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A Theory of Multiscale, Curvature-Based
Shape Representation for Planar Curves

Farzin Mokhtarian and Alan K. Mackworth

Abstract— This paper presents a multiscale, curvature-based
shape representation technique for planar curves that satisfies
several criteria that are considered necessary for general-purpose
shape representation methods. As a result, the representation is
suitable for tasks that call for recognition of a noisy curve of
arbitrary shape at an arbitrary scale or orientation.

The method rests on the concept of describing a curve at
varying levels of detail using features that are invariant with
respect to transformations that do not change the shape of the
curve. Three different ways of computing the representation are
described in this paper. These three methods result in three
different representations: the curvature scale space image, the
renormalized curvature scale space image, and the resampled
curvature scale space image.

The process of describing a curve at increasing levels of
abstraction is referred to as the evolution or arc length evolution of
that curve. Several evolution and arc length evolution properties
of planar curves are described in this paper. Some of these results
show that evolution and arc length evolution do not change the
physical interpretation of planar curves as object boundaries,
and some characterize possible behaviors of planar curves during
evolution and arc length evolution. Others impose constraints on
the location of a planar curve as it evolves. Together, these results
provide a sound theoretical foundation for the representation
methods introduced in this paper.

Index Terms— Arc length evolution, arc length parametriza-
tion, curvature scale space, curvature zero crossings, evolution,
multiscale representations, planar curves, shape representation
and criteria.

I. INTRODUCTION

HIS paper introduces a novel theory of multiscale,

curvature-based shape representation for planar curves.
It should be pointed out that only the problem of representing
the shape of a planar curve that has been extracted from an
image or input by a user has been addressed in this paper. We
believe the problem of extracting such a curve from an image
(the segmentation problem) is, in general, a separate problem
and should not necessarily be considered to be part of the
shape representation problem [34]. We also believe that the
segmentation problem can be addressed effectively by making
use of knowledge of the image and scene under consideration.
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For example, we made use of a priori knowledge of band
7 Landsat images of land/water scenes to arrive at a good
segmentation of such an image [25]. The boundary curves thus
obtained were then matched to curves from a map of the same
area using their curvature scale space representations. As a
result, the correct registration between the Landsat image and
the map was computed.

Some of the results mentioned in this paper have been
presented elsewhere, but this paper is our first comprehensive
treatment of multiscale representation techniques.

A useful general-purpose shape representation method in
computational vision should make accurate and reliable recog-
nition of an object possible. Therefore, such a representation
should necessarily satisfy a number of criteria. The following
is a list of such criteria. Note that when two planar curves are
described as having the same shape, there exists a transfor-
mation consisting of uniform scaling, rotation, and translation,
which will cause one of those curves to overlap the other.

Invariance: If two curves have the same shape, they should

also have the same representation.

Uniqueness: If two curves do not have the same shape, they

should have different representations.

Stability: If two curves have a small shape difference, their

representations should also have a small difference, and if

two representations have a small difference, the curves they
represent should also have a small shape difference.

The importance of the invariance criterion is that it guaran-
tees that all curves with the same shape will have the same
representation. It will therefore be possible to conclude that
two curves have different shapes by observing that they have
different representations. Without the invariance criterion, two
curves with the same shape may have different representations.

The uniqueness criterion is important since it guarantees
that two curves with different shapes will have different
representations. It will therefore be possible to conclude that
two curves have the same shape by observing that they have
the same representation. Without the uniqueness criterion, two
curves with different shapes may have the same representation.

The significance of the stability criterion is that it guarantees
that a small change in the shape of a curve will not cause
a large change in its representation, and a small difference
between two representations does not indicate a large shape
difference between the curves they represent. As a result, when
two representations are close, the curves they represent are
close in shape, and when two representations are not close,
the curves they represent are not close in shape. When this
criterion is satisfied, the representation can be considered to
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be stable with respect to noise. One way to measure the shape
difference between two planar curves is the Hausdorf distance
[12].

It is useful for a shape representation to satisfy a number of
additional properties in order to become suitable for practical
shape recognition tasks in computer vision. The following is
a list of such criteria. Note that similar criteria have been
proposed in [28], [25] and [11].

Efficiency: The representation should be efficient to com-

pute and store. This is important since it may be necessary

for an object recognition system to perform real-time recog-
nition. By efficient, we mean that the computational com-
plexity should be a low-order polynomial in time and space

(and in the number of processors if a parallel computing

architecture is used) as a function of the size of the input

curve.

Ease of implementation: If two or more competing repre-

sentations exist, it is advantageous to choose one of those

representations such that the implementation of the com-
puter program that computes that representation requires the
least time spent on programming and debugging.

Computation of shape properties: It may be useful to

be able to determine properties of the shape of a curve

using its representation. For example, if a curve has a

symmetric shape, it may be desirable to be able to determine

that fact from its representation (the symmetry criterion).

Furthermore, if the shape of a whole curve or part of a

curve is the same as the shape of part of another curve, it

may be useful to be able to determine that relationship using
their representations (the part/whole criterion).

Shape representation methods for planar curves previously
proposed in computational vision fail to satisfy one or more
of the criteria outlined above. Note, however, that each may
be quite suitable for special-purpose shape representation and
recognition tasks. The Hough transform has been used to
detect lines [14], circles [7], and arbitrary shapes [2]. Edge
elements in the image vote for the parameters of the objects of
which they are parts. The votes are accumulated in a parameter
space. The peaks of the parameter space then indicate the
parameters of the objects searched for. Chain encoding [8],
[24] techniques approximate a curve using line segments
lying on a grid. Polygonal approximations [29]-[31] of a
curve are computed by using various criteria to determine
“breakpoints” that yield the “best” polygon. The medial axis
transform (4], [21] computes the skeleton of a 2-D object
by a thinning algorithm that preserves region connectivity.
Shape factors and quantitative measurements [5] use one or
more global quantitative measurements of the object such
as area, perimeter, and compactness as a description of its
shape. Strip trees [6], {2] are a set of approximating polygons
ordered such that each polygon approximates the curve with
less approximation error than the previous polygon. Splines [3]
represent a curve using a set of analytic and smooth curves.
The smoothing splines [35] method parametrizes the curve to
obtain two coordinate functions. Cross-validated regularization
[37] is then used to arrive at an “optimal” smoothing of each
coordinate function. The smoothed functions together define a

