LSUEE 7722 Homework 1 soution Due: 23 March 2015

Problem 0: Read the following information about the assignment package, and follow instructions
on course procedures page, http://wwuw.ece.lsu.edu/gp//proc.html|, for account setup and Pro-
gramming Homework Workflow. Try compiling and running the code and familiarize yourself with
the command line arguments described below.

The homework package is set to compile for an NVIDIA GPU of compute capability 3.5 (the
expensive Kepler). It is recommended that you run your code on such devices (including the
machines in the lab). An easy way to determine the CC of the GPU in a lab machine is to consult
the computer status Web page, http://www.ece.lsu.edu/koppel/gpup/sys-status.html|. If you
must run on a less capable machine edit the makefile, changing sm_35 to the CC of your machine.

The code in hwO1.cu launches a series of kernels, each one reads an S-element input array
of N-element vectors v(0),v(1),...v(S — 1) and writes an S-element output array of M-element
vectors u(0),u(1),...u(S — 1) with u(h) = Av(h) for 0 < h < S, where A is an M x N matrix.
The vector and matrix elements are of type float.

Of course, everyone reading this knows that u, = Zi\’;ol Ay cve, where u,, 0 < r < M are
the components of vector U. The total computation for each vector is M N multiply-adds, and
the total computation for each kernel is SMN. The number of operations needed to complete
this computation is larger since instructions are needed to bring operands to the multiply-add
instructions and send results back to memory. For half-decent code we can expect the number of
instructions to be twice as much (meaning one “overhead” instruction for each multiply-add).

Assuming that nothing is read from global memory twice, the total communication is S(M +N)
elements, for the homework code that would be 4S(M + N) bytes. The computation to communi-
cation ratio is M N/(M + N) floating-point operations per floating-point element transfer.

For this assignment assume S is on the order of a million (the default in the code is 22°) and that
M and N are in the range 4 to 100. For smaller values the computation will be communication
limited, and for larger values the computation will be compute limited. An NVIDIA K20c¢ can
perform 33.9 single-precision multiply-adds for each float read or written. So for this device the
computation will be communication-bound for, say, M = N = 8 because 64/16 < 33.9. Letting
M = N and solving N?/2N = 33.9 sets the border at N = 68.

For performance reasons the values of M and N are given as compile-time constants. In
particular, using #define statements. This makes it easier for the compiler to unroll loops and
reduce the amount of overhead.

The assignment file has several different versions of the kernel. In kernels mxv_g_only, mvx_i_lbuf J]
and mvx_o_lbuf each matrix-vector multiply is computed by one thread. In mxv_o_per_thd M
threads cooperate computing a matrix-vector multiplication. In all cases each thread computes
many matrix-vector products.

As we discussed in class, memory is accessed inefficiently by kernels mxv_g_only, mvx_i_lbuf,
mvx_o_lbuf, and mxv_o_per_thd. The first three kernels typically waste 7/8 of each global memory
read and write request. Kernel mxv_o_per_thd is efficient with writes, but is just as wasteful as
the other with loads.

Kernel mvx_sh uses shared memory to help improve global memory read and write efficiency.
Kernel mvx_sh_ochunk is initially identical to mvx_sh, but is to be modified as part of this assign-
ment.

Each run of the code launches all of the kernels. A kernel may be launched once, or if the
second argument is 0 (see below) launched for different block sizes. The program output starts
with data about the GPUs that it will use:

Using GPU O



http://www.ece.lsu.edu/gp/
http://www.ece.lsu.edu/gp//proc.html
http://www.ece.lsu.edu/koppel/gpup/sys-status.html

GPU 0: Tesla K20c @ 0.71 GHz WITH 5119 MiB GLOBAL MEM

GPU 0: L2: 1310720 kiB  MEM<->L2: 208.0 GB/s

GPU 0: CC: 3.5 MP: 13 CC/MP: 192 DP/MP: 64 TH/BL: 1024

GPU O: SHARED: 49152 B CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 1761 SP GFLOPS 587 DP GFLOPS COMP/COMM: 33.9 SP 22.6 DP
Using GPU O

The execution rates shown above (GFLOPS) count a multiply-add as one operation. The
COMP/COMM line gives the computation to communication ratio in floating-point operations per
floating-point element transfers. The assignment code uses SP by default. Please don’t try using
DP in this assignment. The information above was collected in part using the runtime library’s
cudaGetDeviceProperties function.

