```/// LSU EE 7700-2 (Sp 08), Graphics Processors
//
/// Homework 1  -- SOLUTION

/// Solutions described after problem descriptions.

/// Name:  David Koppelman

// \$Id:\$

#if 0
/// Problem 1

// The large triangle has a flaw: There is a line extending out of
// the right side of the bottom of the triangle.

//  [x] Fix the flaw.

/// Solution:

// Search for PROBLEM 1 SOLUTION

// The problem is in the interpolation objects used for the triangle
// edges. They compute a delta x (d_x) which is too large because it
// uses the wrong y_range (delta y). Specifically, it uses the y
// distance between the two vertices but it should use the y distance
// between the start and end pixels. When the vertices are on the
// order of one pixel apart the delta x calculated results in x
// values that can be too small or, in this case, too large. The
// solution is to base the y range on the first and last pixel.
// (The solution code still has a bug related to the y_range, one that
// is exposed if the triangle is partly clipped.)
// The changes are:

@@ -177,8 +174,9 @@ public:
const bool scissor = pre_y > 0.0;
yi = scissor ? ymin : int(v0.y);
#define DELTA(item) \
-    d_##item = (float(v1.item) - v0.item) / y_range;            \
-    item = v0.item + ( scissor ? pre_y * d_##item : 0.0 );
+    const float dtrue_##item = (float(v1.item) - v0.item) / y_range;          \
+    item = v0.item + ( scissor ? pre_y * dtrue_##item : 0.0 );                \
+    d_##item = (float(v1.item) - item) / ( yi_last - yi );
DELTA(red); DELTA(green); DELTA(blue); DELTA(x); DELTA(z);

/// Problem 2

// Modify the code so that pressing "R" will rotate the tube by 15
// degrees in the y direction though the center of tube. Each R should
// rotate by another 15 degrees.

//  [x] Modify to rotate by 15 degrees.

/// Solution:

// Search for PROBLEM 2 SOLUTION

// The modified code maintains a rotation angle variable, angle,
// updated when r or R is pressed. Using that variable a rotation
// matrix is constructed as well as two transformation matrices to
// center and uncenter the tube. A transpose-inverse matrix is used
// to transform the normals.

/// Problem 3

// Find a formula for render time in terms of vertices, pixels, and
// something related to triangles. The formula should be of the form:

//  t = t_tri n_tri + t_v n_v + t_p n_p,

// where n_tri is a count of something related to triangles, t_tri is
// the time per triangle (which you have determined), n_v is the
// number of vertices, and n_p is the number of pixels.

// Part of the problem is determining exactly what n_tri and n_p are. (There
// is only one reasonable interpretation of what n_v is.)

// The formula should work for the code in this file and should continue
// to work reasonably well if parameters such as pattern_levels change.

// Be sure to base this formula on the optimized version of the code.

//  [~] Prepare a solution on paper (or pdf).

//  [x] Show how well the solution works with the code with varying
//      values of pattern_width and pattern_levels.

//  [x] Provide suggestions on where and how the rendering pipeline
//      code may be sped up.

/// Solution:

// First, the following interpretation is used:

//  n_tri:
//   Should be related to the perimeter. For that use the number
//   of times an interpolation object is constructed.

//  n_p:
//   Two interpretations were used. First, a count of the number of
//   fragments (candidate pixels) generated (but not necessarily passing
//   the Z test), second, the number of fragments written to the frame
//   buffer.

//  n_v:
//   The number of vertices.

// In the solution the variable p3_vertex_count collects n_v,
// p3_perimeter_px_count collects n_tri, and p3_area_px_count collects
// n_a.

// To determine t_tri, t_p, and t_v one could measure the time in the
// code spent on the respective activities: for t_tri the time in the
// parts of the code responsible for constructing interpolation objects,
// for t_v the time for processing vertices, and for t_p the time writing
// the frame buffer (or at least testing the z buffer).

// One would also have to count n_tri, n_v, and n_p.

// Call the total total time for vertices collected in this way T_v. Then
// t_v = T_v / n_v and t_p and t_tri can be found similarly.

// A disadvantage of this approach is the need to separately measure
// vertex, perimeter, and pixel timing.

