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LSU EE 4720 Homework 1 Due: 4 February 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
To solve this assignment students are expected to avail themselves of references provided in class
and on the Web site, such as for MIPS instructions and the SPIM simulator, and to seek out any ad-
ditional help and resources that might be needed. (Of course this doesn’t mean asking someone else
to solve it for you.) Students are expected to experiment to learn how MIPS instructions work, and
how to code assembly language sequences. Experimentation might be done on old homework assign-
ments or the simple code samples provided in /home/faculty/koppel/pub/ee4720/hw/practice.
Students are also expected to learn what error messages mean by consulting documentation and by
asking others (including Dr. Koppelman), and also to develop debugging skills. It is each student’s
duty to him or herself to resolve frustrations and roadblocks quickly. (Just ask for help!)

This assignment cannot be solved by blindly pasting together code fragments found in class
notes or past assignments. Solving the assignment is a multi-step learning processes that takes
effort, but one that also provides the satisfaction of progress and of developing skills and under-
standing.

Problem 0: Follow the instructions for class account setup and for homework workflow in
https://www.ece.lsu.edu/ee4720/proc.html. Review the comments in hw01.s and look for the
area labeled “Problem 1”.

Those who want to start before getting to the lab can find the assembler for the entire as-
signment at https://www.ece.lsu.edu/ee4720/2025/hw01.s.html. For MIPS references see the
course references page,
https://www.ece.lsu.edu/ee4720/reference.html. Easy MIPS practice problems can be found
in the practice directory, see MIPS Homework and Practice Workflow in
https://www.ece.lsu.edu/ee4720/proc.html.

Using LSU version of SPIM
This assignment requires a modified version of the SPIM simulator originally developed by James
Larus. Instructions for using this simulator appear on the course procedures page. When running
SPIM check the LSU version date, there should be a line reading LSU Version Date: 2025-02-04.
Make sure that the date is there and is no earlier than 4 February 2024. (The date will appear
on the console output near the top when run non-graphically, and in the lowermost window pane
when run graphically.)
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Debugging
To facilitate debugging the code can be run so that the simulator emits a trace of executed instruc-
tions, plus an indication of changed register values.

The best way to get a trace is to run the code non-graphically. To do so load the code into an
Emacs buffer in a properly set up account. Press Ctrl - F9 to start the simulator non-graphically.
That should pop up a window showing a simulator banner followed by a prompt:

SPIM Version 6.3.1 lsu of 9 November 2001, 17:34:35 CST

LSU Version Date: 2024-02-04

Copyright 1990-2000 by James R. Larus (larus@cs.wisc.edu).

All Rights Reserved.

See the file README for a full copyright notice.

Includes LSU modifications.

File loaded.

Type "run" to run normally.

Type "step 100" to execute next 100 instructions with tracing.

Type "help" for more help.

To see a trace of instructions enter step followed by the number of instructions, say step 100.
This will execute next 100 instructions but will only trace instructions in the assignment routine
(when running this homework assignment). To illustrate stepping consider the lookup routine from
2023 Homework 1. Suppose that the lookup routine starts with the following code:

lookup:

addi $v0, $0, -1

START_WORD:

addi $t0, $a0, 0

addi $v0, $v0, 1

Then a trace of execution would produce the following:

(spim) step 100

[0x004000cc] 0x4080b000 mtc0 $0, $22 ; 278: mtc0 $0, $22

[0x00400118] 0x0c100000 jal 0x00400000 [lookup] ; 299: jal lookup

# Change in $31 ($ra) 0 -> 0x400120 Decimal: 0 -> 4194592

[0x0040011c] 0x40154800 mfc0 $21, $9 ; 300: mfc0 $s5, $9

# Change in $21 ($s5) 0 -> 0x14 Decimal: 0 -> 20

[0x00400000] 0x2002ffff addi $2, $0, -1 ; 16: addi $v0, $0, -1

[0x00400004] 0x20880000 addi $8, $4, 0 ; 18: addi $t0, $a0, 0

# Change in $8 ($t0) 0 -> 0x1001024f Decimal: 0 -> 268501583

[0x00400008] 0x20420001 addi $2, $2, 1 ; 19: addi $v0, $v0, 1

Each line starting with square brackets shows the execution of an instruction. The address of
the instruction is shown inside the square brackets. After the square brackets the instruction is
shown in three different forms. First encoded, shown in hexadecimal. Then a disassembled form
(which is based on the encoded instruction). Finally, after the semicolon the instruction is shown
as it appears in the assembler file. Immediately after the semicolon is a line number.

The lines that start with a # show register values that change. The values are shown both in
hexadecimal and decimal. In the example above the first three instructions are from the testbench,
the fourth instruction shown, at address 0x400000, is the first instruction of lookup.
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Homework Background
When completed MIPS assembly language routine justify will justify a string of text. The jus-

tify routine can be found in hw01.s. Also in that file is a test routine that calls justify and
prints out the formatted text. To make the problem less tedious to solve the string of text provided
to justify will not contain any line feeds (or carriage returns or the equivalent). In the version
used as of this writing the text is 1028 characters long which might be possible to read on one of
those ridiculously wide curved monitors. When solved correctly justify will add spaces and line
feeds to make the text more readable. The input text starts:

We introduce our first-generation reasoning models, DeepSeek-R1-Zero and

That text is to be justified using left margins and text lengths provided to justify (to be
explained below). Unlike conventional boring justification where the left margin and text length is
the same for every line (except maybe for an initial indentation), justify can use a different left
margin and text length for each line. The correctly justified text for a run of the homework code
is:

Formatted text appears below.

We introduce

our first-generation

reasoning models, DeepSeek-R1-Zero

and DeepSeek-R1. DeepSeek-R1-Zero, a model

trained via large-scale reinforcement learning (RL)

without supervised fine-tuning (SFT) as a preliminary step,

demonstrated remarkable performance on reasoning. With RL, DeepSeek-R1-Zero

naturally emerged with numerous powerful and interesting reasoning

behaviors. However, DeepSeek-R1-Zero encounters challenges

such as endless repetition, poor readability,

and language mixing. To address

these issues and further

enhance reasoning

performance,

we introduce DeepSeek-R1,

which incorporates cold-start

data before RL. DeepSeek-R1 achieves performance

comparable to OpenAI-o1 across math, code, and reasoning

tasks. To support the research community, we have open-sourced

DeepSeek-R1-Zero, DeepSeek-R1, and six dense models distilled from DeepSeek-R1

based on Llama and Qwen. DeepSeek-R1-Distill-Qwen-32B outperforms

OpenAI-o1-mini across various benchmarks, achieving

new state-of-the-art results for dense models.

Formatted text appears above.

Input string length 1028 characters.

Output string length 1425 characters.

Executed 7336 instructions at rate of 0.140 char/insn.

In addition to the justified text, the output above includes messages printed by the testbench.
(The text is from the readme file in the DeepSeek-R1-Zero repo containing parameters distilled for a
smaller model. See https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B.)

Routine justify is called with three arguments. Register a0 is set to the address of the string
to justify. Call it the input string. Register a1 is set to the address where the justified string is to
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be written. Call it the output string. Register a2 holds the address of the line shape table.
Each entry of the line shape table holds two bytes. The first byte indicates the left margin

size. The second byte indicates the minimum length of the text on the line (not including the left
margin).

The code below reads the first entry in the line shape table:

lb $t1, 0($a2) # Left margin of first line.

lb $t2, 1($a2) # Length of text of first line (not including margin)

Suppose t1 is 30. (Which is what the testbench sets it to AoTW.) Then the left margin must
be 30, meaning there should be 30 spaces before the text. The justify routine must start out
writing 30 spaces beginning at the address in a1 and then start copying the text from a0, which in
the example above starts We introduce, to a1+30.

The second item in a shape entry is the text length, in register t2 above. This is the minimum
length of text after the left margin. For the example data t1+t2 = 30 + 10 = 40. At character
position 40 on the first line is the letter c in introduce. The justify routine is to start the next
word, our, on a new line. Character 40 is within the word introduce and so justify should
continue copying text from a0 to a1 until a space is reached. It should then start a new line. That
new line will start with our (after the new left margin.)

Let L denote the left margin (t1=30 above) and W the margin (t2=10 above) for a line. That
line should start with L spaces. After the spaces, the line should have characters copied from a0.
Copying continues until the line length is L + W and a new word starts. In real-world formatting
routines L + W would be the maximum length, not the minimum length as it is here.

Each time a line is completed the next entry in the shape table should be read. There might
be fewer entries in the shape table than there are lines of formatted text. When there are no more
entries in the shape table the justify routine should start from the beginning of the shape table.
The end of the shape table is marked by L = 255 and W = 255.

The text in a0 has intentionally be kept simple. It does not contain line feeds or similar
characters. The only whitespace is a space, and there is never (or shouldn’t be) more than one
consecutive space.

The testbench does not check for correctness. To verify correct line start positions when run-
ning non-graphically put the cursor of the first character in a line. The line and column (character)
number is shown in the text editor status bar at the bottom.
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Unsolved justify Routine Getting-Started Code
In the unsolved assignment the justify routine will copy two characters of the input string (the
unformatted text) to the output string. When run it prints the word We. It also loads the first two
entries in the Line Shape Table, but does not do anything with them. Here is an excerpt from that
code, with many of the comments omitted:

.text
justify:

## Register Usage
#

# CALL VALUES

# $a0: Address of start of text to justify.

# $a1: Starting address where justified text is to be written.

# $a2: Line Shape Table.

# Two bytes per entry.

# First byte is left margin.

# Second byte is length of text.

# Load the first entry of the Line Shape Table.

#

lb $t1, 0($a2) # Left margin of first line.

lb $t2, 1($a2) # Length of text of first line (not including margin)

#

# Load the second entry of the Line Shape Table.

#

lb $t3, 2($a2) # Left margin of second line.

lb $t4, 3($a2) # Length of text of second line (not including margin)

# Copy first two characters. (Ignoring left margin.)

#

lb $t0, 0($a0)

sb $t0, 0($a1)

lb $t0, 1($a0)

sb $t0, 1($a1)

jr $ra

nop

One way to get started on the solution would be to copy more than two characters by using
a loop. Then, try inserting a line feed every 64 characters, perhaps by using a loop nest with the
inner loop iterating 64 times. Next, try inserting a bunch of spaces at the beginning of each line.
Keep adding functionality until the problem is solved.

Testbench Output
The test program prints information that might be helpful in getting the code working and improv-
ing performance. The last three lines of output (if the code ran to completion) will be something
like:

Input string length 1028 characters.

Output string length 1425 characters.
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Executed 7336 instructions at rate of 0.140 char/insn.

The input string length reported above should ordinarily not change. It is the length of the
input to justify provided by the testbench. Search for tb_text_start to find the string. If it
helps, one can temporarily change the string at tb_text_start to facilitate the solution. The
length of the output string should be longer than the input string due to the left margin.

The last line shows the number of instructions executed and the execution rate. A goal of
this assignment is to minimize the number of instructions executed, so the lower both numbers the
better. The execution rate is the number of input characters divided by the number of instructions.
In the example above that works out to about 7 instructions for each input character.

Helpful Examples
For your convenience three sample MIPS programs are included write in the assignment directory,
strlen.s, 2022-hw01.s and 2022-hw01-sol.s. The strlen.s contains the string length we did
in class. Look at it if you are rusty. In 2022 Homework 1 a fast string length routine was to
be written. This might help with writing the left margin (but not copying the text). For more
examples look in the practice directory and at Homework 1 assignments from earlier semesters.

Problem 1: This problem is optional. It’s here to help people get started. If you’ve solved this
problem but then have gone on to the following problems you can delete or comment out the code.
Modify justify so that it copies the string at a0 to a1 breaking lines so that they are 64 characters
long, even if that means breaking a line in the middle of a word.

Problem 2: Complete justify so that it justifies text as described above, following the restrictions
given in the routine, such as which registers to use. In the unmodified file justify copies two
characters and loads the first entry in the shape table. Be sure to remove this getting-started code.

The first challenge in this problem is to get the solution to work. The second one is to make
if fast. For full credit the code writing the left margin should use sw instructions where possible,
reducing the number of instructions needed to write the left margin.

Alignment restrictions will make it difficult (but not impossible) to use lw and sw for copying
text, and so full credit will be awarded to solutions that use lb and sb for copying text.
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LSU EE 4720 Homework 2 Due: 21 February 2025
Formatted 16:21, 6 March 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. It is each student’s duty to him or herself to resolve frustrations and roadblocks quickly,
hopefully helped along by the satisfaction of making progress. There are plenty of old problems
and solutions to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

Resources
For examples of pipeline execution diagrams of given code fragments running on given MIPS im-
plementations see past midterm exams (and final exams, but mostly midterms). The solutions to
almost all past midterms in this course are available. A good place to start would be 2023 Midterm
Exam Problem 2, 3, 4, and 5.

Problem 1: Solve this problem after Problem 2. It appears before Problem 2 so that you don’t
somehow forget it. Complete the first two parts 2024 Final Exam Problem 1, which asks for pipeline
execution diagrams of MIPS implementations. Solve the parts on page 2 and 3. Do not solve the
floating-point question on page 4.

There is another problem are on the next page.
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Problem 2: Note: The following problem was assigned in all but one of the last eight years, and
its solution is available. DO NOT look at the solution unless you are lost and can’t get help else-
where. Even in that case just glimpse. Appearing below are incorrect executions on the illustrated
implementation. For each one explain why it is wrong and show the correct execution.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D  

dstdst

E
2'b0 format

immed =

(a) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

(b) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

(c) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

(d) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB
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LSU EE 4720 Homework 3 Due: 7 March 2025
Formatted 18:17, 21 March 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. It is each student’s duty to him or herself to resolve frustrations and roadblocks quickly,
hopefully helped along by the satisfaction of making progress. There are plenty of old problems
and solutions to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

Resources
For examples of pipeline execution diagrams of given code fragments running on given MIPS im-
plementations see past midterm exams (and final exams, but mostly midterms). The solutions to
almost all past midterms in this course are available. A good place to start would be 2023 Midterm
Exam Problem 2, 3, 4, and 5.

Homework Background
This assignment asks about hypothetical MIPS instruction addsc (scaled addition) that was the
subject of 2014 Homework 3 Problem 3. See that assignment and its solution for a description of
the addsc instruction.
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Problem 1: Appearing below is a solution to 2014 Homework 3 Problem 3, though not the same
as the posted solutions. Three of the multiplexors have labels on their select signals: A, B, and C.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

10:6

For scaled
add ALU performs
operation
x=a.

Left
Shift

amt

+

a

b
x

B
C

A

isADDSC

The incomplete pipeline execution diagram below shows the progress of instructions through
the implementation and also the value of the select signals A, B, and C in some cycles. If a select
signal value is blank, such as C in cycle 5, then its value does not matter. For example, execution
would be correct whether C = 0 or C = 1 in cycle 5, and so it is blank.

Fill in instructions, including at least one addsc, that could have resulted in the execution. Take
care to choose registers so that dependencies and the use of bypass paths are consistent with
the select signal values.

# Cycle 0 1 2 3 4 5 6 7

A 0 2 2

B 1 0

C 0 1 1

# Cycle 0 1 2 3 4 5 6 7

IF ID EX ME WB

IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

IF ID EX ME WB

IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7
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Problem 2: Consider the load/use stall in the execution of the code below on an ordinary MIPS
implementation (one without addsc):

# Cycle 0 1 2 3 4 5 6

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r3 IF ID -> EX ME WB

(a) Suppose that instead of the code above the assembly code were generated by a compiler that is
aware of the addsc instruction and run on an implementation that implements addsc.

Explain how the compiler could avoid the stall.

(b) Suppose instead that the original code (at the beginning of the problem) is run on an imple-
mentation which includes addsc and where addsc was encoded (choice of opcode, register fields,
etc.) to avoid such stalls. (This could be the same implementation as the previous part.)

Explain how such a stall could be avoided on the original code, with the add, by the design of the
encoding of addsc.

There’s another problem on the next page.
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Problem 3: Design the following control logic. Some of the logic will need the isADDSC logic
block in ID, which detects whether an addsc instruction is in ID. An SVG of the diagram can be
found at https://www.ece.lsu.edu/ee4720/2025/hw03-scadd.svg. It can be edited by Inkscape
or any other SVG editor, and by plain-text editors for those who are so disposed.

Design control logic for select signal C. Note: This is easy.

Design control logic for select signal B.

Show control logic generating a stall signal for the stalls like those shown in the diagram below.

# Cycle 0 1 2 3 4 5 6

addsc r1, r2, r3, 4 IF ID EX ME WB

add r4, r1, r5 IF ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6

lw r3, 0(r4) IF ID EX ME WB

addsc r1, r2, r3, 4 IF ID -> EX ME WB
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LSU EE 4720 Homework 4Due: 19 Mar 2025 at 09:30 CDT
Formatted 15:21, 17 March 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. It is each student’s duty to him or herself to resolve frustrations and roadblocks quickly,
hopefully helped along by the satisfaction of making progress. There are plenty of old problems
and solutions to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

Resources
See old homework and exams. There are a few questions about VAX in past assignments. There
are question about RISC-V in many of the more recent assignments.
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Problem 1: Remember that VAX is one of the few examples of a good CISC ISA. CISC ISAs
are not considered suitable for current implementation technology, but those who do not learn
by history are doomed to repeat it, so look over the summary of the VAX instruction set which
can be found in Chapter 2 of the VAX 11/780 Architecture Handbook Volume 1, 1977-78. Focus
on Section 2.4, which summarizes the instruction set. Consider item 5 in that section, which
starts “Instructions provided specifically for high-level language constructs.” Three examples of
such instructions are given, ACB, CALLS, and CASE. As guided by the check boxes below, explain
how a register-only version of suitable each instruction is for implementation in a RISC ISA. The
instruction descriptions in the architecture handbook use metasyntactic symbols rx, mx, and wx

to sources and destinations. (In MIPS rs, rt, and rd are metasyntactic symbols.) Symbol rx is
used for a read (source) operand (signified by the r) that can come from a register, immediate,
or memory (signified by the x). Similarly the w in wx signifies an argument that is written (a
destination), and the m in mx signifies an argument that is read and then written. The questions
below ask about hypothetical register-only versions of these instructions in which arguments rx,
mx, and wx refer only to register arguments.

The instructions are explained in the architecture manual, but feel free to seek out other
references. The description of ACB is fairly straightforward. The CALLS instruction is clear but
may be difficult to understand for those who are less familiar with bit masks or bit vectors. In
addition to the Architecture Handbook, see VAX MACRO and Instruction Set Reference Manual
for a description of the CASE instruction and an example of its use. Note that for CASES the table
(displ) is in memory immediately after the instruction. The operation performed by the CASE

instruction is similar to the MIPS assembly code for the dense switch statement presented in the
class control flow demo code. Of course, CASE does most of that with one instruction.

A register-and-displacement-operand-only version of the ACB instruction © is definitely not suit-

able for a RISC ISA, © arguably possible for a RISC ISA, © fits well into a RISC ISA.

Explain. In your explanation consider how easy it would be to encode in a RISC ISA (allow

some flexibility) and how easy it would be to implement in a five-stage pipeline.

The CALLS instruction © is definitely not suitable for a RISC ISA, © arguably possible for a

RISC ISA, © fits well into a RISC ISA.

Explain. In your explanation consider how easy it would be to encode in a RISC ISA (allow

some flexibility) and how easy it would be to implement in a five-stage pipeline.

A register-operand-only version of the CASE instruction © is definitely not suitable for a RISC

ISA, © arguably possible for a RISC ISA, © fits well into a RISC ISA.

Explain. In your explanation consider how easy it would be to encode in a RISC ISA (allow

some flexibility) and how easy it would be to implement in a five-stage pipeline.
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Problem 2: RSMIPS is a hypothetical ISA with similarities to MIPS. Appearing below is
RSMIPS’ instruction format R, which is identical to MIPS’ format R (except for the names of
the source fields). Unlike MIPS, in RSMIPS all instructions that write a result to a register use
the rd field for the register number (and the rd field is always in bits 15:11). Yes, RSMIPS is Real
Strict about source and destination register fields, hence the name. Also notice that different from
MIPS the RSMIPS source fields are named rs1 and rs2. Remember that in MIPS, rt can be used
as either a source or destination, depending on the instruction.

RSMIPS R:

Opcode

31 26

rs1

25 21

rs2

20 16

rd

15 11

tba

10 6

Function

4 0

RSMIPS I:

Opcode

31 26

rs1

25 21

rs2

20 16

Immed

15 0

Because of this Real Strict provision, something like MIPS’ format I can’t be used for instruc-
tions such as addi and lw, but format I can be used for instructions such as sw and beq.

(a) In RSMIPS format DI is used for immediate instructions that write a result. Show a possible
format DI. This is easy for those that understand what an instruction format is. (Note that RISC-V
also follows this Real Strict philosophy, but the answer to this question is not an exact copy of a
RISC-V instruction format.)

Show a possible format DI.
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(b) Convert the MIPS implementation below into an RSMIPS that works with format DI, format
I, and format R RSMIPS instructions as requested in the checkbox items below. The illustration
in SVG format can be found at https://www.ece.lsu.edu/ee4720/2025/hw04-rsmips.svg. It
can be modified with your favorite SVG editor, even if it’s not Inkscape.

Modify the control logic to extract the correct destination register.

Modify the datapath and control logic to provide the correct immediate.

Be sure that the logic works with RSMIPS’ format I, DI, and R instructions.
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Control logic is for MIPS, 
modify for RSMIPS.
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LSU EE 4720 Homework 5 Due: 7 April 2025
Formatted 10:08, 4 April 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. It is each student’s duty to him or herself to resolve frustrations and roadblocks quickly,
hopefully helped along by the satisfaction of making progress. There are plenty of old problems
and solutions to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

Resources
Questions about MIPS floating-point implementation can be found in most final exams.

Problem 1: Solve the last part of 2024 Final Exam Problem 1, in which the execution of FP code
on an ordinary MIPS FP implementation is to be shown.

Problem 2: Consider 2024 Final Exam Problem 3, in which some control logic is to be designed
for a FP implementation in which an add.s instruction normally goes through the same number
of stages as a mul.s, though only using four of those for computation, but in which an add.s

instruction can also hop ahead if WF is available in an earlier cycle, thus reaching WF one or two
cycles earlier.

A copy of the illustration used in the exam, in SVG format, can be found at
https://www.ece.lsu.edu/ee4720/2024/fe-fp-hop.svg. It can be edited using Inkscape or any
other SVG editor.

(a) Solve 2024 Final Exam Problem 3.

(b) The italicized text in Problem 3 mulls that maybe hopping isn’t such a good idea, that it might
be less costly to bypass than hop. Modify the implementation so that rather than hopping bypass
paths are provided for instructions in a5 and a6. This is actually an easy problem since there is no
need to show control logic for this part. Maybe for the final exam.
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LSU EE 4720 Homework 6 Due: 23 April 2025
Formatted 16:40, 16 April 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. It is each student’s duty to him or herself to resolve frustrations and roadblocks quickly,
hopefully helped along by the satisfaction of making progress. There are plenty of old problems
and solutions to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

Resources
Questions about superscalar MIPS implementations can be found in most final exams.
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Problem 1: The following questions are based on 2021 Final Exam Problem 2(c), but it is not
identical.

(a) Appearing below is a 4-way superscalar MIPS implementation which is slightly different in an
important way from the one appearing in the 2021 Final Exam. In both this implementation and
the one on the 2021 exam fetch is not aligned (which makes things easier). Also, there is no branch
prediction, which is how we have been doing things in class.
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Show the execution of the code below for enough iterations to determine instruction throughout
(IPC). (Note: There is no need to put slot numbers on the stage labels.) Don’t forget that it
is 4-way superscalar.

LOOP:

lw r10, 0(r1)

add r3, r10, r3

sw r3, 0(r5)

addi r5, r5, 4

bne r1, r9, LOOP

addi r1, r1, 4

lb r8, 0(r9)

xor r11, r8, r10
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(b) The code from the solution to Final Exam 2021 2(c) has an instruction throughput of Θc =
0.75 insn/cycle. The solution to part 2(d) did not give the instruction throughput of the solution
but did explain that the unrolled code is four times faster.

What is the instruction throughput (IPC) of the 2(d) solution? (The pipeline execution diagram
is in the solution, use that!)

.

Why can’t we use the instruction throughput of parts (c) and (d) to show how much faster part
(d) is?

(c) In part (d) the loop was to be unrolled degree 2. Here, unroll the loop degree 3 (start with three
copies of the loop body) but for the implementation shown here (not from the exam). A correct
solution should execute without stalls, but instructions will be squashed due to the branch (which
can’t be avoided in a 4-way superscalar without branch prediction).

Unroll degree 3 and optimize so there are no stalls.

Problem 2: Solve 2024 Final Exam Problem 2 (all parts), in which code for a 2-way superscalar
MIPS implementation is to be completed (a) and the execution of code on a 4-way superscalar
MIPS implementation is to be found.
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LSU EE 4720 Homework 7 Due: 28 April 2025 7:30
Formatted 14:17, 30 April 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. It is each student’s duty to him or herself to resolve frustrations and roadblocks quickly,
hopefully helped along by the satisfaction of making progress. There are plenty of old problems
and solutions to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

Resources
Questions about superscalar MIPS implementations can be found in most final exams.
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Problem 1: Locate 2024 Final Exam Problem 4, which asks for analysis of two patterns on
bimodal and local predictors.

(a) Solve 2024 Final Exam Problem 4(a).

(b) What is the smallest local history size for which branches B1 and B2 (from 2024 Final Exam
Problem 4) are each predicted at 100% accuracy? This could have been part b on the final exam
question.

(c) Someone foolishly argues that limiting the local history to only three outcomes keeps the cost
of the branch prediction hardware low. Explain why that argument is foolish based on the diagram
below. Use the sizes, in bits, of the BHT and PHT in your explanation.

PC

2-bit
counter

1:1

Target

Post-resolve
2-b counter.

2

Target

+1

-1

Outcome (1=T, 0=N)

Pre-resolve 2-b counter

IF ID

Tr
a
v
e
ls

 w
it

h
 i
n
st

ru
ct

io
n
,

u
se

d
 w

h
e
re

 b
ra

n
ch

 r
e
so

lv
e
d

.

Fro
m

 M
E
 (o

r sta
g
e

w
h
e
re

 b
ra

n
ch

 re
so

lv
e
d
).

BHT
a d

a d in

PC

15:2

15:2

we

PC (resolve)

Target

Is Branch (1, branch; 0, anything else.)

P
C

 (
re

so
lv

e
)

Is Branch

Is Branch

P
re

d
ic

to
r 

U
p

d
a
te

 H
a
rd

w
a
re

(r
e
so

lv
e
) 

S
h
o
w

n
 i
n
 G

re
e
n

P
re

d
ic

to
r 

P
re

d
ic

ti
o
n
 H

a
rd

w
a
re

S
h
o
w

n
 i
n
 B

la
ck

P
re

d
ic

te
d

D
ir

e
ct

io
n

(N
 o

r 
T
)

P
re

d
ic

te
d

Ta
rg

e
t

P
re

d
ic

te
d

Is
 B

ra
n
ch

PHT
a d

a d in
we

Local History
h-1:0

Updated local history

Local history
that had been
used for prediction.

h-2:0

h-1:0

lsb

msb

Pre-Resolve Local History

h-1:0

There is another problem on the next page.
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Problem 2: The diagram below is of a bimodal predictor in which the BHT (branch history table)
can keep track of eight times as many branches as the BTB (branch target buffer). Some purple
text on the left explains that the BTB should only be updated for a branch that will be predicted
taken next time.
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Show two sets of branches. In the first set heeding the advice of that text improves performance.
In the other set a branch predictor that updates every time would do as well as one that updates
only for a branch that will be predicted taken the next time it is encountered. The solution should
look something like the sample below, but with the branch addresses, such as 0x12340, and outcome
patterns changed. Additional branches can be added to each set.

# Set 1: (Need to modify these.)

0x12340 B11: N T N T N T N T N T N T N T N T

0x56784 B12: T N T N T N T N T N T N T N T N T

# Set 2: (Need to modify these.)

0x12340 B21: N T N T N T N T N T N T N T N T

0x56784 B22: T N T N T N T N T N T N T N T N T
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LSU EE 4720 Homework 1 Due: XX10 X12 14 February 2024

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
To solve this assignment students are expected to avail themselves of references provided in class
and on the Web site, such as for MIPS instructions and the SPIM simulator, and to seek out any ad-
ditional help and resources that might be needed. (Of course this doesn’t mean asking someone else
to solve it for you.) Students are expected to experiment to learn how MIPS instructions work, and
how to code assembly language sequences. Experimentation might be done on old homework assign-
ments or the simple code samples provided in /home/faculty/koppel/pub/ee4720/hw/practice.
Students are also expected to learn what error messages mean by consulting documentation and by
asking others (including Dr. Koppelman), and also to develop debugging skills. It is the students’
responsibility to resolve frustrations and roadblocks quickly. (Just ask for help!)

This assignment cannot be solved by blindly pasting together code fragments found in class
notes or past assignments. Solving the assignment is a multi-step learning processes that takes
effort, but one that also provides the satisfaction of progress and of developing skills and under-
standing.

Problem 0: Follow the instructions for class account setup and for homework workflow in
https://www.ece.lsu.edu/ee4720/proc.html. Review the comments in hw01.s and look for the
area labeled “Problem 1”.

Those who want to start before getting to the lab can find the assembler for the entire as-
signment at https://www.ece.lsu.edu/ee4720/2024/hw01.s.html. For MIPS references see the
course references page,
https://www.ece.lsu.edu/ee4720/reference.html. Easy MIPS practice problems can be found
in the practice directory, see MIPS Homework and Practice Workflow in
https://www.ece.lsu.edu/ee4720/proc.html.

Using LSU version of SPIM
This assignment requires a modified version of the SPIM simulator originally developed by James
Larus. Instructions for using this simulator appear on the course procedures page. When running
SPIM check the LSU version date, there should be a line reading LSU Version Date: 2024-02-04.
Make sure that the date is there and is no earlier than 2 February 2024. (The date will appear
on the console output near the top when run non-graphically, and in the lowermost window pane
when run graphically.)
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Debugging
To facilitate debugging the code can be run so that the simulator emits a trace of executed instruc-
tions, plus an indication of changed register values.

The best way to get a trace is to run the code non-graphically. To do so load the code into an
Emacs buffer in a properly set up account. Press Ctrl - F9 to start the simulator non-graphically.
That should pop up a window showing a simulator banner followed by a prompt:

SPIM Version 6.3.1 lsu of 9 November 2001, 17:34:35 CST

LSU Version Date: 2024-02-04

Copyright 1990-2000 by James R. Larus (larus@cs.wisc.edu).

All Rights Reserved.

See the file README for a full copyright notice.

Includes LSU modifications.

File loaded.

Type "run" to run normally.

Type "step 100" to execute next 100 instructions with tracing.

Type "help" for more help.

To see a trace of instructions enter step followed by the number of instructions, say step 100.
This will execute next 100 instructions but will only trace instructions in the assignment routine
(when running this homework assignment). To illustrate stepping consider the lookup routine from
2023 Homework 1. Suppose that the lookup routine starts with the following code:

lookup:

addi $v0, $0, -1

START_WORD:

addi $t0, $a0, 0

addi $v0, $v0, 1

Then a trace of execution would produce the following:

(spim) step 100

[0x004000cc] 0x4080b000 mtc0 $0, $22 ; 278: mtc0 $0, $22

[0x00400118] 0x0c100000 jal 0x00400000 [lookup] ; 299: jal lookup

# Change in $31 ($ra) 0 -> 0x400120 Decimal: 0 -> 4194592

[0x0040011c] 0x40154800 mfc0 $21, $9 ; 300: mfc0 $s5, $9

# Change in $21 ($s5) 0 -> 0x14 Decimal: 0 -> 20

[0x00400000] 0x2002ffff addi $2, $0, -1 ; 16: addi $v0, $0, -1

[0x00400004] 0x20880000 addi $8, $4, 0 ; 18: addi $t0, $a0, 0

# Change in $8 ($t0) 0 -> 0x1001024f Decimal: 0 -> 268501583

[0x00400008] 0x20420001 addi $2, $2, 1 ; 19: addi $v0, $v0, 1

Each line starting with square brackets shows the execution of an instruction. The address of
the instruction is shown inside the square brackets. After the square brackets the instruction is
shown in three different forms. First encoded, shown in hexadecimal. Then a disassembled form
(which is based on the encoded instruction). Finally, after the semicolon the instruction is shown
as it appears in the assembler file. Immediately after the semicolon is a line number.

The lines that start with a # show register values that change. The values are shown both in
hexadecimal and decimal. In the example above the first three instructions are from the testbench,
the fourth instruction shown, at address 0x400000, is the first instruction of lookup.
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Homework Background
MIPS routine aadd is to add two numbers. This would be trivial if the numbers were 32-bit integers,
but the numbers to add are decimal integers encoded as ASCII strings. Routine aadd is called with
four arguments, in registers a0-a3, and has one return value to be put in v0. Register a1 and a2

are set to the address of strings. Each string consists of only digits (ASCII 48-58) and a null (zero)
termination. There are no + signs, - signs, no decimal point, and no whitespace. Call the two
strings operand 1 and operand 2. For example, the string for operand 1 might be "4720", and
operand 2 might be "3002". The sum should be string "7722".

Register a0 holds the address of the output buffer, an area of memory where the sum is to
be written. The sum must be a C-style ASCII string, and must be written into the output buffer.
Register v0 must be set to the address where the sum is written. The value in v0 must be at least
a0 (its value when aadd is called) but less than a0+20. Those who are following this well may
wonder why v0 can’t be set to exactly a0 (the start of the output buffer). It can, but to do so
one would need to know how many digits there were in the sum, which won’t be known until the
sum is computed and written to memory in which case the sum would have to be moved so that it
started at the beginning of the output buffer. So to avoid the hassle of moving the sum, just put
the actual starting address in v0.

For your solving convenience the length of the two operands, in characters, are in register a3.
The length of operand 1 is in the upper 16 bits and the length of operand 2 is in the lower 16 bits.
For your further convenience, those two lengths are extracted in the unmodified assignment file.
Here is an abridged version of the start of aadd:

aadd:

## Register Usage
#

# CALL VALUES

# $a0: Address of the output buffer in which to write the result.

# $a1: Address of operand 1, an ASCII string.

# $a2: Address of operand 2, an ASCII string.

# $a3: Length of operands:

# Operand 1 length: bits 31:16

# Operand 2 length: bits 15:0

#

# RETURN VALUE

# $v0: Address of start of the result. Must be within output buffer.

srl $t8, $a3, 16 # Length of operand 1

andi $t9, $a3, 0xffff # Length of operand 2

# Put solution here.

jr $ra

nop

If you’re one of those people that understand fully what the code is supposed to do and are
eager to get started, great! For the rest, keep reading.

When the code in hw01.s is run is starts with a testbench that calls aadd multiple times. The
call arguments start out easy and get more difficult. For example, for the first call 12321 + 0 is to
be computed.
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The testbench will print one line for each call, and at the end will print a tally of results. For
example, on a correctly solved assignment:

SPIM Version 6.3.1 lsu of 9 November 2001, 17:34:35 CST

LSU Version Date: 2024-02-04

[snip]

(spim) run

Num Insn: 65 Correct: 12321 + 0 = 12321

Num Insn: 29 Correct: 1 + 1 = 2

Num Insn: 56 Correct: 9007 + 2 = 9009

Num Insn: 57 Correct: 5107 + 8 = 5115

Num Insn: 59 Correct: 3 + 9002 = 9005

Num Insn: 55 Correct: 789 + 67 = 856

Num Insn: 58 Correct: 67 + 789 = 856

Num Insn: 83 Correct: 999999 + 1 = 1000000

Num Insn: 131 Correct: 765432 + 12345678 = 13111110

Num Insn: 260 Correct: 184737252196092 + 8383352872579977 = 8568090124776069

TOTALS: Correct: 10 Wrong: 0

The value labeled Num Insn: is the number of instructions executed by your routine. Less is
better, but for this assignment that’s not a priority. The values above are my first correct solution
without much effort put into tuning.

The operands are chosen so that they start out easier and get harder. In the first set one just
adds zero. In the second set both operands are the same size, just one character, and there is no
carry. There is no carry in the third set either, and the sum is palendromic, so it is correct even if
it’s backward.

The value to the left of the = is the output of aadd if register v0>=a0 and v0<=a0+20, where
a0 is the value of register a0 when aadd first called. Above the value of v0 is fine and the values
are correct.

