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Abstract: Multi-transmitter aperture synthesis increases the effective
aperture in coherent imaging by shifting the backscattered speckle field
across a physical aperture or set of apertures. Through proper arrangement
of the transmitter locations, it is possible to obtain speckle fields with
overlapping regions, which allows fast computation of optical aberrations
from wavefront differences. In this paper, we present a method where
Zernike polynomials are used to model the aberrations and high-order
aberrations are estimated without the need to do phase unwrapping of the
difference fronts.
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1. Introduction

Coherent imaging is a growing area of research where objects are imaged using laser light. The
reflected wavefront is captured by an imaging system some distance away. Digital holography
is used to capture the optical phase of the light incident on the receiver. For typical diffuse
objects the reflected light creates fully developed speckle at the receiver, which limits imaging
system performance and complicates many approaches currently used to determine atmospheric
aberrations.

Coherent aperture synthesis is a technique which enables high-resolution imagery by syn-
thesizing a large aperture through the combination of image data from multiple smaller sub-
apertures [1, 2]. Each sub-aperture captures the pupil field using some holographic imaging
technique, then the measured sub-aperture fields are placed in a common pupil plane corre-
sponding to the physical locations of the sub-apertures, and the composite pupil plane field is
Fourier transformed, thus forming a digital image. Using a sharpness measure (applied on the
image formed), the inter-aperture aberrations (including piston, tip, tilt, rotation, and shift) and
intra-aperture aberrations (such as defocus, astigmatism, coma) can be corrected [3].

The multi-transmitter aperture synthesis idea has been recently proposed in [4]. By using
multiple transmitters at different locations, and turning on one transmitter at a time, an aperture
captures shifted pupil fields. This effectively turns a single, physical aperture into a multi-
aperture imaging system, where coherent aperture synthesis technique could be used to ob-
tain high-resolution imagery. The technique requires that target motion orthogonal to the line
of sight over the course of the measurements is either known or is small with respect to the
aperture’s resolution; while the system is also sensitive to piston motion on the order of the
wavelength the phase error can readily be found and corrected due to the resulting overlapping
pupil data. When the apertures are sparsely distributed, the aberrations are estimated by defin-
ing and optimizing a sharpness measure on the object image [5–8]. The aberrations are typically
modeled with Zernike polynomials [9], and the problem is defined as calculating the optimal
weights of Zernike polynomials to maximize the sharpness measure. While this approach has
been demonstrated to be effective in multi-transmitter aperture synthesis [4], the downside is
the computational complexity of the required optimization process.

Instead of forming a set of sparsely distributed apertures, the transmitter locations can be
placed close enough so that the pupil field captured by the shifted apertures overlap [10]. Over-
lapped aperture data is used to estimate the aberrations common to all of the aperture realiza-
tions based on techniques similar to lateral shearing interferometry. Essentially, the wavefront
difference in the overlap region is derived in terms of aberration parameters, which are then
estimated from the measured data. The technique is based on the assumption that the static
and atmospheric aberrations present in the aperture aside from piston are constant across the
measurements; this requires that all measurements are recorded within the atmospheric co-
herence time in order to reconstruct the dynamic atmospheric aberrations. In [10], the idea is
demonstrated with low-order aberrations by modeling the aberrations with bivariate polyno-
mials. Instead of bivariate polynomials, Zernike polynomials could be used to model optical
aberrations. While Zernike polynomials form a complete orthogonal basis on a circular pupil,
their shifted differences are not necessarily linearly independent. In the lateral shearing inter-
ferometry literature, the difference front has been modeled in various ways, including Zernike
polynomials [11], Zernike polynomials with largest possible elliptical domain [12] or largest
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possible circular domain [13] in the overlap region, and numerical orthogonal polynomials [14].
In this paper, we present a method to estimate aberrations for multi-transmitter aperture

synthesis. The aberrations are modeled with Zernike polynomials and the difference front is
directly used without any polynomial fitting unlike the method in [10]. We segment the dif-
ference front into sub-regions; each sub-region has an unknown phase offset, which is added
to the set of linear equations to be solved. Zernike coefficients that model the aberrations are
estimated along with the phase offsets without the need to do 2D phase unwrapping of the dif-
ference front. The estimated Zernike coefficients are then used to compensate for the modeled
aberrations.

