
2690 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 9, SEPTEMBER 2011

[26] D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoothness
via wavelet shrinkage,” J. Amer. Statist. Assoc., vol. 90, no. 432, pp.
1200–1224, 1995.

[27] A. Benazza-Benyahia and J.-C. Pesquet, “Building robust wavelet es-
timators for multicomponent images using Stein^{\prime}s principle,”
IEEE Trans. Image Process., vol. 14, no. 11, pp. 1814–1830, Nov.
2005.

[28] F. Luisier, T. Blu, and M. Unser, “A new SURE approach to image
denoising: Interscale orthonormal wavelet thresholding,” IEEE Trans.
Image Process., vol. 16, no. 3, pp. 593–606, Mar. 2007.

[29] S. Ramani, T. Blu, and M. Unser, “Monte-Carlo SURE: A black-box
optimization of regularization parameters for general denoising algo-
rithms,” IEEE Trans. Image Process., vol. 17, no. 9, pp. 1540–1554,
Sep. 2008.

[30] D. Van De Ville and M. Kocher, “SURE-based non-local means,” IEEE
Signal Process. Lett., vol. 16, no. 11, pp. 973–976, Nov. 2009.

[31] T. Blu and F. Luisier, “The SURE-LET approach to image denoising,”
IEEE Trans. Image Process., vol. 16, no. 11, pp. 2778–2786, Nov. 2007.

[32] J. Salmon, “On two parameters for denoising with non-local means,”
IEEE Signal Process. Lett., vol. 17, no. 3, pp. 269–272, Mar. 2010.

[33] J. Salmon and Y. Strozecki, “From patches to pixels in non-local
methods: Weighted-average reprojection,” in Proc. 2010 IEEE 17th
Int. Conf. Image Process., 2010, pp. 1929–1932.

Fast Bilateral Filter With Arbitrary Range and
Domain Kernels

Bahadir K. Gunturk, Senior Member, IEEE

Abstract—In this paper, we present a fast implementation of the bilat-
eral filter with arbitrary range and domain kernels. It is based on the his-
togram-based fast bilateral filter approximation that uses uniform box as
the domain kernel. Instead of using a single box kernel, multiple box ker-
nels are used and optimally combined to approximate an arbitrary domain
kernel. The method achieves better approximation of the bilateral filter
compared to the single box kernel version with little increase in compu-
tational complexity. We also derive the optimal kernel size when a single
box kernel is used.

Index Terms—Image enhancement, nonlinear filtering.

I. INTRODUCTION

The bilateral filter is a nonlinear weighted averaging filter, where the
weights depend on both the spatial distance and the intensity distance
with respect to the center pixel. The main feature of the bilateral filter
is its ability to preserve edges while doing spatial smoothing. The term
“bilateral filter” was first used by Tomasi and Manduchi in [1]; the
same filter was earlier called the SUSAN (Smallest Univalue Segment
Assimilating Nucleus) filter by Smith and Brady in [2]. The variants of
the bilateral filter have been published even earlier as the sigma filter
[3] and the neighborhood filter [4].
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At a pixel location � � ���� ���, the output of the bilateral filter is
calculated as follows:

����� �
�

����
��� ���

����� � ������������ ���������� (1)

where ����� is the spatial domain kernel, ����� is the intensity range
kernel, � ��� is the set of pixels within a spatial neighborhood of �,
and ���� is the normalization term

���� �
��� ���

������ ������������ ������� (2)

The kernels����� and����� determine how the spatial and intensity
differences are treated. The contribution (weight) of a pixel ���� is
determined by the product of ����� and �����. The bilateral filter in
[1] uses the Gaussian kernel, ����� � �������		
��, for both the
domain and range kernels:

������ ��� � �� ��� � ��� (3)

and

��������� ������ � �� ������� ������� (4)

On the other hand, the sigma filter [3] and the neighborhood filter [4]
use different kernels. The sigma filter [3] first calculates the local stan-
dard deviation around ����; the standard deviation is then used to de-
termine a threshold value for pixel intensities, and pixels that are within
the threshold of the center pixel ���� are averaged (with equal weights)
to calculate the filter output at that pixel. In case of the neighborhood
filter [4], the range kernel is a Gaussian as in (3), and the spatial kernel
is a uniform box kernel. Among different kernel options, the Gaussian
kernel is the most popular choice for both the range and spatial kernels,
as it gives an intuitive and simple control of the behavior of the filter
with two parameters, 
� and 
� .