On an unmodified assignment, where aadd does not modify v0, the output will look like:

(spim) run

Num Insn: 5 Wrong : 12321 + 0 = ** $v0 too low **

Num Insn: 5 Wrong : 1 + 1 = ** $v0 too low **

Num Insn: 5 Wrong : 9007 + 2 = ** $v0 too low **

Num Insn: 5 Wrong : 5107 + 8 = ** $v0 too low **

Num Insn: 5 Wrong : 3 + 9002 = ** $v0 too low **

Num Insn: 5 Wrong : 789 + 67 = ** $v0 too low **

Num Insn: 5 Wrong : 67 + 789 = ** $v0 too low **

Num Insn: 5 Wrong : 999999 + 1 = ** $v0 too low **

Num Insn: 5 Wrong : 765432 + 12345678 = ** $v0 too low **

Num Insn: 5 Wrong : 184737252196092 + 8383352872579977 = ** $v0 too low **

TOTALS: Correct: 0 Wrong: 10

(spim)

For the output above v0 is out of range (since aadd did not try to set it). If all aadd does is
copy the first operand to the output buffer (the storage at a0) then the testbench output would be:

(spim) run

Num Insn: 36 Correct: 12321 + 0 = 12321

Num Insn: 16 Wrong : 1 + 1 = 1

Num Insn: 31 Wrong : 9007 + 2 = 9007
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Num Insn: 31 Wrong : 5107 + 8 = 5107

Num Insn: 16 Wrong : 3 + 9002 = 3

Num Insn: 26 Wrong : 789 + 67 = 789

Num Insn: 21 Wrong : 67 + 789 = 67

Num Insn: 41 Wrong : 999999 + 1 = 999999

Num Insn: 41 Wrong : 765432 + 12345678 = 765432

Num Insn: 86 Wrong : 184737252196092 + 8383352872579977 = 184737252196092

TOTALS: Correct: 1 Wrong: 9

There are no v0 errors, but the output is only correct when operand 2 is zero. But at least we
know we can copy a string!

Helpful Examples
For your convenience two sample MIPS programs are included in the assignment directory, strlen.s
and hex-string.s. The strlen.s contains the string length we did in class. Look at it if you
are rusty. Then look at hex-string.s, which contains a routine that writes an ASCII string cor-
responding to the hexadecimal representation of a value in the call register. Like this assignment,
in hex-string an ASCII string is written. Of course, there are many differences between this as-
signment and hex string. For more examples look in the practice directory and at Homework 1
assignments from earlier semesters.

Problem 1: This problem is optional. It’s here to help people get started. Modify aadd so that
operand 1 is copied to the output buffer. That is, the string at a1 should be copied to the memory
at a0, and v0 should be set to the starting address of the output buffer (the original value of a0).
If this is solved correctly the first call will be correct (because the second operand is zero).

Problem 2: Complete aadd so that it writes the sum to the output buffer and sets v0 to the
starting address of the sum. If Problem 1 has been solved remove, comment out, or jump over the
Problem 1 solution since a correct solution to Problem 2 makes Problem 1 unnecessary.

To solve this problem one must start at the least significant digit of each operand (the end of
the string), and then move backward. To make that easier the length of the operands are provided.
A good way to start is to only add the least significant digits. Then use a loop to iterate toward
the more significant digits. Don’t forget to propagate carries and that the strings can be different
sizes.

Feel free to insert new numbers to add, perhaps as to help debugging. Search for ta-

ble_numbers and insert new sets. Below, 9 + 10 is inserted. The third number is the sum, which
the testbench trusts to be correct.

.data
table_numbers:

.asciiz "9", "10", "19" # My test numbers.

.asciiz "12321", "0", "12321"

.asciiz "1", "1", "2"

.asciiz "9007", "2", "9009"

.asciiz "5107", "8", "5115"

Write clear code and add comments appropriate for an expert MIPS programmer. For example,
don’t explain things that can easily be figured out.

For examples of MIPS program see past Homework 1 assignments in this class.
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LSU EE 4720 Homework 2 Due: 6 March 2024

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find
a solution. It is the students’ responsibility to resolve frustrations and roadblocks quickly, and
hopefully with the satisfaction of making progress. There are plenty of old problems and solutions
to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

For the 2023 Final Exam, and other exams and solutions visit
https://www.ece.lsu.edu/ee4720/prev.html.

Problem 1: Solve the parts of 2023 Final exam Problem 1 requested below.

(a) Solve 2023 Final Exam Problem 1a, in which the execution (pipeline execution diagram) is to
be shown for an unpipelined MIPS implementation and a code fragment.

(b) Solve 2023 Final Exam Problem 1b, in which a bypassed MIPS implementation is to be trimmed
for the given execution. (Do not solve Problem 1c.)

Problem 2: Solve 2023 Final Exam Problem 2 which asks about A New Risk ISA.
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LSU EE 4720 Homework 3 Due: 28 March 2024

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find
a solution. It is the students’ responsibility to resolve frustrations and roadblocks quickly, and
hopefully with the satisfaction of making progress. There are plenty of old problems and solutions
to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

For the 2020 Final Exam, and other exams and solutions visit
https://www.ece.lsu.edu/ee4720/prev.html.

Problem 1 on the next page.
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Problem 1: Appearing below is the slightly lower cost MIPS implementation from the 2020
midterm exam. In the 2020 exam three EX-stage select signals were labeled, (A-C), here all five
are, (A-E). Below that is an incomplete pipeline execution diagram (it lacks a code fragment) and
a timing diagram showing values on the labeled select signals over time. In 2020 midterm exam
Problem 1(a) these signal values had to be found given a code fragment. For this problem, the
signal values are given. Write a code fragment that could have produced these signals. Feel free to
look at the solution to 2020 Problem 1(a) for help and practice.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv
IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

A B C

rt is src

D
E

D

E

Write a program that could have resulted in these select signal values.

# Cycle 0 1 2 3 4 5 6 7

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7
A X 0 1 0

B X 1 0 0

C 1 0 0 1

# Cycle 0 1 2 3 4 5 6 7

D 1 X X 1

E 0 1 1 0

# Cycle 0 1 2 3 4 5 6 7
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Problem 2: Appearing below is the solution to 2020 Midterm Exam Problem 2, showing control
logic for those slightly lower cost bypass paths, with one unfortunate change. The bottom input

to the 3-input AND gate is supposed to connect to the rt is src logic block. Due to some defect

that input is stuck at 1. (This is known as a stuck-at fault.) This stuck-at fault is shown on the
diagram.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv
IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

A B C

rt is src

=' ME By

rt By

WB By

Stall

type R

=' ='

='

ME By
rt By

0
1

0
10

1

rs 25:21

rt 20:16

Stuck At 1
1'b1

Write a code fragment that will not execute as intended on this hardware due to the stuck-at fault.
Note: In the original assignment the phrase “execute correctly” was used instead of “execute as
intended”.

As luck would have it this defect has occurred in a computer that’s on Mars. The computer can’t
be fixed, but it is possible to download new software to this computer.

Can the software be re-written to avoid this stuck-at fault? Explain.
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Problem 3: Appearing below is the slightly lower cost MIPS implementation, including the control
logic from the 2020 Midterm Exam solution. Design the control logic for the select signal labeled E.
Hint: Not much needs to be added if some existing logic is used. The SVG source for the diagram
can be found at https://www.ece.lsu.edu/ee4720/2024/hw03-lite-logic-e.svg.

Design control logic for select signal E.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv
IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

A B C

rt is src

=' ME By

rt By

WB By

Stall

type R

=' ='

='

ME By
rt By

0
1

0
10

1

rs 25:21

rt 20:16

E

E
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LSU EE 4720 Homework 4 Due: 15 April 2024

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. A very good strategy for those who are completely lost is to solve simpler problems on
the same topic. It is each student’s duty to himself or herself to resolve frustrations and roadblocks
quickly, perhaps just by first solving easier problems, perhaps by asking for help. There are plenty
of old problems and solutions to look at.

For EE 4720 exams, homework assignments, and their solutions visit
https://www.ece.lsu.edu/ee4720/prev.html.

Problem 1: Solve 2021 Final Exam Problem 2(a). (The solution is available. For maximum
pedagogical benefit make an earnest attempt to solve it. You’ll need the practice for the next
problem, not to mention the final exam.)

Problem 2: Solve 2023 Final Exam Problem 3, in which a second write port is to be added to
the FP register file. The solution is not available, you’ll need to solve this one for real. Do not
attempt this problem until solving the 2021 final exam problem mentioned above, and if necessary
other example problems given in the floating point slides and lectures page.
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LSU EE 4720 Homework 5 Due: 24 April 2024

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. A very good strategy for those who are completely lost is to solve simpler problems on
the same topic. It is each student’s duty to himself or herself to resolve frustrations and roadblocks
quickly, perhaps just by first solving easier problems, perhaps by asking for help. There are plenty
of old problems and solutions to look at.

For EE 4720 exams, homework assignments, and their solutions visit
https://www.ece.lsu.edu/ee4720/prev.html.

Problem 1: Solve 2017 Final Exam Problem 2 (a) and (b). (The solution is available. For
maximum pedagogical benefit make an earnest attempt to solve it. You’ll need the practice for the
next problem, not to mention the final exam.)

Problem 2: Solve 2023 Final Exam Problem 1c, in which the execution of code on a 4-way MIPS
implementation is to be found.

There is another problem on the next page.
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Problem 3: The two-way superscalar MIPS implementation below is a reduced cost version of
the two-way implementation usually shown in class. Red exes show where bypass connections are
removed, and a new multiplexor appears in blue (in the bottom of the EX stage).

Immed

IF ID EX WBME
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(a) Show a code fragment that would stall on this implementation but would not stall if the exed-out
bypass connections were not removed.

(b) Write a code fragment in which the new mux select signal, labeled A, must be 0 in one cycle
and 1 in another cycle. Show the value of the select signal in a pipeline execution diagram, leaving
the value blank where its value does not matter.

2

← → Spring 2024 ← → Homework 5 Homework Solution hw05.pdf

https://www.ece.lsu.edu/ee4720/2024/hw05.pdf


LSU EE 4720 Homework 6 Due: 29 April 2024

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. A very good strategy for those who are completely lost is to solve simpler problems on
the same topic. It is each student’s duty to himself or herself to resolve frustrations and roadblocks
quickly, perhaps just by first solving easier problems, perhaps by asking for help. There are plenty
of old problems and solutions to look at.

For EE 4720 exams, homework assignments, and their solutions visit
https://www.ece.lsu.edu/ee4720/prev.html.

Problem 1: Solve 2023 Final Exam Problems 5(c) and 5(d). Problem 5(c) asks about the difficulty
of implementing typical CISC instructions in a RISC pipeline. In Problem 5(d) the cost advantages
of a VLSI ISA are to be illustrated by comparing a 4-way superscalar implementation of a RISC
ISA to a similar implementation of a four-slot VLIW ISA.

Problem 2: Solve 2022 Final Exam Problem 4, in which the prediction accuracy and several other
characteristics of some branch predictors is to be analyzed. Note that the solution to this problem
is not yet available, you’ll really need to solve it.
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LSU EE 4720 Homework 1 Due: 6 February 2023

Problem 0: Follow the instructions for class account setup and for homework workflow in
https://www.ece.lsu.edu/ee4720/proc.html. Review the comments in hw01.s and look for the
areas labeled “Problem 1”.

Those who want to start before getting to the lab can find the assembler for the entire as-
signment at https://www.ece.lsu.edu/ee4720/2023/hw01.s.html. For MIPS references see the
course references page,
https://www.ece.lsu.edu/ee4720/reference.html. Easy MIPS practice problems can be found
in the practice directory, see MIPS Homework and Practice Workflow in
https://www.ece.lsu.edu/ee4720/proc.html.

Using LSU version of SPIM
This assignment requires a modified version of the SPIM simulator originally developed by James
Larus. Instructions for using this simulator appear on the course procedures page. When running
SPIM check the LSU version date, there should be a line reading LSU Version Date: 2022-01-31.
Make sure that the date is there and is no earlier than 31 January 2022. (The date will appear
on the console output near the top when run non-graphically, and in the lowermost window pane
when run graphically.)

Debugging
To facilitate debugging the code can be run so that the simulator emits a trace of executed instruc-
tions, plus an indication of changed register values.

The best way to get a trace is to run the code non-graphically. To do so load the code into an
Emacs buffer in a properly set up account. Press Ctrl - F9 to start the simulator non-graphically.
That should pop up a window showing a simulator banner followed by a prompt:

SPIM Version 6.3.1 lsu of 9 November 2001, 17:34:35 CST

LSU Version Date: 2022-01-31

Copyright 1990-2000 by James R. Larus (larus@cs.wisc.edu).

All Rights Reserved.

See the file README for a full copyright notice.

Includes LSU modifications.

File loaded.

Type "run" to run normally.

Type "step 100" to execute next 100 instructions with tracing.

Type "help" for more help.

(spim)

To see a trace of instructions enter step followed by the number of instructions, say step 100.
This will execute next 100 instructions but will only trace instructions in the lookup routine (as
of this writing). Suppose that the lookup routine starts with the following code:

lookup:

addi $v0, $0, -1

START_WORD:

addi $t0, $a0, 0

addi $v0, $v0, 1

Then a trace of execution would produce the following:

1
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(spim) step 100

[0x004000cc] 0x4080b000 mtc0 $0, $22 ; 278: mtc0 $0, $22

[0x00400118] 0x0c100000 jal 0x00400000 [lookup] ; 299: jal lookup

# Change in $31 ($ra) 0 -> 0x400120 Decimal: 0 -> 4194592

[0x0040011c] 0x40154800 mfc0 $21, $9 ; 300: mfc0 $s5, $9

# Change in $21 ($s5) 0 -> 0x14 Decimal: 0 -> 20

[0x00400000] 0x2002ffff addi $2, $0, -1 ; 16: addi $v0, $0, -1

[0x00400004] 0x20880000 addi $8, $4, 0 ; 18: addi $t0, $a0, 0

# Change in $8 ($t0) 0 -> 0x1001024f Decimal: 0 -> 268501583

[0x00400008] 0x20420001 addi $2, $2, 1 ; 19: addi $v0, $v0, 1

Each line starting with square brackets shows the execution of an instruction. The address of
the instruction is shown inside the square brackets. After the square brackets the instruction is
shown in three different forms. First encoded, shown in hexadecimal. Then a disassembled form
(which is based on the encoded instruction). Finally, after the semicolon the instruction is shown
as it appears in the assembler file. Immediately after the semicolon is a line number.

The lines that start with a # show register values that change. The values are shown both in
hexadecimal and decimal. In the example above the first three instructions are from the testbench,
the fourth instruction shown, at address 0x400000, is the first instruction of lookup.

Problem 1: MIPS routine lookup is called with three arguments: $a0 holds the address of a
string, called the lookup word, $a1 holds the address of a word table, $a2 holds the address of a
word length table. Complete lookup so that when it returns $v0 is set to the index of the lookup
word in the word table (as explained below) or to -1 if the lookup word is not in the word table.

Register $a1 holds the address of a word table. (Look for table_words: in the file.) The
words are stored one after the other in alphabetical order, but without even a null separating them.
The first three words are aah, aardvark, able. They are stored in memory as aahaardvarkable.
Register $a2 holds the address of a length table. The first entry is the length of the first word, the
second entry is the length of the second word, and so on. The lengths are stored as 1-byte unsigned
integers. The first three values stored in the length table are 3, 8, and 4. Note that without the
length table it would not be possible to reliably identify the words in the word table.

The index of a word is its position in the word table, with the first word, aah, having index 0.
(The second word, aardvark, has index 1, and so on.)

(The word table, word size table, and the lookup words can be found in hw01.s. Inspecting
these might help in understanding the problem. Search for table_words: to find the word table.
The other tables are below.)

If lookup is called with $a0 pointing to able then when it returns $v0 should hold a 2. If
$a0 points to abacus then $v0 should be set to -1. (Since the word table is in alphabetical order
abacus can’t be in the word list even if all we know is that the first three words are aah, aardvark,
able.)

The testbench will run lookup on several lookup words and report the number of instructions
needed for each lookup word and whether it was correct. Here is the output for the instructor’s
solution:

a Num Insn: 227 Index: -1 -- Correct

aah Num Insn: 43 Index: 0 -- Correct

able Num Insn: 62 Index: 2 -- Correct

i Num Insn: 230 Index: 41 -- Correct
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blank Num Insn: 133 Index: -1 -- Correct

counselor Num Insn: 182 Index: -1 -- Correct

county Num Insn: 217 Index: -1 -- Correct

fish Num Insn: 328 Index: -1 -- Correct

gram Num Insn: 328 Index: -1 -- Correct

palindromic Num Insn: 359 Index: -1 -- Correct

zymurgy Num Insn: 361 Index: -1 -- Correct

bibliographical Num Insn: 216 Index: 13 -- Correct

bibliographically Num Insn: 239 Index: 14 -- Correct

cross Num Insn: 204 Index: 24 -- Correct

zydeco Num Insn: 365 Index: 55 -- Correct

zygotes Num Insn: 379 Index: 57 -- Correct

TOTALS: Num Insn: 3873 Tests: 16 Errors: 0

First, complete lookup so that it is correct (shows zero errors). Do not use pseudoinstructions
except for nop. Comments in the code show other rules and indicate which registers can be modified.
Next, optimize it to reduce the number of executed instructions. There are many ways to do this.

To make the solution fast take advantage of the fact that the word table is in alphabetical
order and that the length table provides the length of each word in the table.

Your solution should not rely on extra storage that’s set up by an initialization call. For
example, if one computes an offset table from the length table then a binary search is possible.
That’s interesting, but not allowed in this problem. Another possibility is to compute a hash table.
(See 2019 Homework 1.) Using a hash table is interesting but not allowed in this assignment either.

Finally, write clear code and add comments appropriate for an expert MIPS programmer. For
example, don’t explain things that can easily be figured out.

For examples of MIPS program see past Homework 1 assignments in this class.
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LSU EE 4720 Homework 2 Due: 8 March 2023

Problem 1: The code fragment below was taken from the course hex string assembly example. (The hex
string example was not covered this semester. The full example can be found at
https://www.ece.lsu.edu/ee4720/2022/hex-string.s.html.) The fragment below converts the value in
register a0 to an ASCII string, the string is the value in hexadecimal (though initially backward).

LOOP:

andi $t0, $a0, 0xf # Retrieve the least-significant hex digit.

srl $a0, $a0, 4 # Shift over by one hex digit.

slti $t1, $t0, 10 # Check whether the digit is in range 0-9

bne $t1, $0, SKIP # Don’t forget that delay slot insn always exec.

addi $t2, $t0, 48 # If 0-9, add 48 to make ASCII ’0’ - ’9’.

addi $t2, $t0, 87 # If 10-15, add 87 to make ASCII ’a’ - ’z’.

SKIP:

sb $t2, 0($a1) # Store the digit.

bne $a0, $0, LOOP # Continue if value not yet zero.

addi $a1, $a1, 1 # Move string pointer one character to the left.

(a) Show the encoding of the MIPS bne a0, 0, LOOP instruction. Note: This is not the same as
the instruction used in last year’s Homework 2. Include all parts, including—especially—the immediate.
For a quick review of MIPS, including the register numbers corresponding to the register names, visit
https://www.ece.lsu.edu/ee4720/2023/lmips.s.html.

(b) RISC-V RV32I has a bne instruction too, though it is not exactly the same. Show the encoding of the
RV32I version of the bne a0, 0, LOOP instruction. For this subproblem assume that the bne will jump
backward eight instructions, just as it does in the code sample above.

To familiarize yourself with RISC-V start by reading Chapter 1 of Volume I of the RISC-V specification,
especially the Chapter 1 Introduction and Sections 1.1 and 1.3. Skip Section 1.2 unless you are comfortable
with operating system and virtualization concepts. Other parts of Chapter 1 are interesting but less relevant
for this problem. Also look at Section 2.5 (Control Transfer Instructions). The spec can be found in the
class references page at https://www.ece.lsu.edu/ee4720/reference.html.

(c) Consider the four-instruction sequence from the code above:

slti $t1, $t0, 10 # Check whether the digit is in range 0-9

bne $t1, $0, SKIP # Don’t forget that delay slot insn always exec.

addi $t2, $t0, 48 # If 0-9, add 48 to make ASCII ’0’ - ’9’.

addi $t2, $t0, 87 # If 10-15, add 87 to make ASCII ’a’ - ’z’.

SKIP:

Re-write this sequence in RISC-V RV32I, and take advantage of RISC-V branch behavior to reduce this
to three instructions (plus possibly one more instruction before the loop). For this problem one needs to
focus on RISC-V branch behavior. Assume that the RISC-V slti and addi instructions are identical to
their MIPS counterparts at the assembly language level. It is okay to retain the MIPS register names. Hint:
One change needs to be made for correctness, another for efficiency.
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Problem 2: Note: The following problem was assigned in each of the last six years, and its solution is
available. DO NOT look at the solution unless you are lost and can’t get help elsewhere. Even in that case
just glimpse. Appearing below are incorrect executions on the illustrated implementation. For each one
explain why it is wrong and show the correct execution.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D
 

dstdst

E
2'b0 format

immed =

(a) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

(b) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

(c) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

(d) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB
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LSU EE 4720 Homework 3 Due: 24 March 2023

Problem 1: Appearing below are incorrect executions on the illustrated implementation. For each exe-
cution explain why it is wrong and show the correct execution. Note: This problem was assigned in 2020,
2021, and 2022, and their solutions are available. DO NOT look at the solutions unless you are lost and
can’t get help elsewhere. Even in that case just glimpse.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

(a) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID -> EX ME WB

(b) The execution of the branch below has two errors. One error is due to improper handling of the andi

instruction. (That is, if the andi were replaced with a nop there would be no problem in the execution
below.) The other is due to the way the beq executes. As in all code fragments in this problem, the program
is correct, the only problem is with the illustrated execution timing.

# Cycle: 0 1 2 3 4 5 6 7 8

andi r2, r2, 0xff IF ID EX ME WB

beq r1, r2, TARG IF ID EX ME WB

add r3, r4, r5 IF ID EX ME WB

xor IFx

TARG:

sw r6, 7(r8) IF ID EX ME WB

# Cycle: 0 1 2 3 4 5 6 7 8

1
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format
immed
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20:16
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(c) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

(d) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

(e) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB
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Problem 2: Illustrated below is a MIPS implementation in which each multiplexor has a label, such as a
circled A at the multiplexor providing a value for the PC. (The implementation debuted on the 2018 midterm
exam.) The multiplexor inputs are also numbered. Below the illustration an execution of the program on
the implementation is shown for two iterations of a loop. Below the execution is a table with one row for
each labeled multiplexor. Complete the table so that it shows the values on the multiplexors’ select signals
at each cycle based on the execution. Leave an entry blank if its value does not make a difference.

Wire thicknesses and colors have been varied to make it easier to trace them through the diagram. Before
attempting this problem, solve 2018 Midterm Exam Problem 2b, which also appeared as 2022 Homework 3
Problem 2. Also see the 2014 Midterm Exam Problem 1 for a similar problem.
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Continued on the next page.
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Complete the table (the rows starting with A:, B:, etc.) based on the execution below.

Omit select signal values if they do not matter. For example, omit values for E for cycles in which there is
not a store instruction in EX.

Assume that the branch is taken the second time it appears. (No assumption needed for its first appearance.)

addi r1, r1, -4 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9

sw r2, 4(r1) IF ID EX ME WB

lw r1, 8(r2) IF ID EX ME WB

bne r2, r3, LOOP IF ID EX ME WB

add r2, r2, r6 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9

sw r2, 4(r1) IF ID EX ME WB

lw r1, 8(r2) IF ID EX ME WB

bne r2, r3, LOOP IF ID EX ME WB

add r2, r2, r6 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

A:

B:

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

C:

D:

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

E:

F:

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
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Problem 3: Show the execution of the code fragments on the following implementations for enough iter-
ations to determine the instruction throughput (IPC). As always, base the behavior of branches and the
availability of bypasses on the implementations. Also, don’t forget that MIPS branches have a delay slot.
Sorry for yelling, but I hate it when students miss things.

This problem appeared as most of Problem 1 on the 2022 Final Exam. A solution is not yet available.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv
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Data
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dest. reg
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dstdst

E
2'b0 format

immed =

Show execution and determine instruction throughput (IPC) based on a large number of iterations.

LOOP:

bne r1, r2, LOOP

addi r1, r1, 4

xor r5, r6, r7

sub r8, r9, r10
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format
immed

IR

Addr25:21

20:16

IF ID EX WBME
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Show execution and determine instruction throughput (IPC) based on a large number of iterations.

LOOP:

bne r1, r2, LOOP

addi r1, r1, 4

xor r5, r6, r7

sub r8, r9, r10
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format
immed

IR

Addr25:21

20:16

IF ID EX WBME
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msb lsb
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1
0

Show execution and determine instruction throughput (IPC) based on a large number of iterations.

LOOP:

bne r1, r2, LOOP

addi r1, r1, 4

xor r5, r6, r7

sub r8, r9, r10
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LSU EE 4720 Homework 4 Due: 19 April 2023

In the problems below a new MIPS instruction, integer fmadd, (hypothetical of course) is to be added to our
pipelined MIPS implementation. A simpler implement-the-instruction problem was the subject of Fall 2010
Homework 3, in which a shift unit is added to MIPS to implement shift instructions. The 2010 problem is
simpler because the shift unit occupies just one stage, while the fmadd for this assignment spans multiple
stages. For past assignments in which integer arithmetic hardware spans several stages see 2020 Homework
2, 3, and 4 and 2020 midterm exam Problem 5. In these 2020 problems an integer multiply instruction was
to be implemented.

Problem 1: A fused multiply/add instruction, such as fmadd r1, r2, r3, r4, computes r1 = r2r3 + r4.
Such instructions are useful for both floating-point and integer calculations, and integer version is considered
here. The goal in this problem is to extend MIPS with an integer multiply/add instruction, fmadd. The
new fmadd instruction will be encoded in MIPS Format R with the SA field being used to specify the third
source register, r4 in the example.

MIPS R:

Opcode

0

31 26

RS

2

25 21

RT

3

20 16

RD

1

15 11

SA

4

10 6

Function

fmadd

4 0

The hardware to compute the multiply/add will consist of two types of units: a carry-save multiplier
(CSM) and integer adders (labeled ADD). The connection of these two types of units needed to compute a
multiply/add are shown below.

CSM ADDA

B

A×B

A×B+C.9 .45 ADD

.45 

C

The CSM takes 0.9 clock cycles to compute a result and each adder takes 0.45 clock cycles, so the critical
path through the hardware shown above is 1.8 clock cycles. Because the critical path is greater than one
clock cycle the hardware cannot be placed in one stage. (Unless the clock frequency were to be decreased
from φ to φ/1.8, which would slow everything down and so of course we don’t want to do it.)

1

← → Spring 2023 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/2023/hw04.pdf


Note: For the three parts below a single hardware solution can be provided. That is, a correct solution to part
c also can be a correct solution to parts b and a, and so there is no need to draw three hardware designs.

(a) Add the CSM and ADD units to the MIPS implementation below to efficiently implement the fmadd

instruction. For this sub-problem provide the hardware needed so that fmadd can execute without stalls
when there are no nearby dependencies, such as in the execution below.

# There are no dependencies in this code fragment.

# Cycle 0 1 2 3 4 5 6 7 8

add r1, r2, r3 IF ID EX ME WB

sub r4, r5, r6 IF ID EX ME WB

fmadd r7, r8, r9, r10 IF ID EX ME WB

fmadd r11, r12, r13, r14 IF ID EX ME WB

xori r15, r16, 17 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8

Put your solution on the larger diagram several pages ahead.

format
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IF ID EX WBME
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dstdst

 

msb lsb

msb

lsb

Put your solution on the larger diagram several pages ahead.

Add the CSM and ADD units to the implementation above so that the can implement the fmadd instruction.

Provide the datapath needed so that operands can reach the CSM and ADD units and the result can
reach the register file.

Don’t forget that this instruction has three source operands.

Do not increase the critical path.

As always, consider cost. Assume that an n-bit register costs twice as much as an n-bit, 2-input multiplexor.

fmadd should execute without stalls when there are no nearby dependencies.

Do not design control logic for this assignment.
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(b) In the code fragments below the fmadd depends on prior instructions.

Add bypass paths to the fmadd implementation so that all of the executions below are possible.

# Fragment A

# Cycle 0 1 2 3 4 5 6

add R1, r2, r3 IF ID EX ME WB

sub R4, r5, r6 IF ID EX ME WB

fmadd r7, R1, R4, r9 IF ID EX ME WB

# Fragment B

# Cycle 0 1 2 3 4 5 6 7

sub R9, r5, r6 IF ID EX ME WB

fmadd R7, r1, r4, R9 IF ID EX ME WB

fmadd r2, r3, r5, R7 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

# Fragment C

# Cycle 0 1 2 3 4 5 6

add R1, r2, r3 IF ID EX ME WB

lw R9, 0(r10) IF ID EX ME WB

fmadd r7, R1, r4, R9 IF ID EX ME WB

(c) Using additional ADD unit(s) modify the implementation so that it can execute Fragments L and D
correctly. This will require some tricky bypassing. Note that stalls will be needed when the dependent
instruction following the fmadd does not use the adder, such as in Fragment E. Note: In the original
problem just one adder was to be used. That is probably impossible without critical path impact.

Add a second adder and bypass paths so that fragments L and D execute as shown.

# Fragment L

# Cycle 0 1 2 3 4 5 6

fmadd R7, r1, r4, r9 IF ID EX ME WB

lw r10, 16(R7) IF ID EX ME WB # No stall!

# Fragment D

# Cycle 0 1 2 3 4 5 6

fmadd R7, r1, r4, r9 IF ID EX ME WB

add r2, R7, r3 IF ID EX ME WB # No stall!

# Fragment E

# Cycle 0 1 2 3 4 5 6

fmadd R7, r1, r4, r9 IF ID EX ME WB

or r2, R7, r3 IF ID -> EX ME WB # A stall. :-(

3

← → Spring 2023 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/ee4720/2023/hw04.pdf


Use the diagram below for your solution, or download
https://www.ece.lsu.edu/ee4720/2023/mpipei3.svg and edit with your favorite SVG editor. (The dia-
gram was drawn with Inkscape.)
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LSU EE 4720 Homework 5 Due: 21 April 2023

Problem 1: In this problem consider the encoding of integer and floating-point addition instructions in
MIPS and RISC-V. Descriptions of MIPS and RISC-V are linked to the course references page,
https://www.ece.lsu.edu/ee4720/reference.html.

(a) Show the encoding of MIPS instructions add r1, r2, r3 and add.s f4, f5, f6.

(b) Show the encoding of RISC-V RV32IF instructions add x7, x8, x9 and fadd f10, f11, f12.

(c) Notice that the register fields in the integer and floating-point RISC-V RV32IF instructions are the
same, while the register fields in the two MIPS instructions are different. One possible reason for RISC-V’s
matching fields was to simplify implementations of the Zfinx variant. (Web search for it.) How do the
matching fields reduce the cost of implementations of the RISC-V Zfinx variant?

ARM A64 Background
The following background will help in solving the next problem. MIPS and many other ISAs have a set of
integer registers and a set of floating-point registers. Many newer ISAs, including ARM A64, have a set of
vector registers in lieu of floating-point registers. Extensions of legacy ISAs, such as Intel 64 AVX2, have
vector registers but retain floating-point registers for compatibility.

In many ISAs, including ARM A64, a vector register can be used to hold one FP value, just as a
traditional FP register would, or a vector register can hold several values. Scalar instructions read or write
one value per vector register, and vector instructions read and write multiple values per register.

In ARM A64 there are 32 128-bit vector registers, named v0 to v31. When used in scalar instructions
operating on single-precision FP values they are known by the names s0 to s31 and by the names d0 to d31

by double-precision scalar instructions. For example, the ARM A64 assembler instruction fadd s0, s1,

s2 computes s0=s1+s2 and fadd d0, d1, d2 computes d0=d1+d2. In both cases the operands were taken
from vector registers v0, v1, and v2. The assembler name s0 means use the low 32 bits of v0 and interpret
the value as an IEEE 754 single. The assembler name d0 means use the low 64 bits of v0 and interpret the
value as an IEEE 754 double.

In the next problem, the one with sum_thing_unusual, the ARM code contains only scalar floating
point instructions and base (integer register) instructions. To solve the next problem one needs to look up
instructions in the ARM Architecture Reference Manual. Instructions that operate on vector registers, in-
cluding fadd can be found in the Advanced SIMD and Floating Point section, C7.2 for the list of instructions.
Other instructions can be found in the A64 Base Instruction section, C6.2 for the list of instructions.

Vector instructions are not needed in this assignment, but they will be briefly described anyway. For
vector instructions the vector register name indicates how many elements in the vector to use, and what
their format is. For example, v0.4s, means to use vector register v0 and to split its 128 bits into 4 32-bit
lanes, with each lane holding one float (the s). The names can be used in instructions such as fadd v0.4s,

v0.4s, v1.4s. This instruction performs four additions, one on each lane of the vector register.

Problem 2: Appearing below is a C++ procedure with a for loop that computes the sum of elements in
an array. This would be a totally ordinary loop were it not for the fact that the iteration variable, i, and
the increment, delta, are both floats. Since i is a float the number of iterations, depending on delta,
can be less than 1024 (say, if delta=2.3) or more than 1024 (say, if delta=0.25). Below the C code are
MIPS-I and ARM A64 assembler versions of the loop. Yes, that means you don’t have to write them! (The
MIPS-I code was hand written, and the A64 was based on code generated by a compiler.) Notice that the
ARM code is shorter than the MIPS code. That’s because some of the ARM instructions do the equivalent
of several MIPS instructions.

Next to each ARM instruction indicate the MIPS instruction(s) from the MIPS code that it corresponds to.
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When an ARM instruction corresponds to more than one MIPS instruction explain what the ARM instruction
is doing.

A short reference for MIPS floating-point instructions is the course lfp.s notes. This should be sufficient
for all but the MIPS-II trunc instruction. For the trunc instruction see the MIPS documentation (linked
to the course ISA page).

float sum_thing_unusual( float *a, float delta ) {

float sum = 0;

for ( float i = 0; i < 1024; i += delta ) sum += a[int(i)];

return sum;

}

# MIPS Code for sum_thing_unusual.

#

# $a0: The address of array a.

# $f0: i. At this point it contains a zero.

# $f4: delta.

# $f5: The constant 1024, in FP format.

# $f8: sum. At this point it contains a zero.

LOOP:

trunc.w.s $f6, $f0 # Note: This is a MIPS-II instruction.

mfc1 $t1, $f6

sll $t1, $t1, 2

add $t2, $t1, $a0

lwc1 $f7, 0($t2)

add.s $f0, $f0, $f4

c.lt.s $f0, $f5

bc1f LOOP

add.s $f8, $f8, $f7

.arch arm

@ ARM A64 Code for sum_thing_unusual.

@

@ x0-x31: Integer registers. x31 is sometimes the zero register.

@ s0-s31: Scalar single-precision floating-point registers.

@

@ x0: The address of array a.

@ s0: sum. At this point it contains a zero.

@ s1: i. At this point it contains a zero.

@ s3: delta.

@ s4: The contains 1024, in FP format.

LOOP:
fcvtzs x1, s1

fadd s1, s1, s3

fcmpe s1, s4

ldr s2, [x0, x1, lsl 2]

fadd s0, s0, s2

bmi LOOP
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LSU EE 4720 Homework 6 Due: 28 April 2023

Problem 1: Solve 2022 Final Exam Problem 2, in which code fragments are either written or analyzed for
our MIPS FP implementation.

Problem 2: Solve the last part of 2022 Final Exam Problem 1, the one with the 4-way superscalar pipeline.
(You can tell it’s 4-way because the superscripts range from 0 to 3.) There is no need to show superscripts
on the stage labels in your execution diagram. For sample problems see past final exams, such as 2021
Problem 2.

There is another problem on the next page.
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Problem 3: Appearing below is our MIPS FP implementation but with an unpipelined FP add unit. Some
of the control logic needed to generate stalls when a FP add instruction is in flight is in the magic cloud
labeled “Future HW Solution”. Design that logic. For similar logic see the logic on the Partially Pipelined
pages from Set 9 slides (about page 14). Hint: This does not require much hardware. For similar problems
see 2020 Spring Homework 5 and 2020 Spring Final Exam Problem 2.

Use the execution below to help you design the hardware:

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

add.d f0, f2, f4 IF ID A A A A WF

add.d f6, f8, f10 IF ID -------> A A A A WF

addi r1, r1, 8 IF -------> ID EX ME WB

add.d f12, f18, f14 IF ID ----> A A A A WF

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

An SVG version of the image can be found at https://www.ece.lsu.edu/ee4720/2023/hw06-fp-aaaa.svg,
use Inkscape or some other SVG editor, or even a text editor.
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LSU EE 4720 Homework 7 Due: 1 May 2023

Problem 1: Solve 2022 Final Exam Problem 3, in which hardware is added to a variation on a 2-way
superscalar MIPS implementation.
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LSU EE 4720 Homework 1 Due: 4 February 2022

Problem 0: Follow the instructions for class account setup and for homework workflow in
https://www.ece.lsu.edu/ee4720/proc.html. Review the comments in hw01.s and look for the
areas labeled “Problem 1” and “Problem 2.”

Those who want to start before getting to the lab can find the assembler for the entire as-
signment at https://www.ece.lsu.edu/ee4720/2022/hw01.s.html. For MIPS references see the
course references page,
https://www.ece.lsu.edu/ee4720/reference.html. Easy MIPS practice problems can be found
in the practice directory, see MIPS Homework and Practice Workflow in
https://www.ece.lsu.edu/ee4720/proc.html.

