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Abstract

Segmentation is the low-level operation concerned
with partitioning images by determining disjoint and
homogeneous regions or, equivalently, by �nding edges
or boundaries. The homogeneous regions, or the edges,
are supposed to correspond to actual objects, or parts
of them, within the images. Thus, in a large number of
applications in image processing and computer vision,
segmentation plays a fundamental role as the �rst step
before applying to images higher-level operations such
as recognition, semantic interpretation, and represen-
tation. Until very recently, attention has been focused
on segmentation of gray-level images since these have
been the only kind of visual information that acquisi-
tion devices were able to take and computer resources
to handle. Nowadays, color imagery has de�nitely sup-
planted monochromatic information and computation
power is no longer a limitation in processing large vol-
umes of data. The attention has accordingly been fo-
cused in recent years on algorithms for segmentation
of color images and various techniques, ofted borrowed
from the background of gray-level image segmentation,
have been proposed. This paper provides a review of
methods advanced in the past few years for segmenta-
tion of color images.

1 Introduction

Segmentation is the process of partitioning an im-
age into disjoint and homogeneous regions. This task
can be equivalently achieved by �nding the boundaries
between the regions; these two strategies have been
proven to be equivalent indeed. The desirable char-
acteristics that a good image segmentation should ex-
hibit have been clearly stated by Haralick and Shapiro
in [1] with reference to gray-level images. \Regions of
an image segmentation should be uniform and homo-
geneous with respect to some characteristics such as

gray tone or texture. Region interiors should be simple
and without many small holes. Adjacent regions of a
segmentation should have signi�cantly di�erent values
with respect to the characteristic on which they are
uniform. Boundaries of each segment should be sim-
ple, not ragged, and must be spatially accurate." A
more formal de�nition of segmentation, accounting for
the principal requirements listed above, can be given in
the following way [2, 4, 5]: Let I denote an image and
let H de�ne a certain homogeneity predicate; then the
segmentation of I is a partition P of I into a set of N
regionsRn, n = 1; : : : ; N , such that: 1)

SN
n=1Rn = I

with Rn \Rm 6= ;, n 6= m; 2) H(Rn) = true 8n; 3)
H(Rn [Rm) = false 8Rn and Rm adjacent. Condi-
tion 1) states that the partition has to cover the whole
image; condition 2) states that each region has to be
homogeneous with respect to the predicate H; and con-
dition 3) states that the two adjacent region cannot be
merged into a single region that satis�es the predicate
H.

Segmentation is an extremely important operation
in several applications of image processing and com-
puter vision, since it represents the very �rst step of
low-level processing of imagery. As mentioned above,
the essential goal of segmentation is to decompose an
image into parts which should be meaningful for cer-
tain applications [1]. In this paper, we are concerned
with color image segmentation which is becoming in-
creasingly important in many applications. For in-
stance, in digital libraries large collections of images
and videos need to be catalogued, ordered, and stored
in order to e�ciently browse and retrieve visual infor-
mation [6, 7]. Color and texture are the two most im-
portant low-level attributes used for content based re-
trieval of information in images and videos. Because
of the complexity of the problem, segmentation with
respect to both color and texture is often used for in-
dexing and managing the data [8]. Another example
is in the transmission of information over the Internet.
At the present, huge streams of multimedia data cir-



culate over the Internet where the limited bandwidth
available creates the need for data compression. Cur-
rent technology provides coding schemes which try to
reduce visual artifacts by imitating the functions of
the human visual system [7, 9]. They seek a seman-
tic representation of the scene by subdividing it into
regions which are psycho-visually meaningful. Such a
partitioning is obtained through segmentation. Com-
pression is then achieved by allocating more bits to
areas visually more important and fewer bits to areas
with less important details. A further example is in
the latest wireless communication systems which allow
the transmission of both speech and images. Hand-held
wireless sets are now available which may also display
color imagery with a limited resolution. Compression
issues arise as in the above example with the further
constraint of a limited availability of bits for displaying.
In this application, segmentation is then important not
only for compression but also for color quantization.

Until a few years ago, segmentation techniques were
proposed mainly for gray-level images on which rather
comprehensive surveys can be found in [1]-[4]. The
reason is that, although color information permits a
more complete representation of images and a more re-
liable segmentation of them, processing color images
requires computation times considerably larger than
those needed for gray-level images. This is no longer a
major problem with an increasing speed and decreas-
ing costs of computation; besides, relatively inexpen-
sive color camera are nowadays largely available. Ac-
cordingly, there has been a remarkable growth of al-
gorithms for segmentation of color images in this last
decade [10, 11]. Most of the times, these are kind
of \dimensional extensions" of techniques devised for
gray-level images; thus they exploit the well-established
background laid down in that �eld. In other cases, they
are ad hoc techniques tailored on the particular nature
of color information and on the physics of the interac-
tion of light with colored materials.

In this paper, we present a brief survey of color
image segmentation techniques and propose a classi-
�cation scheme for them. Basically, we divide the
segmentation algorithms into: 1) feature-space based
techniques; 2) image-domain based techniques; and 3)
physics based techniques. Each category is then further
subdivided; as far as the �rst two categories are con-
cerned, the further subdivision is suggested by the anal-
ogous classi�cation schemes proposed for gray-level im-
ages [2]-[4]. Such a classi�cation is not always straigh-
forward since some techniques resort to more than one
strategy to achieve segmentation and thus cannot be
sharply categorized. The techniques of the third cat-
egory instead adopt speci�c models of the interaction

of light with colored materials of various nature and
therefore they have no counterpart in the �eld of gray-
level image segmentation.

