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Multiresolution Bilateral Filtering
for Image Denoising

Ming Zhang and Bahadir K. Gunturk

Abstract—The bilateral filter is a nonlinear filter that does
spatial averaging without smoothing edges; it has shown to be
an effective image denoising technique. An important issue with
the application of the bilateral filter is the selection of the filter
parameters, which affect the results significantly. There are two
main contributions of this paper. The first contribution is an
empirical study of the optimal bilateral filter parameter selection
in image denoising applications. The second contribution is an
extension of the bilateral filter: multiresolution bilateral filter,
where bilateral filtering is applied to the approximation (low-fre-
quency) subbands of a signal decomposed using a wavelet filter
bank. The multiresolution bilateral filter is combined with wavelet
thresholding to form a new image denoising framework, which
turns out to be very effective in eliminating noise in real noisy
images. Experimental results with both simulated and real data
are provided.

I. INTRODUCTION

T HERE are different sources of noise in a digital image.
Some noise components, such as the dark signal nonuni-

formity (DSNU) and the photoresponse nonuniformity (PRNU),
display nonuniform spatial characteristics. This type of noise
is often referred as fixed pattern noise (FPN) because the un-
derlying spatial pattern is not time varying. Temporal noise,
on the other hand, does not have a fixed spatial pattern. Dark
current and photon shot noise, read noise, and reset noise are
examples of temporal noise. The overall noise characteristics
in an image depend on many factors, including sensor type,
pixel dimensions, temperature, exposure time, and ISO speed.
Noise is in general space varying and channel dependent. Blue
channel is typically the noisiest channel due to the low trans-
mittance of blue filters. In single-chip digital cameras, demo-
saicking algorithms are used to interpolate missing color com-
ponents; hence, noise is not necessarily uncorrelated for dif-
ferent pixels. An often neglected characteristic of image noise is
the spatial frequency. Referring to Fig. 1, noise may have low-
frequency (coarse-grain) and high-frequency (fine-grain) fluctu-
ations. High-frequency noise is relatively easier to remove; on
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Fig. 1. Portion of an image captured with a Sony DCR-TRV27, and its red,
green, and blue channels are shown in raster scan order. The blue channel is the
most degraded channel; it has a coarse-grain noise characteristics. The red and
green channels have fine-grain noise characteristics.

the other hand, it is difficult to distinguish between real signal
and low-frequency noise.

Many denoising methods have been developed over the
years; among these methods, wavelet thresholding is one of
the most popular approaches. In wavelet thresholding, a signal
is decomposed into its approximation (low-frequency) and
detail (high-frequency) subbands; since most of the image
information is concentrated in a few large coefficients, the
detail subbands are processed with hard or soft thresholding
operations. The critical task in wavelet thresholding is the
threshold selection. Various threshold selection strategies have
been proposed, for example, VisuShrink [1], SureShrink [2],
and BayesShrink [3]. In the VisuShrink approach, a universal
threshold that is a function of the noise variance and the
number of samples is developed based on the minimax error
measure. The threshold value in the SureShrink approach is
optimal in terms of the Stein’s unbiased risk estimator. The
BayesShrink approach determines the threshold value in a
Bayesian framework, through modeling the distribution of the
wavelet coefficients as Gaussian. These shrinkage methods have
later been improved by considering interscale and intrascale
correlations of the wavelet coefficients [4]–[8]. The method
in [4] models the neighborhoods of coefficients at adjacent
positions and scales as Gaussian scale mixture and applies
the Bayesian least squares estimation technique to update the
wavelet coefficients. The method, known as the BLS-GSM
method, is one of the benchmarks in the denoising literature due
to its outstanding PSNR performance. Some recent methods
have surpassed the PSNR performance of [4]. Among these
methods, [9] constructs a global field of Gaussian scale mix-
tures to model subbands of wavelet coefficients as a product
of two independent homogeneous Gaussian Markov random
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fields, and develops an iterative denoising algorithm. [10]–[12]
develop gray-scale and color image denoising algorithms based
on sparse and redundant representations over learned dictio-
naries, where training and denoising use the K-SVD algorithm;
[13] and [14] group 2-D image fragments into 3-D data arrays,
and apply a collaborative filtering procedure, which consists of
3-D transformation, shrinkage of the transform spectrum, and
inverse 3-D transformation. [15] models an ideal image patch
as a linear combination of noisy image patches and formulates
a total least squares estimation algorithm.

