
Automatic Transformations for
Communication-Minimized Parallelization and Locality

Optimization in the Polyhedral Model

Uday Bondhugula1, Muthu Baskaran1, Sriram Krishnamoorthy1,
J. Ramanujam2, Atanas Rountev1, and P. Sadayappan1

1 Dept. of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
{bondhugu,baskaran,krishnsr,rountev,saday}@cse.ohio-state.edu,

2 Dept. of Electrical and Computer Engg., Louisiana State University, Baton Rouge, LA , USA
jxr@ece.lsu.edu

Abstract. The polyhedral model provides powerful abstractions to optimize loop
nests with regular accesses. Affine transformations in this model capture a com-
plex sequence of execution-reordering loop transformations that can improve per-
formance by parallelization as well as locality enhancement. Although a signifi-
cant body of research has addressed affine scheduling and partitioning, the prob-
lem of automatically finding good affine transforms for communication-optimized
coarse-grained parallelization together with locality optimization for the general
case of arbitrarily-nested loop sequences remains a challenging problem.

We propose an automatic transformation framework to optimize arbitrarily-
nested loop sequences with affine dependences for parallelism and locality si-
multaneously. The approach finds good tiling hyperplanes by embedding a pow-
erful and versatile cost function into an Integer Linear Programming formulation.
These tiling hyperplanes are used for communication-minimized coarse-grained
parallelization as well as for locality optimization. The approach enables the min-
imization of inter-tile communication volume in the processor space, and mini-
mization of reuse distances for local execution at each node. Programs requir-
ing one-dimensional versus multi-dimensional time schedules (with scheduling-
based approaches) are all handled with the same algorithm. Synchronization-free
parallelism, permutable loops or pipelined parallelism at various levels can be
detected. Preliminary studies of the framework show promising results.

1 Introduction and Motivation

Current trends in architecture are increasingly towards larger number of processing el-
ements on a chip. This has led to multi-core architectures becoming mainstream along
with the emergence of several specialized parallel architectures or accelerators. The
difficulty of programming these architectures to effectively tap the potential of multi-
ple on-chip processing units is a well-known challenge. Among several approaches to
addressing this issue, one that is very promising but simultaneously very challenging is
automatic parallelization.

Many compute-intensive applications often spend most of their running time in
nested loops. This is particularly common in scientific and engineering applications.

The polyhedral model [6, 10, 12] provides a powerful abstraction to reason about trans-
formations on such loop nests by viewing a dynamic instance (iteration) of each state-
ment as an integer point in a well-defined space which is the statement’s polyhedron.
With such a representation for each statement and a precise characterization of inter or
intra-statement dependences, it is possible to reason about the correctness and goodness
of a sequence of complex loop transformations using machinery from Linear Algebra
and Integer Linear Programming. The polyhedral model is applicable to loop nests in
which the data access functions and loop bounds are affine combinations (linear combi-
nation with a constant) of the enclosing loop variables and parameters. While a precise
characterization of data dependences is feasible for programs with static control struc-
ture and affine references/loop-bounds, code with non-affine array access functions or
dynamic control can also be handled, using conservative assumptions.

Early approaches to automatic parallelization applied only to perfectly nested loops
and involved the application of a sequence of transformations to the program’s at-
tributed abstract syntax tree. The polyhedral model has enabled much more complex
programs to be handled, and easy composition and application of more sophisticated
transformations [6, 12]. The task of program optimization in the polyhedral model may
be viewed in terms of three phases: (1) static dependence analysis of the input program,
(2) transformations in the polyhedral abstraction, and (3) generation of efficient loop
code. Despite the progress in these techniques, several scalability challenges limited ap-
plicability to small loop nests. Significant recent advances in dependence analysis [28]
and code generation [2, 23, 27] have demonstrated the applicability of the polyhedral
techniques to real applications. However, current state-of-the-art polyhedral implemen-
tations still apply transformations manually and significant time is spent by an expert to
determine the best set of transformations [6, 12]. An important open issue is the choice
of transformations from the huge space of valid transforms. Our work addresses this
problem, by formulating a way to obtain good transformations fully automatically.

Tiling is a key transformation and has been studied from two perspectives — data
locality optimization and parallelization. Tiling for locality requires grouping points in
an iteration space into smaller blocks (tiles) allowing reuse in multiple directions when
the block fits in a faster memory (registers, L1, or L2 cache). Tiling for coarse-grained
parallelism fundamentally involves partitioning the iteration space into tiles that may
be concurrently executed on different processors with a reduced frequency and volume
of inter-processor communication: a tile is atomically executed on a processor with
communication required only before and after execution. Hence, one of the key aspects
of an automatic transformation framework is to find good ways of performing tiling.

Existing automatic transformation frameworks [1, 13, 17–19] have one or more draw-
backs or restrictions that do not allow them to effectively parallelize/optimize loop
nests. All of them lack a realistic cost model that is suitable for coarse-grained parallel
execution as is used in practice with manually developed parallel applications. With the
exception of Griebl [13], previous work generally focuses on one or the other of the
complementary aspects of parallelization and locality optimization. The approach we
develop answers the following question: What is a good way to tile imperfectly nested
loop sequences to minimize the volume of communication between tiles (in processor
space) as well as improve data reuse at each processor?

