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D
igital cameras have become popular, and many people are choosing to take their pic-
tures with digital cameras instead of film cameras. When a digital image is recorded,
the camera needs to perform a significant amount of processing to provide the user
with a viewable image. This processing includes correction for sensor nonlinearities
and nonuniformities, white balance adjustment, compression, and more. An important

part of this image processing chain is color filter array (CFA) interpolation or demosaicking.
A color image requires at least three color samples at each pixel location. Computer images often

use red (R), green (G), and blue (B). A camera would need three separate sensors to completely meas-
ure the image. In a three-chip color camera, the light entering the camera is split and projected onto
each spectral sensor. Each sensor requires its proper driving electronics, and the sensors have to be
registered precisely. These additional requirements add a large expense to the system. Thus, many
cameras use a single sensor covered with a CFA. The CFA allows only one color to be measured at
each pixel. This means that the camera must estimate the missing two color values at each pixel. This
estimation process is known as demosaicking.

Several patterns exist for the filter array. The most common array is the Bayer CFA, shown in
Figure 1. The Bayer array measures the G image on a quincunx grid and the R and B images on rec-
tangular grids. The G image is measured at a higher sampling rate because the peak sensitivity of the
human visual system lies in the medium wavelengths, corresponding to the G portion of the spec-
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trum. Other patterns are also used, e.g., the Nikon Coolpix 990
uses a cyan, magenta, yellow, G (CMYG) grid, where each of the
four images are sampled using rectangular grids. A CMY-based
system has the advantage of being more sensitive to light
because the incoming light only has to pass through one layer
of filters. RGB filters are generated by overlaying combinations
of CMY filters [2]. For example, the combination of CM filters
would make a B filter. Even though other options exist, this arti-
cle discusses the demosaicking problem with reference to the
Bayer RGB CFA.

If the measured image is divided by measured color into
three separate images, this problem looks like a typical image
interpolation problem. Therefore, one might try to apply stan-
dard image interpolation techniques. Bicubic interpolation is a
common image interpolation technique that produces good
interpolation results when applied to grayscale images.
However, when bicubic interpolation is used for this problem,
the resulting image shows many visible artifacts. This is illus-
trated in Figure 2.

This result motivates the need to find a specialized algorithm
for the demosaicking problem. Bicubic interpolation and other
standard interpolation techniques treat the color image as three
independent images. However, the three images are generally
highly correlated. Many algorithms have been published sug-
gesting how to use this correlation. This article surveys many of
these algorithms and discusses the results in terms of objective
and subjective measures.

IMAGE FORMATION PROCESS
Since some of the demosaicking methods make explicit use of
image formation models, we provide a brief summary of image
formation before reviewing the demosaicking methods. The
imaging process is usually modeled as a linear process between
the light radiance arriving at the camera and the pixel intensi-
ties produced by the sensors. Most digital cameras use charge-
coupled device (CCD) sensors. In a CCD camera, there is a
rectangular grid of electron-collection sites laid over a silicon
wafer to record the amount of light energy reaching each of
them. When photons strike these sensor sites, electron-hole
pairs are generated, and the electrons generated at each site are
collected over a certain period of time. The numbers of electrons
are eventually converted to pixel values.

Each sensor type, S, has a specific spectral response LS(λ),
which is a function of the spectral wavelength λ, and a spatial
response hS(x, y), which results from optical blur and spatial
integration at each sensor site. In practice, discrete formulation
of the imaging process is used

S(n1, n2) =
∑

l

∑
m1,m2

LS(l )hS(n1 − m1, n2 − m2)

× r(m1, m2, l ) + NS(n1, n2). (1)

where S(n1, n2) is the intensity at spatial location (n1, n2),
r(m1, m2, l ) is the incident radiance, and NS(n1, n2) is the addi-

tive noise that is a result of thermal/quantum effects and quantiza-
tion. There are a couple of assumptions in this formulation: 1) the
input-output relationship is assumed to be linear, 2) the spatial
blur hS(n1, n2) is assumed to be space-invariant and independent
of wavelength, and 3) only the additive noise is considered. These
assumptions are reasonable for practical purposes.

The last step in the imaging process is the CFA sampling.
Denoting �S as the set of pixel locations, (n1, n2), for channel
S, a CFA mask function can be defined as

fS(n1, n2) =
{

1, (n1, n2) ∈ �S

0, otherwise

}
. (2)

In the Bayer CFA, there are three types of color channels: R, G,
and B. Therefore, for the Bayer CFA, the observed data,
O(n1, n2), is

O(n1, n2) =
∑

S = R,G,B

fS(n1, n2)S(n1, n2). (3)

[FIG1] Bayer color filter array arrangement.

