
LSU EE 7722 Homework 2 Solution Due: 15 April 2015

Problem ­1: Start reading the paper “Scaling the Power Wall: A Path to Exascale,” by Villa et

al in Supercomputing 14. It can be accessed from within lsu.edu using
http://www.ece.lsu.edu/gp/srefs/p830-villa.pdf. There are no questions about the paper
in this assignment.

Problem 0: Read the following information about the assignment package, and follow instructions
on course procedures page, http://www.ece.lsu.edu/gp//proc.html, for account setup and Pro-
gramming Homework Workflow. Try compiling and running the code and familiarize yourself with
the Makefile features and output files described below.

This package is similar to the previous assignment, including command-line arguments. For
this assignment the machine language code for the various kernels will be analyzed.

Compile the code and look at a directory listing. File hw02.ptx contains the compiler inter-
mediate form of the code, file hw02.cubin contains the object (binary) form of the GPU code, and
file hw02.sass contains the diassembled GPU code. The files are roughly created in this order.

Locate the documentation for PTX and SASS. The ptx documentation can be found at
/usr/local/cuda/doc/pdf/ptx_isa_4.2.pdf or
/usr/local/cuda/doc/html/parallel-thread-execution/index.html or just Web search for
Parallel Thread Execution ISA Version 4.2. The documentation for SASS can be found in
/usr/local/cuda/doc/html/cuda-binary-utilities/index.html or search for CUDA Binary

Utilities. Create a Web browser link or otherwise keep the documentation handy.
Load the hw02.ptx and hw02.sass into a text editor (Emacs with the class setup is recom-

mended) and search for mxv_g_only or some other kernel in each file. Note that the code in these
two files is similar but not identical. You should be able to figure out what most instructions do.
The ptx language is thoroughly documented, but for SASS all that’s given is a rough description
of what each instruction does.

For this assignment you might need to modify the makefile to change the compiler target and
disassembly options. First, load Makefile into an editor. To change the compiler target locate the
text --gpu-architecture=sm_35. This tells the compiler which GPU architecture to emit code
for, the 35 refers to CC 3.5. Change the 35 for the desired CC. To find the list of supported
architectures issue the command nvcc --help and search for gpu-architecture, or look for the
documentation. Try changing to 20 and re-compiling (pressing F9 in Emacs with the class setup).

To adjust the amount of information in the SASS files add or remove flags stored in the CUDUMP
variable in Makefile. With the flag --print-line-info source file name and line numbers are
added to the SASS files. With the flag --print-instruction-encoding the encoded form of the
GPU instruction is shown to the right of the disassembled instruction.

Problem 1: Determine the following NVIDIA CC 3.5 instruction set features by modifying kernel
tryout in file hw02.cu, building, and examining the disassembled code and the encoded form of the
instruction. Note that tryout is not run by hw02, and if it were run it might encounter a run-time
error.

Offsets in load instructions improve performance by reducing the amount of arithmetic instruc-
tions needed to compute addresses. For example, in the code fragment below

/*0070*/ LD.E R4, [R8];

/*0068*/ LD.E R2, [R8+0x80];

both load instructions use the same base register, R8. They can share the same base register
because the compiler was able to determine that the second load was from an address 0x80 bytes

1

http://www.ece.lsu.edu/gp/
http://www.ece.lsu.edu/gp/srefs/p830-villa.pdf
http://www.ece.lsu.edu/gp//proc.html

after the address of the first load. If load instructions didn’t have offsets, or if the compiler
could not determine the offset at compile time additional instructions would be needed to compute
the address of the second load. The NVIDIA compiler targeting CC 3.5 uses three additional
instructions, though a good CPU compiler might just need one extra instruction. (The difference
is due to the lack of 64-bit integer instructions.)

The maximum size of an offset is determined by the ISA. Determine the maximum offset size
for CC 3.5. Show which bits in the instruction are used for the offset.

Solve this problem by modifying the code in tryout, compiling, and inspecting the SASS
output. Remember that tryout is not actually run, so don’t worry about the code generating
runtime errors, such as exceeding array bounds.

Based on experimentation, the largest offset obtainable is 0x7ffffffc, which spans 31 bits. But negative offsets
are also possible, so the full size is 32 bits. Comparison of the encoded forms of several LD.E instructions reveals the
position of the immediate field, and of the register fields (which must be 8 bits each since CC 3.5 devices can access 255
registers). The instruction format is:

LD.E rd, [rs + imm]

opc

1100010012

63 55

imm

54 23

?

001112

22 18

rs

17 10

rd

9 2

?

0

1 0

Sample instructions used to infer format:

LD.E R7, [R14]; /* 0xc4800000001c381c */

LD.E R5, [R8]; /* 0xc4800000001c2014 */

LD.E R4, [R8+0x80]; /* 0xc4800000401c2010 */

LD.E R4, [R8+-0x80]; /* 0xc4ffffffc01c2010 */

LD.E R2, [R8+0x6aaaaaa8]; /* 0xc4b55555541c2008 */

LD.E R2, [R8+0x7ffffffc]; /* 0xc4bffffffe1c2008 */

c4800000001c381c LD.E R7, [R14]

c4 1 000 0000 000 0 001 c381c <- Break up into parts.

hh b bbb hhhh hhh b bbb hhhhh <- h, hex; b, binary.

