Inner Product
§Inner Product: Let V  be a vector space over C. An inner product on V is a complex valued function, <·, ·>: V ´ V ®   C
§ Such that for any x, y, z ÎV and a, bÎC    
§ (i) <x, ay+bz>=a<x,y>+b<x,z>
§ (ii) <x,y>=<y,z>* (complex conjugate)
§ (iii) <x,x> >0 if x¹  0.
§
§Inner product on Cn:
•
•
•
•
•
• x and y are orthogonal if Ð (x,y)= ½p