The rest of this paper is organized as follows. Section 2 provides an overview of the
polyhedral model. In Section 3 describes our automatic transformation framework. Sec-
tion 4 shows step-by-step application of our approach through an example. Section 5
provides a summary of the implementation and initial results. Section 6 discusses re-
lated work and conclusions are presented in Section 7. Full details of the framework,
transformations and optimized code for various examples, and experimental results are
available in extended reports [3, 4].

2 Overview of the Polyhedral Framework

The set X of all vectors x ∈ Z
n such that h.x = k, for k ∈ Z, forms an affine

hyperplane. The set of parallel hyperplane instances corresponding to different values
of k is characterized by the vector h which is normal to the hyperplane. Each instance
of a hyperplane is an n − 1 dimensional affine sub-space of the n-dimensional space.
Two vectors x1 and x2 lie in the same hyperplane if h.x1 = h.x2.

The set of all vectors x ∈ Z
n such that Ax + b ≥ 0, where A is an integer matrix,

defines a (convex) integer polyhedron. A polytope is a bounded polyhedron. Each run-
time instance of a statement S is identified by its iteration vector i, of dimensionality
mSk

, containing values for the indices of the loops surrounding it from outermost to
innermost. Hence, a statement S is associated with a polytope characterized by a set
of bounding hyperplanes or faces. This is true when the loop bounds are affine com-
binations of outer loop indices and program parameters (typically, symbolic constants
representing the problem size). Let p be the vector of the program parameters.

A well-known known result useful for polyhedral analyses is the following [26]:

Lemma 1 (Affine form of Farkas Lemma). Let D be a non-empty polyhedron defined
by s affine inequalities or faces: ak.x + bk ≥ 0, 1 ≤ k ≤ s. An affine form ψ(x) is
non-negative everywhere in D iff it is a positive affine combination of the faces:

ψ(x) ≡ λ0 +
∑

k

λk(akx + bk), λk ≥ 0 (1)

The non-negative constants λk are referred to as Farkas multipliers.

Polyhedral Dependences. Our dependence model is of exact affine dependences and
same as the one used in [6, 18, 22, 28]. Dependences are determined precisely through
array dataflow analysis [9], but the input need not be in single-assignment form. All de-
pendences including anti (write-after-read), output (write-after-write) and input (read-
after-read) dependences are considered. The Data Dependence Graph (DDG) is a di-
rected multi-graph with each vertex representing a statement, and an edge, e ∈ E, from
node Si to Sj representing a polyhedral dependence from a dynamic instance of Si to
one of Sj : it is characterized by a polyhedron, Pe, called the dependence polyhedron
that captures the exact dependence information corresponding to edge, e (see Fig. 1(b)
for an example). The dependence polyhedron is in the sum of the dimensionalities of
the source and target statement’s polyhedra (with dimensions for program parameters
as well). Though the equalities in Pe typically represent the affine function mapping the
target iteration vector t to the particular source s that is the last access to the conflicting

for (i=0; i<N; i++)
for (j=0; j<N; j++)

S1: A[i , j] = A[i , j]+u[i]∗v[j];
for (i=0; i<N; i++)

for (j=0; j<N; j++)
S2: x[i] = x[i]+A[j , i]∗y[j];

(a) original code

S1 S2
i j const i j const

c1 0 1 0 1 0 0
c2 1 0 0 0 1 0
c3 0 0 0 0 0 1

(c) transformation

Pe1
:

2

6

6

6

6

6

6

4

1 0 0 0 0 0
0 −1 0 0 1 −1
0 0 1 0 0 0
0 0 0 −1 1 −1

1 0 0 −1 0 0
0 1 −1 0 0 0

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

i

j

i′

j′

N

1

3

7

7

7

7

7

7

5

≥ 0
≥ 0
≥ 0
≥ 0

= 0
= 0

(b) Dependence polyhedron for the
inter-statement dependence on A

for (c1=0; c1<N; c1++)
for (c2=0; c2<N; c2++)

A[c2,c1] = A[c2,c1]+u[c2]∗v[c1];
x[c1] = x[c1]+A[c2,c1]∗y[c1];

(d) transformed code

Fig. 1. Polyhedral transformation and dependences

memory location, also known as the h-transformation [10], the last access condition is
not necessary; in general, the equalities can be used to eliminate variables from Pe. In
the rest of this section, we assume for convenience that s can be completely eliminated
using he, being substituted by he(t).
A one-dimensional affine transform for statement Sk is defined by:

φsk
=

[

f1 . . . fmSk

]

(

i
)

+ f0, fi ∈ Z

A multi-dimensional affine transformation for a statement can now be represented by
a matrix with each row being an affine hyperplane/transform. If such a transforma-
tion matrix has full column rank, it completely specifies when and where an iteration
executes (one-to-one mapping from source to target). The total number of rows in the
matrix may be much larger as some special rows, splitters, may represent unfused loops
at a level. Fig. 1 shows application of a transformation. Such transformations capture
the fusion structure as well as compositions of permutation, reversal, relative shifting,
and skewing transformations. This representation for transformations has been used by
many researchers [6, 11, 12, 15], and directly fits with scattering functions that a code
generator like CLooG [2] supports. Our problem is thus to find the the transformation
matrices that are best for parallelism and locality.