The program will next print information about each kernel:

CUDA Kernel Resource Usage:
For mxv_g_only:
0 shared, 16448 const, 0 loc, 40 regs; 1024 max threads per block.
For mxv_i_lbuf:
0 shared, 16448 const, 0 loc, 81 regs; 640 max threads per block.
For mxv_o_1lbuf:
0 shared, 16448 const, 0 loc, 97 regs; 512 max threads per block.
For mxv_o_per_thd:
0 shared, 16448 const, 0 loc, 33 regs; 1024 max threads per block.
For mxv_sh:
36864 shared, 16448 const, 256 loc, 52 regs; 1024 max threads per block.
For mxv_sh_ochunk:
4096 shared, 16448 const, 1176 loc, 255 regs; 256 max threads per block.

Next the program prints the vector sizes and launch configuration:

Matrix size: 64 x 64. Vectors: 1048576. 13 blocks of 1024 thds.
Launching with 13 blocks of up to 1024 threads.

If the second argument was non-zero then each kernel is run once. The number of warps
used to launch it is shown, along with execution time, and computation and communication rate.
The computation and communication rates are based on the assumed number of floating-point
operations and an ideal amount of off-chip data transfer.

K mxv_g_only 32 wp 1483544.312 s 2.895 GFLOPS 0.362 GB/s
K mxv_i_lbuf 20 wp 39803.745 s 107.904 GFLOPS 13.488 GB/s
K mxv_o_lbuf 16 wp  136011.078 s 31.578 GFLOPS 3.947 GB/s
K mxv_o_per_thd 32 wp  543146.545 s 7.908 GFLOPS 0.988 GB/s
K mxv_sh 32 wp 77260.353 s 55.591 GFLOPS 6.949 GB/s
K mxv_sh_ochunk 8 wp  227258.881 s 18.899 GFLOPS 2.362 GB/s

If the second argument is zero then each kernel is run multiple times and an ASCII art bar
graph is printed. The output below just shows two kernels:

Kernel mxv_i_lbuf:

4 wp 75914 s 57 GF 7 GB/s k%%

8 wp 50625 s 85 GF 11 GB/s *kkskkskkskokxk

12 wp 41198 s 104 GF 13 GB/s *kkskkskkskkkkk
16 wp 38542 s 111 GF 14 GB/s kkxskskokskskskokokkk
20 wp 39875 s 108 GF 13 GB/s s *kkkskkokkkokkk



Kernel mxv_o_lbuf:

4 wp 287669 s 15 GF 2 GB/s *

8 wp 171621 s 25 GF 3 GB/s *x
12 wp 146592 s 29 GF 4 GB/s **x
16 wp 136087 s 32 GF 4 GB/s **x

The code takes three command-line arguments. The first indicates how many blocks to launch.
If the argument is zero then the number of blocks will be set to the number of multiprocessors (which
is the default). The second argument is the number of threads per block to try to use to launch each
kernel. If the argument is omitted 1024 threads are tried. If the argument is omitted or positive,
the actual number of threads used in a launch is the minimum of this argument and the kernel’s
maximum. (For example, if the second argument is 512, but kernel foo has a limit of 256 threads,
foo will be launched with 256 threads.) If the second argument is zero then each kernel will be
launched multiple times starting with 4 warps, incrementing by 4 warps until the kernel maximum
is reached. The third argument indicates the number of input and output vectors in mibi-elements.
If a3 is the value of the third argument, the number of vectors will be a32?°. The third argument
is read as a floating point number, so “0.5” will result in a 2! vectors.

The size of the input and output vectors (N and M) is hard-coded and cannot be set using
a command-line argument. To change N and M edit hwO1.cu and re-compile. (With dynamic
compilation one could set N and M on the command line (or in an input file) and still have the
benefit of high-quality code.)

Here are some examples.

Running without arguments: hwO1. This will use P blocks, where P is the number of mul-
tiprocessors, with up to 1024 threads per block. One could get the same result by running using
hwO1 0 1024 or hwO1 P 1024 where P is replaced by whatever the number of multiprocessors is.

Run with 256 threads per block: hwO1 0 256. Run with 256 threads per block and 10 blocks:
hw01 10 256. Run each kernel multiple times: hwO1 0 0.