The bilateral filter has found a wide range of applications in image
processing and computer vision. The immediate application of the bi-
lateral filter is image denoising as it can do spatial averaging without
blurring edges. [5] presents a multiresolution extension of the bilateral
filter for image denoising and an empirical study on optimal parameter
selection. It is shown that the optimal value of 
� is relatively insensi-
tive to noise power, while the optimal 
� value is linearly proportional
to the noise standard deviation. Other applications of bilateral filter in-
clude tone mapping in high-dynamic range imaging [6], contrast en-
hancement [7], [8], fusion of flash and no-flash images [9], [10], fusion
of visible spectrum and infrared spectrum images [11], compression
artifact reduction [12], 3-D mesh denoising [13], [14], depth map es-
timation [15], video stylization [16], video enhancement [17], texture
and illumination separation [18], orientation smoothing [19], and op-
tical flow estimation [20].

This paper presents a fast approximation of the bilateral filter with
arbitrary range and domain kernels. It is based on a method presented
by Porikli in [21]. The method in [21] (which uses a box domain
kernel) is extended by optimally combining multiple box kernels to
approximate an arbitrary domain kernel. As there is no restriction on
the range kernel either, any range and domain kernels can be used
with this fast bilateral filter implementation. Section II reviews the
fast bilateral filter techniques in the literature. The proposed method is
explained in Section III. In Section IV, the question of optimal kernel
size in case of a single box kernel is addressed. Section V provides
some experimental results, and Section VI concludes the paper.

1057-7149/$26.00 © 2011 IEEE
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II. FAST BILATERAL FILTER METHODS

The direct implementation of the bilateral filter is given here.
• For each pixel � � � , where � is the set of all pixels in the image
• Initialize: ����� � � and ���� � �.
• For each � in the local neighborhood � of �:

• Calculate the weight: � � ����� � ����������� �������.
• Update: ����� � ����� � �����.
• Update: ���� � ���� � �.

• Normalize: ����� � ����������.
The computational complexity of this implementation is ������� ��,
where ��� is the number of pixels in the entire image and �� � is the
number of pixels in the neighborhood � . The local neighborhood is
typically chosen such that ����� � ���; therefore, the neighborhood
size �� � is proportional to ��� . While the overall complexity� ������
is acceptable for small ��, it quickly becomes limiting with increasing
��. To address this issue, a number of fast implementation/approxima-
tion methods have been proposed.

A. Kernel Separation

One method of speeding up the bilateral filter is to separate the 2-D
filter kernel into two 1-D kernels. First, the rows of an image are fil-
tered; the result is then filtered along the columns [22], [23]. This re-
duces the complexity to ��������. Although its performance is good
in smooth regions and horizontal/vertical edges, the algorithm may not
perform satisfactorily on texture regions because of 1-D handling of
spatial domain.

B. Bilateral Grid

Another fast bilateral filter algorithm is obtained through rep-
resenting an image in a 3-D space, where the signal intensity is
added to the spatial domain as the third dimension [24]. This vector
representation can be used to interpret the bilateral filter as linear
filtering the entries of a vector-valued image separately, followed
by point-by-point division. Because the linear filtering involved is
low-pass filtering, the results are bandlimited and can be represented
well with their low-frequency components. Therefore, the 3-D grids
can be downsampled without losing much performance to speed up
the algorithm. The work in [24] proposes downsampling of the spatial
domain � by �� and the intensity range 	 by �� . The complexity of
the algorithm then becomes ����� � ����������	������.

C. Polynomial Representation of Range Filter

In [21], the author presents two approaches for a fast bilateral filter.
The first approach does not have any restriction on the domain filter, but
the range kernel is approximated with a polynomial. Doing a Taylor se-
ries expansion on the Gaussian range filter, it turns out that the bilateral
filter could be approximated through linear filtering images � , ��, ��,
etc., and point-by-point multiplication/division of the results. The per-
formance of this algorithm is good for small �� , but it degrades quickly
for large �� since the polynomial representation does not approximate
the Gaussian well. The use of higher order polynomials should improve
the results.

D. Local-Histogram-Based Bilateral Filter With Box Spatial Filter

The second approach presented in [21] is based on the use of a uni-
form box kernel for the domain kernel. With the box kernel �� �
�, the
bilateral filter can be written in terms of local histograms as
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where � � in 	�
 
��� for an 8-bit image, 	��� is the local histogram
in the 
� � � � 
� � � neighborhood around �, ���
� is the box
kernel, given by
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(6)

and ����� is the normalization term, given by

����� �

���

���

	������������ ������� (7)

There are several advantages of this formulation [21], including
those given here.

