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Multiframe Resolution-Enhancement Methods
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Abstract—Multiframe resolution enhancement (“superreso-
lution”) methods are becoming widely studied, but only a few
procedures have been developed to work with compressed video,
despite the fact that compression is a standard component of most
image- and video-processing applications. One of these methods
uses quantization-bound information to define convex sets and
then employs a technique called “projections onto convex sets”
(POCS) to estimate the original image. Another uses a discrete co-
sine transformation (DCT)-domain Bayesian estimator to enhance
resolution in the presence of both quantization and additive noise.
The latter approach is also capable of incorporating known source
statistics and other reconstruction constraints to impose blocking
artifact reduction and edge enhancement as part of the solution.
In this article we propose a spatial-domain Bayesian estimator
that has advantages over both of these approaches.

Index Terms—High-resolution video, maximum a posteriori
probability (MAP), Motion Pictures Experts Group (MPEG),
multiframe restoration, projections onto convex sets (POCS),
resolution enhancement, superresolution (SR), video quality.

I. INTRODUCTION

I N the process of recording an image, there is a natural loss
of spatial resolution caused by the nonzero physical dimen-

sions of the individual sensor elements, the nonzero aperture
time, optical blurring, noise, and motion. Multiframe resolu-
tion enhancement (“superresolution”) techniques try to esti-
mate the high-resolution image by combining the nonredundant
information that is available into a sequence of low-resolution
images.

Superresolution (SR) reconstruction has many application
areas including enhancing the imagery for high-definition tele-
vision (HDTV) sets, extracting still images from a video source
for printing, medical imaging, aerial and satellite imaging,
remote sensing, surveillance systems, forensic science, and
digital cameras. While many methods have been proposed
to enhance raw video, only a few have been proposed to
operate for the compressed video. Of course, any algorithm
that enhances uncompressed-video algorithms can be used with
compressed video by first decompressing the material, but this
process necessarily discards important information about the
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quantization of the high-resolution imagery that was introduced
by the act of compression itself. Patti and Altunbasak [1], [2]
demonstrated the importance of properly handling this quanti-
zation information and suggested a solution for enhancing the
video signal that explicitly exploits the compression process.
This method models the video acquisition and compression
processes and uses the quantization information as the basis
for a projections onto convex sets (POCS)-based algorithm
that operates in the compressed domain. However, with this
approach all sources of error except for the quantization error
are ignored, which may not be appropriate at medium to high bit
rates. The POCS approach is also unable to impose additional
constraints on the reconstructed image. In [3], spatial-domain
additive noise is modeled and transformed to the compressed
domain to establish a stochastic framework that can utilize
the quantization information. It is also possible to develop a
Bayesian reconstruction algorithm that seeks to minimize the
artifacts produced by the compression process [4], [5].

This article briefly summarizes these methods and proposes
to transform quantization noise statistics into the spatial do-
main. An algorithm based on iterated conditional modes is im-
plemented, and the results are compared with the POCS-based
algorithm.

II. SUPERRESOLUTIONTECHNIQUES THAT

MODEL COMPRESSION

All SR techniques model the video acquisition process that
relates high-resolution imagery to observations (low-resolution
frames or quantized discrete cosine transformation (DCT) coef-
ficients) and attempt to solve this inverse problem by using the
model and the observations. The video acquisition process can
be formulated as

(1)

where is the discrete, linear shift-varying (LSV)
blur mapping between the discrete high-resolution (HR) image

at a reference time and the th discrete low-reso-
lution (LR) image [2], [6]. is an additive noise
that is usually assumed to be from a white, Gaussian, discrete
random process. As depicted in Fig. 1, the compression stages
perform motion compensation of the LR frames and
follow this by a series of 8 8 block-DCTs to produce the DCT
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Fig. 1. Video acquisition model and encoder/decoder stages.

coefficients . Defining as the prediction frame
and as the DCT operator, we can write

(2)

where and are the block-DCTs of and , respectively.
is the 8 8 block-DCT of [2].

The DCT coefficients are then quantized to produce the
quantized DCT coefficients . The quantization opera-
tion is a nonlinear process that will be denoted by the operator

. Defining ,
we write

(3)

In popular video compression schemes, quantization is real-
ized by dividing each DCT coefficient by a quantization step
size followed by rounding to the nearest integer. The quantized
DCT coefficients and the corresponding step sizes are
available at the decoder, i.e., are either embedded in the com-
pressed bit-stream or specified as part of the coding standard.

A. DCT-Domain Projections Onto Convex Sets (POCS)
Method

Since the quantization step size is known for each DCT co-
efficient, upper and lower bounds within which the DCT coef-
ficients of the reconstructed HR image lie can be de-
termined from the observations . These bounds form a

constraint set for each DCT coefficient. The video acquisition
and compression stages [i.e., the model given by (2)] are applied
to an initial HR image estimate to compute its DCT coefficients.
If the computed DCT coefficients lie outside the bounds that are
derived from the MPEG bitstream, the error is back projected
onto the initial HR estimate so as to enforce consistency with
these bounds. SR reconstruction is achieved by repeating this
procedure iteratively for all observation sets. The details of this
method can be found in [1], [2].

