LSUEE 7722 Homework 2 sowution Due: 15 April 2015

Problem -1: Start reading the paper “Scaling the Power Wall: A Path to Exascale,” by Villa et
al in Supercomputing 14. It can be accessed from within lsu.edu using
http://wuw.ece.lsu.edu/gp/srefs/p830-villa.pdf]. There are no questions about the paper
in this assignment.

Problem 0: Read the following information about the assignment package, and follow instructions
on course procedures page, http://www.ece.lsu.edu/gp//proc.html], for account setup and Pro-
gramming Homework Workflow. Try compiling and running the code and familiarize yourself with
the Makefile features and output files described below.

This package is similar to the previous assignment, including command-line arguments. For
this assignment the machine language code for the various kernels will be analyzed.

Compile the code and look at a directory listing. File hwO2.ptx contains the compiler inter-
mediate form of the code, file hw02. cubin contains the object (binary) form of the GPU code, and
file hw02.sass contains the diassembled GPU code. The files are roughly created in this order.

Locate the documentation for PTX and SASS. The ptx documentation can be found at
/usr/local/cuda/doc/pdf/ptx_isa_4.2.pdf or
/usr/local/cuda/doc/html/parallel-thread-execution/index.html or just Web search for
Parallel Thread Execution ISA Version 4.2. The documentation for SASS can be found in
/usr/local/cuda/doc/html/cuda-binary-utilities/index.html or search for CUDA Binary
Utilities. Create a Web browser link or otherwise keep the documentation handy.

Load the hw02.ptx and hw02.sass into a text editor (Emacs with the class setup is recom-
mended) and search for mxv_g_only or some other kernel in each file. Note that the code in these
two files is similar but not identical. You should be able to figure out what most instructions do.
The ptx language is thoroughly documented, but for SASS all that’s given is a rough description
of what each instruction does.

For this assignment you might need to modify the makefile to change the compiler target and
disassembly options. First, load Makefile into an editor. To change the compiler target locate the
text —-gpu-architecture=sm_35. This tells the compiler which GPU architecture to emit code
for, the 35 refers to CC 3.5. Change the 35 for the desired CC. To find the list of supported
architectures issue the command nvcc --help and search for gpu-architecture, or look for the
documentation. Try changing to 20 and re-compiling (pressing F9 in Emacs with the class setup).

To adjust the amount of information in the SASS files add or remove flags stored in the CUDUMP
variable in Makefile. With the flag —-print-line-info source file name and line numbers are
added to the SASS files. With the flag ——print-instruction-encoding the encoded form of the
GPU instruction is shown to the right of the disassembled instruction.

Problem 1: Determine the following NVIDIA CC 3.5 instruction set features by modifying kernel
tryout in file hw02. cu, building, and examining the disassembled code and the encoded form of the
instruction. Note that tryout is not run by hw02, and if it were run it might encounter a run-time
error.

Offsets in load instructions improve performance by reducing the amount of arithmetic instruc-
tions needed to compute addresses. For example, in the code fragment below

/*0070%/ LD.E R4, [R8];
/*0068%/ LD.E R2, [R8+0x80];

both load instructions use the same base register, R8. They can share the same base register
because the compiler was able to determine that the second load was from an address 0x80 bytes

1

http://www.ece.lsu.edu/gp/
http://www.ece.lsu.edu/gp/srefs/p830-villa.pdf
http://www.ece.lsu.edu/gp//proc.html

after the address of the first load. If load instructions didn’t have offsets, or if the compiler
could not determine the offset at compile time additional instructions would be needed to compute
the address of the second load. The NVIDIA compiler targeting CC 3.5 uses three additional
instructions, though a good CPU compiler might just need one extra instruction. (The difference
is due to the lack of 64-bit integer instructions.)

The maximum size of an offset is determined by the ISA. Determine the maximum offset size
for CC 3.5. Show which bits in the instruction are used for the offset.

Solve this problem by modifying the code in tryout, compiling, and inspecting the SASS
output. Remember that tryout is not actually run, so don’t worry about the code generating
runtime errors, such as exceeding array bounds.

