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Abstract

We summarize the object-based virtualization
model that we have been developing for the past
decade, and demonstrate how it enables auto-
matic optimizations, especially at runtime. The
parallel programming paradigm represented by
the virtualization model has been implemented
in the Charm++ and AMPI libraries. In this
paradigm, the programmer specifies their paral-
lel application as a collection of interacting enti-
ties, without any reference to processors. The
runtime system is free to map these entities
to processors, and migrate them at runtime as
needed. This separation of concerns enables sev-
eral runtime optimizations, involving message-
driven execution, automatic load balancing and
communication patterns. A recently developed
component model is also shown to create new
opportunities for runtime optimizations.

1 Introduction

Developing complex parallel applications that
run efficiently on large parallel machines is dif-
ficult because the programmer has to handle
many interrelated issues. Two issues that are
of interest here are the specification of the par-

allel algorithm, and its efficient parallel imple-
mentation. Most current parallel programming
models require the programmer to specify both
of these together, leading to complex, unwieldy
programs. For example, it is not enough to spec-
ify parallel loops in a shared memory program;
one also has to privatize variables, split locks,
make artificial loop transforms, etc. to improve
efficiency. In MPI, in addition to specifying the
algorithm in terms of processes and when and
what data they communicate, the programmer
is forced to also use different variants of send
and receive calls, and move sends and receives
up and down in the program, to improve effi-
ciency. Further, even when a natural decompo-
sition for a parallel algorithm is available (such
as a spatial grid of cells, or oct-trees) an MPI
programmer is typically required to break the
problem into one piece for each available proces-
sor, leading to awkward decomposition schemes,
and/or unnecessary restrictions on the number
of usable processors (e.g., a cube, or a power of
two, or both).

The methodology we have been been pursuing
for the past decade [4, 6, 3, 11] is to separate de-
composition (parallelization) from assignment of
work. Decomposition cuts the work to be done
into parallel parts, called chunks, objects, enti-
ties, threads, virtual processors, and so on. As-
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signment is the mapping of work to processors,
and the sequencing of work on each processor.

We require that the programmer only spec-
ify the problem decomposition, while having the
runtime system automatically manage work as-
signment. In this model, the programmer spec-
ifies the communication only by naming the
chunks, and not the processors. This gives the
runtime system the freedom to move the chunks
among processors as it sees fit.

This approach leads to an efficient division of
labor between the system and the programmer.
It also creates opportunities for automatically
optimizing performance, especially at runtime.
In this paper, we will describe what these oppor-
tunities are, and what we have done to harness
them. Several production quality applications
have been developed using this approach, with
unprecedented speedups achieved in many cases.
These applications will be used to illustrate the
use of our runtime optimizations.

In the next section, we describe the model fur-
ther, and two of its realizations, in Charm++
and AMPI. Section 3 identifies optimization op-
portunities created by the model and demon-
strates optimization techniques developed and in
development.

How can we go to a higher level programming
paradigm from the virtualization model? We
have been exploring two orthogonal approaches:
parallel components and domain-specific frame-
works. They both increase the degree of reuse of
parallel software modules in their own ways. Sec-
tion 4 describes the component model that is fa-
cilitated by the virtualization paradigm, and the
optimizations enabled by it. With this, each par-
allel component module can be reused in a vari-
ety of contexts, unchanged, because the code for
“connecting” components together is taken out
of the component itself. The second approach

of domain-specific non-intrusive parallel frame-
works is summarized in section 5. The conclu-
sion forms section 6.

2 Virtualization

In the following sections, we present two con-
crete implementations of the virtualization idea:
Charm++ and AMPI.

2.1 Charm++

Charm++[4, 5, 9] is an object-oriented parallel
language that provides remote method invoca-
tion for C++. Charm++’s basic, programmer-
visible unit of computation is a C++ class, not
a processor; this is a significant difference from
MPI. Charm++ employs the virtualization con-
cepts presented in this paper by allowing a pro-
cessor to host many independent parallel objects.

The Charm++ execution model is message-
driven—that is, computations are triggered by
message arrivals. A very simple scheduler picks
the next available message and uses it to invoke
a method on the appropriate object. From an
object’s point of view, an incoming remotely-
triggered method invocation looks exactly the
same as an ordinary local method invocation.

