
LSU EE 7722 Homework 2 Due: 8 March 2017

Problem 0: Read the following information about the assignment package, and follow instructions
on course procedures page, http://www.ece.lsu.edu/gp//proc.html, for account setup and Pro-
gramming Homework Workflow. Try compiling and running the code and familiarize yourself with
the command line arguments described below.

The code in hw02.cu computes matrix squares. The input is an array of S (default S = 16384)
N×N matrices (default 16×16) of floats. Let A denote element i, 0 ≤ i < S, of the input. Element
i of the output is set to the matrix product A2. The kernels in hw02.cu compute a matrix product
using the usual three-level loop nest.

When the program is run without arguments (typing ./hw02 at the command line) it will
launch each kernel multiple times with different block sizes. Arguments can be given to control the
number of blocks, the block size, and the data size. The program output starts with data about
the GPUs that it will use:

GPU 0: GeForce GTX 1080 @ 1.73 GHz WITH 8113 MiB GLOBAL MEM

GPU 0: L2: 2048 kiB MEM<->L2: 320.3 GB/s

GPU 0: CC: 6.1 MP: 20 CC/MP: 128 DP/MP: 4 TH/BL: 1024

GPU 0: SHARED: 49152 B/BL 98304 B/MP CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 4438 SP GFLOPS 139 DP GFLOPS COMP/COMM: 55.4 SP 3.5 DP

GPU 1: Tesla K20c @ 0.71 GHz WITH 5060 MiB GLOBAL MEM

GPU 1: L2: 1280 kiB MEM<->L2: 208.0 GB/s

GPU 1: CC: 3.5 MP: 13 CC/MP: 192 DP/MP: 64 TH/BL: 1024

GPU 1: SHARED: 49152 B/BL 49152 B/MP CONST: 65536 B # REGS: 65536

GPU 1: PEAK: 1761 SP GFLOPS 587 DP GFLOPS COMP/COMM: 33.9 SP 22.6 DP

Using GPU 1

Most lab computers have two GPUs, please pay attention to the GPU that is actually being
used, GPU 1 above.

The execution rates shown above (GFLOPS) count a multiply-add as one operation. The
COMP/COMM line gives the computation to communication ratio in floating-point operations per
floating-point element transfers. The assignment code uses SP (single precision floating point) by
default. (The information above was collected in part using the runtime library’s cudaGetDevice-
Properties function.)

The program will next print information about each kernel:

CUDA Kernel Resource Usage:

For mxm_g_only:

0 shared, 48 const, 0 loc, 38 regs; 1024 max threads per block.

For mxm_g_split<1>:

0 shared, 48 const, 0 loc, 38 regs; 1024 max threads per block.

For mxm_g_split<8>:

0 shared, 48 const, 0 loc, 38 regs; 1024 max threads per block.

Next the program prints information about the input size and the launch configuration (number
of blocks [grid size] and block size):

Input is 16384 16 x 16 matrices of float, total size 16777216 bytes (16.0 MiB).

Launching with 13 blocks of up to 1024 threads.
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The matrix size (16 above) can be changed by editing the assignment to N near the top of
the file. For performance reasons it’s important that it be a compile-time constant (as opposed to
something set based upon input or varied in a loop).

The code takes three command-line arguments. The first indicates how many blocks to launch.
If the argument is zero then the number of blocks will be set to the number of multiprocessors (which
is the default). If the argument is negative then the number of blocks will be −aM , where a is the
argument value and M is the number of MPs.

The second argument is the number of threads per block to try to use to launch each kernel. If
the argument is omitted 1024 threads are tried. If the argument is omitted or positive, the actual
number of threads used in a launch is the minimum of this argument and the kernel’s maximum.
(For example, if the second argument is 512, but kernel foo has a limit of 256 threads, foo will
be launched with 256 threads.) If the second argument is zero then each kernel will be launched
multiple times starting with 4 warps, incrementing by 4 warps until the kernel maximum is reached.