new smooth curve. Fourier descriptors [32] represent a curve
by the coefficients of the Fourier expansion of a parametric
representation of the curve. The curvature primal sketch [1]
technique approximates the curve using a library of analytic
curves. Then, the curvature function of the approximating
curve is computed and convolved with a Gaussian of varying
standard deviation. The extended circular image [13] is the 2-
D equivalent of the extended Gaussian image. In the extended
circular image, one is given the radius of curvature as a
function of normal direction. Volumetric diffusion [18] defines
a geometrical object by way of its “characteristic function”
x(r), which equals unity when the point r belongs to the object
and zero otherwise. The object is then blurred by requiring that
its characteristic function satisfy the diffusion equation. The
boundary of each blurred object is defined by the equation
x(r) = 0.5 or by applying the Laplacian operator to the
blurred function. Richards ez al. [33] located curvature extrema
on a 2-D contour at multiple scales. Those extrema were then
used to encode the contour shape.

A multiscale representation for 1-D functions was first
proposed by Stansfield {36] and later developed by Witkin
[38]. The function f(z) is convolved with a Gaussian function
as its variance o2 varies from a small to a large value. The zero
crossings of the second derivative of each convolved function
are extracted and marked in the z — o plane. The result is the
scale space image of the function.

The curvature scale space image was introduced by
Mokhtarian and Mackworth [25] as a new shape representation
for planar curves. The representation is computed by
convolving a path-based parametric representation of the curve
with a Gaussian function, as the standard deviation of the
Gaussian varies from a small to a large value, and extracting
the curvature zero-crossing points of the resulting curves. The
representation is essentially invariant under rotation, uniform
scaling, and translation of the curve. This and a number of
other properties makes it suitable for recognizing a noisy curve
of arbitrary shape at any scale or orientation. The process of
describing a curve at increasing levels of abstraction is referred
to as the evolution of that curve. The evolution of a planar
curve and the curvature scale space image are described in in
Section II.

Mackworth and Mokhtarian [20] introduced a modification
of the curvature scale space image referred to as the renor-
malized curvature scale space image. This representation is
computed in a similar fashion, but the curve is reparametrized
by arc length after convolution. As was demonstrated in [20],
the renormalized curvature scale space image is more suitable
for recognizing a curve with nonuniform noise added to it.
Section III contains a brief description of the renormalized
curvature scale space image.

The resampled curvature scale space image is a substantial
refinement of the curvature scale space based on the concept of
arc length evolution. 1t is shown that the resampled curvature
scale space image is more suitable than the renormalized cur-
vature scale space image for recognition of curves with added
nonuniform noise or when local shape differences exist. The
arc length evolution of a planar curve and the resampled cur-
vature scale space image are described in detail in Section IV.
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Section V contains descriptions of the evolution and arc
length evolution properties of planar curves and discusses
the significance of each of those properties. Almost all these
properties are shown to be true of both evolution and arc length
evolution. Together, these properties provide a theoretical
foundation for the representation methods proposed in this
paper. The proofs of the theorems of Section V that have not
appeared before are given in the Appendix.

Section VI presents an additional experiment carried out to
demonstrate the stability of the curvature scale space image
with respect to noise. It also presents a table comparing the
representations introduced here and an evaluation of those
representations according to the criteria of Section I

Section VII presents the conclusions of this paper.

II. THE CURVATURE SCALE SPACE IMAGE

A planar curve is a set of points whose position vectors are
the values of a continuous, vector-valued function. It can be
represented by the parametric vector equation

r(u) = (z(u), y(u).

The function r(u) is a parametric representation of the curve.
A planar curve has an infinite number of distinct parametric
representations. A parametric representation in which the
parameter is the arc length s is called a natural parametrization
of the curve. A natural parametrization can be computed from
an arbitrary parametrization using the following equation:

5= /0 " 1#) .

where . represents the derivative, i.e., #+ = dr/dv. For any
parametrization

(2.1)

7(u) = (&(u), §(u))

i) = (&% +52)"*

=T _ T Yy
t(u) = H - ((z2 +y2)1/2’ (42 +Z)2)1/2)

()= ——2 :
S @+ @2 1 ?)
where t(u) and n(u) are the tangent and normal vectors at u,

respectively. For any planar curve, the vectors £(u) and n(u)
must satisfy the simplified Serret-Frenet vector equations [10]:

i(s) = k(s)n(s)  n(s) = —k(s)t(s)

where (s) is the curvature of the curve at s and is defined as

(0= iy

where ¢ is the angle between £(s) and (s + h). Now, observe
that
_dt  dtdu

Therefore
ﬂ & Kn = |f|kn
du ~ du ’
H;nce
tn
K(u) = —.
I

Differentiating the expression for #(u), we obtain
) = [ 280 — 2y) #(&§ - 29) |

(@ +92)°" (@2 +99)"?
It now follows that

_ E(u)i(w) - g(uw)i(u)

k(u) = - - 3z
(#(w)? + §(u)?)

Therefore, it is possible to compute the curvature of a planar
curve from its parametric representation. Special cases of the

parametrization yield simplifications of these formulas. If w is
the normalized arc length parameter, then

k(w) = #(w)ji(w) — &(w)y(w).
Given a planar curve
' = {(z(w), y(w))lw € [0, 1]}

where w is the normalized arc length parameter, an evolved
version of that curve is defined by

Ly = {(X(u,0),Y(u,0))|u € [0,1]}

where
X(u,0) =z(u)®g(v,0)  Y(u,0) = y(u)Dg(u,0).
g(u, o) denotes a Gaussian of width o [22] defined by
1 -
= 207,
9(u, ) sk
Functions X (u,0) and Y (u, o) are given explicitly by

X(u,0) = /00 z(v)

—oo oV2r

Y(u,0) = /'00 y(v) 1 ei;—;’zﬁdv.

—o0

The curvature of T', is given by

Xu(u,0)Yyu(u,0) — Xyu(u, 0)Yyu(u,0)
(Xu(u,0)? + Yy (u, 0)2)3/2

k(u,0) =

where

Xul1,0) = 5-(@(0)@(u,0) = 2(0)Dgu(u:0)

2
Xoa(1,0) = 52 (5()@g(w, )
= 2(u)® guu(u, 0)

Yu(u,0) = y(v)® gu(u, o)
Yiu(,0) = y(u)® guu(u, o).