3 Finding good transformations

3.1 Legality of tiling imperfectly-nested loops

Theorem 1. Let φsi
be a one-dimensional affine transform for statement Si. For {φs1

,
φs2

, . . . , φsk
} to be a legal (statement-wise) tiling hyperplane, the following should

hold for each edge e from Si to Sj:

φsj
(t) − φsi

(s) ≥ 0, Pe (2)

Proof. Tiling of a statement’s iteration space defined by a set of tiling hyperplanes is
said to be legal if each tile can be executed atomically and a valid total ordering of the
tiles can be constructed. This implies that there exists no two tiles such that they both
influence each other. Let {φ1

s1
, φ1

s2
, . . . , φ1

sk
}, {φ2

s1
, φ2

s2
, . . . , φ2

sk
} be two statement-

wise 1-d affine transforms that satisfy (2). Consider a tile formed by aggregating a group
of hyperplane instances along φ1

si
and φ2

si
. Due to (2), for any dynamic dependence,

the target iteration is mapped to the same hyperplane or a greater hyperplane than the
source, i.e., the set of all iterations that are outside of the tile and are influenced by it
always lie in the forward direction along one of the independent tiling dimensions (φ1

and φ2 in this case). Similarly, all iterations outside of a tile influencing it are either in
that tile or in the backward direction along one or more of the hyperplanes. The above
argument holds true for both intra- and inter-statement dependences. For inter-statement
dependences, this leads to an interleaved execution of tiles of iteration spaces of each
statement when code is generated from these mappings. Hence, {φ1

s1
, φ1

s2
, . . . , φ1

sk
},

{φ2

s1
, φ2

s2
, . . . , φ2

sk
} represent rectangularly tilable loops in the transformed space. If

such a tile is executed on a processor, communication would be needed only before
and after its execution. From locality point of view, if such a tile is executed with the
associated data fitting in a faster memory, reuse is exploited in multiple directions.2

The above condition was well-known for the case of a single-statement perfectly
nested loops from the work of Irigoin and Triolet [14] (as hT .R ≥ 0). We have general-
ized it above for multiple iteration spaces with exact affine dependences with possibly
different dimensionalities and imperfect nestings for statements.

Tiling at an arbitrary depth. Note that the legality condition as written in (2) is imposed
on all dependences. However, if it is imposed only on dependences that have not been
carried up to a certain depth, the independent φ’s that satisfy the condition represent
tiling hyperplanes at that depth, i.e., rectangular blocking (stripmine/interchange) at
that level in the transformed program is legal.

Consider the perfectly nested version of 1-d Jacobi shown in Fig. 2(a). The discus-
sion that follows also applies to the imperfectly nested version, but for convenience we
first consider the perfectly nested version. We first describe solutions obtained by exist-
ing state-of-the-art approaches: Lim and Lam’s affine partitioning [18, 19] and Griebl’s
space and time tiling with Forward Communication-Only (FCO) placement [13].

Lim et al. [19] define legal time partitions which have the same property of tiling
hyperplanes as described above. Their algorithm obtains affine partitions that minimize
the order of communication while maximizing the degree of parallelism. Equation (2)
gives legality constraints ct ≥ 0, ct + ci ≥ 0, and ct − ci ≥ 0 corresponding to de-
pendences (1, 0), (1, 1), and (1,−1). There are infinitely many valid solutions with the

for (t=1; t<T; t++)
for (i=2; i<N−1; i++)

a[t , i] = 0.33∗(a[t−1,i] +
a[t−1,i−1] + a[t−1,i+1]);

(a) 1-d Jacobi: perfectly nested

for (t=1; t<T; t++)
for (i=2; i<N−1; i++)

S1: b[i] = 0.33∗(a[i−1]+ a[i]+a[i +1]);
for (i=2; i<N−1; i++)

S2: a[i] = b[i];

(b) 1-d Jacobi: imperfectly nested

Fig. 2. 1-d Jacobi

i

t

(1,0) (2,1)

i i

t tP1

P0

P3
P2

(1,1)
(1,0)

time

(1,1)
(1,0)

space time

P1 P2
P0

space
One line

of communication of communication
Three lines

space
Two lines of

of communication time

Fig. 3. Communication volume with different valid hyperplanes for perfectly nested 1-d Jacobi

same order complexity of synchronization, but with different communication volumes
that may impact performance. Although it may seem that the volume may not affect
performance, considering the fact that communication startup time on modern inter-
connects is significant, for higher dimensional problems such as n-d Jacobi, the ratio of
communication to computation increases (proportional to tile size raised to n− 1). Ex-
isting work on tiling [24, 25, 30] can find near communication-optimal tiles for perfectly
nested loops with constant dependences, but cannot handle arbitrarily nested loops. For
1-d Jacobi, all solutions within the cone formed by vectors (1, 1) and (1,−1) are valid
tiling hyperplanes. For the imperfectly nested version of 1-d Jacobi, the valid cone is
(2, 1) and (2,−1) (discussed later). For imperfectly nested Jacobi, Lim’s algorithm [19]
finds two valid independent solutions without optimizing for any particular criterion. In
particular, the solutions found by their algorithm (Algorithm A in [19]) are (2,−1) and
(3,−1) which are clearly not the best tiling hyperplanes to minimize communication
volume, though they do minimize the order of synchronization which is O(N); in this
case any valid hyperplane has O(N) synchronization. Figure 3 shows that the required
communication increases as the hyperplane gets more and more oblique. For a hyper-
plane with normal (k, 1), one would need (k + 1)T values from the neighboring tile.

