
LSU EE 77002 Homework 6 Due: 27 March 2013

Follow the instructions on the class procedures page, http://www.ece.lsu.edu/gp/proc.html

for account setup and homework, substituting hw6 for hw1 where appropriate. Also, the file to edit

is hw4.cu, not hw6.cc. The assignment code is the same as the vertex transformation code used in

class.

Problem 0: Read the background provided in this problem, and compile and run the Homework
6 assignment code; report any problems as soon as possible. The answer to this problem is “It ran
fine.”, the next problem actually asks questions.

The program runs four GPU versions of our vertex transformation code, kernel_many_threads,
kernel_few_threads_d2, kernel_few_threads_d4, and kernel_few_threads_d8, set to operate
on 2-element vertices.

The code for his assignment is similar to that used in Homework 4. One important change
is the forcing of kernels to use a single load instruction to load a vector, rather than one load for
each element. (Using four loads to load a 4-element vector can result in re-fetching a line to the L1
cache due to conflict misses.)

Kernel kernel_many_threads is similar to the kernel is Homework 4. The other kernels are
hand-unrolled versions of kernel_many_thread. For example, kernel_few_threads_d4 contains
four copies of the loop body. The unrolling was performed in such a way that all loads in an iteration
would be performed before any calculation. The template kernel_few_threads_d contains the
actual code, kernel_few_threads_d4 instantiates the template for a degree of 4, etc.

There are two command line arguments, the first is the number of blocks to launch, the second
is the size of the array to use, in MiB, (fractional amounts are fine).

The program will launch each kernel in up to 32 configurations, from a 1 warp-block to the
maximum block size possible for the kernel. For each launch the kernel execution time and data
transfer rate are shown. The data transfer rate is shown in GB/s, as a percentage of the maximum
GPU to device memory bandwidth, and as a bar graph.

Note that the number of blocks must be appropriately chosen for some of the problems below.

Problem 1: The inspiration for this assignment is the choice between many-thread systems (like
GPUs) and fewer-thread systems (like the so-called manycores). Kernel kernel_many_threads is
written to rely on a large number of threads to hide latency. The other kernels rely on loop unrolling
to hide at least some latency, and so fewer threads will be required, however those threads will use
more registers because the compiler is putting greater distance between the instruction that writes
a register and the first instruction that uses the register.

(a) Perform a set of runs (or just one run if that’s all it takes) to determine which is the more
efficient approach in terms of the amount of hardware needed. For each kernel indicate the number
of threads needed to realize something close to the best performance and also indicate the total

number of registers needed. (That is, the number of registers the multiprocessor needs in order
to run that number of threads for that kernel.) Provide relevant information such as the type of
GPU, and number of blocks chosen for each experiment, etc.

Do this for two goals: one to achieve the fastest computation (which should saturate off-chip
data bandwidth) and one to achieve fastest performance on at least one multiprocessor. Note that
for the first goal memory latency will not be the performance limiter and so it is not necessary to
cover all memory latency to realize maximum performance.

(b) Comment on whether these experiments allow one to conclude that the many-threads or fewer-
threads approach is better. An answer might start “These experiments don’t show the full benefit
of the fewer-threads approach because the code in kernel_few_threads_d . . .”

1

http://www.ece.lsu.edu/gp/
http://www.ece.lsu.edu/gp/proc.html


Problem 2: Perform the following hand analysis of kernels kernel_many_threads and ker-

nel_few_threads_d4. Locate the assembler code (in the file ending with sass) and identify the
loop body for each routine (for routine kernel_few_threads_d4 do the unrolled loop, not the loop
at the end).

Estimate the latency of the loop body under the assumption that memory instructions have a
400-cycle latency and all others have a 24-cycle latency.

Here are some miscellaneous facts: Instructions with a .X completer depend on the most recent
instruction with a .CC completer. Sixty-four bit load instructions load a pair of registers, the named
destination is only the first of two. For example, this load LD.E.64 R2, [R8]; instruction loads
both register R2 and R3. The 128-bit load instructions load four registers.

To find the latency of the loop body (a single iteration) determine the latest time that an
instruction will start. For convenience assume a device of CC 2.0, so that instruction i + 1 starts
two cycles after instruction i when it is not dependent on prior instructions. A dependent instruction
starts when its operands have been computed based on the start time and the latencies given above.

In the example below, instruction 0 starts at time 0 and its result is ready at time 24. Instruc-
tion 1 starts at 2 since it’s not dependent on 0. However, 2 depends on 0 because of R10 and so it
must wait until 24 to start. Instruction 3 depends on instruction 2 through the carry bit (the .CC

to .X dependence). Instruction 4 can start at cycle 50 since by then its operands will be available.

0: MOV32I R10, 0x8; // Start at 0, result ready at 24

1: IMUL.HI R4, R0, 0x8; // Start at 2, result ready at 26

2: IMAD R8.CC, R0, R10, c [0x2] [0x30]; // Start at 24 (dep on 1st insn via R10) rdy at 48

3: IADD.X R9, R4, c [0x2] [0x34]; // Start at 48 (dep on prev via CC) rdy at 72

4: IMAD R6.CC, R0, R10, c [0x2] [0x40]; // Start at 50, result ready at 74

...

Use the following method to help find dependencies. In Emacs put the cursor over the start of
a destination register, perhaps the first R10 in the example above. Then press C-s C-w (control-s
followed by a control w). This should highlight all occurrences of R10. (The C-s starts a search,
and C-w tells Emacs to search for other occurrences of the word under the cursor. A second C-s
would move to the next occurrence.) Press C-g to exit the search.

(a) Show the latency of the loop body of each kernel, as described above.

(b) Count the number of instructions in the loop bodies.

(c) Based on the answer to the last two parts, determine the minimum number of warps per
multiprocessor needed to make full use of the CUDA cores on a device of compute capability 2.0.
Assume unlimited data bandwidth (but global load latency is still 400 cycles). Note that this is a
lower bound on the number of warps needed to completely hide latency.

(d) Using data from the device used in the previous problem, determine the minimum number of
warps per multiprocessor needed to make full use of the memory bandwidth.

(e) Compare these answers to the experiments performed in the previous problem. Comment on
how closely they agree.

2