This paper is organized as follows. Section 2 pro-
vides a brief summary of the color representations most
widely adopted for segmentation. Section 3 presents
the feature based techniques; Section 4 reports on
image-domain based techniques. The algorithms based
on physical models describing the interaction of light
with color are discussed in Section 5. Section 6 �nally
draws the conclusions.

2 Color Representation

Several color representations are currently in use in
color image processing. The most common is the RGB
space where colors are represented by their red, green,
and blue components in an orthogonal Cartesian space.
This is in agreement with the tristimulus theory of color
[12, 13] according to which the human visual system
acquires color imagery by means of three band pass
�lters (three di�erent kinds of photoreceptors in the
retina called cones [12, 13]) whose spectral responses
are tuned to the waveleghts of red, green, and blue.
However, the RGB space does not lend itself to mimic
the higher level processes which allow the perception
of color of the human visual system; in this sense,
color is better represented in terms of hue, saturation,
and intensity [15, 16]. An example of such a kind
of representation is the HSI space which can be ob-
tained from RGB coordinates in various ways, e.g., by
de�ning hue H

:
= arctan

�p
3(G�B); 2R�G�B)

�
,

saturation S
:
= 1 � min (R;G;B) =I , and intensity

I
:
= (R +G+B) =3, and by arranging them in a cylin-

drical coordinate system. The HSV space provides a
description of color analogous to that of theHSI space:
the hue H and the saturation S are similarly de�ned
while the value V is de�ned as V

:
= max(R;G;B).

Both RGB and HSI (or HSV ) spaces though
are not perceptually uniform; this means that di�er-
ences among colors perceived by the human eye as
being of the same entity are not mirrored by similar
distances between the points representing those col-
ors in such spaces. This problem has been consid-
erably reduced with the introduction of the uniform
color spaces, the most widely used of which are the
CIE L�u�v� and the CIE L�a�b� color spaces. The
structure of the CIE spaces is such that a good met-
ric for assessing perceptual di�erences among colors
is given, respectively, by the simple Euclidean dis-
tances jj(L�; u�; v�)jj =

p
(L�)2 + (u�)2 + (v�)2 and

jj(L�; a�; b�)jj =p(L�)2 + (a�)2 + (b�)2 [12, 13, 14].
Sometimes, color information can be more usefully



represented and analyzed in 2D spaces rather than in
3D ones; in fact, important attributes are related to
the chromaticity coordinates de�ned as the ratios of
the tristimulus values (in RGB or XY Z coordinates)
to their respective sums. This normalization allows one
to use only two coordinates such as, for instance, x

:
=

X=(X+Y +Z) and y
:
= Y=(X+Y +Z). The problem of

perceptual uniformity arises of course also for these 2D
chromaticity plots; a uniform chromaticity space ofted
adopted in the u0v0 diagram obtained from the xy one
through a projective transformation [12, 13, 14].

The literature of color measure o�ers a number of
di�erent spaces and metrics and it would be almost
impossible to mention all of them here. Among the
metrics proposed to improve segmentation results, the
total color di�erence measure suggested by Valavanis
et al. [17] is worth reporting. Such measure accounts
for chrominance and luminance di�erences, both ex-
pressed in terms of Mac Adam's just noticeable di�er-
ences (JND's) [12, 13, 14] and proves to achieve ro-
bustness in determining object boundaries over a wide
range of luminance changes.

A comparison of color transformations for image seg-
mentation is reported by Lee et al. in [18]; they pro-
pose a statistical model for the color variations of pixels
within uniform color regions of an image and experi-
mentally show that the best transformation, in terms
of decorrelation of color coordinates, is provided by the
variable Karhunen-Lo�eve transformation (KLT ) and
by its modi�cations.

3 Feature-Space Based Techniques

If we assume that color is a constant property of the
surface of each object within an image and we map each
pixel of the color image into a certain color space, it is
very likely that di�erent objects present in the image
will manifest themselves as clusters or clouds of points.
The spreading of these points within each cluster is
mainly determined by color variations due to shading
e�ects and to the noise of the acquisition device. On
the other hand, if instead of mapping pixels into color
spaces, we build some ad hoc histograms upon color
features, such as hue, for instance, it is likely that the
objects will appear as peaks within these histograms.

Therefore, the problem of segmenting the objects of
an image can be viewed as that of �nding some clus-
ters, according to the �rst strategy mentioned above,
or as that of �nding the peaks of some opportune his-
tograms, according to the second strategy. These two
approaches share a common property: they work in a
certain feature space, which may be one of the color
spaces described in Section 2 or a space induced by

other color attributes, and they generally neglect the
spatial relationships among colors. For this reason, we
have decided to group them under the common denom-
ination of feature-space based techniques; they will be
however separately considered in the following sections.

3.1 Clustering

Clustering can be broadly de�ned as a nonsuper-
vised classi�cation of objects in which one has to gen-
erate classes or partitions without any a priori knowl-
edge [19]. Analogously to the de�nition of segmenta-
tion given in Section 1, the problem of clustering can be
analytically stated as follows: Let us suppose that we
have M patterns x1; : : : ;xM within a certain pattern
space S; in our case, the space S is a preselected color
space while the patterns xm are the representations of
the image pixels within S. The process of clustering
consists in determining the regions S1; : : : ;SK such
that every xm, m = 1; : : : ;M , belongs to one of these
regions and no xm belongs to two regions at the same
time, i.e.,

SK
k=1 Sk = S and Si

T
Sj = ; 8 i 6= j. The

classi�cation of patterns into classes follows the general
common sense principle that objects within each class
should show a high degree of similarity while across
di�erent classes they should exhibit very low a�nity.