// The approach used in this solution is to collect n_tri, n_v, n_p,
// and the total render time for multiple runs and then solve:

//  n_v1 t_v + n_tri1 t_tri + n_p1 t_p  = T_1

//  n_v2 t_v + n_tri2 t_tri + n_p2 t_p  = T_2

//  n_v3 t_v + n_tri3 t_tri + n_p3 t_p  = T_3

// where n_v1 is the value of n_v for the first run, etc.

// Data was collected for three scenes. The first is the default, the
// second is the default but with a zoomed window (increasing the area
// and perimeter but not changing the vertex count). The last was
// rendered with a smaller value of pattern_width.

// The commented Mathematica transcript below shows the solution, note
// the annoying problem:

//     In[99]:= M = {{ 6012,  79000, 209110 }, { 6012,  129274, 526375 }, { 3012,  75490,  247562 }};

//     In[100]:= M // MatrixForm

//                           n_v      n_tri    n_p
//     Out[100]//MatrixForm= 6012     79000    209110
//                           6012     129274   526375
//                           3012     75490    247562

//     In[101]:= T = {15.3, 30.3,12.9};

//     In[102]:= Inverse[M] . T

//                t_v         t_tri         t_p
//     Out[102]= {0.00177148, -0.000114177, 0.0000653717}

//     In[103]:= M[[1]] . %102       (* Check the result.*)
//     Out[103]= 15.3

// The value of t_tri is negative, meaning that timing does not
// neatly factor into those three components.  The problem is
// that the code computing the color:

f_buffer[ fb_idx ] = interp_line.color();

// is time consuming, so its not a good idea to ignore whether a pixel is
// written as was done when collecting n_p. The code in this file counts
// the number of pixels passing the z test (and so written to the frame
// buffer). With that change (and using different configurations):

//     In[91]:= M = {{ 1212, 14837, 111728}, { 6012, 70858, 440983}, { 3012, 40716, 167498}};
//     In[92]:= T= {7.4, 31.1, 13.1};

//     In[93]:= M // MatrixForm

//     Out[93]//MatrixForm= 1212     14837    111728
//                          6012     70858    440983
//                          3012     40716    167498

//     In[94]:= Inverse[M] . T

//                t_v         t_tri         t_p
//     Out[94]= {0.00128734, 0.0000253251, 0.0000489045}

// So we can say the code, on my system, takes 1.29 microsecond per
// vertex, 25 ns per interpolation setup, and 48.9 ns per written
// pixel. Those numbers are used to print a timing estimate. (That
// estimate will only be accurate on my machine.)

// The estimate is within one 1 ms when zooming and rotating the tube.

// Suggestions for Improvement:

// most frequently executed code. That would be the code
// updating the frame buffer:

if ( z_buffer[ fb_idx ] > interp_line.z )
{
p3_area_px_count++;
f_buffer[ fb_idx ] = interp_line.color();
z_buffer[ fb_idx ] = interp_line.z;
}

// The function computing the color is fairly complex, requiring range
// comparisons and shifts and masks. One possibility is to streamline
// this by checking in advance if any color component will overflow, and
// if not skipping the comparisons. If might also be possible to use
// scaled integer arithmetic when interpolating values.

#endif

#include <stdio.h>
#include <strings.h>
#include <stdlib.h>
#include <deque>

#include "frame_buffer.h"
#include "coord.h"

class pMatrix_RotateXY : public pMatrix {
public:
pMatrix_RotateXY(float theta)
{
set_identity();
a[2][2] = a[0][0] = cos(theta);
a[0][2] = -sin(theta);
a[2][0] = sin(theta);
}
};

/// Vertex Object
//
// Holds coordinates plus color. In later examples will hold more
// information.
//
class pVertex : public pCoor {
public:
pVertex(float xp, float yp, float zp):pCoor(xp,yp,zp){};
pVertex(float xp, float yp, float zp, uint32_t color):
pCoor(xp,yp,zp){set_color(color);};
pVertex(pCoor c, pVect n, uint32_t color)
:pCoor(c),normal(n){set_color(color);}
pVertex():pCoor(){};
void set_color(uint32_t colorp)
{
color = colorp;
red = float( 0xff & ( color >> 16 ) );
green = float( 0xff & ( color >> 8 ) );
blue = float( 0xff & color );
}
float red, green, blue;
uint32_t color;
pVect normal;
};

/// Vertex List
//
// Declare vertex list types so that many vertices can easily be
// operated on.
