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Most interest point detection algorithms are highly sensitive to illumination variations. This paper pre-
sents a method to find interest points robustly even under large non-uniform photometric changes.
The method, which we call illumination robust feature extraction transform (IRFET), determines salient
interest points in an image by calculating and analyzing contrast signatures. A contrast signature shows
the response of an interest point detector with respect to a set of contrast stretching functions. The IRFET
is generic and can be used with most interest point detectors. In this paper, we demonstrate that the
IRFET improves the repeatability rate of the Harris corner detector significantly (by around 25% on aver-
age in the experiments).

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Interest point detection is a necessary task in a variety of com-
puter vision applications, including object recognition, tracking,
stereo imaging, and mosaic construction. Although the term inter-
est point detector is sometimes interchangeably used with the
term corner detector; interest points do not necessarily correspond
to physical corner points. The performance of an interest point
detector is evaluated in terms of its accuracy and consistency. An
interest point detector should have good spatial localization and
be robust against noise and geometric/photometric changes.

One of the earliest interest point detection algorithms is the
Moravec corner detector [1]. In the Moravec corner detection algo-
rithm, a patch around a pixel is taken and compared with the
neighboring patches. If the pixel is on a smooth region or an edge,
there would be at least one neighboring patch that is very similar.
For a corner point, all neighboring patches would be different.
Therefore, the corner strength at a pixel is defined as the smallest
sum of squared differences between the center patch and its neigh-
boring patches. The problem with this algorithm is that only a fi-
nite number of neighboring patches (patches in horizontal,
vertical, and diagonal directions) are considered; hence, the algo-
rithm is not isotropic.

Harris and Stephens [2] derives a better corner detector by
applying Taylor series expansion to the sum of squared difference
between a patch and its arbitrarily shifted version. This expansion
yields a 2 � 2 autocorrelation matrix, whose eigenvalues indicate
the magnitudes of two orthogonal gradient vectors. For a corner
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), bahadir@ece.lsu.edu (B.K.

kci, B.K. Gunturk, Illuminati
point, both magnitudes should be large. Since the calculation of
eigenvalues and eigenvectors is costly, a corner strength measure
based on the determinant and trace of the autocorrelation matrix
is proposed. The local maxima of the corner strength map are cho-
sen as the corner points. This method is known as the Harris or the
Plessey corner detector in the literature and it is probably the most
popular interest point detector. Shi and Tomasi method [3] is based
on the Harris corner detector but uses the minimum of the eigen-
values as the corner strength measure; this turns out be more ro-
bust against affine geometric transformations compared to the
corner strength measure of the Harris corner detector.

In [4], phase congruency is used to detect edges and corners. The
method is based on the local energy model, which postulates that the
frequency components are in phase at corners and edges [5]. One
advantage of this method is the relative insensitivity against illumi-
nation changes. The phase congruency method also has very accu-
rate spatial localization. Mokhtarian and Suomela [6] uses the
curvature scale space technique and defines the corner points as
the points of maximum absolute curvature. The method has been
shown to have very good noise robustness. Another important
interest point detector is the SUSAN corner detector [7]. The SUSAN
operator finds corners based on the fraction of pixels that are sim-
ilar to the center pixel within a small circular region. A low value of
this fraction indicates a corner. The cornerness response at a pixel is
basically obtained by subtracting the number of similar pixels from
a fixed geometric threshold. A non-maxima suppression operation
determines the corner points. The SUSAN operator is also highly ro-
bust to noise. Modifications of the SUSAN operator are used for edge
detection and for image denoising. (The well-known Bilateral filter
[8] is essentially identical to the SUSAN image denoising filter.)

