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Super-Resolution Reconstruction of Compressed
Video Using Transform-Domain Statistics
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Russell M. Mersereau, Fellow, IEEE

Abstract—Considerable attention has been directed to the
problem of producing high-resolution video and still images from
multiple low-resolution images. This multiframe reconstruction,
also known as super-resolution reconstruction, is beginning to be
applied to compressed video. Super-resolution techniques that
have been designed for raw (i.e., uncompressed) video may not
be effective when applied to compressed video because they do
not incorporate the compression process into their models. The
compression process introduces quantization error, which is the
dominant source of error in some cases. In this paper, we propose
a stochastic framework where quantization information as well as
other statistical information about additive noise and image prior
can be utilized effectively.

Index Terms—DCT-domain reconstruction, MAP, multiframe
image reconstruction, POCS, super-resolution.

1. INTRODUCTION

N IMPORTANT problem that arises frequently in visual
communications and image processing is the need to en-
hance the resolution of a still image extracted from a video se-
quence or of the video sequence itself. This enhanced resolution
is possible because the spatial correlations between successive
image frames can be exploited. Such a multiframe reconstruc-
tion process is usually called super-resolution reconstruction.
Super-resolution reconstruction has many applications. One
is in the design of high definition television (HDTV) sets. As the
use of HDTV sets becomes widespread, a clear need for systems
that enhance standard definition TV signals to match the quality
and resolution of HDTV displays will develop. A related super-
resolution problem arises when we need to create an enhanced-
resolution still image from a video sequence, as when printing
stills from video sources. The human visual system requires a
higher resolution for a still image than for a sequence of frames,
with the same perceptual quality. NTSC video yields at most
480 vertical lines, whereas more than twice as many lines are
required to print with reasonable resolution on modern printers.
Another application area of super-resolution reconstruction is
aerial/satellite imaging. Because of the vast distances involved,
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some objects may not be properly resolved. When multiple im-
ages of the scene are available, super-resolution reconstruction
algorithms can be used to resolve details that would be im-
possible otherwise. Super-resolution reconstruction also finds
applications in security/surveillance systems, forensic science,
medical imaging, and astronomy.

Most of the work done in the area of super-resolution recon-
struction has not considered the compression process [1]-[17].
The input signal (video/image sequence) is assumed to exist
in a raw format instead of a compressed format. However, be-
cause of the limited resources that are often available (band-
width, storage space, I/O requirements, etc.), compression has
become a standard component of almost every data communica-
tion application. Printing from MPEG video sources, by defini-
tion, involves compressed video, standardized SDTV signals are
MPEG-2 compressed, and digital video cameras typically store
images in a compressed format. Unfortunately, super-resolution
algorithms designed for uncompressed data do not perform well
when directly applied to decompressed image sequences, espe-
cially for high compression rates. The reason is that the quan-
tization error introduced during the compression/quantization
process is often the dominant source of error when the com-
pression rate is high and this error is not modeled.

In this paper, we propose a Bayesian super-resolution recon-
struction technique that models compression and exploits the
quantization step size information (available in the data bit-
stream) in reconstruction. The proposed algorithm allows us
to use the statistical information about the quantization noise
and the additive noise at the same time. The framework is espe-
cially designed for the popular discrete cosine transform (DCT)
based video standards such as MPEG, H.261, and DV, although
it can easily be generalized to any compression method where
the transform involved is linear.

In Section II, we review the state-of-the-art in the area of
super-resolution reconstruction; and then we present a general
image acquisition and video compression model in Section III.
Section IV provides a Bayesian framework for the resolution
enhancement of compressed video problem and one possible
approach for its solution. Experimental results are presented in
Section V. Finally, in Section VI, our conclusions are discussed,
and some unsolved problems are given.