The process of generating the ordered sequence of curves
{Ts | ¢ > 0} is referred to as the evolution of T
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Fig. 1. Shoreline of Africa.

Fig. 1 shows a planar curve depicting the shoreline of
Africa. Fig. 2 shows several evolved versions of that curve for
increasing values of o. Note that when a planar curve evolves
according to the process defined above, its total arc length
shrinks. The amount of shrinkage is directly proportional to the
value of o. In certain applications, this may be an undesirable
feature. For example, the evolution process defined above
may be used to smooth edges extracted from an image by an
edge detector. However, it may be advantageous to have the
smoothed edges as close as possible to the physical location
of the original edges. This can be accomplished by estimating
the amount of movement at each point on the smoothed edges
and adding a vector to the location vector of that point to
compensate for that movement [19]. The result is a smoothed
curve that is physically closer to the original curve.

The function defined implicitly by

k(u,0) =0

is the curvature scale space image of I" [25]. Fig. 3 shows the
curvature scale space of the curve of Fig. 1. Horizontal lines
have been drawn across that image to indicate the values of o
that were used to compute the evolved curves of Fig. 2. Fig.
4 shows Koch’s snowflake curve and several of its evolved
versions. Fig. 5 shows the curvature scale space image of
the snowflake curve with horizontal lines across the image
to show the values of o used in Fig. 4. Fig. 6 shows a design
from a Persian carpet and several evolved versions. Fig. 7
shows the curvature scale space image of that design. Again,
horizontal lines across the image show the values of o used
in Fig. 6. 7

We then carried out two experiments to test the stability of
the curvature scale space image under conditions of noise. Fig.
8 shows the coastline of Africa with a significant amount of
uniform, random noise added to it. Fig. 9 shows the curvature
scale space image of Africa with uniform noise superimposed
on the curvature scale space image of Africa. As expected, the
images shown in Fig. 9 show differences in detail. However, a
remarkable similarity in the basic structures of the two images
can be observed. This experiment shows that the curvature
scale space image is very reliable and stable even when a
significant amount of uniform noise corrupts the shape of the
input curve. The next experiment tested the behavior of the

(a) (®)
©) )
(e) ®

Fig. 2. Africa during evolution: (a) 0 = 2; (b) 0 = 4; (c) 0 = 8; (d)
o =16;(e) o = 32; (f) 0 = 64.

0=382 3

ot f\
e LA T Iaalal [ 1l A(NHAM_“&F

o=2

Fig. 3. Curvature scale space image of Africa.

curvature scale space image under severe noise conditions. Fig.
10 shows the coastline of Africa with severe, uniform noise
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Fig. 4. Koch’s snowflake during evolution: (a) Koch’s snowflake; (b) o = 2;
(©) 0 =5; (d) 0 = 10; () o = 20.
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Curvature scale space image of the snowflake.

added to it. Fig. 11 shows the curvature scale space image of
Africa with severe noise superimposed on the it. Even with
the presence of severe noise, a very close similarity can be
observed between the two images.

Ill. THE RENORMALIZED CURVATURE SCALE SPACE IMAGE

Mackworth and Mokhtarian [20] observed that although w
is the normalized arc length parameter on the original curve
I', the parameter u is not, in general, the normalized arc

793

47

@
® ©
@ )

Fig. 6. Carpet design during evolution: (a) Design from a Persian carpet; (b)
o = 5; (¢) 0 = 10; (d) o = 20; (e) o = 50.
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Fig. 7. Curvature scale space image of the carpet design.

—

o]
!

!

-
S —

length parameter on the evolved curve I',. Fig. 12 shows
the shoreline of Africa with noise added to its lower half.
Fig. 13 shows the curvature scale space of that curve. A
comparison of Figs. 3 and 13 shows that a good match of
one curvature scale space image to the other does not exist.
To overcome this problem, Mackworth and Mokhtarian [20]
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Fig. 8. Africa with uniform noise.

Fig. 11. Superposition of the curvature scale space image of Africa and the
curvature scale space image of Africa with severe uniform noise.

Fig. 9. Superposition of the curvature scale space image of Africa and the Fig. 12. Africa with nonuniform noise.
curvature scale space image of Africa with uniform noise.

Fig. 10. Africa with severe uniform noise.

proposed the renormalized curvature scale space image. Let

R(u,0) = (X(u,0),Y(u,0)) and

fou |Ry (v, 0)|dv

w = ®,(u) = =} "
fo IR" (UY U)| v Fig. 13. CSS of Africa with nonuniform noise.
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Fig. 14. Renormalized CSS of Africa.

Now, define

X(w,0) = X(@; (w),0)  V(w,0) = Y(&; (w),0)

(3.1
that is, each evolved curve I', is reparametrized by its nor-
malized arc length parameter w. Notice that

$,(0)=0 P, (1) =1

and

%o (w) _ _ |Ru(u,0)]
du S IR(v,0)ldv

> 0 at nonsingular points.

In addition, ®o(u) = u. ®,(u) deviates from the identity
function ®,(u) = u only to the extent to which the scale-
related statistics deviate from stationarity along the original
curve.

Once we have changed parameters according to (3.1),
the curvature of the curve with the normalized path length
parameter is given by

k(w,0) = X'w(w,a)f'ww(w, ) = Xpw(w, 0)Yy(w, o).
The function defined implicitly by
K(w,0) =0

is the renormalized curvature scale space image of I'. Fig. 14
shows the renormalized curvature scale space of Africa, and
Fig. 15 shows the renormalized curvature scale space of noisy
Africa. Fig. 16 shows the superposition of Figs. 14 and 15. It
can be seen that the degree of match of Fig. 14 to Fig. 15 is
much better than the degree of match of Fig. 3 to Fig. 13.

IV. THE RESAMPLED CURVATURE SCALE SPACE IMAGE

Note that as a planar curve evolves according to the process
defined in Section II, the parametrization of its coordinate

Fig. 16. Superposition of Figs. 14 and 15.

functions z(u) and y(u) does not change. In other words, the
function mapping values of the parameter u of the original
coordinate functions z(u) and y(u) to the values of the
parameter u of the smoothed coordinate functions X (u, o)
and Y (u,0) is the identity function.