[FIG2] Bicubic interpolation used for color filter array
interpolation results in noticeable artifacts: (a) original image and
(b) bicubic interpolation.

(a) (b)
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DEMOSAICKING METHODS
We examine demosaicking methods in three groups. The first
group consists of heuristic approaches. The second group formu-
lates demosaicking as a restoration problem. The third group is a
generalization that uses the spectral filtering model given in (1).

HEURISTIC APPROACHES
Heuristic approaches do not try to solve a mathematically
defined optimization problem. They are mostly filtering opera-
tions that are based on reasonable assumptions about color
images. Heuristic approaches may be spatially adaptive, and they
may exploit correlation among the color channels. We now
overview these heuristic approaches.

EDGE-DIRECTED INTERPOLATION
Although nonadaptive algorithms (e.g., bilinear interpolation or
bicubic interpolation) can provide satisfactory results in smooth
regions of an image, they usually fail in textured regions and
edges. Edge-directed interpolation is an adaptive approach,
where the area around each pixel is analyzed to determine if a
preferred interpolation direction exists. In practice, the interpo-
lation direction is chosen to avoid interpolating across edges,
instead interpolating along any edges in the image.

An illustration of edge-directed interpolation is shown in
Figure 3, where horizontal and vertical gradients at the location
where G is not measured are calculated from the adjacent G pix-

els. In [17], these gradients are compared to a constant thresh-
old. If the gradient in one direction falls below the threshold,
interpolation is performed only along this direction. If both gra-
dients are below or above the threshold, the pixels along both
directions are used to estimate the missing value.

The edge-directed interpolation idea can be modified by
using larger regions (around the pixel in question) with more
complex predictors and by exploiting the texture similarity in
different color channels. In [23], the R and B channels (in the
5 × 5 neighborhood of the missing pixel) are used instead of the
G channel to determine the gradients. To determine the hori-
zontal and vertical gradients at a B (R) sample, second-order
derivatives of B (R) values are used. This algorithm is illustrated
in Figure 4. Another example of the edge-directed interpolation
is found in [19], where the Jacobian of the R, G, and B samples
is used to determine edge directions.

CONSTANT-HUE-BASED INTERPOLATION
One commonly used assumption in demosaicking is that the
hue (color ratios) within an object in an image is constant. In
[22], it is explained that an object of constant color will have a
constant color ratio even though lighting variations may change
the measured values. This perfect interchannel correlation
assumption is formulated such that the color differences (or
color ratios or logarithm of color ratios) within objects are con-
stant. This constant color difference (or ratio) assumption pre-
vents abrupt changes in hue and has been extensively used for
the interpolation of the R and B channels [9], [34], [3], [23],
[17], [10], [22], [30], [27].

As a first step, these algorithms interpolate the G channel,
which is done using bilinear or edge-directed interpolation. The
R and B channels are then estimated from the interpolated R
hue (R-to-G ratio) and B hue (B-to-G ratio). To be more explicit,
the interpolated R hue and B hue values are multiplied by the G
value to determine the missing R and B values at a particular
pixel location. The color ratios can be interpolated with any
method (bilinear, bicubic, or edge directed). Instead of interpo-
lating the color ratios, the color differences can also be interpo-
lated, as described in Figure 5.

WEIGHTED AVERAGE
In edge-directed interpolation, the
edge direction is estimated first,
and then the missing sample is
estimated by interpolating along
the edge. Instead, the likelihood of
an edge in a certain direction can
be found, and the interpolation can
be done based on the edge likeli-
hoods. Such an algorithm was pro-
posed by Kimmel in [22]. The
algorithm defines edge indicators
in several directions as measures of
edge likelihood in those directions
and determines a missing pixel

[FIG3] Edge-directed interpolation for the G channel is
illustrated. G1, G2, G4, and G5 are measured G values; G3 is the
estimated G value at pixel 3.

1. Calculate horizontal gradient ∆H = |G2 − G4| 
2. Calculate vertical gradient ∆V = |G1 − G5|
3. If  ∆H >  ∆V,
  G3 = (G1 + G5)/2
 Else if ∆H < ∆ V,
  G3 = (G2 + G4)/2
 Else
  G3 = (G1 + G5 + G2 + G4)/4  
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5 

[FIG4] Edge-directed interpolation in [23] is illustrated for estimating the G value at pixel 5. The
R values are used to determine the edge direction. When the missing G value is at a B pixel, the
B values are used to determine the edge direction.