Outgoing messages are sent via “communica-
tions proxy” objects. To send a message to an
instance of a user-defined class that lives on an-
other processor, one invokes a method on a small
“proxy” instance. The proxy’s methods simply
package up the parameters and send them off to
the real object. Charm++ generates the C++
code for a proxy class automatically, based on a
description of the real class’s remotely accessible
methods and parameters.
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Thus far, Charm++ is quite similar to
CORBA or Java RMI. However, Charm++’s re-
mote method invocation is asynchronous, mak-
ing ”send a message” and ”invoke a method”
essentially equivalent operations. In addition,
Charm++ aims for high performance, and typ-
ically only imposes a few microseconds of over-
head on native MPI communication.

In Charm++, a parallel object can also mi-
grate from one processor to another under ei-
ther direct application or run time system con-
trol, allowing automatic, dynamic, application-
independent load balancing as described in Sec-
tion 3.5. Parallel objects still receive messages
properly and participate in collective communi-
cation even when migrations are occurring[11].

Charm++ has been used as a foundation for
several real applications, including the scalable
molecular dynamics program NAMD[12] and the
Charm++ FEM Framework[1].

2.2 AMPI

Adaptive MPI, or AMPI[3], is a virtualized im-
plementation of MPI in which several MPI pro-
cesses can efficiently share a single processor.
This virtualization is achieved by making each
traditional MPI process a Charm++ migratable
“user-level” thread, which can be thought of as
a virtual processor. Unlike traditional threads,
which are created and switched by the opera-
tion system kernel, user-level threads are cre-
ated and switched by ordinary user code, which
makes them very efficient—the user-level thread
context switch time on modern machines is un-
der a microsecond. Since Charm++’s user-level
threads are migratable, AMPI processes too be
migrated like any other Charm++ object. Be-
cause there are several threads per processor,
AMPI enjoys all the benefits of virtualization.

MPI programs that use global variables in a
non-threadsafe manner cannot immediately be
run under AMPI. The global variables must
be privatized, either manually or via a special
source-to-source translator.

Because the processes of an AMPI program
are virtualized, AMPI can also be used to al-
low several different MPI programs to efficiently
share a single physical processor. Different MPI
programs can communicate using a generaliza-
tion of the MPI COMM WORLD communica-
tor called MPI COMM UNIVERSE. AMPI also
uses the same virtualization facilities used for mi-
gration to allow checkpointing, which is seen as
a kind of migration to disk.

3 Virtualization Optimizations

3.1 Message Driven Execution

Message-driven execution, the parallel counter-
part to data-driven execution, is based on the
very simple, almost tautological idea that a
processor should work on the currently avail-
able data. Because the programmer cannot and
should not know the exact order in which mes-
sages will arrive at a processor, the program can-
not and should not have the exact sequence of
message arrivals encoded in it. Instead, the run-
time system maintains a very simple scheduler
that reads each incoming message from the net-
work, and passes the message on to the appro-
priate part of the program.

For a toy example, a small sequence of exact
MPI source/tag match receive calls can be made
message-driven by replacing them with a “wild-
card receive” followed by a switch statement. By
not imposing an artificial order on the incoming
messages, we can process the messages in the or-
der they arrive, maximizing efficiency.
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But for a complex, multi-module program
written by independent developers, many differ-
ent kinds of messages might arrive, so the switch
statement following a wildcard receive can be-
come an unmaintainable mess. For maintainabil-
ity, some sort of abstraction, like tag registration
on program startup, must be imposed. Thus a
pursuit of efficiency (processing messages in the
order they arrive) and maintainability (avoiding
one giant switch statement) in parallel program-
ming inevitably leads to a full-fledged message-
driven execution support system. Like the eye in
evolutionary biology, the idea of message-driven
execution has likely independently evolved from
scratch several times.

