LSUEE 7700-2 Homework 1 Due: 12 March 2012

For the following assignment read Chapter 2 in the CUDA C Programming Guide, which is
linked to the NVIDIA documentation page,
http://developer.nvidia.com/nvidia-gpu-computing-documentation|, and which can also be
found in /usr/local/cuda/doc in a standard Linux CUDA toolkit installation. Also refer to the
documentation for cuobjdump, which describes the NVIDIA machine language and to the class
notes on the GF3 at http://www.ece.lsu.edu/gp/notes/set-study-gf3.pdf.

Source code and accounts for this assignment may be made available.

Problem 1: A CUDA program, a variation on the “dots” demo shown in class, operates on a
1000000-element array using a kernel which operates on a single element. (See the code fragments
below.)

(a) Suppose the block size is set to 64. How many blocks should be launched? Modify the code
below so that the kernel is launched with this block size and number of blocks. Note that only an
assignment for the x component of the grid configuration is shown; add the others. Note: This is
an easy problem, and something close to the solution can be found in other examples. Please solve
it on your own.

__host__ void dots_launch() {
dim3 dg, db;

// Answer below.

dg.x =

dots<<<dg,db>>>();
}

__global__ void dots() {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx >= array_size) return;
blidx] = vO + vl * alidx].x + v2 * al[idx].y;

}

(b) Suppose that the code above is run on a Tesla C2050. How many blocks will there be per
multiprocessor? Note: To solve this problem yo need to look characteristics of the C2050 in the
Programming Guide.

(¢) Suppose the kernel (dots) consists of 21 instructions. How many cycles would it take for the
kernel to finish on a Tesla C2050 assuming that:

e No instruction has to wait, even for loads.

e All instructions use CUDA cores. (None of them use the special functional units).

http://www.ece.lsu.edu/gp/
http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://www.ece.lsu.edu/gp/notes/set-study-gf3.pdf

Problem 2: The dots kernel and the NVIDIA CC 2.0 machine code for the dots kernel appears
below.

__global__ void dots() {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx >= array_size) return;
blidx] = vO + vl * alidx].x + v2 * alidx].y; }

code for sm_20

Function : _Z4dotsv
/*0000%/ MOV R1, c [0x1] [0x100];
/*0008%/ S2R R2, SR_Tid_X;
/*0010%/ S2R RO, SR_CTAid_X;
/*0018%/ IMAD RO, RO, c [0x0] [0x8], R2;
/*0020%/ ISETP.LT.AND PO, pt, RO, c [0x2] [0xc], pt;
/*0028%/ @!PO BRA.U 0xa0;
/*0030%/ @PO MOV R3, c [0x2] [0x10];
/*0038%/ @PO IMUL.HI R2, RO, 0x8;
/*0040%/ @PO MOV R6, c [0x2] [0x18];
/*0048%/ @PO IMAD R8.CC, RO, 0x8, R3;
/*0050%/ @PO MOV R5, c [0x2] [0x4];
/*0058%/ @PO IMUL.HI R4, RO, 0x4;
/*0060%/ @PO IADD.X R9, R2, ¢ [0x2] [0x14];
/*0068%/ @PO IMAD R6.CC, RO, Ox4, R6;
/*0070%/ @PO LD.E R2, [R8];
/*0078%/ @PO LD.E R3, [R8+0x4];
/*0080%/ @PO IADD.X R7, R4, c [0x2] [0Oxlc];
/*0088%/ @PO FFMA R2, R5, R2, c [0x2] [0x0];
/*0090%/ QPO FFMA RO, R3, c [0x2] [0x8], R2;
/*0098%/ @PO ST.E [R6], RO;
/*00a0*/ EXIT;

(a) Briefly describe what each instruction does referring to the dots code. For example, for the
instruction at 0018 one might say “Compute idx = blockIdx.x * blockDim.x + threadIdx.x”.

(b) Show the equivalent GF3 machine code based on the description given in the class notes. Note
that the GF3 has input values automatically delivered to registers and results automatically moved
to the next stage. Be sure to take’ advantage of GF3 vector operations (though they aren’t a
perfect match).

(¢) Comment on the difference in code size and possible differences in execution time on systems
with the same number of floating-point units.

