/// LSU EE 7700-1 (Sp 2009), Graphics Processors
//
/// Homework 5
/// Due: Monday, 16 March 2009
// E-mail this file (with solution).
/// Name:
// $Id:$ <- This is not your student ID, don't change this line!
/// Instructions
// If necessary, follow the class account setup instructions linked to
// the class procedures page,
// http://www.ece.lsu.edu/koppel/gp/proc.html
// For instructions on how to check out edit, compile, and debug, see
// the "Programming Homework Work Flow" entry on the procedures page,
// http://www.ece.lsu.edu/koppel/gp/proc.html.
//
// For those instructions you need to know that:
//
// This assignment is at SVN URI https://svn.ece.lsu.edu/svn/gp/hw/2009/hw5
//
// The assignment instructions are in file hw4.cc. (This file.)
// The OpenGL spec, needed for this assignment, is at
// http://www.ece.lsu.edu/koppel/gp/refs/glspec21.pdf
// The relevant sections are 2.7, 2.8, and 2.9. (Vertex specification,
// vertex arrays, and buffer objects.)
// For the solutions to the problems below edit this file, even if
// it makes more sense to edit others (namely, coord.h). If it seems
// that coord.h must be edited, contact me.
// The main code is in routine Tube::render().
/// Overview
// The code in this file renders the undulating tube. In this
// assignment add a visual indicator of surface normals, we will
// call them arrows. The goal of this assignment is to determine the
// overhead of switching transformation matrices in the GPU, the
// transformation matrices will be used to rotate and translate an
// arrow into position. Arrows can also be rendered the "old-fashioned"
// way, by computing each arrow's vertex coordinates on the CPU.
/// Keyboard Commands
//
// 'v' Switch method of specifying arrow vertices:
// (Implementing these options is part of the assignment.)
// 0: Use glMultiDrawArrays. (One call for all arrows.)
// 1: Use glDrawArrays within a loop.
// 2: Within a loop change transform and send same arrow.
//
// 'b' Toggle between using client arrays and buffer objects for arrows.
// Implemented as part of this assignment.
//
// 'p' Pause tube. When paused vertex information is not re-computed
// every frame.
/// Variables
// Selected program variables can be modified using the keyboard.
// Use "Tab" to cycle through the variable to be modified, the
// name of the variable is displayed next to "VAR" on the bottom
// line of green text.
// Use '+' (or '=') and '-' (or '_') to change the variable.
// (Search for 'variable_control.insert' to find examples of how to
// add your own variables.)
//
// VAR Light Intensity - The light intensity.
// VAR Pattern Levels - The number of rings of triangles (along the z axis).
// VAR Arrow Detail - Amount of detail shown in arrow.
//
/// Eye and Light Location
// Arrows, Page Up, Page Down
// Move either the light or the eye.
// After pressing 'l' the keys move the light, after pressing 'e'
// they move the eye (viewer location). The eye and light location
// coordinates are displayed in the upper left.
//
/// Eye Direction
// Home, End, Delete, Insert
// Turn the eye direction.
// Home should rotate eye direction up, End should rotate eye
// down, Delete should rotate eye left, Insert should rotate eye
// right. The eye direction vector is displayed in the upper left.
/// Problem 1
// Modify the code below so that a pyramid (which will be called an
// arrow) is displayed at each tube vertex, with the base at the
// vertex and the apex pointing in the direction of the vertex normal
// (or in the opposite direction it that's more visually
// appealing).
// [ ] The arrows should be rendered using GL_TRIANGLE_FAN.
// [ ] The number of sides should be about opt_arrow_detail.
// [ ] Make sure num_bytes is updated properly.
// [ ] Use the MTrig class to re-use trigonometric function values.
/// Problem 2
// In this problem modify the code so that the arrow is drawn in
// different ways, depending on the value of opt_v_buffering and
// opt_buffer_objects. For opt_v_buffering = 0, use a single call to
// glMultiDrawArrays to send the arrow vertices; for opt_v_buffering
// = 1 call glDrawArrays inside a loop, once for each tube
// vertex. For opt_v_buffering = 2 use a transformation matrix to
// position an arrow. That is, construct an arrow in some standard
// location and orientation. Then send the same arrow over and over,
// each time changing the MODELVIEW transformation so that the arrow
// is correctly positioned.