3.1.1 Promoting Modular Design

Consider two parallel libraries, A and B, each
of which run on all the available processors. If
A makes a blocking receive call while running, a
common approach in MPI, then B will be unable
to use the processor. But if B does not depend
on A, this is wasteful– in a message-driven sys-
tem, B can run while A is waiting for data, and
vice versa. As shown in Figure 1, interleaved
execution can be much more efficient than ordi-
nary, blocking execution.

Without a message-driven system, it is still
possible to achieve interleaved execution, but
only if the programmers responsible for A and B
were aware of the problem and manually inserted
calls to each other’s libraries. But this solution
introduces unnecessary coupling between A and
B, prevents the operation of A without B and
vice versa, precludes the addition of some new
library C, and still does not respond to the ac-
tual message delivery at runtime. By contrast, a
message-driven system naturally, automatically
interleaves any number of components in a re-

(a)

(b)

A
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B time

Figure 1: If two parallel libraries, A and B, ex-
ecute one after the other, as in (a), the libraries
idle times are not hidden. Interleaved execution,
as in (b), is more efficient and happens automat-
ically in a data-driven system.

sponsive manner.

3.1.2 Communication/Computation
Overlap

In the previous section, we saw how message-
driven execution allowed two parallel libraries A
and B to alternate their use of the CPU, improv-
ing utilization and hiding network latency. The
same overlapping occurs anytime several parallel
objects share a single processor—even if the all
the objects are of the same type. This is one rea-
son why we encourage the use of more parallel
objects than processors.

Another major benefit of having several par-
allel objects per processor is a form of commu-
nication pipelining that occurs. Figure 2 shows
how splitting a computation into several pieces
decreases the apparent network latency and im-
proves overall performance.

3.2 Out-of-core execution

Parallel applications often have large memory re-
quirements. In cases where the memory required
to model the particular application is larger than
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Figure 2: Coarse-grain computations lead to
large communication latencies, as shown in the
two-processor utilization diagram in part (a).
Fine-grain computations, as in (b), allow com-
munication to be pipelined, increasing processor
utilization and decreasing the impact of network
latency on performance.

the available memory, traditional virtual mem-
ory works by swapping parts of the application
to disk. Because swapping is done on a page-
by-page basis, and because there is no way to
predict the next page that will be needed, tra-
ditional virtual memory has a substantial per-
formance cost. Prefetching is frequently used
to hide latency and hence improve the perfor-
mance of memory systems. Virtualized paral-
lel programs provide an excellent opportunity to
perform intelligent prefetching, because in this
context some knowledge of the future is actually
available.

In a data-driven system, whenever a mes-
sage arrives, it is inserted in the scheduler’s
queue. The scheduler retrieves messages from
the queue and processes them. The scheduler’s
queue, then, essentially lists the objects that are
about to run. Prefetching based on the mes-
sage queue has proven to dramatically improve
performance[15].

The actual prefetching can be preformed by
having a special “victim” thread touch the mem-
ory of each soon-to-be-executed object, taking a

page fault if the object is not in memory; the
ordinary worker threads then never experience
page faults. Alternatively, objects can be ex-
plicitly written to and read from disk, which
avoids any dependence on operating system vir-
tual memory.

3.3 Automatic Checkpointing

Checkpointing a Charm++ program involves
saving the state of all of the programs’ objects
to disk, which can be viewed as migrating the
objects to disk instead of to another processor.
That is, checkpointing can be implemented as a
special case of migration, and the same migra-
tion support can be used to serialize an object
to disk.

If some of the processors in the system fail
while the program is executing, the program can
resume execution from its last checkpoint on the
processors in the system that are still working.
Objects that were on a failed processor will re-
sume their execution on another functioning pro-
cessor. A prototype checkpointing facility was
implemented for Charm++ [13], this work in-
cluded the ability to restore a checkpoint on a
different machine architecture.

3.4 Principle of Persistence

Parallel applications written using the Charm
model often exhibit the principle of persistence:
the communication patterns and computational
loads of the objects tend to persist over time.
This can be thought of as the parallel analog of
the principle of locality, the heuristic on which
the memory hierarchy is based. The principle
of persistence holds in most adaptive and dy-
namic applications as well, because changes in
these patterns either (a) are small, slow and
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continuous (as in molecular dynamics), or (b)
large, but infrequent (as in adaptive refinements
in AMR). When the principle holds, several run-
time optimizations are enabled, such as measure-
ment based load balancing, and communication
libraries that learn and adapt to evolving com-
munication patterns. Some of the subsections
below illustrate the exploitation of this princi-
ple.