This Assignment
In class as MIPS review we wrote a routine, strlen, to find the length of a C string. In our
completed routine (shown below) the main loop consisted of three instructions, and would load one
character per iteration. Therefore at best it could run at the rate of 1

3 characters per instructions.

strlen:

# Register Usage

# $a0: Address of first character of string.

# $v0: Return value, the length of the string.

addi $v0, $a0, 1 # Set aside a copy of the string start + 1.

LOOP:

lbu $t0, 0($a0) # Load next character in string into $t0

bne $t0, $0, LOOP # If it’s not zero, continue

addi $a0, $a0, 1 # Increment address. (Note: Delay slot insn.)

jr $ra

sub $v0, $a0, $v0

Can we do better? Since the main loop only consists of three instructions there is little that
can be done to make it shorter, at least using MIPS I instructions. Notice that a character is
loaded using lbu (load byte unsigned). Suppose instead a lw (load word) were used. Then four
characters would be loaded. If our loop body contained 12 instructions (including the lw) then it
would execute at the same rate as our original strlen because it would operate on 4 characters
per 12 instructions or at the rate of 1

3 characters per instruction. If we could somehow check for a
null with fewer than 12 instructions our new code would be faster.

In Problem 1 such a string length routine is to be completed. It is assumed that most students’
MIPS skills are rusty so the starting point is code using a lhu instruction. In the solution to Problem
1 I attained a rate of 0.392 char/insn, not much better than .329 attained by our original routine.

In Problem 2 the strlen routine is to be written using additional non MIPS-I instructions.
These include orc.b from a RISC-V extension, and clz and clo from MIPS32 (based on their r6
versions). Using these instructions my solution achieves 0.942 chars per insn.

Test Routine
The code for this assignment includes a test routine that runs three string length routines: the
routines to be written for Problems 1 and 2, and the string length routine written in class (called
strlen_ref here). Each routine is run on several strings, including all lengths from 0 to 5, plus
strings of length 23 and 196. The shorter-length strings are there to make sure that the routines
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are correct and to check how fast they are on short strings. The longest string is there to test
performance. The performance numbers from the previous section are based on the longest string.

Here is the output from the unmodified assignment:

** Starting Test of Routine "strlen_p1 (Problem 1 - Bit Ops)" **

String 1: Length 1 is correct. Took 10 insn or 0.100 char/insn

String 2: Length 2 is correct. Took 13 insn or 0.154 char/insn

String 3: Length 3 is correct. Took 16 insn or 0.188 char/insn

String 4: Length 4 is correct. Took 19 insn or 0.211 char/insn

String 5: Length 5 is correct. Took 22 insn or 0.227 char/insn

String 6: Length 0 is correct. Took 7 insn or 0.000 char/insn

String 7: Length 23 is correct. Took 76 insn or 0.303 char/insn

String 8: Length 196 is correct. Took 595 insn or 0.329 char/insn

** Starting Test of Routine "strlen_p2 (Problem 2 - RISC V orc insn)" **

String 1: Length 1 is correct. Took 11 insn or 0.091 char/insn

String 2: Length 2 is correct. Took 15 insn or 0.133 char/insn

String 3: Length 3 is correct. Took 19 insn or 0.158 char/insn

String 4: Length 4 is correct. Took 23 insn or 0.174 char/insn

String 5: Length 5 is correct. Took 27 insn or 0.185 char/insn

String 6: Length 0 is correct. Took 7 insn or 0.000 char/insn

String 7: Length 23 is correct. Took 99 insn or 0.232 char/insn

String 8: Length 196 is correct. Took 791 insn or 0.248 char/insn

** Starting Test of Routine "strlen_ref (Simple strlen routine.)" **

String 1: Length 1 is correct. Took 9 insn or 0.111 char/insn

String 2: Length 2 is correct. Took 12 insn or 0.167 char/insn

String 3: Length 3 is correct. Took 15 insn or 0.200 char/insn

String 4: Length 4 is correct. Took 18 insn or 0.222 char/insn

String 5: Length 5 is correct. Took 21 insn or 0.238 char/insn

String 6: Length 0 is correct. Took 6 insn or 0.000 char/insn

String 7: Length 23 is correct. Took 75 insn or 0.307 char/insn

String 8: Length 196 is correct. Took 594 insn or 0.330 char/insn

To see all of this output when running graphically it might be necessary to make the pop-up
window larger. It is possible to scroll the text in the pop-up window by focusing the window and
using the arrow keys.

Each line shows the result from one string. The length of the string is shown, as well as the
number of instructions executed in the string length routine, and the execution rate. If the returned
length had been wrong both the returned and correct length would be shown but the instruction
count would be omitted.

The strings themselves can be found in the test code after the str label. The testbench does
not print out the strings, just their lengths. Feel free to modify the strings if it helps with debugging,
but please restore them before the deadline.

Using LSU version of SPIM
This assignment requires a modified version of the SPIM simulator originally developed by James
Larus. Instructions for using this simulator appear on the course procedures page. When running
SPIM check the LSU version date, there should be a line reading LSU Version Date: 2022-01-31.
Make sure that the date is there and is no earlier than 31 January 2022. (The date will appear
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on the console output near the top when run non-graphically, and in the lowermost window pane
when run graphically.)

Two changes were made for this assignment: implementation of the RISC-V-like orb.c in-
struction, and implementation of the MIPS32 r6 (revision 6) clo (count leading ones) instruction.
Also new is the ability to start and stop tracing.

Debugging
To facilitate debugging the code can be run so that the simulator emits a trace of executed in-
structions, plus an indication of changed register values. The trace will mostly include the three
string length routines, but it will also include a few testbench instructions. The trace includes line
numbers so that there should be no confusion about where an instruction is from.

The best way to get a trace is to run the code non-graphically. To do so load the code into an
Emacs buffer in a properly set up account. Press Ctrl - F9 to start the simulator non-graphically.
That should pop up a window showing a simulator banner followed by a prompt:

SPIM Version 6.3.1 lsu of 9 November 2001, 17:34:35 CST

LSU Version Date: 2022-01-31

Copyright 1990-2000 by James R. Larus (larus@cs.wisc.edu).

All Rights Reserved.

See the file README for a full copyright notice.

Includes LSU modifications.

File loaded.

Type "run" to run normally.

Type "step 100" to execute next 100 instructions with tracing.

Type "help" for more help.

(spim)

At the prompt enter step 100 to run the next 100 instructions. The instructions in the string
length routines will be traced, but the count of 100 instructions also includes the test routine (as
of this writing). For example:

(spim) step 100

[0x00400064] 0x4080b000 mtc0 $0, $22 ; 218: mtc0 $0, $22

** Starting Test of Routine "strlen_p1 (Problem 1 - Bit Ops)" **

[0x004000d0] 0x0100f809 jalr $31, $8 ; 251: jalr $t0

# Change in $31 ($ra) 0x4000bc -> 0x4000d8 Decimal: 4194492 -> 4194520

[0x004000d4] 0x40154800 mfc0 $21, $9 ; 252: mfc0 $s5, $9

# Change in $21 ($s5) 0 -> 0x23 Decimal: 0 -> 35

[0x00400000] 0x20820000 addi $2, $4, 0 ; 84: addi $v0, $a0, 0

# Change in $2 ($v0) 0xffffffff -> 0x10010000 Decimal: -1 -> 268500992

[0x00400004] 0x94880000 lhu $8, 0($4) ; 87: lhu $t0, 0($a0)

# Change in $8 ($t0) 0x400000 -> 0x3100 Decimal: 4194304 -> 12544

[0x00400008] 0x3109ff00 andi $9, $8, -256 ; 88: andi $t1, $t0, 0xff00

# Change in $9 ($t1) 0x100101f0 -> 0x3100 Decimal: 268501488 -> 12544

[0x0040000c] 0x11200006 beq $9, $0, 24 [DONE0-0x0040000c]; 89: beq $t1, $0, DONE0

[0x00400010] 0x310900ff andi $9, $8, 255 ; 90: andi $t1, $t0, 0xff

Each line starting with square brackets shows the execution of an instruction. The address of
the instruction is shown inside the square brackets. After the square brackets the instruction is
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shown in three different forms. First encoded, shown in hexadecimal. Then a disassembled form
(which is based on the encoded instruction). Finally, after the semicolon the instruction is shown
as it appears in the assembler file. Immediately after the semicolon is a line number.

The lines that start with a # show register values that change. The values are shown both in
hexadecimal and decimal.

Problem 1: Routine strlen_p1 in hw01.s computes the length of a string using a loop that loads
two characters at a time. It achieves a rate of .329 char/insn. Modify it so that it uses a lw instead
of lhu. (Note that there is no such thing as lwu in MIPS I. Such an instruction only makes sense
if registers are larger than 32 bits.) It is possible to achieve .393 chars /insn, or maybe even faster.

The string starting address will be in register a0. That address will be a multiple of 4. Strings
end with a null (a zero). The byte after the null is not part of the string and can be of any value.
Don’t assume it is a particular value.

Your solution should use MIPS-I instructions and should not use pseudo instructions except
for nop. See the check-box comments (such as [ ] Code should be efficient.) for additional
restrictions, requirements, and reminders.

Problem 2: Complete strlen_p2 so that it determines the string length by loading four characters
(using a lw) and checks for the null using the RISC-V-like orc.b (Bitwise OR-Combine, byte
granule) instruction. Also helpful will be the MIPS32 r6 clz and clo instructions.

The orc.b instruction is part of the RISC-V bit manipulation ISA extensions. See the docu-
mentation for this instruction for details on what it does. The documentation is linked to the course
references page and of course can be found on the RISC-V site. The orc.b is in the strlen_p2

routine, but it doesn’t do anything useful. Of course, that should be changed as part of the solution.
The MIPS32 clz and clo might also come in handy. Look for the MIPS32 r6 (not the older

versions) Volume 2 manuals on the course references page.
It is possible to complete this so that it runs at 0.947 char /insn or faster.
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LSU EE 4720 Homework 2 Due: 21 February 2022

Problem 1: The code fragment below was taken from the course hex string assembly example. (The hex
string example was not covered this semester. The full example can be found at
https://www.ece.lsu.edu/ee4720/2022/hex-string.s.html.) The fragment below converts the value in
register a0 to an ASCII string, the string is the value in hexadecimal (though initially backward).

LOOP:

andi $t0, $a0, 0xf # Retrieve the least-significant hex digit.

srl $a0, $a0, 4 # Shift over by one hex digit.

slti $t1, $t0, 10 # Check whether the digit is in range 0-9

bne $t1, $0, SKIP # Don’t forget that delay slot insn always exec.

addi $t2, $t0, 48 # If 0-9, add 48 to make ASCII ’0’ - ’9’.

addi $t2, $t0, 87 # If 10-15, add 87 to make ASCII ’a’ - ’z’.

SKIP:

sb $t2, 0($a1) # Store the digit.

bne $a0, $0, LOOP # Continue if value not yet zero.

addi $a1, $a1, 1 # Move string pointer one character to the left.

(a) Show the encoding of the MIPS bne t1, 0, SKIP instruction. Include all parts, including—especially—
the immediate. For a quick review of MIPS, including the register numbers corresponding to the register
names, visit https://www.ece.lsu.edu/ee4720/2022/lmips.s.html.

(b) RISC-V RV32I has a bne instruction too, though it is not exactly the same. Show the encoding of the
RV32I version of the bne t1, 0, SKIP instruction. For this subproblem assume that the bne will jump
ahead two instructions, just as it does in the code sample above.

To familiarize yourself with RISC-V start by reading Chapter 1 of Volume I of the RISC-V specification,
especially the Chapter 1 Introduction and Sections 1.1 and 1.3. Skip Section 1.2 unless you are comfortable
with operating system and virtualization concepts. Other parts of Chapter 1 are interesting but less relevant
for this problem. Also look at Section 2.5 (Control Transfer Instructions). The spec can be found in the
class references page at https://www.ece.lsu.edu/ee4720/reference.html.

(c) Consider the four-instruction sequence from the code above:

slti $t1, $t0, 10 # Check whether the digit is in range 0-9

bne $t1, $0, SKIP # Don’t forget that delay slot insn always exec.

addi $t2, $t0, 48 # If 0-9, add 48 to make ASCII ’0’ - ’9’.

addi $t2, $t0, 87 # If 10-15, add 87 to make ASCII ’a’ - ’z’.

SKIP:

Re-write this sequence in RISC-V RV32I, and take advantage of RISC-V branch behavior to reduce this
to three instructions (plus possibly one more instruction before the loop). For this problem one needs to
focus on RISC-V branch behavior. Assume that the RISC-V slti and addi instructions are identical to
their MIPS counterparts at the assembly language level. It is okay to retain the MIPS register names. Hint:
One change needs to be made for correctness, another for efficiency.

1
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Problem 2: Note: The following problem was assigned in each of the last six years, and its solution is
available. DO NOT look at the solution unless you are lost and can’t get help elsewhere. Even in that case
just glimpse. Appearing below are incorrect executions on the illustrated implementation. For each one
explain why it is wrong and show the correct execution.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D
 

dstdst

E
2'b0 format

immed =

(a) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

(b) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

(c) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

(d) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB
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LSU EE 4720 Homework 3 Due: 9 March 2022

Note: The following problems (or very similar problems) were assigned in 2020 and 2021, and their
solutions are available. DO NOT look at the solutions unless you are lost and can’t get help elsewhere. Even
in that case just glimpse.

Problem 1: Appearing below are incorrect executions on the illustrated implementation. Notice that this
implementation is different than the one from the previous problem. For each execution explain why it is
wrong and show the correct execution.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

(a) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID -> EX ME WB

(b) The execution of the branch below has two errors. One error is due to improper handling of the andi

instruction. (That is, if the andi were replaced with a nop there would be no problem in the execution
below.) The other is due to the way the beq executes. As in all code fragments in this problem, the program
is correct, the only problem is with the illustrated execution timing.

# Cycle: 0 1 2 3 4 5 6 7 8

andi r2, r2, 0xff IF ID EX ME WB

beq r1, r2, TARG IF ID EX ME WB

add r3, r4, r5 IF ID EX ME WB

xor IFx

TARG:

sw r6, 7(r8) IF ID EX ME WB

# Cycle: 0 1 2 3 4 5 6 7 8

1
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format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

(c) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

(d) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

(e) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB
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Problem 2: Appearing below is the labeled MIPS implementation from 2018 Midterm Exam Problem 2(b),
and as in that problem each mux in the implementation below is labeled with a circled letter, and mux inputs
are numbered. Some wires are colored to make them easier to follow. Write code sequences that use the
mux inputs as requested below. Some code sequences may consist of a single instruction.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

31:2

31:2

0
1

2
3 0

1
2

3
0

1
2

3

0
1

2

E
D

C

0

B

1

A

0 1

F

(a) Use F0. Don’t be fancy about it, just one instruction is all it takes.

(b) Use F0, C2, and D3 at the same time. The code should not suffer a stall. More than one instruction is
needed for the solution. Note: This is new in 2022.

(c) Explain why its impossible to use E0 and D0 at the same time.
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Problem 3: This problem appeared as Problem 2c on the 2020 final exam. Appearing below is our bypassed,
pipelined implementation followed by a code fragment.

It might be helpful to look at Spring 2019 Midterm Exam Problem 4a. That problems asks for the
execution of a loop and for a performance measure based upon how fast that loop executes.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

(a) Show the execution of the code below on the illustrated implementation up to the point where the first
instruction, addi r2,r2,16, reaches WB in the second iteration.

LOOP:

addi r2, r2, 16

lw r1, 8(r2)

sw r1, 12(r3)

bne r3, r4, LOOP

addi r3, r3, 32

sub r10, r3, r2

(b) Based on your execution determine how many cycles it will take to complete n iterations of the loop.
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LSU EE 4720 Homework 4 Due: 25 March 2022

Problem 1: Appearing below is our familiar five stage MIPS implementation with a new branch bypass
path shown in blue. For this problem assume that orc.b is executed by the ALU.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

1
0

(a) The code below is based on a solution to Homework 1. Show a pipeline execution diagram of this code
on the illustrated hardware. Pay close attention to the behavior of the branch including behavior due to
dependencies with prior instructions. Show enough of the execution to compute the instruction throughput
in units of IPC.

Show execution on the illustrated hardware. Compute the instruction throughput (IPC). Pay
attention to dependencies and available bypass paths.

lw $t0, 0($a0)

LOOPB:

addi $a0, $a0, 4

orc.b $t1, $t0

beq $t1, $t3, LOOPB

lw $t0, 0($a0)

(b) The code below should have executed more slowly on the illustrated implementation. Explain why. Hint:
The only difference in the code is the branch instruction.

lw $t0, 0($a0)

LOOPB:

addi $a0, $a0, 4

orc.b $t1, $t0

beq $t3, $t1, LOOPB

lw $t0, 0($a0)

Explain why the code above executes more slowly.
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Problem 2: Appearing below is the implementation used in the previous problem. Add control logic for

the branch condition multiplexor (shown in blue). Feel free to insert an is Branch logic block to detect the
presence of a branch based on the instruction opcode. For an Inkscape SVG version of the implementation
follow https://www.ece.lsu.edu/ee4720/2022/hw04-br-byp.svg.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In
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Mem
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Addr

Data
Out

Addr
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Mem
Port

Outrtv
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dstDecode
dest. reg
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msb lsb

msb

lsb

1
0
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Problem 3: Appearing below is our MIPS implementation (the one we use, we’re not taking credit for
inventing it) with an orc.b unit in the EX stage. Unlike the first problem in this assignment, here the orc.b

instruction is executed by its own unit, not by the ALU. One reason is because orc.b is fairly easy to
compute, and so its output can be available much sooner than the ALU’s output. In fact, it will be available
early enough to be bypassed to ID for use in determining the branch condition.

Connect the orc.b functional unit so that it can be used by orc.b instructions. Paying attention to
cost, connect it so that the following bypasses are possible: (1) A bypass so that an immediately following
dependent branch does not stall. This would eliminate a stall in a solution to Problem 1, and avoid a stall in
Case 1 in the code fragment below. (2) Bypasses to the next two arithmetic/logical instructions. See Case
2 below.

When weighing design alternatives assume that one pipeline latch bit cost twice as much as one mul-
tiplexor bit. Don’t overlook opportunities to reuse existing hardware. The Inkscape SVG source for the
diagram below is at https://www.ece.lsu.edu/ee4720/2022/hw04-orc.svg.

# Case 1

orc.b R1, r9

beq R1, r10, TARG

# Case 2

orc.b R1, r9

add r2, R1, r3 # Bypass from ME

xor r4, R1, r5 # Bypass from WB

or r6, R1, r7 # No bypass needed.

Connect orc.b unit so code above executes without a stall.

Show control logic for any multiplexors added. (Control logic does not need to be shown for the branch
condition mux.)

As always, avoid costly, inefficient, and unclear solutions.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv
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Data
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msb lsb

msb

lsb

orc.b

is orc.b
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LSU EE 4720 Homework 5 Due: 21 April 2022

Problem 1: Solve 2021 Final Exam Problem 2(a) and (b). Problem 2(a) asks for a pipeline execution
diagram for the execution of floating-point code on a MIPS implementation which is a little different than
the ones in the class notes. Problem 2(a) also asks for additional information, including the instruction
throughput. In Problem 2(b) the floating-point code is to be scheduled to improve the throughput. Note:
A brief summary of the problem is provided here to reduce the chance that you solve the wrong problem, say
by getting the year or problem number wrong.
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LSU EE 4720 Homework 6 Due: 27 April 2022

Problem 1: Solve 2021 Final Exam Problem 2(c). In the problem the execution of a loop on a 4-way
superscalar MIPS implementation is to be shown.

Problem 2: Solve 2021 Final Exam Problem 1. In this problem some features of an unconventional 2-way
superscalar processor are to be completed. The solution to this problem is not as long as it might seem.

1
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LSU EE 4720 Homework 7 Due: 1 May 2022, 23:59:59

Problem 1: Solve 2021 Final Exam Problem 3 (all parts). The problem has some routine predictor analysis
questions, how to craft a side-channel attack exploiting of local predictor that does not reset its tables at
context switches, and questions about a bimodal predictor with a separate tag store (as covered in class on
Friday). For example local predictor analysis problems see prior years’ final exams.
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LSU EE 4720 Homework 8 Due: 1 May 2022, 23:59:59

Problem 1: Solve 2021 Final Exam Problem 4 parts a,b,c,d. (Don’t solve 4e). These are an assortment of
short answer questions, covering superscalar and vector processors, and other topics.
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LSU EE 4720 Homework 1 Due: 29 January 2021

Problem 0: Follow the instructions for class account setup and for homework workflow in
https://www.ece.lsu.edu/ee4720/proc.html. Review the comments in hw01.s and look for the
area labeled “Problem 1.”

Those who want to start before getting to the lab can find the assembler for the entire as-
signment at https://www.ece.lsu.edu/ee4720/2021/hw01.s.html. For MIPS references see the
course references page, https://www.ece.lsu.edu/ee4720/reference.html. Easy MIPS practice
problems can be found in the practice directory, see MIPS Homework and Practice Workflow in
https://www.ece.lsu.edu/ee4720/proc.html.

Problem 1: The hw01.s file has a routine called getbit.

(a) Complete the getbit routine so that it returns the value of a bit from a bit vector that spans
one or more bytes. Register $a0 holds the start address of the bit vector and register $a1 holds the
bit number to retrieve. The most-significant bit of the first byte is bit number 0. When getbit

returns register $v0 should be set to 0 or 1.
For example, a 16-bit bit vector is specified in the assembler below starting at the label

bit_vector_start:

bit_vector_start:

.byte 0xc5, 0x1f

In binary this would be 1100 0101 0001 11112. If getbit were called with $a1=0 then bit
number zero, meaning the leftmost bit in 1100 0101 0001 11112, should be returned and so $v0=1.
For $a1=2 a 0 should be returned.

Each memory location holds eight bits of the bit vector. For $a1 values from 0 to 7 the bit will
be in the byte at address $a0. For $a1 values from 8 to 15 the bit will be in the byte at address
$a0+1, and so on.

When the the code in hw01.s is run (by pressing F9 for example) a testbench routine will call

getbit several times. For each call the testbench will print the value returned by getbit (meaning
the value of $v0), whether that value is correct, and if wrong, the correct value. At the end it will
print the number of incorrect values returned by getbit, which hopefully will be zero when you’re
done.

See the checkboxes in the code for more information on what is expected.

(b) The bit vector used by the testbench is specified with:

bit_vector_start: # Note: MIPS is big-endian.

.byte 0xc5, 0x1f

.half 0x05af

.word 0xedcba987

.ascii "123"

bit_vector_end:

The assembler will convert the lines following data directives .byte, .half, .word, and .ascii

into binary and place them in memory. The total size will be 2× 1 + 2 + 4 + 3 = 11 bytes. For the
purposes of this problem those 11 bytes form a 11× 8 = 88-bit bit vector. In most circumstances
for something like the bit vector above one would use the same kind of data directive for all data,
say using only .byte, but mixing directives is not wrong and in some cases may be convenient for

1
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example when the bit vector is constructed by concatenating pieces of different sizes and types.
Note that the kind of data directives used above does not affect how getbit is written.

Following the bit vector are the tests for the testbench. For each test there is one line consisting
of a bit number and the expected return value. For example, the second test sets $a1=4 and expects
a return value of $v0=0.

testdata:

.half 0, 1

.half 4, 0

.half 10, 0

Add a test to the testdata data to test the part of the bit vector specified using .ascii

"123". The test should be written for .ascii "123" and should report an error if the directive
were changed to .ascii "213".

2
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LSU EE 4720 Homework 2 Due: 8 February 2021

Problem 0: Follow the instructions for class account setup and for homework workflow in
https://www.ece.lsu.edu/ee4720/proc.html. Review the comments in hw02.s and look for the
area labeled “Problem 1.”

Those who want to start before getting to the lab can find the assembler for the entire as-
signment at https://www.ece.lsu.edu/ee4720/2021/hw02.s.html. For MIPS references see the
course references page,
https://www.ece.lsu.edu/ee4720/reference.html. Easy MIPS practice problems can be found
in the practice directory, see MIPS Homework and Practice Workflow in
https://www.ece.lsu.edu/ee4720/proc.html.

This Assignment
One goal of this assignment is to build assembly language proficiency by working with data at
different sizes and by traversing a tree. The sizes are bits for the compressed text, words for the
array of compressed text, half (2-byte) for the tree, and bytes for the dictionary. Another goal is
to provide a starting point for architectural improvements. That is, ISA and hardware changes to
make code go faster.

Huffman Compression Background
One way to compress data is to divide it up into pieces, compute a Huffman coding for the pieces,
then replace each piece with its Huffman code. The size of a Huffman code can vary from 1 bit
(yes, just one), to an arbitrarily long bit vector. Pieces that appear more frequently in the original
text will have short codes and pieces that appear less frequently will have longer codes. Consider
a file containing English text, such as the source file for the Homework 1 handout. One way of
dividing it to pieces is to make each character a piece. For Homework 1 a space was the most
frequent piece (258 times) followed by the letter “e” (174 times). They received codes 1002 and
11102, each of which is shorter than the eight bits used to encode each in the original file. The
character “8” appears just once and gets a long encoding, 110 1100 00012. The compressed data
consists of a concatenation of all of the codes. So “e e” would be encoded 111 0100 11102. The
encoded data does not contain any separators between the pieces. To decode it one needs to first
assume the code is one bit long, see if such a code exists, if not try two bits, and so on. So for the
example one would first look for a code for 12. If it didn’t exist (and it shouldn’t) one checks for
112, which also shouldn’t exist, neither does 1112 (the third try). One the fourth try we look for
11102 and find that this is a code and the value is “e”. The de-coding can continue by trying 12,
102, and finally 1002 which is the code for a space.

Huffman Huff Tree Format for This Assignment
This assignment will use a format in which text is compressed into three arrays, the compressed text,
starting at huff_compressed_text_start, a dictionary of strings, starting at huff_dictionary,
and the Huff Tree (a lookup tree), at huff_tree.

The compressed text is a long bit vector. As with Homework 1, bits are numbered in big-endian
order. The compressed text is specified using words but of course can be read using other sizes.
The dictionary of strings consists of a bunch of null-terminated strings. The Huff Tree is used to
decode compressed pieces. It is traversed using bits of the compressed text (0 for left child, 1 for
right child) and a leaf provides either an index into the dictionary or a character.

Consider the following excerpt from the homework file:

huff_compressed_text_start:

.word 0xd9ac96d8, 0x10b75d4f, 0xa06510d1, 0x7d9961e3, 0xeb6f31f1
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# Encoding: .word BIT_START, BIT_END, TREE_POS, DICT_POS, FRAG_LENGTH

huff_debug_samples:

# 0: 0 11011 -> "\n"

.word 0, 5, 0x2ee, 0xa, 1;

# 0: 5 001101 -> " ."

.word 5, 11, 0x32, 0x16, 9;

# 0:11 0110010010 -> "text"

.word 11, 21, 0x110, 0x27b, 4;

# 0:21 11011 -> "\n"

.word 21, 26, 0x2ee, 0xa, 1;

# 0:26 011000000 -> "histo"

.word 26, 35, 0xea, 0xce, 5;

# 1: 3 1000010 -> ":\n"

.word 35, 42, 0x1d6, 0x2e, 2;

The compressed text is shown as 32-bit words, under huff_compressed_text_start and as
an aid in debugging, the start of the same text is shown under huff_debug_samples. The first
piece, 110112, encodes a line feed character (we can see that by looking at the comment). The
second piece, 0011012, encodes “ .” (spaces followed by a period). The first piece is in bits 0 to 4
(inclusive) of the compressed text, and the second piece is in bits 5 to 10. The hexadecimal digits of
the compressed text can be found by concatenating the compressed pieces and then grouping them
into four-bit hex digits: 11011 001101 0110010010 → 1101 1001 1010 1100 1001 0 → d 9 a c

9 ?. That matches the start of the compressed text shown under huff_compressed_text_start.
For this assignment a piece, for example 11011, is decoded by traversing the huff_tree. Each

node in the huff_tree is 16 bits and can be one of three possible kinds: A leaf encoding a character,
a leaf encoding a dictionary entry, or an internal node (with a left and right child). If the value of
a node is <128 it is a leaf encoding a character. Otherwise if the value of a node is >=0x7000 it is
a leaf encoding a dictionary entry. Otherwise it is an internal node.

huff_tree:

# Huffman Lookup Tree

#

huff_tree: # Note: Most entries omitted.

.half 0x01fa # Tree Idx 0 Pointer to right child.

.half 0x011d # Tree Idx 1 0 Pointer to right child.

# [Many entries not shown.]

.half 0x028c # Tree Idx 378 1 Pointer to right child

# [Many entries not shown.]

.half 0x02e2 # Tree Idx 524 11 Pointer to right child.

.half 0x02c7 # Tree Idx 525 110 Pointer to right child.

# [Many entries not shown.]

.half 0x02e1 # Tree Idx 583 1101 Pointer to right child.

# [Many entries not shown.]

.half 0x000a # Tree Idx 609 11011 Literal "\n"

The Huff Tree is an array of nodes, each a 16-bit value. Let T denote such an array. The
root is T [0]. Let i indicate some position in the tree and n = T [i] denote the node at position i.
The assembler data above shows some elements of a Huff Tree. (The entire tree can be found in
hw02.s.) The numbers in binary (following the Tree Idx) show the path to that node.
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If n < 128 it is a leaf node encoding a character, and the ASCII value is n. If n ≥ 700016 then
the node is a leaf encoding a dictionary entry. The address of the first character of the dictionary
entry is huff_dictionary + n - 0x7000. The strings in the dictionary are null-terminated.

Let n = T [i] be a non-leaf node, so that n ≥ 128 and n < 700016. Its left child is at T [i + 1]
and its right child is at T [n− 128].

Here is how piece 11011 of the compressed text would be decoded based on the data in the
example above. Start at the root, retrieving T [0]. The value is 1fa16, which is an internal node.
The first bit of 11011 is 1 so we traverse the right child which is at 1fa16 − 8016 = 17a16 = 378.
The entry at tree index 378 (based on the table) is 28c16 which again is an internal node. The
second bit of the piece is 1 so we compute the index of the right child: 28c16− 8016 = 20c16 = 524.
The next compressed bit is zero so we proceed to the left child, at index 524 + 1. The tree excerpt
above includes the entry leading to the leaf node.

The routine below (which can be found in huff-decode.cc in the homework package) decodes
the piece starting at bit bit_offset and writes the decoded piece at dcd_ptr.

void

hdecode(HData& hd, int& bit_offset, char*& dcd_ptr)

{

// Decode one piece, starting at bit position bit_offset and

// write decoded piece starting at dcd_ptr.

// hd.huff_compressed: Compressed text. An array of 32-bit values.

// hd.huff_tree: A tree used to decode the compressed pieces.

// hd.huff_dictionary: Decompressed pieces.

// Start lookup at root of Huffman tree (tree_idx = 0).

//

int tree_idx = 0;

while ( true )

{

// Retrieve node.

uint16_t node = hd.huff_tree[tree_idx];

if ( node < 128 )

{

// Node is a leaf encoding a character.

char c = node; // Node value is an ASCII character.

*dcd_ptr++ = c; // Write character to decoded text pointer ..

return; // .. and return.

}

else if ( node >= 0x7000 )

{

// Node is a leaf holding an index into the dictionary.

// Compute dictionary index.

int idx = node - 0x7000;
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// Compute address of first character of dictionary entry.

char* str = hd.huff_dictionary + idx;

// Copy the dictionary entry.

while ( *str ) *dcd_ptr++ = *str++;

return;

}

else

{

// Node is not a leaf, need to set tree_idx to the index of

// either the left or right child of the node. The left

// child is used if the next bit of compressed text is zero

// and the right child is used if the next bit of compressed

// text is 1.

// Get the next bit of compressed text.

//

int comp_idx = bit_offset / 32; // Index of word in huff_compressed.

int bit_idx = bit_offset % 32; // Index of bit. MSB is 0.

uint32_t comp_word = hd.huff_compressed[ comp_idx ];

// Move needed bit to LSB in a way that sets other bits to zero.

bool bit = comp_word << bit_idx >> 31;

bit_offset++;

if ( bit )

{

// Set tree_idx to index of the right child.

tree_idx = node - 128;

}

else

{

// Set tree_idx to index of the left child.

tree_idx++;

}

}

}

}

Homework Package
The homework package consists of files to help with your solution and to satisfy curiosity. Your
solution, of course, goes in hw02.s, which is in the usual SPIM assembler format for this class.

The Huffman compression was performed by the huff perlscript. To compress MYFILE invoke
it using ./huff MYFILE. With no arguments it compresses itself. It will write two files, encoded.s
and encoded.h. The contents of encoded.s could be copied into the hw02.s (replacing what’s
there). Do this if you’d like to run your code on some other input.

File huff-decode.cc is a C++ routine that includes encoded.h and decodes it. It needs to
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be re-built for each new input file. (Sorry, I’ve already spent too much time on the assignment.)
Here is how it might be used on a new file:

[koppel@dmk-laptop hw02]$ ./huff ../../hw02.tex

File ../../hw02.tex

Words 366 Codes 366 Resorts 11

[koppel@dmk-laptop hw02]$ gmake -j 4

g++ --std=c++17 -Wall -g huff-decode.cc -o huff-decode

[koppel@dmk-laptop hw02]$ ./huff-decode

Decoded:

\magnification 1095

% TeXize-on

\input r/notes

The assignment was created by compressing histo-bare.s.

Problem 1: Complete routine hdecode so that it decodes the piece of Huffman-compressed text
starting at bit number a1, writes the decoded text to memory starting at the address in a2, and
sets registers v0, v1, a1, and a2 as described below. (Yes, a0 is unused.)

Use symbol huff_compressed_text_start for the address of the start of the compressed text,
huff_tree for the address of the start of the Huff Tree, and huff_dictionary for the address of
the start of the dictionary.

When hdecode returns set v0, v1, a1, and a2 as follows. Set a1 to the next bit position to
use. For example, if the compressed piece were 3 bits and hdecode were called with a1=100 then
when hdecode returns a1 should be set to 103. Set a2 to the address at which to write the next
decoded character. For example, if the decoded text is 9 characters (not including the null) and
initially a2=0x1000 then when hdecode returns a2 should be set to 0x1009. When hdecode returns
v0 should be set to the address of the leaf in the Huff Tree that was used and v1 should be set to
either the address of the dictionary entry used or the value of the character.

Note that the return values of a1 and a2 are useful because they are at the values needed to
call hdecode again for the next piece. The return values of v0 and v1 are for debugging.

When hw02.s is run hdecode will be called multiple times, the return values checked, and the
results printed on the console. It will be called for the first 200 pieces, or until there are three
errors, whichever is sooner. A tally of errors is printed at the end, followed by the decoded text.

Pay attention to the error messages. Once syntax and execution errors are fixed, debug your
code by tracing. To trace start the simulator using Ctrl - F9 if running graphically or just F9

non-graphically. At the spim prompt type step 50 to execute the next 50 instructions. The trace
shows line numbers of source assembly to the right of the semicolon. It also shows changed register
values.

Single stepping is most useful when the first piece fails, which is likely to happen at first. But
before long it will be correct and so viewing the trace will be a pain. To have the testbench start
at your erroneous piece first locate the piece after label huff_debug_samples. The first number
after .word is the Bit Position referred to in the “Decoding of..” message. Copy that line (perhaps
with the comment above it) to just below the label huff_debug_samples.
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LSU EE 4720 Homework 3 Due: 1 March 2021

Do not hand in paper copies. Instead, E-mail your solution to koppel@ece.lsu.edu. The preferred format
is a PDF file.

Problem 1: Note: The following problem was assigned in each of the last five years, and its solution is
available. DO NOT look at the solution unless you are lost and can’t get help elsewhere. Even in that case
just glimpse. Appearing below are incorrect executions on the illustrated implementation. For each one
explain why it is wrong and show the correct execution.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D
 

dstdst

E
2'b0 format

immed =

(a) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

(b) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

(c) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

(d) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB
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Problem 2: Appearing below are incorrect executions on the illustrated implementation. Notice that this
implementation is different than the one from the previous problem. For each execution explain why it is
wrong and show the correct execution.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

(a) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

(b) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

(c) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

(d) Explain error and show correct execution. Note that this execution differs from the one from the previous
problem.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID ----> EX ME WB
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Problem 3: Appearing below is the labeled MIPS implementation from 2018 Midterm Exam Problem 2(b),
and as in that problem each mux in the implementation below is labeled with a circled letter, and mux inputs
are numbered. Some wires are colored to make them easier to follow. Write code sequences that use the
mux inputs as requested below. Some code sequences may consist of a single instruction.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In
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Mem
Port

Addr

Data
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Addr

D
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Mem
Port

Outrtv

ALU
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dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

31:2

31:2

0
1

2
3 0

1
2

3
0

1
2

3

0
1

2

E
D

C

0

B

1

A

0 1

F

(a) Use F0.

