

facebook

Social Networking at Scale

Sanjeev Kumar
Facebook

Outline

1 What makes scaling Facebook challenging?

2 Evolution of Software Architecture

3 Evolution of Datacenter Architecture

845M users worldwide

?.'f/:' y ol
S00M “ 7008 30B 2.5M
daily active users minutes spent pieces of content sites using
on thesite every shared each social plugins

month month

What makes scaling Facebook challenging?

- Massive scale
- Social Graph is central to everything on the site
- Rapidly evolving product

- Complex Infrastructure

Traditional websites

- J—
o

Horizontally scalable

Bob’s data

Joenng

Social Graph

People are only one dimension of the social graph

Facebook: The datais interconnected
Common operation: Query the social graph

Servers

Social Graph Cont’d

- Highly connected
4.74 average degree-of-separation between users on Facebook

Made denser by our connections to places, interests, etc.
- Examples of Queries on Social Graph
What are the most interesting updates from my connections?

Who are my connections in real-life who I am not connected to on
Facebook?

What are the most relevant events tonight near me and related to my
interests? Or that my friends are going to?

Social Graph Cont’d

- System Implications of Social Graph
Expensive to query
Difficult to partition
Highly customized for each user

Large working sets (Fat tail)

What makes scaling Facebook challenging?

- Massive scale
- Social Graph: Querying is expensive at every level
- Rapidly evolving product

- Complex Infrastructure

Product Launches

500M

400M

300M

200M

S i

5% a4

Translations
2008

3L

NewsFeed

New Apps
P 2006

2004/2005

OM |y SEE——

2004 2011

Rapidly evolving product

- Facebook is a platform
External developers are innovating as well
- Oneintegrated product
Changes in one part have major implications on other parts
For e.g. Timeline surfaces some of the older photos
- System Implications
Build for flexibility (avoid premature optimizations)

Revisit design tradeoffs (they might have changed)

What makes scaling Facebook challenging?

- Massive scale
- Social Graph: Querying is expensive at every level
- Rapidly evolving product

- Complex Infrastructure

Complex infrastructure

- Large number of Software components
Multiple Storage systems
Multiple Caching Systems
100s of specialized services

- Often deploy cutting-edge hardware

At our scale, we are early adopters of new hardware
- Failure is routine
- Systems implications

Keep things as simple as possible

Outline

1 What makes scaling Facebook challenging?

2 Evolution of Software Architecture

3 Evolution of Datacenter Architecture

Evolution of the Software Architecture
Evolution of each of these 4 tiers

Web Tier

Cache Tier Services Tier

(

Storage Tier

Evolution of the Software Architecture
Evolution of Web Tier

Web Tier

CacheTier Services Tier
) (==) (==

Storage Tier

Web Tier

- Stateless request processing

Gather Data: from storage tiers
Transform: Ranking (for Relevance) and Filtering (for Privacy)

Presentation: Generate HTML
- Runs PHP code
Widely used for web development
Dynamically typed scripting language
- Integrated product = One single source tree for all the entire code

Same “binary” on every web tier box

- Scalability: Efficiently process each request

Generation 1: Zend Interpreter for PHP

- Reasonably fast (for an interpreter)

- Rapid development

- Don’t have to recompile during testing

- But: at scale, performance matters

C++
Java | Relative Execution Time
c# |
Ocaml |
Ruby |
Python

PHPZend [T
T T T T T

Generation 2: HipHop Compiler for PHP

C++ |
Java |
C# |
Ocaml |
Ruby |

Python | : : : : : : :

PHP Zend

PHP HipHop
0 5 10 15 20 25 30 35 40 45

Relative Execution Time

- Technically challenging, Impressive gains, Still room for improvement
- But: takes time to compile (slows down development)

- Solution: HipHop interpreter
- But: Interpreter and compiler sometimes disagree

Performance Gains are slowing. Can we improve performance further?

Generation 3: HipHop Virtual Machine

HHVM
&
m)] AST > Bytecode
Parser Bytecode \ HHVM
(147 Generator

Optimizer

\X/
- Best of both worlds

- Common path, well-specified bytecode semantics

- Potential performance upside from dynamic specialization

- Work-In-Progress

Web Tier Facts

- Execution time only a small factor in user-perceived performance
Can potentially use less powerful processors
Throughput matters more than latency (True for other tiers as well)
- Memory management (allocation/free) is a significant remaining cost
Copy-on-Write in HipHop implementation
- Poor Instruction Cache Performance
Partly due to the one massive binary
- Web load predictable in aggregate
Can use less dynamic techniques to save power
Potentially even turn off machines. Failure rates is an open question?

