
LSU EE 7722 Homework 1 Solution Due: 26 February 2016

Problem 0: Read the following information about the assignment package, and follow instructions
on course procedures page, http://www.ece.lsu.edu/gp//proc.html, for account setup and Pro-
gramming Homework Workflow. Try compiling and running the code and familiarize yourself with
the command line arguments described below.

The homework package is set to compile for an NVIDIA GPU of compute capability 3.5 (the
expensive Kepler). It is recommended that you run your code on such devices (including the
machines in the lab). An easy way to determine the CC of the GPU in a lab machine is to consult
the computer status Web page, http://www.ece.lsu.edu/koppel/gpup/sys-status.html. If you
must run on a less capable machine edit the makefile, changing sm_35 to the CC of your machine.

Each run of the code launches all of the kernels. A kernel may be launched once, or if the
second argument is 0 (see below) launched multiple times with different block sizes. The program
output starts with data about the GPUs that it will use:

Using GPU 0

GPU 0: Tesla K20c @ 0.71 GHz WITH 5119 MiB GLOBAL MEM

GPU 0: L2: 1310720 kiB MEM<->L2: 208.0 GB/s

GPU 0: CC: 3.5 MP: 13 CC/MP: 192 DP/MP: 64 TH/BL: 1024

GPU 0: SHARED: 49152 B CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 1761 SP GFLOPS 587 DP GFLOPS COMP/COMM: 33.9 SP 22.6 DP

Using GPU 0

The execution rates shown above (GFLOPS) count a multiply-add as one operation. The
COMP/COMM line gives the computation to communication ratio in floating-point operations per
floating-point element transfers. The assignment code uses SP by default. Please don’t try using
DP in this assignment. The information above was collected in part using the runtime library’s
cudaGetDeviceProperties function.

The program will next print information about each kernel:

CUDA Kernel Resource Usage:

For lane_aligned:

0 shared, 64 const, 0 loc, 10 regs; 1024 max threads per block.

For scheduler_bm:

0 shared, 64 const, 0 loc, 7 regs; 1024 max threads per block.

Next the program prints the array size and launch configuration:

Launching with 13 blocks of up to 1024 threads for 1048576 elements.

If the second argument was non-zero then each kernel is run once. The number of warps used
to launch it is shown, along with execution time, and communication rate. The communication
rate is based on an ideal amount of off-chip data transfer.

K lane_aligned 2 wp 688.288 µs 12.188 GB/s

K scheduler_bm 2 wp 780.672 µs 10.745 GB/s

If the second argument is zero then each kernel is run multiple times and an ASCII-art bar
graph is printed. The output below just shows two kernels:

Kernel lane_aligned:

4 wp 0 acwp 352 µs 24 GB/s *****

8 wp 0 acwp 184 µs 46 GB/s ***********

1

http://www.ece.lsu.edu/gp/
http://www.ece.lsu.edu/gp//proc.html
http://www.ece.lsu.edu/koppel/gpup/sys-status.html

12 wp 0 acwp 131 µs 64 GB/s ****************

16 wp 0 acwp 104 µs 80 GB/s ********************

20 wp 0 acwp 90 µs 94 GB/s ***********************

24 wp 0 acwp 85 µs 98 GB/s ************************

28 wp 0 acwp 74 µs 114 GB/s ****************************

32 wp 0 acwp 72 µs 116 GB/s ****************************

Kernel scheduler_bm:

4 wp 0 acwp 398 µs 21 GB/s *****

8 wp 0 acwp 209 µs 40 GB/s **********

12 wp 0 acwp 147 µs 57 GB/s **************

16 wp 0 acwp 114 µs 73 GB/s ******************

20 wp 0 acwp 97 µs 87 GB/s *********************

24 wp 0 acwp 89 µs 94 GB/s ***********************

28 wp 0 acwp 80 µs 104 GB/s **************************

32 wp 0 acwp 75 µs 112 GB/s ****************************

The code takes three command-line arguments. The first indicates how many blocks to launch.
If the argument is zero then the number of blocks will be set to the number of multiprocessors (which
is the default). If the argument is negative then the number of blocks will be aM , where a is the
argument value and M is the number of MPs.