(b) Use F0 and C3 at the same time. The code should not suffer a stall.

(c) Explain why its impossible to use E0 and D0 at the same time.
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Problem 4: This problem appeared as Problem 2c on the 2020 final exam. Appearing below is our bypassed,
pipelined implementation followed by a code fragment.

It might be helpful to look at Spring 2019 Midterm Exam Problem 4a. That problems asks for the
execution of a loop and for a performance measure based upon how fast that loop executes.

(a) Show the execution of the code below on the illustrated implementation up to the point where the first
instruction, addi r2,r2,16, reaches WB in the second iteration.

(b) Based on your execution determine how many cycles it will take to complete n iterations of the loop.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

LOOP:

addi r2, r2, 16

lw r1, 8(r2)

sw r1, 12(r3)

bne r3, r4, LOOP

addi r3, r3, 32

sub r10, r3, r2
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LSU EE 4720 Homework 4 Due: 15 March 2021

Do not hand in paper copies. Instead, E-mail your solution to koppel@ece.lsu.edu. The preferred format
is a PDF file.

Problem 1: Recall that code for the solution to Homework 2 included a loop that traversed a tree. The
decision on whether to descend to the left or right child of a node was based on the next bit of compressed
text. Several instructions were devoted to testing that next bit, and to checking whether a new word of
bits needed to be loaded. In this assignment we are going to add a new instruction, bnbb (branch next bit
big-endian), to MIPS that will allow such code to be written with fewer instructions.

Instruction bnbb rV, rP, TARG0, TARG1 works as follows. Register rV holds a bit vector, and register
rP holds a position in the bit vector. (A bit vector is just a number, but it’s called a bit vector when we are
interested in examining specific bits in the number’s binary representation.) If the value of rP is 0 then it
refers to the MSB of rV, if the value of rP is 1 it refers to position 1 (to the right of the MSB), etc. Let pos
refer to bits 5:0 of rP. If pos is in the range 0 to 31 (inclusive) then bnbb will be taken, otherwise (values
from 32 to 63) bnbb is not taken. When bnbb is taken it will branch to TARG0 if bit pos in rV is 0 and to
TARG1 if bit pos in rV is 1. Regardless of whether bnbb is taken register rP is written with rP+1. See the
code and comments below:

# With sample values below bnbb is taken to LCHILD since bit 30 of 0x5 is zero.

# $t8 = 0x5 (bit vector), $t9 = 30 (pos)

bnbb $t8, $t9, LCHILD, RCHILD

addi $v0, $t9, 0 # Delay slot insn. Here t9 is 31.

# This code is only executed when $t9 in range 32-63 before bnbb executes.

# Fall through. Updates t8 and t9

addi $t6, $t6, 4 # Update address ..

lw $t8, 0($t6) # No more bits, load a new word.

addi $t9, $0, 0

The bnbb instruction can be used to eliminate at least two instructions in the hw02 solution. First,
there would no longer be a need to shift the bit vector (the sll $t8, $t8, 1 instruction). Instead, the bnbb

instruction would automatically increment a bit position register. Also, there would no longer be a need for
a second branch to check whether all 32 bits in the bit vector were examined. (That was the bne $a1, $t9,

EXAMINE_NEXT_BIT instruction.)
In the subproblems below complete the specification for bnbb and show hardware to implement it.
An Inkscape SVG version of the hardware diagram can be found at

https://www.ece.lsu.edu/ee4720/2021/hw04-br-3way.svg.

(a) The description above leaves out a few details. In this problem fill them in. It may be helpful to attempt
a solution to the next parts before answering this part.

Show a possible encoding for bnbb. That possible encoding must be based on format I. Show how the
two targets are specified and and whether rV is encoded in the rt or rs fields.

(b) For bbnb to work correctly the rP register value needs to be incremented. It would be nice if an existing
ALU operation could do that. Explain why the add operation, used for the add, addi, lw, and other
instructions, would not work.
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(c) The diagram below shows a five-stage MIPS implementation including some branch hardware. Also shown
is logic to detect the bnbb instruction and two placeholder wires, bnbb-t0-taken and bnbb-t1-taken. Wire
bnbb-t0-taken should be set to 1 if there is a bnbb in the ID stage and it should be taken to TARG0. The
definition of bnbb-t1-taken is similar. If there is not a bnbb in ID or if there is and it’s not taken, then
both wires should be 0.

In this problem design the logic to drive those wires. (The solution to this and the following problem
can be done on the same diagram, or on separate diagrams.)

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv
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=
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(d) Modify the hardware below so that when bnbb-t0-taken is 1 target TARG0 is used and when bnbb-t1-

taken is 1 target TARG1 is used. Follow the points below.

• Design for lower cost rather than higher performance.

• There is an unused input on the PC mux. That can be used, but does not have to be used.

• As always, hardware must be reasonably efficient.

• As always, do not break other instructions.

IR
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20:16
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LSU EE 4720 Homework 5 Due: 12 April 2021

Do not hand in paper copies. Instead, E-mail your solution to koppel@ece.lsu.edu. The preferred format
is a PDF file.

Problem 1: Look over SPECcpu2017 run and reporting rules, available at
http://www.spec.org/cpu2017/Docs/runrules.html. Start with Sections 1.1 to 1.5 and read other sec-
tions as needed to answer the questions below.

(a) Section 1.2.3 of the run and reporting rules list several assumptions about the tester.
Consider the following testing scenario: The SUT (system being benchmarked) is a new product and

that the tester works for the company that developed it. The company spent lots of money developing the
product and their potential customers will use SPECcpu2017 when making buying decisions.

Explain why assumptions b and c seem reasonable given the testing scenario above.

Explain why assumption d also seems reasonable, given other stipulations set forth in the run and reporting
rules (and discussed in class).

(b) The SPECcpu benchmarks can be prepared at base and peak tuning levels (or builds). These are described
in Section 1.5. Section 2.3.1 stipulates that base optimizations are expected to be safe.

What is an unsafe optimization? (Points deducted for irrelevant or lengthy answers, especially if they appear
copied.)

Does that mean peak optimizations are unsafe? Does that mean peak results can be obtained with unsafe,
don’t-try-this-at-home optimizations?

Why would it be bad if peak results were obtained with unsafe optimizations?

What rules ensure that optimizations used to obtain peak results aren’t too unsafe?
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Problem 2: The illustration below is our familiar 5-stage MIPS implementation with the destination reg-
ister mux and an immediate mux shown. Modify it so that it is consistent with the RISC-V RV32I version
as described below. The modifications should include datapath and labels, but not control logic. For this
problem use RISC-V specification 20191213 available at
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf.

The Inkscape SVG source for the image is at
https://www.ece.lsu.edu/ee4720/2021/hw05-mips-id-mux.svg. It can be edited with your favorite SVG
or plain text editor.

In some ways RISC-V is similar to MIPS, but there are differences. Pay attention to the encoding of
the store instructions. Also pay attention to how branch and jump targets are computed.

Be sure to change the following:

Bit ranges at the register file inputs.

The bit ranges used to extract the immediate.

The bit ranges used for the offsets of branch and jump instructions and the hardware used to compute branch
and jump targets.

The inputs to the destination register mux (which connects to the dst pipeline latch).

The names used in the pipeline latches.

Add or remove unneeded pipeline latches. (Such changes will be needed for branches and jumps.)

Consider the following instructions:

Two-register and immediate arithmetic instructions, such as add and addi.

The lui instruction (which is similar but not identical to MIPS’ lui).

Branch instructions as well as jal and jalr.

The load and store instructions. (Only the store instructions will require a change beyond what is required
for arithmetic instructions.)

Note:

• Do not show control logic such as logic driving mux select inputs.

• Do not show the logic to decide whether a branch is taken.

2

← → Spring 2021 ← → Homework 5 Homework Solution hw05.pdf

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://www.ece.lsu.edu/ee4720/2021/hw05-mips-id-mux.svg
https://www.ece.lsu.edu/ee4720/2021/hw05.pdf


SVG source at https://www.ece.lsu.edu/ee4720/2021/hw05-mips-id-mux.svg.
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LSU EE 4720 Homework 6 Due: 16 April 2021

Do not hand in paper copies. Instead, E-mail your solution to koppel@ece.lsu.edu. The preferred format
is a PDF file.

Problem 1: Solve 2020 final exam Problem 2 a and b, in which the execution of code on a MIPS FP
implementation is to be shown. Note that the FP adder in this implementation is different than the FP
MIPS pipeline used in the classroom examples.

Problem 2: Solve 2020 final exam Problem 2d and 2e, in which the execution of code on a MIPS superscalar
implementation is to be shown.

1

← → Spring 2021 ← → Homework 6 Homework hw06.pdf

https://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/2021/hw06.pdf


LSU EE 4720 Homework 7 Due: 19 April 2021

Do not hand in paper copies. Instead, E-mail your solution to koppel@ece.lsu.edu. The preferred format
is a PDF file.

Problem 1: Solve 2020 final exam Problem 1 in which a 2-way superscalar implementation is to be improved
using the so-called second-chance ALU.
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LSU EE 4720 Homework 8 Due: 23 April 2021

Do not hand in paper copies. Instead, E-mail your solution to koppel@ece.lsu.edu. The preferred format
is a PDF file.

Problem 1: Solve 2020 final exam Problem 3a in which a system using a local and a bimodal predictor is
to be examined. See past exams and their solutions for similar problems.

Problem 2: Solve 2020 final exam Problem 3b which asks some easy-if-you-understand-things questions
about hardware implementing a local predictor.

Problem 3: Solve 2020 final exam Problem 4c, in which contrasts between two machines with equal floating-
point are to be found.

Problem 4: Solve 2020 final exam Problem 4f, a pandemic-themed short answer question.
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LSU EE 4720 Homework 1 Due: 28 February 2020

WARNING: Problem 3 may be the hardest.

Problem 1: Note: The following problem was assigned in each of the last four years, and its solution is
available. DO NOT look at the solution unless you are lost and can’t get help elsewhere. Even in that case
just glimpse. Appearing below are incorrect executions on the illustrated implementation. For each one
explain why it is wrong and show the correct execution.
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(a) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

(b) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

(c) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

(d) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB
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Problem 2: Appearing below is the labeled MIPS implementation from 2018 Midterm Exam Problem 2(b),
and as in that problem each mux in the implementation below is labeled with a circled letter, and mux inputs
are numbered. Some wires are colored to make them easier to follow. Write code sequences that use the
mux inputs as requested below. Some code sequences may consist of a single instruction.
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(a) Use F0.

(b) Use F0 and C3 at the same time. The code should not suffer a stall.

(c) Explain why its impossible to use E0 and D0 at the same time.

Problem 3: Solve 2019 final exam Problem 5a, which asks that two MIPS assembly language routines be
re-written to be correct given an accompanying C routine.
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LSU EE 4720 Homework 2 Due: 9 March 2020

Problem 1: The illustration below (and on the next page, there’s no need to squint) shows our 5-stage
MIPS implementation with some new hardware including: a Y1 unit in EX and a Y2 unit in ME. These are
the two stages of a pipelined integer multiplication unit. They are to be used to implement a MIPS32 mul

instruction (not to be confused with a MIPS-I mult instruction). The mul instruction executes as you would
expect it to, for example mul r1, r2, r3 writes r1 with the product of r2 and r3. Because of the need to
reduce (add together) all of the partial products, the multiplication hardware spans two stages, in contrast
to an integer add which is one in one stage (in the ALU of course). Note: The mult instruction was the
subject of 2013 Homework 4.
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Here is how mul should execute:

# Cycle 0 1 2 3 4 5 6 7 8

add R1, r2, r3 IF ID EX ME WB

mul r4, R1, r5 IF ID Y1 Y2 WB

mul R6, r7, R1 IF ID Y1 Y2 WB

sub r8, R6, r9 IF ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8

First of all, notice that there is no problem over-
lapping the two multiplies. Also notice that there is no
problem bypassing a value to the source of a multiply.

(a) Add datapath hardware so that the multiply can execute as shown above.

• Assume that the Y1 and Y2 units each have about two multiplexor delays of slack. (Meaning if the
path into the inputs of Y1 or out of the output of Y2 passes through more than two multiplexors the
clock period would have to be increased, and we don’t want that.)

• Pay attention to cost. Assume that the cost of one pipeline latch bit is the same as two multiplexor
bits. Make other reasonable cost assumptions.

• Do not lengthen the critical path.

• Make sure that the code fragment above will execute as shown.

• Don’t break other instructions.

(b) Add control logic for the existing WB-stage multiplexor and for any new multiplexors you might have
added. Hint: This problem is easy, especially if you use two-input muxen.

• Use a pipeline execution diagram (such as the one above) to make sure that the value computed for
a multiplexor select signal is the correct value when it is used, perhaps several stages later.

(c) At the lower-right is a big OR gate, its output is labeled STALL. Add an input to that OR gate which will
be one when an instruction must stall due to a dependency with a mul. The sub from the execution above
suffers such a stall.

Use next page for solution.
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(Not interesting enough? There is another problem on the next page!) Use this page for the solution or
download illustration Inkscape SVG source from https://www.ece.lsu.edu/ee4720/2020/hw02-p1.svg

and use that one way or another to prepare a solution.
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Problem 2: Though two stages (Y1 and Y2) may be necessary to compute the product of arbitrary 32-bit
signed integers, there are special cases that can be computed in less time, for example when either operand
is zero or one.

If the Y units compute the product then it doesn’t matter what operation the ALU is set to, but to
handle special case(s) suppose that the control logic set the ALU operation to bitwise AND when decoding
a mul instruction. In that case the output of the ALU would be correct for some multiplication operations
and so the product would be ready in time to bypass to the next instruction. Add control logic to detect
such situations and suppress the stall when present. Don’t design the logic to set the ALU operation itself,
we’ll leave that to the Magic Cloud [tm].

3

← → Spring 2020 ← → Homework 2 Homework Solution hw02.pdf

https://www.ece.lsu.edu/ee4720/2020/hw02.pdf


LSU EE 4720 Homework 3 Due: 30 March 2020

Please E-mail solutions of this assignment to koppel@ece.lsu.edu by the evening of the due date. PDF files
are preferred. These can be generated by scanning software that you might have installed with a multifunction
printer. A PDF can also be assembled from photos of a hand-completed copy. The disorganized homework
penalty will be ignored for the remainder of the semester (unless we return early) so an E-mail with multiple
image attachments will be accepted without penalty. Do not physically mail them to my office address, I will
not be able to pick them up.

Problem 1: Appearing below is the solution to Homework 2 with labels added to some wires, which is
followed by an execution of the code showing values on those labeled wires. The execution is based on the
code fragment shown plus nop instructions before the first instruction (addi) and after the last instructions
(nop).
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# Cycle 0 1 2 3 4 5 6

addi R2, r0, 0 IF ID EX ME WB

mul R1, R2, r3 IF ID EX ME WB

add r4, R2, R1 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

A 0 1 1

B 0 1 0

C 0 1 1

# Cycle 0 1 2 3 4 5 6

D 0 1 0

E 1 1 1

F 0 0 0 0

# Cycle 0 1 2 3 4 5 6

G 2 1 4

H 2 1 4

# Cycle 0 1 2 3 4 5 6
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(a) Refer to the table on the previous page for this problem. Notice that the value in the B row (above) in
cycle 1 is 0. According to the problem statement the instruction before addi is a nop.

Why would that value be 0 regardless of what instruction came before addi?

Suppose the addi r2, r0, 0 were changed to addi r2, r7, 0. Why would the value in the B row still
be 0?

(b) Appearing below is a different code fragment. Complete the table so that it shows the values on the
labeled wires.

# Cycle 0 1 2 3 4 5 6 7

ori r2, r6, 7 IF ID EX ME WB

sub r1, r2, r2 IF ID EX ME WB

mul r3, r8, r1 IF ID EX ME WB

mul r5, r3, r4 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

A

B

C

# Cycle 0 1 2 3 4 5 6 7

D

E

F

# Cycle 0 1 2 3 4 5 6 7

G

H

# Cycle 0 1 2 3 4 5 6 7
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(c) Appearing below are completed tables, but without a code fragment. Show a code fragment that could
have produced those table values.

The originally assigned problem contained an error which made it difficult to solve. Shown below is the
originally table, followed by the intended table. The solution uses the intended table.

# As originally assigned. Contains an error in F at cycle 3.

# Cycle 0 1 2 3 4 5 6 7

A 0 1 0 1

B 0 1 1 0

C 0 1 1 1

# Cycle 0 1 2 3 4 5 6 7

D 0 1 0 0

E 0 0 0 0

F 0 0 0 0

# Cycle 0 1 2 3 4 5 6 7

G 2 3 4 8

H 2 3 4 8

# Cycle 0 1 2 3 4 5 6 7

# Intended problem.

# Cycle 0 1 2 3 4 5 6 7

A 0 1 0 1

B 0 1 1 0

C 0 1 1 1

# Cycle 0 1 2 3 4 5 6 7

D 0 1 0 0 0

E 0 0 0 0

F 0 1 0 0 0

# Cycle 0 1 2 3 4 5 6 7

G 2 3 4 8

H 2 3 4 8

# Cycle 0 1 2 3 4 5 6 7
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Problem 2: Appearing below and on the next page is the solution to Homework 2 Problem 1. In this
problem add hardware to handle a different and less special multiplication special case. Suppose that the
middle output of the Y1 stage of the multiplier held the correct product whenever the high 24 bits of its b

input are zero. For example, when b is 1, 5, or 255. Call such values small. In all cases the correct product
appears at the output of Y2.

Note: All outputs of Y1 arrive with zero slack, even the center output with the small b special case.
That means that nothing can be done with these values until the next clock cycle, at least without reducing
the clock frequency.
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(a) Add hardware to bypass the product to the ALU and to the rtv mux when b is small. (There is a larger
diagram on the next page.) The bypass should allow the first code fragment below to execute without a
stall.

(b) Add control logic to suppress the stall when it is possible to bypass.

In the first code fragment below the stall is avoided because the b value (which is the rtv) is small, in
the second it is too large.

# Cycle 0 1 2 3 4 5 6 7

addi r1, r0, 23 IF ID EX ME WB

mul r2, r3, r1 IF ID EX ME WB

sub r4, r2, r5 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

addi r1, r0, 300 IF ID EX ME WB

mul r2, r3, r1 IF ID EX ME WB

sub r4, r2, r5 IF ID -> EX ME WB

• Make sure that the changes don’t break existing instructions.

• As always avoid costly solutions.

• As always pay attention to critical path.
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The SVG source for the illustration below is at https://www.ece.lsu.edu/ee4720/2020/hw03-p2.svg.
It can be edited using Inkscape or any other SVG editor, or (not recommended) a text editor.
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LSU EE 4720 Homework 4 Due: 1 April 2020

It’s up to all of us: r > 2 m⇒ Re < 1 where r is the radius of the largest circle with you at the center
and containing only people in your household, and Re is the effective reproduction number, the number of
people infected by an infected person.

Problem 1: Appearing below is the code fragment from Homework 3.

# Cycle 0 1 2 3 4 5 6

addi R2, r0, 0 IF ID EX ME WB

mul R1, R2, r3 IF ID EX ME WB

add r4, R2, R1 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

(a) Does this code fragment look like it was compiled with optimization on?
If your answer is something like “yes, it could be part of optimized code” then explain why you think

it so and provide any missing context. (Do not change or re-arrange the three instructions above.)

If your answer is something like “no, it does not appear optimized” then show what the code would look
like after optimization. Hint: A correct answer can start with either “Yes it does” or “No it doesn’t”. The
“No” answer is straightforward.

Problem 2: MIPS does not appear to have a muli instruction.

(a) Comment on the following:

MIPS has a mul instruction but does not have a muli instruction because, as the solution to Homework
2 shows, the additional hardware for muli (beyond that used for mul) would be too costly.

Is the statement above reasonable or unreasonable? Explain.

(b) Show the encoding of MIPS instruction mul r1, r2, r3. Show all 32 bits of the instruction, divided
into fields (each field can be shown in the radix of your choice). (The MIPS ISA manuals are linked to the
course Web page. Instruction encodings are in Volume II.)

(c) Some possible reasons that there is no muli instruction in MIPS is that either there are no Format-I
opcodes available (they are all used by other instructions) or that the few remaining opcodes are being kept
in reserve for a better instruction than a muli.

Based on the MIPS Architecture Manuals (they are linked to the course references page) how many
opcodes are available for new Format-I instructions? The easy way to solve this is to find the right table.
The hard way to solve this is to go through the 144 or so pages of instruction descriptions. Hint: Look in
volume I.
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Problem 3: Perhaps you saw this coming: Time to add muli to MIPS.

(a) Show how a Format-R muli instruction with a ten-bit immediate might be defined using unused fields
in the Format-R encoding. Make up your own function field value, but try to pick one that’s unused. (See
the previous problem.) Show how muli r1, r2, 43 might be encoded for your muli definition.

(b) Modify the hardware below (there’s a copy on the next page) to implement this new instruction. The
modified hardware should provide the immediate needed by muli. Show datapath but not control logic. Of
course, any changes should not break existing instructions.

Pay attention to cost and performance. This can easily be solved by adding a mux in the ID stage.
Hint: The solution is not much more than a mux. Be sure to carefully label the inputs.
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The SVG source for the diagram below is available at
https://www.ece.lsu.edu/ee4720/2020/hw03-p2.svg.
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LSU EE 4720 Homework 5 Due: 27 April 2020

It’s up to all of us: r > 2 m⇒ Re < 1 where r is the radius of the largest circle with you at the center
and containing only people in your household, and Re is the effective reproduction number, the number of
people infected by an infectious person.

Problem 1: Solve 2019 Final Exam Problem 2, which asks for a pipeline execution diagram of FP code on
our FP MIPS implementation, but with the comparison functional unit and floating-point condition code
register added. For more information on the implementation of the floating-point compare instructions see
2018 Final Exam Problem 3. Please don’t get confused about which problem to solve and which to use for
background!

Problem 2: The following question appeared as Spring 2010 Homework 3 Problem 3, but in this ten-year
anniversary version the solution must contain control logic for the multiplexors at the inputs to the A1 and
A2 units. Try to initially solve it without looking at the solution, but use the solution if you get stuck.

Replace the fully pipelined adder in our FP pipeline (which appears on the next page) with one with an
initiation interval of two and an operation latency of four. (The existing FP adder has an initiation interval
of one and an operation latency of four.) See 2010 Homework 3 Problem 3 for more details.

Show datapath and control logic. Be sure to show control logic for the multiplexors at the inputs to
A1 and A2, this control logic does not appear in the solution to the 2010 assignment. Hint: This additional
control logic is really easy to do, it can be done just with wires, no gates!
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An Inkscape SVG version of the MIPS implementation below can be found at
https://www.ece.lsu.edu/ee4720/2020/mpipei_fp_by.svg.
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LSU EE 4720 Homework 6 Due: 1 May 2020

It’s up to all of us: r > 2 m⇒ Re < 1 where r is the radius of the largest circle with you at the center
and containing only people in your household, and Re is the effective reproduction number, the number of
people infected by an infectious person.

Problem 1: Solve 2017 Final Exam Problem 2, which asks PED of some code fragments on a 2-way
superscalar MIPS implementation. The solution is available, but make every effort to solve it on your own.
Use the posted solution only if you get stuck. Solving the 2017 problem will make the problem below easier.

Problem 2: Solve 2019 Final Exam Problem 1, including the bonus question (part d), which asks for
datapath and control logic for a 2-way superscalar implementation, some associated with a dependence
leading to a sw instruction. Parts a and b ask for typical hardware. Part c is more interesting because the
hardware is essentially avoiding a stall by skipping an instruction in a dependence chain. The dependence
chain is or → add → sw and the skipped instruction is the or. Part d, the bonus question, asks whether
this is worth it.
An Inkscape SVG version of the MIPS implementation from Problem 1 of the exam can be found at
https://www.ece.lsu.edu/ee4720/2019/fe-fuse.svg.
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LSU EE 4720 Homework 1 Due: 24 January 2019

Problem 1: Follow the instructions for class account setup and for homework workflow in
https://www.ece.lsu.edu/ee4720/proc.html. Review the comments in hw01.s and look for the
area labeled “Problem 1.”

Those who want to start before getting to the lab can find the assembler for the entire
assignment at https://www.ece.lsu.edu/ee4720/2019/hw01.s.html and the C++11 code at
https://www.ece.lsu.edu/ee4720/2019/hw01-equiv.cc.html. A good reference for C++ is
https://en.cppreference.com/. For MIPS references see the course references page,
https://www.ece.lsu.edu/ee4720/reference.html. Easy MIPS practice problems can be found
in the practice directory, see MIPS Homework and Practice Workflow in
https://www.ece.lsu.edu/ee4720/proc.html.

File hw01.s in the assignment package is where your solution should go. Briefly, complete
routine get_index so that it finds the position of a word in a list. It will use a hash table to speed
things up if the same word is used twice. (Yes, you’re going to code all that in assembler!) File
hw01-equiv.cc contains C++11 code that does the same thing. In particular, routine App::lookup
does much of what get_index is supposed to do.

Routine get_index is called with four arguments. The first, a0, is the address of a C-style
string, call this string the lookup word. Argument a1 is the address of a table of C-style strings,
call this the word list. (See word_list_start in the code.) Argument a2 is the address of the end
of the word list, and a3 holds the address of a 1024-byte area of memory called the hash table.

The routine is supposed to check if the lookup word is in the word list. When the routine
returns register v0 should be set to 0 if the lookup word was not found in the word list, otherwise v0
should be set to the position in the word list. The first word (aardvark) is at position 1, the second
is at position 2, etc. The word list contains one string after another. That is, the character after
the null terminating aardvark is a, the first letter of the second word, ark. The word list layout
used in the C++ code, App::lookup, is the same as the layout used in assembler, so inspecting
the code in App::lookup might help in understanding the layout of the word list.

(a) Add code to get_index so that it sets v0 as described above. The testbench should show zero
Pos errors.

(b) Complete get_index so that it uses a hash table to speed lookups. Suppose that the number
of words in the word list is large (even if it’s small for this assignment), and also do not assume
that the list is alphabetized. Note: That was the original plan.

Let n denote the number of bytes in the word list. The value of n is a2-a1 when get_index

starts and always is word_list_end - word_list_start. The amount of work needed to determine
whether the lookup word is in the word list is O(n). Remember, we don’t like O(n), we much prefer
O(log n) or better yet O(1). As the alert students suspect, this is where the hash table comes in.

When first called, get_index should check whether there is an entry in the hash table for
the lookup word. It should do so by computing a hash of the first three characters of the lookup
word using the same hash function as App::hash_func (shown below). Note that App::hash_func
returns a value in the range 0-255, call that the hash index.

int hash_func(const char* str)

{

return

( str[0] ^ ( str[1] >> 2 ) ^ ( str[1] << 6 ) ^

( str[2] << 4 ) ^ ( str[2] >> 4 ) ) & hash_mask;
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}

Each entry in the hash table consists of two 16-bit values, see the Hash_Elt structure. The
first 16 bits is an offset, the second is the pos.

struct Hash_Elt {

int16_t offset;

int16_t pos;

};

The pos member indicates the position of the word in the word list, or 0 if that hash entry has
not been initialized. Member offset is the character offset in the word list. That is, a1 + offset

is the address of the first character of the word.
The C++11 code below first computes the hash for the lookup word (word), retrieves the

hash table entry, then checks to see if the entry is a hit. To be a hit the pos member must be
non-zero and the word at offset must match word. (This is necessary because two different words
can generate the same hash index.)

Lookup_Info lookup(const char *word)

{

// Look up word in hash table.

//

const int hash = hash_func(word);

Hash_Elt& elt = hash_table[ hash ];

Lookup_Info li;

li.hash = hash;

// Return if hash table hit.

//

if ( elt.pos && streq( &words[elt.offset], word ) )

{

li.pos = elt.pos;

li.in_hash = true;

return li;

}

The li object has information about the match. In the assembler code the same information
is provided in v0 and v1.

If there is a miss in the hash table, scan for the word. If it is in the word list then update
the hash table so that the next time there will be a hash table hit. That is performed by the
App::lookup by writing the hash table element reference, elt, that it had retrieved.

// Scan word list to find word.

//

int offset = 0, pos = 0;

while ( words[offset] )

{

if ( streq( &words[offset], word ) )

{
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// Word has been found, add to hash table and return index.

elt.offset = offset;

li.pos = elt.pos = pos;

return li;

}

// Word not found, advance to next word. Assembler can be faster.

offset += strlen( &words[offset] ) + 1;

pos++;

}

// Word not in word list, return 0.

li.pos = -1;

return li;

When the the code in hw01.s is run a testbench will call get_index for multiple words. The
console will show the position and hash returned for the word, an X to the right of the position
indicates that it is wrong, and underscore indicates that it is correct. Two characters are shown
to the left of the hash index (labeled Hash). The first character, X or _, indicates whether the
hash table lookup result is correct, the second character indicates whether the hash index itself is
correct. At the end there will be a tally of the total number of errors.
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LSU EE 4720 Homework 2 Due: 13 February 2019

The solution to several of the problems in this assignment requires material about to be covered in
class, in particular, stalling instructions to avoid hazards. For coverage of this material see slide set six,
https://www.ece.lsu.edu/ee4720/2019/lsli06.pdf. For a solved problem see 2014 Homework 1 Problem
3. Feel free to look through old homework and exams for other similar problems, but when doing so make
sure that the MIPS implementation matches the one in this problem: the muxen at the ALU inputs should
each have just 2 inputs.

Problem 1: Note: The following problem was assigned in each of the last three years (though not in color),
and its solution is available. DO NOT look at the solution unless you are lost and can’t get help elsewhere.
Even in that case just glimpse. Appearing below are incorrect executions on the illustrated implementation.
For each one explain why it is wrong and show the correct execution.
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(a) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(b) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(c) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7
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(d) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

Problem 2: The MIPS code below is taken from the solution to 2018 Homework 1. Show the execution of
this MIPS code on the illustrated implementation for two iterations. The register file is designed so that if
the same register is simultaneously written and read, the value that will be read will be value being written.
(In class we called such a register file internally bypassed.)

• Check carefully for dependencies.

• Focus on when the branch target is fetched and on when wrong-path instructions are squashed.

• Be sure to stall when necessary.
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CLOOP:

lbu $t0, 0($t4)

sb $t0, 0($a1)

addi $t4, $t4, 1

bne $t4, $t5, CLOOP

addi $a1, $a1, 1
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LSU EE 4720 Homework 3 Due: 20 February 2019

Before solving the branch hardware problem below it might be helpful to look at 2016 Homework 2.

Problem 1: The code below should suffer a stall on the illustrated implementation due to a dependency
between the addi and bne instructions. The stall can be avoided by scheduling the loop, but lets consider a
hardware solution for code fragments like this in which an addi rX, rY, IMM is followed by a bne rX, r0,

T or by a beq rX, r0, T.

LOOP:

addi r3, r3, -1

bne r3, r0, LOOP

lw r1, 4(r1)

One way to avoid the stall (which would work for more than just the cases outlined above) would be
to have the ALU generate an =0 signal which, if the dependencies were right, could be used by the branch
hardware. Alas, the ALU people are on vacation, so lets try something else.

As alert students may have realized by now, all the branch hardware has to do is check whether rY ==

-IMM, which is r3 == 1 in the example. The comparison itself can be done using the existing comparison
logic. The challenge is delivering the operands to that logic at the right time.
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Attention students who have forgotten how to use a pencil (or never learned): An Inkscape SVG version of
the implementation can be found at https://www.ece.lsu.edu/ee4720/2019/mpipei3.svg.

(a) Add hardware to the implementation above to deliver the correct operands to the comparison unit so
code fragments like the one above can execute without a stall.

• Pay attention to cost, including the number of bits in each wire used. (For example, don’t add a
second comparison unit.)

• The changes should not prevent other code from executing correctly. (For example, a branch such as
beq r1,r2, T should execute correctly.)
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• Don’t overlook that rX and rY are not necessarily the same register.

(b) Add control logic to generate a BY signal which is set to logic 1 when the branch can use the bypass. The
control logic must detect that the correct instructions (including the registers) are present.

(c) If the design above was done correctly the highest cost part is the logic handling the immediate. Show
how the cost of that logic can be reduced while still retaining most (but not all) of the benefits of the full-cost
design. Your argument should include examples of “typical” code. (Assume [actually assert] that your code
samples are typical [reflects what is running by users most of the time]. Later in the semester we’ll remove
the scare-quotes from “typical”.)
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LSU EE 4720 Homework 4 Due: 22 February 2019

Problem 1: The three loops below (probably on the next page) copy an area of memory starting at the
address in r2 to an area of memory starting at the address in r3. The number of bytes to copy is in r5.
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(a) Show a pipeline execution diagram for each loop on the illustrated implementation.

(b) Compute the rate that each loop copies data in units of bytes per cycle. Base this on your execution
diagrams.

(c) Loop A has a wasted delay slot and should suffer stalls. Schedule the code (re-arrange instructions) to
fill the delay slot and minimize the number of stalls. Feel free to change instructions and to add new ones,
though the loop should still copy one byte per iteration and should copy the data as described above.

(d) Loop A can be safely substituted for Loop C. That is, if a program calls Loop C then that call can be
changed to a call of Loop A or B and the program will still work correctly. However, if a program calls Loop
A, substituting B will not work. Explain why and show sample values for r2, r3, and r5 for which this is
true.

(e) If a program calls Loop B substituting C will not work. Explain why and show sample values for r2, r3,
and r5 for which this is true.

Code on next page.
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# Loop A

add r4, r3, r5

LOOP:

lb r1, 0(r2)

sb r1, 0(r3)

addi r2, r2, 1

addi r3, r3, 1

bne r3, r4, LOOP

nop

# Loop B

add r4, r3, r5

LOOP:

lw r1, 0(r2)

sw r1, 0(r3)

addi r2, r2, 4

addi r3, r3, 4

bne r3, r4, LOOP

nop

# Loop C

add r4, r3, r5

addi r4, r4, -8

LOOP:

lw r1, 0(r2)

lw r10, 4(r2)

sw r1, 0(r3)

sw r10, 4(r3)

addi r2, r2, 8

bne r3, r4, LOOP

addi r3, r3, 8
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LSU EE 4720 Homework 5 Due: 5 April 2019

Problem 1: Solve Midterm Exam Problem 1b, in which code is to be completed using the ×jr instruction.

Problem 2: In the solution to Midterm Exam Problem 3 the Taken signal is set for a bne using the rsv

and rtv values (from the register file) even if there is a dependence with an slt in the EX stage. Modify the
logic to fix this.

For your solving convenience, the solution illustration appears on the next page and in Inkscape SVG
at https://www.ece.lsu.edu/ee4720/2019/mt-p3-slt-bne-sol.svg
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LSU EE 4720 Homework 6 Due: 8 April 2019

Problem 1: Solve 2018 Final Exam Problem 2, which asks for an analysis of FP code.

Problem 2: Solve 2018 Final Exam Problem 3, in which a comparison unit is to be added to our FP
pipeline. The illustration appears on the next page. For those who prefer to prepare their solution using an
image editing program the Inkscape SVG source for the image is available at
https://www.ece.lsu.edu/ee4720/2018/fe-fp-cmp.svg.
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LSU EE 4720 Homework 7 Due: 10 April 2019

Problem 1: Solve 2018 Final Exam Problem 1 (a) and (b), in which the execution of code on a 2-way
superscalar MIPS implementation is to be shown. Note: do not solve part (c) for this assignment. Part (c)
will be in the next assignment.

Problem 2: Solve 2018 Final Exam Problem 6, which are a collection of short-answer questions about
interrupts.
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LSU EE 4720 Homework 8 Due: 11 April 2019

Problem 1: The following problem is an enhanced version of 2018 Final Exam Problem 1 (c). Appearing
below is our 2-way superscalar MIPS with ID-stage hardware to determine branch direction (near the top
in blue) and ID-stage hardware to squash instructions (near the bottom in blue). The Inkscape SVG source
for this image can be found at https://www.ece.lsu.edu/ee4720/2019/hw08-ss.svg.

There are two outputs of the branch direction hardware logic, indicating whether the respective ID-stage
slot has a taken branch. For example, if Taken0 is 1 then there is a branch in slot 0 and that branch is
taken. Of course, assume that this logic is correct.

There is a squash logic with two inputs at the bottom. If input Sq0 is 1 then the instruction in ID-stage
slot 0 will be squashed, likewise for Sq1.

In this implementation fetch groups are not aligned.
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(a) When a branch is taken we may need to squash one or two instructions (the number of instructions to
squash depends on the whether the branch is in slot 0 or slot 1). Design logic to set the Sq0 and Sq1 inputs
so that appropriate instructions are squashed. It will be very helpful to draw pipeline execution diagrams
showing a taken branch in slot 0 and slot 1.

Draw PEDs for the two cases.

Add hardware to set SQ signals.
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(b) Notice that the branch hardware shown can only provide the target for a branch in slot 1. Add hardware
for providing the branch target of a branch in slot 0. Note that unlike the final exam, in this problem fetches
are not aligned. That precludes the more efficient solution given in the final exam.