Based on QXPQY'\QO&UO\'\, the \QY%QSI 0fTset obtainable is Ox7ffffffc, which spans 31 bits. But anM'\VQ offsets
are also pOSS\b\Q, 80 the full size is 32 Dhits. COW\p&NSOﬂ of the encoded forms of several LD.E instructions reveals the
pOS'\UO\'\ of the immediate field, and of the TQg‘SUAY felds (\NmQ\'\ must be & bits each since CC 3.5 devices can aeeess 255
YQg'\SIQYS). The instruction format is:

ILD.E rd, [rs + imm]

ope imm ? 1S rd ?
[1100010015 [00111, [0]
63 55 54 23 22 18 17 10 9 210

Sample instructions used to infer format:

LD.E R7, [R14]; /* 0xc4800000001c381c */
LD.E R5, [R8]; /* 0xc4800000001c2014 */
LD.E R4, [R8+0x80]; /* 0xc4800000401c2010 */
LD.E R4, [R8+-0x80]; /* Oxc4ffffffc01c2010 */
LD.E R2, [R8+0x6aaaaaa8]; /* 0xc4bb55555541c2008 */
LD.E R2, [R8+0x7ffffffc]; /* Oxc4bffffffelc2008 */

c4800000001c381c LD.E R7, [R14]
c4 1 000 0000 000 O 001 c38ic <- Break up into parts.
hh b bbb hhhh hhh b bbb hhhhh <- h, hex; b, binary.

Problem 2: The code in mxv_o_per_thd uses type punning to access the input vector elements
using 4-element vector load instructions. Two seemingly identical versions of the vector load is
performed. Both are correct and with both the compiler has emitted a 4-element vector load
instruction. However the one marked Plan A is slower than the one marked Plan B. Explain why.

The index expression in Plan B consists of two terms, AN /4 and ¢/4. Term ~N/4 does not change in the c 100p
and so the eomp‘\\er can eomput@ it once per h \OOp iteration. The eomp‘\\er will Qomp\@t@\y unroll the c \OOp and so the
QXPYQSS'\OY\ c/4 18 4 constant that can he used as an Offset in & load instruetion. For examp\e, for IV = 8 there will be
Two loads, one QONQSPOHGN\% 10 ¢ = 0 and the other QONQSPOT\GH\% 10 ¢ = 4. The ofTsets will be 0 and 4/4 x 16 = 16,
respectively. The same base register will be used for botn loads, whieh will be set to the value of AN /4 computed before
the ¢ 100p.

S0 how 1s Plan A different? Because the QO\'T\P\\QY does not realize that both ¢ and AN will be mu\t'\p\o.s of 4.
Therefore it can't be sure that (AN +¢)/4 will be the same as ~N/4 + ¢/4, and $0 It must re-caleulate the expression
for each value of c. If the QXpYQSS'\O\'\ were Q\'\‘Aﬂg@d 10 (hN + C) X 4 the Qomp'\\@r would use offsets for the loads. Note
that since N is a Qomp'\\e—t’\m@ constant set 1o 8 the QOmp\\QY should have known that ANV would be a mump\e of 4.

Problem 3: Hand-estimate the performance of the mxv_o_per_thd kernel in the following way.
See 2013 Homework 6 Problem 2 for a similar problem.

2

(a) Using the instruction latencies provided below, compute the latency of a single h loop iteration.
Call the latency ty, (for time of loop body). Note that to compute the latency one must keep track
of instruction dependencies.

Latency Instruction
/ Cycles Category

200 Global loads and stores
24 Shared memory loads and stores and instructions use shared
memory operands.
12 All other instructions.

The \()Op latency is . The work to compute this latency is shown below. The column headed AA
SNOWS the cycle number the instruction will start, BBB shows the registers modinied by the instruction, and CCCCC shows
when the registers will be available.

The table was constructed under the assumption that warps can be issued at a rate of one per eycle.