1. Calculate horizontal gradient ∆ H = | (R3 + R7)/2 − R5 |
2. Calculate vertical gradient  ∆V = | (R1 + R9)/2 − R5 |
3. If  ∆H > ∆ V,
  G5 = (G2 + G8)/2
 Else if  ∆H <  ∆V,
  G5 = (G4 + G6)/2
 Else
  G5 = (G2 + G8 + G4 + G6)/4
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intensity as a weighted sum of
its neighbors. If the likelihood of
an edge crossing in a particular
direction is high, the edge indi-
cator returns a small value,
which results in less contribu-
tion from the neighboring pixel
in that direction. The G channel
is interpolated first; the R and B
channels are interpolated from
the R-to-G and B-to-G ratios.
The color channels are then
updated iteratively to obey the
constant color ratio rule.

A similar algorithm was proposed recently in [25], where edge
indicators are determined in a 7 × 7 window for the G and a
5 × 5 window for the R and B channels. In this case, the edge
indicator function is based on the L1 norm (absolute difference)
as opposed to the L2 norm of [22]. A related algorithm is proposed
in [35], where the directions (horizontal, vertical, diagonal) that
have the smallest two gradients are used in interpolation.

A different example of weighted directional interpolation can
be found in [33], where fuzzy membership assignment is used to
compute weights for the horizontal and vertical direction. The
weights are computed experimentally and used as constants in
the algorithm. In [28], a bilateral filter kernel is generated at
each pixel to enforce similarity within a neighborhood. This fil-
tering approach is adaptive and allows for noise reduction and
sharpening of edges.

SECOND-ORDER GRADIENTS AS CORRECTION TERMS
In [4], Hamilton and Adams begin by using edge-directed inter-
polation for the G image. Correction terms from the R and B
samples are added to this initial estimate. They compute the
Laplacian for the R or B samples along the interpolation row or
column and use this to correct the simple averaging interpola-
tion. This correction term reduces aliasing passed to the output
by the simple averaging filter. Figure 6 illustrates this algorithm.

ALIAS CANCELING
INTERPOLATION
In [12], the G image is used to
add high-frequency information
and reduce aliasing in the R and
B images. First, the R and B
images are interpolated with a
rectangular low-pass filter
according to the rectangular
sampling grid. This fills in the
missing values in the grid but
allows aliasing distortions into
the R and B output images.
These output images are also
missing the high-frequency
components needed to produce a

sharp image. However, because the G image is sampled at a high-
er rate, the high-frequency information can be taken from the G
image to improve an initial interpolation of the R and B images.
A horizontal high-pass filter and a vertical high-pass filter are
applied to the G image. This provides the high-frequency infor-
mation that the low sampling rate of the R and B images cannot
preserve. Aliasing occurs when high-frequency components are
shifted into the low-frequency portion of the spectrum, so if the
outputs of the high-pass filters are modulated into the low-fre-
quency regions, an estimate of the aliasing in the R and B images
can be found. This estimate is used to reduce the aliasing in the
R and B images, as illustrated in Figure 7. This method relies on
the assumption that the high-frequency information in the R, G,
and B images is identical. If this assumption does not hold, the
addition of the G information into the R and B images can add
unwanted distortions. This method also makes the assumption
that the input image is band-limited within the diamond-shaped
Nyquist region of the G quincunx sampling grid. When this
assumption fails, the aliasing artifacts are enhanced instead of
reduced, because the G image also contains aliasing.

HOMOGENEITY-DIRECTED INTERPOLATION
Instead of choosing the interpolation direction based on edge
indicators, it is possible to use different measures. In [18], local

[FIG5] Constant-difference-based interpolation is illustrated for the R channel. The B channel is
interpolated similarly.

Interpolate

Interpolate
Interpolated 
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[FIG6] The Hamilton and Adams method [4] is illustrated for estimating the G value at pixel 5. The
R and G values are used to determine the edge direction and estimate the missing value. When the
missing G value is at a B pixel, the B and G values are used.