Do not add hardware for checking the branch condition. Show logic computing the select signals for
any multiplexors you add, but do not show any other control logic. Note: In the original assignment the
direction to show logic computing select signals was omitted.

Add hardware for a slot-0 branch.

Pay attention to cost.

Be sure the hardware computes the correct target address. Think about the value of NPC (or related value)
that’s needed.
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LSU EE 4720 Homework 9 Due: 24 April 2019

Problem 1: Solve 2018 Final Exam Problem 4, which asks for analysis of simple bimodal and local branch
predictors and for the construction of a branch predictor. The Inkscape SVG source for the local branch
predictor can be found at https://www.ece.lsu.edu/ee4720/2018/fe-p4-local-pred.svg.

1
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LSU EE 4720 Homework 1 Due: 29 January 2018

Problem 1: Follow the instructions for class account setup and for homework workflow. Re-
view the comments in hw01.s and look for the area labeled “Problem 1,” which has procedure
named unsqw (unsquish) which initially just has simple placeholder code. Those who want to
start before getting a class account the assembler for the entire assignment can be found at
http://www.ece.lsu.edu/ee4720/2018/hw01.s.html.

Routine unsqw is called with two arguments. The first, in register a0, holds the address of a
C-style string which will be called the input string. The second argument, in register a1, holds the
address of a writeable area of memory, which will be called the output buffer.

The input string is an ASCII string that has been compressed using a simplified version of the
the Lempel-Ziv LZ77 method. LZ77 compresses text by replacing a substring that has appeared
before with a reference to its prior occurrence. The reference consists of the length of the prior
occurrence and the distance (number of characters back) of the occurrence. For example, consider:

All work and no play makes Johnny a dull boy.

All work and no play makes Johnny a dull boy.

All work and no play makes Johnny a dull boy.

All work and no play makes Johnny a dull boy.

The compressed string might look something like this:

All work and no play makes Johnny a dull boy.

* Length: 46, Distance: 46 // Replace 46 chars starting 46 characters back.

* Length: 92, Distance: 92 // Replace 92 chars starting 92 characters back.

The first line consists of 46 characters (including the end-of-line character). The second line of
the compressed string consists of a reference to the first line in the form of a length, 46 characters,
and how far back to find the start of the first line, also 46 characters. This makes a copy of the
first line. The third line of the compressed string consists of a reference to the first two lines. A
reference to a prior occurrence of text can refer to anything that has already appeared, not just
whole lines.

The size of the compressed string depends upon the size of a reference. Obviously it would be
inefficient to encode a reference such as * Length: 46, Distance: 46 using regular ASCII text.
For this assignment two methods of encoding the reference will be used, Simple and Better.

In both the Simple and Better methods the characters in the original string must be in the
range 116 to 7f16 (inclusive). Character 0 is used to terminate a string and characters 8016 and
higher are used to mark the start of a reference.

In the Simple method a reference is a three-byte sequence: 8016, L, D. The sequence always
starts with 8016. The second byte, L, is the length of the sequence and the third byte, D, is
the distance, the number of characters back at which the duplicated text can be found. Both L
and D are unsigned integers. Let p denote the number of uncompressed characters generated so
far. Then reference 8016, L, D indicates that the uncompressed characters at positions p − D to
p − D + L − 1 should be copied to the end of the string of uncompressed characters. Using this
method the reference * Length: 46, Distance: 46 would be encoded as 0x80 0x2e 0x2e. It is
okay for L − D > 0.

To help with understanding how the compression works, the compressed string in hw01.s

includes comments that show the length, distance, and the referenced text. For example, con-
sider the assembly language source code below showing two strings, uncomp (uncompressed) and
comp_simple:
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uncomp: # Uncompressed data.

.ascii "\nAll work and no play makes Johnny a dul" # Idx: 0 - 39

.ascii "l boy.\nAll work and no play makes Johnny" # Idx: 40 - 79

.ascii " a dull boy.\nAll work and no play makes " # Idx: 80 - 119

.ascii "Johnny a dull boy.\nAll work and no play " # Idx: 120 - 159

.asciiz "makes Johnny a dull boy.\n" # Idx: 160 - 184

comp_simple: # Compressed data Simple Method.

.ascii "\nAll work and no play makes Johnny a dul" # Idx: 0 - 39

.ascii "l boy." # Idx: 40 - 45

# Idx: 0 = 46 - 46 = 0x2e - 0x2e. Len: 139 = 0x8b.

.byte 0x80 139 46 # "\nAll work and no play makes Johnny a dull boy.\nAll work and

no play makes Johnny a dull boy.\nAll work and no play makes Johnny a dull boy.\n"

.byte 0

# Original: 185 B, Simple Compressed: 49 B, Ratio: 0.265

The references start with assembler directive .byte, other text starts with the directive .ascii.
There are two comments associated with a reference. The comment above .byte shows the starting
index, p − D, of the text to be copied and the length, L. The comment on the reference line shows
the copied text.

The first line of the uncompressed text (uncomp) (index 0 to 45) appears literally in the
compressed text (comp_simple). There is a single reference that indicates L = 139 characters
should be copied starting at D = 46 characters back from position p = 46. Notice that this is a
case where the text to be copied from overlaps the target text, but that works out well for us.

For more examples search for comp_simple in hw01.s.
A disadvantage of the Simple method is that the distance is limited to 255 bytes and that

the 7 least-significant bits of the first byte (the 0x80) are unused. The Better method fixes both
problems.

Problem continued on the next page.
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In the Better method a reference starts with a byte having bit 7 (the most-significant bit) set
to 1. There are four cases for a reference, the size of a reference ranges in size from 2 to 4 bytes.
Call the first byte of a reference R.

Case 1: R = 8016 = 1000 00002, L, D. This is identical to the simple case. R is followed by
two bytes, the first is the length (L) and the second is distance (D).

Case 2: R = 10ll llll2, D. R is followed by one byte (D). The six least-significant bits of R are
the length, and D is the distance.

Case 3: R = c016 = 1100 00002, L, Dh, Dl. R is followed by three bytes, the first is the length
(L), the second, Dh, holds bits 15 to 8 of the distance, and the third, Dl, is the 8 last-significant
bits (bits 7 to 0) of the distance.

Case 4: R = 11ll llll2, Dh, Dl. R is followed two bytes, the first, Dh, holds bits 15 to 8 of the
distance, and the second, Dl, is the 8 last-significant bits (bits 7 to 0) of the distance. The six
least-significant bits of R hold the length.

Examples of the cases are shown below, these are taken from the assignment code in hw01.s.

uncomp: # Uncompressed data.

.ascii "[Note: it has been cold cold cold cold!]" # Idx: 0 - 39

.ascii "\n=======================================" # Idx: 40 - 79

.ascii "===============================\nAnother " # Idx: 80 - 119

.ascii "frigid Arctic airmass is already pushing" # Idx: 120 - 159

.ascii " into the region\nand will provide bitter" # Idx: 160 - 199

.ascii "ly cold temperatures. Temperatures will\n" # Idx: 200 - 239

.ascii "plunge into the teens and 20s tonight an" # Idx: 240 - 279

.ascii "d could be quite similar\nWednesday night" # Idx: 280 - 319

.ascii ".\n======================================" # Idx: 320 - 359

.ascii "================================\n* TEMPE" # Idx: 360 - 399

.ascii "RATURE...Lows will fall into the mid tee" # Idx: 400 - 439

.ascii "ns to lower 20s\nalong and north of the I" # Idx: 440 - 479

.ascii "-10/12 corridor. South of I-10 lows\nwill" # Idx: 480 - 519

.ascii " range from 20 to 25. These temperatures" # Idx: 520 - 559

.ascii " will be similar\nWednesday night.\n\n* DUR" # Idx: 560 - 599

.ascii "ATION...Freezing conditions will likely " # Idx: 600 - 639

.ascii "last for 12 to 26\nhours over much of the" # Idx: 640 - 679

.ascii " warned area tonight and then 12 to 18\nh" # Idx: 680 - 719

.asciiz "ours Wednesday night." # Idx: 720 - 740

comp_better: # Compressed data Better Method.

.ascii "[Note: it has been cold" # Idx: 0 - 22

# Case 2: # Idx: 18 = 23 - 5 = 0x17 - 0x5. Len: 15 = 0xf.

.byte 0x8f 0x05 # " cold cold cold"

.ascii "!]\n=" # Idx: 38 - 41

# Case 1: # Idx: 41 = 42 - 1 = 0x2a - 0x1. Len: 69 = 0x45.

.byte 0x80 0x45 0x01 # "====================================================================="

...

# Case 3 # Idx: 40 = 321 - 281 = 0x141 - 0x119. Len: 72 = 0x48.

.byte 0xc0 0x48 0x01 0x19 # "\n======================================================================\n"

...

# Case 4 # Idx: 157 = 613 - 456 = 0x265 - 0x1c8. Len: 4 = 0x4.

.byte 0xc4 0x01 0xc8 # "ing "

The assignment package includes a program, hw01-comp.cc that can be used to encode your
own text stings, should you want to.
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When the code in hw01.s is run a testbench will run routine unsqw twice, first on code
compressed using the simple method and again on text compressed using the better method.

The output of the testbench starts with the uncompressed text (a known correct copy), followed
by the results of running unsqw on the two compressed text versions. If there is an error it will
show at what index (character position) the error occurs and will show the text before and just
beyond this index from the output of unsqw and the known correct text. You may need to scroll
up to see the beginning of the compressed text (use the arrow keys).

(a) Complete unsqw so that it uncompresses text compressed using the simple method.

(b) Complete unsqw so that it uncompresses text compressed using the better method.

4
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LSU EE 4720 Homework 2 Due: 16 February 2018

The solution to several of the problems in this assignment requires material about to be covered in
class, in particular, stalling instructions to avoid hazards. For coverage of this material see slide set six,
http://www.ece.lsu.edu/ee4720/2018/lsli06.pdf. For a solved problem see 2014 Homework 1 Problem
3. Feel free to look through old homework and exams for other similar problems, but when doing so make
sure that the MIPS implementation matches the one in this problem: the muxen at the ALU inputs should
each have just 2 inputs.

Problem 1: Recall that in the unsqw program from Homework 1 there was a loop that had to copy the
prior occurrence of a piece of text to the output buffer. That loop from the solution appears below, and
again re-written to improve performance, at least that was the goal.

# Original Code --------------------------------------------------------------

# Copy the prior occurrence of text from some part of the

# output buffer to the end of the output buffer.

# At this point in code:

# Reference marker is in $t0.

# Length is in register $t3.

# Distance is in register $t4.

#

sub $t4, $a1, $t4 # Compute starting address of prior occurrence.

add $t5, $t4, $t3 # Compute ending address of prior occurrence.

addi $a0, $a0, 1

COPY_LOOP:

lb $t0, 0($t4) # Load character of prior occurrence ..

sb $t0, 0($a1) # .. and write it to the end of the output buffer.

addi $t4, $t4, 1

bne $t4, $t5, COPY_LOOP

addi $a1, $a1, 1

j LOOP

nop
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# Improved Code --------------------------------------------------------------

# Copy the prior occurrence of text to the end of the output buffer.

# At this point in code:

# Reference marker is in $t0.

# Length is in register $t3.

# Distance is in register $t4.

#

sub $t4, $a1, $t4 # Compute starting address of prior occurrence.

addi $a0, $a0, 1

# Round length (L) up to a multiple of 4.

#

addi $t7, $t3, 3

andi $t8, $t7, 0xfffc # Note: this only works if L < 65536

sub $t6, $t8, $t3

#

# At this point:

# $t8: L’, rounded-up length.

# $t6: Amount added to L to round it up. That is, L’ - L

# t6 can be 0, 1, 2, or 3.

# If t6 is 0, then L’ = L;

# if t6 is 1, then L’ = L + 1; etc.

# Decrement prior-occurrence and output-buffer pointers.

#

sub $t4, $t4, $t6

sub $a1, $a1, $t6

# Jump to one of the four lb instructions in the copy loop.

#

la $t7, COPY_LOOPd4 # Get address of first lb instruction.

sll $t6, $t6, 3 # Compute offset to lb that we want to start at.

add $t7, $t7, $t6 # Compute address of starting lb ..

jr $t7 # .. and jump to it.

add $t5, $t4, $t8 # Don’t forget to compute stop address.

COPY_LOOPd4:

lb $t0, 0($t4)

sb $t0, 0($a1)

lb $t0, 1($t4)

sb $t0, 1($a1)

lb $t0, 2($t4)

sb $t0, 2($a1)

lb $t0, 3($t4)

sb $t0, 3($a1)

addi $t4, $t4, 4

bne $t4, $t5, COPY_LOOPd4

addi $a1, $a1, 4

j LOOP

nop

Let L denote the length of the prior occurrence of text to copy.

(a) Determine the number of instructions executed by the original code in terms of L. Include the copy loop
and the instructions before it shown above. State any assumptions.

(b) Determine the number of instructions executed by the improved code in terms of L. Include the copy
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loop and the instructions before it shown above. State any assumptions.

(c) What is the minimum value of L for the improved method to actually be faster?

(d) What is it about the improved code that helps performance?

Problem 2: Note: The following problem is identical to 2016 Homework 1 Problem 1. Try to solve it
without looking at the solution. Answer each MIPS code question below. Try to answer these by hand
(without running code).

(a) Show the values assigned to registers t1 through t8 (the lines with the tail comment Val:) in the code
below. Refer to the MIPS review notes and MIPS documentation for details.

.data
myarray:

.byte 0x10, 0x11, 0x12, 0x13

.byte 0x14, 0x15, 0x16, 0x17

.byte 0x18, 0x19, 0x1a, 0x1b

.byte 0x1c, 0x1d, 0x1e, 0x1f

.text
la $s0, myarray # Load $s0 with the address of the first value above.

# Show value retrieved by each load below.

lbu $t1, 0($s0) # Val:

lbu $t2, 1($s0) # Val:

lbu $t2, 5($s0) # Val:

lhu $t3, 0($s0) # Val:

lhu $t4, 2($s0) # Val:

addi $s1, $0, 3

add $s3, $s0, $s1

lbu $t5, 0($s3) # Val:

sll $s4, $s1, 1

add $s3, $s0, $s4

lhu $t6, 0($s3) # Val:

sll $s4, $s1, 2

add $s3, $s0, $s4

lhu $t7, 0($s3) # Val:

lw $t8, 0($s3) # Val:

(b) The last two instructions in the code above load from the same address. Given the context, one of those
instructions looks wrong. Identify the instruction and explain why it looks wrong. (Both instructions should
execute correctly, but one looks like it’s not what the programmer intended.)

(c) Explain why the following answer to the question above is wrong for the MIPS 32 code above: “The lw

instruction should be a lwu to be consistent with the others.”
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Problem 3: Note: The following problem was assigned in each of the last three years, and its solution is
available. DO NOT look at the solution unless you are lost and can’t get help elsewhere. Even in that case
just glimpse. Appearing below are incorrect executions on the illustrated implementation. For each one
explain why it is wrong and show the correct execution.
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(a) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(b) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(c) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(d) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7
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Problem 4: The MIPS code below is taken from the solution to 2018 Homework 1. Show the execution
of this MIPS code on the illustrated implementation for two iterations. The register file is designed so that
if the same register is simultaneously written and read, the value that will be read will be the value being
written. (In class we called such a register file internally bypassed.)

• Check carefully for dependencies.

• Focus on when the branch target is fetched and on when wrong-path instructions are squashed.

• Be sure to stall when necessary.
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CLOOP:

lbu $t0, 0($t4)

sb $t0, 0($a1)

addi $t4, $t4, 1

bne $t4, $t5, CLOOP

addi $a1, $a1, 1
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LSU EE 4720 Homework 3 Due: 5 March 2018

Problem 1: Appearing below are two MIPS implementations, The First Implementation is taken
from Homework 2 Problem 4. Branches suffer a two-cycle penalty on this implementation since
they resolve in ME. On the The Second Implementation branches resolve in EX reducing the penalty
to one cycle. For convenience for those using 2-sided printers the same implementations are shown
again on the next page.

The First (HW2 P4) Implementation
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The Second Implementation
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The First (HW2 P4) Implementation The Second Implementation
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2'b0 format
immed =

The code fragment below and its execution on The First Implementation is taken from the
solution to Homework 2 Problem 4. Notice that the branch suffers a two-cycle branch penalty.

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 The 1st Implementation

lbu $t0, 0($t4) IF ID EX ME WB

sb $t0, 0($a1) IF ID ----> EX ME WB

addi $t4, $t4, 1 IF ----> ID EX ME WB

bne $t4, $t5, CLOOP IF ID ----> EX ME WB

addi $a1, $a1, 1 IF ----> ID EX ME WB

X1 IF IDx

X2 IFx

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lbu $t0, 0($t4) IF ID EX ME WB

sb $t0, 0($a1) IF ID ----> EX ME WB

addi $t4, $t4, 1 IF ----> ID EX ME WB

bne $t4, $t5, CLOOP IF ID ----> EX ME WB

addi $a1, $a1, 1 IF ----> ID EX ME WB

X1 IF IDx

X2 IFx

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lbu $t0, 0($t4) IF ID

(a) On The Second Implementation the branch penalty would only be one cycle. But, as we
discussed in class, moving branch resolution from ME to EX might impact the critical path. Let φ1 =
1 GHz denote the clock frequency on The First Implementation and call the clock frequency on The
Second Implementation φ2. For what value of φ2 would the performance of the two implementations
be the same when executing the code above for a large number of iterations?

Show your work.
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Problem 2: The code below is taken from the solution to Homework 2 Problem 1. Sharp students
might remember that the loop can be entered at four places: the COPY_LOOPd4 label (which is the
normal way to enter such a loop), the second lb, the third lb, or the fourth lb. For this problem
assume that the loop can only be entered at the COPY_LOOPd4 label.

COPY_LOOPd4:

lb $t0, 0($t4) # First lb

sb $t0, 0($a1)

lb $t0, 1($t4) # Second lb

sb $t0, 1($a1)

lb $t0, 2($t4) # Third lb

sb $t0, 2($a1)

lb $t0, 3($t4) # Fourth lb

sb $t0, 3($a1)

addi $t4, $t4, 4

bne $t4, $t5, COPY_LOOPd4

addi $a1, $a1, 4

format
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(a) Schedule the code (rearrange the instructions) so that it executes without a stall on the imple-
mentation shown above.
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Problem 3: Perhaps some students have already wondered why, if the goal were to reduce dy-
namic instruction count, the previous occurrence loop (the subject of the first two problems and
of Homework 2) wasn’t written using lw and sw instructions since they handle four times as much
data. Such a loop appears below. Alas, the loop won’t work for every situation, for one reason due
to MIPS’ alignment restrictions.

Let ap denote the address of the previous text occurrence (the value is in t4), let ao denote the
address of the next character to write into the output buffer (the value is in a1), and let L denote
the length of the previous occurrence to copy. (Register t5 is ap + L.)

COPY_LOOP44:

lw $t0, 0($t4)

sw $t0, 0($a1)

addi $t4, $t4, 4

bne $t4, $t5, COPY_LOOP44

addi $a1, $a1, 4

j LOOP

nop

(a) In terms of ap, ao, and L, specify the conditions under which the loop above will run correctly.
Also show that the loop would work for about only 1 out of 64 copies assuming that the values
of ap, ao, and L, are uniformly distributed over some large range. For this part don’t assume any
special code added before or after.

(b) Suppose one added prologue code before the loop to copy the first few characters and epilogue
code after the loop to copy the last few characters, with the goal of being able to use the loop for
more than 1

64 th (or 100
64 %) of copies.

In terms of ap, ao, and L, specify the conditions under which the loop will run correctly and
show that the fraction of copies that the loop can handle is about 1

4 .
Also show the number of characters that should be copied by the prologue code and the number

of characters that should be copied by the epilogue code.
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LSU EE 4720 Homework 4 Due: 9 March 2018

Problem 1: Solve Spring 2017 Final Exam Problem 1, in which control logic to generate stall
signals is added to a MIPS-I implementation that uses 12-bit bypass paths. See Spring 2017
Homework 5 Problem 3 and its solution, on which the final exam problem is based.
Attention perfectionists: The original Inkscape SVG for illustrations are available for download: the
unsolved homework, http://www.ece.lsu.edu/ee4720/2017/mpipei3c.svg, the solved home-
work, http://www.ece.lsu.edu/ee4720/2017/hw05-p3-sol.svg,
and the exam, http://www.ece.lsu.edu/ee4720/2017/fe-p1.svg. Print them out as is (be sure
that the rasterization of the SVG vector format targets the resolution of your printer) or use
Inkscape or some other SVG editor to put in your solution. For a real challenge use a plain text
editor to add your solution to the SVG source.

1
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LSU EE 4720 Homework 5 Due: XX11 13 April 2018

This assignment consists of questions on the ARM A64 (AAarch64) ISA. (Not to be confused
with ARM A32, which might be called classic ARM. Older information sources that refer to ARM
are probably referring to A32, which is not relevant to this assignment.)

A description of the ARM ISA is linked to the course references page, at
http://www.ece.lsu.edu/ee4720/reference.html. Feel free to seek out introductory material
as a suppliment.

ARM A64 was used in EE 4720 Spring 2017 Homework 4 and Spring 2017 Midterm Exam
Problems 2 and 3. It may be useful to see those assignments for code samples, but the questions
themselves are different.

Appearing on the next page is a simple C routine, lookup, that returns a constant from a list.
The routine appears to have been written with the expectation that its call argument, i, would be
either 0, 1, or 2. Following the C code is ARM A64 code for lookup as compiled by gcc version 8.

Use the course reference materials and external sources to understand the ARM code below.
The course references page has a link to the ARM ISA manual which should be sufficient to answer
questions in this assignment. Feel free to seek out introductory material on ARM A64 (AArch64)
assembly language, but after doing so use the ARM Architecture Reference Manual to answer
questions in this assignment.

Full-length versions of the code on the next page, along with other code examples can be found
at http://www.ece.lsu.edu/ee4720/2018/hw05.c.html and
http://www.ece.lsu.edu/ee4720/2018/hw05-arm.s.html. These include the pi program and a
simple copy program that was a part of the decompress program used in Homeworks 1, 2, and 3.

Code on next page, problems on following pages.
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int lookup(int i)

{

int c[] = { 0x12345678, 0x1234, 0x1234000 };

return c[i];

}

@ ARM A64 Assembly Code. C code appears in comments.

lookup:
@@ R e g i s t e r U s a g e

@

@ CALL VALUE

@ w0: The value of i (from the C routine above).

@

@ RETURN VALUE

@ w0: The value of c[i].

@

@ Note: The size of int here is 4 bytes.

@ const int c[] = { 0x12345678, 0x1234, 0x1234000 };

adrp x1, .LC1

mov w2, 0x4000

ldr d0, [x1, #:lo12:.LC1]

movk w2, 0x123, lsl 16

str w2, [sp, 8]

str d0, [sp]

@ return c[i];

ldr w0, [sp, w0, sxtw 2]

ret

. s e  t i o n

.rodata.cst8,"aM",@progbits,8

.LC1:

.word 0x12345678

.word 0x1234

Problems start on next page.
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Problem 1: The ARM code above uses three kinds of register names, those starting with d, w,
and x.

(a) Explain the difference between each.

(b) MIPS has general-purpose registers and four sets of co-processor registers. Indicate the name
of the register set for each of the three types of ARM registers above. Hint: two are part of the
same set.

Problem 2: The mov moves constant 0x4000 into register w2. Actually, mov is a pseudo instruction.

(a) What are pseudo instructions called in ARM?

(b) What is the real instruction that the assembler will use in this particular case?

(c) Show the encoding for this use of mov. Be sure to show how w2 and 0x4000 fit into the fields.

Problem 3: MIPS-I does not have an instruction like adrp.

(a) Describe what the adrp instruction does in general.

(b) Explain what it is doing in the code above. (It might be easier to look at the documentation
for adr first.)

(c) Show MIPS code that writes the same value to its destination as adrp. Do not use MIPS pseudo
instructions other than la. Assume that MIPS integer registers are 64 bits.

Problem 4: The movk instruction is sort of an improved version of lui.

(a) Describe what the movk instruction does in general.

(b) Explain why a single MIPS lui instruction could not do what the movk is doing in the code
above.

Problem 5: Add comments to the ARM code above that explain what the code is doing, rather
than what the individual instructions do.

Problem 6: The lookup routine was compiled using gcc at optimization level 3, the highest.
Nevertheless, the code appears more complicated than it need to be. Explain what about the code
is excessively complicated and how it could be simplified.
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LSU EE 4720 Homework 6 Due: 23 April 2018

Problem 1: Solve 2014 Homework 4 Problem 1.

Problem 2: Appearing on the next page is a MIPS implementation and the execution of some
code on that implementation.

FP Reg File
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(a) Wires in the implementation (on the previous page) are labeled in blue. Show the values on
those wires each cycle that they are affected by the executing instructions. The values for label A
are already filled in.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lwc1 f0, 0(r1) IF ID EX ME WF

mul.s f1, f0, f10 IF ID -> M1 M2 M3 M4 M5 M6 WF

add.s f2, f2, f1 IF -> ID -------------> A1 A2 A3 A4 WF

lwc1 f0, 4(r1) IF -------------> ID EX ME WF

mul.s f1, f0, f11 IF ID -> M1 M2 M3 M4 M5 M6 WF

add.s f2, f2, f1 IF -> ID -------------> A1 A2 A3 A4 WF

bne r2, r1 LOOP IF -------------> ID EX ME WB

addi r1, r1, 8 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A 1 1 2 1 # Sample

B

C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

D

E

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

F

G

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
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(b) Schedule the code above so that it suffers fewer stalls. Register numbers can be changed but
in the end the correct value must be in register f2. It is okay to add a few instructions before and
after the loop. Each iteration must do the same amount of work as the original code.

Show a pipeline execution diagram for two iterations.

Problem 3: Design control logic for the lower M1-stage bypass multiplexor. Note that this is fairly
easy since the mux has two inputs, so it’s only necessary to detect the dependence.

An SVG source for the FP diagram can be found at:
http://www.ece.lsu.edu/ee4720/2018/mpipei-fp-by.svg.
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LSU EE 4720 Homework 7 Due: 25 April 2018

Problem 1: Solve 2017 Final Exam Problem 2, which asks for or about pipeline execution dia-
grams for several code fragments on a superscalar MIPS implementation.

Problem 2: Solve 2017 Final Exam:

(a) Problem 5a, comparing superscalar and a scalar processor with a vector unit.

(b) Problem 5d, which asks how a VLIW ISA implementation might be simpler than a given
superscalar implementation.
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LSU EE 4720 Homework 1 Due: 6 February 2017

Problem 1: Follow the instructions for class account setup and for homework workflow. Re-
view the comments in hw01.s and look for the area labeled “Problem 1,” which has an empty
procedure named split. The split routine itself is reproduced below, and for those who want
to start before getting a class account the assembler for the entire assignment can be found at
http://www.ece.lsu.edu/ee4720/2017/hw01.s.html.

Routine split is called with four arguments. Register a0 holds the number of elements in an
input array, register a1 holds the address of the input array. The input array consists of 4-byte
elements. Register a2 holds the address of a 4-byte-element output array and register a3 holds the
address of a 2-byte-element output array. Complete split so that it copies elements from the input
array to the 2-byte output array (if it fits), otherwise to the 4-byte output array. The return value,
in register v0, should be the number of elements in the 4-byte output array when copying is done.

When the code in the hw01.s file is run the split routine will be tested. The first line of output
indicates whether the return value, v0, was correct. Below that the values written to the 4- and
2-byte arrays are shown side-by-side with correct values.

split:

## Register Usage

#

# CALL VALUES:

# $a0: Number of elements in input array.

# $a1: Address of input array. Elements are 4 bytes each.

# $a2: Address of output array, elements are 4 byte each.

# $a3: Address of output array, elements are 2 byte each.

#

# RETURN:

# [ ] $v0, Number of elements in 4-byte output array.

# [ ] Write small elements in $a3 array and large elements in $a2.

#

# Note:

# Can modify $t0-$t9, $a0-$a3

# [ ] Code should be correct.

# [ ] Code should be reasonably efficient.

# SOLUTION GOES HERE

jr $ra

nop

There’s another problem on the next page.
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Problem 2: Note: The following problem was assigned last year, two years ago, and three years
ago and its solution is available. DO NOT look at the solution unless you are lost and can’t get
help elsewhere. Even in that case just glimpse. Appearing below are incorrect executions on the
illustrated implementation. For each one explain why it is wrong and show the correct execution.

format
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25:21

20:16

IF ID EX WBME
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(a) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(b) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(c) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(d) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7
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LSU EE 4720 Homework 2 Due: 17 February 2017

Problem 1: The following problems are from the 2016 EE 4720 Final Exam.

(a) The following problem appeared as 2016 EE 4720 Final Exam Problem 2a. (Just 2a, not 2b).
Show the execution of each of the two code fragments below on the illustrated MIPS implementa-
tions. All branches are taken. Don’t forget to check for dependencies.

format
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msb lsb

msb

lsb

# CODE SEQUENCE A

add r1, r2, r3

sub r4, r1, r5

Show execution of the following code sequence.

# CODE SEQUENCE B

beq r1, r1 TARG

or r2, r3, r4

sub r5, r6, r7

xor r8, r9, r10

TARG:

lw r10, 0(r11)
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(b) For each of the two code sequences above label each used wire on the diagram below with:
the cycle number, the instruction, and if appropriate a register number or immediate value. For

example, the register file input connected to ID.IR bits 25:21 should be labeled 1: add, =2 because
in cycle 1 the add instruction is using that register file input to retrieve register r2. See the
illustration below. Only label wires that are used in the execution of an instruction. For example,

there should not be a label 2: sub, =1 because the value of r1 will be bypassed. Instead, label
the bypass path that is used. Pay particular attention to wires carrying branch information and to
bypass paths. Look through old homeworks and exams to find similar problems.
For Code Sequence A:
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Problem 2: The following problem is from 2016 EE 4720 Final Exam Problem 5a. Suppose that
a new ISAis being designed. Rather than requiring implementations to include control logic to
detect dependencies the ISA will require that dependent instructions be separated by at least six
instructions. As a result, less hardware will be used in the first implementation.

(a) Explain why this is considered the wrong approach for most ISAs.

(b) What is the disadvantage of imposing this separation requirement?
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LSU EE 4720 Homework 3 Due: 24 February 2017

To help in solving this problem it might be useful to study the solutions to the following problems
which involve hardware implementing branches in the statically scheduled five-stage MIPS imple-
mentation we’ve been working with: Spring 2016 Homework 3 (SPARC-like branch instruction),
Spring 2015 Homework 2 Problem 2 (use reg bits for larger displacement) and Problem 3 (logic for
IF-stage mux), Spring 2015 Homework 3 Problem 2 (implement bgt, but resolve it in EX), Spring
2011 Final Exam Problem 1 (resolve in ME, with bypass).

Problem 1: Modify the implementation below so that it implements the MIPS II bgezall in-
struction, see the subproblems for details on the hardware to be designed. See the MIPS ISA
documentation linked to the course Web page for a description of the bgezall instruction. An
Inkscape SVG version of the illustration below can be found at
http://www.ece.lsu.edu/ee4720/2017/hw03-p1.svg. The illustration also appears on the next
page.
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(a) Design control logic to detect the instruction and connect its output to the br/jump logic

cloud. The control logic should consist of basic gates, not a box like bgezall .

(b) Design the control logic to squash the delay slot instruction when bgezall is not taken. The
control logic should squash the delay slot instruction by changing its destination register and
memory operation. Be sure that the control logic squashes the correct instruction, and does so
only when bgezall is not taken. Do not rely on magic clouds [tm].

(c) Add datapath or make other changes needed to compute the return address. Note that NPC

is already connected to the ALU. Consider inexpensive ways to compute the second operand.
(Adding a 32-bit ID/EX pipeline latch is not considered inexpensive for this problem.)
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LSU EE 4720 Homework 4 Due: 10 March 2017

To help in solving this problem it might be useful to study the solutions to the following prob-
lems: Spring 2014 Homework 3 (ARM A32 instructions, ARM-like scaling instructions). Fall 2010
Homework 3 (shift unit in MIPS).

See the course references page for a link to the ARM v8 ISA, which will be needed to solve the
problems below.

Problem 1: In most RISC ISAs register number 0 is not a true register, its value as a source
is always zero, and it can be harmlessly used as a destination (for example, for use as a nop

instruction).
The ARM A64 instruction set (not to be confused with A32 [arm] or T32 [thumb]) takes a

different approach to the zero register.

(a) What register number is the zero register in A64?

(b) Let z denote the answer to the previous part, meaning that rz can denote the zero register.
In an ISA like MIPS, the general purpose register (GPR) file only needs enough storage for 31
registers, since the register zero location can be hardwired to zeros. But in ARM A64 the GPR file
needs 32 storage locations because register number z is the zero register for some instructions, but
an ordinary register for others. In ARM notation ZR denotes the zero register, in this problem rz

indicates the register number of the zero register, which, depending on the instruction can refer to
the zero register or to an ordinary register.

Show two instructions that can read rz and one that can write rz, for these instructions rz is
an ordinary register (at least for certain operand fields).

Show a one-destination-register, two-source-register instruction for which rz is the zero register
for all operand fields.

There’s another problem on the next page.
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Problem 2: The ARM A64 code below computes the sum of an array of 64-bit integers. The load
instruction uses post-index addressing, the behavior of this instruction is shown in the comments.
(The @ is the comment character.)

LOOP: @ ARM A64

ldr x1, [x2], #8 @ x1 = Mem[x2]; x2 = x2 + 8

cmp x2, x4

add x3, x3, x1

bne LOOP

(a) Appearing below is a pipeline based on our MIPS implementation. Add datapath elements so
that it can execute the ldr with pre-index, post-index, and immediate addressing. Don’t make
changes that will break other instructions. Note that the register file has a write-enable input,
which is necessary because there is no full time register that acts as register zero.

An Inkscape SVG version of the implementation can be found at
https://www.ece.lsu.edu/ee4720/2017/hw04-armskel.svg.
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dcd wr rn

register file

• Show the bits used to connect to the address inputs of register file.

• Show the second write port on the register file needed for the updated address.

• Use fixed bit positions for the destination registers.

• Use the given decode logic to determine a write enable signal for each dest.

• The changes must work well with pipelining.

• As always, avoid excessively costly solutions.

• Do not add hardware for the branch or compare.
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LSU EE 4720 Homework 5 Due: 20 March 2017

Problem 1: Complete MIPS routine fxitos so that it converts a fixed point integer to a single-
precision floating point value as follows. When fxitos starts register a0 will hold a fixed-point
value i and register a1 will hold the number of bits that are to the right of the binary point, d,
with d ≥ 0. For example, to represent 9.7510 = 1001.112 we would set a0 to 0b100111 and a1 to
2. (Or we could set a0 to 0b100111000 and a1 to 5.) When fxitos returns register f0 should be
set to i/2d represented as a single-precision floating point number.

Solve this problem by using a division instruction for i/2d. (The floating division instruction
can be avoided by performing integer arithmetic on the FP representation, but that’s not required
in this problem.)

Submit the solution on paper. Your class account can be used to work on the solution. The
fxitos routine and a testbench can be found in
/home/faculty/koppel/pub/ee4720/hw/2017/hw05/hw05.s, follow the same instructions as for
Homework 1.

fxitos:

## R e g i s t e r U s a g e

#

# CALL VALUES:

# $a0: Fixed-point integer to convert.

# $a1: Number of bits to the right of the binary point.

#

# RETURN:

# [ ] $f0: The value as a single-precision FP number.

jr $ra

nop
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Problem 2: Appearing below is the MIPS hardware needed to implement bgezall from the
solution to Homework 3. Recall that with bgezall the delay-slot instruction is annulled if the
branch is not taken. Modify the hardware for new instruction bgezalllsu which executes like
bgezall when the branch target is at or before the branch, but when the target is after the branch
the delay-slot instruction is annulled when the branch is taken and allowed to execute normally if
the branch is not taken. The opcode and rt values are the same as for bgezall. Hint: this can be
done with very little hardware, a gate or two, if that.
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Problem 3: Suppose that an analysis of the execution of benchmark programs on our pipelined
MIPS implementation shows that over 75% of bypassed values can be represented with 12 bits or
fewer. A low-cost implementation takes advantage of this fact by using 12-bit bypass paths.

(a) The control logic below is intended for bypass paths that can bypass a full 32-bit value. Modify
the control logic shown so that it works for 12-bit bypass paths. In your modified hardware add a
stall signal to be used when values are too large to be bypassed.

• Indicate which parts of the added logic, if any, may lengthen the critical path.

• As always, avoid costly or slow hardware.

Attention perfectionists: An Inkscape SVG version of the implementation below can be found at
http://www.ece.lsu.edu/ee4720/2017/mpipei3c.svg.

It’s small on purpose, use next page for solution.
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It’s small on purpose, use next page for solution.