Evolution of the Software Architecture
Evolution of Storage Tier

Web Tier

Cache Tier Services Tier

Storage Tier

=Sl =St =it ==

Evolution of a Storage Tier

- Multiple storage systems at Facebook
MySQL
HBase (NoSQL)
Haystack (for BLOBS) €

- Case Study: BLOB storage
BLOB: Binary Large Objects (Photos, Videos, Email attachments, etc.)
Large files, No updates/appends, Sequential reads
More than 100 petabytes

250 million photos uploaded per day

Generation 1: Commercial Filers

. New Photos Product NFS Storage
- First build it the easy way O
- Commercial Storage Tier + HTTP server ‘ ‘
- Each Photo is stored as a separate file ‘
- Quickly up and running ® O
- Reliably Store and Serve Photos ‘
- But: Inefficient ‘ '
- Limited by 10 rate and not storage density ‘
- Average 10 10s to serve each photo ‘ @

- Wasted 10 to traverse the directory structure

Generation 2: Gen 1 Optimized

. Optimization Example: NFS Storage Optimized

- Cache NFS handles to reduce wasted 10 C |rectry Inode
operations - owner info

: :ii:neestamps
- Reduce the number of 10 operations per +_blocks
photo by 3X

directory data
. * inode#
- But: « filename

- Still expensive: High end storage boxes

- Still inefficient: Still 10 bound and wasting 10s * owner info
* size

e timestamps
» blocks

Generation 3: Haystack [OSDI’10]

- Custom Solution

Superblock

- Commodity Storage Hardware Magic No
o . Needle 1
- Optimized for 110 operation per request Key
- File system on top of a file system Flags
- Compact Index in memory
- Metadata and data laid out contiguously
- Efficient from 10 perspective
Checksum

- But:

- Problem has changed now

Single Disk 10 to read/write a photo

Generation 4: Tiered Storage

- Usage characteristics
Fat tail of accesses: everyone has friends ©
A large fraction of the tieris no longer 10 limited (new)
Storing efficiency matters much more than serving efficiency
- Approach: Tiered Storage
Last layer optimized for storage efficiency and durability

Fronted by caching tier optimized for serving efficiency

- Working-In-Progress

BLOB Storage Facts

- Hot and Warm data. Little cold data.
- Low CPU utilization
Single digit percentages
- Fixed memory need
Enough for the index
Little use for anything more
- Next generation will use denser storage systems
Do we even bother with hardware raid?

Details to be publicly released soon

Evolution of the Software Architecture
Evolution of Cache Tier

Web Tier

CacheTier Services Tier
(—) (=) E=lc—=]

Storage Tier

First few Generations: Memcache

Web Tier

CacheTier: Memcache $ Look-Aside Cache
Key-Value Store
Does one thing very well
[n:=|=|] [n:=|=|] Does little else
Improved performance by 10X

Storage Tier

=Sl =St =it ==

Memcache limitations

- “Values” are opaque

- End up moving huge amounts of data across the network

facebOOk “’o Search Home Profile Account v

Edit Places

oy A
H ' Il You and San Francisco, California
3 [4 & n & g .
o sl SRS R4

Ap 7 friends like this.

Nearby Places Create a Page - See All

- Storage hierarchy exposed to web tier
- Harder to explore alternative storage solutions
- Harder to keep consistent
- Harder to protect the storage tier from thundering herds

Alternative Caching Tier: Tao

Web Tier

CacheTier:Tao T
1. Has a data model

{n!==] [m==] 2. Write-Through Cache
[nz=l=l] [n!=|=l] 3. Abstracts the storage tier

l' Storage Tier

Tao Cont’d

- Data Model
- Objects (Nodes)
- Associations (edges)

- Have “type” and data

- Simple graph operations on them

- Efficient: Content-aware

. Can be performed on the caching tier

- In production for a couple of years

- Serving a big portion of data accesses

Tao opens up possibilities

- Alternate storage systems
Multiple storage systems

To accommodate different use case (access patterns)

- Even more powerful Graph operations

- Multi-Tiered caching

Cache Tier Facts

- Memcache
Low CPU utilization
Little use for Flash since it is bottlenecked on network
- Tao
Much higher CPU load
Will continue to increase as it supports more complex operations

Could use Flash in a multi-tiered cache hierarchy

Evolution of the Software Architecture
Evolution of Services Tier

Web Tier

CacheTier Services Tier
) (o) —))

Life before Services
Example: Wish your friend a Happy Birthday

Web Tier

Inefficient and Messy
» Potentially access hundreds of machines

[n-==] [n_::] » Solution: Nightly cron jobs
* Issues with corner cases

[III==] [n’==] What about more complex problems?
Solution: Build Specialized Services

Cache Tier

Storage Tier

=Sl =St =it ==

A more complex service: News Feed

Aggregation of your friends’ activity
One of many (100s) services at Facebook

38
facebook s Search Q
[=) Update Status Add Photo / Video == Ask Question
Sushma Bhope
What's on your mind?
FAVORITES
Welcome SORT: MOST RECENT ~
[:]] News Feed Priya Joseph
@ Messages 3 . via Sven,20 HDR photographers worth watching,
&
E Events 20 HDR Photographers Worth Watching
& Find Friends 20+ speckyboy.com
Do you need a twist on your photographic inspiration?
APPS Check out the following HDR photographers. The

Apps and Games

Photos color.
I8 Music ¢]] Like - Comment - Share - about an hour ago

[:] Notes

&= Questions

¢]] Links

(Z Pokes

GROUPS

[Create Group...