3.5 Object Migration and Automatic
Load Balancing

Charm++ and AMPI support object and thread
migration, which can be used for a number of
purposes. One of the most important is load
balancing—to decrease the amount of work a
processor has to do, we need only migrate a
few of its objects away. Because processors are
programmer-transparent, work migration does
not affect the running computation.

Charm++ includes a load balancing
framework[8], which monitors the compute
load and communication patterns for each
running object. A pluggable “strategy” module
uses this information to decide which objects to
migrate, and where. Different strategies take
into account different factors—some attempt
to equalize the compute load, some minimize
the number of migrations, some optimize object
communication, and some do all three.

In the following sections, we describe some
other uses of object migration.

3.5.1 Flexible use of desktop machines

Desktop workstations present a large, largely un-
tapped parallel computer available to everyone.
Inexpensive commodity hardware sits idle much
of the day, and almost completely idle at night.

Of the several problems with using desktop ma-
chines, one of the more difficult is that the real
users occasionally want to use the machine them-
selves.

Removing one machine represents only a mi-
nor drop in the total computational power, but
if not properly handled the entire computation
could stall waiting for data from that machine.
However, migration allows the objects on that
machine to be moved elsewhere, which allows the
computation to proceed.

3.5.2 Shrinking and Expanding the Set
of processors

For timeshared parallel machines, migration al-
lows an adaptive job scheduler to be built that
allows jobs to change the number of processors
they use at runtime. This “shrink/expand” ca-
pability has been demonstrated to improve sys-
tem utilization and the average response time of
the jobs[10].

With adaptive job scheduling, when a job en-
ters the system it specifies the minimum number
of processors (typically from memory usage con-
siderations) and maximum number of processors
(typically from scalability considerations) that
the job can use. A fair adaptive job scheduler
will first allocate all jobs their minimum num-
ber of processors, then allocate any remaining
processors among the jobs. If a job cannot be
allocated its minimum number of processors, or
if another job has higher priority, the leftover job
will be put in a wait queue. When a job finishes
running, the scheduler reanalyzes the distribu-
tion of processors and some jobs may shrink or
expand.
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3.6 Communication Optimization

With processor speeds rising faster than com-
munication latency is dropping, communication
optimizations are becoming crucial to high per-
formance. Though this has been an active area
of research over the past decade, the main em-
phasis of this research has been on processor to
processor communication optimizations. These
communication calls tend to be synchronous and
the aim is to reduce the total time of the commu-
nication operation—for example, there has been
much work on improving broadcasts, reductions,
and all to all personalized communication.

In a virtualized program, communication op-
erations happen at the object level. This
means communication operations should be
asynchronous, with the aim of minimizing the
time the processor spends on the operation to al-
low another object to run. Since many fast paral-
lel machines have communication co-processors,
the main processor should have as little work to
do in communication as possible.

In a fully virtualized scenario thousands of ob-
jects may reside on one processor. Grouping
messages these objects send to the same proces-
sor would save on message startup costs, and
could improve system performance. However,
grouping messages also affects the pipelining of
computation and communication, so there is a
trade-off.

Grouping messages could also improve the
performance of collective communication oper-
ations like all to all personalized sends. The di-
rect implementation of this operation, where ev-
ery object sends to every other object, leads to
heavy network contention which can make this
operation costly and not scalable. With message
combining, all the objects on a processor send a
combined message to a subset of their destina-

tion processors, from where they are routed to
their final destinations. For example, in a 2D
mesh virtual topology (with

√
P ×

√
P proces-

sors) each processor sends
√
P combined mes-

sages (each consisting of
√
P individual mes-

sages) to the processors in its column in the
2D mesh. On receiving messages from all the
processors in its column, each processor extracts
and combines messages destined to each proces-
sor in its row and sends it as one message. Other
topologies like 3D mesh and hypercube can also
be imposed, although the best strategy depends
on the application.

