two GPUs, please pay attention to the GPU that is actually being
used, GPU 1 above.

The execution rates shown above (GFLOPS) count a multiply-add as one operation. The
COMP/COMM line gives the computation to communication ratio in floating-point operations per
floating-point element transfers. The assignment code uses SP (single precision floating point) by
default. (The information above was collected in part using the runtime library’s cudaGetDevice-
Properties function.)

The program will next print information about each kernel:

CUDA Kernel Resource Usage:

CUDA Kernel Resource Usage:

For mxm_volk:

32768 shared, 64 const, 0 loc, 42 regs; 1024 max threads per block.

For mxm_tpc<1>:

32768 shared, 64 const, 0 loc, 42 regs; 1024 max threads per block.

For mxm_tpc<2>:

32768 shared, 64 const, 0 loc, 42 regs; 1024 max threads per block.

Next the program prints information about the input size and the launch configuration (number
of blocks [grid size] and block size):

Input is 32768 pairs of 8 x 8 matrices of float,

1

http://www.ece.lsu.edu/gp/
http://www.ece.lsu.edu/gp//proc.html


total size 16777216 bytes (16.0 MiB).

Launching 13 blocks of 1024 threads with 19.69 matrices per thread.

The matrix size (8x8 above) can be changed by editing the assignment to N near the top of
the file. For performance reasons it’s important that it be a compile-time constant (as opposed to
something set based upon input or varied in a loop).

The code takes three command-line arguments. The first indicates how many blocks to launch.
If the argument is zero then the number of blocks will be set to the number of multiprocessors (which
is the default). If the argument is negative then the number of blocks will be −aM , where a is the
argument value and M is the number of MPs.

The second argument is the number of threads per block to try to use to launch each kernel. If
the argument is omitted 1024 threads are tried. If the argument is omitted or positive, the actual
number of threads used in a launch is the minimum of this argument and the kernel’s maximum.
(For example, if the second argument is 512, but kernel foo has a limit of 256 threads, foo will
be launched with 256 threads.) If the second argument is zero then each kernel will be launched
multiple times starting with 4 warps, incrementing by 4 warps until the kernel maximum is reached.

The third argument indicates the size of the input in units of MiB. The default is 16MiB. If
a3 is the value of the third argument, the input size will be a32

20 B. The third argument is read as
a floating-point number, so “0.5” will result in a 219 B input.

Here are some examples: Run with 256 threads per block: ./hw02 0 256. Run with 512
threads per block and twice as many blocks as MPs: ./hw02 -2 512. Run with 256 threads per
block and 10 blocks: ./hw02 10 256. Run each kernel multiple times using an input size of 1GiB:
./hw02 0 0 1024.

When run without arguments the program runs each kernel with a varying number of works
producing the following output:
Kernel mxm_volk:

4 4 wp 564 s 30 GF 45 GB/s ===========

4 4 wp 564 s 30 GF 45 GB/s 2.69 I/F 0.3 wp/c 0% 1.6

8 8 wp 317 s 53 GF 79 GB/s ===================

8 8 wp 317 s 53 GF 79 GB/s 2.69 I/F 0.8 wp/c 0% 1.6

12 12 wp 253 s 66 GF 100 GB/s ========================

12 12 wp 253 s 66 GF 100 GB/s 2.69 I/F 1.1 wp/c 0% 1.6

For each kernel execution two lines are shown, which are identical up to the ASCII art bar
graph. The first column shows the number of warps per block, the second column shows the number
of warps per MP. The number of warps per MP will be higher when the kernel is launched with
more blocks than MPs and when there are sufficient resources for more than one block. For this
problem the two resources limiting block occupancy is the amount of shared memory used and the
number of registers used.

The numbers to the right of wp show: execution time, FP throughput in units of billions (109)
multiply/add operations per second, and data throughput in GB/s. For the meaning of the other
numbers inspect the code and see which metrics are being collected.

Matrix/Matrix Multiplication
Matrix-matrix multiplication is an important problem to consider when studying computa-

tional accelerators, including GPUs, because it is simple and so amenable to hand analysis, the
nature of the problem changes with the dimension of the matrices, and because it is a major
component of many important scientific computations.

Multiplying two N × N matrices in the straightforward manner requires N3 multiplies and
N3 − N2 additions. In this analysis we will count that as N3 multiply/add operations, in part
because in the computational accelerators of interest, NVIDIA GPUs and the Intel Xeon Phi, a

2



fused multiply/add instruction has the same throughput and latency as a multiply instruction or
an add instruction. That is, the best possible execution time for N3 multiply/add instructions is
the same as that of N2 multiply instructions plus N3 −N2 multiply/add instructions.