//
typedef std::deque<pVertex*> pVertex_List;
typedef pVertex_List::iterator pVertex_Iterator;

/// Vertex Sort
//
// Sort three vertices at vertex list iterator position.
//
class pSortVertices {
public:
pSortVertices(pVertex_Iterator& ci)
{
rv_idx = 0;
for ( int i=0; i<3; i++ ) v[i] = ci[i];
swap(0,1); swap(0,2); swap(1,2);
}
operator pVertex& () { return *v[rv_idx++]; }
private:
void swap(int a, int b)
{
if ( v[a]->y <= v[b]->y ) return;
pVertex* const t = v[a];  v[a] = v[b];  v[b] = t;
}
pVertex* v[3];
int rv_idx;
};

int clampi(float valp, int min, int max)
{
const int val = (int) valp;
if ( val < min ) return min;
if ( val > max ) return max;
return val;
}

/// Interpolation Object
//
// Return x and y values on line connecting two points. Skips
// out-of-range values.
//
// Can be instantiated to advance in +x direction or +y direction.
//
class pInterpolate {
public:

pInterpolate(pVertex& v0, pVertex& v1, int ymin, int ymax)
{ set(v0, v1, ymin, ymax); }

void set(pVertex& v0, pVertex& v1, int ymin, int ymax)
{
const float y_range = v1.y - v0.y;
yi_last = ymax < int(v1.y) ? ymax : int(v1.y);
const float pre_y = float(ymin) - v0.y;
const bool scissor = pre_y > 0.0;
yi = scissor ? ymin : int(v0.y);
/// PROBLEM 1 SOLUTION
#define DELTA(item) \
const float dtrue_##item = (float(v1.item) - v0.item) / y_range;          \
item = v0.item + ( scissor ? pre_y * dtrue_##item : 0.0 );                \
d_##item = (float(v1.item) - item) / ( yi_last - yi );
DELTA(red); DELTA(green); DELTA(blue); DELTA(x); DELTA(z);
#undef DELTA
}

pInterpolate(pInterpolate& v0, pInterpolate& v1, int xmin, int xmax)
{
pInterpolate& vmin = v0.x < v1.x ? v0 : v1;
pInterpolate& vmax = v0.x < v1.x ? v1 : v0;
const float x_range = vmax.x - vmin.x;
xi_last = xmax < int(vmax.x) ? xmax : int(vmax.x);
const float pre_x = float(xmin) - vmin.x;
const bool scissor = pre_x > 0.0;
xi = scissor ? xmin : int(vmin.x);
#define DELTA(item) \
d_##item = (float(vmax.item) - vmin.item) / x_range;        \
item = vmin.item + ( scissor ? pre_x * d_##item : 0.0 );
DELTA(red); DELTA(green); DELTA(blue); DELTA(z);
#undef DELTA
}

bool keep_going_y() { return yi <= yi_last; }
bool keep_going_x() { return xi <= xi_last; }

{
red += d_red;  green += d_green;  blue += d_blue;  z += d_z;
}

uint32_t color()
{
return ( ( clampi(red,0,255) << 0 )
| ( clampi(green,0,255) << 8 )
| ( clampi(blue,0,255) << 16 ) );
}
float d_red, d_green, d_blue, d_x, d_z, red, green, blue, x, z;
int xi, xi_last, yi, yi_last;
};

// Add an unlighted tetrahedron to VTX_LIST at LOC of size SIZE.
//
void
insert_tetrahedron(pVertex_List& vtx_list, pCoor& loc, float size)
{
pCoor v0(loc.x,loc.y,loc.z);
pCoor v1(loc.x,loc.y-size,loc.z+size);
pCoor v2(loc.x-.866*size,loc.y-size,loc.z-0.5*size);
pCoor v3(loc.x+.866*size,loc.y-size,loc.z-0.5*size);
const int32_t c1 = 0x1ffffff, c2 = 0x100ff00;
pVect n;
# define TRI(va,vb,vc) \
n = cross(va,vb,vc); \
vtx_list.push_back( new pVertex(va,n,c1) ); \
vtx_list.push_back( new pVertex(vb,n,c2) ); \
vtx_list.push_back( new pVertex(vc,n,c2) );
TRI(v0,v1,v2); TRI(v0,v2,v3); TRI(v0,v3,v1);
# undef TRI
}

void
render_hw1(pFrame_Buffer &frame_buffer)
{
// Instantiate list of vertices.
