
LSU EE 77002 Homework 1 Solution Due: 25 January 2013

Problem 1: Read up to, and including, Section II, in the paper “GPU Computing,” by Owens
et al. The paper can be found at http://www.ece.lsu.edu/gp/srefs/Owens-gpus-2008.pdf. It
is freely accessible within the lsu.edu domain, outside you will be prompted for a user name and
password. The user name is ee4720. The password will be given in class. If you’ve forgotten
the password here’s a hint: It’s why you shouldn’t climb into the cage near Tiger Stadium. The
password is all lower case and there are no spaces.

This paper provides a brief history of GPUs and explains how and why they were adopted for
scientific computation. The material after Section II is dated and so should not be read.

The following definitions may be helpful in reading the paper: Shading:Computing the color
of a point on a primitive. The color is computed based on the material properties of the primitive
(what one might think of as its color) and also on the location and brightness of light sources,
etc. Coordinate transformation to screen space: Coordinates refer to the location of the vertices of
the primitives (usually triangles). The application programmer specifies these in some convenient
coordinate space. The screen coordinate space refers to the x and y location of pixels (unit of
screen location), and transformation here refers to the mathematical operation of mapping from
user coordinate space to screen space. The operation itself consists of multiplying a transformation
matrix, a 4 × 4 matrix, by the user-space coordinate, written as a four-component column vector
(with the fourth component set to 1).

After reading the paper answer the following question−1.

(a) The paper might be difficult to read for first-year graduate students without a strong computer
architecture background. Find a term or sentence in the paper that you could not understand.
Write down the sentence, which page it’s on, and your best guess as to what it means.

Here are some of the questions that were asked, along with the answers. The questions are paraphrased for the sake
of clarity.

JA asks: How is it that a graphics operation can take 1000’s of cycles, as stated in the penultimate

paragraph on page 881, while a CPU pipeline has a latency of ≈ 20 cycles.

The confusion arises from the vast difference between the sense of the word pipeline used to describe hardware in a CPU
and the sense used to describe a GPU.

The term pipeline when used to describe CPU hardware refers to a set of hardware units, stages, that are used to
execute a CPU machine instruction. Instructions proceed through the stages in order and at any one time different stages
can (and for efficiency should) be occupied by different instructions. The number of stages varies from four or five for
simpler designs, to a dozen or more in more advanced designs. Instructions spend only one clock cycle, maybe ≈ 0.5 ns
in current designs, in a stage.

The term pipeline when used in the paper to describe a GPU refers to the set of steps needed to process a vertex,
this is often called a rendering pipeline. The rendering pipeline steps are performed by short programs, in some
cases by processors that can be user programmed, called programmable shaders, in other cases by hardware with
the program fixed in the hardware. The set of steps in the rendering pipeline are defined by standards such as OpenGL
(Khronos) and Direct3D (Microsoft).

Given these usages of the term pipeline, contrasting the 20-cycle instruction latency through a CPU pipeline with
the 1000’s of cycles taken by a vertex until it reaches the frame buffer is an apples-to-oranges (less relevant) comparison.

The paper is trying to point out the fact that there are no dependencies between vertices (until they reach the frame
buffer). That means there is no need for the processing of one vertex to wait until a prior vertex finishes. This enables
vertex processing to be overlapped or done entirely in parallel, something which GPUs are designed to exploit.
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In a CPU one instruction may depend upon another, limiting the amount of overlap. In general purpose CPUs
the amount of delay due to dependencies is determined by the latency of the functional unit (say, 1 cycle for an integer
operation) which is less than the full pipeline latency (5 to over 12 cycles).

TSR asks: Why are triangles the only kind of primitive processed by a GPU?

To limit the complexity of the hardware some compromises need to be made, and for early GPUs the compromise was
using 2D primitives. The reason for going even further, limiting primitives to just triangles, is that it is a simple matter
for a CPU to tessellate a 2D primitive into triangles, whereas the modifications so that a GPU could it would make
early GPUs more complex (and overall would yield no performance gain). GPU APIs, such as OpenGL, did once accept
arbitrary polygons as primitives, but they would probably tessellate them on the CPU and just send triangles to the GPU.

Note that curved surfaces can be very effectively approximated by triangles, for example, in the classroom demo
presented in the beginning of the semester.

Modern GPUs (or GPU APIs such as OpenGL) no longer require triangles as inputs. Instead the CPU can send a
collection of vertices that define some kind of surface. User-written GPU code, for tessellation shaders, a geometry

shader, or both, would convert the vertices (which are coordinates in 3D space) into triangles covering a surface (whatever
surface the programmer wanted). Past the geometry shader stage of the rendering pipeline GPUs continue to use triangles
as primitives.

SI asks: Asks how it is possible to find the closest fragment to the camera so easily, as mentioned

on page 881.

Each fragment carries a transformed coordinate. The original coordinate was in a coordinate system convenient to the
programmer. For example, in a flight simulator program the coordinate system might put the origin at the start of the
runway, +z might be north, and x = 1 might be one foot (because people in aviation seem stuck on English units).
These coordinates are transformed into a space in which the +z direction points away from the camera (or users eye).
So, given two fragments one need only compare their z components to determine which is closer. This comparison occurs
when its time to write a fragment to the frame buffer. The fragment’s x and y components are in units of pixels, and so
are used to find an address (more precisely and index) in the frame buffer. In typical use there are at least two buffers,
a color buffer where the fragment color will be written, and a z buffer where the fragment’s z component will be
written. Before writing anything a fragment reads from the z buffer to see if the fragment that is already there is closer
to the camera. If so, the arriving fragment is dropped, of not the color and z value of the arriving fragment are written
to the respective buffers.

