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Quantum computing and AI
Subhash Kak, Louisiana State University

Every few years, we hear of a new tech-
nology that will revolutionize AI. After
careful reflection, we find that the advance
is within the framework of the Turing
machine model and equivalent, in many
cases, to existing statistical techniques. But
this time, in quantum computing, we seem
to be on the threshold of a real revolution—
a “quantum” leap—because it is a true
frontier beyond classical computing. But
will these possibilities be realized any time
soon?

Classical computers work on classical
logic and can be viewed as an embodiment
of classical physics. Quantum computers,
on the other hand, are based on the super-
positional logic of quantum mechanics,
which is an entirely different paradigm.
Conventional explanation sees conscious-
ness arising as an emergent property of the
classical computations taking place in the
circuits of the brain, but this does not ad-
dress the question of how thoughts and
feelings arise. If brains perform quantum
processing, this might be the secret behind
consciousness. Furthermore, it might ex-
plain several puzzling features of animal
and human intelligence and provide a new
direction to develop AI machines. In this
brief survey, I present the rationale for the
convergence between quantum computing
and AI and discuss prospects for realizing
the technology.

The weirdness of quantum
mechanics

Let me begin with the quantum frame-
work. It is a theory that provides a means
of obtaining information about a system in
the microworld associated with various
attributes (component states). A quantum
state is a linear superposition of its compo-
nent states. Suppose the two component
states are represented by |0> and |1>, which
could be the two spin states of an elemen-
tary particle (up or down), or polarization
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November 1994 saw the near-simultaneous publication of two papers that threw the
notion of computing on its head. On November 11, 1994, a paper by Leonard Adleman
appeared in Science demonstrating that a vial of DNA fragments can serve as a computer for
solving instances of the Hamiltonian path problem. Less than two weeks later, Peter Shor
presented a paper in Santa Fe, New Mexico, at the 35th Annual Symposium on Foundations
of Computer Science, demonstrating how a quantum computer could be used to factor large
numbers in a tractable fashion. Both these publications showed how nontraditional models
of computation had the potential to effectively solve problems previously believed to be
intractable under traditional models of computation. However, the latter work, using a quan-
tum model of computation proposed by Richard Feynmann and others in the early 1980s,
resonated well with AI researchers who had been coming to terms with Roger Penrose’s
1989 book The Emperor’s New Mind. In this book (and its sequel, Shadows of the Mind: A
Search for the Missing Science of Consciousness, which appeared in paperback form only a
month before these papers), Penrose challenges the possibility of achieving AI via traditional
“Turing-equivalent” computation devices, conjecturing that the roots of intelligence can be
traced to macroscopic quantum effects in the brain. These two quantum strands form the
motivation for a small community of researchers exploring the topic of this issue’s “Trends
and Controversies” feature—the potential uses of quantum computing for AI.

Subhash Kak’s leadoff essay provides an excellent overview of the foundations of this area,
explaining, for example, how a quantum computer makes it possible to manipulate an expo-
nential number of states in a search problem in a single clock step. He also discusses the philo-
sophical motivations that have led people to explore the use of quantum computing in AI. 

To the many with the widely held belief that tractable search is a core question in achieving
AI, Tad Hogg’s essay explains how quantum computing can potentially form the basis for
tractable search on what have previously been considered intractable problems. One difficulty is
that the “common” quantum computing approach of amplitude amplification can yield at most a
square-root improvement in an algorithm’s runtime. Hogg proposes mapping techniques com-
monly used in AI to the quantum computing world, specifically by using heuristics that embody
knowledge about the structure of a problem (such as the number of conjuncts satisfied by a truth
assignment for a given satisfiability problem) within the search process. 

Finally, Dan Ventura looks at the mutual benefits received by advances in the use of quan-
tum computing for AI, for both AI researchers as well as those studying quantum computa-
tion. Attempting to apply quantum computing to AI problems might provide the right fodder
for researchers in quantum computing. Similarly, the use of quantum computing might
enable new advances previously thought impossible within the AI community. Ventura also
discusses some of the difficulties that may lie ahead for those hoping to achieve AI through
quantum computing. Particularly important—as anyone who has attempted interdisciplinary
research knows—is the (understandable) gap in motivations, background, and vocabularies
of those working in these two fields. 