L_2: AA BBB CCccc
SHF.L R24, RZ, 0x3, RO; 0 R24 at 12
BFE R3, RO, Oxlic; 1 R3 at 13
IADD RO, RO, R22; 2 RO at 14
IMAD.U32.U32.HI R2, R3, Ox4, R24; 13 R2 at 25
SHR R4, R2, 0x2; 25 R4 at 37
IMAD R2.CC, R4, R19, c[0x3][0x130]; 37 R2 at 49
IMAD.HI.X R3, R4, R19, c[0x3][0x134]; 49 R3 at 61
LD.E.128 R8, [R2]; 61 R8-R11 at 261
LD.E.128 R4, [R2+0x10]; 62 R4-R7 at 262
FMUL R9, R9, R16; 261 R9 at 273
FMUL R25, R5, R14; 262 R25 at 274
FFMA R5, R13, R8, R9; 273 R5 at 285
FFMA R8, R23, R4, R25; 274 R8 at 286
ISETP.LT.AND PO, PT, RO, c[0x3][0x0] 275 PO at 287
FFMA R4, R10, R17, R5; 285 R4 at 297
IADD R3, R24, R12; 286 R3 at 298
FFMA R6, R6, R15, RS8; 287 R6 at 299
FFMA R4, R11, R21, R4; 297 R4 at 309
IMAD R2.CC, R3, R20, c[0x3][0x128]; 298 R2 at 310
FFMA R5, R7, R18, R6; 299 R5 at 311
F2F.F32.F32 R4, R4; 309 R4 at 321
IMAD.HI.X R3, R3, R20, c[0x3][0x12c]; 310 R3 at 322
FADD R4, R4, Rb5; 321 R4 at 333
ST.E [R2], R4; 333 No output

@PO BRA ‘(.L_2); 334 No output

(b) Compute the minimum number of threads it would take for the kernel to completely utilize
the dispatch hardware of a CC 3.5 device. Call this number ngy. Use the instruction throughputs
given in Section 5.4 of the C Programming Guide version 7. For example, suppose the thread had
3 FMADD instructions and 4 integer add instructions. The time to issue ng such threads would be
3nq/192 + 4ny/32. To saturate the device solve 3ny/192 + 4n,/32 = 1, for ng

In the table below the instructions are gYOUde D\/ WPQ, and the issue rate for each typ@ is shown. The rates for
10ad and store instructions and tor branch instructions are assumed. Us'mg These instruction I\/pQS and rates we gQU

3

121

1nd/32—|—9nd/192+2nd/160+5nd/32—|—1nd/160+3nd/64—|—1nd/32+2nd/64—|—1nd/64 = %nd =1
320 320
ng = th = 5334 = 883.306

We would need about 883 threads, or rounding up, 28 warps.

Instructions Grouped by Category.

F2F.F32.F32 R4, R4; 309 R4 at 321
1 insn 32 / 32 warps per cycle

FADD R4, R4, R5; 321 R4 at 333
FFMA R4, R10, R17, RS; 285 R4 at 297
FFMA R4, R11, R21, R4; 297 R4 at 309
FFMA R5, R13, RS, R9; 273 RS at 285
FFMA R5, R7, R18, R6; 299 R5 at 311
FFMA R6, R6, R15, RS; 287 R6 at 299
FFMA RS, R23, R4, R25; 274 R8 at 286
FMUL R25, R5, R14; 262 R25 at 274
FMUL R9, R9, R16; 261 R9 at 273

9 insn. 192 / 32 warps per cycle

IADD RO, RO, R22; 2 RO at 14
IADD R3, R24, R12; 286 R3 at 298
2 insn. 160 / 32 warps per cycle

IMAD R2.CC, R3, R20, c[0x3][0x128]; 298 R2 at 310
IMAD R2.CC, R4, R19, c[0x3][0x130]; 37 R2 at 49
IMAD.HI.X R3, R3, R20, c[0x3][0x12c]; 310 R3 at 322
IMAD.HI.X R3, R4, R19, c[0x3][0x134]; 49 R3 at 61
IMAD.U32.U32.HI R2, R3, Ox4, R24; 13 R2 at 25