2. Proposed method

As illustrated in Fig.1 and described in [4,10], the modeled multi-transmitter system illuminates
a scene with one transmitter at a time and independently captures the backscattered fields in
the pupil plane. Because of the shift in the transmitter locations, the backscattered target field
Ub(x,y) is shifted by the same amount (in the reverse direction). On the other hand, the phase
error is static because the sensor is fixed. Suppose that we measure two pupil-plane fields,
U1(x,y) and U2(x,y), each with a different transmitter locations:

Ui(x,y) = P(x,y)exp( j2πWe(x,y))Ub(x− xi,y− yi), i = 1,2, (1)

where P(x,y) is the pupil function, We(x,y) is the wavefront error, and (x1,y1) and (x2,y2) are
the shift amounts in the backscattered fields due to transmitter locations. Let Wb(x,y) be the
wavefront of Ub(x,y), then the detected wavefronts are

Wi(x,y) =We(x,y)+Wb(x− xi,y− yi), i = 1,2. (2)

The object wavefront is not well defined and may contain several branch points, so it is de-
sirable to calculate the aberration wavefront independent of the target wavefront. It is possible
to numerically remove the dependence on the backscattered wavefront by first registering the
wavefronts Wi(x,y) according to the shift amounts. The registration can be achieved based on
calibrated measurement of the shifts due to transmitter locations, as well as by registering the
pupil plane speckle intensity returning from the target [10]. By taking the difference between
the wavefronts in the overlapping area (accomplished by multiplying one complex field by the
complex conjugate of the other), the wavefront difference (the difference front) becomes

ΔW (x,y) = W1(x+ x1,y+ y1)−W2(x+ x2,y+ y2) (3)

= (We(x+ x1,y+ y1)+Wb(x,y))− (We(x+ x2,y+ y2)+Wb(x,y))

= We(x+ x1,y+ y1)−We(x+ x2,y+ y2).

In other words, after registration, the difference between the phase maps of measured fields is
essentially due to the wavefront error. The goal is to estimate the wavefront error and compen-
sate for that. Note that ΔW (x,y) may have phase wraps although not explicitly written in (3),
and we will explain how to handle phase wrapping issue shortly.

We model optical aberrations with Zernike polynomials. Let We(x,y) = ∑k akZk(x,y), where
Zk(x,y) is a Zernike polynomial and ak is the unknown coefficient corresponding to Zk(x,y).
Then, the wavefront difference becomes

ΔW (x,y) = ∑
k

akZk(x+ x1,y+ y1)−∑
k

akZk(x+ x2,y+ y2) (4)

= ∑
k

ak (Zk(x+ x1,y+ y1)−Zk(x+ x2,y+ y2))

= ∑
k

akΔZk(x,y),
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Fig. 1. Multi-transmitter system. The scene is illuminated with one transmitter at a time. A
shift of Δx in the transmitter location results in a shift of −Δx in the backscattered field.
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Fig. 2. (a) Wavefront difference between two overlapping apertures. (b) Sub-regions with
uniform phase offset.

where we defined ΔZk(x,y)≡ Zk(x+ x1,y+ y1)−Zk(x+ x2,y+ y2).
At this point, one may propose to solve for ak by forming a linear set of equations for all po-

sitions (x,y). There are, however, two important issues. First, the difference front ΔZk(x,y) does
not form an orthogonal basis, resulting in a set of equations that are not linearly independent.
The problem could be alleviated by using multiple measurements corresponding to transmitter
separations along different directions giving additional overlapping regions, which could re-
sult in an over- or well-determined system necessary for the proposed approach to successfully
calculate the desired aberration coefficients. Second, the difference front ΔW (x,y) needs to be
phase unwrapped. Looking at Fig.2(a), we see that there could be phase jumps of 2π from one
region to another. That is, the equation (4) is not valid for all pixels in the overlap region. On
the other hand, the overlap region could be divided into sub-regions, where there is no phase
wrap as illustrated in Fig.2(b); and within each sub-region, we could write (4) with a constant
but unknown phase offset. In sub-region m, the wavefront difference at the ith position in that
sub-region is