We are still quite far from having quantum computers sitting on our desktops running
Unix or Windows. However, as advances in quantum computing continue to be made, it is
nice to know that researchers such as the authors in this issue’s “Trends and Controversies”
might already be coming to an understanding of how to effectively use the results of these
advances. Indeed, their work might itself become responsible for these important advances
in quantum computing as well. 

As a final note, this issue marks the passing of the cartoonist’s pen from Kevin Knight,
who has diligently served in this role for the last four years, to Sally Lee, who is responsible
for the cartoon appearing in this installment. Although we are sorry to see Kevin’s retirement
from this post, we are happy to have such an able successor. Thank you both Kevin and Sally.

—Haym Hirsh



states of a photon (horizontal or
vertical), and so on. Then, the
general form of the superposi-
tion state, |S>, will be

|S> = a |0> + b |1>.

The weights, a and b, are
called probability amplitudes
and are, in general, complex
numbers, subject to the condi-
tion that |a|2 + |b|2 = 1. The mod
squares of the probability ampli-
tudes, |a|2 and |b|2, are the proba-
bilities of obtaining either of the
two component states upon
observation.

The fact that the amplitudes are
complex numbers implies that a
quantum system cannot be effec-
tively simulated by the Monte Carlo method
using random numbers. You cannot run a
physical process if its probability amplitude
is negative or complex!

Apart from this, the counterintuitive
nature of quantum mechanics arises from
the fact that, upon interaction with a mea-
surement apparatus, the linear superposition
quantum state reduces to one of its compo-
nent states with the appropriate probability.
This aspect of quantum mechanics renders
the framework nonlinear—and irreversible
if the time variable is changed in sign.

For decades, philosophers of science have
agonized over the many bizarre implications
of quantum mechanics, such as that an or-
ganism can be both dead and alive before it
is observed (Schrödinger’s cat paradox), the
present can influence the past (Wheeler’s
delayed-choice scenario), effects can propa-
gate instantaneously in apparent violation of
the ceiling of the speed of light (EPR para-
dox), and so on.1

Quantum mechanics’ strange effects arise
because it is so contrary to rules of classical
logic. Nevertheless, we must live by quan-
tum mechanics because it is the most suc-
cessful theory available and because it lets
us understand the microworld—including
chemistry and biology—and devise elec-
tronics and computers.

The power of quantum computing
The dynamics of an isolated quantum

system are governed by the Schrödinger
equation, which can be cast in a form
where the system’s future states are ob-
tained by multiplication by a unitary ma-

trix. The algorithm designer must first find
the unitary matrix for the given computing
problem and then map the matrix into a
sequential product of smaller matrix opera-
tions that can be implemented relatively
easily. The fact that a quantum computa-
tion is nothing more than matrix multipli-
cation of a certain kind should give comfort
to computer scientists—in operational
terms, it is not weird at all!

A quantum computer exploits the inher-
ent parallelism that is provided by the
superposition of the quantum state. A quan-
tum register with n binary cells is able to
store 2n sequences simultaneously, in con-
trast to a classical register, which can store
only 1 of the 2n sequences at a time. By its
ability to simultaneously process very
many problems, the quantum computer
makes it possible to devise new kinds of
algorithms that provide substantial speedup
over classical methods—that speedup, in
principle, could be exponential.2

A basic issue in quantum computing is to
separate the good solution from the many
other data sequences that are simultaneously
present on the quantum register, and this
must be done without looking, because
interaction with the contents of the register
will cause the superposition state to collapse
to one of its components. We achieve this
separation by strengthening the amplitude of
the desired (or marked) state by changing
the difference in the phase angles of the
marked and unmarked states.