Problem 2: The code in mxv_o_per_thd uses type punning to access the input vector elements
using 4-element vector load instructions. Two seemingly identical versions of the vector load is
performed. Both are correct and with both the compiler has emitted a 4-element vector load
instruction. However the one marked Plan A is slower than the one marked Plan B. Explain why.

The index expression in Plan B consists of two terms, hN/4 and c/4. Term hN/4 does not change in the c loop
and so the compiler can compute it once per h loop iteration. The compiler will completely unroll the c loop and so the
expression c/4 is a constant that can be used as an offset in a load instruction. For example, for N = 8 there will be
two loads, one corresponding to c = 0 and the other corresponding to c = 4. The offsets will be 0 and 4/4×16 = 16,
respectively. The same base register will be used for both loads, which will be set to the value of hN/4 computed before
the c loop.

So how is Plan A different? Because the compiler does not realize that both c and hN will be multiples of 4.
Therefore it can’t be sure that (hN + c)/4 will be the same as hN/4+ c/4, and so it must re-calculate the expression
for each value of c. If the expression were changed to (hN + c)× 4 the compiler would use offsets for the loads. Note
that since N is a compile-time constant set to 8 the compiler should have known that hN would be a multiple of 4.

Problem 3: Hand-estimate the performance of the mxv_o_per_thd kernel in the following way.
See 2013 Homework 6 Problem 2 for a similar problem.

2

(a) Using the instruction latencies provided below, compute the latency of a single h loop iteration.
Call the latency tL (for time of loop body). Note that to compute the latency one must keep track
of instruction dependencies.

Latency Instruction

/ Cycles Category

200 Global loads and stores

24 Shared memory loads and stores and instructions use shared

memory operands.

12 All other instructions.

The loop latency is tL = 334 cyc . The work to compute this latency is shown below. The column headed AA

shows the cycle number the instruction will start, BBB shows the registers modified by the instruction, and CCCCC shows
when the registers will be available.

The table was constructed under the assumption that warps can be issued at a rate of one per cycle.

.L_2: AA BBB CCCCC

SHF.L R24, RZ, 0x3, R0; 0 R24 at 12

BFE R3, R0, 0x11c; 1 R3 at 13

IADD R0, R0, R22; 2 R0 at 14

IMAD.U32.U32.HI R2, R3, 0x4, R24; 13 R2 at 25

SHR R4, R2, 0x2; 25 R4 at 37

IMAD R2.CC, R4, R19, c[0x3][0x130]; 37 R2 at 49

IMAD.HI.X R3, R4, R19, c[0x3][0x134]; 49 R3 at 61

LD.E.128 R8, [R2]; 61 R8-R11 at 261

LD.E.128 R4, [R2+0x10]; 62 R4-R7 at 262

FMUL R9, R9, R16; 261 R9 at 273

FMUL R25, R5, R14; 262 R25 at 274

FFMA R5, R13, R8, R9; 273 R5 at 285

FFMA R8, R23, R4, R25; 274 R8 at 286

ISETP.LT.AND P0, PT, R0, c[0x3][0x0] 275 P0 at 287

FFMA R4, R10, R17, R5; 285 R4 at 297

IADD R3, R24, R12; 286 R3 at 298

FFMA R6, R6, R15, R8; 287 R6 at 299

FFMA R4, R11, R21, R4; 297 R4 at 309

IMAD R2.CC, R3, R20, c[0x3][0x128]; 298 R2 at 310

FFMA R5, R7, R18, R6; 299 R5 at 311

F2F.F32.F32 R4, R4; 309 R4 at 321

IMAD.HI.X R3, R3, R20, c[0x3][0x12c]; 310 R3 at 322

FADD R4, R4, R5; 321 R4 at 333

ST.E [R2], R4; 333 No output

@P0 BRA ‘(.L_2); 334 No output

(b) Compute the minimum number of threads it would take for the kernel to completely utilize
the dispatch hardware of a CC 3.5 device. Call this number nd. Use the instruction throughputs
given in Section 5.4 of the C Programming Guide version 7. For example, suppose the thread had
3 FMADD instructions and 4 integer add instructions. The time to issue nd such threads would be
3nd/192 + 4nd/32. To saturate the device solve 3nd/192 + 4nd/32 = tL for nd.

In the table below the instructions are grouped by type, and the issue rate for each type is shown. The rates for
load and store instructions and for branch instructions are assumed. Using these instruction types and rates we get:

3

1nd/32+9nd/192+2nd/160+5nd/32+1nd/160+3nd/64+1nd/32+2nd/64+1nd/64 =
121

320
nd = tL

nd =
320

121
tL =

320

121
334 = 883.306

.
We would need about 883 threads, or rounding up, 28 warps.

Instructions Grouped by Category.