Using Griebl’s approach, we first find that only space tiling is enabled with Feautrier’s
schedule being θ(t, i) = t, i.e., using (1, 0) as the scheduling hyperplane. With forward
communication-only (FCO) placement, an allocation is found such that dependences
have positive components along space dimensions thereby enabling tiling of the time
dimension; this decreases the frequency of communication. In this case, time tiling is
enabled with FCO placement along (1, 1). However, note that communication in the
processor space occurs along (1, 1), i.e., two lines of the array are required. However,
using (1, 0) and (1, 1) as tiling hyperplanes with (1, 0) as space and (1, 1) as inner time
and a tile space schedule of (2, 1) leads to only one line of communication along (1, 0).
Our algorithm finds such a solution. Below we develop a cost function for an affine
transform that captures communication volume and reuse distance.

3.2 Cost Function

Consider the following affine form:

δe(t) = φsi
(t) − φsj

(he(t)), t ∈ Pe (3)

The affine form δe(t) holds much significance. This function is the number of hyper-
planes the dependence e traverses along the hyperplane normal. It gives us a measure

of the reuse distance if the hyperplane is used as time, i.e., if the hyperplanes are ex-
ecuted sequentially. Also, this function is a factor in the communication volume if the
hyperplane is used to generate tiles for parallelization and used as a processor space
dimension. An upper bound on this function means that the number of hyperplanes that
would be communicated as a result of the dependence at the tile boundaries would not
exceed this bound. We are particularly interested in whether this function can be re-
duced to a constant value or zero by choosing a suitable direction for φ: if possible,
that particular dependence leads to constant or no communication for this hyperplane.
Note that each δe is an affine function of the loop indices. The challenge is to use this
function to obtain a suitable objective for optimization in the affine framework.

Challenges. The constraints obtained from (2) only guarantee legality of tiling (per-
mutability). However, several problems are encountered when one tries to apply a per-
formance factor to find a good tile shape out of the several possibilities. Farkas Lemma
has been used by many approaches [10, 11, 13, 19] to eliminate loop variables from
constraints by getting equivalent linear inequalities. The affine form in the loop vari-
ables is represented as a positive linear combination of the faces of the dependence
polyhedron. When this is done, the coefficients of the loop variables on the left and
right hand side are equated to eliminate the constraints of variables. This is done for
each of the dependences, and the constraints obtained are aggregated. The resulting
constraints are entirely in the coefficients of the tile mappings and Farkas multipli-
ers. All Farkas multipliers can be eliminated, some by Gaussian elimination and the
rest by Fourier-Motzkin elimination [19, 26]. However, an attempt to minimize com-
munication volume ends up in an objective function involving both loop variables and
hyperplane coefficients. For example, φ(t)−φ(he(t)) could be c1i+(c2− c3)j, where
1 ≤ i ≤ N ∧ 1 ≤ j ≤ N ∧ i ≤ j. One ends up with such a form when a depen-
dence is not uniform or for an inter-statement dependence, making it hard to construct
an objective function involving only the unknown hyperplane coefficients.

3.3 Cost Function Bounding and Minimization

Theorem 2. If all iteration spaces are bounded, there exists an affine form v(p) =
u.p + w that bounds δe(t) for every dependence edge e:

v(p) −
(

φsi
(t) − φsj

(he(t))
)

≥ 0, t ∈ Pe, ∀e ∈ E (4)

i.e., v(p) − δe(t) ≥ 0, t ∈ Pe, ∀e ∈ E

Even if δe involves loop variables, one can find large enough constants in u that would
be sufficient to bound δe(s). Note that the loop variables themselves are bounded by
affine functions of the parameters, and hence the maximum value taken by δe(s) will
be bounded by such an affine form. Also, since v(p) ≥ δe(s) ≥ 0, v should increase
with an increase in the structural parameters, i.e., the coordinates of u are positive.
The reuse distance or communication volume for each dependence is bounded in this
fashion by the same affine form. Such a bounding function was used by Feautrier [10]
to find minimum latency schedules.

Now we apply Farkas Lemma to (4):

v(p) − δe(t) ≡ λe0 +

me
∑

k=1

λekP
k
e , λek ≥ 0 (5)

where Pk
e is a face of Pe. The above is an identity and the coefficients of each of the

loop indices in i and parameters in p on the left and right hand side can be gathered and
equated. We now get linear inequalities entirely in coefficients of the affine mappings
for all statements, components of row vector u, and w. The above inequalities can at
once be solved by finding a lexicographic minimal solution with u and w in the leading
position, and the other variables following in any order. Let u = (u1, u2, . . . uk).

minimize≺ {u1, u2, . . . , uk, w, . . . , c
′
is, . . . } (6)

Finding the lexicographic minimal solution for a system of linear inequalities is within
the reach of the simplex algorithm and can be handled by the Parametric Integer Pro-
gramming (PIP) software [8]. Since the structural parameters are quite large, we first
want to minimize their coefficients. We do not lose the optimal solution since an optimal
solution would have the smallest possible values for u’s.

The solution gives a hyperplane for each statement. Note that the application of the
Farkas Lemma to (4) is not required when a dependence is uniform, since the corre-
sponding δe is independent of any loop variables. In such cases, we just have w ≥ δe.