II. PREVIOUS WORK

The super-resolution idea was first addressed by Tsai and
Huang [1], who used the aliasing effect to restore a high-res-
olution image from multiple low-resolution low-resolution
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Image acquisition model used in super-resolution reconstruction. Because the reconstructed signal must be digital, the model includes a discretization

block to convert f(w, y) to f(n1,n2). f(n1,ns2) is the signal to be reconstructed.

images. This work was followed by some early approaches
[2]-[6], in which the reconstruction was limited to enhance-
ment in the presence of linear shift-invariant blurs and global
translational motion. More realistic approaches that allow for
linear shift-variant blur, arbitrary motion between the frames,
nonwhite noise, etc., can be divided into two distinct groups.
One group uses deterministic methods, such as Projections
Onto Convex Sets (POCS), to enhance the resolution in the
spatial domain without taking any source statistics into account
[7]-[13]. Stark and Oskoui [7] used the POCS method to
reduce the blur introduced by low-resolution sensors. Tekalp
et al. extended this POCS formulation to include sensor noise
[8]. Later in [9], Patti et al. incorporated the time-varying
motion blur induced by the motion of the camera, and an arbi-
trary sampling lattice into Tekalp’s model [8]. Other iterative
approaches were also proposed. Irani and Peleg [10] used the
method of iterated backprojections. Their method assumed
translational and rotational motion between the low-resolution
frames. Later, [11] and [12] extended this method for more
general motion models. Another method proposed by Komatsu
et al. [13] used a Landweber iteration technique.

The second group of methods is based on a statistical formu-
lation, such as a maximum likelihood or maximum a posteriori
probability (MAP) estimate [14]-[16]. In [14], Cheeseman et
al. used a Gaussian model for all distributions, and employed
Jacobi’s method to solve the problem iteratively. Schultz and
Stevenson [15] used a Markov Random Field model for the
high-resolution target image, aiming to preserve the edges in
the reconstruction by means of a Huber edge penalty function.
Elad and Feuer [16] proposed a hybrid method that applies the
set theoretic (POCS) and stochastic estimation approaches iter-
atively. Borman and Stevenson [17] extended the approach in
[15] to incorporate temporal smoothness constraints in the prior
image model.

All of these methods are based on the assumption that the
low-resolution images are available in the spatial domain, i.e.,
it is assumed that there is no compression stage. In this paper,
we focus on super-resolution from a video source that is avail-
able only in a compressed format such as MPEG, H.263 or
DV. In contrast to the abundance of methods proposed to en-
hance raw video, there are only a few methods that have been
proposed for MPEG-compressed video. Chen and Schultz [18]
propose to decompress the MPEG video and then use the un-
compressed-video algorithm given in [15]. The drawback is that
decompression discards important information about the quan-
tization error that was introduced when the video was com-

pressed. [19] demonstrated the importance of properly handling
the quantization information, and suggested a solution that ex-
plicitly incorporates the compression process. This method ex-
tends the model given in [9] by adding the MPEG stages, and
uses the quantization information as the basis for a POCS-based
algorithm that operates in the compressed domain. However,
in this approach, all sources of error except for the quantiza-
tion error are ignored, which may not be a good assumption
at medium-to-high bit rates. It is also difficult with the POCS
approach to impose additional constraints on the reconstructed
frame. There are also several Bayesian algorithms that are de-
signed for compressed video. In [20] and [21], the quantization
noise is modeled in the DCT domain and transformed back to
the spatial domain. In [22], the algorithm is designed to penalize
any artifacts formed during the quantization process. [23] pro-
poses to compute the joint statistics of the spatial quantization
and additive noises.

In this paper, we also propose a Bayesian method; however,
it is different from the previous approaches in the sense that
the quantization information is utilized directly in the DCT do-
main. It is possible to treat the DCT coefficients separately in
a way that depends on their statistical distribution or reliability.
The method also allows the use of source statistics and addi-
tional reconstruction constraints, such as those that might aid in
blocking artifact reduction and edge enhancement. We will as-
sume Gaussian models and derive the equations necessary for
a maximum a posteriori probability estimator. The proposed
method is compared with spatial-domain MAP and POCS ap-
proaches that do not consider the compression process.