F2F.F32.F32 R4, R4; 309 R4 at 321

1 insn 32 / 32 warps per cycle

FADD R4, R4, R5; 321 R4 at 333

FFMA R4, R10, R17, R5; 285 R4 at 297

FFMA R4, R11, R21, R4; 297 R4 at 309

FFMA R5, R13, R8, R9; 273 R5 at 285

FFMA R5, R7, R18, R6; 299 R5 at 311

FFMA R6, R6, R15, R8; 287 R6 at 299

FFMA R8, R23, R4, R25; 274 R8 at 286

FMUL R25, R5, R14; 262 R25 at 274

FMUL R9, R9, R16; 261 R9 at 273

9 insn. 192 / 32 warps per cycle

IADD R0, R0, R22; 2 R0 at 14

IADD R3, R24, R12; 286 R3 at 298

2 insn. 160 / 32 warps per cycle

IMAD R2.CC, R3, R20, c[0x3][0x128]; 298 R2 at 310

IMAD R2.CC, R4, R19, c[0x3][0x130]; 37 R2 at 49

IMAD.HI.X R3, R3, R20, c[0x3][0x12c]; 310 R3 at 322

IMAD.HI.X R3, R4, R19, c[0x3][0x134]; 49 R3 at 61

IMAD.U32.U32.HI R2, R3, 0x4, R24; 13 R2 at 25

5 insn. 32 / 32 warps / cycle

ISETP.LT.AND P0, PT, R0, c[0x3][0x0] 275 P0 at 287

1 insn. 160 / 32 wp / cyc

LD.E.128 R4, [R2+0x10]; 62 R4-R7 at 262

LD.E.128 R8, [R2]; 61 R8-R11 at 261

ST.E [R2], R4; 333 No output

3 insn. 64 / 32 wp / cyc (Assumed)

BFE R3, R0, 0x11c; 1 R3 at 13

1 insn. 32 / 32 wp / cycle

SHF.L R24, RZ, 0x3, R0; 0 R24 at 12

SHR R4, R2, 0x2; 25 R4 at 37

2 insn. 64 / 32 wp / cycle

4

@P0 BRA ‘(.L_2); 334 No output

1 insn. 64 / 32 wp / cycle (Assumed)

(c) Launching the kernel with a block with nd threads would only saturate dispatch if no other re-
source became saturated first. Let M denote the number of multiprocessors. What is the minimum
amount of off-chip bandwidth needed to enable full dispatch utilization by the kernel launched with
nd threads per MP? Solve the problem based the answers to the previous problem and based upon
the amount of off-chip data transfer performed by the kernel.

Each thread loads eight floats per iteration and stores one float per iteration. However groups of m threads read the
same input element, where m is the size of the output vector. (In the program that’s called M, which is not to be confused
with the number-of-multiprocessors M given above.) So the total amount of data read per thread is 8/m floats, using
the value in the code, m = 8, we have a net of 1 float read per cycle. Each thread writes a different value, so the net
amount of data per thread is 8/m + 1 = 2 floats or eight bytes. Counting M blocks (one per MP) of nd threads each
the total data is 8Mnd B per iteration.

To compute the amount of bandwidth needed we need to know the number of iterations per second. The Kepler
K20c has a clock frequency of 710MHz, or a clock period of 1.4 ns, so one iteration is tL = 334 cyc = 470 ns.
That corresponds to 1/tL = 2.13 million iterations per second. The amount of bandwidth needed is thus 8Mnd B

tL
=

15.0M GB/s. For a K20c with M = 13 we’d need 195GB/s of bandwidth which is close to the limit of the chip.

Problem 4: One point often made in class is that latencies in GPUs are long to keep the hardware
simple. One possible way of reducing latencies is by providing bypass paths so that a dependent
instruction would only have to wait, say, 6 cycles (a floating point functional unit latency) rather
than 12 cycles (perhaps the latency from register file source operand read to register file result
write).

Bypass paths aren’t free, but neither are registers. Compute how many fewer registers will be
needed if the latency between dependent non-global-memory instructions drops from 12 to 6 cycles.
Do this by re-computing latency and nd. To determine the number of registers used by a thread
in each kernel see the program output.

Repeating the iteration latency analysis with a 6-cycle latency yields a tL = 263 cyc, for a savings of 71 cycles.
The number of threads needed to saturate instruction dispatch is now nd = 320

121
tL = 320

121
263 = 695.5. Based on the

code output, kernel mxv o per thd uses 26 registers. The number of registers needed per MP has dropped from 22958
(or 89.7 kiB) to 18096 (or 70.7 kiB).

We might be disappointed because halving the latency did not halve the register requirement. Or, we might have
thought that the improvement would be tiny because memory latency was over 10 times larger to begin with. In our kernel
memory latency was exposed in only one place (the FMUL R9), whereas non-memory functional unit latency was exposed
in several places, such as the first IMAD and SHR.

The numbers above are for a GPU in which data bandwidth will not become saturated. The percentage reduction
in the number of registers is comparable if we consider data bandwidth as the limiter.

5