Code notes:

The exact amount of CUDA global memory needed for the output array is 4SM bytes, but
4(S + B)M bytes is allocated. The extra 4BM bytes is called the overrun area, and it is okay if
the kernel writes it. There is also an 4BN byte overrun area on the input array, it is okay if the
kernel reads it. In some cases the presence of an overrun area enables simpler and faster code by
eliminating the need for symmetry-busting end-of-data checks.

Problem 1: GPUs rely on lots of threads to hide latency. But how many threads do we need?

(a) Why might mxv_i_lbuf require fewer threads to hide latency than mxv_o_per_thd? Note: The
original assignment said “more threads” rather than “fewer threads.”

short answer: Threads in mxv_i_lbuf do more work per loaded value and so fewer additional threads are needed
£o Il in the gaps.

LOﬂg answer:. For both kernels each h \()Op iteration reads N 'mput vecetor QOmPOﬂQMS. Lots agssume that the
QOmP\\QY issues all V 10ads bafore us‘mg the loaded values. Global memory \QthQy 18 \Oﬂg, assume about 200 QyQ\QS, and
denote the \QIQﬂQy L. Once the loaded values arrive each thread in mxv_i_lbuf will p@rform N x M mu\t‘\p\y/s;dds.
But each thread in mxv_o_per_thread Will perform just /V multiply /adds. Lateney is hidden when the processor has
som@tmng alse 1o do GUHT\g the wait. While one Warp i8 W&mﬂg for 1ts data To arrive, other WAarps can he OPQY&I'\T\g on
data that has Q\TQQGy arrived. Let o denote the total time needed 1o issue the instructions for a warp that OPQYQIQ on
the loaded data. A F()Ugh estimate of the number of Warps needed 1o hide \MQI\Qy is then Lg/tc. N mxv_i_lbuf
t. Will De about M times mgher and so M times fewer threads are needed. See the d'\agram below. Note: A more
detailed analysis of this type will be performed in the next homework assignment. Also see Spring
2013 Homework 6.



Kernel mxv_i_lbuf
I <mm o L_.G —————=—————— SlI<—mmm t_C —————————- >1
WO [LD] [MAT [MA] [MA] [MA] [MA] [MA]
Wi [LD] [MA] [MA] [MA] [MA] [MA] [MA]

Kernel mxv_o_per_thread
I<m—mmmm—- LG -~ >1<-t_C->!
Wo [LD] [MA] [MA]
Wi (LD] [MA] [MA]

(b) Run the code and see how the two kernels perform with different block sizes. (Of course, do
this by setting the second argument to 0.) Try this for smaller and larger vector sizes.

Problem 2: Kernel mxv_sh uses shared memory so that input vector elements can be read ef-
ficiently and then distributed to the thread that needs them, the same is done for the output
elements.

(a) Kernel mxv_sh_ochunk is initially identical to mxv_sh. Modify it so that CS (use a value of 8)
threads compute a single matrix-vector multiply. The CS threads handling a vector should read
input vector elements and redistribute them to other threads computing the same vector. The
threads would use these values to partially compute the output elements, and then repeat the
process, until the entire input vector is read. Then each thread should write its elements of the
output vector.

Try to achieve the following;:

e The code should work correctly for values of M and N that are multiples of 8.
e Try to get the code working for other values of M and N.
e When threads write the output vector, memory requests should be completely used.

e Try to minimize the number of synchreads needed.

Solution checked into repo. The solution is in file hwO1sol.cu. The golution works QONQQUy for all values of M
and N, but omy WOrks well Tor smaller mU\UP\QS of Q'\gm.

Recall that the hb \OOP irerates over vectors, the value of hb is the vector OpQY&IQG on by thread 0 of the block.
Sinee we are now &SS\gﬂ\ﬂg CS threads per veetor the St&ﬁmg value of hb and the increment will Q\'\‘Ang‘é, both will be
divided by CS.

const int bl_start = blockIdx.x * blockDim.x / CS;
const int stop = d_app.num_vecs;
const int inc = num_threads / CS;

Variable hb s the vector number operated on by thread 0. Sinee CS threads work on & veetor, threads 1 1o 7 work
on the same vector. The vector number operated on by thread threadIdx is hb + threadIdx/CS. The solution
precomputes:

const int thd_v_offset = threadIldx.x / CS;

and in the hb loop:

for ( int hb = bl_start; hb<stop; hb += inc )
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const int vec_num = hb + thd_v_offset;