III. IMAGING MODEL

This section extends a general video acquisition model to
accommodate block-DCT based compression. The result is a
linear set of equations that relates the (unobserved) high-reso-
lution source images to the observed data: the quantized DCT
coefficients of low-resolution frames. We use this set of equa-
tions to establish the Bayesian framework in the next section.

We begin by reviewing a typical image acquisition model de-
picted in Fig. 1. According to this model, a spatially and tem-
porally continuous input signal f(x,y,t) is sampled in time to
form a spatially continuous image f(x,y). Here, (x,y) repre-
sents the continuous spatial coordinates, and ¢ represents time.
Because we are dealing with digital images, this continuous
image is converted to a discrete image f(ni,n2). (n1,n9) are
the discrete spatial coordinates, and f(n1, n9) is the high-reso-
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Fig. 3. MPEG compression is appended to the video acquisition.

lution image that we are trying to reconstruct through super-res-
olution reconstruction. f(ny, ny) is then distorted by sensor and
optical blurs. Sensor blur is caused by integrating the received
light over the finite nonzero sensor cell area, while optical blur
includes optical distortions such as out of focus. It is also pos-
sible to include motion blur to the blurring process, which is due
to nonzero shutter time. The blurred image is then downsampled
to account for the insufficient sensor density. There may also be
additive noise causing further degradation. The final is image
is represented by g(l1, l2), where (l1,[2) are the discrete spatial
coordinates.

We now extend this image acquisition model to a video
acquisition model by incorporating the relative motion among
different frames of a video. The model is depicted in Fig. 2.
f(n1,m2) is the high-resolution discrete image we want to
reconstruct and g;(1, [2) are the low-resolution frames that are
observed. i is the frame number, and M is the total number
of frames. The warping block accounts for the relative motion
between the observations, which can be global as well as
dense. The rest of the model (blurring, downsampling, and
additive noise) is same as in the image acquisition model. All
the processes in this video acquisition model are linear, and the
relationship between the high-resolution image f(ni,n2) and
the recorded low-resolution images g;(l1, l2) can be formulated
as follows [24]

gi(l,12) = Y hilla, by ma, o) f(na,na) + il o) (1)

ni,n2

where h;(l1,l2;n1,n9) is the linear mapping that includes
warping, blurring, and downsampling operations, and n; ([, l2)
is the additive noise. The high-resolution and low-resolution
sampling lattice indices (i.e., pixel coordinates) are (n1,ns2)
and (I1,1y), respectively. Note that (1) provides a linear set of
equations that relates the high-resolution image to the low-res-
olution frames g; ([, l2) for different values of 7. The relation
in (1) can also be expressed in a simpler matrix-vector notation,
which we will use in the remainder of this paper. Letting f,
g™, and n( denote the lexicographically ordered versions of
f(n1,m92), gi(l1,12), and n;(l1,l2), respectively, we write

M 2)

where M is the total number of observations and H*) is a matrix
constructed from the blur mapping h;(l1,l2; n1, n2).

‘We now add the MPEG compression stages to this model. As
shown in Fig. 3, the low-resolution frame g(i) is motion com-
pensated (i.e., the prediction frame is computed and subtracted
from the original to get a residual image), and the residual is
transformed using a series of 8 x 8 block-DCTs to produce the
DCT coefficients d(*). Defining () as the prediction frame and
T as the DCT matrix for the lexicographically ordered images,
we write

g(i) —HODf4+n® j=1...

?

d® =THOf — Tg) + Tn®. 3)

The prediction frame g(*) is obtained using neighboring frames
except for the case of intra-coded frames, where the prediction
frame is zero. The DCT coefficients d(*) are then quantized to
produce the quantized DCT coefficients d®_ The quantization
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operation is a nonlinear process that will be denoted by the op-

erator Qf-}
" =g {TH(i)f O Tn(’“} . )

In MPEG compression, quantization is realized by dividing
each DCT coefficient by a quantization step size followed
by rounding to the nearest integer. The quantization step size
is determined by the location of the DCT coefficient, the bit
rate, and the macroblock mode [25]. The quantized DCT
coefficients d() and the corresponding step sizes are available
at the decoder, i.e., they are either embedded in the compressed
bit-stream or specified as part of the coding standard. Since the
quantization takes place in the transform domain, the natural
way to exploit this information is to use it in the DCT domain
without reverting back to the spatial domain.