For both theoretical and practical reasons, it is interesting
to generalize the definition of evolution so that the mapping
function can be different from the identity function. Again, let
T" be defined by

' = {(z(w), y(w))lw € [0,1]}.
The generalized evolution that maps T" to I', is now defined by
[>T, = {(X(W,0),Y(W,0))IW € [0,1]}
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where

X(W,0) =2(W)@g(W,0) Y (W,0)=y(W)®@g(W,o0).

Note that W = W (w, o). Furthermore, W{(w, a¢), where oy
is any value of o, is a continuous and monotonic function of
w. This condition is necessary to ensure physical plausibility
since W is the parameter of the evolved curve T',,.

An especially interesting case is when W always remains
the arc length parameter as the curve evolves. When this
criterion is satisfied, the evolution of T' is referred to as arc
length evolution. An implicit equation for W can be derived
[91.

Let

R(W,0) = (X(W,0),Y(W,0)).

The Frenet equations for a planar curve are given by

o _|or| . on__|oR|
au'au”" E Bun'
Let t = ¢2/2. Observe that
o (|oRP") _ 2 (9R 0B\ _,(0R O°R
ot \ | du T Ot\duou ) du " Oudt |”
Note that
OR _|oR|, OR _
u | 9u at "

since the Gaussian function satisfies the heat equation. It
follows that

d (|8R|? OR|. o
_ . (|9R|, [0~ oR| ,
—2( B t.(auu ™ K t)))
oR|? ,
——2 % K.
Therefore
OR |0|0R| _ _,|ORI"
ou’|0t|ou|” " Bu|
or
O|0R| _ _|9R| ,
at|ou|” "|ou|"

Let L denote the length of the curve. Now, observe that

S [* 2R, _ [*|R
ot J, ot|ou|™T " ), |ou
Since the value wg of the normalized arc length parameter w

at a point P measures the length of the curve from the starting
point to point P, it follows that

w
w —/ &2(U,t)dU
0

1
K2du = —/ K2dw.
0

ot
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and therefore

t w
W(w,t):—/o/o ®2(U, T)dUdT + w. 4.1)

Note that
W(w,0) = w.

Note further that for any given value to of t, W(w,to)
is a monotonically increasing function of w. To see this,
observe that after changing the order of integration in (4.1)
and applying the chain rule for derivatives, we obtain
oW (w. t) t, oW (w, t)
— = (- W.T)ydl | ———+1
Bw ( /0 (W.T) ow T

or

W t, .
%<1+/; K (WT)dT) =1

or

W _ !
Ow 1+ [y k2(W,T)dT

which is always positive for any ¢. Therefore, W(w,t) is a
monotonically increasing function of w for any ¢.
The function defined implicitly by

k(W,0) =0

is the resampled curvature scale space of I'. Since the function
x(W,t) in (4.1) is unknown, W (w,t) cannot be computed
directly from (4.1). However, the resampled curvature scale
space can be computed in a simple way. A Gaussian filter
based on a small value of the standard deviation is computed.
The curve I' is parametrized by the normalized arc length
parameter and convolved with the filter. The resulting curve
is reparametrized by the normalized arc length parameter and
convolved again with the same filter. This process is repeated
until the curve is convex and no longer has any curvature zero-
crossing points. The curvature zero crossings of each curve
are marked in the resampled curvature scale space image.
Note that the standard deviation of the Gaussian chosen above
should be small enough so that the deviation from arc length
parametrization after each iteration is negligible. Then, the
entire process can-be considered to model arc length evolution.

We shall next show that this approximation process con-
verges to the solution of (4.1). Let € be the maximum error in
the location of any point of I' when the arc length evolution of
T is approximated through the process described above using
a Gaussian with standard deviation Ac. As Ao — 0, the
change in location of each point of I' during regular or arc
length evolution tends to zero, and therefore, ¢ — 0. Assume
that o is normalized, and therefore, the largest value of o used
is equal to one. It follows that the process described above
performs 1/Ac iterations until completion and that the total
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approximation error § is given by

€
b~ —.
Ao
We need to show that 6 — 0 as Ao — 0. Observe that at a
point P of I

ex|(r+ sn) — (r+ Arg)| = |kn — Ary|

where « and n are the curvature and the normal vector at
P, r is the position vector of point P, and Ar, is the
amount of change in the position vector of P after Gaussian
approximation. Let

Arg = kgny

where n, is a unit vector with the same direction as that of
1y, and kg is equal to the length of r,. ny and x, can be
thought of as the normal vector at P and the curvature of
an arc of a circle going through P. As Ao — 0, the curve
segment covered by the Gaussian filter can be approximated
by a circular segment with constant curvature. It is easily seen
that on an arc of a circle, regular evolution causes the same
shrinkage rate at every point and is therefore equivalent to arc
length evolution. It follows that as Ao — 0, x;, — &, and
n, — n. Therefore

€ X |Kkn — Kgng).

Ao is linearly proportional to the length of the neighborhood
covered by the Gaussian filter. We can therefore approximate
k by A8/Ac and k4 by Ad/Ao, where 0 and ¢ are tangent
directions at P of I and the circular arc specified by (ng, %),
respectively. It follows that

A6, _ Adp Asn-aem,
5 Ag Ao ™9 Ao
Ao - Ao

= |Abn — A¢ny| — 0 as Ao — 0.

Therefore, the approximation process described above con-
verges to the solution of (4.1).

Fig. 17 shows the resampled curvature scale space of Africa,
and Fig. 18 shows the resampled curvature scale space of
Africa with nonuniform noise. Fig. 19 shows the superposition
of Figs. 17 and 18. Note that a very close match can be
observed when matching Fig. 17 to Fig. 18.

V. EVOLUTION AND ARC LENGTH
EVOLUTION PROPERTIES OF PLANAR CURVES

This section presents a number of important results on
evolution and arc length evolution of planar curves as defined
in Sections I and IV. It also discusses the practical significance
of each of those results. The Appendix contains those proofs
that have not appeared elsewhere and gives pointers to those
that have.

The first five theorems express a number of fundamental
properties of evolution and arc length evolution.

Theorem 1: The order of application of evolution or arc
length evolution and a shape preserving transformation (con-
sisting of rotation, uniform scaling and translation) to a planar
curve does not change the final result.

1

.,Lnl,.[)nﬂ'n AFACT LN NP m{) '/\t\ ' Q o AF

Fig. 17. Resampled curvature scale space image of Africa.

