/// LSU EE 7700-1 (Sp 2009), Graphics Processors -*- c++ -*-
//
/// CPU-Only Demos' Include File
// $Id:$
/// Purpose
//
// A set of classes and functions for storing and manipulating
// coordinates and vectors. Intended to demonstrate basic 3D
// graphics techniques, not for production use.
#ifndef COORD_H
#define COORD_H
#include <stdlib.h>
#include <math.h>
#include <string.h>
class pCoor;
class pVect;
class pMatrix;
pCoor operator * (pMatrix a, pCoor c);
pVect operator * (pMatrix a, pVect c);
pMatrix invert3x3(pMatrix& original);
inline pVect cross(pCoor a, pCoor b, pCoor c);
inline pVect cross(pVect a, pVect b);
class pMatrix {
public:
float a[4][4];
//
// Initialization Functions
//
void set(pMatrix m){ memcpy(a,m.a,sizeof(a)); }
void set_zero(){ bzero(a,sizeof(a)); }
void set_scale(float factor)
{
set_zero();
a[0][0] = a[1][1] = a[2][2] = factor;
a[3][3] = 1;
}
void set_scale(float xfactor, float yfactor)
{
set_zero();
a[0][0] = xfactor;
a[1][1] = yfactor;
a[2][2] = a[3][3] = 1;
}
void set_identity(){ set_scale(1); }
void set_translate(float dx, float dy, float dz)
{
set_identity();
a[0][3] = dx;
a[1][3] = dy;
a[2][3] = dz;
}
void set_rotation(pVect u, double theta);
void set_frustum
(float width, float height, float near, float far)
{
set_zero();
a[0][0] = 2 * near / width;
a[1][1] = 2 * near / height;
a[2][2] = - ( far + near ) / ( far - near );
a[2][3] = - 2 * far * near / ( far - near );
a[3][2] = -1;
}
void set_frustum
(float left, float right, float bottom, float top, float near, float far)
{
set_zero();
a[0][0] = 2 * near / ( right - left );
a[0][2] = ( right + left ) / ( right - left );
a[1][1] = 2 * near / ( top - bottom );
a[1][2] = ( top + bottom ) / ( top - bottom );
a[2][2] = - ( far + near ) / ( far - near );
a[2][3] = - 2 * far * near / ( far - near );
a[3][2] = -1;
}
void transpose()
{
for ( int row=0; row<4; row++ )
for ( int col=row+1; col<4; col++ )
{
const float t = a[row][col];
a[row][col] = a[col][row]; a[col][row] = t;
}
}
// Invert submatrix in first three rows and columns.
void invert3x3()
{
pMatrix result = ::invert3x3(*this);
bcopy(result.a,a,sizeof(a));
}
//
// Member functions used for matrix inversion.
//
float* row_get(int row_num) { return &a[row_num][0]; }
void row_swap(int r1, int r2)
{
static float buffer[4];
float* const row1 = row_get(r1);
float* const row2 = row_get(r2);
row_copy(buffer,row1); row_copy(row1,row2); row_copy(row2,buffer);
}
void row_mult(int r, double factor)
{
float* const row = row_get(r);
row[0] *= factor; row[1] *= factor;
row[2] *= factor; row[3] *= factor;
}
void row_copy(float *row_dest, float *row_src)
{
row_dest[0] = row_src[0]; row_dest[1] = row_src[1];
row_dest[2] = row_src[2]; row_dest[3] = row_src[3];
}
void row_ssub(int row_dest, int row_src, double mult)
{
a[row_dest][0] -= a[row_src][0] * mult;
a[row_dest][1] -= a[row_src][1] * mult;
a[row_dest][2] -= a[row_src][2] * mult;
a[row_dest][3] -= a[row_src][3] * mult;
}
};
inline void
pMMultiply(pMatrix& p, pMatrix a, pMatrix b)
{
#define T(i,j,k) a.a[i][k] * b.a[k][j]
#define ELT(i,j) p.a[i][j] = T(i,j,0) + T(i,j,1) + T(i,j,2) + T(i,j,3);
#define ROW(i) ELT(i,0); ELT(i,1); ELT(i,2); ELT(i,3);
ROW(0); ROW(1); ROW(2); ROW(3);
#undef T