Equation (4) is the fundamental equation that represents the
relation between the high-resolution image f and the quantized
DCT coefficients d(. In the next section, we formulate a
Bayesian super-resolution reconstruction framework based on
this equation.

IV. BAYESIAN SUPER-RESOLUTION RECONSTRUCTION

With a Bayesian estimator, not only the source statistics but
also various regularizing constraints can be incorporated into
the solution. Bayesian estimators have been frequently used for
super-resolution reconstruction. However, in these approaches
either the video source is assumed to be available in uncom-
pressed form, or it is simply decompressed prior to enhancement
without considering the quantization process. Additive noise
is considered as the only source of error. On the other hand,
the POCS-based approaches treat the quantization error as the
only source of error without considering the additive noise [24].
Clearly, neither of these approaches provides a complete frame-
work for super-resolution. As will be shown, a Bayesian es-
timator that considers the quantization process can be applied
successfully.

In the maximum a posteriori probability (MAP) formulation,
the quantized DCT coefficients d®, the original high-resolu-
tion frame f, and the additive noise n(® are all assumed to be

random processes. Denoting p (f|(~i(1)7 e a(M)) as the con-

ditional probability density function (PDF), the MAP estimate
f is given by

f = arg max fla®...qn )L ®)]
gmax {p )}
Using the Bayes rule, (5) can be rewritten as
f = arg max {p (&<1> e a(A'I)|f)p (f)} (6)
£

where we used the fact that p (&(1) ..... a(M)) is independent

’ ’

of £. In order to find the MAP estimate f , we need to model the
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conditional PDF p (a(l), ...,d®D |f) and the prior PDF p (f).

Before proceeding, we rewrite (4) by letting e(*) denote the error
introduced by quantization

d® = THOf — Tg® + Tn® 4 . (7)

The quantization error e(?) is a deterministic quantity that is
defined as the difference between d(¥ and d(i), but it can
also be treated as a stochastic vector for reconstruction. There
have been a number of studies directed toward modeling the
statistical distribution of the quantization error (). In this
chapter, we model it as a zero-mean independent identically
distributed (IID) Gaussian random process, which leads to a
mathematically tractable solution. Using the notation N (u, C)
for a normal distribution with mean vector u and covariance
matrix C, we write

e® ~ N (0,Ce) ®)

where C, is the covariance matrix of the quantization error
e, The additive noise n*) is also modeled as a zero-mean IID
Gaussian process

n ~ N (0,C,) 9)

where C,, is the covariance matrix of the additive noise. Since
the discrete cosine transform is unitary, the DCT of the noise
n(® is also an IID Gaussian random process with covariance
matrix TC,TT

Tn® ~ N (0,TC,T"). (10)
Because the additive noise and the quantization error have inde-
pendent Gaussian distributions, the overall noise Tn® + e
is also a Gaussian distribution with a mean equal to the sum of
the means, and a covariance matrix equal to the sum of the co-
variance matrices of Tn(" and e(®)

Tn® + @ ~ N (0, TC,TT + C.) . (11)

Equation (11) gives us an elegant way of combining the sta-
tistical information of two different noise processes. This is
in contrast to the previous approaches, where only one noise
source is considered. We now pursue with the derivation by
writing the explicit forms of the probability density functions.
Denoting u® = Tn® + e ag the total noise term, and
K = TC,TT + C, as the overall covariance matrix, the prob-
ability distribution function of u(" is

p(u®) = %exp <—% (u(i))TK_1 (u(i))> (12)

where Z is a normalization constant. Using (7) and the PDF of
the noise u(”), the conditional PDF p (a(i) |f ) is found to be (see
(13) at the bottom of the page). Since the noise is assumed to be