Fig. 18. Resampled curvature scale space image of Africa with nonuniform
noise.

It follows from this theorem that the regular, renormalized,
and resampled curvature scale space images of a planar curve
satisfy the invariance property. The invariance property is
essential since it makes it possible to match a planar curve to
another of similar shape that has undergone a transformation
consisting of arbitrary amounts of rotation, uniform scaling,
and translation.

Theorem 2: A closed planar curve remains closed during
its evolution and arc length evolution.

Theorem 3: A connected planar curve remains connected
during its evolution and arc length evolution.

Theorems 2 and 3 show that connectedness and closedness
of a planar curve are preserved during evolution and arc length
evolution. These theorems show that evolution and arc length
evolution do not change the physical interpretation of a planar
curve as the boundary of a 2-D object. Consider a closed,
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Fig. 19. Superposition of the resampled curvature scale space image of
Africa and the resampled curvature scale space image of Africa with nonuni-
form noise.

connected planar curve that represents the boundary of a 2-
D object. If such a curve is not closed and connected after
evolution or arc length evolution, then it can no longer be
viewed as the boundary of a 2-D object.

Theorem 4: The center of mass of a planar curve does not
move during evolution and arc length evolution of that curve.

Theorem 5. Let I be a closed planar curve and let G be
its convex hull. T' remains inside G during evolution and arc
length evolution.

Theorem 4 shows that the center of mass of a planar curve
remains stationary as the curve evolves, and Theorem 5 shows
that a planar curve remains inside its convex hull during
evolution and arc length evolution. Together, Theorems 4 and
5 impose constraints on the physical location of a planar curve
as it evolves. These constraints become useful whenever the
physical location of curves in an image or their locations with
respect to each other is important. A possible application area
is stereo matching, in which it is advantageous to carry out
matching at coarser levels of detail first and then match at fine
detail levels to increase accuracy.

Theorem 6 shows that the mapping from a planar curve to
its curvature scale space image is an invertible one.

Theorem 6: Let I' be a planar curve in Co. The high-order
derivatives at a single point on one curvature zero-crossing
contour in the regular, renormalized, or resampled curvature
scale space image of I' determine T uniquely up to uniform
scaling, rotation, and translation (except on a set of measure
zero).

Theorem 6 shows that the curvature scale space images of
a planar curve in fact satisfy the uniqueness property. This
property ensures that curves of different shapes do not have
the same representation. Note that the proof of this theorem is
not meant to be used as a practical reconstruction scheme.

Theorem 7 states that under certain conditions, new curva-
ture zero-crossing points are not created during evolution and
arc length evolution of planar curves.

Theorem 7: Let T be a planar curve in Cs. If all evolved
and arc length evolved curves ', are in Cy, then all extrema of
contours in the regular, renormalized, and resampled curvature
scale space images of I' are maxima.

Theorem 8 locally characterizes the behavior of planar
curves during evolution and arc length evolution just before
the creation of a cusp point.

Theorem 8: Let I' = (z(u),y(u)) be a planar curve in Cy,
and let x(u) and y(u) be polynomial functions of u. Let T,
be an evolved or arc length evolved version of I with a cusp
point at ug. There is a 6 > 0 such that I, _s intersects itself
in a neighborhood of point .

The following theorem holds only for arc length evolution.

Theorem 9: Simple curves remain simple during arc length
evolution.

Theorem 10 locally characterizes the behavior of a planar
curve during evolution and arc length evolution just after the
creation of a cusp point.

Theorem 10: Let I' = (z(u),y(u)) be a planar curve in
C1, and let z(u) and y(u) be polynomial functions of u. Let
T's be an evolved version of 1" with a cusp point at ug. There is
a & > 0 such that ', s has two new curvature zero crossings
in a neighborhood of ug.

Theorems 8 and 10 together locally characterize the behav-
ior of a planar curve just before and just after the formation
of a cusp point during evolution and arc length evolution.
This behavior can be used to detect any cusp points that form
during evolution or arc length evolution of a planar curve.
Such cusp points can then be used effectively to facilitate
matching since they provide us with a set of distinctive and
easily recognizable features. These theorems also show that
self-intersecting curves are described in a natural way by our
representation technique. The self-intersection loop gradually
grows smaller until it turns into a cusp point and vanishes. In
contrast, Asada and Brady’s method [1] enlarges the smaller
loop until it becomes as large as the larger loop. Figs. 20 and
21 show two self-intersecting curves during evolution. The
self-intersection is resolved through the formation of a cusp
point, after which the curve becomes simple.

Theorem 7 showed that if a planar curve remains smooth
during evolution or arc length evolution, then no new curvature
zero crossings will be observed in its curvature scale space
images. Theorem 8 showed that every planar curve intersects
itself during evolution or arc length evolution just before
the formation of a cusp point, and Theorem 9 showed that
simple curves temain simple during arc length evolution.
Combining Theorems 7-9, we conclude that no new cur-
vature zero-crossing points are created during arc length
evolution of simple curves. This is an important result since
it indicates that new “structure” is not created in the cur-
vature scale space representations of simple curves [23].
Note that a subclass of self-crossing curves also shares this
property.

The result stated by Theorem 9 is also very significant.
Simple planar curves usually represent the boundaries of 2-D
objects. Arc length evolved versions of those curves can only
have physical plausibility if they are also simple. Theorem 9
shows that this is in fact the case. Fig. 22 shows a simple curve
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Fig. 20. Convex, self-crossing curve during evolution: (a) Original curve;
(b) 0 = 20; (c) 0 = 32; (d) o = 40.

and its evolved versions. It can be seen that the curve intersects
itself during evolution. Fig. 23 shows the same curve and its
arc length evolved versions. As expected, the curve remains
simple during arc length evolution.

The final theorem is on the convergence properties of
curvature scale space representations.

Theorem 11: Let T' be a closed planar curve. T' becomes
simple and convex during evolution or arc length evolution
and remains simple and convex.

Theorem 11 describes a very important property of cur-
vature scale space representations since it shows that the
computation of such a representation always has a clearly
defined termination point.

V1. EXPERIMENTS, DISCUSSION, AND EVALUATION

This section contains additional experiments to demonstrate
the stability of the curvature scale space representation. It also
contains a discussion of the regular, renormalized, and resam-
pled curvature scale space representations and an evaluation
of those representations according to the criteria proposed in
Section 1.