1) ������ ������ can be calculated for all values of � and at
all locations � independently and therefore in parallel. Simi-
larly, 	������ and �	������, which are also required in the
bilateral filter calculation (5), can be obtained independent of
������ ������.

2) 	������ can be calculated efficiently using the integral histogram
technique [25].

3) The algorithm can be further speeded up by quantizing the
histogram.

As a result, the box bilateral filter can be implemented independent
of the kernel size. The method can be applied to 16-bit images (e.g., in
medical, satellite, and microscopy, applications) as well and extended
to color images through either processing each color channel separately
[21] or using 3-D integral histograms [25]. A similar histogram-based
method was proposed in [26], although the histogram computation is
not as efficient as the one in [21], which also reports that the box bilat-
eral filter outperforms other fast bilateral filters available at the time in
terms of speed-versus-quality tradeoff characteristics.

In addition to the above-mentioned methods, there are some other
fast bilateral filter implementations. In [6], the signal intensities are
quantized such that the final output is obtained through linear interpo-
lation of a set of linear filter outputs. [27] shows that this method can be
used with constant-time bilateral filters and further improve the speed.
In [28], the block size is adjusted to gain speed improvements, while
[29] considers the memory usage as well as the accuracy of implemen-
tation. In [30], compared with the regular grid representation of the
bilateral grid [24], a more efficient Gaussian kd-tree representation is
used to improve over [24]. An alternative high-dimensional representa-
tion is presented in [31], where the permutohedral lattice representation
is shown to be more efficient than the Gaussian kd-tree for large filter
size.

III. PROPOSED METHOD

Our method is based on the histogram-based method of [21]. Instead
of a single box bilateral filter, we would like to approximate the bilateral
filter as a weighted sum of multiple box bilateral filters

����� �
�

���

�� ������� (8)

Note that, in this equation, ������ is the input image ���� itself. This is
not inconsistent with our previous definition of ������ because ���
�
is a Kronecker delta function according to (6), and therefore ������ be-
comes ���� in (5).
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We will show that �
���

�� ������ can approximate ����� better
than any box bilateral filter ������, and the computational cost is not
increased significantly. Now, the question that needs to be answered is
the optimal values of ��. First, we write (8) as

�

����
�

�� ��� � ������������ ����������
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�
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�
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���������� ������ ���� (9)

where we switched the order of summations in the last line. To mini-
mize the approximation error at an arbitrary point, the coefficients of
���� on both sides of (9) should be close to each other. To keep a simple
notation, we absorb the normalization coefficients into ��; in other
words, we redefine �� as ������������. Then, we want the fol-
lowing coefficients to be close:

�� ��� � ������������ ������ (10)

and

�

���

������ � ����������� ������� (11)

Therefore, we define the error function to be minimized as
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���
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where � � ���
 ��
 � � � 
 ����� is the set of pixels within the support
of the domain kernels.

Minimization of this error function is equivalent to solving the fol-
lowing linear set of equations:
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(13)

whose solution is� � ����������. This is independent of the input
image and only requires the parameters ��, the size of the neighbor-
hood � , and the number of box filters parameter � .

For a given image, ������, ������
 � � � 
 ��� ��� are calculated, and a
weighted sum of these images and the input image produces the filter
output. The box bilateral filter implementation involves calculation of
integral histogram, calculation of local histogram
��� , and evaluation

of (5). For the proposed bilateral filter, the local histogram calculation
and the evaluation of (5) are repeated� times; the integral histogram is
calculated once and not repeated. The repetitions do not add much com-
putational cost: the local histograms can be obtained by linear filtering
the integral histogram, and the evaluation of (5) requires point-by-point
multiplications of arrays that can be obtained in parallel. Calculation of
� is not an issue either as it can be done offline and saved in a lookup
table. In our unoptimized MATLAB implementation (on a 2.4-GHz ma-
chine), the box bilateral filter takes 0.61 s for a 256� 256 image with
histogram quantization level of 15. The proposed bilateral filter adds
0.07 s for each additional � ; that is, it takes 0.68 s for � � �, 0.75 s
for� � �, and so on. Through optimization of the codes, it is possible
to reduce these numbers further.