A great many techniques have been proposed in the
literature of cluster analysis [20, 19]. A classical tech-
nique for color image segmentation is the k-means (or
c-means) algorithm [21], widely adopted also for vec-
tor quantization and data compression. Park et. al
[22] apply this algorithm to a pattern space represented
by RGB coordinates while Weeks and Hague [23] ap-
ply it to the HSI space. The k-means algorithm has
been mostly used however in its fuzzy version (fuzzy
k-means algorithm) [24]-[29]; a comparison between k-
means and fuzzy k-means clustering is reported in [30].
The possibilistic approach to clustering of [31] is closely
related to these fuzzy techniques.

ISODATA (Iterative Self-Organizing Data Analysis
Technique) [19] is another algorithm often used for
color space clustering [32, 33, 34]. Comaniciu and Meer
[35] resort instead to the mean shift algorithm which
is a non-parametric procedure for estimating density
gradients of pattern distributions. Competitive learn-
ing based on the least-squares criterion is employed in
[36, 37], whereas the theory of connected components
[38] is adopted by Wang et al. in [39].

An original technique, proposed by Yung and Lai
[40], adopts the constrained gravitational clustering:
two points xi and xj within the RGB pattern space are
modeled as two particles pi and pj respectively having
masses mi and mj , and interacting according to the



gravitational law F = �Gmimj(xi � xj)=jxi � xj j3,
where G is the gravitational constant. The net force on
each particle determines the collapse of the points into
clusters whose number is governed by a certain force
e�ective function.

The RGB space is represented with a tree data stru-
cure by Uchimura in [41] and clustering is achieved by
a simpli�cation of the tree. Kehtarnavaz et al. choose
a 2D color space called geodesic chromaticity in which
they introduce a multi-scale clustering; this algorithm
determines the prominent color clusters through their
lifetime [43].

Shi and Malik [44] and Shi et al. [45] tackle im-
age segmentation via clustering as a graph partition-
ing problem. They represent the set of points in an
arbitrary feature space as a weighted undirected graph
G = (V ;E) [19], where the nodes are the points in
the chosen feature space and edges are established be-
tween each pair of nodes. The weight w(i; j) of each
edge is a function of the similarity between nodes i and
j. The goal is to partition the set of vertices V into dis-
joint sets V 1; : : : ;V M such that a prede�ned similarity
measure is high for vertices within the same set and
low across di�erent sets. The partitioning of a graph
G = (V ;E) into two disjoint sets V 1 and V 2, such that
V 1[V 2 = V and V 1\V 2 = ;, is obtained by removing
all the edges connecting the two sets. The dissimilarity
of the two sets can be measured as the total weight of
the removed egdes which is called cut and is given by
cut(V 1;V 2) =

P
v12V 1;v22V 2

w(v1;v2). The optimal
bi-partitioning of the graph is the one that minimizes
the cut value. Wu and Lehay [46] originally devised
an algorithm for segmentation based on such a mini-
mum cut. In [44] and [45] the authors further develop
this idea and report an interesting technique for �nding
a normalized version of the minimum cut. Moreover,
Shah [47] formulates the analytic analog counterpart of
the graph-theoretic formulation given above.

Usually, clustering is performed in 3D feature spaces.
Lucchese and Mitra [48] instead present a technique
which �rst �nds clusters in the u0v0 chromaticity plane
and then associates them with proper luminance val-
ues, respectively, with a 2D and a 1D k-means algo-
rithm.

3.2 Adaptive k-means clustering

A special classi�cation has to be devoted to a class
of segmentation algorithms that combine the idea of k-
means clustering with the desirable properties of local
adaptivity to the color regions and of spatial continuity.
In this sense, this class of algorithms might be regarded
as lying in between the feature-space based techniques

discussed here and the image-domain based techniques
to be considered next. The traditional clustering tech-
niques mentioned in the previous section assign pixels
to clusters only on the basis of their color; each cluster
is then characterized by a constant color value and no
spatial constraints are imposed.

In [49] Pappas introduces a generalization of the k-
means clustering algorithm which is adaptive and in-
cludes spatial constraints; this algorithm considers the
segmentation of gray-level images as a maximum a pos-
teriori probability (MAP) estimation problem. The ex-
tension of this technique to color images is proposed
by Chang et al. in [50] and can be summarized as fol-
lows: Let us denote a given color image by I and its
segmentation by S. The estimated segmentation Ŝ is
de�ned as the one that maximizes the posterior proba-
bility of the segmentation S given the observed data I .
By using the Bayes rule, it is Ŝ = argmax

S

p(SjI) =
argmax

S

p(I jS)p(S), where p(I jS) represents the con-
ditional probability of the image given the segmenta-
tion. A Gibbs Random Field (GRF) [52] is used as an
image prior to model and enforce spatial homogene-
ity constraints. The conditional probability p(I jS) is
modeled as a multivariate Gaussian with space-varying
mean function. The algorithm alternates between the
MAP estimation and the determination of the local
class means. Initially, the means are constant in each
region and equal to the k-means cluster centers. With
an iterative procedure, the algorithm then updates the
means by averaging them over a sliding window whose
size progressively decreases. Therefore, the algorithm
starts with global estimates and progressivley adapts
to the local characteristics of each region.

Saber et al. [53] extend the algorithm of [50] to syn-
ergically combine color image segmentation and edge
linking; in particular, they apply a split-and-merge
strategy (see Section 4.1) to the regions of the seg-
mented map so as to enforce consistency with the edge
returned by color edge detector (see Section 4.3). Luo
et al. in [54] modify the algorithm of [50] to incorpo-
rate a color space called Lst (instead of the RGB) and
a certain color di�erence that can be de�ned within
this space; they claim that with these provisions their
algorithm can return segmentations physically more co-
herent. The same authors in [55] extend the algorithm
of [50] by introducing in it derivative priors and by
combining both region based and edge based statisti-
cal forces in segmentation.