#undef ELT
#undef ROW
}
pMatrix operator * (pMatrix a, pMatrix b);
//
// Pre-Initialized Matrices
//
class pMatrix_Scale : public pMatrix {
public:
pMatrix_Scale(float factor){set_scale(factor);}
pMatrix_Scale(float xfactor, float yfactor){set_scale(xfactor,yfactor);}
};
class pMatrix_Translate : public pMatrix {
public:
pMatrix_Translate(float dx, float dy, float dz){set_translate(dx,dy,dz);}
};
class pMatrix_Frustum : public pMatrix {
public:
pMatrix_Frustum
(float left, float right, float bottom, float top, float near, float far)
{ set_frustum(left,right,bottom,top,near,far); }
pMatrix_Frustum
(float width, float height, float near, float far)
{ set_frustum(width,height,near,far); }
};
//
// Coordinate and Vector Classes
//
class pCoor {
public:
pCoor(){}
pCoor(float x, float y, float z):x(x), y(y), z(z), w(1){}
pCoor(float x, float y, float z, float w):x(x), y(y), z(z), w(w){}
pCoor(pCoor *c):x(c->x), y(c->y), z(c->z), w(c->w){}
void homogenize(){ homogenize_full(false); }
void homogenize_keep_w(){ homogenize_full(true); }
private:
void homogenize_full(bool keep_w)
{
const float winv = 1 / w;
float* const a = array();
for( int i=0; i<3; i++ ) a[i] *= winv;
if ( !keep_w ) w = 1;
}
public:
inline void operator *= (pMatrix m)
{
pCoor cpy(this);
float* const a = array();
float* const c = cpy.array();
for ( int i = 0; i < 4; i++ )
{
a[i] = 0;
for ( int j = 0; j < 4; j++ ) a[i] += m.a[i][j] * c[j];
}
}
inline void operator += (pVect v);
float x,y,z,w;
float* array(){ return &x; }
};
class pVect {
public:
pVect(){};
pVect(float x, float y, float z):x(x), y(y), z(z){}
pVect(pCoor p, pCoor q):x(q.x-p.x), y(q.y-p.y), z(q.z-p.z){}
pVect(pVect a, pVect b){set(cross(a,b));}
pVect(pCoor a, pCoor b, pCoor c){set(cross(a,b,c));}
pVect(const pVect& v){ set(v); }
void set(const pVect& v){ x=v.x; y=v.y; z=v.z; }
void set(float xp, float yp, float zp){ x=xp; y=yp; z=zp; }
float normalize() {
const float mag = magnitude();
const float mag_inv = 1.0 / mag;
x *= mag_inv; y *= mag_inv; z *= mag_inv;
return mag;
}
float magnitude() { return sqrt( x*x + y*y + z*z ); }
float mag_xy() { return sqrt( x*x + y*y ); }
float mag_xz() { return sqrt( x*x + z*z ); }
float mag_yz() { return sqrt( y*y + z*z ); }
float* array(){ return &x; }
inline void operator *= (const pMatrix m)
{
pVect v(*this);
const int x = 0, y = 1, z = 2; // Don't try this at home.
# define T(i,j) m.a[i][j] * v.j
# define ELT(i) this->i = T(i,x) + T(i,y) + T(i,z);
ELT(x); ELT(y); ELT(z);
# undef T
# undef ELT
}
float x,y,z;
};
//
// Vector, Coordinate, and Matrix Operations
//
inline pVect cross(pVect a, pVect b)
{
return pVect
( a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x );
}
inline pVect cross(pCoor a, pCoor b, pCoor c)
{
return cross(pVect(b,a),pVect(b,c));
}
inline float dot(pVect a, pVect b){return a.x * b.x + a.y * b.y + a.z * b.z;}
inline float dot(pCoor a, pCoor b, pCoor c)
{
return dot(pVect(b,a),pVect(b,c));
}
inline double
pangle(pVect a, pVect b)
{
const double mag = a.magnitude() * b.magnitude();
if ( mag == 0 ) return 0;
return acos(dot(a,b) / mag);
}
inline double
pangle(pCoor a, pCoor b, pCoor c)
{
return pangle(pVect(b,a),pVect(b,c));
}
void
pMatrix::set_rotation(pVect u, double theta)
{