The fragment operations are computationally demanding in contrast to vertex operations because for each
set of three vertices (which make a primitive) there can be many, hundreds or more, fragments. (A fragment is a pixel
covered by a primitive.)

The rendering pipelines used by GPUs do not use ray casting and do not sort fragments. Ray casting (used to
implement) ray tracing requires unstructured memory access patterns that are too demanding. It is still possible to use
a GPU for ray tracing by performing ray tracing as a non-graphical computation (using CUDA, OpenCL, or an OpenGL
compute shader).

The OpenGL rendering pipeline was defined specifically to avoid the need to sort fragments by camera distance.
Fragments arrive at the frame buffer in the same order their respective primitives entered the pipeline, and so it is not
possible to, for example, compare an arriving fragment to the fragment which is closest to it in camera distance. This
makes no difference if fragments are opaque (the closest one completely overwrites the others), but if fragments are partly
transparent sorting by distance is better.

RK asks: What does the paper mean in saying that the CPU divides the pipeline in time while the

GPU divides the pipeline in space?

The pipeline being referred to is the rendering pipeline, a set of steps needed to convert primitives (a set of vertices) to
values written into the frame buffer. In a CPU each step might be done by a different routine, for example, transfor-
mVertices(), rasterize(), applyTextures(), updateFrameBuffer(). In an ordinary program, these
routines would be called one at a time, and so the pipeline is divided in time. In older GPU designs each of these steps
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would be performed by separate pieces of hardware, for example, a vertex processor for transforming vertices (which
can run programs called vertex shaders), and a fragment processor replacing the applyTextures() routine.
Since these were physically separate the pipeline was said to be divided in space.

Modern CPUs and GPUs cannot be categorized so conveniently. A multicore CPU can easily run the different routines
on different cores (actually on different threads that the OS would distribute to cores), and in that case they would be
divided in space too. Modern GPUs no longer use separate hardware for vertex and fragment processing, and so a GPU
might first run the vertex shader and then after that’s done use the same hardware for subsequent steps. If so the GPU
execution of the rendering pipeline would be divided in time too.

In summary, divided in time made sense for old CPUs with one core because with just one core there was no
choice but to do the steps at different times. Divided in pace made sense for old GPUs with more specialized hardware
than now because there was no choice but to do the steps in different places.

NOTE: The questions below are not based on the Owens paper from the previous problem. Answer

the questions below using material covered in class.

Problem 2: LISP machines were developed for use in artificial intelligence (AI) research. Many
video games have an AI component. Why do you think AI processing units were not (or would not
be) successful?

There is no point in spending vast sums of money developing a specialized processor if it would not be much faster
than a CPU. As pointed out in class there was a time in which many types of specialized processors were contemplated
and few of these were developed, but they were not successful because their benefit was small and development costs were
large. Lisp machines for AI was given in class as an example.

Problem 3: You are in charge of a computing system that computes daily reports. Currently
they take 6 hours to compute using eight cores, that is, t(8) = 6 hours. The single-core execution
time is t(1) = 32 hours. The program is written to run on any number of cores.

Your goal is to get the system to compute a result in 4 hours using a budget of $6000. There
are two options, buy an additional eight cores for $6000 or hire a programmer at the rate of $20 to
$100 per hour (depending on who you hire).

Choose an option and justify your answer. Either answer can be correct. As part of the
solution estimate the execution time of the program on a sixteen-core system and the chances that
the programmers you hire can improve speedup sufficiently for a 4-hour run.

Note that this is only a fictional assignment, you don’t get to keep any left over money.
Before considering whether to buy machines or peoples’ time lets look at the numbers. The single-thread (core) time

is t(1) = 32 hours. With linear (ideal) speedup the 8-core time would be tideal(8) = 32
8 = 4 hours. The 8-core time

with the existing parallel code is texisting(8) = 6.
To decide whether to hire programmers or buy more cores we need to estimate the run time on a 16-core system. It

would be naıv̈e to expect the 16-core time to be naive(16) = t(8)
2 because we did not get linear speedup with 8 cores.

The problem said nothing about the nature of the parallel code so we need to make assumptions. Lets assume the
code follows the Amdahl’s Law model in which a parallel program has a serial portion and a parallel portion. The serial
portion runs on one core while all the other cores are idle (either because they are finished or because they are waiting
for the results from the serial portion). The run times on n cores is given by

tAmdahl(n) = ft(1) + (1 − f)
t(1)

n
,

where ft(1) is the execution time of the serial portion. The quantity f can be though of as the fraction of t(1) that has
not been parallelized, and perhaps can not be parallelized no matter how smart and hard working you are.

3



If a program fits this model we can solve for f using two execution times, t(1) and t(n) for n 6= 1. It can be
shown that:

f =
n t(n)

t(1) − 1

n − 1
.

For our situation f = 1/14 and the serial portion is 2.29 hours. Substituting we get

tAmdahl(32) = 2.29 +
32 − 2.29

16
= 4.14,

which is about 8 1
2 minutes too long for us. This is not the only possible model, but knowing nothing else we’ll stick with

it.
If this model is correct, then buying another 8 cores won’t work, the run time will still be greater than our goal of

4 hours.

The argument for buying 8 more cores would be that the parallel execution time fits some other model. Perhaps

there is a k log
2

n

n
component for communication present only when n > 1. Then

tothermodel(n) =

{

32, if n = 1;
32+k log

2
n

n
, otherwise.

For this model and our data k = 16/3 and so tothermodel(32) = 3 1
3 .

The argument for hiring programmers would be that the original parallelization effort was not performed thor-
oughly, and perhaps that the serial program from which t(1) was obtained also was not well written. In that case the
need to achieve linear speedup (often a difficult goal) is not as scary as it sounds.
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