A recently popular denosing method is the bilateral filter [16].
While the term “bilateral filter” was coined in [16], variants of it
have been published as the sigma filter [17], the neighborhood
filter [18], and the SUSAN filter [19]. The bilateral filter takes a
weighted sum of the pixels in a local neighborhood; the weights
depend on both the spatial distance and the intensity distance. In
this way, edges are preserved well while noise is averaged out.
Mathematically, at a pixel location , the output of the bilateral
filter is calculated as follows:

(1)

where and are parameters controlling the fall-off of the
weights in spatial and intensity domains, respectively, is
a spatial neighborhood of and is the normalization constant

(2)

Although the bilateral filter was first proposed as an intuitive
tool, recent papers have pointed out the connections with some
well established techniques. In [20], it is shown that the bilat-
eral filter is identical to the first iteration of the Jacobi algorithm
(diagonal normalized steepest descent) with a specific cost func-
tion. [21] and [22] relate the bilateral filter with the anisotropic
diffusion. The bilateral filter can also be viewed as an Euclidean
approximation of the Beltrami flow, which produces a spectrum
of image enhancement algorithms ranging from the linear
diffusion to the nonlinear flows [23]–[25]. In [22], Buades
et al. proposes a nonlocal means filter, where similarity of local
patches is used in determining the pixel weights. When the patch
size is reduced to one pixel, the nonlocal means filter becomes
equivalent to the bilateral filter. [26] extends the work of [22]
by controlling the neighborhood of each pixel adaptively.

In addition to image denoising, the bilateral filter has also
been used in some other applications, including tone mapping
[27], image enhancement [28], volumetric denoising [29], ex-
posure correction [30], shape and detail enhancement from mul-
tiple images [31], and retinex [32]. [27] describes a fast imple-
mentation of the bilateral filter; the implementation is based on
a piecewise-linear approximation in the intensity domain and
appropriate sub-sampling in the spatial domain. [33] later de-
rives an improved acceleration scheme for the filter through ex-
pressing it in a higher dimensional space where the signal inten-
sity is added as the third dimension to the spatial domain.

Although the bilateral filter is being used more and more
widely, there is not much theoretical basis on selecting the op-

Fig. 2. MSE values between the original image and the denoised image for
different values of � , � , and the noise standard deviation � are displayed.
The results displayed are average results for 200 images. The number of samples
along the � (and � ) direction is 10; the results are interpolated to produce
smoother plots.

timal and values. These parameters are typically selected
by trial and error. In Section II, we empirically analyze these
parameters as a function of noise variance for image denoising
applications. We will show that the value of is more critical
than the value of ; we will in fact show that the optimal value
of (in the mean square error sense) is linearly proportional
to the standard deviation of the noise. In Section III, we will
propose an extension of the bilateral filter. We will argue that
the image denoising performance of the bilateral filter can be
improved by incorporating it into a multiresolution framework.
This will be demonstrated in Section IV with simulations and
real data experiments.

II. PARAMETER SELECTION FOR THE BILATERAL FILTER

There are two parameters that control the behavior of the bi-
lateral filter. Referring to (1), and characterizes the spatial
and intensity domain behaviors, respectively. In case of image
denoising applications, the question of selecting optimal param-
eter values has not been answered completely from a theoretical
perspective. [22] analyzes the behavior of the bilateral filter de-
pending on the derivative of the input signal and values.
Conditions under which the filter behaves like a Gaussian filter,
anisotropic filter, and shock filter were examined. [26] proposes
an adaptive neighborhood size selection method for the nonlocal
means algorithm, which can be considered as a generalization
of the bilateral filter. The neighborhood size is chosen to min-
imize the upper bound of the local risk; however, the effect
of the intensity domain parameter is not considered. In this sec-
tion, we provide an empirical study of optimal parameter values
as a function of noise variance, and we will see that the intensity
domain parameter is more critical than the spatial domain pa-
rameter .