Since the representation methods proposed in this paper
involve identification of curvature zero-crossing points on

o
O
O
-

@

Fig. 21. Concave, self-crossing curve during evolution: (a) Original curve;

(b) 0 = 16; (c) o = 28; (d) 0 = 40.

planar curves, it may be conjectured that they are not suitable
for application to curves with straight segments on them.
However, it should be noted that while the presence of straight
line segments on a curve might introduce instabilities at the
finest scale levels, after a small number of iterations, the
originally straight segments will have nonzero curvature, and
the computations will stabilize. Fig. 24 shows a planar curve
made up of straight line segments, and Fig. 25 shows the
curve of Fig. 24 with added random noise. Fig. 26 shows the
curvature scale space representation of the curve of Fig. 24,
and Fig. 27 shows the curvature scale space representation of
the curve of Fig. 25. Fig. 28 shows the superposition of the
images shown in Figs. 26 and 27. It can be seen that while
there is disagreement between the two representations at the
finest scale levels, a very close match exists at the higher
levels of the representations.

Three different multiscale representation techniques for pla-
nar curves were described in this paper. These three are
the regular curvature scale space image, the renormalized
curvature scale space image, and the resampled curvature
scale space image. Each representation technique is suitable
for specific applications. When uniform noise exists on the
curve, the regular curvature scale space image can be used.

‘However, when there is nonuniform noise on the curve or

when there are local shape differences between the model
curves and the image curves, either the renormalized or the
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Fig. 22. Simple curve during regular evolution: (a) Original curve; (b)
o=4;(c)o =16;(d) o = 25.
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Fig. 23. Curve of Fig. 22 during arc length evolution: (a) Original curve;
(b) after six iterations; (c) after 30 iterations; (d) after 50 iterations.

Fig. 24. Planar curve made up of straight line segment.

Fig. 25. Curve of Fig. 24 with added random noise.
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Fig. 26. Curvature scale space image image of the curve of Fig. 24.
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Fig. 27. Curvature scale space image image of the curve of Fig. 25.

resampled curvature scale space images should be used. The
renormalized curvature scale space image is the most compu-
tationally intensive. Observations indicate that when there are
local shape differences, the resampled curvature scale space
images show the best overall match, whereas the renormalized
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Fig. 28. Superposition of Figs. 26 and 27.

TABLE [
COMPARISON OF REGULAR, RENORMALIZED, AND
RESAMPLED CURVATURE SCALE SPACE IMAGES

D ion_technig Advantag Disadvantages
The Regular Curvature ® Suitable for i N iform noise or
Scale Space Image consisting of uniform scaling, | local difference in shape
rotation and translation. can cause problems.
o Suitable when uniform,
noise corrupts the curve.
‘The Renormalized Curvature | e More suitable when there ® Most computationally
Scale Space Image is non-uniform noise on the intensive.
curve or local shape
differences exist.
The Resampled Curvature © Most suitable when there ® De-emphasizes shape
Scale Space Image is high-intensity, non-uniform | differences at fine
noise or local shape scales.
differences exist.

curvature scale space images match well at high scales but
are more influenced by the shape differences at lower scales.
Therefore, the choice of the representation technique should
depend on the scale level of the curve features that one
wishes to emphasize. Table I summarizes the advantages and
disadvantages of each representation technique.

We now present an evaluation of the curvature scale space
representations according to the criteria proposed in Section I.

Criterion: Invariance

Recall that by invariance, we meant that the represen-
tation for the shape of a curve should not change when
shape-preserving transformations (rotation, uniform scaling,
and translation) are applied to that curve.

Translation of the curve causes no change in the curvature
scale space representations proposed here. Uniform scaling
causes the curvature scale space representations to undergo
uniform scaling as well. If the represented curves are closed,
then their curvature scale space representations can be normal-
ized, and invariance with respect to uniform scaling will also
be achieved. If the represented curves are open, changes due
to uniform scaling can be handled by a matching algorithm
such as the one used in [25].

Rotation causes only a horizontal shift in the curvature scale
space representations. However, due to the multiscale nature of
those representations, a matching algorithm can determine the
shift difference between two matching curvature scale space
representations.

Criterion: Uniqueness

The uniqueness criterion required that two curves with
different shapes be mapped to different representations. This is

necessary in order to be able to recognize two or more curves
with the same shape by observing that their representations
are the same.

As argued earlier, Theorem 6 shows that a planar curve
can be reconstructed from any of its curvature scale space
representations, and therefore, the curvature scale space rep-
resentations satisfy the uniqueness criterion. :

The only arbitrary choice to be made when computing
curvature scale space representations is the starting point
for parametrization on a closed curve. This only causes a
horizontal shift in the curvature scale space representations,
but it causes no structural change.

Criterion: Stability

The stability criterion requires that a small change in the
shape of a curve leads to a small change in its represen-
tation and vice versa. Theorem 3 shows that planar curves
remain connected during evolution and arc length evolution,
and therefore, their curvature scale space representations can
always be constructed. Furthermore, our observations show
that while a planar curve evolves, a small change in the
standard deviation of the Gaussian filter always results in a
small change in the locations of the curvature zero crossings
on that curve. The experiments of this paper also show that
curvature scale space representations are stable with respect to
significant uniform and nonuniform noise on the curves they
represent and therefore satisfy the stability criterion.

Criterion: Efficiency

The computation of the representations proposed here calls
for evaluation of a large number of convolutions. This process
can be rendered efficient using one or more of the following
techniques:

1. Fast Fourier transforms

2. parallelism

3. expression of convolutions involving Gaussians of large

widths in terms of convolutions involving Gaussians of
small widths only

4. tracking curvature zero-crossing points across multiple

scales; when it is known that new curvature zero cross-
ings will not be created at higher scales, convolutions
can be carried out only in a small neighborhood of the
existing zero crossings in order to find the zero crossings
at the next higher level.

Furthermore, curvature scale space representations can be
stored very efficiently as encoded binary images. An alterna-
tive is to store only a selected subset of points from those
scale space representations that will be used for matching.
In general, all algorithms proposed are efficient in that their
complexities are low-order polynomials in the size of the input.

Criterion: Ease of Implementation

The procedures needed to compute curvature scale space
images are not difficult to implement. Convolutions with
Gaussian filters are at the heart of the computations. These are
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standard and well-understood procedures in the computational
vision area. It follows that this criterion is also satisfied.