3.3 Histogram thresholding

Histogram thresholding is among the most popular
techniques for segmenting gray-level images and several



strategies have been proposed to implement it [1]-[5].
In fact, peaks and valleys of the 1D brightness his-
togram can be easily identi�ed, respectively, with ob-
jects and backgrounds of gray-level images. In the case
of color images, things are a little more complicated
since one has to identify di�erent parts of a scene by
combining peaks and valleys of three histograms or by
partitioning 3D histograms. A common problem with
the histogram based techniques is that often, because of
noise, the pro�les of the histograms are rather jagged
giving rise to spurious peaks and thus to segmenta-
tion ambiguities; to prevent this from happening, some
smoothing provisions are usually adopted.

Celenk and Uijt de Haag [56] indipendently thresh-
old three histograms based on RGB coordinates by
maximizing within-group variance and combine the
three results with a predicate logic function. Sha-
farenko et al. [57] use a watershed algorithm [58] to
segment either the 2D or the 3D color histogram of a
color image; the histograms are built from L�u�v� co-
ordinates and \coarsened" through convolution with a
spherical window to avoid oversegmentation.

Tseng et al. [59] use only hue information and sug-
gest a circular histogram thresholding of such attribute.
The histogram smoothing is achieved by means of a
scale-space �lter [43]. The approaches of [60]-[63] have
in common the partition of a cylindrical color space rep-
resenting hue, saturation, and intensity into chromatic
and achromatic regions. The former is segmented by
using the hue histogram and the latter is segmented by
using the intensity histogram. A scale-space �ltering is
adopted in [62]. In [64] a fast segmentation algorithm is
suggested which resorts to a pre-clustered chromaticity
plane after quantization of the HSV space represented
in orthogonal Cartesian coordinates.

Sobottka and Pitas [65] single out faces from color
images by de�ning appropriate domains correspond-
ing to skin-like regions within the HSV space; by
disregarding the value V (luminance), robustness can
obtained against changes in illumination and shad-
ows. The problem of segmenting faces within video
sequences is dealt with also by Chai and Ngan in [66];
they adopt the Y CrCb color space and its associate
chromaticity diagram. Within this diagram it is pos-
sible to de�ne a skin-color reference map which allows
faces of various complexions to be robustly separated
from the rest of the scene.

Guo et al. [67] suggest an entropy based thresholding
which assumes that samples or patterns in the L�u�v�

feature space are generated by two distinct sources
called modes and valleys; �rst they classify patterns
in either categories by using entropy thresholding and
then they determine the number of modes in the feature

space with a modi�ed Akaike's information criterion.
Saber et al. [68] model the distribution of the

chrominance components of the ojects in a scene as
Gaussian PDF's allowing this way an adaptive setting
of the object-class thresholds. Liu et al. [69] devise an
adaptive threshold function for both RGB and HSI
spaces by using B-splines; they can separate cell nuclei
by means of this thresholding function which is ob-
tained in a preliminary learning phase. Lucchese and
Mitra in [70] suggest smoothing the hue histogram in
L�u�v� coordinates by working with the low-low band
of the wavelet transform of the image to be segmented;
in [71] instead they �nd representative colors by deter-
mining �rst the main hue families, through histogram
thresholding, and then the main clusters on planes at
constant hue, by means of k-means clustering.

4 Image-Domain Based Techniques

Almost all the segmentation algorithms of the previ-
ous section exclusively operate in some feature spaces.
Thus, the regions (segments) they return are expected
to be homogeneous with respect to the characteristics
represented in these spaces; however, there is no guar-
antee at all that these regions also show spatial com-
pactness, which is a second desirable property in seg-
mentation applications beside homogeneity. In fact,
cluster analysis and histogram thresholding account in
no way for the spatial locations of pixels; the descrip-
tion they provide is global and it does not exploit the
important fact that points of a same object are usu-
ally spatially close due to surface coherence [5]. On the
other hand, if pixels are clustered exclusively on the ba-
sis of their spatial relationships, the end result is likely
to be with regions spatially well connected but with no
guarantee that these regions are also homogeneous in
a certain feature space.

In the literature of segmentation of gray-level im-
ages, a great many techniques have been suggested that
try to satisfy both feature-space homogeneity and spa-
tial compactness at the same time [1, 2]. The latter
is ensured either by subdividing and merging or by
progressively growing image regions, while the former
is adopted as a criterion to direct these two processes
[1, 2, 3, 5]. According to the strategy preferred for spa-
tial grouping, these algorithms are usually divided into
split-and-merge and region growing techniques; this
distinction may also be extended to the correspond-
ing algorithms for color image segmentation which will
be analyzed in the following sections.

In the class of image-domain based techniques we
have considered also a family of algorithms which ex-
ploit spatial information in neural network classi�ers



and the group of algorithms that partition images by
�nding the edges between homogeneously colored re-
gions.

4.1 Split-and-merge techniques

A common characteristic of these methods is that
they start with an initial inhomogeneous partition of
the image (usually the initial segment is the image it-
self) and they keep performing splitting until homoge-
neous partitions are obtained. A common data struc-
ture used to implement this procedure is the quadtree
representation [5, 19] which is a multiresolution scheme.
After the splitting phase, there usually exist many
small and fragmented regions which have to be some-
how connected. The merging phase accomplishes this
task by associating neighboring regions and guarantee-
ing that homogeneity requirements are met until max-
imally connected segments can be produced. The re-
gion adjacency graph (RAG) is the data structure com-
monly adopted in the merging phase [5, 19]. In many
algorithms, smoothness and continuity of color regions
are enforced with the adoption of a Markov Random
Field (MRF) [51, 52] which basically is a stochastic
process characterized by the following property: the
conditional probability of a particular pixel taking in a
certain value is only a function of the neighboring pix-
els, not of the entire image. Besides, the Hammersley-
Cli�ord theorem establishes the equivalence between
MRF's and Gibbs distributions [52].