To understand the relationship among , , and the noise
standard deviation , the following experiments were done.
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Fig. 3. Optimal � values as a function of the noise standard deviation � are plotted based on the experiments with 200 test images. The blue data points are the
mean of optimal � values that produce the smallest MSE for each � value. The blue vertical lines denote the standard deviation of the optimal � for the test
images. The least squares fits to the means of the optimal � �� data are plotted as red lines. The slopes of these lines are, from left to right, 2.56, 2.16, and 1.97.

Zero-mean white Gaussian noise was added to some test im-
ages and the bilateral filter was applied for different values of
the parameters and . The experiment was repeated for
different noise variances and the mean squared error (MSE)
values were recorded. The average MSE values are given in
Fig. 2. Examining these plots, it can be seen that the optimal

value is relatively insensitive to noise variance compared
to the optimal value. It appears that a good range for the

value is roughly [1.5–2.1]; on the other hand, the optimal
value changes significantly as the noise standard deviation
changes. This is an expected result because if is smaller

than , noisy data could remain isolated and untouched as in
the case of the salt-and-pepper noise problem of the bilateral
filter [16]. When is sufficiently large, becomes impor-
tant; apparently, increasing the value of too much results in
over-smoothing and decrease of MSE.

To see the relationship between and the optimal , we
set to some constant values, and determined the optimal
values (minimizing MSE) as a function of . The experiments
were again repeated for a set of images; the average values and
the standard deviations are displayed in Fig. 3. We can make
several observations from these plots. 1) Optimal and
are linearly related to a large degree. 2) The standard deviation
from the mean increases for larger values of . 3) When
value is increased, the linearity between the optimal and
still holds, but with lower slope. Obviously, there is no single
value for that is optimal for all images and values; in
fact, future research should look for spatially adaptive parameter
selection to take local texture characteristics into account. On
the other hand, these experiments at least tell us some guidelines
in selecting these parameters.

III. A MULTIRESOLUTION IMAGE DENOISING FRAMEWORK

As we have discussed in Section I, image noise is not neces-
sarily white and may have different spatial frequency (fine-grain
and coarse-grain) characteristics. Multiresolution analysis has
been proven to be an important tool for eliminating noise in
signals; it is possible to distinguish between noise and image
information better at one resolution level than another. Images
in Fig. 4 motivate the use of the bilateral filter in a multiresolu-
tion framework; in that figure, approximation subbands of a real
noisy image are displayed. It is seen that the coarse-grain noise

Fig. 4. Multiresolution characteristics of coarse-grain noise. A noisy image is
decomposed into its frequency subbands using db8 filters of Matlab. Part of
the image is shown at the original resolution level and at three approximation
subbands. The coarse-grain noise at the original level is difficult to identify and
eliminate; the noise becomes fine grain as the image is decomposed, and can be
eliminated more easily.

becomes fine-grain as the image is decomposed further into its
subbands. While it is not possible to get rid of the coarse-grain
noise at the highest level, it could be eliminated at a lower level.