p (A0)F) = % exp <_% (a0 — THOF 4 Tgu))T K- (a9 - THOF + Tg(i))>

(13)
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an IID process, the joint PDF p (&(1) ---d™)|f) is the product
of the individual PDFs. As a result, we obtain (see (14) at the
bottom of the page) where Z is again a normalization constant.
We now need to model the prior distribution p (f) to complete
the MAP formulation. Again, we will assume a joint Gaussian
model

p(f) = cxp (—% (f— T A (£ - n)) (s)
with A being the covariance matrix, u being the mean of f, and
Z being a normalization constant. Substituting (14) and (15)
into (6), we end up with the following MAP estimate: (see (16)
at the bottom of the page). We finish this section by presenting
an approach to solve (16). In the next section we detail the im-
plementation and selection of the parameters and covariance
matrices. We will explain how to incorporate the quantization
step size information in reconstruction through selection of co-
variance matrices.

One approach to obtain the MAP estimate in (16) is to use an
iterative steepest descent technique. Let F(f) be the cost func-
tion to be minimized, then the high-resolution image f can be
updated in the direction of the negative gradient of E(f). At the
nth iteration, the high-resolution image estimate is

fn = fn—l — OéVE(fn_l) (17)

where « is the step size.
From (16), we can choose a slightly generalized cost function
as follows:

E(f)
C1-)
T2

XZ[( d®-TH" f+TA(7)) K- (d<> TH(’)f+TA(7))}

(f—n)

where A is a number, (0 < A < 1), that controls the rela-
tive contributions of the conditional and prior information in
the reconstruction. When A is set to zero, the estimator be-
haves like a maximum likelihood (ML) estimator. When A is
made larger, the prior information is more and more important
to reconstruction.

+§<f—u)TA‘ (18)

Taking the derivative of F(f) with respect to f, the gradient
of E(f) can be calculated as

M

VE(f)= —(1-0)Y HO'TTK! (a“) ~THOf+ Tg(“)
=1

FATH(f—p).

The step size ain (17) can be fixed or updated adaptively during

the iterations. One way is to update it using the Hessian of F(f).

In that case, « is updated at each iteration using the formula

19)

(VE(fo1))" (VE(fa-1))
_ ) (20)
(VE(fo-1))” H(VE(f._1))
where H is the Hessian matrix found by
M T .
H=1-)Y HO TTK'THO + 0~ @)

i=1

In the reconstruction, everything but f is known or can be com-
puted in advance. For a specific observation sequence, the quan-
tized DCT coefficients (Ni(i), the prediction frames g(”, and the
quantization step sizes are known; the blur mappings H(*") and
the other statistical/reconstruction parameters are computed or
determined beforehand.

V. EXPERIMENTAL RESULTS

We have designed a set of experiments to examine the per-
formance of the proposed algorithm for different quantization
levels. We also tested the spatial-domain POCS [9] and spa-
tial-domain MAP [15], [16] algorithms, and compared their re-
sults with the results of our DCT-domain MAP algorithm. Be-
fore getting into details of the experiments, we want to address
some of the implementation issues.

A. Implementation

Although the matrix-vector notation provides a neat formu-
lation, implementing the algorithm with images converted into
vectors is problematic. When dealing with large images, the ma-
trices become large enough to cause memory problems and slow
reconstruction. Instead, the algorithm was implemented using
simple image operations, such as warping, convolution, sam-
pling, scaling, and block-DCT transformation.

l\:>|>i

P (aa) ) ..a<M>|f) — _eXp <

i=1

M T
Z( a® _ TH! )f—i—TA“)) K-

1 (&<> TH(lf—l—TA())> (14)

M
f= argmin{z {(d() THC )f—i—TA( ))

1 (a0 - THOF 4 Tg@)] +(f )" AT (F - #)} (16)
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(b)

(a) Original AERIAL image. (b) Original BOAT image.