Small implementations, at the level of
proof of concept, of quantum computers
have been made based on different tech-

nologies, such as NMR, trapped
ions, quantum dots, and cavity
quantum electrodynamics. Cur-
rent problems with quantum
computer technology include
initialization, decoherence, and
error correction.

The problem of initialization
arises from a fundamental
uncertainty in the phase of the
state. This uncertainty can ren-
der the techniques for strength-
ening of the desired state use-
less. Decoherence is the
inability to completely shield
the quantum system from
unpredictable interaction with
the environment, causing the
state function to lose its super-

position; decoherence times range
from a fraction of a second to a few hun-
dred seconds. Techniques for error correc-
tion of quantum bits have been proposed,
but these work under very artificial and
unrealistic assumptions.3

Quantum computing at the basis of
biological information processing

The case that quantum computing is at
the basis of biological information process-
ing and, consequently, the explanation for
the power of animal intelligence, relies on
the following elements:

• Philosophical. The argument is that, at
the deepest level of description nature, is
quantum-mechanical. The world of
mathematics, as a product of the human
mind, sits on top of the sequence physi-
cal -> chemical -> mental -> mathemati-
cal. If our ideas, with their concomitant
mathematics, can describe the quantum-
mechanical physical reality, it should
only be possible because the brain’s
information processing has a quantum-
mechanical basis. Another version of
this argument is that quantum mechan-
ics as a universal theory should also
apply to information and organization,
so the brain’s information processing
cannot be understood but in quantum-
mechanical terms. Starting on this prob-
lem in the mid-1970s, I have, over the
years, developed a framework for quan-
tum neural computing.4,5

• Neurophysiological. The interior of
living cells is organized around the
cytoskeleton, which is a web of protein
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polymers. The major components of the
cytoskeleton are the microtubules,
which are hollow tubes 25 nm in diame-
ter, consisting of 13 columns of tubulin
dimers arranged in a skewed hexagonal
lattice. Some researchers have argued
that the microtubules support coherent,
macroscopic quantum states. They see
brain processing as a hybrid quantum
and classical computation.6

• Behavioral science. Human and nonhu-
man animal intelligence appears to have
features that lie beyond the capacity of
the most powerful machines. Conceptu-
alization is not unique to humans and
ability to use language is not a precon-
dition to cognition or abstract process-
ing. This processing appears to run
according to a noncomputable program.

Another motivation to study quantum
phenomena in biological information pro-
cessing is the phenomenon of conscious-
ness. Some physicists have argued that
consciousness is a part of the quantum
framework because it is this that causes the
reduction of the state function. More di-
rectly, if there are no grounds for assuming
that consciousness arises just from the
complexity of the neural mechanisms, and
if classical processes cannot explain it,
then it might very well emerge from a non-
classical—quantum—process. It is plausi-
ble that the notion of “self,” which pro-
vides a unity to experience, is a result of
quantum processes.7

Self-organization
We can view animal intelligent behavior

as a continuing self-organization of the
animal to the changing environment. Each
animal is sufficiently intelligent because it
survives in its ecological environment.
Likewise, brains continually go through
self-organization, which is what provides
the animal the ability to respond to novel
situations. Because quantum mechanics is a
framework where the environment naturally
comes into the picture, it defines an appro-
priate basis for the consideration of self-
organization. So, we expect that quantum
computing would help us find a basis for
the development of programs and machines
that have self-organizational ability.

What if quantum computers were
harnessed for AI?

Only toy versions of quantum computers

have been built to date. But it is reasonable
to assume that if they existed they would, by
solving many currently intractable problems
efficiently, bring about a revolution in AI.

Take, for example, the protein-folding
problem, which is important in bioinformat-
ics. Proteins are sequences of a large num-
ber of amino acids. Once a sequence is
established, the protein folds up rapidly into
a highly specific 3D structure that deter-
mines its function in the organism. Like-
wise, a drug’s 3D structure defines its effec-
tiveness. If we could study 3D structures on
a computer, it would save a great deal of the
expense of test-tube experiments.