3.4 Iteratively Finding Independent Solutions

Solving the ILP formulation in the previous section gives us a single solution to the
coefficients of the best mappings for each statement. We need at least as many inde-
pendent solutions as the dimensionality of the polytope associated with each statement.
Hence, once a solution is found, we augment the ILP formulation with new constraints
and obtain the next solution; the new constraints ensure linear independence with so-
lutions already found. Let the rows of HS represent the solutions found so far for a
statement S. Then, the sub-space orthogonal to HS [16, 21] is given by:

H⊥
S = I −HT

S

(

HSH
T
S

)−1

HS (7)

Note that H⊥
S .HS

T = 0, i.e., the rows of HS are orthogonal to those of H⊥
S . Let h∗S be

the next row (linear portion of the hyperplane) to be found for statement S. Let H i⊥

S be

a row ofH⊥
S . Then, any one of the inequalities given by ∀i, H i⊥

S .h
∗

S
> 0, Hi⊥

S .h
∗

S
< 0

gives the necessary constraint to be added for statement S to ensure that h∗
S has a non-

zero component in the sub-space orthogonal to HS . This leads to a non-convex space,
and ideally, all cases have to be tried and the best among those kept. When the number
of statements is large, this leads to a combinatorial explosion. In such cases, we restrict
ourselves to the sub-space of the orthogonal space where all the constraints are positive,
i.e., the following constraints are added to the ILP formulation for linear independence:

∀i,Hi⊥

S .h
∗
S ≥ 0 ∧

∑

i

Hi⊥

S h
∗
S ≥ 1 (8)

By just considering a particular convex portion of the orthogonal sub-space, we dis-
card solutions that usually involve loop reversals or combination of reversals with other
transformations; however, we believe this does not make a difference in practice. The
mappings found are independent on a per-statement basis. When there are statements
with different dimensionalities, the number of such independent mappings found for
each statement is equal to the number of outer loops it has. Hence, no more orthogo-
nality constraints need be added for statements for which enough independent solutions
have been found (the rest of the rows get automatically filled with zeros or linearly de-
pendent rows). The number of rows in the transformation matrix is the same for each
statement, and the depth of the deepest loop nest in the target code is the same as that
of the source loop nest. Overall, a hierarchy of fully permutable loop nest sets is found,
and a lower level in the hierarchy will not be obtained unless constraints corresponding
to dependences that have been carried by the parent permutable set have been removed.

3.5 Communication and Locality Optimization Unified

The above algorithm finds both synchronization-free and pipelined parallelism. The
best possible solution to (6) is with (u = 0, w = 0) and this happens when we find a
hyperplane that has no dependence components along its normal, which is a fully paral-
lel loop requiring no synchronization if it is at the outer level (outer parallel); it could be
an inner parallel loop if some dependences were removed previously and so a synchro-
nization is required after the loop is executed in parallel. Thus, in each of the steps where
we find a new independent hyperplane, we end up first finding all synchronization-free
hyperplanes; these are followed by a set of fully permutable hyperplanes that are tilable
and pipelined parallel requiring constant boundary communication (u = 0, w > 0)
w.r.t. the tile sizes. In the worst case, a hyperplane with u > 0, w ≥ 0 results in long
communication from non-constant dependences. It is important to note that the latter
are pushed to the innermost level. By considering communication volume and its mini-
mization, all degrees of parallelism are found in the order of their preference.

From the point of view of data locality, the hyperplanes that are used to scan the
tile space are the same as the ones that scan points in a tile. Hence, data locality is
optimized from two angles: (1) cache misses at tile boundaries are minimized for local
execution (as cache misses at local tile boundaries are equivalent to communication
along processor tile boundaries); (2) by reducing reuse distances, we increase the local
cache tile sizes. The former is due to selection of good tile shapes and the latter by the
right permutation of hyperplanes (implicit in the order in which we find them).

3.6 Space and Time in Transformed Iteration Space

By minimizing φ(t) − φ(s) as we find hyperplanes from outermost to innermost, we
push dependence carrying to inner loops and also ensure that loops do not have negative
dependence components (to the extent possible) so that target loops can be tiled. Once
this is done, if the outer loops are used as space (any number desired, say k), and the rest
are used as time (at least one time loop is required unless all loops are synchronization-
free parallel), communication in the processor space is optimized as the outer space

Input Generalized dependence graph G = (V, E) (includes dependence polyhedra Pe, e ∈ E)
1: Smax: statement with maximum domain dimensionality
2: for each dependence e ∈ E do
3: Build legality constraints: apply Farkas Lemma on φ(t) − φ(he(t)) ≥ 0 under t ∈ Pe,

and eliminate all Farkas multipliers
4: Build communication volume/reuse distance bounding constraints: apply Farkas Lemma

to v(p)− (φ(t)− φ(he(t))) ≥ 0 under Pe, and eliminate all Farkas multipliers
5: Aggregate constraints from both into Ce(i)
6: end for
7: repeat
8: C = ∅
9: for each dependence edge e ∈ E do

10: C ← C ∪ Ce(i)
11: end for
12: Compute lexicographic minimal solution with u′s coefficients in the leading position fol-

lowed by w to iteratively find independent solutions to C (orthogonality constraints are
added as each solution is found)

13: if no solutions were found then
14: Cut dependences between two strongly-connected components in the GDG and insert

the appropriate splitter in the transformation matrices of the statements
15: end if
16: Compute Ec: dependences carried by solutions of Step 12/14
17: E ← E − Ec; update the GDG (V, E)
18: until H⊥

Smax
= 0 and E = ∅

Output A transformation matrix for each statement (with the same number of rows)

Fig. 4. Overall algorithm

loops are the k best ones. Whenever the loops can be tiled, they result in coarse-grained
parallelism as well as better reuse within a tile.