//
pVertex_List vtx_list;

//
// Insert a tessellated tube in the vertex list.
//

// User Option: Use triangle normal or vertex normal.
//
static bool opt_triangle_normal = false;
if ( frame_buffer.keyboard_key == 'n' )
opt_triangle_normal = !opt_triangle_normal;
frame_buffer.fbprintf("Normals based on %s (use 'n' to change).\n",
opt_triangle_normal ? "triangle" : "vertex");

const float r = 2;                  // Tube radius.
const float x_shift = 0.4;          // Tube x offset.
const int pattern_levels = 50;      // Tube depth (z direction.)
const float pattern_width = 10;     // Triangle size (circumferential).
const float pattern_pitch_z = 0.25; // Triangle size (z axis).

float z = -1;
const uint32_t color_gold = 0xf9b237;    // LSU Spirit Gold
const uint32_t color_purple = 0x580da6;  // LSU Spirit Purple
const uint32_t color = color_gold;

// Get current time, intended for measuring performance of code.
// Time is in seconds since some arbitrary start time. (Today that
// start time might be New Years Day 1970 UTC, tomorrow it could be
// the time the program started running. So, it's only useful to take
// the difference between two values.  See pattern_loop_end below.)
//
const double pattern_loop_start = time_wall_fp();

// Outer Loop: z axis (down axis of tube).
//
for ( int i = 0; i < pattern_levels; i++ )
{
const float next_z = z - pattern_pitch_z;
const float last_z = z + pattern_pitch_z;
const float delta_theta = M_PI / pattern_width;
float theta = i & 1 ? delta_theta : 0;

// Inner Loop: around circumference of tube.
//
while ( theta < 4 * M_PI )
{
const float z1 = theta < 2 * M_PI ? next_z : last_z;

// For improved performance the tri functions would be pre-computed.

pVertex* const v0 =
new pVertex( x_shift + r * cos(theta), r * sin(theta), z, color );
if ( !opt_triangle_normal )
v0->normal = pVect(-cos(theta),-sin(theta),0);

theta += delta_theta;
pVertex* const v1 =
new pVertex( x_shift + r * cos(theta), r * sin(theta), z1, color);
if ( !opt_triangle_normal )
v1->normal = pVect(-cos(theta),-sin(theta),0);

theta += delta_theta;
pVertex* const v2 =
new pVertex( x_shift + r * cos(theta), r * sin(theta), z, color );
if ( !opt_triangle_normal )
v2->normal = pVect(-cos(theta),-sin(theta),0);

if ( opt_triangle_normal )
v0->normal = v1->normal = v2->normal = cross(*v0,*v1,*v2);

vtx_list.push_back( v0 );
vtx_list.push_back( v1 );
vtx_list.push_back( v2 );
}
z = next_z;
}

///
/// PROBLEM 2 SOLUTION
///
{
const float delta_theta = 2. * M_PI * 15. / 360.;
static float angle = 0;
if ( frame_buffer.keyboard_key == 'R' ) angle += delta_theta;
if ( frame_buffer.keyboard_key == 'r' ) angle -= delta_theta;
const float z_adj = ( pattern_levels * pattern_pitch_z ) / 2.0 + 1;

pMatrix_RotateXY centered_rotate(angle);
pMatrix rotate = tube_uncenter * centered_rotate * tube_center;

pMatrix rotate_normal = rotate;
rotate_normal.transpose(); rotate_normal.invert3x3();

for ( pVertex_Iterator ci = vtx_list.begin(); ci < vtx_list.end(); ci++ )
{
**ci *= rotate;
ci[0]->normal *= rotate_normal;
ci[0]->normal.normalize();
}
}

const double pattern_loop_end = time_wall_fp();
frame_buffer.fbprintf("The pattern loop took %.3f ms.\n",
( pattern_loop_end - pattern_loop_start ) * 1000 );

//
{
pVertex* const v0 = new pVertex( -2.5, 0, -3.2, color_purple );
pVertex* const v1 = new pVertex( 0, 5, -5, 0xff00 );
pVertex* const v2 = new pVertex( 1.5, 0.01, -3.2, 0xff );
v0->normal = v1->normal = v2->normal = cross(*v0,*v1,*v2);
vtx_list.push_back( v0 );
vtx_list.push_back( v1 );
vtx_list.push_back( v2 );
}

///
/// Light Location and Lighting Options
///

static bool opt_attenuation = true;
static bool opt_v_to_light = true;
static float opt_light_intensity = 2;
static pCoor light_location(x_shift + ( r - 0.1 ), 0, -3 );

// Adjust lighting options based on user input.