(b) Why would it be far more challenging for a compiler to optimize for these 12-bit paths than for
ordinary full-width bypass paths?
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LSU EE 4720 Homework 6 Due: 5 April 2017

Attention Perfectionists: An Inkscape SVG version of the illustration used in the final exam
and this assignment can be found at: https://www.ece.lsu.edu/ee4720/2017/mpipei_fp.svg.

Problem 1: Answer Spring 2016 Final Exam Problem 2b and 2c, which ask about the execution
of FP MIPS code. The solution to these problems are available. Make a decent attempt to solve
these problems on your own, without looking at the solution. Only peek at the solution for hints
and use the solution to check your work.

Problem 2: Appearing below are two MIPS code fragments and the MIPS implementation from
the final exam. The fragments execute on the illustrated implementation with the addition of the
datapath needed for the store instructions that was provided in Final Exam Problem 2c. The
fragments are labeled Degree 1 and Degree 2, these refer to an optimization technique called loop
unrolling, which has been applied to the Degree 2 loop.
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LOOP: # Degree 1

lwc1 f0, 0(r1)

add.s f0, f0, f1

swc1 f0, 0(r1)

bne r1, r3 LOOP

addi r1, r1, 4

LOOP: # Degree 2

lwc1 f0, 0(r1)

lwc1 f1, 4(r1)

add.s f0, f0, f9

add.s f1, f1, f9

swc1 f0, 0(r1)

swc1 f1, 4(r1)

bne r1, r3 LOOP

addi r1, r1, 8

(a) Show a pipeline execution diagram of each on the illustrated code fragments. Show enough
iterations to compute the CPI. Note that the second loop should have fewer stalls than the first.

(b) Compute the execution efficiency of both loops in CPI. Remember that the number of cycles
should be determined by looking at the same point in execution, usually IF of the first instruction,
in two different iterations. Put another way, just because the custom car you will order after
graduation will take two months to arrive, doesn’t mean that the factory makes just one car every
two months.

(c) Assume that both loops operate on N -element arrays (and that N is even). The Degree-1 loop
operates on just one element per iteration, while the Degree-2 loop operates on two elements per
iteration.

Devise a performance measure that can be used to compare the two loops based on the work
that they do. The improvement of Degree-2 or Degree-1 should be higher with this work-based
performance measure than the improvement computed using CPI.

(d) Besides eliminating stalls, what makes Degree 2 faster than Degree 1 even when doing the
same amount of work?
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LSU EE 4720 Homework 7 Due: 19 April 2017

Attention Perfectionists: An Inkscape SVG version of the illustration of the superscalar MIPS
implementation used in the final exam problems and their solution for this assignment can be found
at http://www.ece.lsu.edu/ee4720/2016/fe-ss.svg and
http://www.ece.lsu.edu/ee4720/2016/fe-p1abc-sol.svg.

Problem 1: Answer Spring 2016 Final Exam Problem 1 a, b, and c, in which a single memory
port is connected to the ME stage of a two-way superscalar MIPS implementation. The solution
to this problem is available. Make a decent attempt to solve this problem on your own, without
looking at the solution. Only peek at the solution for hints and use the solution to check your work.

Problem 2: Answer Spring 2016 “Final Exam Problem” 1e, which asks for modifications to a
2-way supescalar MIPS implementation that avoids stalls for certain pairs of load instructions.
Note: Problem 1d was given on the final exam. Problem 1e, which did not appear on the final, is
an expanded version of Problem 1d.

1
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LSU EE 4720 Homework 8 Due: 26 April 2017

Problem 1: Answer Spring 2016 Final Exam Problem 3, which asks about the performance of
various branch predictors.

The solution to this problem is available. Make a decent attempt to solve this problem on
your own, without looking at the solution. Only peek at the solution for hints and use the solution
to check your work. Credit will only be given if there is some evidence of an attempt to solve the
problem.

Problem 2: Compute the amount of storage needed for each predictor described at the beginning
of Spring 2016 Final Exam Problem 3 (the same question used in the problem above) accounting
for the following additional details: Each BHT stores a six-bit tag and a 16-bit displacement (in
addition to whatever other data is needed).

Be sure to show the size of each table (BHT, PHT) that each predictor (bimodal, local, global)
uses. Show the size in bits.

Problem 3: In a bimodal predictor the size of the tag and displacement is much larger than the
2-bit counter used to actually make the prediction. Consider a design that uses two tables, a BHT
and a Branch Target Buffer (BTB). The BHT stores only the 2-bit counter, the BTB stores the tag
and displacement. However, the tag and displacement are only written to the BTB if the branch
will be predicted taken.

Draw a sketch of such a system and indicate the number of entries that should be in each table
so that the amount of storage is the same as the original bimodal predictor.
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LSU EE 4720 Homework 1 Due: 12 February 2016

Problem 1: Answer each MIPS code question below. Try to answer these by hand (without
running code).

(a) Show the values assigned to registers t1 through t8 (the lines with the tail comment Val:) in
the code below. Refer to the MIPS review notes and MIPS documentation for details.

.data
myarray:

.byte 0x10, 0x11, 0x12, 0x13

.byte 0x14, 0x15, 0x16, 0x17

.byte 0x18, 0x19, 0x1a, 0x1b

.byte 0x1c, 0x1d, 0x1e, 0x1f

.text
la $s0, myarray # Load $s0 with the address of the first value above.

# Show value retrieved by each load below.

lbu $t1, 0($s0) # Val:

lbu $t2, 1($s0) # Val:

lbu $t2, 5($s0) # Val:

lhu $t3, 0($s0) # Val:

lhu $t4, 2($s0) # Val:

addi $s1, $0, 3

add $s3, $s0, $s1

lbu $t5, 0($s3) # Val:

sll $s4, $s1, 1

add $s3, $s0, $s4

lhu $t6, 0($s3) # Val:

sll $s4, $s1, 2

add $s3, $s0, $s4

lhu $t7, 0($s3) # Val:

lw $t8, 0($s3) # Val:

(b) The last two instructions in the code above load from the same address. Given the context, one
of those instructions looks wrong. Identify the instruction and explain why it looks wrong. (Both
instructions should execute correctly, but one looks like it’s not what the programmer intended.)

(c) Explain why the following answer to the question above is wrong for the MIPS 32 code above:
“The lw instruction should be a lwu to be consistent with the others.”
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Problem 2: Note: The following problem was assigned last year and two years ago and its solution
is available. DO NOT look at the solution unless you are lost and can’t get help elsewhere. Even in
that case just glimpse. Appearing below are incorrect executions on the illustrated implementation.
For each one explain why it is wrong and show the correct execution.
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(a) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(b) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(c) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(d) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7
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Problem 3: Show the execution of the MIPS code below on the illustrated implementation. The
register file is designed so that if the same register is simultaneously written and read, the value
that will be read will be value being written. (In class we called such a register file internally
bypassed.)

• Check carefully for dependencies.

• Pay attention to when the branch target is fetched and to when wrong-path instructions are
squashed.

• Be sure to stall when necessary.

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2

PC

15:0

D
 

dstdst

E

2'b0 format
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add r1, r2, r3

sub r4, r1, r5

beq r1, r1, SKIP

lw r6, 0(r4)

xor r7, r8, r9

SKIP:

ori r9, r10, 11
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LSU EE 4720 Homework 2 Due: 26 February 2016

Problem 1: The code fragment below is to execute on the illustrated MIPS implementation.
Unfamiliar instructions can be looked up on the MIPS ISA manual linked to the course references
page. Show the execution of the code fragment below on the illustrated MIPS implementation. All
branches are taken.

• Pay close attention to dependencies, including those for the branch.

• Note that unnecessary stalls are just as incorrect as not stalling when a stall is necessary.

format
immed
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add r4, r2, r3

lw r6, 8(r4)

sub r1, r6, r5

bltz r1 TARG

and r8, r7, r10

or r11, r12, r13

xor r14, r11, r8

TARG:

sw r1, 0(r2)

Spoiler Alert: Hint about solution on next page.
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Problem 2: The implementation below (which is the same as the implementation for the previous
problem) lacks hardware needed for the bltz instruction. In this problem design such hardware as
described in the parts below. Note: An Inkscape SVG version of the implementation can be found
at http://www.ece.lsu.edu/ee4720/2016/mpipei3.svg.
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msb
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(a) Add the hardware needed to detect when a bltz is taken. The hardware should have an output
labeled TAKEN, which should be set to logic 1 if there is a taken bltz in ID. Include control logic,
including the logic for detecting bltz.

(b) The solution to the previous problem (not the previous part to this problem) should have
included a stall due to the branch instruction. Add a bypass path to the hardware designed above
so that the branch from the previous problem can execute without stalling.

(c) Design control logic for the bypass path.
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Problem 3: The code below is similar to the code from the first problem, the only difference is in
the branch instruction. In this problem explain some bad news and good news about that branch.

add r4, r2, r3

lw r6, 8(r4)

sub r1, r6, r5

beq r0, r1 TARG

and r8, r7, r10

or r11, r12, r13

xor r14, r11, r8

TARG:

sw r1, 0(r2)

(a) The bad news is that adding bypass paths for a beq would not be a good idea, even though
adding bypass paths for the bltz was a good idea. Explain why.

(b) The good news is that the program above can easily avoid the stalls by just changing the branch
instruction. Explain how. (Of course, it should go without saying that the changed program must
do the same thing as the original one.)

format
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IR
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IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst
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LSU EE 4720 Homework 3 Due: 28 March 2016

Problem 1: Illustrated below is our MIPS implementation with some control logic shown. Modify
the implementation so that it can execute the SPARC v8 instructions as described below. In your
solution ignore register windows, assume that SPARC uses an ordinary 32-register general-purpose
register file.

Details of the SPARC ISA (which includes later versions) can be found in
http://www.ece.lsu.edu/ee4720/doc/JPS1-R1.0.4-Common-pub.pdf. An Inkscape SVG ver-
sion of the illustration below can be found at
http://www.ece.lsu.edu/ee4720/2016/mpipei3b.svg.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv
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is Type R

is Store
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is J

is JAL

is JR

is JALR

Dest is rd.

No dest (use r0).

Dest is r31.

Dest is rt.

rt 20:16

rd 15:11

5'd0

5'd31

00

11

01
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lsb

msb

=

2'b0

msb lsb

(a) Modify the implementation for format 3 arithmetic instructions. Use add as an example. Show
changes in the bits used: to index the register file, to format the immediate, and to generate the
writeback register number, dst.
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(b) Modify the implementation for branch instructions. Use BPcc as an example. Be sure to make
changes for computing the branch target.

Show changes in the hardware to generate the target address. Remove the unneeded MIPS
branch comparison hardware and add a CC register.

(c) Modify the implementation for load and store instructions. Use LDUW and STW as examples.
Show changes in the format immediate unit, and make sure that it can handle both ADD and

loads and stores.

Problem 2: Section 1.3.1 of the SPARC JPS1 lists features of the ISA.

(a) Indicate which features are typical RISC features and which features are not.

(b) One feature is “Branch elimination instructions” Provide an example of how such an instruction
can be used to eliminate a branch.
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LSU EE 4720 Homework 4 Due: 13 April 2016

Problem 1: Problem 2b from the 2015 Final Exam asks about our usual FP MIPS pipeline.
An Inkscape SVG version of the FP pipeline can be found at

http://www.ece.lsu.edu/ee4720/2016/mpipei_fp.svg.

(a) Solve Spring 2015 Final Exam problem 2b.

(b) Add bypass paths to the implementation from problem 2b needed so that the code from 2b
executes without a stall.

Problem 2: Solve Problem 2c from the 2015 Final Exam, which asks about our usual superscalar
pipeline.

An Inkscape SVG version of the ordinary 2-way superscalar MIPS pipeline used in 2c can be
found at http://www.ece.lsu.edu/ee4720/2016/mpipei3ss.svg.

Problem 3: Solve Problem 1 from the 2015 Final Exam, which asks about a modified version of
our two-way superscalar MIPS implementation.

An Inkscape SVG version of the fused-add 2-way superscalar MIPS pipeline used in 2c can be
found at http://www.ece.lsu.edu/ee4720/2015/fess.svg.
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LSU EE 4720 Homework 5 Due: 22 April 2016

Problem 1: Solve Spring 2015 Final Exam Problem 3, which asks about the performance of several
branch predictors. See older final exam solutions for more information on how to solve these kinds
of problems.

Problem 2: Show major elements of the hardware for each predictor used in Spring 2015 Final
Exam Problem 3a. In particular:

• Show the BHT, PHT, and GHR (in those predictors that use them).

• Show the connection from the PC to the appropriate table.

• Show the number of bits in each connection.

• Show the logic generating a “predict taken” signal.

You do not need to show the logic to update the predictor or to generate the target address.
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LSU EE 4720 Homework 6 Due: 2 May 2016 (No Credit)

This assignment is not for credit. Any submitted solution will be corrected and returned, but
the grade won’t count.

Problem 1: Solve Spring 2015 Final Exam Problem 4. Part (a) is a fill-in-the-blanks cache
question. Part (b) asks about the hit ratio of a simple program. These two parts are very similar
to problems asked on almost every prior final exam. It would be a good idea to study these to the
point where they can be answered in under 40 seconds (but on the real exam take it a bit more
slowly). Part (c) asks about the performance of a code fragment on a particular cache. This part
requires actual thinking.
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LSU EE 4720 Homework 1 Due: 20 February 2015

Problem 1: Answer each MIPS code question below. Try to answer these by hand (without
running code).

(a) Where indicated, show the changed register in the following simple code fragments:

# r1 = 10, r2 = 20, r3 = 30, etc.

#

add r1, r2, r3

#

# Changed register, new value:

# r1 = 10, r2 = 20, etc.

#

add r1, r1, r2

#

# Changed register, new value:

(b) Show the values assigned to registers s1 through s6 in the code below. Correctly answering
this question requires an understanding of MIPS big-endian byte ordering and of the differences
between lw, lbu, and lb. Refer to the MIPS review notes and MIPS documentation for details.

.data

values: .word 0x11121314

.word 0xaabbccdd

.word 0x99887766

.word 0x41424344

.text

la $s0, values # Load $s0 with the address of the first value above.

lw $s1, 0($s0)

lw $s2, 4($s0)

sh $s2, 0($s0) # Note: this is a store *half*.

lbu $s3, 0($s0)

lbu $s4, 3($s0)

lb $s5, 4($s0)

lb $s6, 7($s0)

1

← → Spring 2015 ← → Homework 1 Homework Solution hw01.pdf

http://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/2015/hw01.pdf


Problem 2: Note: The following problem was assigned last year and its solution is available. DO
NOT look at the solution unless you are lost and can’t get help elsewhere. Even in that case just
glimpse. Appearing below are incorrect executions on the illustrated implementation. For each one
explain why it is wrong and show the correct execution.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out
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D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode
dest. reg

NPC

=30 2
2'b0

PC

15:0

D

dstdst

E

(a) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(b) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(c) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(d) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7
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Problem 3: Show the execution of the MIPS code below on the illustrated implementation. The
register file is designed so that if the same register is simultaneously written and read, the value
that will be read will be value being written. (In class we called such a register file internally
bypassed.)

• Check carefully for dependencies.

• Pay attention to which registers are sources and which are destinations, especially for the sw
instruction.

• Be sure to stall when necessary.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
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Data

Data
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Mem
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Out
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D
In

Mem
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Outrtv
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Decode
dest. reg
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=30 2
2'b0

PC

15:0

D

dstdst

E

add r1, r2, r3

lw r4, 0(r1)

sw r1, 0(r1)

sub r5, r4, r1

sh r5, 4(r1)

3

← → Spring 2015 ← → Homework 1 Homework Solution hw01.pdf

https://www.ece.lsu.edu/ee4720/2015/hw01.pdf


Problem 4: The code below is the same as the code used in the previous problem, but the MIPS
implementation is different.

(a) Show the execution of the MIPS code below on the illustrated implementation.

(b) On the diagram label multiplexor data inputs connecting to bypass paths that are used in the
execution of this code. The label should include the cycle number, the register, and the instruction

consuming the value. For example, the label 3:r1:lw might be placed next to one of the data
inputs on the ALU’s upper mux.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In
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Mem

Port

Addr

Data

Out
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D
In

Mem
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Outrtv
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Decode
dest. reg
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=
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PC

+
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25:0
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15:0

D
0 1

dstdst

add r1, r2, r3

lw r4, 0(r1)

sw r1, 0(r1)

sub r5, r4, r1

sh r5, 4(r1)
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LSU EE 4720 Homework 2 Due: 27 February 2015

For those preparing electronic submission of a solution (E-mail) and who would like a vector-
format version of the MIPS implementation can find it in Encapsulated Postscript at
http://www.ece.lsu.edu/ee4720/2015/mpipei3.eps and for those who would like to edit the
image can find it in Inkscape SVG at http://www.ece.lsu.edu/ee4720/2015/mpipei3.svg.

Problem 1: Answer Spring 2014 Final Exam Problem 7(c), which asks about how new load
addressing behavior should be added to MIPS.

Problem 2: Answer Spring 2014 Final Exam Problem 5, which asks about a new MIPS branch
instruction, bfeq.

Problem 3: Show the control logic for the IF-stage multiplexor in the MIPS implementation
below.

• The control logic should work for beq, bne, bgtz, bgez, and j. Assume that any other
instruction is not a control transfer.

• Show exactly which IR bits are needed by the control logic that detects bgez (Hint, hint.)
and other instructions.

• The control logic should check the condition to determine if the branch is taken.
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LSU EE 4720 Homework 3 Due: 11 March 2015

Problem 1: For the following question refer to the Intel 64 and IA- 32 Architectures Software
Developer’s Manual linked to the course references page. Intel 64 is an example of a CISC ISA, but
not a good example because it evolved from an ISA designed for a 16-bit address space. Over the
years the size of the general purpose registers increased from 16 bits to 64 bits and the number of
general-purpose registers increased from 8 to 16.

(a) Show the 64-bit names of the general purpose registers provided by Intel 64. (See Chapter 3 of
the manual mentioned above.)

(b) A MIPS assembly language instruction uses the same name for a register regardless of how many
bits of the register we use. For example, sb r1, 0(r2) uses 8 bits of r1 and sw r1, 0(r2) uses
all 32 bits, but in both instructions we refer to r1. Not so in IA-32/Intel 64, in which the name
of the register indicates how many bits to use. Show the names for RAX for the different sizes and
positions in the register.

Problem 2: Diagrams of the MIPS implementation for this problem can be found in EPS format at
http://www.ece.lsu.edu/ee4720/2015/hw02-p3-if-mux-sol.eps and in Inkscape SVG (which
can easily be edited) at http://www.ece.lsu.edu/ee4720/2015/hw02-p3-if-mux-sol.svg.

As has been pointed out in class, MIPS lacks a bgt rs, rt, TARG (branch greater than
comparing two registers) instruction because the ISA was designed for a five-stage implementation
in which the branch is resolved in ID. To resolve bgt in ID one would have to compare two
register values starting about half-way through the cycle, something that might slow down the
clock frequency.

In this problem suppose there was a bgt instruction in MIPS. We would like the implemen-
tation to have the same clock frequency as our bgt-less implementation. One way of doing that is
by resolving bgt in EX (but still resolving the other branches in ID as they are now). If we resolve
in EX we can expect a one-cycle branch penalty, as can be seen in the PED below.

# Cycle 0 1 2 3 4 5 6 7

bgt r1, r2, TARG IF ID EX ME WB

add r3, r4, r5 IF ID EX ME WB

xor r6, r7, r8 IF IDx

...

TARG:

lw r9, 0(r10) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

Note that xor is squashed in cycle 3, which is the behavior we want for a taken bgt (see the
second subproblem below). If bgt were not taken then no instruction would be squashed.

(a) Modify the implementation on the next page (taken from the Homework 2 solution) so that
bgt is resolved in EX. Note: The original assignment had a very big typo in the previous sentence:
giving ID instead of EX as the stage to resolve in.

• Pay attention to cost. Assume that a magnitude comparison (e.g., greater than) is relatively
costly.

• Show the control logic for bgt.

• Do not “break” existing instructions.
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(b) If bgt is taken an instruction will have to be squashed. (Because bgt has just one delay slot,
just like all the other branches.) Add logic so that a one-bit signal sq (squash) is delivered to ID

when the instruction in ID needs to be squashed due to a taken bgt.
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LSU EE 4720 Homework 4 Due: 1 April 2015

An EPS version of the MIPS FP implementation used in some of the problems below can be found
at http://www.ece.lsu.edu/ee4720/2015/mpipei_fp.eps and an easy-to-edit Inkscape SVG ver-
sion can be found at http://www.ece.lsu.edu/ee4720/2015/mpipei_fp.svg.

Problem 1: Solve 2014 Midterm Exam Problem 2, which asks for a stall-in-ME version of our
floating-point pipeline. A solution to this problem is available but use it only if you are stuck,
and after you are finished to check your answer. If you got it wrong, then solve the problem again
without looking at the solution.

Problem 2: Solve 2014 Final Exam Problem 1, which asks for an execution diagram of code
running on the solution to the 2014 Midterm Problem 2.

There’s another problem on the next page.
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Problem 3: In the FP implementation on the next page (which is the same as the one used in
class) an add.s instruction can stall due to an earlier mul.s, see the example below.

# Execution of code on the illustrated implementation.

# Cycle 0 1 2 3 4 5 6 7 8 9

mul.s f0, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

add.s f6, f7, f8 IF ID A1 A2 A3 A4 WF

add.s f3, f4, f5 IF ID -> A1 A2 A3 A4 WF

and r6, r7, r8 IF -> ID EX ME WB

To avoid the stall consider the fpa-4/6 design in which an add.s instruction that would stall
taking the usual route instead enters the FP pipeline at the M1 unit. Assume that the M1 unit’s
control signal (not shown and not part of the problem) will command it to pass the values at its
inputs to its outputs unchanged when it is carrying add.s operands. Then at the appropriate time
it crosses over to A1 and continues through the remaining adder stages. An add.s not facing a WF

structural hazard stall would go from ID to A1, as in the usual design. See the execution below.

# Desired execution on the fpa-4/6 implementation.

# Cycle 0 1 2 3 4 5 6 7 8 9 10

mul.s f0, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

add.s f6, f7, f8 IF ID A1 A2 A3 A4 WF # Uses 4-stage (normal) path.

add.s f3, f4, f5 IF ID M1 M2 A1 A2 A3 A4 WF # Uses 6-stage (M1 M2..) path.

and r6, r7, r8 IF ID EX ME WB

(a) Modify the pipeline to implement fpa-4/6.

• Show the datapath for the operands crossing from the multiply to the add unit.

• Show the control logic. The control logic should only send add.s into M1 if it would stall
taking the usual route.

• The control logic should include the we, fd, and xw signals, and signals for any multiplexors
that you add.

• As always, pay attention to cost and critical path.

(b) In the code fragment above the add.s f3 goes from ID to M1. If it had gone from ID to M2 it
would have still avoided the WF hazard and it also would have finished one cycle earlier. Consider
an fpa-4/5/6 design in which an add.s can start at A1, M2, or M1, using the first one that avoids a
stall. Provide a code example that would finish sooner on an fpa-4/5/6 design than on an fpa-4/6
design. Hint: A correct answer can add just one more instruction to the code fragment above.

(c) Is the fpa-4/5/6 design better than the fpa-4/6 design? Justify your answer using reasonable
cost estimates and made-up properties of typical user programs. Either yes or no is correct, credit
will be given for the justification.
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LSU EE 4720 Homework 5 Due: 22 April 2015

An EPS version of the MIPS superscalar implementation used in one of the problems below can
be found at http://www.ece.lsu.edu/ee4720/2015/mpipei3ss.eps and an easy-to-edit Inkscape
SVG version can be found at http://www.ece.lsu.edu/ee4720/2015/mpipei3ss.svg.

Problem 1: Solve 2014 Final Exam Problem 2, which asks for control logic in a 2-way superscalar
processor.

Problem 2: Solve 2014 Final Exam Problem 3, in which branch predictors are analyzed. Note:
Check earlier final exams for solutions to similar problems.
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LSU EE 4720 Homework 6 Due: 29 April 2015

Problem 1: Solve 2014 Final Exam Problem 4, the cache problem.

1
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LSU EE 4720 Homework 1 Due: 10 February 2014

Problem 1: The MIPS code below executes on the illustrated implementation. The loop iterates
for many cycles. The register file bypasses data from the write ports to the read port in the same
cycle.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D  

dstdst

E
2'b0 format

immed =

lw r1, -6(r3)

lw r5, -2(r3)

LOOP:

add r5, r5, r1

lw r1, 2(r3)

bne r3, r4, LOOP

addi r3, r3, 4

jr r31

sw r5, 0(r6)

(a) Show the execution of the code above on the illustrated implementation up to and including the
first instruction of the third iteration (that is, the third time that the add instructions is fetched).

• Carefully check the code for dependencies.

• Be sure to stall when necessary.

• Pay careful attention to the timing of the fetch of the branch target.

(b) Compute the CPI for a large number of iterations.
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Problem 2: Appearing below are incorrect executions on the illustrated implementation. For
each one explain why it is wrong and show the correct execution.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D  

dstdst

E
2'b0 format

immed =

(a) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(b) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(c) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(d) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7
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LSU EE 4720 Homework 2 Due: 21 February 2014

Problem 1: Solve Spring 2013 Homework 4 Problem 1, in which an integer multiply unit is added
to the pipeline. The solution to the problem is available, but please make an honest attempt to
solve it yourself. Understanding the solution to this problem will help with Problem 2, below.

Problem 2: Solve Spring 2013 Final Exam Problem 1. This problem is easier than it looks (but
a solution will not be available until after the homework due date). Please refer to the Statically
Scheduled MIPS study guide, http://www.ece.lsu.edu/ee4720/guides/ssched.pdf, for help on
solving similar problems and for where to find solutions to such problems.
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LSU LSU EE 4720 Homework 3 Due: 7 March 2014

For this assignment read the ARM Architecture Reference Manual linked to
http://www.ece.lsu.edu/ee4720/reference.html. This assignment asks about the ARM A32
instruction set.

Problem 1: Show the encoding of the ARM A32 instruction that is most similar to MIPS instruc-
tion add r1, r2, r3.

Problem 2: ARM instructions can shift one of its source operands, something MIPS cannot. With
this feature the code below can be executed with a single ARM add instruction. Show the encoding
of such an ARM A32 add instruction.

sll r1, r2, 12

add r1, r4, r1

Problem 3: So, the ARM add instructions can shift one of its operands, something that MIPS
would need two instructions to do. Since we have been working with MIPS for so long it would
be natural for us to get protective of MIPS and defensive or jealous when hearing about wonderful
features of other ISAs that MIPS doesn’t have. To relieve these negative emotions lets add operand
shifting to MIPS with a new addsc instruction. The addsc instruction will use MIPS’ sa field to
specify a shift amount. So instead of, for example, the following two instructions:

sll r1, r2, 12

add r1, r4, r1

We could use just

addsc r1, r4, r2, 12

where the “12” indicates that the value in r2 should be shifted by 12 before the addition.
Modify our five-stage MIPS implementation so that it can implement this instruction. (See

below for diagrams.)

• The addsc should execute without a stall.

• Don’t break existing instructions.

• Don’t increase the critical path by more than a tiny amount.

• Keep an eye on cost.

Assume that both the ALU and shift unit take most of the clock period. This means if the ALU
and shifter are in the same stage and output of the shifter is connected to the ALU, the critical
path will be doubled. (Of course, doubling the critical path would be disastrous for performance.)

There are several ways to solve this, one possibility includes adding a sixth stage, another
possibility uses a plain adder (not a full ALU) in the EX stage.

Add hardware to the implementation below. Source files for the diagram are at:
http://www.ece.lsu.edu/ee4720/2013/mpipei3.pdf,
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http://www.ece.lsu.edu/ee4720/2013/mpipei3.eps,
http://www.ece.lsu.edu/ee4720/2013/mpipei3.svg. The svg file can be edited using Inkscape.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

To see how a shift unit can be added to MIPS see Fall 2010 Homework 3.
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LSU EE 4720 Homework 4 Due: 24 March 2014

Problem 1: The following code fragments execute incorrectly on the following pipeline. For each
fragment describe the problem and correct the problem.

format
immed

IR

Addr
25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw

(a) Describe problem and fix problem.

lwc1 f2, 0(r1) IF ID EX ME WF

add.s f1, f2, f3 IF ID A1 A2 A3 A4 WF

(b) Describe problem and fix problem.

add.s f1, f2, f3 IF ID A1 A2 A3 A4 WF

addi r1, r1, 4 IF ID EX ME WB

lwc1 f2, 0(r1) IF ID EX ME WF

(c) Describe problem and fix problem.

add.d f1, f2, f3 IF ID A1 A2 A3 A4 WF

1

← → Spring 2014 ← → Homework 4 Homework Solution hw04.pdf

http://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/2014/hw04.pdf


Problem 2: The code fragment below contains a MIPS floating-point comparison instruction and
branch. The pipeline illustrated below does not have a comparison unit, in this problem we will
add one. The comparison unit to be used has two stages, named C1 and C2. The output of C2 is
one bit, indicating if the comparison was true.

format
immed

IR

Addr
25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw

c.gt.d f2, f4

bc1t TARG

add.d f2, f2, f10

...

TARG: xor r1, r2, r3

(a) Add the comparison unit to the pipeline above. Also add a new register FCC (floating point
condition code) that is written by the comparison instruction and is used by the control logic to
determine if a floating-point branch is taken.
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The FCC register should have a data and write-enable input, show the control logic generating
the write-enable signal. Show a cloud labeled “branch control logic” and connect it to appropriate
datapath components.

(b) Show the execution of the code sample above on your modified hardware, but without any
bypass paths for the added hardware.

(c) Add whatever bypass paths are needed so that the code executes with as few stalls as possible
but without having a major impact on clock frequency. Assume that C2 produces a result in about
80% of the clock period.

Source files for the diagram are at:
http://www.ece.lsu.edu/ee4720/2014/mpipeifp.eps,
http://www.ece.lsu.edu/ee4720/2014/mpipeifp.svg. The svg file can be edited using Inkscape.
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LSU EE 4720 Homework 5 Due: 21 April 2014

Problem 1: Solve Spring 2013 Final Exam Problem 2, the problem is to design control logic to
detect stalls in a 2-way superscalar system, and to add bypass paths for a special case.

Problem 2: Solve Spring 2013 Final Exam Problem 3, asking an assortment of branch predictor
problems. See past final exams for additional problems of this type.
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LSU LSU EE 4720 Homework 6 Due: 2 May 2014

Problem 1: Solve Spring 2013 Final Exam Problem 4(a), asking for details about a partially
described cache.

Problem 2: Solve Problem 4(b), a really easy hit ratio question.

Problem 3: Consider the code in Problem 4(c). For these questions assume that b = 0x1000,
with that value of b we know that b[0] starts at the beginning of a line.

(a) What would the hit ratio be if ASIZE were 0 (meaning that the a array is effectively not part of
the structure)? When you compute the hit ratio consider both loops (the one with sum += in the
loop body and the one with norm_val in the loop body).

(b) For what value of ASIZE would Some_Struct (or b[0] or b[i], etc.) be the same size as a cache
line?

(c) What would the hit ratio be if Some_Struct were the size of a cache line? Consider both loops.

(d) Find the smallest value for ASIZE that will minimize the hit ratio (make things as bad as they
can get). (This is part (c) from the test.) Don’t forget that this is a set-associative cache.
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LSU EE 4720 Homework 1 Due: 6 February 2013

Problem 1: The MIPS code below executes on the illustrated implementation. The loop iterates
for many cycles. The register file bypasses data from the write ports to the read port in the same
cycle.

format

immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+4

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

=
=0
<0

E

Z

N

NPC

LOOP:

lw r2, 0(r4)

slt r1, r2, r7

bne r1, r0 LOOP

addi r4, r4, 4

sw r4, 0(r6)

jr r31

nop

(a) Show the execution of the code above on the illustrated implementation up to and including
the first instruction of the second iteration.

• Carefully check the code for dependencies.

• Be sure to stall when necessary.

• Pay careful attention to the timing of the fetch of the branch target.

(b) Compute the CPI for a large number of iterations.
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Problem 2: The code fragment below is the same as the one used in the last problem, but the
implementation is different (most would say better).

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

LOOP:

lw r2, 0(r4)

slt r1, r2, r7

bne r1, r0 LOOP

addi r4, r4, 4

sw r4, 0(r6)

jr r31

nop

(a) Show the execution of the code on this new implementation.

• There will still be stalls due to dependencies, though fewer than before.

(b) Compute the CPI for a large number of iterations.
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Problem 3: Consider once again the code fragment from the previous two problems, and the
implementation from the previous problem. In this problem consider a MIPS implementation that
executes a blt instruction, an instruction that is not part of MIPS. With such an instruction the
code fragment from the previous problems can be shortened, and one would hope that the code
would take less time to run. In this problem rather than hope we’ll figure it out.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

LOOP:

lw r2, 0(r4)

blt r2, r7 LOOP

addi r4, r4, 4

sw r4, 0(r6)

jr r31

nop

(a) Add the additional datapath (non-control) hardware needed to execute blt. Hint: Just add
one unit and a few wires.

(b) Show the execution of the code on the illustrated implementation up until the second fetch of
lw.

(c) As we discussed in class, doing a magnitude comparison in ID might stretch the critical path,
forcing a reduction in clock frequency. Suppose the clock frequency without blt is 1 GHz. At
what clock frequency will the blt implementation, the one in this problem, be just as fast as the
implementation from the prior problem on their respective code fragments?

• Be sure to pick a sensible meaning of just as fast. Do not define just-as-fast in terms of CPI.

(d) Explain why the code fragments in these problems might exaggerate the benefit of the blt

instruction.
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LSU EE 4720 Homework 2 Due: 15 February 2013

Note: For help with this and similar assignments see the Statically Scheduled MIPS study guide
linked to http://www.ece.lsu.edu/ee4720/guides.html.

Problem 1: Solve Spring 2012 Midterm Exam Problem 1. Part a is the usual draw-a-pipeline-
execution-diagram-and-find-the-CPI problem, but it’s on an implementation with some bypass
paths removed. For part b you need to design control logic to generate stalls for the missing
bypasses.

Problem 2: Solve Spring 2012 Midterm Exam Problem 2. In that problem the memory stage is
split in two.
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LSU EE 4720 Homework 3 Due: 21 February 2013

Problem 1: As described in class, SPARC v7 integer branch instructions use a 22-bit immediate
field for the displacement. Branches are typically used in loops and if/else constructs, and so the
±2097152 instruction range might be more than is needed. So did the computer engineers at Sun
Microsystems (now part of Oracle). Look up the v7 integer branch instruction in the SPARC
Joint Programming Specification (JPS1), linked to the course references page (look for JPS1).
You’ll find SPARC v7 integer branch under Instruction Definitions in the Deprecated Instructions
section. Then look up the replacement integer branch instructions (not in the deprecated section).

(a) Sketch (or cut-and-paste, take a picture with your cell phone, etc.) the format of the three
instructions (one old, two new).

(b) Describe how BPr is different than the original v7 integer branch instruction, and point out two
benefits.

(c) Describe how BPcc is different than the original v7 integer branch instruction. This instruction
shares one benefit with BPr, but it has lost 2 bits of displacement in order to accommodate 64-bit
register values. (The other third lost bit has nothing to do with 64-bit register values). Explain.
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Problem 2: For the following assignment familiarize yourself with the VAX ISA by looking in
the VAX-11 Architecture Reference Manual (linked to the course references page). In particular,
see Section 2.6 for a summary of the instruction format, and Chapter 3 for details on the operand
specifiers used in the instruction formats. For examples, look at some past homework assignments
in this course: http://www.ece.lsu.edu/ee4720/2010f/hw04_sol.pdf,
http://www.ece.lsu.edu/ee4720/2007f/hw03_sol.pdf, and
http://www.ece.lsu.edu/ee4720/2002/hw02_sol.pdf.

The VAX format is simple, it consists of a one- or two-byte opcode followed by some number
of operand specifiers and any additional fields they may use. The operand specifiers are 8 bits,
and are followed by a possible extension and immediates. (See Section 2.6 and Chapter 3 of the
VAX-11 Architecture Reference Manual.)

(a) The VAX operand specifier is 8 bits, it includes a 4-bit mode field, and for literal addressing, a
6-bit literal field. (A literal in VAX is a small immediate.) Explain how it’s possible to fit a 4-bit
mode field and a 6-bit literal field into 8 bits.

(b) Find the best VAX replacement for each of the two MIPS instructions below and show their
encoding. The two VAX instructions will be different.

addi r1, r2, 1

addi r1, r1, 1

(c) Find a VAX instruction to replace the following sequence of MIPS instructions, and show its
encoding.

lw r1, 0(r2)

lui r3, 0x2abb

ori r3, r3, 0xccdd

add r1, r1, r3

sw r1, 0x100(r2)

(d) Compare the size of the VAX instruction from the problem above to the size of the MIPS
instructions.
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LSU EE 4720 Homework 4 Due: 8 March 2013

Problem 1: Recall that the MIPS-I mult instruction reads two integer registers and writes the
product into registers hi and lo. To use the product the values of lo and hi (if needed) have to
be moved to integer registers, done using a move from instruction such as mflo. In this problem
these instructions will be added to the implementation below.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
0 1

dstdst

Consider an integer multiply unit that consists of two stages, Y1 and Y2. The inputs to Y1 are
the 32-bit multiplier and multiplicand, and the output of Y2 is the 64-bit product. Unit Y1 has
three 32-bit outputs named s0, s1, and s2; unit Y2 has 3 32-bit inputs of the same name. As one
would guess, the data from the s0 output of Y1 should be sent to the s0 input to Y2, likewise for
s1 and s2.