3.7 Fusion

The algorithm described in the previous section can also enable fusion across multiple
iteration spaces that are weakly connected, as in sequences of producer-consumer loops.
Solving for hyperplanes for multiple statements leads to a schedule for each statement
such that all statements in question are finely interleaved: this is indeed fusion. This
generalization of fusion is same as the one proposed in [6, 12], and naturally integrates
into our algorithm. A detailed description can be found in an extended report [3].

Summary. The overall algorithm is summarized in Fig. 4. It can be viewed as trans-
forming to a tree of permutable loop nest sets/bands — each node of the tree is a good
permutable loop nest set. Step 12 finds such a band of permutable loops. If all loops are
tilable, there is just one node containing all the loops that are permutable. On the other
extreme, if no loops are tilable, each node of the tree has just one loop and no tiling is

for (i=0; i<N: i++)
for (j=2; j<N; j++)

a[i , j] = a[j , i]+a[i , j−1];

P0 P3

P3 P4P2

P3

P1

P0 P1

P1 P2

P2

P2

P4

P5

spacetime

j

i

a[i′, j′]→ a[i, j − 1]

h1 : i′ = i, j′ = j − 1;

P1 : 2 ≤ j ≤ N, 1 ≤ i ≤ N

a[i′, j′]→ a[j, i]

h2 : i′ = j, j′ = i;

P2 : 2 ≤ j ≤ N, 1 ≤ i ≤ N, i− j ≥ 1

a[j′, i′]→ a[i, j]

h3 : j′ = i, i′ = j

P3 : 2 ≤ j ≤ N, 1 ≤ i ≤ N, i− j ≥ 1

Fig. 5. An example with non-uniform dependences

possible. At least two hyperplanes should be found at any level (without dependence re-
moval/cutting) to enable tiling. Dependences from previously found solutions are thus
not removed unless they have to be (step 17) to allow the next permutable band to be
found, and so on. Hence, partially tilable or untilable input is handled. Loops in each
node of the target tree can be stripmined/interchanged when there are at least two of
them; however, it is illegal to move a stripmined loop across different levels in the tree.

4 Example

Figure 5 shows an example from the literature [7] with affine non-uniform dependences,
together with the corresponding dependence polyhedra (the source iteration vector has
been eliminated). For the first dependence, the tiling legality constraint is

cii+ cjj − cii− cj(j − 1) ≥ 0 ⇒ cj ≥ 0

Since this is a constant dependence, the volume bounding constraint gives w − cj ≥ 0.
For the second dependence, the tiling legality constraint is

(cii+ cjj) − (cij + cji) ≥ 0

Applying Farkas Lemma (with P2), we have:

(ci − cj)i+ (cj − ci)j ≡ λ0 + λ1(N − i) + λ2(N − j)

+λ3(i− j − 1) + λ4(i− 1) + λ5(j − 1) (9)

λ0, λ1, λ2, λ3, λ4, λ5 ≥ 0

Equating LHS and RHS coefficients for i, j,N and the constants in (9), and eliminating
Farkas multipliers through Fourier-Motzkin elimination, we obtain ci − cj ≥ 0.
The volume bounding constraint is

u1N + w − (cij + cji− cii− cjj) ≥ 0

A similar application of Farkas Lemma, and elimination of the multipliers yields u1 ≥
0, u1 − ci + cj ≥ 0, and 3u1 +w− ci + cj ≥ 0. Due to the symmetry with respect to i

and j, the third dependence does not lead to any new constraints. Aggregating legality
and volume bounding constraints for all dependences, we get the formulation:

minimize≺ (u1, w, ci, cj)

subject to: cj ≥ 0 w − cj ≥ 0

ci − cj ≥ 0 u1 ≥ 0

u1 − ci + cj ≥ 0 3u1 + w − ci + cj ≥ 0

The lexicographic minimal solution for the vector (u1, w, ci, cj) is (0, 1, 1, 1) (the zero
vector is a trivial solution and is avoided). Hence, we get ci = cj = 1. Note that ci = 1
and cj = 0 is not obtained even though it is a valid tiling hyperplane as it involves more
communication: it requires u1 to be positive.

The next solution is forced to have a positive component in the subspace orthogonal
to (1, 1) given by (7) as (1,-1). This leads to the addition of the constraint ci−cj ≥ 1 or
ci − cj ≤ −1 to the existing formulation. Adding ci − cj ≥ 1 to (10), the lexicographic
minimal solution is (1, 0, 1, 0), i.e., u1 = 1, w = 0, ci = 1, cj = 0 (u1 = 0 is no
longer valid). Hence, (1, 1) and (1, 0) are the tiling hyperplanes obtained. (1,1) is used
as space with one line of communication between processors, and the hyperplane (1,0)
is used as time in a tile. The outer tile schedule is (2,1) (= (1,1) + (1,0)).