The third argument indicates the size of the input in units of MiB. The default is 16MiB. If
a3 is the value of the third argument, the input size will be a32

20 B. The third argument is read as
a floating-point number, so “0.5” will result in a 219 B input.

Here are some examples: Run with 256 threads per block: ./hw02 0 256. Run with 512
threads per block and twice as many blocks as MPs: ./hw02 -2 512. Run with 256 threads per
block and 10 blocks: ./hw02 10 256. Run each kernel multiple times using an input size of 1GiB:
./hw02 0 0 1024.

Problem 1: The routine in mxm_g_only computes A2 inefficiently, especially for those devices
without a read-only cache.

(a) Find an expression for the ratio of the actual amount of data crossing the GPU chip boundary
to the ideal amount of data crossing the chip boundary (see below) ignoring caches. Show the ratio
in terms of the following symbols:
N Matrix dimension. (The matrix has N rows and N columns.)
S Number of matrices.
E Element size. (Four for float, eight for double).
R Minimum request size.
B Block size (number of threads per block).
G Grid size (number of blocks).
M Number of MPs.

The ideal amount of data is simply the size of the input and output, SN2E bytes read and
SN2E bytes written, for a total of 2SN2E. For this problem base the actual amount of data
crossing the chip boundary on the minimum request size and the number of times an element is
read (ideally, once).

A ratio of 2 indicates that the system is reading twice as much data as needed. A ratio of 1 is
ideal, and any ratio below 1 is impossible since it would indicate either that not all data had been
read or not all data had been written.

Hint: The expression should be fairly simple. Things get interesting in the next problem.

(b) Run the code and compare the execution time of mxm_g_only to your expectations based on
the analysis above. Your expectations should be based on the chip data bandwidth (shown as
MEM<->L2) and other relevant factors. Please indicate the type of GPU on which the code is run.
(Note: See the last part of the next problem.)

Problem 2: In routine mxm_g_only each A2 computation is performed by one thread. (But each
thread does multiple A2 computations.) In this problem mxm_g_split will be modified so that each
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computation is performed by thds_per_mat threads, where thds_per_mat is a template variable.
In some situations the reason for having multiple threads perform a unit of work (such as computing
A2) is to accommodate a smaller amount of work (fewer matrices) while still having enough threads
to keep the hardware busy. But in this problem there is another benefit.

The main routine runs mxm_g_only and two specializations of mxm_g_split: for thds_per_mat
set to 1 and for thds_per_mat set to 8. In the unmodified file the contents of mxm_g_split is
identical to mxm_g_only and so all three run times should be very close.

Remember that a template variable appears as a constant to the compiler (unlike an argument).
That’s important here since it enables the compiler to most effectively apply loop unrolling and
other techniques when the loops are a function of thds_per_mat.

(a) Modify mxm_g_split so that thds_per_mat threads together perform a single A2. The code
must work correctly when thds_per_mat is set to a power of 2 ≤ N . Do so by changing the loops,
but don’t try to use shared or local memory. For example, suppose thds_per_mat is set to 2.
Then, say, the even threads might compute rows 0 to N/2 − 1 and the odd threads rows N/2 to
N − 1. However, that’s not the best way of doing things. Instead split work between the threads
to minimize the amount of data read.

(b) Based on code for the part above, find an expression for the ratio of the actual amount of data
crossing the chip boundary to the ideal amount of data. Use the symbols from the last problem
but also use symbols d for the value of thds_per_mat.

(c) Based on your analysis in the previous part find the smallest value of thds_per_mat that
minimizes the ratio. Consider the minimum request size and the warp size.

(d) Check whether your minimum thds_per_mat predicts actual performance running specializa-
tions of mxm_g_split at sizes less than, equal to, and larger than your ideal. If necessary, increase N
(near the top of the file). Add specializations by modifying code near the word specializations.

(e) Your analysis above should have ignored all sorts of caches. In reality, all GPUs have L2 caches
and some GPUs have L1 caches. Indicate what caches were available in the GPU you ran your
experiments on. (Note: the code is written so that a read-only cache can be used for input data.)

Indicate whether performance results suggest that caches were doing any good. Information
on the available caches can be found in the CUDA Programmer’s guide, especially in Appendix
G, hardware implementation. Note that the CC (compute capability) of the available GPUs are
printed when the program starts.
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