The proposed framework is illustrated in Fig. 5: A signal is
decomposed into its frequency subbands with wavelet decom-
position; as the signal is reconstructed back, bilateral filtering
is applied to the approximation subbands. Unlike the standard
single-level bilateral filter [16], this multiresolution bilateral
filter has the potential of eliminating low-frequency noise com-
ponents. (This will become evident in our experiments with real
data. Such an observation was also made in [34] for anisotropic
diffusion, which has been shown to be related to the bilateral
filter. Also, [31] utilizes the bilateral filter in a multiresolution
scheme for shape and detail enhancement from multiple im-
ages.) Bilateral filtering works in approximation subbands; in
addition, it is possible to apply wavelet thresholding to the de-
tail subbands, where some noise components can be identified
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Fig. 5. Illustration of the proposed method. An input image is decomposed into its approximation and detail subbands through wavelet decomposition. As the
image is reconstructed back, bilateral filtering is applied to the approximation subbands, and wavelet thresholding is applied to the detail subbands. The analysis
and synthesis filters (� , � , � , and � ) form a perfect reconstruction filter bank. The illustration shows one approximation subband and one detail subband
at each decomposition level; this would be the case when the data is 1-D. For a 2-D data, there are, in fact, one approximation and three (horizontal, vertical,
and diagonal) detail subbands at each decomposition level. Also, in the illustration, there are two levels of decomposition; the approximation subbands could be
decomposed further in an application.

TABLE I
PSNR COMPARISON OF THE BAYESSHRINK METHOD [3], THE BILATERAL FILTER [16], SEQUENTIAL APPLICATION OF THE BAYESSHRINK [3] AND THE BILATERAL

FILTER [16] METHODS, NEW SURE THRESHOLDING [8], 3-D CF [14], AND THE PROPOSED METHOD FOR SIMULATED ADDITIVE WHITE GAUSSIAN NOISE OF

VARIOUS STANDARD DEVIATIONS (THE NUMBERS WERE OBTAINED BY AVERAGING THE RESULTS OF SIX RUNS)

and removed effectively. This new image denoising framework
combines bilateral filtering and wavelet thresholding. In the
next section, we will demonstrate that this framework produces
results better than the individual applications of the wavelet
thresholding or the bilateral filter, or successive application of
the wavelet thresholding and the bilateral filter. We will also
discuss the contribution of the wavelet thresholding to overall
performance.

IV. EXPERIMENTS AND DISCUSSIONS

We have conducted some experiments to see the performance
of the proposed framework quantitatively and visually. To do a

quantitative comparison, we simulated noisy images by adding
white Gaussian noise with various standard deviations to some
standard test images. These noisy images were then denoised
using several algorithms and the PSNR results were calculated.
For visual comparisons, real noisy images were used.

A. PSNR Comparison for Simulated Noisy Images

For each test image, three noisy versions were created by
adding white Gaussian noise with standard deviations 10, 20,
and 30. PSNR results for six methods are included in Table I.
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TABLE II
PSNR COMPARISON OF THE BAYESSHRINK METHOD [3], THE BILATERAL FILTER [16], 3-D CF [14], NEW SURE THRESHOLDING [8],

BLS-GSM [4], AND THE PROPOSED METHOD FOR THE SPACE VARYING NOISE SIMULATION

Fig. 6. Comparison of the proposed method for different intensity distance
measures and the number of decomposition levels. (a) Input image. (b) The dis-
tance measure is the Euclidean distance between (R,G,B) vectors. The number
of decomposition levels is 2 for all channels. (c) The distance measure is the
Euclidean distance between �� � � � vectors. The number of decomposition
levels is 2 for all channels. (d) Each channel is denoised separately in � � �

space. The number of decomposition levels is 1 for the� channel and 3 for the
� and � channels. (e) The distance measure is the Euclidean distance between
�� � � � vectors. The number of decomposition levels is 1 for the � channel
and 3 for the � and � channels. In these experiments, � � �, � � ��� ,
and � is estimated using the robust median estimator [3].