Panjwani and Healey [72] model color texture in
RGB components by means of a Gaussian Markov
Random Field (GMRF) which embeds the spatial in-
teraction within each of the three color planes as well
as the interaction between di�erent color planes. In
the splitting phase, the image is recursively partitioned
into square regions until each of them contains a single
texture described by a color GMRF model. This phase
is followed by an agglomerative clustering phase which
consists of a conservative merging and of a stepwise
optimal merging process.

Liu and Yang [73] de�ne instead an MRF on the
quadtree structure representing a color image and use
the above mentioned equivalence with a Gibbs distri-
bution. With a relaxation process [3] they control both
splitting and merging of blocks in order to minimize
the energy in the Gibbs distribution; this is shown to
converge to a MAP estimate of the segmentation.

Numerous variations in the split-and-merge strate-
gies have been investigated. In [74] a k-means algo-
rithm is used for both classifying the pixels in the split-
ting phase and grouping pattern classes in the merging
phase. In [75] the splitting is initially performed by

segmenting the luminance and then re�ned by checking
the chrominance homogeneity of the obtained regions;
the merging is based on an ad hoc cost function. In
[76] the splitting is operated with the watershed trans-
form [58] of the gradient image of the luminance com-
ponent simpli�ed by amorphological gray-scale opening
[5, 15, 16]; the merging step is realized with a Koho-
nen's self-organizing map (SOM) [19]. Shafarenko et
al. [77] apply instead the watershed transform to the
L�u�v� gradient of images and merge the patches of
the watershed mosaic according to their color contrast
until a termination criterion is met. A similar split-
ting approach is adopted in [78] whereas the merging
phase is performed by iteratively processing the RAG
constructed upon the resulting oversegmented regions.
Also Round et al. [79] employ a split-and-merge strat-
egy for segementation of skin cancers; the splitting
phase is based on a quad-tree representation of the
image and the following conservative merging is per-
formed with a RAG.

Barni et al. [80] implicitly implement a split-and-
merge strategy with a fuzzy expert system.

Gevers et al. [81, 82] believe that split-and-merge al-
gorithms based on a quadtree structure are not able to
adjust their tessellation to the underlying structure of
the image data because of the rigid rectilinear nature
of the quadtree structure; therefore, they suggest re-
placing it with an incremental Delaunay triangulation
[19]. A further alternative possibility is to use Voronoi
diagrams [19] as proposed by Schettini et al. [83] and
by Itoh and Matsuda [84].

Broadly speaking, we can �t within the class of split-
and-merge techniques also some algorithms based upon
di�erential equations and pyramidal data structures.
At �rst glance, they do not appear to belong to this
category since the strategies they adopt to achieve seg-
mentation are rather di�erent from those reviewed so
far; but a more careful look into them will bring to light
an underlying split-and-merge idea.

Pollak et al. [85] and Gao et al. [86] apply stabi-
lized inverse di�usion equations (SIDE's) [87] to seg-
mentation of vector-valued images. The �nest possi-
ble segmentation is initially assumed: each pixel repre-
sents a separate region. During an evolution process,
two neighboring regions are merged whenever a certain
color di�erence equals zero. The \color" ui of the i-th
region evolves according to _ui = (1=mi)

P
j2Ai

( _uj �
_ui)= k _uj � _ui k F (k _uj � _ui k)pij , where mi is the
area of the i-th region (i.e., the number of pixels), Ai

denotes the set of indices of all neighbors of region i, pij
is the length of the boundary between regions i and j,
and F ( : ) is a function with suitably de�ned properties.

The usefulness of pyramidal representation of im-



ages for segmentation was pointed out by Burt et. al
[88] about two decades ago and ever since a number of
methods to segment images by working with pyramids
have appeared. It is well-known that pyramids are data
structures in which images can be represented at dif-
ferent resolutions (�ne-to-coarse) by means of tapering
layers recursively obtained by averaging and downsam-
pling their respective underlying layers [5] (the �nest
layer at the bottom of a pyramid is the image itself).
Thus, father-son relationships can be naturally intro-
duced between adjacent layers of pyramids; segmen-
tation can be achieved with a pyramid-linking process
[88] based on a tree data structure where the values of
the fathers at a certain high layer are propagated down
to the sons of the lowest level. The construction of a
pyramid can be regarded as a splitting phase while the
subsequent linking process can be seen as a merging
phase. Recently, Lozano and Laget [89] have suggested
fractional pyramids for segmentation of color images
and Ziliani and Jensen [90] have proposed a modi�ed
version of the linking approach of [88].

4.2 Region growing techniques

An homogeneous region of an image may be ob-
tained through a growth process which, starting from
a preselected seed, progressively agglomerates points
around it satisfying a certain homogeneity criterion;
the growth process stops when no more points can be
added to the region. The region growing techniques
are mainly aimed at processing single regions; never-
theless, by combining di�erent and subsequent growth
processes, one may agglomerate in regions all the points
of an image, obtaining this way its segmentation. Af-
ter a region growing procedure, there might exist some
very small regions or there could be two or more neigh-
boring regions grown at di�erent times exhibiting sim-
ilar attributes. A common post-processing provision
consists therefore in a merging phase that eliminates
such instances by generating broader regions.