//
switch ( frame_buffer.keyboard_key ) {
case FB_KEY_LEFT: light_location.x -= 0.1; break;
case FB_KEY_RIGHT: light_location.x += 0.1; break;
case FB_KEY_UP: light_location.y += 0.1; break;
case FB_KEY_DOWN: light_location.y -= 0.1; break;
case FB_KEY_PAGE_DOWN: light_location.z += 0.2; break;
case FB_KEY_PAGE_UP: light_location.z -= 0.2; break;
case '-':case '_': opt_light_intensity *= 0.9; break;
case '+':case '=': opt_light_intensity *= 1.1; break;
case 'd': case 'D': opt_attenuation = !opt_attenuation; break;
case 'a': case 'A': opt_v_to_light = !opt_v_to_light; break;
default: break;
}

// User Messages  (Magically inserted into frame buffer.)
//
frame_buffer.fbprintf
("Lighting: Distance - %s,  Angle - %s  ('d' or 'a' to change).\n",
opt_attenuation ? "On" : "Off", opt_v_to_light ? "On" : "Off");
frame_buffer.fbprintf("Arrows, page up/down move light.\n");

// Insert marker (green tetrahedron) to show light location.
//
insert_tetrahedron(vtx_list,light_location,0.05);

///
/// Rendering Pipeline Starts Here
///

// Indicate to frame buffer simulator that code above is part of
// application and that code below is part of rendering pipeline.
//

frame_buffer.render_timing_start();

const int win_width = frame_buffer.get_width();
const int win_height = frame_buffer.get_height();
const int fb_size = win_width * win_height;
int32_t* const f_buffer = frame_buffer.get_buffer();

// Allocate and initialize a z buffer.
// (Note: Allocation only need be performed when size changes.)
//
float* const z_buffer = (float*) malloc( fb_size * sizeof(*z_buffer) );
for ( int i=0; i<fb_size; i++ ) z_buffer[i] = 1;

pMatrix_Translate center_eye(-1,-0.5,-3);

// Preserve aspect ratio when setting projection window height in frustrum.
const float aspect = float(win_width) / win_height;
pMatrix_Frustrum frustrum(1.6,1.6/aspect,1,5000);

pMatrix_Translate center_window(1,1,0);
pMatrix_Scale scale(win_width/2,win_height/2);

pMatrix transform_to_eye = center_eye;
pMatrix transform_to_viewport = scale * center_window * frustrum;

// Compute matrix needed to transform normals.
//
pMatrix normal_to_eye(transform_to_eye);
normal_to_eye.transpose(); normal_to_eye.invert3x3();

///
/// Transform Coordinates and Normals from Object Space to Eye Space
///
for ( pVertex_Iterator ci = vtx_list.begin(); ci < vtx_list.end(); ci++ )
{
pVertex& v = **ci;
v *= transform_to_eye;
v.normal *= normal_to_eye;
v.normal.normalize();
v.homogenize();
}

// Convert light location to object space.
//
pCoor light_location_e = transform_to_eye * light_location;

///
/// Apply Lighting to Vertices
///
for ( pVertex_Iterator ci = vtx_list.begin(); ci < vtx_list.end(); ci++ )
{
pVertex& v = **ci;
const bool opt_no_lighting = v.color & 0x1000000;
if ( opt_no_lighting ) continue;

// Compute vectors from vertex to light and to viewer.
//
pVect v_to_light(v,light_location_e);
pVect v_to_viewer(v,pCoor(0,0,0));

// Distance from vertex to light.
//
const float length = v_to_light.normalize();

// Projections:
//   1: vertex (normal) is facing light (or viewer).
//   0: vertex (normal) is orthogonal (90 degrees) from light.
//  -1: vertex (normal) is facing opposite direction of light.
//
const float dot_v_to_light = dot(v.normal,v_to_light);
const float dot_v_to_viewer = dot(v.normal,v_to_viewer);

// Dimming of light with distance.
//
// "Real" light dims with square of distance.