The first method is the BayesShrink wavelet thresholding algo-
rithm [3]. Five decomposition levels were used; the noise vari-

Fig. 7. Input images to be denoised using various algorithms. The top-left
image is the blue channel of an image captured with Sony DCR-TRV27. The
bottom-left image was captured with a Canon A530 at ISO 800. The other
images were downloaded from [35].

ance was estimated using the robust median estimator [1]. The
second method is the bilateral filter [16]. Based on our experi-
ments discussed in the previous sections, we chose the following
parameters for the bilateral filter: , , and
the window size is 11 11. The third method is the sequen-
tial application of [3] and [16]. The reason this method was in-
cluded is to see the combined effect of [3] and [16] and com-
pare it with the proposed method. The fourth method is the new
SURE method of [8]. It was recently published, and shown to
produce very good results with nonredundant wavelet decompo-
sition. The fifth method is the 3-D collaborative filtering (3-D
CF) of [13], [14]. The sixth method is the proposed method.
For the proposed method, db8 filters in Matlab were used for
one-level decomposition. For the bilateral filtering part of the
proposed method, we set the parameters as follows: ,
the window size is 11 11, and at each level.
In case of the original bilateral filter, was a better
choice. However, for the proposed method this lead to a smaller
PSNR value on average. The reason is the double application of
the bilateral filter in the proposed method. When was large,
the images were smoothed to produce low PSNR values. After
some experimentation, turned out to be a better
choice in terms of PSNR values. Here, we should note that a
higher PSNR does not necessarily correspond to a better visual
quality (we will discuss this shortly). For the wavelet thresh-
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Fig. 8. From top to bottom: Result of (a) the bilateral filter [16] with � � ���

and � � �� � , (b) the 3-D CF method [14], (c) the proposed method with
the number of decomposition levels is 4, � � ���, and � � �� � at each
level, (d) the proposed method with the number of decomposition levels is 4,
� � ���, and � � �� � at each level. The subband decomposition filters
are db8 in Matlab.

olding part of the proposed method, the BayesShrink method
[3] was used; and the noise variance was estimated again with
the robust median estimator technique. To eliminate the border
effects, images were mirror-extended before the application of
the bilateral filter and cropped to the original size at the end.

As seen in the PSNR results of Table I, the proposed method
is 0.8 dB better than the original bilateral filter and 1.1 dB better
than the BayesShrink method on average. The sequential appli-
cation of [3] and [16] is only slightly better than [3] and worse

than [16]. Therefore, we conclude that the improvement of the
proposed method is not due to the combined effect of [3] and
[16], but due to the multiresolution application of the bilateral
filter. While the new SURE method [8] is slightly worse than the
proposed method, the 3-D CF method [14] is 2 dB better than
the proposed method.

Most of the denoising methods are optimized for additive
white Gaussian noise (AWGN); however, the real challenge is
the performance for real noisy images. While we cannot quan-
titatively evaluate the performances for real noisy images, we
may simulate spatially varying noise and make a quantitative
comparison for it. This is more challenging than the AWGN
case and could be a better representative of the performance
for nonuniform noise situations. In our experiments, the space
varying noise is generated by using a 2-D sinusoid of the
same size as the input image; and the standard deviation of
the noise at each pixel is controlled based on the amplitude
of the sinusoid. To be specific, we generated the 2-D signal

, where is the
period of the sinusoid. For an input image , the noisy
image is . The experiment was repeated
for several standard test images (for and ); the
results are shown in Table II. Notice that methods specifically
designed for additive white Gaussian noise do not perform
well for this experiment. The neighborhood based denoising
method of [14], which can be considered as an extension of
the bilateral filter, is still the best; however, compared to the
simulated AWGN noise experiments, the gap between the pro-
posed method and [14] is much smaller. The standard bilateral
filter also produces very good results. This experiment tells the
effectiveness of the neighborhood based approach in case of
space varying noise.

B. Visual Comparison for Real Noisy Images

PSNR comparisons with simulated white Gaussian noise tell
only a part of the story: First, it is well known that the PSNR
is not a very good measure of visual quality; second, the white
Gaussian noise assumption is not always accurate for real im-
ages. As a result, experiments with real data and visual inspec-
tions are necessary to evaluate the real performance of image
denoising algorithms.