// [ ] If opt_v_buffering = 0, use glMultiDrawArrays (one call).
// [ ] If opt_v_buffering = 1, use glDrawArrays (in a loop).
// [ ] If opt_v_buffering = 2, change the transformation in a loop.
// [ ] If opt_buffer_objects is true the arrow data should be in a buffer obj.
// [ ] If opt_buffer_objects is false the arrow data should be send from cpu.
// [ ] Do not re-compute data if opt_pause is true.
// [ ] Store transformation matrices in an array and re-use when possible.
// [ ] Do not re-compute or resend data when it is not necessary.
// [ ] Make sure that num_bytes is updated correctly.
/// Problem 3
/// Answer the following questions:
// Under which circumstances does it make sense to use transformations
// to move objects?
// Provide an estimate for the overhead of changing transformations
// and for the rate at which the GPU can render arrow primitives.
/// To answer these questions:
// - Run optimized versions of this code. (hw5, not hw5-debug).
// - Vary Arrow Detail
// - Consider performance with different opt_v_buffering options.
// - Consider performance when paused and with and without buffer objects.
// - Look at GPU time and CPU time.
#include <stdio.h>
#include <strings.h>
#include <stdlib.h>
#include <deque>
#define GL_GLEXT_PROTOTYPES
#define GLX_GLXEXT_PROTOTYPES
#include <GL/gl.h>
#include <GL/glext.h>
#include <GL/glx.h>
#include <GL/glxext.h>
#include <GL/glu.h>
#include <GL/freeglut.h>
#include "util.h"
#include "coord.h"
// Display a tetrahedron, used to indicate light position.
//
void
insert_tetrahedron(pCoor& loc, float size)
{
pCoor v0(loc.x,loc.y,loc.z);
pCoor v1(loc.x,loc.y-size,loc.z+size);
pCoor v2(loc.x-.866*size,loc.y-size,loc.z-0.5*size);
pCoor v3(loc.x+.866*size,loc.y-size,loc.z-0.5*size);
static pColor c1(0xffffff);
static pColor c2(0xff00);
glDisable(GL_LIGHTING);
#define TRI(va,vb,vc) \
{ \
pVect n = cross(va,vb,vc); \
glNormal3fv(n); \
glColor3fv(c1); glVertex3fv(va); \
glColor3fv(c2); glVertex3fv(vb); \
glVertex3fv(vc); \
}
glBegin(GL_TRIANGLES);
TRI(v0,v1,v2); TRI(v0,v2,v3); TRI(v0,v3,v1);
glEnd();
# undef TRI
glEnable(GL_LIGHTING);
}
// Class for re-using sine and cosine values.
//
class MTrig {
public:
MTrig():size(0),storage(NULL){}
void init(int sizep){
size = sizep;
if ( storage ) delete storage;
storage = new float[size];
idx = 0;
full = false;
}
float sin(float theta){ return trig(theta,::sin); }
float cos(float theta){ return trig(theta,::cos); }
private:
float trig(float theta,double (*func)(double))
{
// return func(theta);
if ( !full ) { storage[idx] = func(theta); full = idx == size - 1; }
if ( idx == size ) idx = 0;
return storage[idx++];
}
int size;
float* storage;
int idx;
bool full;
};
struct Vertex_Info {
pCoor pos;
pVect nor;
};
///
/// Tube Class
///
class Tube {
public:
Tube(pOpenGL_Helper &fb):ogl_helper(fb){ init(); }
static void render_w(void *moi){ ((Tube*)moi)->render(); }
void init();
void modelview_update();
void render();
private:
pOpenGL_Helper &ogl_helper;
pVariable_Control variable_control;
pFrame_Timer frame_timer;
pCoor eye_location;
pVect eye_direction;
pMatrix modelview;
bool opt_move_light;
bool opt_pause;
float r0;
float x_shift;
float pattern_pitch_z;
float opt_pattern_levels;
float opt_pattern_width;
int opt_v_buffering;
bool opt_buffer_objects; // If true use buffer objects for arrow.
float opt_arrow_detail; // It's a float so it can work with variable_control.
