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Programmable Unit:

Part of the pipeline that can be programmed (as defined by some API).

Choice of what is and isn’t programmable constrained by:

Need to allow for parallel (multithreaded, SIMD, MIMD) execution.

Simple memory access.

OpenGL Programmable Units

Vertex Processor:

Transform vertex and texture coordinates, compute lighting.

Geometry Processor:

Using a transformed primitive and its neighbors generates new primitives. For example,
replace one triangle with many triangles to more closely match a curved surface. (Not in
OpenGL 2.1, defined in extensions.)

Fragment Processor:

Using interpolated coordinates, read filtered texels and combine with colors.
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Shader:

A programmable part of a GPU. Name is now misleading but is still in common use.

Shader Language:

An language for programming shaders.

Shader Assembly Language:

An assembly-like language for programming GPUs.

High-Level Shader Language:

A high-level language for programming GPUs.
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Shader Assembly Language

At one time, only way to program.

Unlike a true assembly language . . .

. . . no instruction encoding defined . . .

. . . no promise of a one-to-one correspondence with machine instructions.

Translated into machine instructions (or micro-instructions) by API implementation.

Many APIs not picky about matching assembly language to target.

Currently might be used for tuning code from high-level shader language.

Separate languages defined for vertex, geometry, and fragment processors.

Early languages closely match underlying hardware, so more useful for performance tuning.

Defined as OpenGL extensions.
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First-Generation Languages

NV vertex program (For vertex processor)

Close match to GEForce 3 hardware.

No branches or memory (texture or otherwise) access.

NV fragment program (2003) (For fragment processor)

Arbitrary texel access. (Can ignore or modify provided texture coords.)

Instructions for texture access and interpolation.

No branching.
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Second-Generation Languages

NV vertex program2, NV vertex program3.

NV fragment program2,

Later Languages

Full support for integer operations, branching.

NV gpu program4: Instructions common to each kind of shader.

NV vertex program4.

NV geometry program4.

NV fragment program4.
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High-Level Shader Languages

OpenGL Shader Language

OpenGL standard.

Syntax very similar to C.

Language designed for vertex and fragment shaders.

Current version is 1.3.

Cg

Originated with ATI, adopted in Direct3D.

Syntax very similar to C.

Language designed for stream programs . . .

. . . geometry, vertex, and fragment programs can be in stream form.
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OpenGL Shader Language Important Features

C-like

CPP-like preprocessor directives.

Library of useful functions.
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Data Types

OpenGL Shading Language 1.30 Section 4.1

Scalar types: bool, int, float

Vectors of bool, int, float.

Element access: xyzw, rgba, stpq. E.g., var.xy, var.r

Matrices of float.

Structures
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Integer

Signed and unsigned.

Thirty-two bits.

Earlier versions had lower precision and lacked bitwise operations.)
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Float

IEEE 754 Single Format

Calculations may be to less than IEEE 754 precision.
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Example

vec4 vertex_e = gl_ModelViewMatrix * o_point;

vec3 norm_e = gl_NormalMatrix * gl_Normal;

vec4 light_pos = gl_LightSource[1].position;

float phase_light = dot(norm_e, normalize(light_pos - vertex_e).xyz);

float phase_user = dot(norm_e, -vertex_e.xyz);

float phase = sign(phase_light) == sign(phase_user) ? abs(phase_light) : 0.0;
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Variable Types

Uniforms:

Read-only by shader. Changed by client, change is time consuming. Implemented as shader
constants.

Attributes:

Read-only by vertex shader, not available to fragment shader. Changed by client, change is
fast.

Varying:

Written by vertex shader, interpolated for fragment shader where read-only.

Sampler:

Read-only by vertex and fragment shader. Value is a filtered texel.
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Storage Qualifiers

const

attribute

Read only.

Not allowed in fragment shaders.

uniform

Read only.

varying

Written by vertex shader.

Interpolated for fragment shader.

Read only for fragment shaders.
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Storage Qualifier Example

uniform vec3 gravity_force;

uniform float gs_constant;

uniform vec2 ball_size;

attribute float step_last_time;

attribute vec4 position_left, position_right, position_above, position_below;

attribute vec3 ball_speed;

varying vec4 out_position;

varying vec3 out_velocity;
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Function Parameters

OpenGL Shading Language 1.30 Section 4.4

Call by value.