The second argument is the number of threads per block to try to use to launch each kernel. If
the argument is omitted 1024 threads are tried. If the argument is omitted or positive, the actual
number of threads used in a launch is the minimum of this argument and the kernel’s maximum.
(For example, if the second argument is 512, but kernel foo has a limit of 256 threads, foo will
be launched with 256 threads.) If the second argument is zero then each kernel will be launched
multiple times starting with 4 warps, incrementing by 4 warps until the kernel maximum is reached.

The third argument indicates the number of input and output vectors in mibi-elements. If a3
is the value of the third argument, the number of array elements will be a32

20. The third argument
is read as a floating-point number, so “0.5” will result in a 219 vectors.

Here are some examples.
Running without arguments: hw01. This will use M blocks, where M is the number of mul-

tiprocessors, with up to 1024 threads per block. One could get the same result by running using
hw01 0 1024 or hw01 M 1024 where M is replaced by whatever the number of multiprocessors is.

Run with 256 threads per block: hw01 0 256. Run with 256 threads per block and 10 blocks:
hw01 10 256. Run each kernel multiple times: hw01 0 0.

Problem 1: Kernel lane_aligned reads an element from input array d_app.d_in, adds something
to it, and writes the sum back to d_app.d_out. That something is L

10000
, where L is the lane number

of the thread. (The lane number of a thread is the threadIdx.x modulo 32, or equivalently, the
last five bits of the binary representation of threadIdx.x.)

The code launching lane_aligned checks to make sure that the correct lane number is used.
Furthermore, it expects that regardless of the block size, elements are written only by threads in a
fully populated warp. A fully populated warp has 32 active threads. That means, for example, for
a block size of 48, threads with a threadIdx.x value from 0 to 31 are in a fully populated warp, but
threads 32 to 47 are in a partially populated warp and so should not execute. If they do execute
an incorrect-result error will be reported.

One can see the error by running with the command run 0 48.

(a) Modify kernel lane_aligned so that only threads on fully populated warps execute while still
continuing to operate on all elements of the array. A simple way of ending a thread’s execution is

2

with a return statement. One can also use an if statement to guard the loop.

(b) Determine if there is any penalty in launching with partially populated warps in the solution to
the previous problem. That is, is a launch with a block size of 260 run slower than a launch with
a block size of 256? Show data from runs to justify your answer.

The table below shows the run time of 32- and 48-thread configurations. The first two are launched with one block
per MP, the second with eight blocks per MP. Since the run times are very close there is at best only a tiny penalty for
launching with unused threads.

K lane_aligned 1 wp 1403.584 s 5.977 GB/s <- 32 thds, 1 bl/mp

K lane_aligned 2 wp 1399.552 s 5.994 GB/s <- 48 thds, 1 bl/mp

K lane_aligned 1 wp 185.728 s 45.166 GB/s <- 32 thds, 8 bl/mp

K lane_aligned 2 wp 182.752 s 45.902 GB/s <- 48 thds, 8 bl/mp

Problem 2: The first column of the table produced when running with a zero as the second
argument, say hw01 0 0, shows the number of warps in a block. The intent of the table is to show
how the number of threads (or warps) impacts performance. But, the number of warps in a block
is not the full picture. A MP (or an em pee) can have multiple active blocks, so the table can be
misleading, for example, when there are 8 4-warp blocks per MP.

(a) Modify routine main so that the table shows the number of active warps per MP in the second
column. (That column currently shows zeros.) To do this one must consider how many blocks are
available per MP, M/G, where M is the number of MP’s and G is the number of blocks (the grid
size), as well as how many blocks will fit on an MP. For convenience the maximum number of
blocks per MP has been written to variable max_bl_per_mp.