//
const float attenuation =
!opt_attenuation ? 1.0
: ( 0.5 * opt_light_intensity / ( length*length )
+ opt_light_intensity / length );

// Assume back side (-normal direction) is same color as front.
//
const float v_to_light_scale =
dot_v_to_viewer < 0 ? -dot_v_to_light : dot_v_to_light;

//
const float scale = attenuation
* ( !opt_v_to_light ? 1.0 : v_to_light_scale );

v.red *= scale;
v.green *= scale;
v.blue *= scale;
}

///
/// Transform Coordinates from Eye Space to Window Space
///
for ( pVertex_Iterator ci = vtx_list.begin(); ci < vtx_list.end(); ci++ )
{
pVertex& v = **ci;  // Get reference to current vertex
v *= transform_to_viewport;
v.homogenize();
}

/// Note: Code past this point should be identical to Demo 3.

int p3_vertex_count = 0;
int p3_perimeter_px_count = 0;
int p3_area_px_count = 0;

///
/// Rasterize Primitives
///
for ( pVertex_Iterator ci = vtx_list.begin(); ci < vtx_list.end(); ci += 3 )
{
p3_vertex_count += 3;

pSortVertices sort(ci); // Sort next 3 items in list.
pVertex& c0w = sort;    // Coordinate with smallest y.
pVertex& c1w = sort;
pVertex& c2w = sort;    // Coordinate with largest y.

// Instantiate interpolation objects.
//
// Each object instantiated with two coordinates and a valid
// range of y values.  The object will compute x and y along the
// line connecting those coordinates, skipping y values < 0 or
// >= win_width.
//
// Interpolation objects also interpolate z and color components.
//
pInterpolate interp_02(c0w,c2w,0,win_height-1);
pInterpolate interp_012(c0w,c1w,0,win_height-1);
p3_perimeter_px_count += 2;

// Compute position (index) in frame buffer of first row to be written.
//
int fb_line_idx = interp_02.yi * win_width;

// Outer Loop: Iterate from smallest y to largest y.
//
while ( interp_02.keep_going_y() )
{

// If point c1w reached then switch interp_012 to line
// connecting c1w and c2w.
//
if ( ! interp_012.keep_going_y() )
{
interp_012.set(c1w,c2w,0,win_height-1);
p3_perimeter_px_count++;
}

// Instantiate x-axis interpolation object using the two
// y-axis interpolation objects, interp_02 and interp_012.
// The new object will compute points on the line connecting
// the current position of interp_02 and interp_012.
//
pInterpolate interp_line(interp_02,interp_012,0,win_width-1);
p3_perimeter_px_count++;

// Inner Loop: Iterate along x axis.
//
while ( interp_line.keep_going_x() )
{

const int fb_idx = fb_line_idx + interp_line.xi;

// If z value to be written is smaller (in front of) z value
//
if ( z_buffer[ fb_idx ] > interp_line.z )
{
p3_area_px_count++;
f_buffer[ fb_idx ] = interp_line.color();
z_buffer[ fb_idx ] = interp_line.z;
}

// Tell interpolation object to advance in x direction.
//
}

// Tell interpolation objects to advance in y direction.
//

// Advance the frame buffer index.
//
fb_line_idx += win_width;
}
}

frame_buffer.fbprintf
("Vtx count: %d, scan line endpoints: %d, pixels: %d\n",
p3_vertex_count, p3_perimeter_px_count, p3_area_px_count);

const double tv = 0.00128734;
const double tpri = 0.0000253251;
const double tp = 0.0000489045;

frame_buffer.fbprintf
("Estimated frame time: %.1f vtx + %.1f per + %.f px = %.1f ms\n",
tv * p3_vertex_count, tpri * p3_perimeter_px_count, tp * p3_area_px_count,
tv * p3_vertex_count + tpri * p3_perimeter_px_count
+ tp * p3_area_px_count);

printf
("{ 1, %d, %d, %d},\n",
p3_vertex_count, p3_perimeter_px_count, p3_area_px_count);

// A paint routine is no place for a memory leak!
//
for ( pVertex_Iterator ci = vtx_list.begin(); ci < vtx_list.end(); ci++ )
delete *ci;
free(z_buffer);
}

int
main(int argc, char **argv)
{
pFrame_Buffer frame_buffer(argc,argv);
frame_buffer.show(render_hw1);
return 0;
}
```