1. Calculate horizontal gradient
  ∆H = |G4 − G6| + |R5 − R3 + R5 − R7|
2. Calculate vertical gradient 
 ∆V = |G2 − G8| + |R5 − R1 + R5 − R9|
3. If ∆H > ∆ V,
  G5 = (G2 + G8)/2 + (R5 − R1 + R5 − R9)/4
 Else if  ∆H <  ∆V,
  G5 = (G4 + G6)/2 + (R5 − R3 + R5 − R7)/4
 Else
  G5 = (G2 + G8 + G4 + G6)/4
  + (R5 − R1 + R5 − R9 + R5 − R3 + R5 − R7)/8
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homogeneity is used as an indicator to choose between hori-
zontally and vertically interpolated intensities. The homogene-
ity-directed interpolation imposes the similarity of the
luminance and chrominance values within small neighbor-
hoods. The RGB data is first interpolated horizontally and verti-
cally, i.e., there are two candidates for each missing color
sample. The decision for which one to choose is made in the
CIELAB space, a perceptually uniform color space. Both the
horizontally and vertically interpolated images are transformed
to the CIELAB space. In the CIELAB space, either the horizon-
tally or the vertically interpolated pixel values are chosen based
on the local homogeneity. The local homogeneity is measured
by the total number of similar luminance and chrominance val-
ues of the pixels that are within a neighborhood of the pixel in
question. Two values are taken as similar when the Euclidean
distance between them is less than a threshold.

PATTERN MATCHING
Several algorithms attempt to find a pattern in the data or
fit the data to one of several templates. A different interpola-
tor is applied for each template. This allows different meth-
ods to be used for edges and smooth regions. In [9], Cok
describes a pattern matching algorithm to be used on the G
image. Each missing G value is classified as a stripe, edge, or

corner, corresponding to the features
expected to be found in natural images.
After classifying the pixel, an appropriate
interpolator is applied to estimate the
missing value.

In [8], Chang et al. introduce a method
using directional information and add the
ability to use multiple directions. This
method uses eight possible horizontal, verti-
cal, and diagonal interpolation directions. A
gradient is computed for each direction, and
then a threshold is computed based on these
gradients to determine which directions are
used. For each direction included in the
interpolation, an average R, G, and B value
is computed. For each of the missing colors
at the current pixel, the difference between
the average of the missing color and the
average of the color of the current pixel is
calculated. This color difference is added to
the value of the current pixel to estimate the
missing color value.

VECTOR-BASED INTERPOLATION
In this approach, each pixel is considered as
a vector in the three-dimensional (R, G, B)
space, and interpolation is designed to mini-
mize the angle or the distance among the
neighboring vectors. One of the algorithms
proposed in [21] is based on the minimiza-
tion of angles in spherical coordinates. After

an initial interpolation of missing samples, each pixel is trans-
formed to spherical coordinates, (ρ, θ, φ). The relationship
between the (R, G, B) space and (ρ, θ, φ) space is

R = ρ cos (θ) sin (φ) ; G = ρ cos (θ) cos (φ) ;
and B = ρ sin (θ) . (4)

In the (ρ, θ, φ) space, some filtering operation, such as median
filtering, is applied to the angles θ and φ only. This forces the
chrominance components to be similar. Because ρ is closely
related to the luminance component, keeping it unchanged pre-
serves the luminance discontinuities among neighboring pixels.
After the filtering process, the image is transformed back to the
(R, G, B) space, and original measured samples are inserted
into their corresponding locations. Spherical domain filtering
and insertion operations are repeated iteratively.

Another vector-based interpolation is proposed in [15]. In
contrast to the approach in [21], the RGB vectors are construct-
ed from observed data only. All possible R, G, and B combina-
tions in a 3 × 3 neighborhood of a pixel are used to form the
so-called pseudopixels. The colors at the center of the 3 × 3
region are found from the vector median of the pseudopixels.
The formation of pseudopixels is illustrated in Figure 8. The vec-
tor median (VM) operation is defined as

IEEE SIGNAL PROCESSING MAGAZINE  [48]  JANUARY 2005

[FIG7] High-frequency information from the green image is modulated and used to
cancel aliasing in the red image: (a) low-pass filter of the sampled red image, (b)
isolated high-frequency components in the green image, (c) aliasing estimate subtracted
from the red image, (d) green high-frequency components modulated to estimate
aliasing in the red image, and (e) aliasing estimate subtracted from the red image.

(a)

(c) (d)

(e)

(b)
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x1,x2,x3

N∑
i=1

(
3∑

k=1

(xk − vik)
2

)1/2

. (5)

There is no closed-form solution to (5); the vector median can
be found iteratively by some numerical methods [15]. Note that
the reconstructed color channels are not necessarily consistent
with the observed data. It is argued that this would reduce color
artifacts even if the edge locations are
shifted in the end.