As with other functional units, such as the ALU, inputs to Y1 and Y2 must be stable near the
beginning of the clock cycle and the outputs must be stable near the end of the clock cycle. There
is enough time to put a multiplexer before the inputs, or after the outputs (but not both).

Solve the two parts below together. That is, the hardware for part (a) might take advantage
of the hardware for part (b) and vice versa.

(a) Add the datapath hardware needed to implement the mtlo, mthi, mflo, and mfhi instructions.
Both the ALU and the integer multiply unit have an operation to pass either input to its output
unchanged. That is, let x denote the ALU output and let a and b its inputs. In addition to
operations like x = a+ b and x = a&b, the ALU can also perform a pass-a operation, that is, x = a
and a pass-b operation, x = b. The integer multiply unit also has pass-a and pass-b operations.

• Put the hi and lo registers in the ID stage.

• Do not write the hi and lo registers earlier than the ME stage.
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• As always, cost is a criteria.

• Bypass paths will be added in the parts below.

(b) Add the datapath hardware needed to implement the mult instruction. That is, put the Y1 and
Y2 units in the appropriate stages, and connect them to the appropriate pipeline latch registers
(adding new ones where necessary).

• Don’t add new bypass paths, but take advantage of what is available.

(c) Show the execution of the code below on your hardware so far. That is, your hardware should
not have any new bypass paths, but existing bypass paths in the implementation can be used.

sub r2, r6, r7

mult r1, r2

mflo r3

add r4, r3, r5

(d) Add bypass paths so that the code below (which is the same as in the previous part) can execute
without a stall. Assume that an additional multiplexer delay is tolerable.

sub r2, r6, r7

mult r1, r2

mflo r3

add r4, r3, r5

Problem 2: Continue to consider the implementation of the MIPS-I mult instruction. If MIPS
designers thought that an integer multiply unit could be built with two stages they might not have
used special registers, hi and lo, for the product.

(a) Show how the pipeline would look if the multiply unit had three stages, Y1, Y2, and Y3. There
is no need to add bypass paths for this part.

(b) Explain why there is much less of a need for the hi and lo registers with a two-stage multiply
unit (the first problem) than with a three-stage unit (this problem).

2
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LSU EE 4720 Homework 5 Due: 27 March 2013

Problem 1: In the following execution of MIPS code the lw instruction raises a TLB miss excep-
tion and the handler is called. A TLB miss is not an error, it indicates that the TLB needs to be
updated, which is what the handler will do.

Execution is shown up to the first instruction of the handler. Alert students will recognize that
there is something wrong in the execution below: it shows the execution of a deferred exception for
an instruction, the lw, that should raise a precise exception.

# Cycle 0 1 2 3 4 5 6 7 8 9

sh r1, 0(r3) IF ID EX ME WB

lw r1, 0(r2) IF ID EX M*x

addi r2, r2, 4 IF ID EX ME WB

sw r7, 0(r8) IF ID EX ME WB

and r4, r1, r6 IF ID EX ME WB

or r10, r11, r12

HANDLER:

# Cycle 0 1 2 3 4 5 6 7 8 9

sw r31,0x100(r0) IF ID EX ME WB

... # Additional handler code here.

eret

(a) Show the execution of the eret instruction and the instructions that execute after the eret.
Assume that eret reaches IF in cycle number 100. The execution should be for a deferred exception,
even though memory instruction exceptions should be—must be—precise. A correct solution to
this part will result in incorrect execution of the code.

(b) Suppose the execution above is for a computer on Mars, meaning that there is no fast or cheap
way of replacing the hardware, and there is no way to turn on precise exceptions for the lw. Happily,
it is possible to re-write the handler. Explain what the handler would have to do so that the code
above executes correctly. The handler will know the address of the faulting instruction. Optional:
explain why the sw r7 is nothing to worry about, at least in the execution above.

(c) Show the execution of the code above, but this time for a system in which lw raises a precise
exception. Start at cycle 0 with the sh instruction, and have the lw raising once again a TLB miss
exception. The execution should be in two parts, first from the sh up to the first instruction of the
handler, then jump ahead to cycle 100 with eret in IF and continue with whatever instructions
remain.

Problem 2: Solve Spring 2012 Final Exam Problem 2, which asks for the execution of MIPS
floating-point instructions on our FP implementation.

Problem 3: Solve Spring 2012 Final Exam Problem 1 (yes, this is out of order). In this problem
parts of the FP multiply unit are used to implement the MIPS integer mul instruction. Note that
the mul writes integer registers, unlike mult which writes the hi and lo registers. In other words,
do not use hi and lo registers in your solution.
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LSU EE 4720 Homework 6 Due: 12 April 2013

SVG and EPS versions of the superscalar processor illustration are available at
http://www.ece.lsu.edu/ee4720/2013/mpipei3ss.svg and
http://www.ece.lsu.edu/ee4720/2013/mpipei3ss.eps, respectively. Inkscape can be used to
edit the SVG version.

Problem1: The two-way superscalar implementation below has two memory ports in the ME stage,
and so it can sustain an execution of 2 IPC on code containing only load and store instructions.
Since for many types of programs loads and stores are rarely so dense and because memory ports
are costly, it is better to make a 2-way processor with just one memory port in the ME stage.

Modify the implementation below so that it has just one memory port in the ME stage. It
should still be possible to execute arbitrary MIPS programs, albeit more slowly.
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Problem 2: The datapath hardware for resolving branches in the 2-way superscalar MIPS imple-
mentation below is incomplete: it does not show branch target computation for the instruction in
Slot 1 (it is shown for Slot 0). (The hardware for determining branch conditions is also not shown,
but that’s not part of this problem.) The IF-stage memory port can retrieve any 4-byte aligned
address. (That is, it does not have the stricter 8-byte alignment that is assumed by default for
2-way superscalar processors presented in class.)

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem

Port

Addr

Data
Out

Addr

D
In

Mem
Port

Out
md

0

dst0Dest. reg

Addr
25:21

20:16
rsv0

rtv0Addr

Data

Data

+

15:0

31:2

15:0

D

alu0

rtv0

rtv1

Addr
25:21

20:16
rsv1

rtv1Addr

Data

Data

A
d
d
r

D
 I
n

dst1

imm0

imm1Immed

Dest. reg64

15:0

alu1

alu0

Addr

D
In

Mem
Port

Out
D

md
1

dst0

dst1
dst0

dst1

alu1

Register File

ir0

ir1

pc

npc

2`b0

(a) Add hardware so that the correct branch target is computed for branches in either slot. The
following signals are available: br_slot_0, which is 1 if the instruction in Slot 0 (ir0) is a branch;
br_slot_1, which is 1 if the instruction in Slot 1 is a branch. Assume that there will never be a
branch in both Slot 0 and Slot 1.

Design the hardware for low cost. Hint: Adder carry-in inputs can come in handy. The goal
of this part is to generate the correct target address, the next part concerns what is done with it.

(b) Add datapath so that the branch target address can be delivered to the PC at the correct time,
whether the branch is in Slot 0 or Slot 1. (Earlier in the semester branch delay slots were given as
an example of an ISA feature that worked well for the first implementations but that would become
a burden in future ones. Welcome to the future.)
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LSU EE 4720 Homework 7 Due: 24 April 2013

Problem 1: Solve Spring 2012 Final Exam Problem 3, in which pipeline execution diagrams are
requested for some superscalar systems.

Problem 2: Solve Spring 2012 Final Exam Problem 6 (d) and (e). (Just those two.) These
questions concern the techniques of widening (superscalar designs) and deepening (more pipeline
stages) our implementation to exploit more instruction-level parallelism.

Problem 3: Solve Spring 2012 Final Exam Problem 4, which asks for performance information
about some branch predictors.
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LSU EE 4720 Homework 1 Due: 17 February 2012

Problem 1: To save space in a program an array is designed to hold four-bit unsigned integers
instead of the usual 32-bit integers (it is known in advance that their values are ∈ [0, 15]). Because
this 4-bit data size is less than the smallest MIPS integer size, 8-bits, even a load byte instruction
will fetch two array elements. Code to read such an array and a test routine appear on the next
page, along with a stub for code to write the array. The routine compact_array_read is used
to read an element of this array and compact_array_write is the start (mostly comments) of a
routine to write an element.

(a) Add comments to compact_array_read appropriate for an experienced programmer. The com-
ments should describe how instructions achieve the goal of reading from the array. The comments
should not explain what the instruction itself does, something an experienced program already
knows. See the test code for examples of good comments.

(b) Complete the routine compact_array_write, so that it writes data into the array. See the
comments for details.
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###############################################################################

##

## Test Code

##

.data

a: # Array of values to test. Each byte hold two 4-bit elements.

.byte 0x12, 0x34, 0x56

msg: # Message format string (similar to printf).

.asciiz "Value of array element a[%/s0/d] is 0x%/s3/x\n"

.text

.globl __start

__start:

addi $s2, $0, 4 # Last index in array a.

addi $s0, $0, 0 # Initialize loop index.

LOOP:

la $a0, a # First argument, address of array.

jal compact_array_read

addi $a1, $s0, 0 # Second argument, index of element to read.

la $a0, msg # Format string for test routine’s msg.

addi $s3, $v0, 0 # Move return value (array element) ...

addi $v0, $0, 11 # ... out of $v0 and replace with 11 ...

syscall # ... which is the printf syscall code.

bne $s0, $s2 LOOP

addi $s0, $s0, 1 # Good Comment: Advance index to next

# element of test array.

# Bad Comment: Add 1 to contents of $s0.

li $v0, 10 # Syscall code for exit.

syscall

###############################################################################

##

## compact_array_read

##

compact_array_read:

## Register Usage

#

# CALL VALUES

# $a0: Address of first element of array.

# $a1: Index of element to read.

#

# RETURN VALUE

# $v0: Array element that has been read.

#

# Element size: 4 bits.

# Element format: unsigned integer.

srl $t0, $a1, 1

add $t1, $a0, $t0

andi $t3, $a1, 1

bne $t3, $0 SKIP

lb $t2, 0($t1)

jr $ra

srl $v0, $t2, 4

SKIP: jr $ra

andi $v0, $t2, 0xf
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###############################################################################

#

# compact_array_write

#

compact_array_write:

## Register Usage

#

# CALL VALUES

# $a0: Address of first element of array.

# $a1: Index of element to write.

# $a2: Value to write.

#

# RETURN VALUE

# None.

#

# Element size: 4 bits.

# Element format: unsigned integer.

3
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Problem 2: The MIPS code below executes on the illustrated implementation. The loop iterates
for many cycles. The register file bypasses data from the write ports to the read port in the same
cycle.

format

immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+4

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

=
=0
<0

E

Z

N

NPC

LOOP:

srl r4, r3, 2

sw r4, 0(r3)

bne r3, r2 LOOP

addi r3, r3, 4

(a) Show a pipeline execution diagram for the code above on the illustrated implementation for
enough iterations to determine CPI.
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LSU EE 4720 Homework 2 Due: 2 March 2012

Problem 1: Solve Problem 1 of the EE 4720 Spring 2011 Midterm Exam. (Execution on a
bypassed implementation.)

Problem 2: Solve Problem 2 of the EE 4720 Spring 2011 Midterm Exam. (Add hardware to
implement jalr and jr.
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LSU EE 4720 Homework 3 Due: 9 March 2012

Problem 1: Solve Problem 6 of the EE 4720 Spring 2011 Midterm Exam. These are short-answer
questions about ISA, the first question is about ISA variations and starts by listing MIPS and
IA-32 variants.

Problem 2: Solve Problem 7 (b) of the EE 4720 Spring 2011 Midterm Exam. This question is
about a parallel universe much like our own except that MIPS ipa called ALT-MIPS and it wapa
(that’s the conjugated form of to be to use when describing events in a parallel universe) designed
for a four-stage pipeline.
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LSU EE 4720 Homework 4 Due: 2 May 2012

Problem 1: Solve Problem 3 of the EE 4720 Spring 2011 Final Exam. This is a problem on
branch prediction accuracy.
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LSU EE 4720 Homework 1 Due: 2 March 2011

Problem 1: The MIPS code below executes on the illustrated implementation. The loop iterates
for many cycles.

format
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lw r2, 0(r5)

LOOP:

lw r1, 0(r2)

lw r3, 0(r1)

sw r3, 4(r2)

bne r3, r0 LOOP

addi r2, r3, 0

(a) Show a pipeline execution diagram for enough iterations to determine the CPI. Compute the
CPI for a large number of iterations.

(b) Show when each bypass path is used. Do so by drawing an arrow to a multiplexor input and
labeling it with the cycles in which it was used and the register. For example, something like

C10/r9 −→ to show that the input is used in cycle 10 carrying a value for r9.

Problem 2: Continue to consider the pipeline and code from the previous problem. The store
instruction and the branch could both benefit from a new bypass connection.

(a) Show a new bypass connection for the store.

(b) Indicate the impact of the new store bypass connection on critical path length.

(c) Show a new bypass connection needed by the branch.

(d) Indicate the impact of the new branch bypass connection on critical path length.

(e) Suppose that the cost of the two bypass connections were equal and that both had no critical
path impact. If only one could be added to an implementation which would you add? Base your
answer not on the example code above, but on what you consider to be typical programs.
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LSU EE 4720 Homework 2 Due: 25 March 2011

Problem 1: Solve Fall 2010 Final Exam Problem 1.

Problem 2: Solve Fall 2010 Final Exam Problem 3.
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LSU EE 4720 Homework 3 Due: 13 March 2011

Problem 1: Solve Fall 2010 Final Exam Problem 2(a) and 2(b) (but not 2(c)).

Problem 2: Solve Fall 2010 Final Exam Problem 6 (all parts).
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LSU EE 4720 Homework 4 Due: 26 April 2011

Updated, Problem 2 below now refers to the correct final exam problem.

Problem 1: Solve Fall 2010 Final Exam Problem 4.

Problem 2: This problem is based on Fall 2010 Final Exam Problem 7(a).

(a) Solve Fall 2010 Final Exam Problem 7(a).

(b) Illustrate your answer above with a code fragment that includes a loop. The loop should have
what we will call a body branch inside the loop body and a loop branch at the end, going to the
top of the loop. The loop branch is predicted with 100% accuracy. Consider cases in which the
body branch is predicted with 95% accuracy and 96% accuracy. Estimate the iteration time when
the body branch is taken and not taken, and when it’s predicted correctly or not. Do this both for
a 2-way and 4-way superscalar system. Based on these numbers estimate performance for a 95%
prediction accuracy of that branch and a 96% prediction accuracy.
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LSU EE 4720 Homework 1 Due: 15 September 2010

Problem 1: Diagnose or fix the MIPS-I problems below.

(a) Explain why the code fragment below will not complete execution. Fix the problem, assuming
that the load addresses are correct. (Problems such as this occur when operating on data prepared
on a different system.)

lw r1, 0(r2)

lw r3, 6(r2)

(b) The code below will execute, but it looks like there might be a bug. Explain.

jal subroutine

add r31, r0, r0

(c) The two fragments below are almost but not quite MIPS-I. Re-write them using MIPS instruc-
tions so they accomplish what the programmer likely intended.

# Fragment 1

lw r1, 0(r2+r3)

# Fragment 2

bgti r1, 101 target

nop

(d) The code fragments below are correct, but not as efficient as they could be. Re-write them
using fewer instructions (and without changing what they do).

# Fragment 1

addi r1, r0, 0xaabb

sll r1, r1, 16

ori r1, r1, 0xccdd

# Fragment 2

add r1, r0, r0

addi r1, r1, 123
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LSU EE 4720 Homework 2 Due: 17 September 2010

Problem1: Consider the execution of the code fragments below on the illustrated implementation.

format
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• A value written to the register file can be read from the register file in the same cycle. (For
example, if instruction A writes r1 in cycle x (meaning A is in WB in cycle x) and instruction
B is in ID in cycle x, then instruction B can read the value of r1 that A wrote.)

• As one should expect, the illustrated implementation will execute the code correctly, as
defined by MIPS-I, stalling and squashing as necessary.

LOOP:

lw r3, 0(r1)

add r4, r4, r3

bne r1, r2 LOOP

addi r1, r1, 4

xor r7, r8, r3

sw r4, 16(r5)

(a) Show a pipeline execution diagram for this code running for at least two iterations.

• Carefully check the code for dependencies, including dependencies across iterations.

• Base timing on the illustrated implementation, pay particular attention to how the branch
executes.

(b) Find the CPI for a large number of iterations.

(c) How much faster would the code run on an implementation similar to the one above, except
that it resolved the branch in EX instead of ME? Explain using the pipeline execution diagram above,
or using a new one. An answer similar to the following would get no credit because “should run
faster” doesn’t say much: A resolution of a branch in EX occurs sooner than ME so the code above
should run faster.. Be specific, and base your answer on a pipeline diagram.
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Problem 2: Apologies in advance to those tired of the previous problem. Consider the execution
of the code below on the implementation from the last problem. The code is only slightly modified.

(a) Show a pipeline execution diagram for this code, and compute the CPI for a large number of
iterations. It should be faster.

LOOP:

add r4, r4, r3

lw r3, 0(r1)

bne r1, r2 LOOP

addi r1, r1, 4

add r4, r4, r3

sw r4, 16(r5)

(b) How much faster would the code above run on the implementation that resolves branches in EX

(from the previous problem)?

(c) Suppose that due to critical path issues, the resolve-in-EX implementation had a slower clock
frequency. Let φME be the clock frequency of the resolve-in-ME implementation (the one illustrated),
and φEX be the clock frequency of the resolve-in-EX implementation. Find φEX in terms of φME such
that both implementations execute the code fragment above in the same amount of time. That is,
find a clock frequency at which the benefit of a smaller branch penalty is neutralized by the lower
clock frequency on the code fragment above.
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LSU EE 4720 Homework 3 Due: 22 September 2010

Problem 1: Note: Problems like this one have been assigned before. Please solve this problem
without looking for a solution elsewhere. If you get stuck ask for hints. Copying a solution will
leave you unprepared for exams, and will waste your (or your parents’) hard-earned tuition dollars.
A shift unit is to be added to the EX stage of the implementation below. The shift unit has a
32-bit data input, VIN, a 5-bit shift amount input, AMT, a 1-bit input SIN, and a 1-bit control input
DIR. There is a 32-bit data output, VOUT. The DIR input determines whether the shift is left (1) or
right (0). If the shift is right then the value at input SIN is shifted in to the vacated bit positions.
The meaning of the other inputs is self-explanatory. For a description of MIPS-I instructions see
the MIPS32 Volume 2 linked to the course references page.
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(a) Connect the shift unit data inputs so that it can be used for the MIPS sll, sllv, srl, srlv,
sra, and srav instructions. Assume that the ALU has plenty of slack (it is not close to carrying
the critical path). (Control inputs are in the next part.)

• Be sure your design does not unnecessarily inflate cost or lower performance.

• In your diagrams be sure to use the bit ranges used, for example, 27:21, when connecting a
wire to an input with fewer bits than the wire.

(b) Show the logic for control inputs DIR and SIN and any multiplexors that you added.

(c) Repeat the design of the datapath but assuming that the ALU is on the critical path and that
we don’t want to lower the clock frequency.
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LSU EE 4720 Homework 4 Due: 4 September 2010

Questions in this assignment are about VAX, an ISA that was mentioned in class but for which
no details were given. Use the VAX-11 Architecture Reference Manual (Cover, 1982; text, 1980),
which is linked to the course references page, as a reference for this assignment. (The VAX MACRO
and Instruction Set Reference Manual can be used as a secondary reference; you may also use any
other resources that you can find.) Chapter and section numbers in this assignment refer to the
VAX-11 manual, not to the VAX MACRO manual.

Problem 1: Compare the design goals for VAX as described in Section 1.1 to the design goals for
SPARC as described in the SPARC Architecture Manual V8 Section 1.1 (also linked to the course
references page).

(a) List the design goals for each architecture that are considered defining elements of the respective
ISA family (CISC and RISC). Explain whether the design goals in VAX and SPARC are mutually
exclusive (meaning you can’t easily do both).

(b) List a feature or design goal for each ISA that is unrelated to the features of the respective ISA
family. Briefly explain why it is unrelated.

Problem 2: Answer the following questions about VAX and RISC instruction formats.

(a) MIPS has three instruction formats for the integer instructions, SPARC has from three to five
(depending on how you count). The VAX ISA seems to have a simpler format, according to Section
2.6 (it takes just half a page to describe). Even if the VAX format is conceptually simpler (and
many would dispute that), why is it more complex in a way that is important to implementers.
Hint: This is an easy question.

(b) In class each operand of a typical CISC instruction had a type and info field to describe its
addressing mode. What are the corresponding VAX field names?

(c) Some RISC instructions have something like a type field, though not capable of specifying the
wide range of operand types as the VAX type fields (see the previous problem). Find two examples
of MIPS instructions that have an equivalent of a type field. Identify the field and explain what
operand types it specifies. Hint: Consider instructions that deal with floating-point numbers.

(d) Both MIPS and SPARC have an opcode field that appears in every instruction format and some
kind of an opcode extension field that appears in some of the formats. Name the opcode extension
fields in MIPS and SPARC. What is the closest equivalent to an opcode extension field in VAX?

Problem 3: Find the VAX addressing modes requested in the problems below. The term address-
ing mode can refer to registers, immediates, as well as memory addresses.

(a) Find the VAX addressing modes corresponding to the addressing mode used by the indicated
operands in each instruction below.

Name the mode, and show how the operand would be encoded in the instruction (there is no
need to show the entire instruction).

addi r1, r2, 3 # Both source operands.

lw r1, 0(r2) # Source operand. Note that the displacement is zero.

lw r3, 4(r4) # Source operand
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ld [l1+l2], l3 # SPARC insn, source operand

(b) Find the VAX addressing mode that can be used in place of the three instructions below. Name
the mode, and show how it is encoded.

sll r1, r2, 2

add r3, r1, r4

lw r5, 0(r3)
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LSU EE 4720 Homework 5 Due: 6 October 2010

Problem 1: Solve EE 4720 Spring 2010 Midterm Exam Problem 1. Please initially attempt to
solve this problem without seeking out solutions to similar problems. If you are able to solve it
that way, great!, otherwise look in the statically scheduled study guide (accessible from the course
Web page) for tips on solving problems of this type and a list of similar problems with solutions.
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LSU EE 4720 Homework 6 Due: 20 October 2010

Links in this assignment are clickable in Adobe Reader. For the questions below refer to the gcc
4.1.2 manual, available via http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/.

Problem 1: Read the introductory text to the optimization options page, 3.10, in the GCC 4.1.2
manual, and familiarize yourself with your Web browser’s search function so that you can search
the rest of the page. Answer the following questions.

(a) When optimizing gcc tries to fill branch delay slots. What option can be used to tell gcc not
to fill delay slots, without affecting other optimizations? What option can be used to control how
much effort gcc makes to fill delay slots?

(b) A reason given in class for scheduling code was to avoid stalls due to a lack of bypass paths.
What reason is given in the description of the -fschedule-insn option?

Problem 2: The POWER and PowerPC ISAs have alot in common, but each has instructions the
other lacks. Show the gcc command line switch to compile for both, start looking in section 3.17,
Hardware Models and Configurations.

Problem 3: Read the following blog post about the use of profiling in the build of the Firefox
Web browser:
http://blog.mozilla.com/tglek/2010/04/12/squeezing-every-last-bit-of-performance-out-of-the-linux-toolchain/.
The post compares the results of profiling optimizations provided by gcc to those obtained using
other tools for optimization.

(a) As described in the blog post, what was the training data used for profiling?

(b) Suppose that a Web page with a 5000-row table performs just as sluggishly with the profile-
optimized gcc build described in the blog post (firefox.static.pgo) as the ordinary Firefox build
(firefox.stock). Provide a possible reason for this, and a solution.

Problem 4: SPEC recently ended a call for possible programs for their next CPU suite, cpuv6.
Read the page describing the call: http://www.spec.org/cpuv6/.

(a) There is a section entitled “Criteria SPEC considers important for the next CPU benchmark
suite.” Evaluate the suitability of the pi.c program used in class based on each of these criteria.
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LSU EE 4720 Homework 7 Due: 1 November 2010

Problem 1: Do Spring 2010 Final Exam Problem 1 (our MIPS floating-point implementation
questions). The following were the criteria used when grading the final. Positive numbers indicate
total points for some aspect of the solution. Negative numbers are specific deductions for mistakes.
Many of these are based on specific mistakes made by one or more students. In the criteria smoke
means logic in which the outputs of two gates are connected together.

Problem 1 (15 pts)
^^^^^^^^^

-2 Smoke

4 Existing path for simple mtc1
-2 Squiggly line starts in MEM.
-2 Squiggly line from EX to fp RF din.

4 Control Logic
-3 Correct unbypassed mtc1, others wrong.
-3 Compare sources to integer dest. Don’t check insn types.
-2 Bypass from FP add and M6 we, no test for reg# or int val. No mtc1.
-4 and=>or of register field bit ranges, but inputs not connected.
-1 Correct test for fd, but uses fs from ID, no test for type

3 Store

4 Bypasses
-1 Store correct, other bypass could induce WF str hazard.
-3 Bypass from output of ALU to A1 input.
-2 Store bypass but no other bypass.
-0 Correct mtc1 bypass, but no store bypass (and no store either).
-4 Bypass from WF, with errors. (Mux out is 3rd input; src is fd).
-3 Bypass from mem port data out to a1.
-3 Bypass from EX/MEM.ALU, but connects to 1-input mux that smokes A1.

Problem 2: Do Spring 2010 Final Exam Problem 5 (how instructions given in problem could be
added to MIPS). Grading criteria used in final exam (see previous problem):

Problem 5 (15 pts)
^^^^^^^^^

5 Encoding
-2 No attempt at field uniformity.
-1 Show func as zero.
-2 addsid: "immed=Mem[ ]"

5 Shift Unit Placement
-0 Mux rs and rsv; implicit assumption that ALU shifts.
-2 Shift in ID or EX without mentioning critical path impact.
-3 Assume that ALU can both shift and add.
-2 slli: Use rsv for shift amount.
-4 adds: Shift in ID, next cycle bypass from me. Omit stall, etc.
-4 slli: Add a shift unit in ID stage. adds: shift before ALU, costly
-5 sllii: "Only need shifter." adds: "No hardware, use ALU for mult."
-3 Direct connection ALU out to in. "much control logic"
-0 "Control logic .. stalls .. ALU two consecutive cycles".

5 Memory unit position
-3 "Kind of" switching EX and ME.
-3 Bypass from WB, that’s hard. Omits stall, bypassing sources.
-4 Bypass from WB, that’s easy. Omits stall, bypassing sources.
-4 No description of connections, but does note ME is after EX.
-2 Memory port in ID, difficult. (Does not consider added stage.)
-5 Difficult because of fetch, no datapath description.
-0 "No extra dp.. reuse .. break pipe flow .. sig drops perf"
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LSU EE 4720 Homework 8 Due: 24 November 2010

Problem 1: Do Spring 2010 Final Exam Problem 2 (branch prediction). The grading criteria used
for the final appear below. Positive numbers indicate total credit for a category, negative numbers
are specific deductions.

Problem 2 (20 pts)
^^^^^^^^^

5 Bimodal B2
-2 Accuracy based on predicting after update.

1 Local B2
4 B2 min local history size

-2 Nine, since pattern repeats every 10 executions.
-2 Three, with "example"
-0 Four, with "example"

1 B2 local pht count

1 Bimodal B3
1 Local B3

1 Global B3
4 B3 min global history

-3 Three, needs b1, b2, b3

2 B3 warmup
-1 2^5, 32 * 18 cycles

Problem 2: Do Spring 2010 Final Exam Problem 3 using some additional information provided
here: The BHT is usually indexed with a subset of PC address bits, in class we like to use 11:2

(bits 11 to 2) for a 210-entry table but real systems use more bits. Even so, the entry retrieved from
the BHT might not be for the branch being predicted. For example, a branch at PC 0x1234 and
0x9234 would have the same index (BHT address) bits, 0x234 (leaving the two least-significant
bits on for convenience), but the higher bits, 31:12, would be different: 0x1 for the first branch
and 0x9 for the second. An ordinary branch predictor would treat these two branches as the same
branch, with a possible loss of performance. A solution is to place some or all of the high-order PC
bits in the BHT entry, along size the 2-bit counter, target, and other info. The high-order PC bits
used this way are referred to as a tag. A full-size tag for MIPS-I and our default predictor would
be 31:12 or 20 bits. When predicting a branch the tag in the entry that is retrieved is compared
to the corresponding bits in the branch being predicted. If they match the BHT lookup is said to
hit, if they don’t match it is said to miss. Tags, along with target and other data, are stored when
the predictor is updated. If we were predicting 0x1234 there would be a hit if the tag were 0x1,
if the tag were 0x9 that would be a miss. By using tags a collision between the two branches has
been detected. Without tags the predictor would have to assume that the retrieved BHT entry
was correct. For structures like branch predictors that don’t have to always be right, it’s possible
to get away with fewer than full-size tags. So in this example, one could use just two tag bits and
detect the collision. If one tag bit were used the tags would be the same for the example branches
and so the collision would not be detected.

With the information above, solve Problem 3.

Problem 3: Do Spring 2010 Final Exam Problem 7 (short answers). Part (a) is easy, part (b)
requires a small amount of thinking, parts (c) and (d) are easy.
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LSU EE 4720 Homework 1 Due: 3 March 2010

Problem 1: Re-write each code fragment below so that it uses fewer instructions (but still does
the same thing).

# Fragment 1

lw r1, 0(r2)

addi r2, r2, 4

lw r3, 0(r2)

addi r2, r2, 4

# Fragment 2

slt r1, r2, r3

blt r1, r0 TARG

add r4, r5, r6

# Fragment 3

ori r1, r0, 0x1234

sll r1, r1, 16

ori r1, r1, 0x5678
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Problem 2: The MIPS code below runs on the illustrated implementation. Assume that the
number of iterations is very large.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

LOOP:

lw r3, 0(r1)

addi r2, r2, 1

beq r3, r4 LOOP

lw r1, 4(r1)

(a) Show a pipeline execution diagram with enough iterations to determine the CPI.

(b) Determine the CPI.

(c) Schedule (re-arrange) the code to remove as many stalls as possible.

Problem 3: The MIPS implementation below has three multiplexors in the EX stage.

(a) Write a program that executes without stalls and which uses the eight ALU multiplexer inputs
in order (perhaps starting at cycle 3) in consecutive cycles. That is, in cycle 3 the top input of the
upper ALU mux would be used, (bypass from memory), in cycle 4 the second one would be used
(NPC), in cycle 5 rsv, in cycle 6 bypass from WB, in cycle 7 we switch to the lower ALU mux with
the bypass from ME input, in cycle 8 rtv, etc.

(b) Explain why it would be impossible to use the EX-stage rtv mux inputs in order in consecutive
cycles.

2

← → Spring 2010 ← → Homework 1 Homework Solution hw01.pdf

https://www.ece.lsu.edu/ee4720/2010/hw01.pdf


LSU EE 4720 Homework 2 Due: 17 March 2010

Problem1: The SPARC jmpl (jump and link) instruction adds the contents of two source registers
or a register and an immediate, and jumps to that address. It also puts the address of the instruction
in the destination register (usually to be used to compute a return address). For more information,
find the description of jmpl in the SPARC V8 ISA description from the references linked to the
course home page.

In this problem a similar instruction (or instructions) will be added to MIPS. Like the SPARC
jmpl, the MIPS variant can jump to a target determined by the sum of two registers or a register
and an immediate, while the address of the instruction is saved in the destination register. (Note
that the saved address is different than the address saved by MIPS’ jalr and jal instructions. Be
sure to save the address indicated by the SPARC definition.)

(a) Show how the MIPS version of these instruction(s) can be encoded. Show a format for the
instruction, using the descriptions in the MIPS32 Architecture Volume II (linked to the references
page) as an example. The format should show which instruction fields indicate each part of the
instruction.

(b) Show datapath changes (that is, omit control) to the implementation below needed to implement
this (these) instruction(s). The changes must fit in naturally with what is present and should not
risk lowering clock frequency. Do not forget about any changes needed to save a return address.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

(c) As discussed in class, a SPARC-style jmpl on something like our 5-stage pipeline would have to
be resolved in EX. However, a higher-cost implementation might resolve a jmpl in ID if no addition
were necessary.

Identify which of the following cases is the least trouble to detect (shown with SPARC assem-
bler), and explain why it is the least trouble:

jmpl %g1, %g0, %o7 ! g0 is the zero register.

jmpl %g1, 0, %o7 ! The immediate is zero.

jmpl %g1, %g2, %o7 ! Contents of g2 is zero.
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Problem 2: Without looking at the solution, do Fall (November) 2007 Midterm exam Problem 1.
Use the Statically Scheduled MIPS study guide, http://www.ece.lsu.edu/ee4720/guides/ssched.pdf,
for tips on how to solve this interesting, understanding-building, and fun-to-solve (if one is prepared
and not under intense time pressure) problem. Only use the solution if you must. Warning: The
test problems will be chosen under the assumption that students really solved this problem.
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LSU EE 4720 Homework 3 Due: 19 April 2010

Problem 1: The code below executes on the illustrated MIPS implementation. Assume that any
reasonable bypasses needed for the FP operands are available, even though they are not shown in
the illustration. A bypass is reasonable if it does not have a significant impact on clock frequency
and if it does not use circuitry that can predict the future.

format

immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M

1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

LOOP:

ldc1 f0, 0(r1)

mul.d f2, f0, f4

add.d f6, f6, f2

bne r1, r2, LOOP

addi r1, r1, 8

(a) Show a pipeline execution diagram covering enough iterations to compute the CPI. Don’t forget
to check code for dependencies.

(b) Compute the CPI.

(c) Remember, that some bypass paths are assumed present though not illustrated. Add the needed
paths to the implementation and show when they are used.
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Problem 2: Precise exceptions are necessary for integer instructions, but only Nice To Have for
floating-point instructions. Suppose exception conditions, such as overflow, were detected in A4

and M6 in the pipeline from the previous problem.

mul.d f2, f0, f4

add.d f6, f6, f2

and r3, r3, r5

addi r1, r1, 8

(a) For the code fragment above, would a mul.d exception detected in M6 be precise? Explain
in terms of architecturally visible storage (register and memory values) when the handler starts.
(Note that in general exceptions detected in M6 would not be precise, but the question is only asking
about the fragment above.)

(b) For the code fragment above, would a add.d exception detected in A4 be precise? Explain in
terms of architecturally visible storage when the handler starts.
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Problem 3: The MIPS implementation below has a fully pipelined FP add unit. Replace the FP
add unit with one that has an initiation interval of 2 and a total computation time of 4 cycles.
Note that the time to compute a floating point sum is the same on the original and replacement
adder.

format

immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M

1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

The new adder has two stages, A1 and A2, each has two inputs (like their fully pipelined
counterparts), and each has two outputs. In the first cycle of computation the source operands are
placed at the inputs to A1, in the second cycle of computation the values at the outputs of A1 at
the end of the first cycle are placed at the inputs to A1. In the third cycle the values at the outputs
of A1 at the end of the second cycle are placed at the inputs A2, and in the fourth cycle the inputs
to A2 are the values at the outputs of A2 at the end of the third cycle. The sum is available from
the upper output of A2 at the end of the fourth cycle.

(a) Replace the FP adder datapath with the one described above.

(b) Modify the control logic for the new adder. Be sure to account for the structural hazard when
there are two consecutive FP add instructions.
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LSU EE 4720 Homework 4 Due: 28 April 2010

Problem 1: A deeply pipelined MIPS implementation is constructed from our familiar five-stage pipeline
by splitting IF, ID, and ME each into two stages, but leaving EX and WB as one stage. The total number of
stages will be eight, call them F1, F2, D1, D2, EX, Y1, Y2, and WB. In this system branches are resolved at the
end of D2 (rather than at the end of ID). Assume that all reasonable bypass paths are present.

(a) Provide a pipeline execution diagram of the code below for both the 5-stage and this new implementation,
for enough iterations to compute the IPCs.

LOOP:

addi r2, r2, 4

lw r1, 0(r2)

add r3, r3, r1

bne r5, r4 LOOP

addi r5, r5, 1

(b) Suppose the 5-stage MIPS runs at 1GHz. Choose a clock frequency for the 8-stage system for which the
time to execute the code above is the same as for the 5-stage MIPS.

(c) Consider two ways to make a 7-stage system from the 8-stage system. In method ID, the two ID stages
(D1 and D2) are merged back into one (or if you prefer, the ID stage was never split in the first place). In
method ME, the two ME stages (Y1 and Y2) are merged back into one (or were never split).