ΔW (m)(x(m)
i ,y(m)

i ) = α(m) +∑
k

akΔZ(m)
k (x(m)

i ,y(m)
i ), (5)

where α(m) is the unknown phase offset , ΔZ(m)
k (x(m)

i ,y(m)
i ) is the difference between Zernike

polynomials, and ak is the coefficient of the kth Zernike polynomial. Let Nm be the number of
pixels in sub-region m and M be the number of sub-regions, then we form the following linear
set of equations:
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Fig. 3. (a) Actual multi-transmitter system. (b) Equivalent multi-aperture system.
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(6)

The unknown parameters α(1), ...,α(M),a1, ...,aK can be estimated in a number of ways; in
this paper they are estimated using the QR decomposition based pseudo-inverse operation (the
“backslash” operator in MATLAB). The Zernike coefficients a1, ...,aK are then used to correct
for the aberrations in each aperture.

Note that the matrix equation (6) is not limited to two transmit realization of the aperture. If
there are more than two transmitters, the sub-regions from any pair of apertures are included in
this matrix equation.

3. Experimental results

We present several experiments to demonstrate the method. A three-transmitter imaging system
shown in Fig. 3(a) is simulated. The simulation models an optically diffuse object at range, L,
which is flood illuminated by a coherent laser source of wavelength λ . The complex-valued
field reflected off the object is modeled with amplitude equal to the square root of the object’s
intensity reflectance and phase a uniformly distributed random variable over −π to π . The
complex-valued field in the receiver plane, subject to the paraxial approximation, is given by
the Fresnel diffraction integral [15]. The Fresnel diffraction integral is numerically evaluated
using the angular spectrum propagation method [16]. The object plane and receiver pupil planes
in the simulation consisted of N = 2048× 2048 computational grids with identical 182μm
sample spacings in both planes. The optical wavelength, λ , is 1.55μm , and the range, L, from
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Fig. 4. (a) to (c) show the phase difference in overlap regions. (d) to (e) show the sub-
regions within each overlap region.

the receive pupil plane to the object is 100 meters. The numerical propagation consists of 10
partial propagations of 10 meters each to avoid the wraparound effects. The optical field in the
receiver pupil plane is collected using a 48mm diameter aperture with three transmitters in the
configuration shown in Fig.3(b). The focused optical fields are then aberrated using randomly
weighted Zernike polynomials.

To estimate the aberrations, we register the pupil fields according to the transmitter locations
and take the difference between the wavefronts in the overlapping regions, as shown in Fig.
4(a) to 4(c). There are three overlap regions. Within each overlap region, we determine the
sub-regions through segmentation. Our segmentation procedure is as follows. We first detect
the edges using the Canny edge detector [17]. The edge lines are morphologically dilated (with
a 3×3 kernel) to have a wider coverage of discontinuities. Region segments outside the edges
form the sub-regions. The extracted sub-regions are shown in Fig. 4(d) to 4(f). As seen in
these sample results, the segmentation procedure may result in over-segmentation, however,
this is not an issue. The opposite (under-segmentation), on the other hand, would be an issue
as multiple regions with different phase offsets would be forced to have the same phase offset,
which would degrade the estimation of the Zernike coefficients. With over-segmentation, the
only concern is the introduction of additional phase offset parameters to be estimated, and
therefore an increase in the computational cost. One possible approach to reduce computational
cost is to discard small sub-regions, which should not affect the performance as the majority of
pixels are included. In our experiments we discard sub-regions that are less than 20 pixels, and
place the remaining sub-regions into the matrix equation (6).

In conventional shearing interferometry the difference front is interpreted as the slope or gra-
dient of the aberration at a given location along the direction of the shear, here we instead use
a matrix based approach to give a system of equations to relate the observed difference fronts
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Fig. 5. (a) Image formed at an aperture by averaging 30 speckle realizations. (b) Estimated
phase error using the proposed algorithm. (Units are in waves; up to fifth order Zernike
polynomials are used.) (c) Aberration corrected first aperture, corresponding to (a). (d)
Composite formed by all three aberration-corrected apertures.
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Fig. 6. Root mean square error in the wavefront reconstruction as a function of root mean
square wavefront aberration.

and those that would be expected from a particular aberration. Through a pseudo-inverse oper-
ation we obtain the least squares solution minimizing the difference between the observed and
calculated difference fronts. This linear algebraic approach without the need for unwrapping
allows the aberration to be estimated efficiently even with a complex target scene present.