FOURIER-DOMAIN FILTERING
In [5], it is shown that CFA samples
can be written as a summation of
luminance and chrominance terms,
which are well localized in frequency
domain. Therefore, the luminance
and chrominance terms can be
recovered by low-pass and high-pass
filtering. The formulation starts with
the representation of CFA data, O(n1, n2), in terms of R, G,
and B channels

O(n1, n2) =
∑

S=R,G,B

mS(n1, n2)S(n1, n2), (6)

where mS(n1, n2) are the modulation functions defined as

mR(n1, n2) = (1 + cos(πn1)) (1 + cos(πn2))/4, (7)

mG(n1, n2) = (1 − cos(πn1)cos(πn2))/2, (8)

mB(n1, n2) = (1 − cos(πn1)) (1 − cos(πn2))/4. (9)

The modulation functions can be written as a summation of
a constant term and a sinusoidal term m̃S(n1, n2). Therefore,
(6) can be written as

O(n1, n2) =1
4

(R(n1, n2) + 2G(n1, n2) + B(n1, n2))

+
∑

S=R,G,B

m̃S(n1, n2)S(n1, n2). (10)

The first term in (10) is called as the luminance term because it
does not depend on the sinusoids; the second term is called the
chrominance term. In the Fourier domain, the luminance terms
are located in the low-frequency regions, while the chrominance
terms are located in the high-frequency regions. Although there
may be some spectral overlap, the luminance and chrominance

can be estimated by low-pass filtering and high-pass filtering,
respectively. R, G, and B samples are then found from the lumi-
nance and chrominance terms.

RECONSTRUCTION APPROACHES
The second group of algorithms makes some assumptions
about the interchannel correlation or the prior image and
solves a mathematical problem based on those assumptions.
One of the methods proposed in [21] uses spatial smoothness
and color correlation terms in a cost function that is mini-
mized iteratively. In [14], an iterative algorithm that forces
similar high-frequency components among the color channels

and ensures data consistency is proposed. In [26], the demo-
saicking problem is formulated as a Bayesian estimation prob-
lem, where spatial smoothness and constant hue assumptions
are used as regularization terms.

REGULARIZATION
In [21], Keren and Osadchy propose a regularization approach,
which minimizes a cost function consisting of a spatial smooth-
ness and a color correlation term. To write the cost function, we
first define vector V(n1, n2) as

V(n1, n2) = [
R(n1, n2) − R̄, G(n1, n2) − Ḡ, B(n1, n2) − B̄

]T
,

(11)

where R̄, Ḡ, and B̄ are the average colors in the vicinity of the
pixel at (n1, n2). Denoting Cn1 n2 as the covariance matrix of the
RGB values, and Sn1 n1 , Sn1 n2 , and Sn2 n2 as the spatial derivatives
in the horizontal, diagonal, and vertical direction, respectively,
the cost function is defined as

Cost =
∫ ∫ ∑

S=R,G,B

(
S2

n1 n1
+ 2S2

n1 n2
+ S2

n2 n2

)
dn1dn2

+ λ

∫ ∫
V(n1, n2)

TC−1
n1 n2

V(n1, n2) dn1dn2, (12)

where λ is a positive constant. Restoration is achieved by mini-
mizing this cost function iteratively. The algorithm starts with
an initial interpolation of the missing values, estimates the local
averages and covariance matrix based on the current values, and

[FIG8] The formation of pseudopixels in [15] is shown. Vector median (VM) operation is
applied to the pseudo-pixels to estimate the colors at pixel 5.
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minimizes the cost function using a finite-element method. In
another version of the algorithm, the second term in (12) is
replaced by the summation of the squared norms of the vector
products of neighboring pixels. Since the vector product gives
sine of the angle between two vectors, this term tries to mini-
mize the angle among neighboring pixels.