B. DCT-Domain Maximum A Posteriori Probability (MAP)
Estimator

The DCT-domain POCS method performs impressively, es-
pecially when the compression ratio is high and quantization is
the major source of error. However, it ignores all other sources
of error, which can become important at lower compression ra-
tios (higher bit rates). Bayesian estimators are capable of par-
tially compensating for these error sources, which are gener-
ally modeled as additive noise (see Fig. 1). In addition, with the
use of Bayesian estimators, the source statistics as well as ad-
ditional constraints that affect blocking artifact reduction and
edge enhancement can also be included in the reconstruction.
Addressing these issues, it is possible to formulate a MAP esti-
mator that uses statistical models in the DCT domain [3]:

(4)

In [3], an analytical formula for the conditional probablitiy den-
sity function (PDF) is given. It is
also possible to model the conditional PDF differently under
some other assumptions [7]–[9].
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C. Spatial-Domain Maximum A Posteriori Probability (MAP)
Estimator

Spatial-domain SR reconstruction techniques are generally
less computationally complex than DCT-domain techniques.
This is because of the fact that each pixel in the spatial domain
maps to 64 DCT coefficients when an 88 block-DCT is
taken. This increases the blur mapping size significantly, which
has a direct effect on the computational cost.

In this section, we propose to use quantization error statistics
in a spatial-domain MAP estimation framework. The spatial-do-
main LR frames, , are obtained by taking the inverse DCT
of the quantized DCT coefficients and then motion-compen-
sating the residual frames (see Fig. 1). Using (3), this can be
formulated as

(5)

where is the 8 8 block inverse DCT operator. The
MAP estimator can be written as

(6)

Equation (6) shows that the conditional PDF
and the prior image PDF

have to be known for MAP estimation. Simple Gaussian
models or more complicated ones can be assumed for the
prior image PDF (see [11]). Unfortunately,
there is no closed-form solution for the conditional PDF

, since the and
operators [in (5)] do not commute. However, this distribution
can be computed experimentally and saved in a lookup table. It
is also possible to fit a model to the distribution. This can be
done once and used for all reconstructions afterward.

One way of computing the conditional PDF
is to assume that the noise is an

independent identically distributed additive white Gaussian
process, which results in an analytical formula for the error
PDF at the quantizer output [3]. This error PDF is the
convolution of a Gaussian PDF (coming from the additive
noise) with a uniform PDF (coming from the quantization
process). Since the error PDFs at different DCT coefficients
are independent of each other, the distribution of the error
PDFs after the IDCT can be found without difficulty. Another
analysis given in [7] suggests that for DCT coefficients
that are observed to be zero, the Laplacian model fits well
for the quantization error; for the nonzero-quantized DCT
coefficients, the uniform model is better.

To demonstrate the effectiveness of using statistical models,
the following experiment was conducted. The aerial image

shown in Fig. 2(a) is jittered to have multiple frames that are
slightly different than each other. The motion vectors are saved
for use in reconstruction. Each frame is then blurred with a
Gaussian low-pass filter having a support of five pixels and
a variance of 1. The filtered frames are than downsampled
by four and quantized using the ISO MPEG-2 intraframe
quantization matrix with the quantizer scale parameter set to
0.5. One of the quantized frames that is bilinearly interpolated
is given in Fig. 2(b). We then applied the spatial-domain
POCS method proposed in [10]. Sixteen images are used in
reconstruction, and after two iterations the image in Fig. 2(c) is
obtained. We also applied the spatial-domain MAP estimator.
For the conditional PDF, we assumed a Gaussian distribution.
Letting be the operator applying the blocks given
in Fig. 1 on , the conditional PDF is proportional to

. For the prior PDF,
we assumed a local conditional PDF based on Markov Random
Fields. It penalizes the difference between a pixel intensity and
an estimate value that is obtained by averaging the intensities
of its four neighbor pixels. That is, the local conditional PDF
is proportional to ,
where represents the four neighbors of the pixel at ( ).

A suboptimal iterated conditional modes (ICM) implementa-
tion of the algorithms updates each pixel intensity iteratively by
minimizing the weighted sum of the exponents

(7)

where determines the relative contribution of the conditional
and prior PDFs. One way of implementation is as follows:

1. Choose a reference frame from the video se-

quence; bilinearly interpolate it to obtain an

initial estimate.

2. Estimate the motion between the reference and

other frames and compute H(l; k;n; t )

3. Repeat the following until a stopping criterion

is reached:

(a) Choose a low-resolution observation.

(b) For each pixel in the low-resolution observa-

tions y(l; k),

i. Determine the set of pixels in f(n; t ) that

affects the particular pixel in the low-resolution

image through the mapping H(l; k;n; t ):

ii. Keep all the pixels intensities except for

one pixel in the given set fixed and find the in-

tensity that minimizes the sum given in (7) .

iii. Update the pixel intensity and repeat for

the other pixels in the set.

(c) Choose another low-resolution observation and

go to Step (b).
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(a) (b)

(c) (d)

Fig. 2. A comparison of POCS and Bayesian reconstructions for compressed video. (a) Original image. (b) Bilinearly interpolated observation. (c) POCS
reconstruction. (d) MAP reconstruction.

In the implementation, we set to 0.65 and the number of
iterations to 2. For this particular choice of PDFs, there is a
closed-form solution for Step 3(b)ii in the above algorithm.
The same set of low-resolution observations is used as in the
POCS-based reconstruction. The reconstructed image is given
in Fig. 2(d). When compared to the result of the POCS-based
implementation, the reconstructed image of the MAP imple-
mentation is smoother and much more artifact-free.

III. CONCLUSION

As mentioned earlier, there are two main SR reconstruction
approaches that were designed for compressed video. One is
based on the POCS technique, and it enforces the consistency of
the solution with the quantization-bound information. The other
approach is based on the MAP estimation. In addition to the
prior information about the solution, MAP-based methods can
utilize the quantization statistics in either the transform or spa-
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tial domain. In the experiments, we assumed a Gaussian model
for the conditional PDF, and a local Markov Random Fields
model for the prior PDF. Although these are not necessarily the
best models, the MAP-based reconstruction produced a more
artifact-free and smoother solution than the POCS-based recon-
struction did.
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