The region growing can be considered a sequential
clustering or classi�cation process [3]; thus the depen-
dence of the results on the order according to which
the image points are processed has to be accounted for.
The main advantage o�ered by this kind of techniques
is that the regions obtained are certainly spatially con-
nected and rather compact. As for the clustering tech-
niques of Section 3.1, where a similar problem arises in
the feature space, also for the region growing techniques
one is faced with the problem of choosing suitable seed
points and an adequate homogeneity criterion.

As far as gray-level image segmentation is con-
cerned, several region growing strategies can be found

in the literature [1, 2, 3]. For color images some new
interesting strategies for region growing based segmen-
tation have been recently advanced.

Tremeau and Borel [91] suggest several di�erent ho-
mogeneity criteria operating in RGB coordinates. In
a �rst phase, they generate a certain number of con-
nected regions with a growing process and, in a sec-
ond phase, they merge all the regions having similar
color distributions; after the second phase, the regions
have therefore homogeneous colors but they may be
disconnected. Kanai [92] develops a segmentation al-
gorithm which resorts to both color and intensity infor-
mation. The markers (seeds) are extracted from inten-
sity via morphological open-close operations and from
color through quantization of the HSV space; joint
markers are de�ned as the sets comprising both kinds
of markers. A region growing process based on a wa-
tershed algorithm starts from these joint markers. A
region merging process eventually reduces the number
of segmented regions.

In [93], the inital seeds are generated by retaining
the signi�cant local minima of the magnitude of the
color image gradient; however, with this algorithm the
two following situations might arise: 1) there is more
than one seed per region; 2) small objects do not have
any seed. The authors devise a procedure for obtaining
markers having a ono-to-one correspondence with the
image regions. The region growing is performed with a
watershed-like algorithm proposed by the authors and
working on the original color image instead of on a
gradient image.

Deng et al. [94] determine a limited number of color
classes within an image through color quantization and
propose a criterion for \good" segmentation based on
them. The application of this criterion within local
windows and at multiple scales generates J-images in
which high and low values respectively correspond to
possible region boundaries and to region centers. A re-
gion growing method is adopted where the seeds are the
valleys of the J-images; the resulting oversegmentation
is �nally removed with a merging phase.

Rehrmann and Priese [95] suggest using a special
hexagonal topology in a hierarchical region growing al-
gorithm which results indipendent of the starting point
and of the order of processing. Ikonomakis et al. [96]
develop an algorithm to segment both gray-scale and
videophone-type color images; the procedure is a stan-
dard region growing process followed by region merg-
ing. Color homogeneity is tested with measurements
in the HSI space.

If one de�ne a cluster as a \collection of touch-
ing pixels that have almost the same color while the
change in color is gradual," the fuzzy nature of the



segmentation problem can be emphasized. Moghad-
damzadeh and Bourbakis [97, 98] have adopted this
outlook of the problem and advanced two algorithms
working in RGB coordinates to implement a region
growing strategy for both �ne and coarse segmentation
of color images. A fuzzy approach for region growing
segmentation is adopted also in [99] whose algorithm
is based upon several linguistic rules de�ning relation-
ships among hue, chroma, and intensity. Colantoni and
Laget [100] compare the results of four di�erent algo-
rithms obtained by the various combinations of region
growing and watershed transform in a presegmentation
step and in the actual segmentation algorithm. Images
are represented in L�a�b� coordinates and handled by
means of RAG's and contour graphs.

4.3 Edge based techniques

Segmentation can also be obtained by detecting the
edges among regions. This approach has been exten-
sively investigated for gray-level images [2, 3, 4]. Al-
gorithms have also been proposed for the detection of
discontinuities within color images. It is well-known
that edges can be found in gray-level images by us-
ing functions approximating gradients or Laplacians of
images, which are of course scalar functions. Gradi-
ent functions for color images may be basically de�ned
in two ways: 1) by embedding in a single measure the
variations of all three color channels or 2) by computing
the gradients of the single channels and by combining
them according to certain criteria.

The �rst approach requires some basic concepts of
di�erential geometry [101]. Let 	(x) : R2 ! R

3 be a
color image with components 	n(x) : R

2 ! R. A sim-
ple di�erential distance for the manifold 	(x) is given
by d	 = (@	=@x)dx+(@	=@y)dy whose squared norm
can be expressed in matrix form as d	2 = dxTGdx,
where G is a 2�2 matrix containing the partial deriva-
tives of	(x). This quadratic form is called �rst funda-
mental form: its extrema are obtained in the directions
of the eigenvectors of the matrix G and the eigenval-
ues yield the values attained therein. In summary, the
eigenvectors provide the direction of maximal and min-
imal change at a certain point of the image while the
eigenvalues provide the corresponding rates of change.
Upon this metric for vector-valued funtions are based
the chromatic edge detectors of [102] and [103], both
operating in RGB coordinates.

Examples of the second approach are given instead
by [104] and [105]. Carron and Lambert [104] propose
three di�erent combinations of gradients of hue, sat-
uration, and intensity computed in HSI coordinates.
Tao and Huang [105] �nd clusters in the RGB space

and compute egdes as the transitions from one clus-
ter to another; the gradient information in each color
channel is computed through a Sobel operator [5].

A truly original algorithm for boundary detection is
proposed by Ma and Manjunath [106]: they use a kind
of predictive coding model to identify the direction of
change in color and texture at any point and at a given
scale; this give rise to an egde ow which, through prop-
agation, converges to the image boundaries. Perez and
Koch [107] gather several arguments in favor of hue as
the most important color attribute for segmentation;
in particular, they demonstrate that, if the integrated
white condition holds, hue is invariant to certain kinds
of highlights, shading, and shadows. Egde detection
is achieved by �nding the zero crossings of the con-
volution of the hue image with a suitable Laplacian
function. Neural networks in the form of Kohonen's
SOM's [19] are used for contour segmentation in [108]
and [109].