The amount of data transferred when multiplying two N ×N elements is 3N2 elements.

As we’ve discussed in class common performance measures for computational devices are data
bandwidth (48.1GB/s), floating-point bandwidth (772 SPGFLOP/s or 16DPGFLOP/s), and in-
struction bandwidth (384×109 insn/s), all sample performance numbers are for my laptop equipped
with a Quadro K2100M.

For both computational devices and computational problems we can compute a computational

intensity also known as a computation to communication ratio. For a device is (usually) the FP
bandwidth divided by the data bandwidth, with the bandwidth units usually chosen for single
or double precision computation. For example, for the K2100M, the ratio for single-precision

computation is 772 SPGFLOP/s
1
4
41.1GB/s

= 64, and for double-precision computation is just 32DPGFLOP/s
1
8
48.1GB/s

=

5.32.

For the N × N matrix multiplication problem the computational intensity for the single-
precision variant is 2N3/(3N2) = 2N/3 floating-point operations per element.

By equating the computational intensity expressions for the device and the matrix multipli-
cation problem we can find the dividing line between matrix sizes that are data-limited and those
that are computation limited:

θsp
1
4
θdata

= 2N
3
, yielding N =

6θsp
θdata

, where θsp; is the single-precision

bandwidth and θdata is the off-chip data bandwidth. For the the K2100M N = 96.3 for SP and
N = 7.98 for DP.

For the K2100M, when N < 96.3 the problem is data-limited and care must be taken to
minimize redundant loads (or stores) of elements. When N > 96.3 the problem is FP-limited and
care must be taken to reduce the number of instructions other than the multiply/adds.

Routine mxm_volk is a matrix-matrix multiplication routine based presented in Volkov 08
Supercomputing, a seminal paper on performing dense linear algebra on NVIDIA GPUs.

Routine mxm_tpc is initially the same as mxm_volk but will be modified in the second problem.

The makefile generates three executables: hw03, hw03-debug, and hw03-cuda-debug. The first
is compiled with optimization on for host and GPU code. Executable hw03-debug is compiled with
optimization off for CPU code and on for GPU code. Use it for debugging CPU code. Executable
hw03-cuda-debug has optimization off for CPU and GPU code. Use it to debug GPU code. Use
gdb for debugging CPU code and cuda-gdb for debugging both CPU and GPU code. Performance
will be slower using cuda-gdb so don’t use it for collecting performance data.

The makefile generates PTX (intermediate code) and SASS (assembly code) for the optimized
version. The compiler mangles the name of the mxm_tpc kernels, and these will be used in the SASS
output. Use command-line utility c++filt to demangle the name. For example, running c++filt

_Z7mxm_tpcILi1EEvPf returns void mxm_tpc<1>(float*).

Documentation and References
CUDA documentation can be found at http://docs.nvidia.com/cuda/. Details on the GPU

instruction set can be found in the CUDA Binary Utilities manual. Information on the metric that
can be collected by the NPerf calls see the CUPTI manual. Some information on the hardware can
be found in the CUDA C Programming Guide Chapter 5 (especially 5.4) and in Appendix G. For
detailed hardware descriptions follow the Accelerator Descriptions link on the course home page.

Problem 1: Characterize the performance of mxm_volk over a range of matrix sizes on a GPU of
compute capability 3.0 or later. Be sure to include at least one matrix size that is computation-
bound and at least one that is communication bound for the device which you have chosen.

3

http://docs.nvidia.com/cuda/


When performing the runs pay attention to the number of matrices per thread and be sure
that work is reasonably balanced. Use the third command-line argument if necessary to adjust the
amount of work. Experiment with configurations in which there is more than one block per MP.

Show the performance of your best runs. Indicate how close performance was to the perfor-
mance limiter. Based on the metrics and inspection of the SASS code indicate what you think
prevented performance from being closer to the data or FP limit.

Pay attention to the following factors: Whether global loads used the read-only cache. (LDG
instructions usually use the ROC, while LD.E do not.) Whether local memory was used. The
distance between an instruction that writes a register and the instruction that uses that register
value.

Problem 2: As noted in class, one weakness with mxm_volk is that each thread must overlap the
computation of N elements of the output matrix. For larger values of N the compiler will run out
of registers, forcing it to use local memory to implement the local-address-space array elt, rather
than registers. As we know the latency of local memory loads is literally orders of magnitude larger
than register access.

Modify routine mxm_tpc so that is uses c threads per column, where c is the value of template
parameter thd_p_col.

Compare the performance to the original code. In Homework 4 your routine and the original
will be analyzed in detail.

4


