
LSU EE 77002 Homework 4 Solution Due: 26 February 2013

Follow the instructions on the class procedures page, http://www.ece.lsu.edu/gp/proc.html

for account setup and homework, substituting hw4 for hw1 where appropriate. Also, the file to edit

is hw4.cu, not hw4.cc. The assignment code is the same as the vertex transformation code used in

class.

Problem 1: Compile and run the Homework 4 assignment code. This code is similar to that used
in Homework 3 except rather than finding the minimum vertex magnitude, it finds the sum of all
the squared magnitudes. This makes the code simpler, and also makes the error-checking code
more sensitive to errors (which is a good thing).

The first command-line option specifies the method of finding the global sum (a sum is an
example of a reduction). The code currently works with methods 0 to 3, in the next problem
method 4 will be implemented.

The program will accept three other command line arguments, those match the previous as-
signment. The first argument is the reduction method to use, the second is the number of blocks to
launch, the thrid is the number of threads per block, the fourth is the size of the array in MiB. If
the program is run with arguments r x y z it will launch with xy threads and an array with ⌊z220⌋
elements, and use reduction method r to find a global sum.

As with the prior assignment, the timing is of the GPU portion only. When comparing timings,
note that with reduction method 0 the GPU does not perform any reduction, so it will appear to
be faster than the other methods (since the CPU time isn’t being counted).

Run the program with methods 0 to 3. Prepare a table with a row for each method. Show
the run time and the following other information: the number of synchronizations performed per
thread, and the number of additions performed to find the global sum by the critical thread. The
critical thread is the thread that performs the most work. In many of our examples, that will be
thread 0.

Solution on next page.

1

http://www.ece.lsu.edu/gp/
http://www.ece.lsu.edu/gp/proc.html


The table appears below, including the data from Problem 3. The data was collected for a Tesla C2050 which has
14 multiprocessors and implements CC 2.0. The code was run at different grid sizes to vary the impact of reduction on
execution time.

The total number of vertex transformations is the same regardless of the number of blocks. However, the number of
reductions is equal to the number of blocks; the number of reductions per multiprocessor appears in the last column. See
the Problem 3 solution for a discussion of this data.

SOLUTION

Mtd Grid Block GPU Time Syncs Additions Reductions

Size Size Microsec / Blk / Blk / MP

0 14 1024 383 0 0 1

1 14 1024 414 1 1023 1

2 14 1024 386 10 10 1

3 14 1024 384 1 31 + 5 = 36 1

4 14 1024 383 1 5 + 5 = 10 1

0 224 1024 361 0 0 16

1 224 1024 717 1 1023 16

2 224 1024 357 10 10 16

3 224 1024 354 1 36 16

4 224 1024 352 1 10 16

0 1024 1024 353 0 0 73

1 1024 1024 2573 1 1023 73

2 1024 1024 521 10 10 73

3 1024 1024 427 1 36 73

4 1024 1024 390 1 10 73

0 4096 256 374 0 0 292

1 4096 256 713 1 256 292

2 4096 256 364 8 8 292

3 4096 256 314 1 13 292

4 4096 256 313 1 10 292

Problem 2: Locate the routine reduction_method_4. Add code to this routine so that the
reduction is performed by using two tree reductions. In the first reduction each warp will do its
own reduction. That is, after the first reduction we’ll have the sum of threads 0-31, a separate sum
for 32-63, etc. If the block size were 1024 threads (the maximum block size in a Fermi device) we
would have 32 separate sums. Use the second reduction to find the sum of these 32 (or fewer) sums.

This can be written so that only one synchronization is needed, between the two reductions.
The solution code checked into the repository in file name hw4-sol.cu. An htmlized version posted at

http://www.ece.lsu.edu/gp/2013/hw4-sol.cu.html.

Problem 3: Add the data for your reduction routine to the table. Comment on the performance
of each method. Which do you think should be used?

If our goal is to evaluate which reduction method is fastest we should run configurations with the maximum number
of threads and with the fewest vertices per thread. Since the default array size is 220 that would be a block size of 1024

2

http://www.ece.lsu.edu/gp/2013/hw4-sol.cu.html


(the maximum for CC 2.0) and a grid size of 1024 blocks. With this configuration each thread transforms just one vertex
and then performs a reduction. (In contrast, at block size 10 each thread transforms 220/(10×1024) ≈ 102 vertices.)

At this configuration Method 1 is clearly the worst, as one would expect since a single thread does all the work on
a multiprocessor, using at most 1/32 of the compute capability. Method 2, the full tree reduction, performs fewer adds
but more synchronizations than Method 3, which avoids synchronization by using only one warp for reduction. Based on
their performance, reducing the synchronizations by a factor of ten improves performance enough to make up for having
3.6 times as many additions. Method 4 avoids both the synchronizations and the extra additions, and so yields the best
execution time.

At a grid size of 14 the differences between the reduction methods are much smaller since fewer reductions are being
performed: just one per MP, versus 1024

14
≈ 73 per MP at a grid size 1024.

With a smaller block size, 256 threads, the advantage of Method 4 over Method 3 shrinks because the linear sum
portion of Method 3 iterates 256/32 = 8 times (compared to 32 for a 1024-thread block). Note the solution code for
Method 4 will perform 10 reduction steps regardless of the block size. That yields better performance at larger block sizes
because the number of iterations in the second reduction loop is a compile-time constant.

The smaller block sizes with the better reduction methods outperform the larger ones. This may be due to higher
warp occupancy.

3