The memory usage of the histogram-based method [21] is about��
�� �, where � is the number of histogram bins, and �� � is the number
of pixels in the image, and it is basically allocated to store the integral
histogram. We should note that this method is not the most memory-
efficient fast bilateral filter; for example, [27] has a memory usage of
	��� �, and [29] has a memory usage of���� ��	�
�. The proposed
method is based on [21], and has similar memory usage. The memory
space �� �� � allocated for the integral histogram does not change; if
the output image of each box filter is stored separately as it is done in
this paper, then the additional memory requirement is � � �� �; that
is, the total memory usage of the proposed method is ��
��� �� �.
The algorithm could be implemented in a more memory-efficient way
by not saving the output of each filter separately but updating single
output as different size box filters are applied.

IV. WHAT IS THE BEST SINGLE BOX BILATERAL FILTER?

In the previous section, we showed how to optimally combine mul-
tiple box bilateral filters. If we are supposed to use a single box bilateral
filter, then we would like to know what box size we should choose. The
optimal box size can be derived using the error function (12). In the
Appendix, we write the continuous version of (12) and derive the for-
mula for the optimal box size, and it turns out that � should be ��	��,
which needs to be rounded to the nearest integer in practice.

V. EXPERIMENTS AND ANALYSIS

We compared the outputs of the box bilateral filter and the proposed
bilateral filter with respect to the output of the standard bilateral filter
for different values of �� , ��, and histogram quantization levels. Fig. 1
shows the PSNR values of the proposed bilateral filter �� � �� and
five box bilateral filters �� � �
 � � � 
 �� for �� � 15, 25, 75, and
�� � ��

 ���
 � � � 
 ���. For each �� value, the �� values are calcu-
lated as discussed in the previous section. It is seen that the proposed
bilateral filter outperforms the box bilateral filter regardless of the size
of the box. The best box bilateral filter depends on the �� value. In
Tables I and II, we compared the PSNR of the proposed bilateral with
the best possible PSNR that can be achieved with a box bilateral filter
for �� � 5, 15, 25, 50, and 75 and �� � ��

 ���
 � � � 
 ���. It is ob-
served that, for small �� , the proposed bilateral filter does not improve
much over the box bilateral filter. The reason is that the defining factor
in the bilateral filter kernel becomes the range parameter �� if its value
is small; therefore, it does not make much difference whether the do-
main kernel is approximated well or not. For large values of �� , ��
becomes more important, and the improvement of the proposed bilat-
eral filter is more pronounced. Comparing Tables I and II, it is also
observed that with higher number of quantization levels (finer quanti-
zation of intensities), the improvement of the proposed bilateral filter
increases on average.

Fig. 2 shows a visual comparison of the standard, proposed, and box
bilateral filters. While the outputs of the proposed bilateral filter and
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Fig. 1. Approximation of the standard bilateral filter with the box bilateral filters and the proposed method. The test image is the standard Mandrill image, which
is of size 512� 512. To speed up the implementation, the intensity values are quantized to 15 bins. Left: � � ��; middle: � � ��; right: � � ��. In each
subfigure, blue lines are box bilateral filters for � � �� � � � � �; red lines are proposed bilateral filter with � � �.

TABLE I
APPROXIMATION OF THE STANDARD BILATERAL FILTER. BEST BOX: MAXIMUM PSNR THAT CAN BE ACHIEVED WITH A BOX FILTER.

PROPOSED: PSNR OF THE PROPOSED FILTER. THE QUANTIZATION LEVELS IS 15. THE RESULTS ARE

AVERAGE VALUES FOR THE BARBARA, LENA, BOAT, GOLDHILL, AND MANDRILL TEST IMAGES

TABLE II
APPROXIMATION OF THE STANDARD BILATERAL FILTER. BEST BOX: MAXIMUM PSNR THAT CAN BE ACHIEVED WITH A BOX FILTER.

PROPOSED: PSNR OF THE PROPOSED FILTER. THE QUANTIZATION LEVELS IS 25. THE RESULTS ARE AVERAGE VALUES

FOR THE BARBARA, LENA, BOAT, GOLDHILL, AND MANDRILL TEST IMAGES

the standard bilateral filter are very similar, the box bilateral filter loses
some texture details. The best box bilateral filter is with� � �, which
is also predicted by the formula derived in the Appendix.

In Fig. 3, we investigate the effect of the number of box filters on
PSNR performance. It is seen that � should be sufficiently large to
achieve the best possible performance. (A rule of thumb deducted from
the experiments is that � should be at least ��� to have the best per-
formance.) If � is not sufficiently large compared with ��, the pro-
posed filter cannot approximate the standard bilateral filter well. This
is the reason we are seeing drops in the PSNR curves for large values
of �� in both Figs. 1 and 3. On the other hand, using more than a suffi-
cient number of boxes does not degrade the performance, as we would
expect.