There are several methods that directly address the problem of
extracting illumination robust interest points. For example, [9]
on robust interest point detection, Comput. Vis. Image Understand.
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Fig. 1. Sigmoid functions at contrast centers c = 0.3 and c = 0.6 are plotted. The
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applies the Harris corner detection procedure on the logarithm of
an image instead of the image itself. Similar to the homomorphic
filtering, the underlying idea is to separate the illumination and
reflectance components and reduce the effect of the illumination
component. The method was later extended by first dividing red
and blue channels by the green channel and then taking logarithm
[10]. In [11], each color channel is normalized by subtracting mean
and then dividing by the square root of the sum of the squares of
the pixel values in that channel. This procedure would work well
if the illumination changes can be effectively modeled as scale
changes. Ref. [12] also models the illumination changes as scale
factors, modifies the optical flow equation, and solves for the scale
factors in addition to other geometric transformation parameters.
When the illumination changes are large, the effect on the pixel
intensities would be non-uniform and these methods would likely
to perform not as much effectively as in small illumination cases.

Recently, methods to extract scale and affine invariant interest
points have been proposed. A review of these methods can be
found in [13]. A comprehensive evaluation of the interest point
detectors is provided in [14]. Among these methods, the scale
invariant feature transform (SIFT) [15] method also presents a re-
gion descriptor based on the local histogram of the gradient vec-
tors to achieve illumination invariance in addition to scale
invariance. In the illumination invariance experiments of [14],
the SIFT method is among the best performers.

In this paper, we present a method, illumination invariant fea-
ture extraction transform (IRFET), to improve the robustness of fea-
ture detection against illumination changes. The IRFET stretches
the histogram of an image around a set of pixel intensities; an
interest point detector is applied to each contrast-stretched image
to produce a three-dimensional cornerness map. Interest points are
determined from this map.

The IRFET is generic and can be combined with a feature detec-
tor that creates feature strength map and then applies non-max-
ima suppression to it. In this paper, we show how the IRFET
improves the repeatability rate of the Harris corner detector. Sec-
tion 2 reminds the standard Harris corner detector. Section 3 ex-
plains the idea behind the IRFET method and also presents its
application on the Harris corner detector. The robustness of the
proposed method over the Harris corner detector is proven in Sec-
tion 4. Section 5 compares several interest points detectors exper-
imentally; and Section 6 concludes the paper.

2. Harris corner detector

One of the most commonly used interest point detectors in
computer vision applications is the Harris corner detector [2].
The Harris corner detector is based on the autocorrelation matrix
of the image gradients. The autocorrelation matrix A(x,y; I) of an
image I at a pixel location (x,y) is given as follows:

Aðx; y; IÞ ¼

P
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where @=@x and @=@y calculates the gradients in horizontal and ver-
tical directions, respectively; and N is a set of pixels around (x,y).
Usually a weighted sum of the gradients in N is taken using a Gauss-
ian function centered at (x,y) to give more weight to the pixels that
are close to (x,y). The cornerness response function of the Harris
corner detector is based on the determinant and trace of the auto-
correlation matrix:

Rharrisðx; yÞ ¼ detAðx; y; IÞ � kðtraceAðx; y; IÞÞ2; ð2Þ
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where k is a small positive constant controlling the cornerness sen-
sitivity of the detector. After calculating the cornerness response for
all pixels, non-maxima suppression is used to get the corner points.

3. Illumination robust feature extraction transform

The IRFET is an intuitive method to improve illumination invari-
ance of feature detectors. The underlying idea is to stretch the im-
age contrast as a function of intensity to span the space of possible
photometric transformations. By applying a feature detector to a
contrast-stretched image, the response of the feature detector un-
der a particular illumination condition is simulated. The collection
of the responses under a set of illumination conditions forms a sig-
nature for each pixel. The signatures can then be used to character-
ize a pixel and to find illumination robust interest points.

The contrast stretching function that we use in our experiments
is the sigmoid function, which has the following form:

fcðIðx; yÞÞ ¼
1

1þ e�cðIðx;yÞ�cÞ ; ð3Þ

where I(x,y) is the normalized intensity value in the range [0,1], c is
the contrast center around which the contrast is stretched, and c
determines the slope of the sigmoid function. Fig. 1 illustrates the
sigmoid function.