Criterion: Computation of Shape Properties

The curvature scale space representations of symmetric
curves are also symmetric since a symmetric curve also has
symmetric curvature zero crossings across scales. Therefore,
the symmetry criterion is satisfied. Furthermore, curvature
scale space computations are carried out using finite Gauss-
ian filters and making use of finite-sized neighborhoods.
Therefore, a curvature scale space representation can also be
computed for an open curve and, except near the endpoints of
the curve, will resemble the corresponding representation for
a closed curve of which it is a part. It is therefore believed
that the representations also satisfy the part/whole criterion.

Finally, note that volumetric diffusion [18] and reactive and
diffusive deformations of shape [17] are shape representation
techniques that are the most similar to ours since they also
compute deformations of shapes of planar curves. It may
therefore be suggested that an alternative way to compute
the curvature scale space representations is to use one of the
above techniques to compute deformations of the curves to be
represented and then locate curvature zero-crossing points on
each deformed curve and map them to the appropriate repre-
sentations. However, the application of each of the techniques
mentioned above might result in disconnected curves. In such
cases, it will no longer be possible to construct the curvature
scale space representations. Furthermore, our technique com-
bines the curve deformation and the computation of curvature
into one step and is therefore more numerically accurate than
the aforementioned techniques that separate the processes of
curve deformation and computation of curvature.

It follows that the curvature scale space representations sat-
isfy nearly all the criteria considered necessary for a general-
purpose shape representation method.

VII. CONCLUSIONS

This paper introduced a novel shape representation tech-
nique for planar curves and proposed a number of criteria
considered necessary for any general-purpose shape repre-
sentation scheme. Those criteria are invariance, uniqueness,
stability, efficiency, ease of implementation, and computation
of shape properties.

Three different ways of computing the representation were
described. Each method relies on extracting features of the
curve that are invariant under shape-preserving transforma-
tions at varying scales. These methods result in the curvature
scale space image, the renormalized curvature scale space
image, and the resampled curvature scale space image. It
was shown that each of those representations is suitable for
a specific application.

A number of theoretical properties of those representations
were also investigated. These properties together provide a
sound foundation for the representations proposed in this
paper. Finally, it was shown that the proposed representations
satisfy nearly all the criteria introduced earlier.

APPENDIX

Proof of Theorem 1: The proof of this theorem for regular
evolution appeared in [20]. The proof for arc length evolution
is very similar. ]

Proof of Theorem 2: The proof of this theorem for regular
evolution appeared in [20]. The proof for arc length evolution
is very similar. - O

Proof of Theorem 3: The proof of this theorem for regular
evolution appeared in [20]. The proof for arc length evolution
is very similar. O

Proof of Theorem 4: The proof of this theorem will be
given for arc length evolution only. The proof for regular
evolution is very similar.

Let M be the center of mass of I' =
coordinates (zar,yar). Then

Tpm = /Olm(w)dw//oldw = /le('w)dw
yM = /01 y(w)dw/ /01 dw = /01 y(w)dw.

(z(w), y(w)) with

Let T, (X(W,0),Y(W,0)) be an arc length evolved
version of I' with N = (Xn,Yn) as its center of mass.
Observe that

XN—/ XWO’)d

/ / 9(v,0)e(W — v)dvdW
- /_w 9(v,0) (/ :c(W—v)dW)dv.

W covers I', exactly once. Therefore

1
/ (W — 0)dW =z .
0

Therefore, X = xp7. Similarly, Y5 = ypr. Hence, M and
N are the same point. d

Proof of Theorem 5: The proof of this theorem will be
given for arc length evolution only. The proof for regular
evolution is very similar.

Since G is simple and convex, every line L tangent to G
contains that curve in the left (or right) half plane it creates.
Since T is inside G, T" is also contained in the same half
plane. Now, rotate'L and T' so that L becomes parallel to
the y axis. L is now described by the equation z = c. Since
L does not intersect T, it follows that z(wg) > c for every
point wp on I'. Let I'; be an arc length evolved version of r.
Every point of ', is a weighted average of all the points of
T. Therefore, X(Wy,0) > c for every point Wy on I'; and
T, is also contained in the same half plane. This result holds
for every line tangent to G; therefore, I'; is contained inside
the intersection of all the left (or right) half planes created by
the tangent lines of G. It follows that I'; is also inside G. O

Proof of Theorem 6: The proof of this theorem for the
regular curvature scale space image of a planar curve I' was
given in [26].
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To prove the same result about the resampled curvature scale
space of T', recall that derivatives at one point (at any scale)
on any curvature zero-crossing contour in the curvature scale
space of I' were computed, and it was shown that the resulting
equations can be solved for the coefficients of expansion of
the curvature function of I in functions related to the Hermite
polynomials.

As before, we choose a point on a zero-crossing contour
at any scale of the resampled curvature scale space image
of I' and compute the necessary derivatives. The value of o
in the resulting equations is then set to zero. Consequently,
the arc length evolved curve I',, where o corresponds to the
scale at which the derivatives were computed, is reconstructed
modulus uniform scaling, rotation, and translation.

The next step is to recover the original curve I'. This is
done by applying reverse arc length evolution to T,. Let the
arc length evolved curve I', be defined by

L, = {(X(W,0),Y(W,0)) | W € [0,1]}.
A reverse arc length evolved curve T is defined by
I = {(z(w). y(w)) | w € [0. 1]}
where

z(w) = X(w.0)® Dx(w.0)
y(w) =Y (w,0)® Dx(w.0)

where Dy is a deblurring operator defined in [15] and

w(W,0) = /00 /Ow w2(w. o)dwdo.

As a result, ' is recovered modulo uniform scaling, rotation,
and translation.