See the checked in code. Sample output appears below. Note that the number of active warps explains the irregular
length of the bars.

Ran using: ./hw01sol -8 0

Kernel lane_aligned:

4 wp 32 acwp 74 µs 114 GB/s ****************************

8 wp 64 acwp 60 µs 140 GB/s **********************************

12 wp 60 acwp 62 µs 135 GB/s *********************************

16 wp 64 acwp 61 µs 138 GB/s **********************************

20 wp 60 acwp 62 µs 136 GB/s *********************************

24 wp 48 acwp 64 µs 131 GB/s ********************************

28 wp 56 acwp 62 µs 135 GB/s *********************************

32 wp 64 acwp 61 µs 138 GB/s **********************************

(b) Using the modified code determine the minimum number of warps needed to achieve close to
maximum performance on kernel lane_aligned, and determine whether it helps or hurts to have
more than one active block per multiprocessor. (Consider only block sizes that are a multiple of
32 threads.)

The data below is from runs in which the number of blocks per MP 2, 4, and 8. Each line shows the performance
when there are 64 active warps. Looking only at the third group (104 blocks), it appears that having 8 blocks of 8 warps
is faster than 2 blocks of 32 warps, so there is no penalty for having more blocks per MP. The data also show a slight
advantage for configurations with fewer threads. That might be due to secondary factors.

Launching with 26 blocks of up to 1024 threads for 1048576 elements.

32 wp 64 acwp 59 µs 142 GB/s ***********************************

3

Launching with 52 blocks of up to 1024 threads for 1048576 elements.

16 wp 64 acwp 59 µs 141 GB/s ***********************************

32 wp 64 acwp 60 µs 139 GB/s **********************************

Launching with 104 blocks of up to 1024 threads for 1048576 elements.

8 wp 64 acwp 60 µs 140 GB/s ***********************************

16 wp 64 acwp 61 µs 139 GB/s **********************************

32 wp 64 acwp 61 µs 138 GB/s **********************************

Problem 3: Kernel scheduler_bm includes an iterative calculation over a sine operation. In
particular, it uses an intrinsic for NVIDIA’s approximate sine machine instruction. (Actually a
pair of instructions.)

According to the NVIDIA C Programming Guide (v 7.5, Section 5.4) a CC 3.X device can
issue 32 sine operations per cycle per MP, which works out to 8 per scheduler.

A warp with 32 active threads should take 4 cycles to issue a sine instruction. In this problem
determine whether a warp with fewer active threads takes less time. For example, would a warp
with only eight active threads take just one cycle to issue? If so, does it matter which lanes those
active threads are in?

(a) First things first. Running with hw01 0 0 one might notice that both kernels take the same
amount of time despite the fact that lane_aligned just does one add, while scheduler_bm does
two sine operations. Even if the approximate since operation takes the same amount of time as a
FP add, the results still don’t make sense because two sine operations are being performed. Explain
why the execution times are similar and modify the code so that the impact of the sine operation
is exposed.

Try to work things out with the following assumptions. Global memory access latency is 200
cycles. FP add latency (and for that mater, multiply and multiply/add) is 11 cycles, and the sine
operation is 40 cycles. Also assume that the GPU can transfer at most 300 bytes per cycle on and
off chip. (That’s about 200GB/s at .71GHz.)

Two factors are hiding the impact of the sine operation: latency and memory traffic.
Consider the first i iteration of thread 0. Since it’s at the front of the line for everything, the

time it takes to finish that first iteration is based only on latency. However, over that time all other
threads in active warps have made requests to load stuff from memory. Thread 0 can’t really start
its second iteration until all of that loaded data arrives. It’s worse when thread 0 starts its third
iteration, because it needs to wait for the memory system to finish with loaded and stored data
over the previous iteration.

Show how the impact of data bandwidth can be removed (a convenient knob has been provided)
and show how the impact of sine issue rate can be exposed.