5 insn. 32 / 32 warps / cycle

ISETP.LT.AND PO, PT, RO, c[0x3][0x0] 275 PO at 287
1 insn. 160 / 32 wp / cyc

LD.E.128 R4, [R2+0x10]; 62 R4-R7 at 262
LD.E.128 R8, [R2]; 61 R8-R11 at 261
ST.E [R2], R4; 333 No output

3 insn. 64 / 32 wp / cyc (Assumed)

BFE R3, RO, Oxlic; 1 R3 at 13
1 insn. 32 / 32 wp / cycle

SHF.L R24, RZ, 0x3, RO; 0 R24 at 12
SHR R4, R2, 0x2; 25 R4 at 37
2 insn. 64 / 32 wp / cycle

©@PO BRA ‘(.L_2); 334 No output
1 insn. 64 / 32 wp / cycle (Assumed)

(¢) Launching the kernel with a block with ng threads would only saturate dispatch if no other re-
source became saturated first. Let M denote the number of multiprocessors. What is the minimum
amount of off-chip bandwidth needed to enable full dispatch utilization by the kernel launched with
nq threads per MP? Solve the problem based the answers to the previous problem and based upon
the amount of off-chip data transfer performed by the kernel.

Each thread loads Q'\ght fl0ats per ireration and stores one f0at per iteration. However groups of m threads read the
same 'mput alement, where 772 18 the size of the OUIPUt Vector. (\n the program that's called M, which is not to be confused
WIth the number-of-multiprocessors M/ given above.) So the total amount of data read per thread is 8/ N0ats, using
the value in the code, m = §, we have 4 net of 1 float read per QyQ\Q. Each thread writes a different value, so the net
amount of data per thread is 8/m + 1 = 2 Noats or eight bytes. Counting M blocks (one per MP) of ng threads each
the total data is 8Mny B per iteration.

To Qompute the amount of bandwidth needed we need to know the numbaer of iterations per second. The KQP\QF
K20¢ has & clock Trequency of 710 MHz, or a clock period of 1.4ns, 0 one iteration is ¢, = 334cyc = 470ns.
That corresponds to 1/¢r, = 2.13 million iterations per second. The amount of bandwidtn needed is thus S8 —
15.0M GB/s. For a K20¢ with M = 13 we'd need 195 GB/s of bandwidth whieh is close to the limit of th@ ehip.

Problem 4: One point often made in class is that latencies in GPUs are long to keep the hardware
simple. One possible way of reducing latencies is by providing bypass paths so that a dependent
instruction would only have to wait, say, 6 cycles (a floating point functional unit latency) rather
than 12 cycles (perhaps the latency from register file source operand read to register file result
write).

Bypass paths aren’t free, but neither are registers. Compute how many fewer registers will be
needed if the latency between dependent non-global-memory instructions drops from 12 to 6 cycles.
Do this by re-computing latency and ng. To determine the number of registers used by a thread
in each kernel see the program output.

Repeating the iteration latency analysis with a 6-cycle latency yields & ¢, = 263 cyc, Tor & savings of 71 ¢yeles.
The number of threads needed to saturate instruction dispaten is now ng = 329¢;, = 320963 — 695.5. Based on the
code OUIPUI, kernel mxv_o_per_thd uses 26 TQg\StQYS. The number of TQ%\SIQYS needed per MP hag GYOPPQG from 22958
(or 89.7kiB) to 18096 (or 70.7 kiB).

We m'\ght De d‘\sappomted Decause hg\\/mg the \QtQﬂQy did not halve the YQg'\StQT requirement. Oor, we m'\ght have
thought that the '\mpr()\/cem@nt would be Uﬂy Decause memory \&IQﬂQy WAas over 10 times \Mg‘éf 10 b@g‘m With. In our kernel
memory \MQ[\Qy Was QXPOSQG in on\y one p\&QQ (U\Q FMUL Rg), whereas non-memory functional unit \&IQﬂQy Was QXPOSQG
in several p\&QQS, such as the first IMAD and SHR.

The numbers above are for & GPU in which data bandwidth will not become saturated. The p@re@nmge reduction
in the number of registers is eompmab\@ if we consider data bandwidth as the limiter.