Within the context of the edge based techniques
we can �t also the framework for object segmentation
based on color snakes. Snakes or active contours were
originally proposed by Kass and Witkin [110] and have
received considerable attention since then. The clas-
sical snakes approach consists in deforming an initial
contour towards the boundary of an object to be de-
tected; the deformation is obtained by minimizing a
global energy designed in such a way that its local min-
imum is attained in correspondence of the boundary of
the object.

The formulation of active contours for vector-valued
images (and therefore for color images) is due to Sapiro
[111, 112]: he starts from the fundamental concepts of
di�erential geometry reported above in this section and
de�nes color snakes by means of a new Riemannian
metric which captures the information from all image
components. Gevers et al. propose instead color in-
variant snakes [113] that use color-invariant gradient
information to drive the deformation process; in this
way, the snakes return region boundaries rather insen-
sitive to disturbances due to shadowing, shadows and
highlights. A notable contribution to curve evolution
applied to segmentation of color images is also due to
Shah [114].

Sapiro [111, 112] shows the close relationships exist-
ing beween the active contours for color images and
other algorithms based on partial di�erential equa-
tions (PDE's), anisotropic di�usion, and variational
approaches to image segmentation [43]. In this re-
gard, a very interesting overview of variational meth-
ods for image segmentation is due to Morel and Solim-
ini [115]. In particular, they show that the Mumford-
Shah variational model [116] usefully represents a gen-



eral model for image segmentation. Such model re-
gards the segmentation problem as a joint smoothing
and edge detection problem where one seeks to segment
an image I(x) by simultaneously �nding a piecewise
smoothed image S(x) and a set of edges E . The best
segmentation is then obtained by minimizing the func-
tional J(S; E) = R


nE(jrS(x)j2+(S(x)�I(x))2)dx+
length(E). The �rst term enforces the constraint that
S(x) should be smooth outside the edges, the second
the constraint that the piecewise smooth image S(x)
should actually approximate the image I(x), and the
third the constraint that the discontinuity set E should
have minimal length.

4.4 Neural-network based classi�cation
techniques

A class per se is constituted by segmentation tech-
niques adopting classi�cation techniques based on neu-
ral networks. It is well-known that neural networks
are structures made up of large numbers of elemen-
tary processors (cells) massively interconnected which
perform simple functions [16, 19]. Their design try to
imitate the information processing of biological neural
cells. Despite the complexity that in some cases they
require to be implemented, they o�er two important
properties in pattern recognition tasks: high degree of
parallelism, which allows for very fast computational
times and makes them suitable for real time applica-
tions, and good robustness to disturbances, which al-
lows for reliable estimates. Another interesting feature
is that, in the case of image segmentation, neural net-
works permit accounting for spatial information; on the
other hand, one has to know beforehand the �nal num-
ber of segments within an image and to run a prelimi-
nary learning phase during which the network is trained
to recognize patterns. Usually the number of classes is
derived with some a priori knowledge on the problem
or in a preprocessing stage.

A number of algorithms have been proposed for seg-
menting gray-level images with neural networks [4]. We
discuss next some of the neural-network based tech-
niques o�ered for color image segmentation.

Campadelli et al. [117] present two segmentation
algorithms based on the idea of [118] of regarding the
segmentation problem as the problem of minimizing
a suitable energy function for a Hop�eld network [19].
The �rst algorithm consists of three di�erent networks,
each dedicated to a color feature; their results are �-
nally combined. The second algorithm consists instead
of a single network which classi�es the image pixels into
classes obtained with a preliminary histogram analy-
sis in color space. A similar approach based on the

minimization of an energy function associated with a
Hop�eld neural network is undertaken in [119], where
a preclassi�cation algorithm spots out some regions of
interests (ROI's) in a biomedical RGB image, and in
[120], where an active-region segmentation algorithm is
presented.

Okii et al. [121] present an algorithm for segmen-
tation of medical stained images, where three are the
possible classes, nuclear cell, interstitium, and back-
ground represented by three di�erent colors. They sug-
gest a three-layered neural network having the values
R;G;B;R2; G2; B2 of each pixel as the input layer and
the three desired classes as the output layer. In this re-
gard, we point out that the adoption of three layers is
very common in neural networks since this structure is
capable of implementing arbitrarily complex decision
surfaces composed of intersecting hyperplanes in the
pattern space [16, 19]. Classical is also the learning
phase adopted in [121] which is obtained with a back-
propagation algorithm [16, 19]. Similarly, Funakubo
[122] uses two three-layered neural networks with learn-
ing through back-propagation to separate cells from
background in medical images.

The aim of [123] and [124] is slightly di�erent from
the usual one of segmentation and it consists in de-
termining the colors of inks used to generate a multi-
colored picture created by printing dots of cyan, ma-
genta, yellow, and black. Nine possible combinations
arise which constitute the output of a hierarchical mod-
ular neural network composed of three modules: 1)
a binary decision tree whose nodes are neurons, 2) a
counterpropagation network represented by a Gross-
berg classi�er [19], and 3) a fuzzy post-processing unit.

Other examples of neural networks used for color
segmentation are [125], where a neural network is
trained to identify the color of a desired object for au-
tomated tracking purposes, and [126], where a neural
gas network is employed.