In case of color images, there is also the issue of what color
space to use. To achieve good PSNR performance, the RGB
space could be a good choice; however, for visual performance,
it is a better idea to perform denoising in the perceptually uni-
form color space. As humans find color noise
more objectionable than luminance noise, stronger noise fil-
tering could be applied to the color channels and com-
pared to the luminance channel without making the image
visually blurry. Fig. 6 provides results of the proposed method
for the RGB and the spaces. For the RGB space result
[Fig. 6(b)], the Euclidean distance between the (R,G,B) vectors
is used as the intensity domain distance measure, and two levels
of decomposition is applied to each channel. A close exami-
nation reveals that coarse-grain color artifacts are visible espe-
cially on the facial and hand regions. Fig. 6(c) is the result when
the Euclidean distance between the vectors is used,
and again two levels of decomposition is applied to each

Authorized licensed use limited to: Louisiana State University. Downloaded on December 11, 2008 at 12:51 from IEEE Xplore.  Restrictions apply.



2330 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 12, DECEMBER 2008

Fig. 9. (a) Result of the 3-D CF method [14]. (b) The bilateral filter [16] with � � ��� and � � � � � . (c) The bilateral filter [16] with � � ��� and
� � ��� � . (d) The bilateral filter [16] with � � ��� and � � ��� � . (e) The proposed method with the number of decomposition levels is (1,4,4) for
the �� � � � � 	 channels, respectively. That is, the � channel is decomposed one level, and � and � channels are decomposed four levels. (f) The proposed
method with the number of decomposition levels is (2,4,4) for the �� � � � � 	 channels, respectively. For the proposed method, � � ���, and � � �� � at
each level. The subband decomposition filters are db8 in Matlab. The noise parameter � is estimated using the robust median estimator.

Fig. 10. (a) Result of the 3-D CF method [14]. (b) The BLS-GSM result obtained from [35]. (c) The bilateral filter [16] result. (d) Result of the proposed method.
For the bilateral filter, � � ���, � � ��� � , and the window size is 11 � 11. For the proposed method, � � ���, � � �� � at each level, the window
size is 11 � 11, and the number of decomposition levels is (1,4,4) for the �� � � � � 	 channels, respectively. The wavelet filters are db8 in Matlab. The noise
parameter � is estimated using the robust median estimator.

channel. The results in Fig. 6(b) and (c) are very similar.
Fig. 6(d) is the result when each channel is treated separately,
and when the number of decomposition levels is 1, 3, and 3

for , , and channels, respectively. Fig. 6(e) is the result
when the Euclidean distance between the vectors
is used, and when the number of decomposition levels is 1, 3,
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Fig. 11. (a) Result of the 3-D CF method [14]. (b) The BLS-GSM result obtained from [35]. (c) The bilateral filter [16] result. (d) Result of the proposed method.
For the bilateral filter, � � ���, � � ��� � , and the window size is 11 � 11. For the proposed method, � � ���, � � �� � at each level, the window
size is 11 � 11, and the number of decomposition levels is (1,4,4) for the �� � � � � � channels, respectively. The wavelet filters are db8 in Matlab. The noise
parameter � is estimated using the robust median estimator.

and 3 for , , and channels, respectively. Notice that in
Fig. 6(d) and (e), texture is better preserved and coarse-grain
noise is better eliminated compared to the previous results.
Among the last two, there is not much observable difference.
As a result, for perceptual reasons, we advocate applying and
optimizing the denoising algorithms in the space.

Next, we show a set of results for real noisy images. In all
these experiments, and parameters fixed at
and produced very good results for the proposed
method ( was estimated using the robust median estimator
[3] for all images). Therefore, we can claim that the proposed
method is data-driven and robust for good visual performance.

Fig. 7 shows four test images. The first image is the blue
channel of an image captured with Sony DCR-TRV27. The
second image was captured with a Canon A530 at ISO 800.
The other images were downloaded from [35].

In Fig. 8, we compare the standard bilateral filter, the 3-D
CF method [14], and the proposed method. The input image
was corrupted significantly with coarse-grain noise. The results
show that the standard bilateral filter and the 3-D CF method
are not effective against the coarse-grain noise. We provide two
results for the proposed method. for one result; and

for the other. The coarse grain noise is reduced
significantly in both cases. While more noise components are
eliminated for larger , contouring artifacts may start to ap-
pear, which is a common problem of the bilateral filtering and
anisotropic diffusion.

