
LSU EE 77002 Homework 5 Due: 13 March 2013

For details on how the GPU works see the CUDA C Programming Guide, linked to
http://www.ece.lsu.edu/gp/gp/ref.html. For hardware details in particular see Chapter 1
(brief history and overview), Chapter 4 (organization overview), and Sections 5.2.3 (warp/instruction
scheduling), 5.3.2 (memory), 5.4 (instruction scheduling and functional units), and Appendix F
(some more details on resources and instruction handling).

Problem 1: The Volkov paper describes algorithms for dense linear algebra on GPUs, it is linked
to http://www.ece.lsu.edu/gp/gp/ref.html under the heading “Matrix Multiplication.” The
paper is important as much for the algorithms themselves, as for the methodical approach used in
characterizing the GPUs and developing the algorithms. The paper was written for the NVIDIA
CC 1.x generation of GPUs, which are now obsolete. Nevertheless, the paper is valuable in showing
how to measure the capabilities of a device and tune code for it.

Read the following sections of the Volkov paper: Abstract, Introduction, Section 2, 2.1, 2.3,
and Section 3.

(a) Add a column to Table 1 for the following devices: A GTX 580 and a Kepler K20.

As mentioned in class, NVIDIA GPUs have high instruction latency, but are designed so that the
latency can be hidden by using lots of threads.

(b) Find the part of the paper in which Volkov describes the experiments used to find instruction
latency. What latencies does he report?

(c) This section also gives the number of warps (warps aren’t called warps elsewhere in the paper)
needed to hide this latency. Show how that number is computed.

(d) Find the place in the NVIDIA documentation which describes the number of warps needed to
hide latency. Show the number of warps for each generation of CUDA architecture (1.x, 2.0, 2.1,
3.x) needed to hide latency assuming code consisted of just add and multiply instructions (which is
sort of the default case). Also show the warps needed under the assumption that the code consists
of reciprocal instructions. (Note that this part does not require the Volkov paper.)

(e) The impact of instruction latency is not as bad if the instruction reading a register does not
immediately follow the instruction writing the register. Find the part of the paper that verifies
that this is indeed true. What is the minimum number of warps necessary to avoid stalls on code
with suitably distant dependencies, according to the paper?

1

http://www.ece.lsu.edu/gp/
http://www.ece.lsu.edu/gp/gp/ref.html
http://www.ece.lsu.edu/gp/gp/ref.html


Problem 2: We know that the synchthreads() call should be avoided because it adds overhead.
Shown below is an excerpt of the machine code that performs a tree reduction of values within a
warp, each group of three instructions adds on a value at a different distance. Notice that each
instruction is dependent on the instruction before it.

@!P4 LDS R3, [R2+0x40];

@!P4 FADD R0, R0, R3;

@!P4 STS [R2], R0;

@!P0 LDS R3, [R2+0x20];

@!P0 FADD R0, R0, R3;

@!P0 STS [R2], R0;

@!P1 LDS R3, [R2+0x10];

@!P1 FADD R0, R0, R3;

@!P1 STS [R2], R0;

@!P2 LDS R3, [R2+0x8];

@!P2 FADD R0, R0, R3;

@!P2 STS [R2], R0;

@!P3 LDS R3, [R2+0x4];

@!P3 FADD R0, R0, R3;

@!P3 STS [R2], R0;

(a) Compute the execution time of this code, measured in cycles, on a CC 2.0 device, for the
launch of a single block with 1024 threads. Assume that all instruction latencies are 24 cycles.

Measure time from the execution of the first instruction (shown as something like I0 in class) to
the execution of the last instruction.

(b) The code above did not have synchthreads between each group. In this part consider code in
which there is:
@!P4 LDS R3, [R2+0x40];

@!P4 FADD R0, R0, R3;

@!P4 STS [R2], R0;

BAR.RED.POPC RZ, RZ;

@!P0 LDS R3, [R2+0x20];

@!P0 FADD R0, R0, R3;

@!P0 STS [R2], R0;

BAR.RED.POPC RZ, RZ;

@!P1 LDS R3, [R2+0x10];

@!P1 FADD R0, R0, R3;

@!P1 STS [R2], R0;

BAR.RED.POPC RZ, RZ;

@!P2 LDS R3, [R2+0x8];

@!P2 FADD R0, R0, R3;

@!P2 STS [R2], R0;

BAR.RED.POPC RZ, RZ;

@!P3 LDS R3, [R2+0x4];

@!P3 FADD R0, R0, R3;

@!P3 STS [R2], R0;

BAR.RED.POPC RZ, RZ;

Assume that the barrier instruction, BAR, uses cuda cores for execution (as does the FADD), and
that its latency is 24 cycles. An instruction following a barrier cannot execute until 24 cycles after
the last thread executes its barrier instruction. (In contrast, the FADD for a thread cannot execute
until at least 24 cycles after the LDS in the same thread executes.)

Compute the time for the code above for this assumed behavior.

2