// Some items that might be needed for solution.
//
Vertex_Info *arrow_info;
pMatrix *arrow_transforms;
GLuint arrow_info_buffer;
float opt_light_intensity;
pCoor opt_light_location;
double time_app_start;
Vertex_Info *tube_info;
int *index_array;
int num_vtx_alloc;
int num_indices;
MTrig tarray;
MTrig tarray_arrow; // Might be needed for solution.
};
void
Tube::init()
{
time_app_start = time_wall_fp();
// Tell frame timer that work unit is "MB/s" and how should be scaled.
//
frame_timer.work_unit_set("MB/s",1e-6);
r0 = 2; // Tube radius.
x_shift = 0.4; // Tube x offset.
pattern_pitch_z = 0.25; // Triangle size (z axis).
opt_pattern_levels = 30; // Tube depth (z direction.)
opt_pattern_width = 60; // Triangle size (circumferential).
// Amount of Detail in Arrow (Showing Normal Direction)
//
// The solution can have a different initial value.
//
opt_arrow_detail = 10;
opt_light_intensity = 8;
opt_v_buffering = 0;
opt_buffer_objects = false;
opt_light_location.set(1.3,0.1,-1.4);
opt_pause = false;
eye_location.set(0,0,2.5);
eye_direction.set(0,0,-1);
modelview_update();
// Arrange that variables below can be modified from the keyboard.
//
variable_control.insert(opt_arrow_detail,"Arrow Detail");
variable_control.insert(opt_light_intensity,"Light Intensity");
variable_control.insert(opt_pattern_width,"Vertices per Ring");
tube_info = NULL;
index_array = 0;
num_vtx_alloc = 0;
num_indices = 0;
}
void
Tube::modelview_update()
{
pMatrix_Translate center_eye(-eye_location);
pMatrix_Rotation rotate_eye(eye_direction,pVect(0,0,-1));
modelview = rotate_eye * center_eye;
}
void
Tube::render()
{
frame_timer.frame_start();
const int arrow_detail = int(opt_arrow_detail); // Cast to integer.
glClearColor(0,0,0.0,0.5);
glClearDepth(1.0);
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
// Have frame timer provide timing information for top of image.
//
ogl_helper.fbprintf("%s\n",frame_timer.frame_rate_text_get());
///
/// Transformation Matrix Setup
///
glMatrixMode(GL_MODELVIEW);
glLoadTransposeMatrixf(modelview);
const int win_width = ogl_helper.get_width();
const int win_height = ogl_helper.get_height();
const float aspect = float(win_width) / win_height;
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-0.8,+0.8,-0.8/aspect,0.8/aspect,1,5000);
glViewport(0, 0, win_width, win_height);
pError_Check();
///
/// Adjust options based on user input.
///
pVect adjustment(0,0,0);
pVect user_rot_axis(0,0,0);
switch ( ogl_helper.keyboard_key ) {
case FB_KEY_LEFT: adjustment.x = -0.1; break;
case FB_KEY_RIGHT: adjustment.x = 0.1; break;
case FB_KEY_UP: adjustment.z = -0.1; break;
case FB_KEY_DOWN: adjustment.z = 0.1; break;
case FB_KEY_PAGE_DOWN: adjustment.y = -0.1; break;
case FB_KEY_PAGE_UP: adjustment.y = 0.1; break;
case FB_KEY_DELETE: user_rot_axis.y = 1; break;
case FB_KEY_INSERT: user_rot_axis.y = -1; break;
case FB_KEY_HOME: user_rot_axis.x = 1; break;
case FB_KEY_END: user_rot_axis.x = -1; break;
case 'b': case 'B': opt_buffer_objects = !opt_buffer_objects; break;
case 'p': case 'P': opt_pause = !opt_pause; break;
case 'l': case 'L': opt_move_light = true; break;
case 'e': case 'E': opt_move_light = false; break;
case 'v': case 'V':
opt_v_buffering++;
if ( opt_v_buffering == 3 ) opt_v_buffering = 0;
break;
case 9: variable_control.switch_var_right(); break;
case '-':case '_': variable_control.adjust_lower(); break;
case '+':case '=': variable_control.adjust_higher(); break;
default: break;
}
// Update eye_direction based on keyboard command.