Parameter Qualifiers:

in (default)

out

inout
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Built In Variables

OpenGL Shading Language 1.30 Section 7

Pre-defined uniform, attribute, and varying variables.
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Built In Functions

See OpenGL Shading Language 1.30 Section 8
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Code Use Overview

Suppose something (tube) needs special lighting.

Shader language code in light.cc.

All steps below done by code using OpenGL.

Initialize step: Load, compile, and link light.cc.

During render, when ready for tube: Install light.cc.

As needed, write uniform values.

At this point all vertices handled by light.cc.

When done with tube install another shader or switch to fixed func.
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See OpenGL 2.1 Section 2.15

Initialize Program

Create Shader Object

sobject = glCreateShader(GL VERTEX SHADER)

Provide Source Code to Shader Object

glShaderSource(sobject,1,&shader text lines,NULL);

Compile Shader Object

glCompileShader(sobject);

Attach and Link

glAttachShader(pobject,sobject);

glLinkProgram(pobject);

Use

glUseProgram(pobject);

papi21 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api. papi21

http://www.ece.lsu.edu/gp/refs/glspec21.pdf


papi22 papi22OGSL Use

Obtaining and Using Variable References

At run time variables identified by number.

At Initialization get location (index) of attributes and uniforms:

vsal pinnacle = glGetAttribLocation(pobject,name);

sun ball size = glGetUniformLocation(pobject,name);

During Render (Infrequently) Change Uniform Value (Using location)

glUniform2f(sun ball size,ball size,ball size sq);

During Render (Per Vertex Okay) Change Attribute Value (Using location)

glVertexAttrib4f(vsal pinnacle,pinnacle.x,pinnacle.y,pinnacle.z,radius);

Done before each glVertex.

Same options as vertex, such as client and buffer object arrays.
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Vertex Shader Examples

Minor variation on lighting.

Compute geometry of bump and circle.

Physics
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Example: Variation on Lighting

Program: cube4.cc (gpu acceleration off)

Shader Code: cube4 vshader.cc::vs main lighting()

Why: Tweak lighting.

Notes:

Shader computes transformation, lighting, and texture coordinates.

Program switches between vs main lighting and fixed func.
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Example: Compute Geometry

Program: cube4.cc (gpu acceleration on)

Why: Less work for CPU.

Shader Code: cube4 vshader.cc::vs main circle() and vs main bump()

Notes:

Not a geometry shader.

Program switches between vs main circle, vs main bump and fixed func.
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Example: Physics

Program: cube5.cc

What: Shader time-steps lattice of masses.

Why: Less work for CPU.
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Sample Program cube4.cc

Displays a rotating cube.

Cube faces have textures: syllabus, pic of EE building, etc.

Ball bouncing around cube.

Low-speed impact: color circle.

High-speed impact: bump.

Vertex Shader Uses

Lighting tweak.

Circle painting.

Bump painting.
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Data Representations

Cube:

Admittedly messy part of code.

Cube position: transformation matrix in pCube.

Textures: pCube Face Info (6-element array).

History of ball contact: pContact List (6-element array).

Ball: position, speed, size.
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Physics

At each time step . . .

. . . move cube to new position . . .

. . . move ball to new position.

To move cube: update rotation matrix using time and spin rate.

To move ball:

Find next intercept of ball trajectory with cube face.

If intercept after end of time step, done.

Record intercept position and ball velocity.

Recompute ball trajectory and repeat.
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Graphics

Trivial Case: no translucency and ball doesn’t leave marks:

Render cube faces and ball.

Middle Case: no translucency but ball does leave marks:

Stencil holes at collision points.

Render face using stencil to leave hole positions unchanged.

Render bumps.

Render ball.

Code as Written: translucency and ball leaves marks:

Sort faces so that face never under one already rendered.

Render bumps before face if bump behind face.
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Code Organization

Initialization: Set idle callback.

Idle Callback: Wait for beginning of display refresh (or 30ms) . . .

. . . request redisplay.

Redisplay: Advance physics (time step), then render frame.
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Use of Vertex Shaders

Lighting (vs lighting). Used for cube faces (except marks).

Circle (vs circle). Used for stenciling and drawing circles.

Bump (vs bump). Used for drawing bump.
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