set_zero();
const double cos_theta = cos(theta);
const double sin_theta = sin(theta);
a[0][0] = u.x * u.x + cos_theta * ( 1.0 - u.x * u.x );
a[0][1] = u.x * u.y * ( 1.0 - cos_theta ) - u.z * sin_theta;
a[0][2] = u.z * u.x * ( 1.0 - cos_theta ) + u.y * sin_theta;
a[1][0] = u.x * u.y * ( 1.0 - cos_theta ) + u.z * sin_theta;
a[1][1] = u.y * u.y + cos_theta * ( 1 - u.y * u.y );
a[1][2] = u.y * u.z * ( 1.0 - cos_theta ) - u.x * sin_theta;
a[2][0] = u.z * u.x * ( 1.0 - cos_theta ) - u.y * sin_theta;
a[2][1] = u.y * u.z * ( 1.0 - cos_theta ) + u.x * sin_theta;
a[2][2] = u.z * u.z + cos_theta * ( 1 - u.z * u.z );
a[3][3] = 1.0;
}
inline pMatrix operator * (pMatrix a, pMatrix b)
{
pMatrix p;
pMMultiply(p,a,b);
return p;
}
inline pCoor operator * (pMatrix a, pCoor c)
{
c *= a;
return c;
}
inline pVect operator * (pMatrix a, pVect c)
{
c *= a;
return c;
}
inline void pCoor::operator += (pVect v)
{
x += v.x; y += v.y; z += v.z;
}
inline pVect operator * (float f, pVect v)
{
return pVect(f * v.x, f * v.y, f * v.z );
}
inline pCoor operator + (pCoor a, pVect v)
{
return pCoor(a.x+v.x, a.y+v.y, a.z+v.z);
}
inline pCoor operator - (pCoor a, pVect v)
{
return pCoor(a.x-v.x, a.y-v.y, a.z-v.z);
}
inline pVect operator + (pVect a, pVect v)
{
return pVect(a.x+v.x, a.y+v.y, a.z+v.z);
}
inline pVect operator - (pVect a, pVect v)
{
return pVect(a.x-v.x, a.y-v.y, a.z-v.z);
}
inline pVect operator - (pCoor a, pCoor b)
{
return pVect(a,b);
}
void rot_check(pMatrix r, pVect f_raw, pVect t_raw)
{
pVect f(f_raw);
pVect t(t_raw);
pVect t2 = r * f;
pVect check = t2 - t;
const double err = dot(check,check);
if ( err > 0.0001 )
abort();
}
class pMatrix_Rotation : public pMatrix {
public:
pMatrix_Rotation(pVect axis, double angle)
{ set_rotation(axis,angle); }
pMatrix_Rotation(pVect dir_from, pVect dir_to)
{
dir_from.normalize(); dir_to.normalize();
if ( pangle(dir_from,dir_to) < 0.0001 ) { set_identity(); return; }
const double a1 = atan2(dir_from.z,dir_from.x) - atan2(dir_to.z,dir_to.x);
pMatrix_Rotation rot1(pVect(0,1,0),a1);
pVect norm(dir_to,pVect(0,1,0)); norm.normalize();
const double a2 =
atan2(dir_from.mag_xz(),dir_from.y) - atan2(dir_to.mag_xz(),dir_to.y);
pMatrix_Rotation rot2(norm,a2);
pMMultiply(*this,rot2,rot1);
rot_check(*this,dir_from,dir_to);
}
};
pMatrix
invert3x3(pMatrix& original)
{
const bool check = true;
pMatrix a = original;
pMatrix b; b.set_identity();
const int size = 3;
for ( int dia = 0; dia < size; dia++ )
{
if ( a.a[dia][dia] == 0 )
for ( int row = dia + 1; row < size; row++ )
if ( a.a[row][dia] != 0 )
{ a.row_swap(row,dia); b.row_swap(row,dia); break;}
const float a00 = a.a[dia][dia];
// if ( a00 == 0 ) pError_Exit();
const double mult = 1.0 / a00;
a.row_mult(dia,mult); b.row_mult(dia,mult);
for ( int row = 0; row < size; row++ )
{
if ( row == dia ) continue;
const float adc = a.a[row][dia];
if ( adc == 0 ) continue;
a.row_ssub(row,dia,adc); b.row_ssub(row,dia,adc);
}
}
if ( check )
{
pMatrix ihope = original * b;
pMatrix iis; iis.set_identity();
float sum = 0;
for ( int r=0; r<size; r++ )
for ( int c=0; c<size; c++ )
sum += fabs(ihope.a[r][c]-iis.a[r][c]);
if ( sum > 1e-5 )
{
printf("Can't invert, sum: %f\n",sum);
// exit(1);
// pError_Exit();
}
}
return b;
}
#endif