As a final experiment, we compared the standard, box, and proposed
bilateral filters in a denoising example. As seen in Fig. 4, the proposed
bilateral filter works very similar to the standard bilateral filter, while
box bilateral filter may over-blur or under-work.

VI. CONCLUSION

In this paper, we presented an extension of the box bilateral filter
to approximate the bilateral filter with arbitrary range and domain ker-
nels. Although we demonstrated the performance improvement for the
Gaussian kernel only, the proposed approximation method could be ap-
plied to other symmetric kernels as well. The method would be impor-
tant especially in applications where the shape of the domain kernel
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Fig. 2. Visual and quantitative comparison of the box and proposed bilateral filters with respect to the standard bilateral filter. (a) Standard bilateral
filter. (b) Gaussian low-pass filter ����� � 33.82 dB�. (c) Box bilateral filter with � � � ����� � 34.44 dB�. (d) Box bilateral filter with
� � 	 ����� � 39.68 dB�. (e) Box bilateral filter with � � 
 ����� � 37.94 dB�. (f) Proposed bilateral filter with � � � ����� � 42.28 dB�. The
parameters are as follows: the quantization level is 15, � � ���, and � � ��
.

Fig. 3. Effect of the number of box filters on the approximation of the standard
bilateral filter. Quantization level is 25. � � ��. (The test image is the standard
Barbara image of size 512� 512.)

is critical. One such example is the image denoising method of [32],
where the domain kernel is spatially adapted.

We included a set of experiments to demonstrate and analyze cer-
tain features of the method. The additional computational cost over the
single box bilateral filter is not much and would be bearable in applica-
tions where the domain kernel accuracy is crucial. Our implementation
was done in MATLAB without any optimization; this is not a concern in
this paper since the goal is to present the theoretical aspect.

A side information that can be deducted from the experiments is
the optimal box size when single box bilateral filter is used: Fig. 1
shows the best possible box size for various �� and �� values. A quick
look into the plots reveals that the best box size depends on ��, and
someone can come up with a rule of thumb for choosing the box size
based on ��. It is indeed possible (as shown in the Appendix) to derive
optimal box size using the error function defined to obtain the optimal
combination when multiple box kernels are used. We have observed
that the experimental data is consistent with the theoretically predicted
box sizes.

Finally, we should note that the derivations are based on the domain
kernel of the bilateral filter. We may expect deviations from the the-
oretical predictions based on the content of an image since the range
kernel is multiplied with the domain kernel to form the overall kernel.
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Fig. 4. Denoising example. (a) Input image. (b) Noisy image with noise standard deviation of 15 ����� � 24.64 dB�. (c) Box bilateral filter with � �
� ����� � 	
����. (d) Box bilateral filter with � � 	 ����� � 	
��
�. (e) Box bilateral filter with � � � ����� � 	
����. (f) Box bilateral filter with
� � � ����� � 	
��	�. (g) Box bilateral filter with � � � ����� � 	
�		�. (h) Standard bilateral filter ����� � 	
�
��. (i) Proposed bilateral filter
with � � � ����� � 	
����. The quantization level is 15, � � ��, and � � ��
.

APPENDIX

To derive the best single box kernel to approximate a Gaussian kernel
with spatial parameter ��, we write the 1-D continuous version of the
error function (12) for a single box kernel as

������� �
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where � is now an unknown nonnegative real number and ����� is
equal to 1 for ��� � � and 0 otherwise. We would like to find what

value of � minimizes this error function. At an extrema, the gradient
of the error function must be equal to zero; therefore, taking the deriva-
tive of ������� with respect to �� and �, we get the following
equations:
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Fig. 5. (a) Left and right sides of (17) for � � �. The intersection gives the optimal� value. (b) By repeating this process, we can obtain the optimal� values
for different � values. The data points show the optimal � values as a function � values.

and

��������

��
����� ���� ���

�
� ���� �����

� � ��� ����� � ����

� �� ���� ���� (16)

In other words, the optimal� should satisfy the following condition:

��� ��� �
�

�

�

�

�� ���	�� (17)

We have numerically found the solution to this integral equation.
Fig. 5(a) plots the left and right sides of (17) as a function of � for a
particular 
� value; the intersection of these curves gives the solution
for �. Repeating this procedure for different values of 
�, we obtain
a plot for the optimal � as a function of 
�. Fig. 5(b) verifies that the
� � ���
� line describes the relation very well. In practice, we need
an integer-sized box kernel; therefore, ���
� should be rounded to the
nearest integer to determine the best box kernel size.
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