It has been estimated that a fast com-
puter applying plausible rules for protein
folding would need 10127 years to find the
final folded form for even a very short
sequence of just 100 amino acids. Such a
mathematical formulation of the protein-
folding problem shows that it is NP-com-
plete.8 Yet Nature solves this problem in a
few seconds. Assuming that the basis of
this solution is quantum-mechanical, a
quantum computer should be able to solve
such a problem relatively easily. 

Extremely fast quantum algorithms have
already been proposed for some optimiza-
tion problems. Their potential impact on AI
is enormous. But quantum computing tech-
nology is yet to overcome fundamental
technological hurdles. We cannot yet say
whether it will be a couple of years, or
decades, before the dream of building
quantum computers is fulfilled. It is only

then that we will be able to answer ques-
tions such as whether quantum computers
ultimately lead to conscious machines.
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Quantum search heuristics
Tad Hogg, Xerox Palo Alto Research
Center

In 1994, Peter Shor’s polynomial-time
factoring algorithm1 showed that quantum
computers2 could rapidly solve an impor-
tant problem thought to require exponential
time on our current, “classical” machines.
This algorithm inspired considerable inter-
est in quantum computing, leading to addi-
tional algorithms and, so far, implementa-
tions with a few bits.3

Particularly relevant for artificial intelli-
gence is how well quantum computers per-
form combinatorial searches, such as arise in
scheduling, planning, and theorem proving.
Can quantum computers solve all NP search
problems in polynomial time? As with clas-
sical computers, the answer to this question
isn’t known, although it appears to be no.

Lacking a definitive answer, a practical
fallback is to ask how well quantum com-
puters perform for typical searches encoun-
tered in practice. Heuristics often solve
them much faster than worst-case analyses
suggest, motivating the study of heuristic
quantum algorithms.

Searching with quantum computers
Instead of a single value for each bit at a

time, quantum computers operate simulta-
neously on both values. With this quantum
parallelism, a machine with just n bits man-
ipulates 2n states in parallel, just as if it were
2n copies of an n-bit classical machine, each
running the same program on different data.

However, like the proverbial watched pot
that never boils, quantum parallelism oper-
ates only while the computer isn’t observed.
Observation gives each bit a specific value,
0 or 1. The probability an observation pro-
duces a particular state—that is, specific
values for the n bits—is determined by a
complex number, called an amplitude, asso-
ciated with the state.

At first sight, quantum parallelism seems
ideally suited for NP search problems,
which have rapid tests of whether a given
state is a solution. Quantum parallelism can
test all states with about as many computa-
tional operations as a classical machine
uses to test just one. Unfortunately, per-
forming the test doesn’t change the ampli-
tudes: an observation made afterwards has
no better chance of producing a solution
than before. Instead, algorithms must not
only test the states but also change ampli-

tudes based on the results.
Amplitudes change through interference,4

conceptually the same process as interfering
light or sound waves. For quantum search,
interference arises because the final ampli-
tude for a given state is the sum of contribu-
tions from all search paths leading to that
state. With the ingredients of parallelism,
observation, and interference, the algorithm
designer must arrange changes in ampli-
tudes along each path so those leading to
solutions combine mostly in-phase, giving
large amplitude, while others combine with
different phases, leading to significant
cancellation.

Quantum search algorithms typically
have the following form:

1. Initialize the computer—for example,
give all states the same amplitude. 

2. Without observing the computer, repeat
for a specified number of steps: (a)
compute properties of all search states
in parallel (for example, whether the
state is a solution); (b) use these proper-
ties to change amplitudes through
interference.

3. Observe the computer, producing a sin-
gle final state.

If the final state isn’t a solution, the entire
algorithm is repeated. Performance is com-
monly measured by the number of steps, or
the times the state properties are evaluated,
including those due to any repetitions, be-
fore a solution is found. This measure cor-
responds to the number of states examined
or nodes expanded in a search tree by clas-
sical methods. The actual time for each
step depends on implementation details of

future quantum computers, such as their
clock speeds.