TABLE 1
MEAN SQUARE ERROR (MSE) COMPARISON OF DIFFERENT METHODS FOR AERIAL IMAGE

MSE of the reconstructed image
for different quantization factors
Method 0.256 [ 0.50 | 0.75 | 1.00 | 1.25 | 1.50
Bilinear intepolation || 109.1 | 130.4 | 163.5 | 176.6 | 197.9 | 215.5
Spatial-domain POCS 21.1 | 63.4 | 105.0| 139.4 | 168.1 | 193.2
Spatial-domain MAP 21.2 | 60.2 | 102.2 | 141.9 | 172.6 | 196.3
DCT-domain MAP 19.8 | 55.3 | 90.3 | 119.4 | 147.5 | 169.6

After determining the blur point spread function (PSF) and
the motion vectors between the observations, the high-resolu-
tion image is reconstructed as follows. We start by interpolating
one of the observed images to obtain an initial estimate f,. Ac-
cording to (17), we need to calculate the gradient of the cost
function and the step size a.. Referring to (19), we first need to
calculate H("fy. This is done by motion warping fy for the ith
frame, convolving with the PSF, and then downsampling. The
resulting image and the prediction image g(*) are then trans-
formed to the DCT domain by 8 x 8 block-DCTs. After finding
the residual, we need to apply the operations K—!, TT, and
H(i)T. As we mentioned earlier, we assumed statistical inde-
pendence between the DCT quantization errors, and this results
in the covariance matrix K being diagonal. Therefore, in our
implementation, the K~! is simply computed by dividing each
DCT coefficient of the residual with the corresponding variance
in K. This is followed by the T7 operation, which is done by
taking the inverse block-DCT. Finally, HO is implemented by
upsampling the image (with zero padding), convolving with the
flipped PSF, and motion warping back to the reference frame.
(If we let h(ni,n2) denote the PSF, the flipped PSF is then
h(—n1,—ns).) Similar to K=, A™" is also implemented by
scaling each pixel by a number because the pixels are also mod-
eled as being statistically independent.

In the computation of «, we need to calculate
(VE(f,_1))" (VE(f,_1)), which is done by taking the
square of each element of VE(f,,_1), and then summing them
up. The denominator of (20) is obtained similarly. (Apply the
operations in (21) on VE(f,,_1), multiply the result element
by element with VFE(f,, 1), and then sum them up.)

With this procedure, the reconstruction is achieved faster than
working with lexicographically ordered images. We now turn to
the experiments.

B. Experimental Setup

In order to test the proposed algorithm, we designed a con-
trolled experiment. The AERIAL and BOAT images shown in
Fig. 4 are downsampled by two horizontally and vertically to
create four low-resolution observations. These observations are
then block transformed using 8 x 8 DCTs. The DCT coeffi-
cients are then quantized using the MPEG-2 quantization table
for the luminance channel. Spatial-domain POCS, spatial-do-
main MAP, and the proposed DCT-domain MAP algorithms
are tested. In the reconstructions, all four observations are used.
The experiments are repeated for different quantization scales,
which is done by multiplying the quantization table by a posi-
tive real number. The scaling factors used in the experiments are
0.25, 0.5, 0.75, 1.0, 1.25, and 1.5.

In addition to the simulated data, we also tested the al-
gorithm with observations captured with a digital camera.
We captured six images from a text document with slightly
different viewing positions and six images (zooming license
plate) from a moving car. The observations are then quantized
with the quantization scaling factor set to 0.25. For the TEXT
sequence, the dense motion fields between the observations are
calculated using a two-level hierarchical block-based motion
estimation algorithm. Block sizes of 12 pixels are used with
mean absolute difference as the matching criterion. In the
final level of search, quarter pixel motion vectors are sought.
For the LICENSE PLATE sequence, we used the Harris corner