PROJECTIONS ONTO CONVEX SETS APPROACH
In [14], Gunturk et al. propose an algorithm that forces similar
high-frequency characteristics for the R, G, and B channels
and ensures that the resulting image is consistent with the
observed data. The algorithm defines two constraint sets, and
reconstructs the color channels using the projections onto
convex sets (POCS) technique. The “observation” constraint
set ensures that the interpolated color channels are consistent
with the observed data. That is, the color samples captured by
the digital camera are not changed during the reconstruction
process. The “detail” constraint set imposes similar high-fre-
quency components in the color channels. The formal defini-
tion of the “detail” constraint set is based on the subband
decomposition of the color channels: The absolute difference
between the detail subbands of the R (B) channel and the G
channel is constrained to be less than a threshold at each spa-
tial location. These two constraint sets are shown to be convex
in [14]. According to the algorithm, the color channels are
first interpolated to get the initial estimates. R and B channels
are then updated by projection onto the “detail” constraint set
and the “observation” constraint set iteratively. Projection
onto the “detail” constraint set is performed by 1) decompos-
ing the color channels into frequency subbands with a bank of
analysis filters, 2) updating the detail subbands of the R and B
channels so that they are within a threshold distance to the
detail subbands of the G channel, and 3) restoring them with a
bank of synthesis filters. Projection onto the “observation”
constraint set is performed by inserting the observed data into
their corresponding locations in the color channels.

BAYESIAN APPROACH
With the Bayesian estimation approach, it is possible to
incorporate prior knowledge about the solution (such as spa-
tial smoothness and constant color ratio) and the noise sta-
tistics into the solution. In the maximum a posteriori
probability (MAP) formulation, the observed data O(n1, n2),
the full color channels S(n1, n2), and the additive noise
NS(n1, n2) are all assumed to be random variables. Denoting
p(S|O) as the conditional probability density function (PDF),
the MAP estimate Ŝ is given by

Ŝ = arg max
S

{p(S|O)} = arg max
S

{p(O|S) p(S)} . (13)

To find the MAP estimate Ŝ, the conditional PDF, p(O|S), and
the prior PDF, p(S), need to be modeled. The conditional PDF,
p(O|S), is derived from the noise statistics, which is usually

assumed to be white Gaussian. As for the prior PDF, different
models have been proposed.

In [26] and [16], Markov random field (MRF) models were
used. In MRF processing, the conditional and prior PDFs can be
modeled as Gibbs distributions. The Gibbs distribution has an
exponential form, and it is characterized by an energy function
and a temperature parameter. A PDF with Gibbs distribution can
be written as

p(x) = 1
Z

e−U(x)/ T, (14)

where U(·) is the energy function, T is the temperature parame-
ter, and Z is the normalization constant. One feature of the MRF
is that the total energy function U can be written as a sum of local
energy functions, which allows for localized reconstruction [11].
In [26], three types of local energy functions are defined at each
pixel location. The first energy function is associated with the
additive noise, the second energy function imposes spatial
smoothness, and the third energy function imposes constancy of
cross color ratios. Once the local energy functions are defined, the
solution minimizing the total energy can be found using a variety
of techniques. In [26], simulated annealing technique was used.

As an alternative, [16] proposes a prior based on the steerable
wavelet decomposition. With the steerable wavelet decomposi-
tion, images can be represented as a sum of band-pass compo-
nents, each of which can be decomposed into a set of oriented
bands using steerable filters. Such a directional decomposition
enables imposing edge-oriented smoothness instead of an
isotropic smoothness. Therefore, across-the-edge averaging is
avoided. Directional energy functions are defined at different
scales of a Laplacian pyramid, and a gradient descent procedure
is applied to find the image that minimizes the energy functions
at all scales.

During digital image acquisition, a compression process is
likely to follow the interpolation process. A Bayesian approach
where the distribution of the compression coefficients is mod-
eled and used in reconstruction is proposed in [6].

ARTIFICIAL NEURAL NETWORK APPROACH
Demosaicking is an under-determined problem. Assumptions
such as spatial smoothness and constant hue are used to regu-
larize it. Obviously, these assumptions are not necessarily cor-
rect for all cases. The use of artificial neural networks (ANNs)
is an alternative approach. The ANN approach uses training
images to learn the parameters to be used in reconstruction.
In [20], three methods based on ANNs are proposed: percep-
tron, backpropagation, and quadratic perceptron. In all these
methods, images are processed in 2 × 2 neighborhoods. To
have more information about the local characteristics, pixels
around the 2 × 2 neighborhoods are also used as inputs. That
is, 16 inputs are supplied to the network and eight outputs
(two missing values in each 2 × 2 neighborhood) are estimat-
ed. In the perceptron method, the outputs are linear combina-
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tions of the inputs. The weights are learned from training data.
It turns out that the perceptron network is not satisfactory in
high-frequency regions of the image. The backpropagation
network is capable of learning complex nonlinear functions,
and produces better results in the high-frequency regions than
the perceptron network. On the other hand, the backpropaga-
tion network fails in the low frequency regions due to the non-
linearity of the sigmoid function. To solve this problem, Kapah
and Hel-Or proposes a selector, which is also an ANN, to select
either the output of the perceptron network or the backpropa-
gation network in each 2 × 2 neighborhood. The last method
is the quadratic perceptron network. In contrast to the percep-
tron network, the weights are not fixed, but functions of
inputs. An additional perceptron subnetwork is used to pro-
duce the weights. The overall performance
of the quadratic perceptron network is
reported to be the best in [20]. Another
algorithm based on ANN is proposed in
[13], where a three-layer feedforward struc-
ture is used. For each color channel, 16
measured pixels around a missing pixel are
used as the input.