One goal of these algorithms is rapid
search. However, heuristics are also useful
if they simplify hardware implementations.
Maintaining quantum parallelism over
many steps is difficult: environmental dis-
turbances eventually destroy the parallel-
ism just as when the machine is observed.
Novel error correction methods can help,5

but a heuristic that significantly increases
solution amplitudes with only a few steps
of parallelism, even if at the expense of
more repetitions of the algorithm, will be
easier to implement than one using many
more parallel steps but fewer repetitions.

Amplifying amplitude in solutions
Lov Grover introduced the amplitude

amplification quantum search technique,6

which was subsequently generalized.7 It
uses only one property of search states,
whether they are solutions, to improve
probabilistic classical methods, such as
heuristic repair.8 Typically, such methods
perform a series of trials until a solution is
found. Each trial starts from a randomly
selected initial state and then changes the
state until it either finds a solution or
reaches a prespecified limit on the number
of changes. In the latter case, another trial
is performed from a new initial state. Sup-
pose a single trial succeeds with probabil-
ity P. Classically, the search requires 1/P
trials, on average, to find a solution. Per-
forming the trials on a quantum computer,
amplitude amplification needs only about
1/√P trials. Thus, for heuristics whose
search cost is due mainly to the many repe-
titions, quantum machines give a square-
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root improvement in performance—that is,
if the classical search cost scales as ean,
where n is the size of the problem and a is a
constant, the corresponding quantum
method scales as ean/2.

The simplest example is based on the
random generate-and-test procedure where
each trial is just a random guess, succeeding
with probability P equal to the fraction of
search states that are solutions. Figure 1
shows amplitude amplification applied to
this procedure for a randomly generated 3-
SAT problem with 20 variables and 80
clauses. It has 24 solutions, so P = 24/220.
The figure shows the probability P that halt-
ing the computation at each step would give
a state with the number of conflicts ranging
from 0 (a solution) to 15. The values for step
0 just show the chance of getting each num-
ber of conflicts by random selection. The
small chance of finding states with more
than 15 conflicts isn’t included in the figure.

In this example, amplitude amplification
increases the likelihood of finding a solu-
tion, reaching probability P = 1 in 164
steps, compared to an average classical
cost of 1/P = 43,691 steps. Continuing the
quantum algorithm beyond 164 steps
reduces the likelihood of finding a solution.
Thus determining when to halt the quan-
tum computation, which can’t rely on
observation, is nontrivial. Instead, identify-
ing the correct number of steps requires an
estimate of the number of solutions or a
few repetitions with different guesses.9

Amplitude amplification offers wide
applicability, has a well-understood theory
of its behavior, and allows quantum ma-
chines to piggyback on improvements in
classical heuristics. It has already been

implemented for a two-variable problem
instance.3 On the other hand, this tech-
nique does not directly apply to search
methods that spend most of their time in
preprocessing, such as for creating tables
of inconsistent states or learning heuristic
parameters, after which a solution is found
rapidly. During the lengthy preprocessing,
there is no chance of producing a solution
and hence no opportunity for amplitude
amplification. Even when it does apply,
this square-root improvement is the best
possible for algorithms based only on
whether a state is a solution.10 Moreover,
by requiring parallelism maintained over
exponentially many steps, amplitude
amplification poses challenging require-
ments for the hardware. Further improve-
ments, including any hope of finding poly-
nomial-time algorithms for some types of
problems, at least on average, require
greater use of problem structure.

Shifting amplitude toward
solutions

Potentially more powerful, but less gen-
eral, quantum search methods change
amplitudes using more information than just
whether states are solutions. As with classi-
cal heuristics, such information consists of
readily computed properties that, at least
roughly, indicate how far a state is from a
solution. Examples for constraint satisfac-
tion include the number of conflicts in a
state, how that number compares to those in
its neighbors, and conflicts in partial assign-
ments, as used in backtracking searches.
Quantum parallelism readily evaluates such
properties for all states. Using such informa-
tion is effective for some cases,11 although

the search cost remains exponential for hard
search problems near phase transitions iden-
tified by Peter Cheeseman, Bob Kanefsky,
and William Taylor12 and subsequently stud-
ied extensively.13