By applying the contrast stretching function at different con-
trast centers, we obtain a set of contrast-stretched images. (Fig. 2
shows a set of contrast-stretched versions of two images at various
contrast centers. Notice that these two different images produce
similar responses at particular contrast centers. For example,
c = 0.8 for Image (a) produces an image that is very similar to the
output of c = 0.2 for Image (b). Likewise, the output of c = 1.0 for
Image (a) is similar the output of c = 0.5 for Image (a). Also, notice
how some details in c = 0.05 for Image (b) get apparent as in Image
(a).) A feature detector is then applied to each of these contrast-
stretched images. In case of the Harris corner detector, first, the
autocorrelation matrix at each pixel is found:

Aðx;y; IcÞ¼
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where Icðm; nÞ � fcðIðm;nÞÞ is the contrast-stretched image at con-
trast center c. And then, the cornerness response is calculated:

Rðx; y; cÞ ¼ detAðx; y; IcÞ � kðtraceAðx; y; IcÞÞ2: ð5Þ

Note that the cornerness response is a function of the contrast cen-
ter c. R(x,y;c) for all (x,y;c) is a three-dimensional matrix that can
be used to analyze the pixels in terms of the cornerness strength.
parameter c controls the slope of the sigmoid.

on robust interest point detection, Comput. Vis. Image Understand.



Fig. 2. Contrast stretched versions of two images are displayed at several centers c (c = 50 for all images).
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By plotting R(x,y;c) as a function of c at a pixel position, we can ob-
tain the ‘‘contrast signature” of that pixel. Fig. 3 shows the contrast
signatures at several pixels on an image. Specifically, five corner
pixels are selected from the image. These pixels are enumerated
from 1 to 5. Among these pixels, Pixel 1 is on a corner with the high-
est contrast. When we look at the contrast signature of that pixel,
we see that it has a strong response over a wide range of c. On
the other hand, a corner pixel with low contrast returns a large re-
sponse over a limited range of c. (Although not plotted in the figure,
pixels that are on edges and smooth regions return a low response
for all values of c.)

Based on the contrast signatures, we can define various corn-
erness measures. One possible measure is the maximum response
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Fig. 3. Sample pixels and the corresponding contrast signatures are shown.
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Rmaxðx; yÞ ¼maxcRðx; y; cÞ. Although this makes sense because a
corner point, even if it has a low contrast, would return a high
R(x,y;c) value at some c, in real applications it turns out to be an
unreliable measure because of its sensitivity to noise.

Another possible cornerness measure is the average response
over all c, equivalently, the area under the contrast signature:

Rareaðx; yÞ ¼
Z 1

0
Rðx; y; cÞdc: ð6Þ

The area response Rarea(x,y) is calculated using the Riemann sum in
practice, and it turns out to be a more reliable measure as it favors
corners that return high response for a wide range of illumination
conditions. In the next section, we will also prove that Rarea(x,y) is
less sensitive to illumination changes compared to Rharris(x,y).

Fig. 4 shows these cornerness responses for the image given in
Fig. 3. As seen, the standard Harris corner detector misses the cor-
ners with low contrast; on the other hand, Rarea(x,y) and Rmax(x,y)
highlights all the corners well. Among all, Rmax(x,y) has the best
distinguishing response. To test how the cornerness response
changes as a function of contrast, we set up another experiment,
shown in Fig. 5. The intensity of the white patch in a black image
is reduced from 1 to 0; and the responses R(x,y), Rarea(x,y), and
Rmax(x,y) are measured at the corner of the white patch. It is ob-
served that the standard Harris response drops sharply, while the
responses based on the contrast signature are more robust.

These experiments indicate the maximum response Rmax(x,y) as
the best measure; however, as mentioned previously, it turned out
that it is not as reliable as Rarea(x,y) in real applications.
on robust interest point detection, Comput. Vis. Image Understand.



Fig. 4. Left to right: Cornerness responses of the standard Harris corner detector Rharris(x,y), IRFET-Harris with Rarea(x,y), and IRFET-Harris with Rmax(x,y) are displayed for the
image in Fig. 3.

