
papi1 papi1Programmable GPUs Outline

Outline

References

Programmable Units

Languages

OpenGL Shading Language

papi1 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi1



papi2 papi2References

OpenGL

OpenGL Shading Language

John Kessenich, “The OpenGL Shading Language,” OpenGL Language Version 1.20,
Document Revision 8, September 2006.

OpenGL Commands for Shader Language Control

Mark Segal, Kurt Akeley, “The OpenGL Graphics System: A Specification (Version 2.1)”,
OpenGL, July 2006.

papi2 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi2

http://www.ece.lsu.edu/gp/refs/GLSLangSpec.Full.1.30.08.withchanges.pdf


papi3 papi3Programmable Units

Programmable Unit:

Part of the pipeline that can be programmed (as defined by some API).

Choice of what is and isn’t programmable constrained by:

Need to allow for parallel (multithreaded, SIMD, MIMD) execution.

Simple memory access.

OpenGL Programmable Units

Vertex Processor:

Transform vertex and texture coordinates, compute lighting.

Geometry Processor:

Using a transformed primitive and its neighbors generates new primitives. For example,
replace one triangle with many triangles to more closely match a curved surface. (Not in
OpenGL 2.1, defined in extensions.)

Fragment Processor:

Using interpolated coordinates, read filtered texels and combine with colors.

papi3 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi3



papi4 papi4Languages

Shader:

A programmable part of a GPU. Name is now misleading but is still in common use.

Shader Language:

An language for programming shaders.

Shader Assembly Language:

An assembly-like language for programming GPUs.

High-Level Shader Language:

A high-level language for programming GPUs.

papi4 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi4



papi5 papi5Shader Assembly Language

Shader Assembly Language

At one time, only way to program.

Unlike a true assembly language . . .

. . . no instruction encoding defined . . .

. . . no promise of a one-to-one correspondence with machine instructions.

Translated into machine instructions (or micro-instructions) by API implementation.

Many APIs not picky about matching assembly language to target.

Currently might be used for tuning code from high-level shader language.

Separate languages defined for vertex, geometry, and fragment processors.

Early languages closely match underlying hardware, so more useful for performance tuning.

Defined as OpenGL extensions.

papi5 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi5



papi6 papi6Shader Assembly Languages

First-Generation Languages

NV vertex program (For vertex processor)

Close match to GEForce 3 hardware.

No branches or memory (texture or otherwise) access.

NV fragment program (2003) (For fragment processor)

Arbitrary texel access. (Can ignore or modify provided texture coords.)

Instructions for texture access and interpolation.

No branching.

papi6 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi6



papi7 papi7Shader Assembly Languages

Second-Generation Languages

NV vertex program2, NV vertex program3.

NV fragment program2,

Later Languages

Full support for integer operations, branching.

NV gpu program4: Instructions common to each kind of shader.

NV vertex program4.

NV geometry program4.

NV fragment program4.

papi7 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi7



papi8 papi8High-Level Shader Languages

High-Level Shader Languages

OpenGL Shader Language

OpenGL standard.

Syntax very similar to C.

Language designed for vertex and fragment shaders.

Current version is 1.3.

Cg

Originated with ATI, adopted in Direct3D.

Syntax very similar to C.

Language designed for stream programs . . .

. . . geometry, vertex, and fragment programs can be in stream form.

papi8 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi8



papi9 papi9OpenGL Shader Language (OGSL)

OpenGL Shader Language Important Features

C-like

CPP-like preprocessor directives.

Library of useful functions.

papi9 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi9



papi10 papi10OGSL Data Types

Data Types

OpenGL Shading Language 1.30 Section 4.1

Scalar types: bool, int, float

Vectors of bool, int, float.

Element access: xyzw, rgba, stpq. E.g., var.xy, var.r

Matrices of float.

Structures

papi10 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi10

http://www.ece.lsu.edu/gp/refs/GLSLangSpec.Full.1.30.08.withchanges.pdf


papi11 papi11OGSL Data Types

Integer

Signed and unsigned.

Thirty-two bits.

Earlier versions had lower precision and lacked bitwise operations.)

papi11 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi11



papi12 papi12OGSL Data Types

Float

IEEE 754 Single Format

Calculations may be to less than IEEE 754 precision.

papi12 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi12



papi13 papi13OGSL Data Types

Example

vec4 vertex_e = gl_ModelViewMatrix * o_point;

vec3 norm_e = gl_NormalMatrix * gl_Normal;

vec4 light_pos = gl_LightSource[1].position;

float phase_light = dot(norm_e, normalize(light_pos - vertex_e).xyz);

float phase_user = dot(norm_e, -vertex_e.xyz);

float phase = sign(phase_light) == sign(phase_user) ? abs(phase_light) : 0.0;

papi13 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi13



papi14 papi14OGSL Data Types

Variable Types

Uniforms:

Read-only by shader. Changed by client, change is time consuming. Implemented as shader
constants.

Attributes:

Read-only by vertex shader, not available to fragment shader. Changed by client, change is
fast.

Varying:

Written by vertex shader, interpolated for fragment shader where read-only.

Sampler:

Read-only by vertex and fragment shader. Value is a filtered texel.

papi14 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi14



papi15 papi15OGSL Data Types

Storage Qualifiers

const

attribute

Read only.

Not allowed in fragment shaders.

uniform

Read only.

varying

Written by vertex shader.

Interpolated for fragment shader.

Read only for fragment shaders.

papi15 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi15



papi16 papi16

Storage Qualifier Example

uniform vec3 gravity_force;

uniform float gs_constant;

uniform vec2 ball_size;

attribute float step_last_time;

attribute vec4 position_left, position_right, position_above, position_below;

attribute vec3 ball_speed;

varying vec4 out_position;

varying vec3 out_velocity;

papi16 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi16



papi17 papi17OGSL Functions

Function Parameters

OpenGL Shading Language 1.30 Section 4.4

Call by value.