//
if ( user_rot_axis.x || user_rot_axis.y )
{
pMatrix_Rotation rotall(pVect(0,0,-1),eye_direction);
user_rot_axis *= rotall;
eye_direction *= pMatrix_Rotation(user_rot_axis, M_PI * 0.03);
modelview_update();
}
// Update eye_location based on keyboard command.
//
if ( adjustment.x || adjustment.y || adjustment.z )
{
const double angle =
fabs(eye_direction.y) > 0.99
? 0 : atan2(eye_direction.x,-eye_direction.z);
pMatrix_Rotation rotall(pVect(0,1,0),-angle);
adjustment *= rotall;
if ( opt_move_light ) opt_light_location += adjustment;
else eye_location += adjustment;
modelview_update();
}
//
// User Messages (Magically inserted into frame buffer.)
//
ogl_helper.fbprintf
("Eye location: [%.1f, %.1f, %.1f] "
"(%suse arrow and page keys to move).\n",
eye_location.x, eye_location.y, eye_location.z,
opt_move_light ? "press 'e' then " : "" );
ogl_helper.fbprintf
("Light location: [%.1f, %.1f, %.1f] "
"(%suse arrow and page keys to move).\n",
opt_light_location.x, opt_light_location.y, opt_light_location.z,
opt_move_light ? "" : "press 'l' then ");
ogl_helper.fbprintf
("Eye direction: [%.2f, %.2f, %.2f] "
"(use 'Home', 'End', 'Del', 'Insert' keys to turn).\n",
eye_direction.x, eye_direction.y, eye_direction.z);
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE,1);
glLightfv(GL_LIGHT0, GL_POSITION, opt_light_location);
const float light_intensity[4] =
{opt_light_intensity, opt_light_intensity, opt_light_intensity, 1.0};
const float light_off[4] = {0,0,0,0};
const float light_dim[4] = {0.1,0.1,0.1,1};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, &light_dim[0]);
glLightfv(GL_LIGHT0, GL_DIFFUSE, &light_intensity[0]);
glLightfv(GL_LIGHT0, GL_AMBIENT, &light_off[0]);
glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, 0.3);
glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, 0);
glLightf(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, 0.25);
glEnable(GL_LIGHT0);
glEnable(GL_LIGHTING);
glColorMaterial(GL_FRONT_AND_BACK,GL_AMBIENT_AND_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
const char* const v_buffering_str[] =
{ "Send transformed arrows using glMultiDrawArrays",
"Send transformed arrows using glDrawArrays",
"Send same arrow, change transforms" };
ogl_helper.fbprintf
("Vertex specification: %s (v to change)\n",
v_buffering_str[opt_v_buffering]);
ogl_helper.fbprintf
("Arrow data provided from %s\n",
opt_buffer_objects ? "buffer objects" : "client arrays");
if ( opt_pause )
ogl_helper.fbprintf("** PAUSED ** (Press 'p' to unpause.)\n");
else
ogl_helper.fbprintf("Press 'p' to pause.\n");
pVariable_Control_Elt* const cvar = variable_control.current;
ogl_helper.fbprintf("VAR %s = %.3f\n",cvar->name,cvar->var[0]);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
// Insert marker (green tetrahedron) to show light location.
//
insert_tetrahedron(opt_light_location,0.05);
float z = -1;
pColor color_purple(0x580da6); // LSU Spirit Purple
pColor color_gold(0xf9b237); // LSU Spirit Gold
//
// Get Tube Specifications
//
const float ampl = 0.1;
const int pattern_width = 3 * int( opt_pattern_width * 0.33333333 );
const int pattern_levels = int( opt_pattern_levels + 0.5 );
const int num_vtx = pattern_levels * pattern_width;
const double cycles_per_second = 0.2;
const double phase_n =
( time_wall_fp() - time_app_start ) * cycles_per_second;
const double phase = phase_n * 2.0 * M_PI;
const float wavelength_z = 4.8;
const float radians_per_z = 2.0 * M_PI / wavelength_z;
int num_bytes = 0;
glEnable(GL_NORMALIZE);
glEnable(GL_RESCALE_NORMAL);
// If number of vertices has changed re-allocate our storage
// (coor_buffer, norm_buffer) and MTrig object.