GUNTURK et al.: SUPER-RESOLUTION RECONSTRUCTION OF COMPRESSED VIDEO USING TRANSFORM-DOMAIN STATISTICS 39

TABLE 1I
MEAN SQUARE ERROR (MSE) COMPARISON OF DIFFERENT METHODS FOR BOAT IMAGE

MSE of the reconstructed image
for different quantization factors
Method 0.25 | 0.50 | 0.75 1.00 1.25 1.50
Bilinear intepolation || 143.5 | 154.9 | 167.8 | 179.9 | 192.0 | 206.2
Spatial-domain POCS 17.1 | 42.5 | 67.1 | 89.1 | 109.6 | 129.6
Spatial-domain MAP 17.1 43.4 | 68.3 | 89.7 | 108.4 | 126.3
DCT-domain MAP 16.4 | 38.6 | 60.8 | 81.4 | 101.7 | 119.1

R
2

()

Fig. 5. (a) Bilinearly interpolated AERIAL image. (b) Reconstructed AERIAL image. (c) Bilinearly interpolated BOAT image. (d) Reconstructed BOAT image.

detector [26] to select a set of points in the reference image. We
then find the correspondence points in the other images using
normalized cross correlation. From these correspondences, a
least-mean-square estimate of the affine motion parameters is
found.

C. Parameter Selection

The spatial-domain POCS algorithm [9] starts with an ini-
tial estimate of the high-resolution image, which is obtained by
bilinearly interpolating one of the observations. The mapping
H® is applied to this initial estimate to compute a prediction
of one of the observed images. The difference between the pre-
dicted image and the real observed image is backprojected to

update the initial estimate. This is repeated for a predetermined
number of iterations (typically 15) or until the change in the
mean-square-error (MSE) is less than 0.1.

The formulation of the spatial-domain MAP [15], [16] algo-
rithm is similar to the DCT-domain MAP algorithm that we
derived in this chapter. In the spatial-domain MAP algorithm,
the observations are the low-resolution images, not the quan-
tized DCT coefficients. The spatial-domain MAP algorithm re-
quires the covariance matrices for the additive noise and the
prior image. Our DCT-domain MAP algorithm requires the co-
variance matrix for the quantization error in addition to the ad-
ditive noise and prior image covariance matrices.

The parameters in the experiments are chosen first intuitively
and then finalized by trial-and-error. (Obviously, this is not an
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(g)

Fig. 6. Results for LICENSE PLATE sequence; quantization factor is 0.25; enhancement factor is four. (a) to (f) are the images used in reconstruction. (g) The

reconstructed image using the DCT-domain MAP algorithm.

optimal approach; we will comment on this issue later in this
chapter.) In our formulation, all of the covariance matrices are
diagonal as a result of the IID assumption. The variance of the
additive noise is set to two, i.e., Cy, is chosen to be a diagonal
matrix with twos along the diagonal. After some trial-and-error,
A is set to 0.15, and the diagonal entries of A are set to 25.
The mean vector p is set to the bilinearly interpolated reference
frame. Again, the iterations are repeated for a predetermined
number of times or until the change in the MSE is less than 0.1.

For the DCT-domain MAP algorithm, the standard devia-
tion of the quantization noise is proportional to the quantiza-
tion step size. Although there is no exact analytical relationship,
this is a valid assumption and directly affects the reconstruc-
tion. Heuristically, we set the standard deviation to one-fifth of
the quantization step size in our experiments. The diagonal en-
tries of C, are computed according to the corresponding quan-
tization step sizes, which are available in the data bitstream.
The covariance matrix K is then calculated using the formula
K =TC, T +C.. (Since C,, and C, are diagonal, and T is
a unitary transform, K is also diagonal.)

For the real video experiments, the same reconstruction pa-
rameters except for the A are used. For the TEXT sequence, A is
set to 0.1; for the LICENSE PLATE sequence, A is set to 0.7. An
additional problem with the real video experiment is that the
PSF of the camera is unknown. Therefore, we chose a typical
PSF, and tested the reconstruction using that PSF. In the exper-
iments, the PSF was set to a 7 X 7 Gaussian blur with standard
deviation of two.

