
LSU EE 7700­1 Homework 3 Solution Due: 4 March 2009

Answer the following questions about Lindohom 2001, which describes the NVIDIA GForce 3.

Problem 1: Section 3.7.1 justifies the decision to exclude branch instructions by pointing out
that the OpenGL API was intentionally designed to avoid the need for branching up until clipping.
(That is, steps such as lighting and transform would be branch free.)

The OpenGL code below contains some calls which are not allowed between a begin/end pair.
(They would result in an invalid operation error.)

glBegin(GL_TRIANGLES);

while (Group* const group = group_list)

{

glEnable(GL_RESCALE_NORMAL); // DISALLOWED (a)

glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, 0.1); // DISALLOWED (b)

glColor3f(1,.1,.1);

glNormal3fv(group->p->surface_normal);

glVertex4fv(group->p->pos);

glDisable(GL_RESCALE_NORMAL); // DISALLOWED (a)

glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, 0.2); // DISALLOWED (b)

glNormal3fv(group->q->surface_normal);

// Color left out intentionally.

glVertex4fv(group->q->pos);

glNormal3fv(group->r->surface_normal);

glColor3f(0.1,0.1,1);

glVertex4fv(group->r->pos);

}

glEnd();

(a) Identify the calls which are not allowed because they might require branching. Explain why
branching would probably be needed for these calls.

In the code above calls disallowed because of branching are followed by the comment DISALLOWED (a).
These disallowed calls turn normal re-scaling (normalization) on and off. If the vertex processor instruction set

included branches then the GL RESCALE NORMAL option could be implemented by having a branch instruction simply
jump over some rescaling code when GL RESCALE NORMAL was false (the GL RESCALE NORMAL state would be sent
to the vertex processor in the same way as attributes).

(b) Identify the call which is not allowed for another reason. That reason is given on the same page,
151. Explain why allowing the call would complicate the vertex processor design.

Calls disallowed for another reason are followed by the comment DISALLOWED (b); these calls change a lighting
parameter. If they were not disallowed then that lighting parameter would have to be sent as an attribute. Section 3.5
describes the 16 existing input attributes, and from Section 4.2 one can see that adding additional input attributes would
impact the size of the VAB plus the n input buffers. Though it might be possible to squeeze in just one more attribute,
the GL CONSTANT ATTENUATION attribute is one of many lighting attributes so it would not make sense to add that
one without adding others. So to keep costs down lighting parameters are not allowed as attributes.

1

http://www.ece.lsu.edu/gp/

Problem 2: Let r denote the number of FP operations a processor initiates per cycle when
running some program. Let rmax denote the maximum possible r for a processor, one attained with
just the right program. Define FP efficiency of the processor on a program to be r/rmax.

Estimate the efficiency of the vertex processor of the GF 3, as described in Lindholm 2001, on
the program given in Section 6.2 of that paper. Note that a vector instruction such as ADD R1,

R2, R3 initiates four FP operations, while ADD R1.x, R2.x, R3.x initiates just one.
To determine rmax we need to find the maximum instruction execution rate (number of instructions per cycle) and

the maximum number of floating-point operations per instruction. The end of Section 4.3 implies a maximum execution
rate of 1 instruction per cycle (IPC). The number of FP operations varies by instruction. An ADD performs four operations
(one for each vector component), DST performs five (see page 152), and DP4 performs seven, and MAD performs eight.
(The description of the LIT instruction in the paper is misleading: the dot products are not performed by LIT. See the
NV VERTEX PROGRAM extension specification.) Assuming the system can initiate one MAD every cycle, rmax = 8.

To compute r we divide the total number of FP operations performed by the program by the number of instructions.
The program is shown below, along with the number of FP operations used by each instruction. An instruction like MUL
is capable of using 4 FP operations, but in some cases fewer are used, for example, the last MUL only operates on one of
the vector elements to it performs just one FP operation.

For some instructions the number of FP operations is an estimate and one might quibble over whether it’s fair to say

that RSQ performs one FP operation (x−

1

2) because exponentiation is harder than addition. Any adjustment for these
issues should not detract from the point of this assignment, FP efficiency.

The program below consists of 33 instructions and performs a total of 126 FP operations and so r = 126

33
= 3.82.

The overall efficiency is then r

rmax

= 126

33

1

8
= 0.48, meaning on average less than half the FP units are being used.

The NVIDIA 8000-series GPUs (GeForce 80) avoids this particular inefficiency by not using a vector data type.

DP4 o[HPOS].x, c[0], v[OPOS]; 7

DP4 o[HPOS].y, c[1], v[OPOS]; 7

DP4 o[HPOS].z, c[2], v[OPOS]; 7

DP4 o[HPOS].w, c[3], v[OPOS]; 7

DP4 R0.x, v[OPOS], c[4] ; 7

DP4 R0.y, v[OPOS], c[5] ; 7

DP4 R0.z, v[OPOS], c[6] ; 7

DP3 R0.w, R0, R0 ; 5

RSQ R0.w, R0.w ; 1

MUL R0, R0, R0.w ; 4

DP3 R1.x, v[NRML], c[8] ; 5

DP3 R1.y, v[NRML], c[9] ; 5

DP3 R1.z, v[NRML], c[10] ; 5

DP3 R2.x, v[TEX0], c[4] ; 5

DP3 R2.y, v[TEX0], c[5] ; 5

DP3 R2.z, v[TEX0], c[6] ; 5

DP3 R3.x, c[30], R2; 5

MAD R3.y, R3.x, R3.x, -c[24].w ; 2 (Only 1 element used.)

RSQ R3.z, -R3.y ; 1

MUL R3.y, -R3.y, R3.z ; 1 (Only 1 element used.)

DP3 R3.w, c[30], R1 ; 5

SGE R3.z, R3.w, c[24].y ; 1

MUL R4.x, R3.z, R3.y ; 1

DP3 R5.x, R0, R2 ; 5

MAD R5.y, R5.x, R5.x, -c[24].w ; 2

RSQ R5.z, -R5.y ; 1

MUL R5.y, -R5.y, R5.z ; 1

MUL R5.w, R3.x, R5.x ; 1

2

MAD R4.y, R3.y, R5.y, R5.w ; 2

MOV R4.w, c[24].x ; 0

LIT R6, R4 ; 3

MAD R7, R6.y, c[40], R6.z ; 2

ADD o[COL0], R7, c[41] ; 4

==

33 insn 126 fp ops

3

	Problem 1
	Problem 2