As an example of using more problem
structure, Figure 2 shows the behavior of a
heuristic I’m developing, for the same 3-
SAT instance used in Figure 1. This heuris-
tic uses exactly n parallel steps for satisfia-
bility problems with n variables. It exploits
the correlation between number of conflicts
and distance to a solution for random 3-SAT
problems. That is, states with relatively few
conflicts tend to have more assigned values
in common with a solution than states with
many conflicts. This correlation is not per-
fect, of course, often leading classical
searches to local minima or plateaus.14 By
simultaneously following all search paths,
such states aren’t difficulties for quantum
search; instead, imperfect correlations lead
to some incorrect amplitude changes. Fur-
thermore, individual problem instances,
such as the example used in the figures, dif-
fer somewhat from the average assumed by
the heuristic, giving rise to additional errors.
Thus contributions don’t combine exactly
in-phase for solutions. This means the
heuristics, which initially increase the prob-
ability of finding a solution much more
rapidly than amplitude amplification, are
limited in how large the probability
becomes. This limit, in turn, requires repeat-
ing the algorithm until a solution is found. A
hybrid approach can reduce these repeti-
tions: the quantum heuristic can be com-
bined with amplitude amplification to gain a
further square-root improvement, provided
the hardware can maintain parallelism
throughout the whole process.

The heuristic shown in Figure 2 also
shifts the whole probability distribution
toward states with fewer conflicts in each
step, unlike amplitude amplification. Thus,
even if a solution isn’t found, the result is
likely to be a state with only a few con-
flicts, making the heuristic useful for opti-
mization problems.

Developing search heuristics
Quantum computers offer many new

opportunities for using information available
in combinatorial searches. For some prob-
lems, quantum analogs of classical methods
will be useful. Other problems might allow
quantum parallelism and interference to
combine information diffusely scattered
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Figure 2. An example of amplitude shifting. Colors indicate the typical amplitude phases associated with each number
of conflicts. Where these phases vary considerably due to incorrect choices, the colors are faded. Most of this variation
occurs where amplitudes are very small, limiting their effect on the overall performance.



throughout a search space that can’t be effi-
ciently used by any classical method. This
observation raises a converse problem as
well: some applications, such as cryptogra-
phy, rely on the ability to easily create hard
instances of search problems. Such applica-
tions now have a new challenge: identify
instances likely to remain hard even for
quantum computers because they have only
very weak correlations between easily com-
putable properties of search states and their
distances to solutions.

How much quantum heuristics can im-
prove on the square-root speedup of ampli-
tude amplification, especially for typical
rather than worst-case problems, remains
an open question. Addressing this question
requires developing new heuristics and
evaluating their performance. As with
many classical heuristics, extensive use of
problem structure precludes exact theoreti-
cal analysis. The alternative of empirical
evaluation is currently limited to small
problems for quantum algorithms since
their simulation on classical machines
requires an exponential increase in time
and memory. A third approach, using regu-
larities in classes of search problems13 to
estimate performance,15 might address
these difficulties.

We can expect continued exploration of
quantum heuristics in the next few years.
Though unlikely to work well in all cases,
they may greatly reduce, if not eliminate,
the exponential growth in search cost. AI
researchers with expertise in the structure
of combinatorial search and heuristics can
play an important role in this work. Pro-
vided the substantial technical challenges
of implementing quantum machines with
many bits can be overcome, such heuristics
will be key to realizing the benefit of quan-
tum computers for AI applications. (A
good source for new results in quantum
computation is the Los Alamos quantum
physics preprint library, available at
http://xxx.lanl.gov/archive/quant-ph.)
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Quantum computational intelli-
gence: answers and questions
Dan Ventura, fonix Corp.