This transformation is in contrast to other approaches based on schedules which ob-
tain a schedule and then the rest of the transformation matrix. Feautrier’s greedy heuris-
tic gives the schedule θ(i, j) = 2i+j−3 which carries all dependences. However, using
this as either space or time does not lead to communication or locality optimization. The
(2,1) hyperplane has non-constant communication along it. In fact, the only hyperplane
that has constant communication along it is (1,1). This is the best hyperplane to be used
as a space loop if the nest is to be parallelized, and is the first solution that our algo-
rithm finds. The (1,0) hyperplane is used as time leading to a solution with one degree
of pipelined parallelism with one line per tile of near-neighbor communication (along
(1,1)) as shown in Fig. 4. Hence, a good schedule that tries to carry all dependences (or
as many as possible) is not necessarily a good loop for the transformed iteration space.

5 Implementation and Preliminary Results

We have implemented our transformation framework using PipLib 1.3.3 [8]. Our tool
takes as input dependence information (dependence polyhedra and h-transformations)
from LooPo’s [20] dependence tester and generates statement-wise affine transforma-
tions. Though in theory the approach, relying on integer programming, has worst-
case exponential time complexity, we observe that it runs extremely fast in practice.
The transformations generated are provided to CLooG [2] as scattering functions. The
goal is to obtain tiled shared memory parallel code, for example, OpenMP code for
multi-core architectures. Table 1 summarizes the performance of transformed codes.
The state-of-the-art from the research community is represented by [13, 17–19], while
ICC 10.1 with ‘-fast -parallel’ was used as the native compiler. The results were ob-
tained on an Intel Core 2 Quad (Q6600 2.4 GHz). Due to space constraints, detailed
experimental evaluation can be found elsewhere [4].

Table 1. Initial results: speedup over state-of-the-art research

Benchmark Single core speedup Multi-core speedup (4 cores)
over native over state-of-the-art over native over state-of-the-art
compiler research compiler research

1-d Jacobi (imperfect nest) 5.23x 2.1x 20x 1.7x
2-d FDTD 3.7x 3.1x 7.4x 2.5x

3-d Gauss-Seidel 1.6x 1.1x 4.5x 1.5x
LU decomposition 5.6x 5.7x 14x 3.8x

Matrix Vec Transpose 9.3x 5.5x 13x 7x

6 Related Work

Iteration space tiling [14, 24, 29] is a standard approach for aggregating a set of loop
iterations into tiles, with each tile being executed atomically. In addition, researchers
have considered the problem of selecting tile shape and size to minimize communica-
tion, improve locality or minimize finish time [24, 30]. These works are restricted to a
single perfectly nested loop nest with uniform dependences.

Loop parallelization has been studied extensively. The reader is referred to the sur-
vey of Boulet et al. [5] for a detailed summary of older parallelization algorithms which
accepted restricted input and/or are based on weaker dependence abstractions than exact
polyhedral dependences. Scheduling with affine functions using faces of the polytope
by application of the Farkas algorithm was first proposed by Feautrier [10]. Feautrier
explored various possible approaches to obtain good affine schedules that minimize
latency. The schedules carry all dependences and so all the inner loops can be par-
allel. However, transforming to permutable loops that are amenable to tiling was not
addressed. Though schedules yield inner parallel loops, the time loops cannot be tiled
unless communication in the space loops is in the forward direction (dependences have
positive components along all dimensions). Several works [6, 13, 22] make use of such
schedules. Overall, Feautrier’s classic works [10, 11] are geared towards finding maxi-
mum fine-grained parallelism as opposed to tilability for coarse-grained parallelization
with minimized communication and better locality.

Lim and Lam [18, 19] proposed an affine partitioning framework that identifies
outer parallel loops (communication-free space partitions) and pipelined parallel per-
mutable loops to maximize the degree of parallelism and minimize the order of syn-
chronization. They employ the same machinery for blocking [17]. Several (infinitely
many) solutions equivalent in terms of the criterion they optimize for result from their
algorithm, and these significantly differ in communication cost and locality; no metric
is provided to differentiate between these solutions. As seen in Sec. 3, without a cost
function, the solutions obtained even for the simplest input are not satisfactory.

Ahmed et al. [1] proposed a framework for locality optimization of imperfectly
nested loops for sequential execution. The approach embeds each statement into a prod-
uct space, which is then transformed for locality. Their heuristic sets reuse distances in
the target space for some dependences to zero (or a constant) to obtain coefficients of
the embedding/transformation matrix. However, there is no concrete procedure to de-
termine choice of the dependences and the number.

Griebl [13] presents an integrated framework for optimizing locality and parallelism
with space and time tiling. Griebl’s approach enables time tiling by using a forward
communication-only placement with an existing schedule. As described in Sec. 3, using
schedules as time loops may not lead to communication or locality-optimized solutions.

Cohen et al. [6] and Girbal et al. [12] developed a framework to compose sequences
of transformations semi-automatically. Transformations are applied automatically, but
specified manually by an expert. Pouchet et al. [22] searches the space of transforma-
tions (one-dimensional schedules) to find good ones through iterative optimization by
employing performance counters. On the other hand, our approach is fully automatic.
However, some empirical and iterative optimization is required to choose transforms
that work best in practice. This is true when several fusion choices exist, or optimal
tile sizes and unroll factors have to be determined. A combination of our algorithm and
empirical search in a smaller space is an interesting approach to pursue.