D. Results

The spatial-domain MAP, spatial-domain POCS, and DCT-
domain MAP algorithms are tested for quantization scaling fac-
tors of 0.25, 0.5, 0.75, 1.0, 1.25, and 1.5. The same observations
are used for all algorithms. The MSE comparison for AERIAL

and BOAT images are given in Tables I and II, respectively. As
seen in those tables, in all the experiments, the DCT-domain
MAP algorithm performed better than the spatial-domain MAP
and POCS algorithms, which do not utilize the quantization in-
formation. As the quantization step size increases, the relative
performance of the DCT-domain MAP algorithm improves. Al-
though the quantitative comparison shows that the DCT-domain
MAP algorithm performs better than the other algorithms, the
difference is not visually obvious.

In Fig. 5, we provide visual results of the DCT-domain MAP
algorithm for AERIAL and BOAT images. The downsampling
factor is two, and four observations are used in both experi-
ments. (The quantization scaling factor in these experiments is
0.25.)

The real video experiments were performed to assess the ro-
bustness of the algorithm when the true motion vectors and the
PSF are not known. The parameters used in the experiments are
given in the previous two subsections. The observations from
the LICENSE PLATE sequence and the reconstructed image are
given in Fig. 6. The resolution enhancement factor is four in
horizontal and vertical directions. For the TEXT sequence, the
resolution enhancement factor is two. The observations and the
reconstructed image for the TEXT is given in Fig. 7. Although we
do not have the true motion vectors and the exact PSF, we still
observe improvement in the readability in these experiments.

VI. CONCLUSION

In this paper, we introduced a super-resolution algorithm that
incorporates both the quantization operation and additive sensor
noise in a stochastic framework. Since the resolution enhance-
ment problem is cast in a Bayesian framework, additional con-
straints can easily be incorporated in the form of prior image
models. Although a block-based hybrid transform coder was
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(a) (b) (c)
(d) (e) ®

(2)

Fig. 7. Results for TEXT sequence; quantization factor is 0.25; enhancement factor is two. (a) to (f) are the images used in reconstruction. (g) The reconstructed

image using the DCT-domain MAP algorithm.

emphasized throughout our derivations, the framework is still
valid for all video coding standards where the transform utilized
is linear.

The proposed algorithm enables distinct treatment of each
DCT coefficient. This can be exploited for better performance.
For instance, the information coming from high-frequency DCT
coefficients can be discarded altogether since they are quantized
severely, and the information obtained from those coefficients
are likely to be noise. One step beyond this idea is to realize the
whole reconstruction in transform domain. That is, the high-res-
olution image is reconstructed in a transform domain, and then
converted back to spatial domain at the end. This way, we can
suppress noise and achieve reconstruction at a lower computa-
tional complexity.

The problem of high-quality video reconstruction from com-
pressed data is also expected to have broader implications in
information fusion and information theory. The proposed re-

search activities deal with fusing information spread over mul-
tiple frames in an optimal manner. In addition, they are closely
related to the information content and the compressibility of
video data.

The experimental results were encouraging. However, there
are still several open issues, as follows.

* Both the POCS-based and Bayesian-based solutions are
computationally expensive. For software implementa-
tions, fast, but perhaps suboptimal, solutions need to be
investigated. For hardware implementations, algorithm
parallelization issues also need to be examined.

 All super-resolution methods, including ours, require ac-
curate motion estimates. However, for a typical video se-
quence, we will almost surely have inaccurate motion es-
timates for some frames or regions because of the ill-
posed nature of motion estimation. We need to deal with
these model failure regions for successful application of
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the proposed super-resolution algorithms to general video
sequences.

Here, we demonstrated the algorithm for a limited set of
parameters, which are probably not optimal. The algo-
rithm enables distinct treatment of each DCT coefficient.
This can be exploited for better performance. For instance,
the information coming from high-frequency DCT coeffi-
cients can be discarded since they are quantized severely,
and the information obtained from those coefficients are
likely to be noise. Again, more thorough analysis needs to
be done.

The stochastic entities in the problem were assumed to be
Gaussian random processes. Different statistical models
need to be investigated. Even if they do not have analytical
solutions, improved reconstruction may be achievable.
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