In 1994, Peter Shor’s discovery of an
algorithm for factoring large numbers in
polynomial time using a quantum com-
puter transformed the field of quantum
computation from a theoretical curiosity to
a potential technology of international
interest.1 The appeal of a computational
paradigm with a potentially exponential
increase in capacity over classical ap-
proaches dramatically increased research
in the field. Interestingly, however, discov-
eries of other useful quantum algorithms
have come few and far between. The rami-
fications of a quantum factoring algorithm
on cryptography not withstanding, it is
beginning to appear as if quantum compu-
tation is an answer looking for a question.

The field of computational intelligence,
including the subfields of machine learn-
ing, neural networks, computational-learn-
ing theory, evolutionary computation, and
symbolic AI, seeks to produce algorithms
for solving problems that are intractable or
have no closed-form solution or are in
some other way unsuitable for traditional
computational methods. Many successful
applications of such techniques exist; how-
ever, due to the nature of the problems to
which these technologies are applied, such
successes are more often the exception than
the rule. In other words, we might say that
computational intelligence is a question
looking for an answer.

Combining the fields
Perhaps the two fields can be combined

to the advantage of both. Computational
intelligence seeks to extend the capabilities
of classical computers. As quantum com-
putation begins to mature, is it not natural
to attempt to extend its capabilities in a
similar fashion, by developing a field of
quantum computational intelligence? Con-
versely, perhaps developing quantum com-
putational intelligence is critical to quan-
tum computation’s continued development
as a computational science. (It is still very
much a developing and valuable science
from a physical standpoint, even if no other
algorithmic developments occur.)

Quantum computation is probabilistic in
nature and is computation based upon the
time evolution of a physical system. Fur-
thermore, this physical system obeys the
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laws of quantum mechanics, which can be
extremely counterintuitive. Two important
and unusually powerful ideas unique to
quantum computation (as opposed to the
classical sort) are quantum parallelism and
entanglement. Quantum parallelism refers
to the fact that a quantum system exists as a
superposition of many states at once, and
therefore computation involving the system
is simultaneously applied to all states rep-
resented in the quantum system. Entangle-
ment describes the nonclassical correla-
tions that can exist between different
quantum systems through which the sys-
tem can be said to communicate. These
concepts embody the unique capability that
quantum computation has to perform an
exponential amount of information pro-
cessing within a polynomial amount of
space and time.

Now, consider, for what is this type of
computation really suited? We are still try-
ing to figure this out. Quantum computa-
tion is very counterintuitive, even unset-
tling, from a physical standpoint; from a
computational standpoint, it is not so much
unsettling as it is just extremely different. I
do not believe anyone really has a handle
yet on how to think algorithmically in this
way, and so I suspect that we have yet to
produce the most important developments
in the field. Shor’s factoring algorithm is
ingenious, and it poses a very real chal-
lenge to current standards in cryptography.
However, one can always come up with
codes that are not based upon the difficulty
of factorization. In fact, quantum cryptog-
raphy—the study of cryptographic systems
based on quantum principles—is a bur-
geoning field in its own right. Also, there is
no proof that what Shor did can’t be done
classically (although at the moment we
suspect that it cannot). So, then, what of
quantum computation?

Searching quantum phone books
Search is another problem for which

interesting quantum computational algo-
rithms have been discovered. For example,
Lov Grover produced an algorithm for
searching an unordered list of length N in
O(√N) time2 whereas classically the same
task requires O(N) time. In other words, a
quantum computer with a quantum phone
book can find the name associated with a
particular phone number significantly
faster than a classical computer with a clas-
sical phone book can. As impressive an

achievement as Shor’s algorithm is, I will
argue that Grover’s quantum search is even
more important because it is more purely
quantum in nature and because it is prov-
ably superclassical. Furthermore, I believe
it is a better indicator of the future of quan-
tum computation.

Of course, search is an extremely com-
mon theme in traditional AI, and many
approaches to computational intelligence
suffer from exponential explosions in com-
putational requirements. Quantum compu-
tation naturally processes exponential
amounts of information. Computational
intelligence and quantum computation are
both forms of computation that can be
described as fuzzy, probabilistic, inexact,
and nondeterministic, for example. Despite
Shor’s remarkable success, quantum com-
putation appears, in general, to be much
more amenable to computational intelli-
gence-type problems rather than to tradi-
tional problems requiring exact, determin-
istic solutions.