7 Conclusions

We present a single framework that addresses automatic parallelization and data locality
optimization in the polyhedral model. The proposed algorithm finds communication-
minimized tiling hyperplanes for parallelization of a sequence of arbitrarily nested
loops. The same hyperplanes also minimize reuse distances and improve data local-
ity. The approach also enables fusion in the presence of producing-consuming loops.
To the best of our knowledge, this work is the first to propose a practical cost model to
drive automatic transformation in the polyhedral model. The framework has been im-
plemented in a fully-automatic tool for transforming C/Fortran code using the LooPo
infrastructure and CLooG. Preliminary experiments show very promising results.

Acknowledgments

We would like to thank Martin Griebl and his team (FMI, Universität Passau, Germany)
for the LooPo infrastructure. We would also like to thank Cédric Bastoul (Paris-Sud XI
University) and all other contributors of CLooG and PipLib. This work was supported in
part by a State of Ohio Development Fund and the National Science Foundation through
grants 0121676, 0121706, 0403342, 0508245, 0509442, 0509467 and 0541409.

References

1. N. Ahmed, N. Mateev, and K. Pingali. Synthesizing transformations for locality enhance-
ment of imperfectly-nested loop nests. IJPP, 29(5), October 2001.

2. C. Bastoul. Code generation in the polyhedral model is easier than you think. In IEEE PACT,
pages 7–16, Sept. 2004.

3. U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sa-
dayappan. Affine transformations for communication minimal parallelization and locality
optimization for arbitrarily-nested loop sequences. Technical Report OSU-CISRC-5/07-
TR43, The Ohio State University, May 2007.

4. U. Bondhugula, J. Ramanujam, and P. Sadayappan. PLuTo: A practical and fully automatic
polyhedral parallelizer and locality optimizer. Technical Report OSU-CISRC-5/07-TR70,
The Ohio State University, Oct. 2007.

5. P. Boulet, A. Darte, G.-A. Silber, and F. Vivien. Loop parallelization algorithms: From
parallelism extraction to code generation. Parallel Computing, 24(3–4):421–444, 1998.

6. A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and N. Vasilache. Facilitating the
search for compositions of program transformations. In ICS, pages 151–160, June 2005.

7. A. Darte and F. Vivien. Optimal fine and medium grain parallelism detection in polyhedral
reduced dependence graphs. IJPP, 25(6):447–496, Dec. 1997.

8. P. Feautrier. Parametric integer programming. Operationnelle/Operations Research,
22(3):243–268, 1988.

9. P. Feautrier. Dataflow analysis of array and scalar references. IJPP, 20(1):23–53, 1991.
10. P. Feautrier. Some efficient solutions to the affine scheduling problem: I. one-dimensional

time. IJPP, 21(5):313–348, 1992.
11. P. Feautrier. Some efficient solutions to the affine scheduling problem. part II. multidimen-

sional time. IJPP, 21(6):389–420, 1992.
12. S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and O. Temam. Semi-

automatic composition of loop transformations for deep parallelism and memory hierarchies.
IJPP, 34(3):261–317, June 2006.

13. M. Griebl. Automatic Parallelization of Loop Programs for Distributed Memory Architec-
tures. FMI, University of Passau, 2004. Habilitation Thesis.

14. F. Irigoin and R. Triolet. Supernode partitioning. In POPL, pages 319–329, 1988.
15. W. Kelly and W. Pugh. A unifying framework for iteration reordering transformations. Tech-

nical Report CS-TR-3430, University of Maryland, College Park, 1995.
16. W. Li and K. Pingali. A singular loop transformation framework based on non-singular

matrices. IJPP, 22(2):183–205, 1994.
17. A. Lim, S. Liao, and M. Lam. Blocking and array contraction across arbitrarily nested loops

using affine partitioning. In ACM SIGPLAN PPoPP, pages 103–112, 2001.
18. A. W. Lim, G. I. Cheong, and M. S. Lam. An affine partitioning algorithm to maximize

parallelism and minimize communication. In ACM ICS, pages 228–237, 1999.
19. A. W. Lim and M. S. Lam. Maximizing parallelism and minimizing synchronization with

affine partitions. Parallel Computing, 24(3-4):445–475, 1998.
20. LooPo - Loop parallelization in the polytope model. http://www.fmi.uni-passau.de/loopo.
21. R. Penrose. A generalized inverse for matrices. Proceedings of the Cambridge Philosophical

Society, 51:406–413, 1955.
22. L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative optimization in the polyhe-

dral model: Part I, one-dimensional time. In ACM CGO, Mar. 2007.
23. F. Quilleré, S. V. Rajopadhye, and D. Wilde. Generation of efficient nested loops from

polyhedra. IJPP, 28(5):469–498, 2000.
24. J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for multicom-

puters. Journal of Parallel and Distributed Computing, 16(2):108–230, 1992.
25. R. Schreiber and J. Dongarra. Automatic blocking of nested loops. Technical report, Uni-

versity of Tennessee, Knoxville, TN, Aug. 1990.
26. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1987.
27. N. Vasilache, C. Bastoul, and A. Cohen. Polyhedral code generation in the real world. In

CC, pages 185–201, Mar. 2006.
28. N. Vasilache, C. Bastoul, S. Girbal, and A. Cohen. Violated dependence analysis. In ACM

ICS, June 2006.
29. M. Wolf and M. S. Lam. A data locality optimizing algorithm. In PLDI, pages 30–44, 1991.
30. J. Xue. Communication-minimal tiling of uniform dependence loops. JPDC, 42(1):42–59,

1997.