Fig. 5. The intensity of the white patch is reduced from 1 to 0. The cornerness
responses of the standard Harris corner detector Rharris(x,y), IRFET-Harris with
Rarea(x,y), and IRFET-Harris with Rmax(x,y) as a function of this intensity are plotted
for the marked corner pixel.
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4. Proof of illumination robustness

In this section, we will prove that Rarea(x,y) is more robust
against illumination changes than the Harris response Rharris(x,y)
is. First, we incorporate the camera response function, which is
the main source of illumination sensitivity under large photomet-
ric changes, into the picture. Let z(m,n) be the irradiance of a scene
and ga(�) be the camera response function that converts the irradi-
ance into pixel intensity:

Iðm;nÞ ¼ gaðzðm;nÞÞ: ð7Þ

The parameter a is the parameter associated with the illumination
change. For example, in the classical formulation of the camera re-
sponse function [16], gaðzðm;nÞÞ ¼ a1 þ a2ðazðm; nÞÞa3 , where
(a1,a2,a3) are the parameters specific to the camera, and a repre-
sents gain and/or exposure time of the sensor. In the more general
polynomial formulation [17], gaðzðm;nÞÞ ¼

PK�1
k¼0 akðazðm;nÞÞk.

We will now drop the spatial positions from our notations for
simplicity purposes, define qðIÞ � detAðIÞ � kðtraceAðIÞÞ2, and re-
write the Harris corner detector response Rharris and the area re-
sponse Rarea as a function of the irradiance as follows:

Rharris ¼ qðIÞ ¼ qðgaðzÞÞ ð8Þ

and

Rarea ¼
Z 1

0
q fcðIÞð Þdc ¼

Z 1

0
qðfcðgaðzÞÞÞdc: ð9Þ
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In order to prove that Rarea is less sensitive to illumination changes
than Rharris is, all we need to do is to show that ð@Rarea=@aÞ 6
ð@Rharris=@aÞ. Using the chain rule, the derivative of Rharris can be
written as

@Rharris

@a
¼ @q
@I

@I
@a
¼ q0

@gaðzÞ
@a

: ð10Þ

Note that (10) requires both q and ga to be differentiable. While we
are not interested in the exact formulas of @qðx; yÞ=@Iðm;nÞ or
@Iðm;nÞ=@a, these derivatives exist and can be calculated by using
the definitions of A, q and ga. Similarly, we can write the derivative
of Rarea as follows:

@Rarea

@a
¼ @

@a

Z 1

0
q fc gaðzÞð Þð Þdc ¼

Z 1

0
q0f 0c

@gaðzÞ
@a

dc: ð11Þ

Combining the last two equations, we get @Rarea=@a ¼
@Rharris=@a

R 1
0 f 0c dc; therefore, to complete the proof it is sufficient

to show that
R 1

0 f 0c dc 6 1. Using the definition of the sigmoid, we
obtain
Z 1

0
f 0c dc ¼

Z 1

0

@

@s
1

1þ e�cðs�cÞ

� 	
dc ¼ 1

1þ e�cs
� 1

1þ e�cðs�1Þ ; ð12Þ

where s 2 [0,1]. The maximum value of this function is reached
when s = 0.5, where its value is 1. Therefore,

R 1
0 f 0c dc 6 1 for any va-

lue of s regardless of the value of c.
5. Experiments

In this section, we report the experiments demonstrating how
the IRFET improves the repeatability rate of the Harris corner
detector under large photometric changes and also compare with
several state-of-the-art corner detectors under the same
conditions.

There are three data sets, which are shown in Figs. 6–8. There
are non-uniform illumination changes and severe saturation in
these images. In each set, one image is chosen as the reference im-
age, and the repeatability rate is computed for each of the remain-
ing images.

There are different measures of repeatability rate for interest
point detectors; we use the following measure. Suppose N1 is the
number of interest points in Image 1; N2 is the number of interest
points in Image 2; and N is the number of common interest points.
Then, the repeatability rate is defined as N/min(N1,N2). An interest
point in an image is repeated if there is an interest point within a
3 � 3 neighborhood of the other image.

In the experiments, we used the following parameters. For the
Harris corner detector, the value of k was 0.04. In calculating the
autocorrelation matrix, we used a Gaussian function with standard
deviation of 1 to get the weighted sum of the gradients within a
on robust interest point detection, Comput. Vis. Image Understand.