5 Physics Based Techniques

All the algorithms examined so far are certainly
prone to segmentation errors if the objects portrayed in
the color images are a�ected by highlights, shadowing,
and shadows. These phenomena cause the appearance
of color of uniformly colored surfaces to change more
or less drastically, whence those algorithms are very
likely to return oversegmented regions. The only way
to overcome this drawback is to analyze how light in-
teract with colored materials and to introduce models
of this physical interaction in the segmentation algo-
rithms. This motivates the name of physics based tech-
niques given to them. The mathematical tools they use



do not signi�cantly di�er from those adopted by the al-
gorithms of the previous section; the major di�erence
with respect to those is the underlying physical model
accounting for the reections properties of colored mat-
ter.

Colored materials may be divided into three main
categories: optically inhomogeneous dielectrics, opti-
cally homogeneous dielectrics, and metals. A milestone
in the �eld of physics based segmentation was laid by
Shafer in [127] where he introduces the dichromatic
reection model for inhomogeneous dielectrics. This
model is de�ned by L(�; g) = Ls(�; g) + Lb(�; g) =
ms(g)cs(�) +mb(g)cb(�) and states that the total ra-
diance L(�; g) of the light reected by an inhomogo-
neous dielectric is given by the sum of two indipendent
parts: the radiance Ls(�; g) of the light reected by the
object's surface and the radiance Lb(�; g) of the light
reected from the underlying object's bulk. Symbol g
denotes dependence on geometric parameters while �
is the wavelength. Moreover, the dichromatic reection
model states that each of the previous components can
be split into a pure geometric coe�cient m(g) indepen-
dent of wavelength and into a relative spectral power
distribution c(�) that depends on wavelength but not
on geometry. Shafer proves that in a color space such
as the RGB the dichromatic reection model simply
reads CL = msCs +mbCb, where CL is the color (pixel
value) measured, ms and mb are the magnitudes of
reection at the considered point, and Cs and Cb are
the colors of interface and body reection of the mate-
rial. This model may e�ectively explain some particu-
lar shapes of clusters in the color space. Based upon
this model, Klinker et al. [128] set up an algorithm (us-
ing either a split or a region-growing strategy) which
makes some optical hypotheses relating objects' colors,
shading, and highlights and try to justify with them
the cluster shapes. The main limitation of this tech-
nique is that it can be applied only to inhomogeneous
dielectrics.

Simplicity and e�ectiveness of representation have
made the dichromatic reection model very popular
and many physics based techniques for segmentation
resort to it [129]-[132]. Tsang and Tsang [133], for
instance, use the dichromatic reection model in the
HSV space to detect edges. A very major contribu-
tion related with the model proposed by Shafer is repre-
sented by the work of Bajcsy et al. [134]. They propose
a color reection model based on the dichromatic model
for dielectric materials and on a particular color space,
called S space, built upon three orthogonal basis func-
tions. In this space, brightness, hue, and saturation
may be de�ned to analyze color variations of objects.
They prove that it is possible to separate specular and

di�use interface reections, and some inter-reections
from body reections since they produce clusters with
very peculiar shapes in the S space. The algorithm sug-
gested in [134] allows segmentation of uniformly colored
dielectric surfaces under singly colored scene illumina-
tion.

Healey [135] proposes a unichromatic reection
model for metals by supporting it with extensive ex-
perimental results. Such a model may be expressed as
R(r; �) = ms(g)cs(�), where symbols g and � are as
above; it states that metals give rise to a reectance
function R(r; �) which stems only from their surfaces
and which, analogously to the dichromatic reection
model, can be separated into a geometric factor ms(g)
and into a purely spectral component cs(�). This inde-
pendence of wavelength and geometry in the reectance
function hints that geometric e�ects in a scene can be
factored out of color pixel values in an image (normal-
ized colors). In [135] and [136] Healey comes up with
two segmentation algorithms based on such a normal-
ization of color which can cope with inhomogeneous
dielectrics and metals at the same time.

The methods discussed above are able to work with
one or two classes of materials (inhomogeneous di-
electrics and metals) in the presence of a single illu-
mination source. A more general and more compli-
cated algorithm which also accounts for multiple illu-
minations is presented by Maxwell and Shafer in [137].
They introduce a general framework for segmentation
of complex scenes which formulates multiple physical
hypotheses about image formation. These hypothe-
ses de�ne broad classes for shape, illumination, and
material properties of simple image regions obtained
through an initial rough segmentation. A ranked set
of possible segmentations is generated by analyzing,
merging, and �ltering the hypotheses; the pruning of
such set �nally yields a restricted number of plausible
segmentations (interpretations) of the scene.

6 Concluding Remarks

In this paper we have presented an overview of algo-
rithms for color image segmentation and we have pro-
posed a classi�cation scheme which highlights the main
families of techniques available. A universal algorithm
for segmenting images certainly does not exist and, on
the contrary, most techniques are tailored on particular
applications and may work only under certain hypothe-
ses.

Some authors [73, 138] have proposed heuristic mea-
sures for quantitative evaluation of segmentation re-
sults. Hovever, the goodness of a segmentation re-
sult depends on so many factors such as homogeneity,



spatial compactness, continuity, correspondence with
psycho-visual perception [4], etc., that a single mea-
sure is unlikely to capture all of them in a meaningful
way. Such goodness should be evaluated by the use-
fulness that segmentation can provide in the particular
application one is interested in. For instance, some au-
thors [139, 140] have compared various techniques in
order to determine the best segmentation strategy for
the particular problem at hand.

Finally, we observe that, in this paper, we have
decided to report on segmentation techniques exclu-
sively based on color information, with a few exceptions
where also texture information was taken into account.
We would like to point out though that the literature
numbers a great variety of methods which achieve im-
age segmentation by combining both color and texture
information. The reader is referred to [141]-[150] and
references therein.
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