IMAGE FORMATION MODELING
The last group of methods uses a model of
the image formation process and formulates
the demosaicking problem as an inverse
problem. These algorithms account for the
transformations performed by the color fil-
ters, lens distortions, and sensor noise and
determine the most likely output image
given the measured CFA image. Referring to
(1) and (3), the purpose is to reconstruct the
radiance r(m1, m2, l ). Defining r, O, and N
as the stacked forms of r(m1, m2, l ) ,
O(n1, n2), and NS(n1, n2), respectively, the observation model
can be written in the compact form

O = Hr + N, (15)

where H is the matrix that includes the combined effects of opti-
cal blur, sensor blur, spectral response, and CFA sampling. In
[31], [32], and [7] the minimum mean square error (MMSE)
solution is given:

r̂ = E
[
rOT

] (
E

[
OOT

])−1
O, (16)

where E [·] is the expectation operation. In [7], the point
spread function is taken as an impulse function, and r is repre-
sented as a weighted sum of spectral basis functions to reduce
the dimensionality of the problem. (Results with nonimpulse
point spread function are provided in [24].) In [32], adaptive
reconstruction and ways to reduce computational complexity

are discussed. In [31], a finite-support filter is derived based on
the assumption that the radiance, r, is independent of scale at
which the image is formed.

COMPARISON
Some of the algorithms we discussed are compared here with
objective measures [mean square error (MSE)] and subjective
image quality. Image results from each of the algorithms are
provided. For these experiments, simulated sampling was used
where full-color images were sampled to match the CFA sam-
pling process.

Twenty-four digital color images were used in the objective
measure experiments. These images are part of the Kodak color
image database and include various scenes. The images were

[FIG9] The average mean square error for different algorithms. (a) Edge-directed
interpolation in [17]. (b) Constant-hue-based interpolation in [3]. (c) Weighted
sum in [22]. (d) Second-order gradients as correction terms in [4]. (e) Bayesian
approach in [26]. (f) Homogeneity-directed in [18]. (g) Pattern matching in [8]. (h)
Alias cancellation in [12]. (i) POCS in [14].
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�Es ZIPPER EFFECT

ALGORITHM MEAN IQR MEAN IQR

(A) 2.1170 0.9444 0.2383 0.1519

(B) 1.6789 0.7599 0.2501 0.1628

(C) 2.0455 0.7647 0.0718 0.0208

(D) 1.4106 0.5539 0.2114 0.1291

(E) 1.3544 0.6980 0.2449 0.1716

(F) 0.9751 0.5960 0.0509 0.0406

(G) 1.3908 0.5644 0.1244 0.0692

(H) 1.6030 0.6681 0.4484 0.2186

(I) 0.9688 0.4619 0.0566 0.0488

[TABLE 1] COMPARISON WITH RESPECT TO THE CIELAB
AND ZIPPER EFFECT MEASURES. REPORTED IS
THE AVERAGE ERROR OVER 24 IMAGES AND
THE INTERQUARTILE RANGE (IQR). 

(a) Edge-directed interpolation in [17]. (b) Constant-hue-based interpolation in [3]. (c)

Weighted sum in [22]. (d) Second-order gradients as correction terms in [4]. (e) Bayesian

approach in [26]. (f) Homogeneity-directed in [18]. (g) Pattern matching in [8]. (h) Alias

cancellation in [12]. (i) POCS in [14].



sampled according to the Bayer CFA and reconstructed with a
subset of the algorithms. Three measures were used to evaluate
the algorithms. The MSE was measured for each color plane on
each of the output images to determine the difference between
the original image and the reconstructed image. For a second
measure, an extension of the CIELAB measure was used. The
extension, �Es, is described in [36], and a MATLAB code example
is available online [1]. It measures error in a perceptually uni-
form color space, extending the CIELAB measure to account for
nonuniform regions. A third measure used in the evaluation is a
measure of zipper effect [25]. Zipper effect is defined in the arti-
cle as “an increase in color difference with respect to its most
similar neighbor.” To determine if a pixel is affected by zipper
effect, Lu and Tan compare the color change between neighbor-
ing pixels in the original, full-color image and the demosaicked
image. The original image is used to determine the most similar
neighbor. If the color change exceeds a fixed threshold, that pixel
is determined to have zipper effect. The error measure reports
the percentage of pixels that have zipper effect.