In fact, this wedding of quantum compu-
tation and computational intelligence is
beginning to bear fruit. Results have been
published on 

• quantum associative memories with
storage capacities exponentially greater
than their classical counterparts,3

• fascinating mathematical analogies
between the quantum and neural net-
work theories,4

• quantum computation for evaluating
decision trees,5 

• the construction of quantum Bayesian
networks,6

• quantum extensions to genetic
algorithms,7

• the implementation of a neural network
using quantum dots,8

• a quantum computational learning algo-
rithm for learning DNF formula,9 and 

• the implementation of competitive
learning in a quantum system.10

Research such as this hints at the enormous
possibility that a study of quantum compu-
tational intelligence possesses. However,
the field, as such, is still in its infancy, and
really the work cited here, while on the
right track, nibbles more around the edges
than it does embrace the full potential of
this emerging science.

And, in fact, there exists an inherent dif-
ficulty in the endeavor of communicating

across fields with radically different agen-
das, viewpoints, strategies, and no-
menclatures. For example, to someone in
computational intelligence who is familiar
with inductive learning, the value of an
algorithm for encoding a set of examples in
a quantum state is fundamentally obvious.
For a physicist, on the other hand, such an
algorithm might seem esoteric at best. The
situation gets even more complicated when
we consider the fact that computational
intelligence itself is extremely interdiscipli-
nary in nature, consisting of ideas from
computer science, mathematics, psychol-
ogy, biology, and statistics, to name a few.
Thus, progress in such an eclectic field as
quantum computational intelligence is
bound to be slow, especially at first.

A difficult honeymoon
This inertial effect is as easy to understand

as it is difficult to overcome—the two fields
of quantum mechanics and computational
intelligence, which must be reconciled to
produce useful quantum computational intel-
ligence, are disparate almost to the extreme.
One can almost be characterized as rigor for
the sake of rigor (although physicists will
take offense at this), while the other has pros-
pered almost exclusively on empirical suc-
cess (and computational intelligence practi-
tioners will take offense at this). Less
acerbically, we might say that empirical evi-
dence without a theoretical basis is as terrible
for a physicist as is a theoretical basis with-
out empirical usefulness for a practitioner of
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computational intelligence.
Although these generalizations are exag-

gerations, they do help emphasize the diffi-
culty in producing interesting results as a
union of the two sciences. Physics demands
rigor and theoretical correctness. Computa-
tional intelligence demands practical appli-
cation and empirical benefit. While these two
approaches are hardly mutually exclusive,
they are rarely considered together even
within a single discipline, and the situation is
exacerbated by the disparity between the two
fields now attempting to unify. The difficulty
is all the greater because, as is usually the
case across disciplines, completely different
languages are spoken and results are often
needlessly reproduced for lack of sufficient
communication.

We are just beginning to glimpse what
can be done with quantum computation
and so too with quantum computational
intelligence. The kinds of problems to
which computational intelligence are usu-
ally applied are often exponential in nature.
Quantum computation performs an expo-
nential amount of information processing

in polynomial space and time, but most of
this is usually unavailable to us. The trick is
figuring out for what kinds of problems we
can extract from the quantum computer
something more than we could from a clas-
sical one. As we learn better how to do that,
the field of quantum computational intelli-
gence will become both the question to the
answer and the answer to the question.
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Intelligent Integration and Use of
Large Test, Image, Video, and Audio

This special track will describe current research in, and potential contributions of,
intelligent, integrated systems that use text, image, video, and audio (TIVA) sources.
Articles will deal with two aspects of the exploitation of these sources: What intelligent
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smarter programs?

Knowledge Management and the
Internet

Knowledge management involves explicit and persistent representation of an
organization’s knowledge, to improve the organization’s activities. When this
knowledge is distributed among several experts and documents located all over the
world, the Internet or an intranet and World Wide Web techniques can be 
the means for its acquisition, modeling, and management.
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