LSUEE 7700-1 Homework 3 solution Due: 4 March 2009

Answer the following questions about Lindohom 2001, which describes the NVIDIA GForce 3.

Problem 1: Section 3.7.1 justifies the decision to exclude branch instructions by pointing out
that the OpenGL API was intentionally designed to avoid the need for branching up until clipping.
(That is, steps such as lighting and transform would be branch free.)

The OpenGL code below contains some calls which are not allowed between a begin/end pair.
(They would result in an invalid operation error.)

glBegin (GL_TRIANGLES) ;

while (Group* const group = group_list)
{
glEnable (GL_RESCALE_NORMAL) ; // DISALLOWED (a)
glLightf (GL_LIGHTO, GL_CONSTANT_ATTENUATION, 0.1); // DISALLOWED (b)
glColor3f(1,.1,.1);
glNormal3fv (group->p->surface_normal) ;
glVertex4fv (group->p->pos);

glDisable (GL_RESCALE_NORMAL) ; // DISALLOWED (a)
glLightf (GL_LIGHTO, GL_CONSTANT_ATTENUATION, 0.2); // DISALLOWED (b)
glNormal3fv(group->q->surface_normal) ;

// Color left out intentionally.

glVertex4fv(group->q->pos) ;

glNormal3fv(group->r->surface_normal);
glColor3£(0.1,0.1,1);
glVertex4fv(group->r->pos);

}

glEnd();

(a) Identify the calls which are not allowed because they might require branching. Explain why
branching would probably be needed for these calls.

In the code above calls disallowed because of brgncmng are followed by the comment DISALLOWED (a).

These disallowed calls turn normal YQ-SQQHT\% (ﬂOme\iZ&UOﬂ) on and off. If the vertex processor instruction set
included branehes then the GL_RESCALE_NORMAL option could be implemented by having a braneh instruction simply
}Ump over some r@sea\mg code when GL_RESCALE_NORMAL was false (U\Q GL_RESCALE_NORMAL state would be sent
10 the vertex processor in the same Way as MU'\DUIQS).

(b) Identify the call which is not allowed for another reason. That reason is given on the same page,
151. Explain why allowing the call would complicate the vertex processor design.

Calls disallowed for another reason are followed Dy the comment DISALLOWED (b); these calls Qh&ﬂgé Q \'\gm'mg
pmamet@r. I U\Qy waere not disallowed then that \'\gmmg pmameter would have To be sent as an attribute. Section 3.5
describes the 16 QX\SUT\% 'mput attributes, and from Section 4.2 one can see that ° additional 'mput aftributes would
impact the size of the VAB plus the 7 input butfers. Though it might be possible to squeeze in just one more attribute,
the GL_CONSTANT_ATTENUATION attribute is one of many \'\gm'mg attributes so it would not make sense to add that
one without ° others. So 1o KQQP COStS down Hgmmg pgram@t@rs are not allowed as attributes.

1

http://www.ece.lsu.edu/gp/

Problem 2: Let r denote the number of FP operations a processor initiates per cycle when
running some program. Let 7y, denote the maximum possible 7 for a processor, one attained with
just the right program. Define FP efficiency of the processor on a program to be 7/rmyax.

Estimate the efficiency of the vertex processor of the GF 3, as described in Lindholm 2001, on
the program given in Section 6.2 of that paper. Note that a vector instruction such as ADD R1,
R2, R3 initiates four FP operations, while ADD R1.x, R2.x, R3.x initiates just one

To determine 7,5 We need to find the maximum instruetion axecution rate (number of instructions per Q\/Q\Q) and
the maximum number of ﬂo&tmg—pomt OPQY&UOHS per instruetion. The end of Section 4.3 '\mp\\es 2 maximum execution
rate of 1instruction per eyele (IPC). The number of FP operations varies by instruction. An ADD performs four operations
(one for eacnh vector component), DST performs five (see page 152), and DP4 performs seven, and MAD performs eight.
(The deseription of the LIT instruction in the paper is misleading: the dot products are not performed by LIT. See the
NV VERTEX PROGRAM extension specification.) Assuming the system can initiate one MAD every eyele, 7may = 8.

To Q()mpU'CQ 7 we divide the total number of FP OPQYQUO[\S pQrToerd by the program by the number of instructions.
The program 18 shown below, a\ong with the number of FP OPQY&UOY\S used by each instruetion. An instruction like MUL
is QQP&D\Q of us'mg A FP OPQYQU()\'\S, DUt in some cases fewer are used, for QXElmP\Q, the last MUL Om\/ OPQYMQS on one of
the vecetor elemaents 1o it p@rforms)USI one FP OPQFM'\OT\.

For some instruetions the number of FP OPQY&UOHS is an estimate and one m'\gm qu'\bb\g over whether it's fair to 52y

that RSQ performs one FP operation (x~2) because exponentiation is harder than addition. Any adjustment for these
issues should not detract from the point of this assignment, FP emciency.
The program below Qons'\sts of 33 instructions and performs a total of 126 FP operations and so r = 2% = 3.82.
126 1

The overall emciency is then — = 33 8 — = 0.48, mMeaning on averagae less than half the FP units are b@mg used.

The NVIDIA 8000-series ¢pUs (GeForce 80) avoids this particular inemeiency by not using & vector data type.

DP4 o[HPOS].x, c[0], v[0OPOS];
DP4 o[HPOS].y, c[1], v[0OPOS];
DP4 o[HPOS].z, c[2], v[0POS];
DP4 o[HPOS].w, c[3], v[0OPOS];
DP4 RO.x, v[0POS], c[4] ;

DP4 RO.y, v[0OPOS], c[5] ;

DP4 RO.z, v[0OP0OS], cl[6] ;
DP3 RO.w, RO, RO ;

RSQ RO.w, RO.w ;

MUL RO, RO, RO.w ;

DP3 R1.x, v[NRML], c[8] ;
DP3 Rl.y, v[NRML], c[9] ;

DP3 R1.z, v[NRML], c[10] ;
DP3 R2.x, v[TEX0], c[4] ;

DP3 R2.y, v[TEX0], c[5] ;
DP3 R2.z, v[TEX0], c[6] ;

DP3 R3.x, c[30], R2

MAD R3.y, R3.x, R3.x, -c[24].w ;
RSQ R3.z, -R3.y ;

MUL R3.y, -R3.y, R3.z ;

DP3 R3.w, c[30], Rl ;

SGE R3.z, R3.w, c[24].y ;

MUL R4.x, R3.z, R3.y ;

DP3 R5.x, RO, R2 ;

MAD R5.y, R5.x, Rb.x, -c[24].w ;
RSQ R5.z, -Rb.y ;

MUL R5.y, -R5.y, Rb6.z ;

MUL R5.w, R3.x, R5.x ;

(Only 1 element used.)

(Only 1 element used.)

= R, NOE R, R, RN oo, 0NN NN N NN

MAD R4.y, R3.y, R6.y, Rb.w ;
MOV R4.w, c[24].x ;

LIT R6, R4 ;

MAD R7, R6.y, c[40], R6.z ;
ADD o[COLO], R7, c[41] ;

SN W o N

33 insn 126 fp ops

	Problem 1
	Problem 2