Briefly: increase the value of iters so that execution time is dominated by the sine. There are 32 special units,
which works out to 8 per scheduler on a Kepler device. So each scheduler requires four cycles per warp. If the sine latency
is 40 cycles, then we need ten warps per scheduler or 40 per MP to saturate issue, and more than that to see the impact
of reduced issue time. That’s not problem because we can easily run with 64 warps per MP.

(b) Using the version of the code with the impact of the sine issue rate exposed, determine if warps
issuing a sine instruction take fewer than 4 cycles to issue if they have fewer than 32 active threads.

A mask value can be used to select which threads should be inactive (or active). For example,
if threadIdx.x & mask is non-zero one might choose to make the thread inactive. By inactive, we
only mean that it does not perform the sine operations. It is important to do this in such a way
that an inactive thread reads and writes memory, and does so at the same time as other threads.

The mask can be used, say, to make odd threads inactive, (1), the second half of each warp
inactive, (1016), or even alternating warps inactive (2016).

4

Data from runs with varying masks appears below, notice the new column MASK for the mask value. The first row
shows an ordinary run, all threads execute the sine loop. In the second row (first row of the second group), for mask 1,
odd-numbered threads do not execute the sine. Notice that it makes little difference. (We would expect more than a 1 or
2% change.) With mask 0x10 threads in lanes 0-15 execute but 16-31 don’t. In the third group two mask bits are set,
that will enable only 8 threads to be active, subsequent groups show results with 4, 2, and 1 thread active. In all cases it
makes no difference.

The last group shows performance when entire warps are suppressed. With mask 0x20 odd-numbered warps are
suppressed and finally, we have improvement. But why? We know on this device that there are four warp schedulers. It’s
possible that schedulers 0 and 1 share two special (sine, etc) functional units, and that schedulers 2 and 3 share another
two units. For mask 0x20 schedulers 1 and 3 have no sines, so schedulers 0 and 2 have access to all of the units, improving
performance. Pattern 0x40 suppresses execution of warps assigned to schedulers 2 and 3, but not 0 and 1. Schedulers 0
and 1 can’t use the functional units assigned to 2 and 3 and so there’s no speedup. (The fact that schedulers 2 and 3 aren’t
doing much work does not make the work assigned to schedulers 0 and 1 go any faster, and so there’s no improvement.)
Finally, for mask 0x80 the warps assigned to the four schedulers either all have sine operations or none of them do. In
that case we’d expect performance improvement.

MASK

32 wp 64 acwp 100 µs 0 84 GB/s *********************

--- Sixteen threads per warp active.

32 wp 64 acwp 101 µs 0x1 83 GB/s ********************

32 wp 64 acwp 102 µs 0x2 82 GB/s ********************

32 wp 64 acwp 102 µs 0x4 83 GB/s *******************

32 wp 64 acwp 101 µs 0x8 83 GB/s ********************

32 wp 64 acwp 101 µs 0x10 83 GB/s ********************

--- Eight threads per warp active.

32 wp 64 acwp 100 µs 0x3 84 GB/s ********************

32 wp 64 acwp 102 µs 0x18 82 GB/s ********************

--- Four threads per warp active.

32 wp 64 acwp 101 µs 0x7 83 GB/s ********************

32 wp 64 acwp 101 µs 0x1c 83 GB/s ********************

--- Two threads per warp active.

32 wp 64 acwp 101 µs 0xf 83 GB/s ********************

32 wp 64 acwp 101 µs 0x1e 83 GB/s ********************

--- One thread per warp active.

32 wp 64 acwp 102 µs 0x1f 83 GB/s ********************

--- Suppress entire warps in different patterns.

32 wp 64 acwp 77 µs 0x20 109 GB/s ***************************

32 wp 64 acwp 101 µs 0x40 83 GB/s ********************

32 wp 64 acwp 78 µs 0x80 107 GB/s **************************

5