The bar graph in Figure 9 shows the average MSE over the
set of images, along with error bars showing the 25–75% range
for the set of images. The graph shows that the POCS method
performs best on average in terms of MSE, and the small range

shown in the graph shows that it is also robust and performs
well for all of the images.

Table 1 reports the �Es error and the percentage of pixels
showing zipper effect. The errors are reported for the same set
of algorithms. These measures agree with the MSE comparison.
The POCS method and the homogeneity-directed algorithm
show superior results to the other algorithms.

The numbers can only provide part of the overall story. An
important evaluation is the subjective appearance of the output
images. For this, two example images are presented. Figure 10
shows the “lighthouse” image. This example includes a picket
fence from a perspective that increases spatial frequency along
the fence. Aliasing is a prominent artifact in this image. The
homogeneity-directed interpolation algorithm reconstructs this
image best. Very little aliasing is present in the output image.
The “boat” image in Figure 11 contains lines at various angles
across the image. This is a good example to show how the algo-
rithms respond to features at various orientations. The POCS
algorithm and the homogeneity-directed interpolation algo-
rithm show very few of the aliasing artifacts present in the other
output images. This shows that these algorithms are fairly
robust to the orientation of various features. According to the
MSE measurements, POCS is the best algorithm, but the output

images from the homogene-
ity-directed method have
fewer artifacts. This suggests
the need to use subjective
evaluations along with objec-
tive measures.

In [24], Longere et al.
provide a perceptual assess-
ment of demosaicking algo-
rithms. They compare several
algorithms with a subjective
experiment. The results of
their first experiment show
that the subjects favored
sharpness and the algorithms
providing a sharp image were
highly favored. The experi-
ment is repeated with the
resulting images normalized
for sharpness. After this
adjustment, the results show
more variation and no one
algorithm is highly favored.
Another comparison of
demosaicking algorithms is
provided in [29].

CONCLUSIONS AND
FUTURE DIRECTIONS
The sensor size of digital
cameras continues to de-
crease, providing sensor
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[FIG10] Result images for the “lighthouse” image. (a) Original image. (b) Bilinear
interpolation. (c) Edge-directed interpolation in [17]. (d) Constant-hue-based interpolation in
[3]. (e) Weighted sum in [22]. (f) Second-order gradients as correction terms in [4]. (g) Bayesian
approach in [26]. (h) Homogeneity-directed in [18]. (i) Pattern matching in [8]. (j) Alias cancellation in
[12]. (k) POCS in [14].

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)
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arrays with larger numbers of
pixels. Today, five and six mega-
pixel cameras are common. The
increased sampling rate of
these cameras reduces the
occurance of aliasing and other
artifacts; on the other hand,
sensor noise becomes an issue.
Recently, Foveon Inc. has
invented an imaging sensor, the
X3 sensor, that is able to cap-
ture R, G, and B information at
every pixel; eliminating the
need for demosaicking in the
digital camera pipeline.

However, research into de-
mosaicking is still an important
problem. This research has
explored the imaging process
and the correlation among
three color planes. This extends
beyond three color planes into
hyperspectral image process-
ing. Another research problem
is artifact reduction in color
image sequences. Restoration
algorithms for image sequences
should exploit temporal corre-
lation in addition to spectral
correlation. Super-resolution
reconstruction is also directly
related to the demosaicking
problem.

Processing time is often an important measure for algorithms
implemented in real-time systems. A photographer needs to be
able to take pictures at a fast rate, and the image processing can
sometimes limit this. Several cameras, especially the more
expensive digital single-lens-reflex (SLR) cameras, provide access
to the raw image data captured by the sensor. With this data, the
images can be processed at a later time on a computer. In this
case, processing time is not critically important. Therefore, algo-
rithms that perform well, but are computationally complex, can
still be considered in off-line processing applications.
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