An image formed using one of the three transmit locations is shown in Fig. 5(a). The phase
aberration obtained through solving (6) is shown in Fig.5(b). The aberration is found for a single
speckle realization, then the aberration correction is applied to 30 different speckle realizations,
which are finally averaged with the result shown in Fig.5(c). We can synthesize a larger aperture
by placing all three pupil fields in a common plane; the resulting composite image, averaged
over 30 realizations, is shown Fig.5(d), which has a higher spatial resolution than Fig.5(c).

We also wanted to evaluate the performance of the algorithm with noise present. In ad-
dition to the phase aberrations, we corrupt the pupil field data with additive white Gaussian
noise [18]. Here the SNR is defined as the average ratio of the signal intensity to the noise
intensity for all the pixels in the coherent receiver, this would be equivalent to the number of
target photo-electrons collected at each pixel for a shot noise limited system. We calculate the
root mean square (RMS) wavefront reconstruction error for different noise amounts and wave-
front aberrations. In an experiment, wavefront aberration is simulated by randomly choosing
the coefficients of Zernike polynomials from a specific range, and its RMS value is recorded; in
addition, random noise with a specific signal to noise ratio is created for each realization. The
actual wavefront is degraded with the simulated wavefront aberration and noise; the proposed
algorithm is then used to perform the restoration, and the RMS wavefront reconstruction error
is calculated. We repeat the experiment 100 times for each signal to noise ratio, Zernike aber-
ration order and coefficient range. The overall results are shown in Fig. 6. For lower strength
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Fig. 8. A sample restoration, where the RMS wavefront aberration is 0.4951 and the signal
to noise ratio is 100. (a)-(c) The difference fronts and the corresponding sub-regions are
displayed. (d) Actual wavefront aberration. (e) Estimated wavefront aberration. (f)-(g) The
difference between the actual and estimated wavefront aberrations. The RMS wavefront re-
construction error is 0.0403. Note that in (d)-(f), the same colormap is used for comparison
purposes.
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aberrations the reconstruction error appears to be only a function of the signal to ratio. For
higher strength aberrations the performance starts to deteriorate due to the smaller and noisy
segments in the overlap area. In Fig. 7, RMS wavefront reconstruction error is plotted against
signal to noise ratio. A sample restoration result is given in Fig.8. The segmented regions are
apparently more fragmented due to noise; but a satisfactory restoration can still be achieved.

4. Conclusions

In this paper we present a method to estimate aberrations, modeled with Zernike polynomi-
als, in a multi-transmitter imaging system. We choose the transmitter locations to form over-
lap regions between effective apertures and avoid computationally costly iterative optimization
techniques. In order to avoid 2D phase unwrapping, the difference wavefront is segmented into
sub-regions. (The segmentation process discards edge pixels to avoid misplacement; it is possi-
ble to minimize the amount of pixels discarded by using sub-pixel accurate edge detection.) The
phase offset in each sub-region is not known and is included in the set of linear equations along
with the unknown Zernike polynomial coefficients. The estimation is simply a pseudo-inverse
operation. We reported modeled results with fifth and seventh order aberrations.

The reconstruction method proposed here could be used with multi-transmitter, multi-
receiver sparse aperture imaging systems. By forming overlaps between different apertures,
it is possible to estimate piston/tip/tilt errors between apertures by including the corresponding
Zernike polynomials.

We use an aperture configuration, which results in the coverage of entire pupil area so that the
system of equations gives a solution for the aberration in all areas of the pupil that is represented
by the Zernike coefficients found. If the configuration did not cover the entire pupil area (that is,
when the distance between the transmitter locations were larger than the aperture radius), then
the system would be under-determined due to some parts of the aberration not being accounted
for in the overlap regions (typically in the center of the aperture). Similar to other shearing
interferometry approaches, some higher spatial frequency aberrations cannot be reconstructed
when those spatial frequencies are cyclical over transmitter separations. For the case shown
the separations were maximized to achieve a larger effective aperture, for situations where
aberration spatial frequencies are of concern smaller transmitter separations would be desirable.
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