To prove the same result about the renormalized curvature
scale space image, evolved curve I', is again reconstructed.
Then, each of its coordinate functions is deblurred by con-
volving it with the deblurring operator D . Once again, I is
recovered modulo uniform scaling, rotation, and translation. O

Proof of Theorem 7: Since by assumption all evolved and
arc length evolved curves I, are in Cs, the conditions of the
implicit function theorem are satisfied on contours s(u, o),
&{w, o), and kK(W,0) = 0 in the regular, renormalized, and
resampled curvature scale space images of I'. Therefore, the
proofs are very similar. A proof for the regular curvature scale
space image was presented in [20]. 0

Proof of Theorem 8: A proof of this thcorem for an
arbitrary parametrization of I', appeared in [20]. It follows that
the theorem must also be true of arc length parametrization or
close approximations. 0

Proof of Theorem 9: Assume by contradiction that T is a
simple curve that intersects itself during arc length evolution.
The location vector of each point of T is a continuous function
of ¢ during arc length evolution; therefore I" must touch itself
at point P before self-intersection. Let I';, be such a curve.
Consider two neighborhoods S; and S, of I';, that have point
P in common. S; and S correspond to nonoverlapping ranges
of the arc length parameter W. Note that S; and S, have
colinear tangents at P. Let L be the line of those tangents.

The tangents exist since it follows from Theorem 8 that P can
not be a cusp point on either S; or S, because I'; does not
self-intersect for t < t.

Recall that the infinitesimal movement during arc length
evolution of each point of S; and S, is determined by the
equation

R
E = Kkn.

Therefore, during arc length evolution, every point will move
in the direction of the normal vector by an amount equal to
the curvature at that point. Similarly, during reverse arc length
evolution, every point will move in the opposite direction of
the normal vector by an amount equal to the curvature at that
point.

It follows that if S; and S, are on opposite sides of L, after
an infinitesimal amount of reverse arc length evolution, they
will intersect. This is a contradiction of the assumption that T’
was simple before touching itself. Assume then that S; and
Sy are on the same side of L. Note that S; and S» cannot
be overlapping since they would still be overlapping after an
infinitesimal amount of reverse arc length evolution, which
is also a contradiction of the assumption that I' was simple
before touching itself. Let S; be the segment inside 9, i.e.,
the tangent to S always has S; to the same side. It can be seen
that S; has a larger curvature at P than S,. Therefore, after an
infinitesimal amount of reverse arc length evolution, point P
on S; and point P on Sy will move in the same direction, but
point P on S; will move by a larger amount. It follows that
after an infinitesimal amount of reverse arc length evolution,
S1 and S, will intersect, which is, again, a contradiction. It
follows that I' remains simple during arc length evolution. [J

Proof of Theorem 10: It will be shown that this theorem
holds for an arbitrary parametrization of I',. Therefore, it
must also be true of arc length parametrization or close
approximations.

Let (x(u), y(u)) be an arbitrary parametrization of I', with a
cusp point at ug. Using a case analysis similar to the one in the
proof of Theorem 2 in [20] to characterize all possible kinds of
singularities of I';, at ug, we can again conclude that only the
singular points in cases 1 and 4 are cusp points. In case 1, the
curve is approximated by (u™,«") in a neighborhood of uyg,
where m and n are both even. This type of cusp point cannot
arise on I', if I" is in C;. We now turn to the cusp points of
case 4. Recall that in case 4, the curve I', is approximated,
in a neighborhood of ug, by (™, u"), where m is even, and
n is odd. Observe that

#(u) = m(m — 1)u™2

9(u) = nu™"1 #(u) = n(n — 1)u" 2

(u) = mu™ !

and

k() = a(u)ij(u) — g(u)E(u)
(d(u)? + §(u)?)3/?
mn(n = ™= — m(m ~
- (m2u2m=2  n2y2n-2)3/2

m+n—3




804 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 1992

since nm, x(u) is always positive on either side of the cusp
point in a neighborhood of ug. Therefore, no curvature zero
crossings exist in that neighborhood on T',.

We now derive analytical expressions for I'54s so that it
can be analyzed in a neighborhood of ug. To blur function
f(u) = uF, we convolve a rescaled version of that function
with the function \/%_re’zz, which is the blurring operator, as
follows: ‘

F(u) = /_ > \/L;re"’z F(u+ 2zvt)dz
= % /:: é"z (u + 2zVt)kdz

where ¢ is the scale factor and controls the amount of blurring.
Solving the above integral yields

k
Fuy= Y 135...
p=0
(p even)
@0P2k(k—1)...(k=p+1) .,

(p-1) o

An expression for I'; 5 in a neighborhood of the cusp point
can be obtained by blurring each of its coordinate functions:

m
2

X(u) =u"‘+cltum_2+czt2um_4+...+cg_1€_zt z u2+c%t

Y(u) = u™ + ctu" 2 + HtPum Tt L+ Caa T .
2

Note that all constants are positive, all powers of u in X (u)
are even, and all powers of u in Y (u) are odd. It follows that
all powers of u in

m—2

X(u) =mu™ 1+ (m - 2ertu™ 3 + ... + 2cmeat 7 u

are odd, all powers of u in

X (u) =m(m — D)u™"2 + (m - 2)(m — 3)crtu™*

+...+2CmT—2t Z

are even, all powers of u in
Y(u) =nu""t 4 (n - 2)ctu 3 + ... + c',,%l 7
are even, and all powers of u in
Y (u) = n(n—1)u""24(n-2)(n-3)c tu™ " *+.. .+c'9_2__3t"2;3

are odd.
The curvature of I'; 45 in a neighborhood of ug is given by
() = K@Y (@) = V@)X @)
(X(u)? +Y (u)?)3/2

Since the denominator of x(u) never goes to zero in a
neighborhood of ug, the zero crossings of x(u) are the same
as those of its numerator. Observe that the term with the
highest power of u in X(u)Y(u) is mn(n — 1)u™+"3,
and the term with the highest power of w in Y (u)X(u)
is m(m — 1)nu™3 and that in both X(u)V(u) and
Y (u)X (u), all powers of u are even, and all constants are
positive. Furthermore, note that at u = 0, X (u)Y (u) is zero,
and Y (u)X(u) > 0. Therefore, at v = 0, k < 0. As u
grows larger in absolute value, the terms in X(u)Y (u) and
Y (u)X(u) with highest powers of u become dominant (all
other terms have positive powers of ¢ = ¢ in them). Since
the dominant terms have equal powers of u, the one with
the larger coefficient becomes the larger term. Since n > m,
the largest term in X (u)Y (u) becomes larger than the largest
term in Y (u) X (u). Therefore, as u grows in absolute value,
x becomes positive. It follows that there are two curvature
zero crossings in the neighborhood of ug on I, 5. These zero
crossings are new since it was shown that no zero crossings

exist in the neighborhood of ug on I',. O
Proof of theorem 11: See Mokhtarian [27]. a
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