In general, virtualization gives the runtime
system an opportunity to collect performance
data on the objects, and then to choose the best
communication method at runtime. Virtualized
communication optimizations also have to han-
dle streaming and aperiodic messages. These
messages are not cyclic and may not appear at
regular intervals of time.

Charm++ already provides efficient imple-
mentations of per-object broadcasts and reduc-
tions. We are currently developing more ad-
vanced communication optimizations, and more
importantly the methods for choosing the appro-
priate optimization for a particular application.

4 Components: Charisma

Developing large scale parallel applications re-
quires integration of independent software mod-
ules, each perhaps employing a different set of
parallel libraries. Such a coupling is often as-
sociated with high communication costs that
might hamper the scalability of the program. In-
process1 components [14] eliminate much of the

1Library objects running within the same process as
its client.
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inefficiency of languages like CORBA; do not re-
quire the a serialized data exchange; and can be
made only slightly more expensive than a proce-
dure call.

We have developed a general purpose compo-
nent architecture, Charisma, for parallel applica-
tions with in-process components [2]. Charisma
is built on Charm++, which provides a com-
mon language runtime and allows an applica-
tion to have multiple in-process components.
The Charisma interface model, based on data-
driven control transfer, allows components to ac-
cess other components’ functionality in a uni-
form manner.

In this interface model, each component de-
scribes the output data it publishes, and the in-
put data it accepts on a set of named and typed
“ports.” A component’s input arrives via a set
of input ports. The data a component produces
is published on its output ports. The connection
between input ports and output ports is kept
outside of either component’s code, in a sepa-
rate connection specification.

In AMPI, input and output ports are simply
special, additional MPI communicators, and the
usual range of MPI communication can be used
to receive data from input ports and send data
to output ports. In Charm++, input ports are
ordinary methods with a special tag, and output
ports are attached to a special kind of object.

With ports, individual component codes can
be considered in isolation, developed more easily,
and re-used in disparate contexts. Since the con-
nection specification for an application is all in
one place, even dramatic connection rearrange-
ments can be made from one centralized loca-
tion, rather than having to edit dozens of indi-
vidual codes.

5 Domain-Specific Frameworks

There seem to be three sensible alternatives for
making parallel computing more useful—more
automatic analysis, higher-level general-purpose
languages, and task-specific frameworks. Many
workers have attempted to automatically ex-
tract parallelism from serial code, and similarly
higher-level parallel languages abound. Task-
specific frameworks, however, can combine both
dramatic serial code reuse with a natural means
to express parallelism.

The distinction between a parallel library and
a parallel framework is somewhat arbitrary, but
a framework generally determines the overall
structure of the program.

For example, the Charm++ Finite Element
Method (FEM) Framework [1] provides a ro-
bust environment for parallelizing FEM compu-
tations. At startup, the user passes the FEM
mesh into the framework, where it it parti-
tioned into pieces. After partitioning, user code
runs on the partitions, occasionally calling the
framework to communicate between partitions.
Because the basic form of an FEM program
is known, the communication facilities in the
framework very closely match the application
developer’s view of the computation. This re-
sults in a much shallower learning curve than a
general-purpose interface like MPI or Charm++.

In addition to ease of development, a frame-
work also provides a natural layer in which to ap-
ply optimizations. For example, the FEM frame-
work is a natural place to do message combining
for communication optimizations, or to experi-
ment with a new method for partitioning FEM
meshes.
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6 Conclusions

A critical, and far from obvious choice in any
system is the proper abstraction boundary. In
parallel computing, this choice determines the
division of labor between the application devel-
oper and the runtime system developer. We be-
lieve that today’s parallel runtime systems like
MPI are too low level, which forces applica-
tion developers to reinvent or do without use-
ful capabilities. Among the capabilities miss-
ing from MPI, but present in advanced run-
time systems like Charm++ and AMPI, are
message-driven execution, automatic load bal-
ancing, checkpointing, and high-level communi-
cation optimizations. With carefully chosen ab-
stractions, a runtime system can enable appli-
cations to be developed easily, be flexible, and
above all be efficient.
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