Fig. 6. Data set 1. Image in (d) is chosen as reference. Repeatability rates between this image and the other images are computed. The images in (a), (b), (c), (e), (f), and (g) are
labeled as 1–6 in Fig. 9. The image size is 300 � 400.

Fig. 7. Data set 2. Image in (a) is chosen as the reference image. Repeatability rates between this image and the other images are computed. The images in (b), (c), and (d) are
labeled as 1, 2, and 3 in Fig. 9. The image size is 480 � 640.

Fig. 8. Data set 3. Image in (d) is chosen as reference. Repeatability rates between this image and the other images are computed. The images in (a), (b), (c), (e), (f), and (g) are
labeled as 1–6 in Fig. 9. The image size is 768 � 512.
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7 � 7 local neighborhood. For the non-maxima suppression, the
pixels with cornerness response less than a threshold were elimi-
nated, and the local maxima within 3 � 3 regions were found for
the remaining pixels. The threshold value, below which the corre-
sponding pixels are eliminated, was set to 2% of the maximum va-
lue of the cornerness response. For the IRFET-Harris algorithm, the
signatures were obtained for c 2 [0,1] with step size of 0.05 and
with c = 50, and Rarea values were calculated using the Riemann
sum. The values of the step size and the c parameter were decided
after some trial-and-error to have a good overall performance. In
addition to the standard Harris and the IRFET-Harris, we included
Please cite this article in press as: M. Gevrekci, B.K. Gunturk, Illuminati
(2009), doi:10.1016/j.cviu.2008.11.006
results of the Phase Congruency [4], SIFT [15], and SUSAN [7] meth-
ods. The software for these methods are provided by the original
authors. For these methods, the parameters were chosen as the de-
fault values given in these softwares.

The results are given in Fig. 9. In the figure, both the repeatabil-
ity rate and the number of repeated corners are plotted. As seen in
the results, the IRFET improves the repeatability rate of the stan-
dard Harris corner detector by around 25% on average. The
improvement is larger for images with large photometric differ-
ences. When the number of repeated corners is examined, it can
be seen that the number of repeated corners is significantly larger
on robust interest point detection, Comput. Vis. Image Understand.
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Fig. 9. Top to bottom: Experimental results (the repeatability rates and the number of repeated corners) for data set 1, data set 2, and data set 3, respectively.

6 M. Gevrekci, B.K. Gunturk / Computer Vision and Image Understanding xxx (2009) xxx–xxx

ARTICLE IN PRESS
for the IRFET-Harris compared to the standard Harris. The number
of repeated corners might be important in some applications, for
example, when registering images with relatively small overlap-
ping areas. One might also try to improve the repeatability rate
by increasing the threshold of the non-maxima suppression or by
ranking the pixels according to the cornerness strength and then
taking the top, say, M of them. For these scenarios, the IRFET-Harris
has larger space for improvement than the standard Harris.

While improving the standard Harris, the IRFET-Harris outper-
forms the other interest point detectors as well. In all experiments,
Please cite this article in press as: M. Gevrekci, B.K. Gunturk, Illuminati
(2009), doi:10.1016/j.cviu.2008.11.006
the IRFET-Harris has higher repeatability rate than the Phase Con-
gruency, SIFT, and SUSAN methods.

6. Conclusions

In this paper, we proposed a method, IRFET, to detect interest
points robustly under varying illumination conditions and demon-
strated how it improves the repeatability rate of the standard Har-
ris corner detector. The IRFET-Harris also performs better than
several other state-of-the-art corner detection algorithms. An
on robust interest point detection, Comput. Vis. Image Understand.
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important drawback of the IRFET method is the computational
complexity. In the current implementation, if the contrast center
c is sampled at m points, then the computational complexity of
the IRFET is approximately m times the computational complexity
of the method it is applied. Of course, for applications where per-
formance is more important than computational complexity, the
IRFET would be very beneficial. Also note that the method is paral-
lel in nature: the response for each contrast center can be com-
puted independently. This allows parallel implementation of the
method. A possible future work is to combine the IRFET method
with affine invariant interest point detectors to obtain affine and
photometric invariant feature detectors.
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