//
if ( num_vtx_alloc != num_vtx )
{
if ( tube_info )
{
delete tube_info;
delete index_array; index_array = NULL;
}
tube_info = new Vertex_Info[num_vtx];
tarray.init( pattern_width * 2 * 2 );
num_vtx_alloc = num_vtx;
}
// Outer Loop: z axis (down axis of tube).
//
if ( !opt_pause )
{
Vertex_Info *vip = tube_info;
const float ep = 1.00001;
const float two_pi = 2 * M_PI;
const float delta_theta = ep * two_pi / pattern_width;
const float delta_theta_half = 0.5 * delta_theta;
for ( int i = 0; i < pattern_levels; i++ )
{
const float angle_z = phase + radians_per_z * z;
const float cos_z = cos(angle_z);
const float theta_0 = i & 1 ? delta_theta_half : 0;
const float r = r0 * ( 1 + ampl * sin( angle_z ) );
for ( float theta = theta_0; theta < two_pi;
theta += delta_theta )
{
const float cos_theta = tarray.cos(theta);
const float sin_theta = tarray.sin(theta);
Vertex_Info* const vi = vip++;
vi->pos = pCoor(x_shift + r * cos_theta, r * sin_theta, z);
vi->nor = pVect(-cos_theta,-sin_theta,cos_z);
}
z -= pattern_pitch_z;
}
}
if ( !index_array )
{
index_array = new int[num_vtx*6];
int *iptr = index_array;
for ( int i = 0; i < pattern_levels - 1; i++ )
{
int vtx_a = pattern_width * ( i & 1 ? i + 1 : i );
int vtx_b = pattern_width * ( i & 1 ? i : i + 1 );
int *irevptr = iptr;
for ( int j = 0; j < pattern_width; j++ )
{
const bool last = j == pattern_width - 1;
*iptr++ = vtx_a; *iptr++ = vtx_b;
vtx_a++; if ( last ) vtx_a -= pattern_width;
*iptr++ = vtx_a;
*iptr++ = vtx_a; *iptr++ = vtx_b;
vtx_b++; if ( last ) vtx_b -= pattern_width;
*iptr++ = vtx_b;
}
if ( i & 1 ) continue;
// Flip these triangles so all have normals in same direction.
//
while ( irevptr < iptr )
{
const int t = irevptr[0];
irevptr[0] = irevptr[2]; irevptr[2] = t;
irevptr += 3;
}
}
num_indices = iptr - index_array;
}
pError_Check();
// Render Tube
//
glColor3fv( color_gold );
glNormalPointer(GL_FLOAT,sizeof(Vertex_Info),&tube_info[0].nor);
glVertexPointer(3,GL_FLOAT,sizeof(Vertex_Info),&tube_info[0].pos);
glEnableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);
glDrawElements(GL_TRIANGLES,num_indices,GL_UNSIGNED_INT,index_array);
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
pError_Check();
num_bytes += ( sizeof(float) * 6 ) * num_indices;
frame_timer.work_amt_set(num_bytes);
// Insert additional triangle.
//
{
pCoor v0( 1.5, 0, -3.2 );
pCoor v1( 0, 5, -5 );
pCoor v2( 9, 6, -9 );
pVect normal(cross(v0,v1,v2));
glColor3fv( color_purple );
glBegin(GL_TRIANGLES);
glNormal3fv(normal); glVertex3fv(v0);
glNormal3fv(normal); glVertex3fv(v1);
glNormal3fv(normal); glVertex3fv(v2);
glEnd();
}
glColor3f(0,1,0); // This sets the text color. Don't know why.
pError_Check();
frame_timer.frame_end();
glutSwapBuffers();
}
int
main(int argc, char **argv)
{
pOpenGL_Helper popengl_helper(argc,argv);
Tube tube(popengl_helper);
popengl_helper.rate_set(30);
popengl_helper.display_cb_set(tube.render_w,&tube);
return 0;
}