Parameter Qualifiers:

in (default)

out

inout

papi17 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi17

http://www.ece.lsu.edu/gp/refs/GLSLangSpec.Full.1.30.08.withchanges.pdf


papi18 papi18OGSL Functions

Built In Variables

OpenGL Shading Language 1.30 Section 7

Pre-defined uniform, attribute, and varying variables.

papi18 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi18

http://www.ece.lsu.edu/gp/refs/GLSLangSpec.Full.1.30.08.withchanges.pdf


papi19 papi19OGSL Functions

Built In Functions

See OpenGL Shading Language 1.30 Section 8

papi19 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi19

http://www.ece.lsu.edu/gp/refs/GLSLangSpec.Full.1.30.08.withchanges.pdf


papi20 papi20OGSL Use

Code Use Overview

Suppose something (tube) needs special lighting.

Shader language code in light.cc.

All steps below done by code using OpenGL.

Initialize step: Load, compile, and link light.cc.

During render, when ready for tube: Install light.cc.

As needed, write uniform values.

At this point all vertices handled by light.cc.

When done with tube install another shader or switch to fixed func.

papi20 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi20



papi21 papi21OGSL Use

See OpenGL 2.1 Section 2.15

Initialize Program

Create Shader Object

sobject = glCreateShader(GL VERTEX SHADER)

Provide Source Code to Shader Object

glShaderSource(sobject,1,&shader text lines,NULL);

Compile Shader Object

glCompileShader(sobject);

Attach and Link

glAttachShader(pobject,sobject);

glLinkProgram(pobject);

Use

glUseProgram(pobject);

papi21 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi21

http://www.ece.lsu.edu/gp/refs/glspec21.pdf


papi22 papi22OGSL Use

Obtaining and Using Variable References

At run time variables identified by number.

At Initialization get location (index) of attributes and uniforms:

vsal pinnacle = glGetAttribLocation(pobject,name);

sun ball size = glGetUniformLocation(pobject,name);

During Render (Infrequently) Change Uniform Value (Using location)

glUniform2f(sun ball size,ball size,ball size sq);

During Render (Per Vertex Okay) Change Attribute Value (Using location)

glVertexAttrib4f(vsal pinnacle,pinnacle.x,pinnacle.y,pinnacle.z,radius);

Done before each glVertex.

Same options as vertex, such as client and buffer object arrays.

papi22 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi22



papi23 papi23OGSL Vertex Shader Examples

Vertex Shader Examples

Minor variation on lighting.

Compute geometry of bump and circle.

Physics

papi23 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi23



papi24 papi24OGSL Vertex Shader Example

Example: Variation on Lighting

Program: cube4.cc (gpu acceleration off)

Shader Code: cube4 vshader.cc::vs main lighting()

Why: Tweak lighting.

Notes:

Shader computes transformation, lighting, and texture coordinates.

Program switches between vs main lighting and fixed func.

papi24 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi24



papi25 papi25OGSL Vertex Shader Example

Example: Compute Geometry

Program: cube4.cc (gpu acceleration on)

Why: Less work for CPU.

Shader Code: cube4 vshader.cc::vs main circle() and vs main bump()

Notes:

Not a geometry shader.

Program switches between vs main circle, vs main bump and fixed func.

papi25 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi25



papi26 papi26OGSL Vertex Shader Example

Example: Physics

Program: cube5.cc

What: Shader time-steps lattice of masses.

Why: Less work for CPU.

papi26 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi26



papi27 papi27Sample Program cube4.cc

Sample Program cube4.cc

Displays a rotating cube.

Cube faces have textures: syllabus, pic of EE building, etc.

Ball bouncing around cube.

Low-speed impact: color circle.

High-speed impact: bump.

Vertex Shader Uses

Lighting tweak.

Circle painting.

Bump painting.

papi27 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi27



papi28 papi28Sample Program cube4.cc

Data Representations

Cube:

Admittedly messy part of code.

Cube position: transformation matrix in pCube.

Textures: pCube Face Info (6-element array).

History of ball contact: pContact List (6-element array).

Ball: position, speed, size.

papi28 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi28



papi29 papi29Sample Program cube4.cc

Physics

At each time step . . .

. . . move cube to new position . . .

. . . move ball to new position.

To move cube: update rotation matrix using time and spin rate.

To move ball:

Find next intercept of ball trajectory with cube face.

If intercept after end of time step, done.

Record intercept position and ball velocity.

Recompute ball trajectory and repeat.

papi29 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi29



papi30 papi30Sample Program cube4.cc

Graphics

Trivial Case: no translucency and ball doesn’t leave marks:

Render cube faces and ball.

Middle Case: no translucency but ball does leave marks:

Stencil holes at collision points.

Render face using stencil to leave hole positions unchanged.

Render bumps.

Render ball.

Code as Written: translucency and ball leaves marks:

Sort faces so that face never under one already rendered.

Render bumps before face if bump behind face.

papi30 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi30



papi31 papi31Sample Program cube4.cc

Code Organization

Initialization: Set idle callback.

Idle Callback: Wait for beginning of display refresh (or 30ms) . . .

. . . request redisplay.

Redisplay: Advance physics (time step), then render frame.

papi31 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi31



papi32 papi32Sample Program cube4.cc

Use of Vertex Shaders

Lighting (vs lighting). Used for cube faces (except marks).

Circle (vs circle). Used for stenciling and drawing circles.

Bump (vs bump). Used for drawing bump.

papi32 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi32