In Fig. 9, we compare the 3-D CF method [14], the standard
bilateral filter and the proposed method. The standard bilateral
filter was tested for various values of and . Some repre-
sentative results are shown. As seen in Fig. 9(b)–(d), no matter
what parameter values are chosen for the standard bilateral filter,
the coarse-grain chroma noise could not be eliminated effec-
tively (we have also tested the iterative application of the bilat-

eral filter; the results were not good either, and were not included
in the figure). Two results obtained by the proposed method are
given: For the result in Fig. 9(e), the number of decomposition
levels for the luminance channel is one; and in Fig. 9(f) it is
two. For both results, the number of decomposition levels for
the chrominance channels is four. Coarse-grain chroma noise
is eliminated in both cases. Increasing the number of decom-
position levels for the luminance channel produces a smoother
image as seen in Fig. 9(f).

In Figs. 10 and 11, results of the 3-D CF method [14], the
BLS-GSM method [4], the bilateral filter [16], and the pro-
posed method are presented for real images provided at [35].
Among these methods, the proposed method is apparently pro-
ducing more visually pleasing results than the others. Notice the
lack of color in Fig. 10 for the proposed method; this is due to
the higher number of decomposition levels for the chrominance
channels. If the number of decomposition levels is reduced, the
result would be more colorful. In Fig. 11, noise was not com-
pletely eliminated by the 3-D CF or the BLS-GSM methods. The
result of the bilateral filter is less noisy but overly smoothed. The
result of the proposed method can be considered as the best vi-
sual one among three.

Finally, we should comment on the contribution of the
wavelet thresholding to the multiresolution framework (as
mentioned earlier, in our experiments, we used the BayesShrink
method [3] for the wavelet thresholding part). We have done
experiments with and without the wavelet thresholding. For
real image experiments, the difference is barely visible. That is,
the dominant contribution is coming from the multiresolution
bilateral filtering, and the contribution of wavelet thresholding
is little. On the other hand, in additive white Gaussian noise
simulations, wavelet thresholding has resulted in an improve-
ment of about 0.5 dB in PSNR. Considering all aspects, we did
not want to exclude wavelet thresholding from the proposed
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framework because another wavelet thresholding method could
produce better results, and we leave the investigation of this as
a future work.

V. CONCLUSION

In this paper, we make an empirical study of the optimal pa-
rameter values for the bilateral filter in image denoising applica-
tions and present a multiresolution image denoising framework,
which integrates bilateral filtering and wavelet thresholding. In
this framework, we decompose an image into low- and high-fre-
quency components, and apply bilateral filtering on the approx-
imation subbands and wavelet thresholding on the detail sub-
bands. We have found that the optimal value of the bilat-
eral filter is linearly proportional to the standard deviation of
the noise. The optimal value of the is relatively independent
of the noise power. Based on these results, we estimate the noise
standard deviation at each level of the subband decomposition
and use a constant multiple of it for the value of bilateral
filtering. The experiments with real data demonstrate the effec-
tiveness of the proposed method.

Note that in all real image experiments, values were esti-
mated from the data, and the same and values pro-
duced satisfactorily good results for the proposed method. That
is, once the parameters were decided, there was no need to re-ad-
just them for another image.

The key factor in the performance of the proposed method
is the multiresolution application of the bilateral filter. It
helped eliminating the coarse-grain noise in images. The
wavelet thresholding adds power the proposed method as some
noise components can be eliminated better in detail subbands.
We used a specific wavelet thresholding technique (i.e., the
BayesShrink method); it is possible to improve the results
further by using better detail-subband-denoising techniques
or using redundant wavelet decomposition. These issues and
the detailed analysis of parameter selection for the proposed
framework are left as future work. We believe that the proposed
framework will inspire further research towards understanding
and eliminating noise in real images and help better under-
standing of the bilateral filter.
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