Next, read in INpUt vector components Qight at a time and operate on them. The starting position of the vector is
vec_num * N.In eaeh c 100p iteration eight components are read, those eight coMpPonents start at position vec_num
* N + c. Thefirst thread in a group of 8 reads that element, the second thread reads vec_num * N + ¢ + 1,an 80
on. Variable thd_c_offset gives the position of 4 thread in the group of 8, using that variable a thread 10ads element
vecnum * N + c + the_c_offset. The value read is p\QQQG into shared memory, since each thread reads one
value we can use threadIdx.x a8 the shared memory index. Finally, we need 1o make sure that we don't read beyond
the Nth component.

for ( int c=0; c<N; c += CS )
vxfer[threadIldx.x] =
c + thd_c_offset < N
? d_app.d_in[ vec_num * N + ¢ + thd_c_offset ]
. 0;

Atter the transfer from global o shared memory above, each thread reads in eight components:

Elt_Type vin[CS];
for ( int cc=0; cc<CS; cc++ )
vin[cc] = vxfer[ thd_v_offset * CS + cc 1;

Because each group of & 1s within a Warp, there is no need for synethreads.
The rest of the solution is straightforward.

(b) Describe how your kernel works at different input and output vector sizes. Indicate whether
you think it should go faster. Indicate whether the results agree with your expectations, and if not
provide a possible reason.

When characterizing the performance pay attention to the amount of local memory used by
your thread (the number to the left of “loc” in the output showing kernel resource usage). Local
memory usage will often result in bad performance.

The solution works well for A and N which are small mu\t'\p\es 0of 8. On a KQP\QY K20¢ it OUIPQYTONT\S mxv_sh
and the other kernels.

For non—mump\es of 8 pQFTONT\M\QQ is horrible, pr'\mar'\\y Dacause the Qomp’\\er doesn't unroll the c \OOP. (Th&t can
be fixed using an unroll pragma.)

Parformance is poor for \QYgQ values of M and NV, even mu\t'\p\es of 8. The performar\ee GYOPS 0T even where
mxv_sh does well. The reason has to do with YQg\SIQYS and constant memory.

At first, one m'\gm think that mxv_sh would be at a G\SQGVQMQ@Q when it comes 1o YQg\StQYS. Each thread in
mxv_sh Nas an A/-element local array to butrer OUIpUt Qomponents, we QXPQQI the eomp'\\@r 10 QSS\gﬂ Y@g‘StQYS for these.
Kernel mxv_o_chunk Nas )USt an M/S-Q\QQO l0cal array and so uses fewer \”Qg'\StQYS for these variables.

The prob\@m i with access 10 d_app.matrix. Recall that an NVIDIA KQp\QY arithmetic instruction OPQF‘AHG can
De § constant memory value. For exs;mp\@,

/*05c8%/ FFMA R33, R13, c[0x3][0xf8], R33;

in the instruction above the second source operand, c [0x3] [0x£8] is from constant memory. Howaver, a constant
memory value can onty appear as an operand if the address is known at compile time. Otherwise coNstant memory must
De loaded using & 1dc instruction. For example,

/*0090%/ LDC R17, c[0x3][R19+0x4];
/*0158%/ FFMA R28, R17, R21, RZ;

In mxv_sh each thread accesses the same value of matrix, when the \()Op Dalow is unrolled each access 10 matrix
i5 4t o location known £o the compiler and the same for all threads. (\ﬂ other words, threadIdx.x nor anything else
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that can vary from thread to thread is not used to compute r, c, Or cc below, they are Qompumd from constants M and
CsS.

for ( int r=0; r<M; r++ )
for ( int cc=0; cc<CS; cc++ )
if ( ctcc < N ) vout[r] += d_app.matrix[r] [ct+cc] * vin[cc];

The situation for mxv_o_chunk is different:

for ( int rr=0; rr<ML; rr++ ) {
const int r = rr * CS + thd_r_offset;
for ( int cc=0; cc<CS; cc++ )
vout [rr] += d_app.matrix[r][c+cc] * vin[ccl; }

Here r does d@p@ﬁd on threadIdx.x and so will be different for each thread. Since the address is not constant
the compiler can't use 4 constant space operand and instead must use & 1dc 1o 10ad & register. When M and N are small
the needed values of matrix can be loaded into registers before the hb \OOp, and so execution will still be efficient. But
iT there are not enough registers then 1dc instructions must be placed inside the hb 100p slowing things down.