College.

techniques they use to create surrealistic images combine
multiple exposures to capture a wider range of value and

Stefanos Damianakis added a new photo. — at Brookdale Community

-

OF

News Feed Product characteristics

- Real-time distribution

- Along edges on the Social Graph

- Writer can potentially broadcast to very large audience

J tady Gaga

44,716,306

like this Mark ZUCkerberg Subscribers

- Reader wants different & dynamic ways to filter data
- Average user has 1000s of stories per day from friends/pages

- Friend list, Recency, Aggregation, Ranking, etc.

News Feed Service

User Update Query
[Write] [Read] Service: News Feed

- Build and maintain an index: Distributed

- Rank: Multiple ranking algorithms

Two approaches: Push vs. Pull

- Push approach - Pull approach
Distribute actions by reader Distribute actions by writer
Write broadcasts, read one location Write one location, read gathers

- Pull model is preferred because
More dynamic: Easier to iterate

“In a social graph, the number of incoming edges is much smaller than the
outgoing ones.”

9,000,000 621

News Feed Service: Big Picture

User Update Query
[Write] [Read] Service: News Feed
Aggregators

00—

Leafs

=== e Tt AR -2 =]

- Pull Model
- Leafs: One copy of the entire index. Stored in memory (Soft state)

- Aggregators: Aggregate results on the read path (Stateless)

News Feed Service: Writes

User Update Query
[Write] [Read] Service: News Feed
Aggregators

[II-==] [II-==] oo [[II=I=]

Leafs

O | (== | (T * » O]

- On User update (Write)
- Index sharded by Writer

- Need to update one leaf

News Feed Service: Reads

User Update Query
[Write] [Read] Service: News Feed
Aggregators

- On Query (Read)
- Query all leafs

- Then do aggregation/ranking

News Feed Service: Scalability

1User Update 1 Query
[Write] [Read] Service: News Feed
Aggregators
Leafs

O) (=) (e =]

- 1000s of machines
- Leafs: Multiple sets. Each set (10s of machines) has the entire index

- Aggregators: Stateless. Scale with load.

News Feed Service: Reliability

- Dealing with (daily) failures
Large number of failure types
Hardware/software
Servers/Networks
Intermittent/Permanent
Local/Global
- Keep the software architecture simple
Stateless components are a plus
- For example, on read requests:
If a leaf is inaccessible, failover the request to a different set

If an aggregator is inaccessible, just pick another

New Feed Service Facts

- Number of leafs dominate the number of aggregators

Reads are more expensive than writes

Every read (query) involves one aggregator and every leaf in the set
- Very high network load between aggregator and leafs

Important to keep a full leaf set within a single rack on machines

Uses Flash on leafs to ensure this

Evolution of the Software Architecture
Summary

Web Tier HipHop Compiler & VM

Cache Tier Memcache &Tao New Feed Services Tier

Storage Tier BLOB Storage

Outline

1 What makes scaling Facebook challenging?

2 Evolution of Software Architecture

3 Evolution of Datacenter Architecture

Recall: Characteristics of Facebook

- Massive Scale
- Social Graph

Expensive to query

Hard to partition

Large working set (Fat tail)
- Product is rapidly evolving

- Hardware failures are routine

Implications

- On Datacenters

Small number of massive datacenters (currently 4)
- On Servers

Minimize the “classes” (single digit) of machines deployed

Web Tier, Cache Tier, Storage Tier, and a couple of special configurations

- Started with

Leased datacenters + Standard server configurations from vendors
- Moving to

Custom built datacenters + custom servers

Continue to rely on a small number of machine “classes”

Data Center

Server AMD Intel
Chassis Motherboard Motherboard

Electrical Mechanical

Power Battery Tiplet
Supply Cabinet Rack

e s
=

f

.j&\

TSy
gee:

R

/%R

Evaporative cooling system

Open Compute

- Custom datacenters & servers
- Minimizes power loss
POE of 1.07
- Vanity Free design
Designed for ease of operations
- Designs are open-sourced

More on the way

OPEN

Compute Project

Outline

1 What makes scaling Facebook challenging?

2 Evolution of Software Architecture

3 Evolution of Datacenter Architecture

Questions?