Which method is better, and why? Assume that the eight-stage system runs at 1.8GHz. Consider both
the likely impact on clock frequency (remembering that you are at least senior-level computer engineering
students) and the benefit for code execution (don’t just consider the code above, argue for what might be
typical code).

Problem 2: Itanium is a VLIW ISA designed for general-purpose use. Being a VLIW ISA (as defined
in class) its features were chosen to simplify superscalar implementations. The questions below are about
such features, read the Intel Itanium Architecture Software Developer’s Manual Volume 1, Section 3 for
details and concentrate on Sections 3.3 and 3.4. The manual is linked to the course references page,
http://www.ece.lsu.edu/ee4720/reference.html. Use this copy to be sure that section and table num-
bering used here match.

(a) Section 3.3 mentions four types of functional unit, and where an instruction using a particular unit can
be placed in a bundle (see Table 3-9 and 3-10).

Suppose an Itanium implementation fetches one bundle per cycle. Indicate the maximum number of
execution units of each type needed. (That is, there would be no advantage of having more than this number.)
Assume that the units all have latency 1 or else are fully pipelined.

(b) For this problem suppose the implementation had the minimum number of units of each type, one. Sketch
the pipeline execute stages, and show connections to each of the FU inputs. There should be three sets of
source operands flowing down the pipeline. Some (or all) of the execute units should have multiplexors at
their inputs to select operands from one of the three instructions in a bundle. Show the multiplexors, and
based on the slot restrictions show the minimum number of inputs.

(c) Notice in Table 3-10 that there is no template with a stop right after Slot 0 and right after Slot 1. Provide
a possible reason for this.

Suppose there was a template with two such stops (as described above), call this ISA Itanium-stop-stop.
Why might code compiled for Itanium-stop-stop be smaller than code compiled for Itanium?

Consider Itanium and Itanium-stop-stop implementations that fetch one bundle per cycle (same as in
the prior problems). Explain why Itanium-stop-stop might be no faster than Itanium.
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LSU EE 4720 Homework 5 Due: 5 May 2010

Problem 1: Do Spring 2009 final exam Problem 2.

Problem 2: Do Spring 2009 final exam Problem 3, the branch predictor problem.

Problem 3: Do Spring 2009 final exam Problem 5.
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LSU EE 4720 Homework 1 Due: 27 February 2009

Problem 1: Answer each question.

(a) Explain why the code below won’t finish running.

LOOP:

lw r1, 0(r2)

xor r3, r3, r1

bne r2, r4 LOOP

addi r2, r2, 2

(b) Shorten the code below.

lui r1, 0x1234

ori r1, r1, 0x5678

lw r1,0(r1)

(c) Shorten the code below.

xor r1, r2, r3

beq r1, r0 TARG

addi r4, r4, 1

1
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Problem 2: Consider the execution code below on the illustrated implementation.

LOOP:

lw r2, 0(r4)

slt r1, r2, r3

beq r1, r0 LOOP

addi r4, r4, 4

format
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(a) Determine the execution rate in IPC (instructions per cycle) assuming a large number of itera-
tions. Use a pipeline execution diagram to justify your answer. (No credit without one.)

(b) If the previous part was solved correctly there should be a stall due to the branch. Add a bypass
path to avoid the branch stall.

(c) Why might the added bypass path impact clock frequency?

(d) Suppose the clock frequency of the original pipeline were 1GHz, and call the clock frequency of
the added-bypass implementation φ. For what value of φ will the run time of the code fragment be
the same on the original and added-bypass implementations (assuming a large number of iterations).

(e) Suppose a blt (branch less than) instruction was available that could compare two registers
(not just a register to zero). Re-write the code above for this instruction and add bypasses that are
no worse than the added-bypass bypass. How would the performance of this blt implementation
on the re-written code fragment compare to the added-bypass implementation on the original code
fragment? Assume both systems have the same clock frequency.

2
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LSU EE 4720 Homework 2 Due: 2 March 2009

Problem 1: Solve Fall 2008 EE 4720 midterm exam Problem 1. Solutions have not yet been
posted but were given in class in the Fall 2008 semester. Do not look at any solution you might
come across. (Solutions will be posted after the homework is collected.) Hints: This sort of problem
looks alot harder than it actually is. For a solved problem of this type see the solution to Problem
1 in the Spring 2008 midterm exam. Also look at the Fall 2008 Homework 2 for more on the shift
unit.

1
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LSU EE 4720 Homework 3 Due: 25 March 2009

Problem 1: Consider three ISAs: IA-32 (or 64), IBM POWER6, and Sun SPARC.

(a) Choose the highest-performing system, based on SPECint2006, for each ISA. Print or provide
a link to the test disclosure for each one.

(b) Find examples of benchmarks (if any) which favor each ISA based on the test disclosures you
found.

Problem 2: Why might a company publish peak SPECcpu scores but not base? Why is it against
the rules?

Problem 3: Solve the Fall 2008 Final Exam Problems 1 and 2.

1
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LSU EE 4720 Homework 4 Due: 20 April 2009

Problem 1: Solve Fall 2008 Final Exam Problem 4 and the additional questions below.

(a) For part (a) provide pipeline execution diagrams for the three systems (5-stage scalar, n-way
superscalar, and 5n-stage superpipelined) running code of your choosing. Refer to these diagrams
when answering part (a).

Problem 2: Consider the three systems from Problem 4 in the final exam. The problem focused
on potential (favorable) execution time, which can be achieved when there are few stalls, here we’ll
be more realistic.

(a) Which system will suffer more stalls on typical code? Explain.

(b) Invent a quantitative measure of implementation (not program) stall potential and apply it to
the three systems. The answer should include a formula for each system (giving the stall potential);
the superscalar and superpiplined formulas should be in terms of n. Hint: think about the average
or minimum distance between two dependent instructions needed to avoid a stall. The formulas
should be consistent with your answer to the first part.

1
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LSU EE 4720 Homework 5 Due: 24 April 2009

Problem 1: Solve Fall 2008 Final Exam Problem 3.

Problem 2: Continue to consider the systems and code from Problem 3.

(a) What is the warmup time of the local predictor on branch B2?

(b) What is the warmup time of the global predictor on branch B2?

Problem 3: Continuing still with Problem 3, suppose the number of iterations of the B1 loop
could be 1, 2, or 3, the probability of each number of iterations is 1

3 and the number of iterations
is independent of everything. The patterns of B1 for an iteration of BIGLOOP can thus be N or T N

or T T N.

(a) What is the accuracy of the bimodal predictor on B1. An exact solution is preferred but an
approximate solution is acceptable. Hint: Model the effect of the change of one BIGLOOP iteration
on the counter using a Markov chain, something you may have learned about in other courses.

(b) How will B1’s behavior impact the accuracy of the local predictor on branch B2? Show an
example of execution that would result in a B2 misprediction and compute the probability of that
particular execution.

(c) Optional: Find the exact prediction accuracy of B2 on the local predictor with B1’s new behavior.
This may be very difficult so don’t spend too much time on it.

1
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LSU EE 4720 Homework 1 Due: 29 September 2008

To answer the first question below see the MIPS32 Architecture manual linked to the course
references page.

Problem 1: The MIPS I bgtz and bltz instructions compare a register to zero, but can’t compare
two registers (unless the second one is the zero register). Consider an extension of MIPS I that
allowed branch greater than and branch less than instructions to compare two registers, call the
new instructions bgt and blt. Explain why the existing bgtz opcode could be used for bgt but
why the bltz opcode could not be used for blt. Hint: See bltzal.

Problem 2: A C function and a part of a MIPS equivalent are shown below. The C function looks
at the attributes of a car and decides what to pack in a promotional giveaway to the car buyer.
The assembler code corresponds to the C function up until the last line (checking for a sun roof).

#define FE_SPORTY 0x1

#define FE_OFF_ROAD 0x2

#define FE_EFFICIENT 0x4

#define FE_SUN_ROOF 0x10000

#define FE_MANUAL_TRANSMISSION 0x20000

enum Giveaways { G_Food, G_Hiking_Boots, G_Sunblock, G_Driving_Gloves };

void prepare_promotion_package(Car_Object *car) {

int car_features = car->features;

if ( car_features & FE_OFF_ROAD ) pack(car, 1200, G_Hiking_Boots);

if ( car_features & FE_SUN_ROOF ) pack(car, 200, G_Sunblock);

}

# MIPS-I Equivalent of C code.

#

# $a0: Address of car object.

# Notes: Procedure call arguments placed in $a0, $a1, ...

# Assume that pack does not change $a0-$a3 or $s0-$s7

lw $s0, 16($a0) # Load the features bit vector of car object.

andi $t0, $s0, 2

beq $t0, $0 SKIP1

addi $a1, $0, 1200

jal pack

addi $a2, $0, 1

SKIP1:

# PART b SOLUTION STARTS HERE

(a) The MIPS code above omits the last line of C code (checking for a sun roof); complete it using
MIPS I instructions. (Do this on paper, there is no need to run it.) Hint: A clever solution uses five
instructions a straightforward solution uses six instructions. If you have more than ten instructions
ask for help.

1
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(b) Add comments to the assembler code above. Write the comments for an experienced MIPS
and C programmer, that is, the comments should describe what an instruction is doing in terms of
what the C code is trying to do. The comments should not just describe how instructions change
register values.

For example, a bad comment for the lw instruction would be: Compute address 16 + $a0, retrieve
word starting at that address and write into $s0. This is a bad comment because an experienced MIPS
programmer already knows what an lw instruction does. The comment for lw in the code (Load
the features. . .) is good because it tells the reader what the $s0 value is in terms of what the code is
supposed to do.

Problem 3: Consider the code from the previous problem. Invent a new branch instruction that
can be used for the kind of branching used in the code: testing if a single bit in a register value is
1.

(a) Show the encoding for the new branch instruction. The new instruction must fit as naturally
as possible with other instructions.

(b) Compare the implementation cost and performance of the new instruction to the existing MIPS-
I bltz and to a hypothetical blt instruction. (With each instruction doing its own thing, not as
part of functionally equivalent alternatives.)

Problem 4: Solve Fall 2007 Homework 2 without looking at the solution. Then look at the
solution and give yourself a grade on a scale of [0, 1]. Warning: test questions are based on the
assumption that homework problems were completed, so make a full effort to solve it without first
consulting the solution.

2
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LSU EE 4720 Homework 2 Due: 15 October 2008

Problem 1: The hardware needed to implement shift instructions, such as sll, is not shown in the
implementation below. (The ALU in the implementation below does not perform shift operations.)
Add a separate shift unit to the implementation to implement the MIPS sll and sllv instructions.
The shift unit has a shift amount input and an input for the value to be shifted.

• Show exactly where the shift-amount bits come from (including bit positions).

• Add bypass paths so that the code below can execute without a stall.

• The primary goal is to not slow the clock frequency, the secondary goal is to minimize added
cost. This might affect where multiplexers are placed.

sll r1, r2, 3

add r3, r1, r4

format
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Problem 2: To answer this question see the SPARC Joint Programming Specification, a descrip-
tion of the SPARC V9 ISA, linked to the course references page. The SPARC V9 ISA is naturally
big endian. Since many programs must read data using little-endian byte order, for example when
reading a binary data file that was produced on a little-endian system, the programs need some
way to get the data into big-endian order. If loading little-endian data were only a small part of
what a program did then it could get by with some combination of ordinary instructions to convert
the data to big-endian format. For programs spending substantial time reading little-endian data
even a 9-instruction sequence may take too long.

The first instruction below is an ordinary load in SPARC V9, a 64-bit ISA (in which addresses
and registers are 64 bits). The second instruction, ldxle, is made up; it’s a load that assumes data

1
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is in little-endian byte order. The last instructions is a real SPARC instruction for loading little
endian data.

! All load instructions below load 8 bytes into a register.

! Registers are 64 bits.

ldx [%l1], %l2 ! Ordinary load. For big-endian data.

ldxle [%l1], %l2 ! Not a real SPARC insn. For little-endian data.

ldxa [%l1] 0x88, %l2 ! SPARC’s load for little-endian data.

(a) The ldxa instruction is an example of an alternate load instruction. The alternate load instruc-
tions are intended for three kinds of access. Briefly describe the three kinds and indicate which one
is used above. What symbolic name does JPS1 give for 0x88 above?

Note: To answer this question one must read through material dealing with topics not yet
covered, for example, the concept of multiple address spaces. It is only necessary that the concept
of multiple address spaces is vaguely understood. The kind of access done by the ldxa should be
clearly understood.

(b) Show the encoding for the three instructions above. The ldx and ldxa are real instructions, so
it’s just a matter of looking things up. For the ldxle make up an appropriate encoding.

2
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LSU EE 4720 Homework 3 Due: 29 October 2008

Problem 1: Two MIPS implementations appear below, the first is the one presented in class, it
will be called the mux-in-EX implementation. The second, the mux-in-ID implementation, has the
ALU input multiplexers in the ID stage, to better balance critical paths. The clock frequency of
the mux-in-EX implementation is 1 GHz and the clock frequency of the mux-in-ID implementation
is 1.1 GHz.
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(a) With this change some of the ALU multiplexer inputs are unnecessary. Show which inputs are
unnecessary and explain why.

Problem continued on next page.
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(b) The code below computes the sum of the low 12 bits of elements in an integer array. Compute
the performance, in array elements per second, of this code for both the mux-in-EX system and
the mux-in-ID system. Assume that the array size is large and that the number of array elements
is even.

# Call Values

# $a0, address of start of array of four-byte integers.

# $a1, number of elements in array. Assume > 0 and multiple of 2.

# Return Value

# $v0, sum of low 12 bits of integers in array.

sll $t1, $a1, 2

add $t1, $a0, $t1

addi $t1, $t1, -4

LOOP:

lw $t0, 0($a0)

lw $t5, 4($a0)

andi $t2, $t0, 0xfff

add $v0, $v0, $t2

andi $t7, $t5, 0xfff

add $v0, $v0, $t7

bne $a0, $t1 LOOP

addi $a0, $a0, 8

jr $ra

nop

(c) If, after double-checking your work, the performance of the mux-in-ID system is faster than the
old mux-in-EX system inform the professor that there is a mistake in this problem. Otherwise,
schedule (re-arrange instructions) the code above so that it performs faster (while still performing
the same computation) on the mux-in-ID system.

Problem 2: You are in an alternate universe where you work for MIPS at a time when its first
implementation (mux-in-EX) has been very successful and is in the hands of customers of all types.
You are deciding on whether to make mux-in-ID the second implementation to be marketed.

(a) What role do compiler writers have in the success of mux-in-ID? Explain.

(b) If mux-in-ID is faster than mux-in-EX using the old compilers, do compilers still need to be
re-written? Explain.

2
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LSU EE 4720 Homework 1 Due: 20 February 2008

Problem 1: Solve Fall 2007 Homework 2 without looking at the solution. Then look at the
solution and give yourself a grade on a scale of [0, 1]. Warning: test questions are based on the
assumption that homework problems were completed, so make a full effort to solve it without first
consulting the solution.

Problem 2: The MIPS IV movn instruction is an example of a predicated instruction (predication
will be covered later in the semester, but that material is not needed to solve this problem).

(a) Show how the movn instruction could be added to the implementation below inexpensively, but
without impact on critical path. Take into account the new logic’s impact on dependency testing
(see the code sample below). Show all added control logic.
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(b) Show how the code below would execute on your implementation.
add r1, r2, r3

movn r4, r5, r1

xor r6, r4, r7

(c) Suggest methods to eliminate any stalls encountered.
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LSU EE 4720 Homework 2 Due: 29 February 2008
For the answers to these questions look at the ARM Architecture Reference Manual linked to

the course references page, http://www.ece.lsu.edu/ee4720/reference.html.

Problem 1: The register fields in ARM instructions are four bits and so only 16 integer registers
are accessible. The ISA manual describes ARM as having 32 integer registers, however many of
them are only accessible in particular modes.

An advantage of fewer registers is that extra bits are available in the instruction encoding, for
example, ARM three-register instruction formats would have three more bits available than the
MIPS type R format. Where in the ARM formats do you think these bits went? In your answer
give the instruction field and its purpose. There should be no equivalent in MIPS.

Problem2: In MIPS an arbitrary 32-bit constant can be loaded into a register using a lui followed
by an ori. In ARM the immediate field for data-processing (integer) instructions is only 8 bits.

(a) Show ARM code to put an arbitrary 32-bit constant into a register without using a load
instruction. Use as few instructions as possible. Hint: take advantage of ARMS shift and rotate
capabilities.

(b) Show how ARM can put an arbitrary constant into a register with one load instruction, whereas
in MIPS two would be required. The MIPS code is shown below. Do not assume the address of
the constant is already in a register, that would make this problem insultingly easy! Hint: Use one
of ARM’s special purpose registers.

.text

lui r1, 0x1111

lw r1, 0x2220(r1)

# ... a few more instructions ..

jr $ra

nop

.data

my_32_bit_constant: # Address: 0x11112220

.word 0x12345678
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Problem 3: In ARM the program counter is register r15, and so as far as instruction encoding
goes, is treated as a general-purpose register.

(a) Why would really keeping the program counter in the integer register file add to the cost of an
implementation?

(b) How does the ISA manual hint that blue parts of the implementation below is what they had
in mind? (Register r15 is not stored in the register file, it will always be bypassed from the real
PC.) (Note: The ARM implementation is far from complete and parts may not work.)
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LSU EE 4720 Homework 3 Due: 9 April 2008
For answers to these questions consult the SPECcpu2006 Run and Reporting Rules (which can

be found at spec.org).

Problem 1: One way testers can stretch the rules is by using compiler optimizations that give
good performance when they work correctly but are too error prone for non-experimental use.

(a) Why would it be a bad idea for SPEC to limit allowable compiler optimizations to those that
are already known to be safe? (Say, dead-code elimination based on a SPEC-provided analysis
technique.)

(b) Rather than dictate allowable optimizations the rules instead explain that if it’s good enough
for your customers it’s good enough for SPEC, though not in those words. Find the section in the
run and reporting rules where this rule is given.

(c) For at least three bullet items in the section (from the last part) explain what sort of unscrupu-
lous action the bullet item is supposed to prevent.

Problem 2: When preparing a run of the SPEC benchmark the tester provides, among other
things, libraries (such as the C standard library that contains routines such as strlen, malloc,
printf). It is in the testers interest to make sure these library routines run as fast as possible and
is free to do so within the SPEC rules.

Section 2.1.2 stipulates that one can’t use flags that substitute library routines for routines
defined in the benchmark.

In addition to base and peak, imagine a third metric called swap, in which the rule in Section
2.1.2 didn’t apply. Testers could abuse the swap metric by substituting routines that merely return
the correct value (since input data is known in advance), but for this question suppose testers
comply with the spirit of the SPEC rules and substitute routines which provide higher performance
for any input data.

(a) Comparing the peak scores to the base scores shows the additional performance that can be
obtained by a suitably motivated and resourced expert. Explain what might be learned by compar-
ing swap scores to base and peak scores. (That is, where might the higher performance be coming
from.)

(b) Provide an argument that the swap metric is a good test of a system that complements base
and peak.

(c) Provide an argument that swap doesn’t really tell you anything about the system (CPU, memory,
compiler and other build items).

Problem 3: For exceptions the handler needs to know the address of the faulting instruction both
so that it can examine the instruction and so that it knows where to return to in case the instruction
needs to be re-executed or skipped. For answers to this question consult the ARM and MIPS32
(Volume 3) ISA manuals on the course references page.

A programmer-friendly ISA would provide the handler with the address of the faulting instruc-
tion, however in both MIPS32 and ARM may provide an address near the faulting instruction.

(a) In which registers do MIPS and ARM A32 write the approximate faulting instruction address?
(For MIPS give the register number as well as its name.)

(b) The address that MIPS provides may be that of the faulting instruction, or it may not be.
When is this done, and what is the other address?

(c) ARM A32 also does not provide consistent addresses. What addresses does it provide? Give a
credible reason for the differences in addresses.
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LSU EE 4720 Homework 4 Due: 28 April 2008

Problem 1: Solve the Fall 2007 Final Exam problem 1 (floating-point hardware).

Problem 2: Solve the Fall 2007 Final Exam problem 2 (branch prediction).
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LSU EE 4720 Homework 2 Due: 1 October 2007
For lecture material relevant to this assignment see

http://www.ece.lsu.edu/ee4720/2007f/lsli06.pdf. For some background and a list of similar
problems see the statically scheduled study guide,
http://www.ece.lsu.edu/ee4720/guides/ssched.pdf. Please make an effort to solve this prob-
lem based on an understanding of the material, use the solution to similar problems (if any) only
for hints. Feel free to ask questions using the forums, E-mail, or in person. Exam problems will
be based on the assumption that students completed (really completed) homework assignments, so
don’t short-change yourself !

Problem 1: Consider the following MIPS code and implementation:

# Cycle 0 1 2

lw r2, 0(r10) IF ID EX

LOOP:

lw r1, 0(r2) IF ID

add r3, r1, r4

sw r3, 4(r2)

bne r3, r5 LOOP

addi r2, r2, 8

# Cycle 0 1 2

A: 2

B: 2

C:
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(a) Complete the pipeline execution diagram of the execution of the code above on the implementa-
tion illustrated for at least the first two iterations. (See the next part for instructions on the “A:”,
etc.)
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(b) After the addi instruction three labels are shown, A:, B:, and C:; similar labels are shown, in
blue and circled, in the implementation. On the pipeline execution diagram show the values on the
wires (which are multiplexor inputs) that those labels point to only in cycles in which those signals
are used. The values are already shown for cycles 0, 1, and 2. Signals A and B are used in cycle 2
(but not 0 or 1), signal C is not used in cycles 0-2.

Note that the multiplexor inputs are numbered from the top starting at zero.

(c) Find the CPI of this loop on the illustrated implementation for a large number of iterations.

(d) Add bypass connection(s) so that the loop above executes as quickly as possible. Show the CPI
with those connections.

(e) Even with bypass connections the loop above, regrettably, executes with stalls (or at least it
should!). Schedule (re-arrange) the code so that it executes without stalls. The scheduled loop
should still load and store one value per iteration. Minor changes to the code can be made, such
as changing register numbers and immediate values.
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LSU EE 4720 Homework 3 Due: 15 October 2007
The problems below ask about VAX instructions, which were not yet covered in class. For information

on these instructions see the VAX Macro and Instruction Set manual linked to the EE 4720 references page.

Problem 1: The VAX locc instruction finds the first occurrence of a character in a string (see example
below). The first operand specifies the character to find (A in the example), the second operand specifies
the length of the string (in register r2), and the third operand specifies the address of the first character of
the string (register r3 below).

# Find first occurrence of 65 (ASCII A) in memory starting at

# address r3 and continuing for the next r2 characters.

locc #65, r2, (r3)

(a) Show how the sample instruction above is encoded. Include the name of each field and its value for the
example above, not for the general case. In the original assignment the third argument was shown as r3,
not (r3) which is correct.

(b) Provide an example of locc in which the encoded second and third operands each require more space
than the example above. At least one of these operands should use a memory addressing mode that is not
available in MIPS. Show the instruction in assembler and show its encoding.
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For the problems below consider a MIPS implementation similar to the one illustrated below and a DF-
equivalent VAX implementation. Like the MIPS implementation, the DF-equivalent VAX implementation
can read two registers per cycle, write one register per cycle, perform one ALU operation per cycle, and one
memory operation per cycle (not including fetch). The DF-equivalent VAX implementation may or may not
be pipelined and regardless does not suffer any kind of penalty for the complexity and size of its control
logic. Assume that the DF-equivalent VAX takes one cycle to fetch an instruction and one cycle to decode
an instruction, regardless of the instruction’s size or complexity.

Unlike MIPS the DF-equivalent VAX may be able to simultaneously use its ALU and memory port for
the same instruction (in the illustrated MIPS implementation they would be for two different instructions).
The 2-read, 1-write register restriction only applies to registers defined by the ISA. As with MIPS pipeline
latches, the DF-equivalent VAX can read or write as many temporary registers per cycle that it needs.

When showing the execution of an instruction on the DF-equivalent VAX use something like a pipeline
diagram and explain what’s going on when things aren’t clear. For example, here is how an add instruction
might execute:

# Note: Destination is rightmost register (r3)

Cycle 0 1 2 3 4 5 6

add 123(r1), (r2)+, r3 IF ID EX ME ME EX WB

EX WB

sub IF ID EX

Cycle 2: EX: 123 + r1

Cycle 3: ME load (123+r1)

Cycle 4: ME: load (r2)

Cycle 4: EX: r2 + 4

Cycle 5: EX: add (123+r1) + (r2)

Cycle 5: WB: wb r2+4 to r2

Cycle 6: WB: WB sum to r3.

In the example above the add instruction can be said to have taken four cycles since that’s how long
the sub might have had to wait to execute (to avoid overlap).

Use the following MIPS implementation for comparison:
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Problem 2: The MIPS jal instruction supports a procedure call by saving a return address in r31, other
activities normally done on a procedure call, such as saving registers to the stack, must be performed using
additional MIPS instructions. In contrast the VAX calls instruction not only saves a return address but
also saves registers in the stack and performs other common activities.

MIPS and VAX examples are shown below in which the VAX code uses a calls instruction and the
MIPS code performs a roughly equivalent operation. In particular, in both code samples three registers must
be saved on the stack. (The calls instruction performs additional actions, but for this problem assume it
does only what the MIPS code shows.)

(a) Show how the calls instruction would execute in the DF-equivalent VAX implementation. Note that
the calls instruction reads the word at the beginning of the called routine to determine which registers to
save.

(b) Is the DF-equivalent VAX implementation substantially faster on this instruction, about the same, or
slower?

# VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX

calls $0, myroutine

myroutine:

.data

.word 0x046

xor ...

# MIPS MIPS MIPS MIPS MIPS MIPS MIPS MIPS MIPS MIPS MIPS MIPS MIPS

jal myroutine

myroutine:

sw $r6, 0x18($fp)

sw $r2, 0x8($fp)

sw $r1, 0x4($fp)

addi $fp, $sp, 0

xor ...

myroutine:

# Cycle 0 1 2 3 4 5 6 7 8 9

sw $r6, 0x18($fp) IF ID EX ME WB

sw $r2, 0x8($fp) IF ID EX ME WB

sw $r1, 0x4($fp) IF ID EX ME WB

addi $fp, $sp, 0 IF ID EX ME WB

xor ... IF ID EX ME WB
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Problem 3: The VAX locc instruction is another example of an instruction that would not be included
in a RISC ISA because it could not be pipelined in any reasonable way. For this problem assume that
implementations of character location can only read one byte at a time. (A fast implementation might read
a word and check each position for the sought byte, but not in this problem.)

(a) What is the minimum amount of time that the DF-equivalent VAX implementation might take to execute
locc with a length parameter equal to n? Show how the instruction would execute.

(b) The MIPS routine below performs the same operation (except for the r0 and r1 return values). In terms
of n how long does it take to compute locc?

locc:

# Call Values:

# a0: char: Character to find.

# a1: len: Length of string.

# a2: addr: Address of first character of string.

# Return Value:

# v0: 0 if character not found, 1 if found.

# Note: Other locc return values not computed.

j START

add $t1, $a1, $a2 # $t1: Stop address ( last char + 1 )

LOOP:

beq $t0, $a0 FOUND

addi $a2, $a2, 1

START:

bne $a2, $t1, LOOP

lb $t0, 0($a2)

jr $ra

addi $v0, $0, 0

FOUND:

jr $ra

addi $v0, $0, 1

(c) Which implementation has the speed advantage? Explain.

(d) Can instructions be added to MIPS consistent with RISC principles that would substantially improve its
performance? If not, explain what gives locc an inherent advantage on CISC.
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LSU EE 4720 Homework 4 Due: 3 December 2007

Problem 1: For answers to this problems consult the SPARC Architecture Manual Version V8, linked to
the course references page.

Suppose a SPARC V8 trap table has been set up at address 0x12340000.

(a) Write a SPARC V8 program that sets the trap base register (TBR) to that address. Assume the processor
is already in privileged mode. Hint: A correct solution consists of two instructions, a three-instruction
program is okay too.

Call the SPARC V8 instruction that writes the TBR foo. The ISA definition of foo makes it easy to
design the control logic and bypassing hardware on certain implementations.

(b) What about the definition of foo makes the control logic and bypassing hardware design easy on those
certain implementations?

(c) Why not do the same for, say, the add instruction?

(d) Describe an implementation in which the control logic for foo would not be so simple despite the “help”
from the ISA definition.

Problem 2: Solve the EE 4720 Spring 2007 Final Exam problem 1.

Problem 3: Solve the EE 4720 Spring 2007 Final Exam problem 3.

← → Fall 2007 ← → Homework 4 Homework Solution hw04.pdf

http://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/2007f/hw04.pdf


22 Spring 2007

301

← → Spring 2007 ← → Homework 1 Homework Solution hw01.pdf

https://www.ece.lsu.edu/ee4720/2007/hw01.pdf


LSU EE 4720 Homework 1 Due: 2 March 2007

Problem 1: Without looking at the solution solve Spring 2002 Homework 2 Problem 2 parts a-c. Then,
look at the solution and assign yourself a grade in the range [0,1].

Problem 2: If the value in register r2 is not aligned (a multiple of four) the lw in the MIPS code below
will not complete.

lw r1, 0(r2)

(a) Re-write the code so that r1 is loaded with the word at the address in r2, whether or not it is aligned.
For this part do not use instructions lwl and lwr (see the next part).

(b) Re-write the code, but this time use MIPS instructions lwl and lwr. Hint: These instructions were
not covered in class, try looking them up in the MIPS architecture manual conveniently linked to the
http://www.ece.lsu.edu/ee4720/reference.html page..

Problem 3: Consider how the lwl and lwr instructions might be added to the implementation below.
There are two pieces of hardware that with minor modification would be able to merge the sub-words in a
reasonable solution. Alternatively, a new piece of hardware to perform the merge can be added.
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(a) Show how the hardware can be modified.

• If your solution relies on an existing component to perform the merge indicate which component and
why that can be easily modified to do the merge.

• As with other MIPS instructions lwl must spend one cycle in each stage (except when stalling).

(b) Show how the code below would execute on your solution. Pay attention to dependencies. Feel free to
propose an alternate solution to reduce the number of stalls.

add r1, r3, r4

lwl r1, 0(r2)

sub r5, r1, r6
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Problem 4: Consider these options for handling unaligned loads in the MIPS ISA which might have been
debated while MIPS was being developed.

• Option Lean: All load addresses aligned. No special instructions for unaligned loads (e.g., no lwl or
lwr).

• Option Real: All load addresses aligned. Special instructions for unaligned loads (e.g., lwl or lwr).

• Option Nice: Load addresses do not have to be aligned, however warn programmers that loads of
unaligned addresses may take longer in some implementations.

(a) For each option provide an advantage and a disadvantage.

(b) What kind of data would be needed to choose between these options? Consider both software and
hardware data, be reasonably specific.

(c) Using made up data pick the best option. Any choice would be correct with the right data.
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LSU EE 4720 Homework 2 Due: 9 March 2007

Problem 1: A manufacturer develops an ISA extension which can dramatically improve the performance
of certain benchmarks. The extension includes new instructions which work well with small integers. In
what the manufacturer calls well-formed C programs the compiler will find all opportunities where the new
instructions can be used and so the dramatic improvement will be realized. On other programs in which the
new instructions could be used the compiler won’t use them because it can’t tell if the resulting machine
code would be correct (perhaps because its not sure if values in registers would be small). In such cases
the compiler will provide a message for the programmer indicating a list of regions in which there was the
possibility of using the instructions. The programmer can then recompile with a special option indicating
which of those regions the new instructions can safely be used in. The resulting code would be sped up.

Suppose this all works out very well for developers. They have no problems indicating which regions
are safe for the new instructions and their resulting executables are fast and run correctly.

The manufacturer would like to run the SPECcpu2006 benchmarks on their new implementation. Most
of the SPECcpu2006 benchmarks are not well formed.

(a) Why couldn’t the compiler options (flags) for the SPEC run (base or peak) indicate the safe regions
under a reasonable interpretation of the rules? In your answer refer to specific parts of the SPECcpu2006
run and reporting rules,
http://www.spec.org/cpu2006/Docs/runrules.html.

(b) Keeping in mind the goals of the SPECcpu benchmarks argue either that the SPECcpu rules should be
changed (perhaps for a future version of the benchmark) or argue that the rules should remain as they are.

Solve the problems below. Then look at the solutions and assign yourself a grade.

Problem 2: Without looking at the solution solve Spring 2006 Midterm Exam Problem 1.

Problem 3: Without looking at the solution solve Spring 2006 Midterm Exam Problem 2.
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LSU EE 4720 Homework 3 Due: 18 April 2007

Some of the questions below are about the interrupt mechanisms defined for the MIPS32, SPARC V8,
and PowerPC 2 ISAs. MIPS and SPARC interrupt mechanisms were covered in class, PowerPC’s mecha-
nism was not. All are documented in manuals linked to the class references page,
http://www.ece.lsu.edu/ee4720/reference.html. When using these references keep in mind that in-
terrupt terminology differs from ISA to ISA and that you are not expected to understand (at least on first
reading) most of what is in these manuals. Finding the right manuals and the relevant pages in those manuals
is part of this assignment’s learning experience.

Problem 1: Consider a load instruction that raises an exception due to a fixable problem with a memory
address (for example, a TLB miss, whatever that is) on an implementation of MIP32, SPARC V8, and
PowerPC 2.

(a) Where does each ISA say the address of the faulting instruction (the load) should be put? Give the exact
register name, number, or both (if available).

(b) Where does each ISA say to put the memory address that the load attempted to load from?

Problem 2: Is PowerPC’s equivalent of a trap table more similar to SPARC’s trap table or to MIPS’?
Explain and describe how specific elements are the same or different. Look at table placement, size, number
of entries, and perhaps other characteristics.

Problem 3: In class a precise exception was defined as one in which, to the handler it appears that all
instructions before the faulting instruction have completed normally and that the faulting instruction and
those following it have not executed (correctly or otherwise). PowerPC calls certain exceptions precise even
though they violate this rule. What are they and how is this violation justified in the manual?

Problem 4: Solve Fall 2006 Final Exam Problem 1. Note: At the time this was assigned the solutions were
not available.

← → Spring 2007 ← → Homework 3 Homework Solution hw03.pdf

http://www.ece.lsu.edu/ee4720/
http://www.ece.lsu.edu/ee4720/reference.html
https://www.ece.lsu.edu/ee4720/2007/hw03.pdf


LSU EE 4720 Homework 4 Due: 25 April 2007

Problem 1: Estimate performance of the 8-way superscalar statically scheduled MIPS implementations
described here. All are five stages, as used in class, and always hit the cache, as has been the case in class
so far. Some of the implementations have no fetch group alignment restrictions, which means any eight
contiguous instructions can be fetched. Some impose a fetch group alignment restriction, meaning if a CTI
target is address a IF will fetch eight instructions starting at address a′ = 8×4×b a

8×4c (for those preferring
C: aa = a & ~0x1f ). Instructions in [a′, a) (or from aa to before a) will be squashed before reaching ID.

The implementations include a branch predictor that predicts when a branch is in IF, resolves (checks
the prediction) when a branch is in ID, and if necessary recovers (squashes wrong-path instructions) when a
branch is in EX. A branch is predicted when it is in IF and the prediction is used in the next cycle. Example
1, below, illustrates a correct taken prediction. The correctness of the prediction is checked, resolved, when
the branch is in ID; if incorrect the wrong-path instructions are squashed and the correct path instructions
are fetched in the next cycle (when the branch is in EX). This is illustrated in Example 2 for an incorrect
taken prediction.

Note that due to alignment restrictions (if imposed) and branch placement the number of useful instruc-
tions fetched in a cycle can vary, and that is something to take into account in the subproblems below. The
examples below illustrate when instructions will be fetched and squashed but they do not show how many
will be fetched in every situation.

# Example 1: Branch correctly predicted taken. Target fetched in next cycle.

#

# Cycle 0 1 2 3 4 5 6

beq r1,r2, TARG IF ID EX ME WB

nop IF ID EX ME WB

...

TARG:

add r3, r4, r5 IF ID EX ME WB

# Example 2: Branch wrongly predicted taken.

# Target squashed, correct path (fall through) fetched in cycle after ID.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

beq r1,r2, TARG IF ID EX ME WB

nop IF ID EX ME WB

sub r6, r7, r8 IF ID EX ME WB

TARG:

add r3, r4, r5 IFx

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

All implementations run the same program, which has not been specially compiled for the 8-way machine.
In the program, which has no floating-point instructions, any two data-dependent instructions have at least
seven instructions between them. This avoids some stalls, assume that there are no other stalls in the
superscalar implementation due to data dependencies.

Let ni denote the number of dynamic instructions in the program and let nb denote the number of
dynamic instructions that are branches. For the questions below show answers in terms of these symbols
and also show values for ni = 1010 and nb = 2 × 109. Assume that half of the times a branch is executed it
is taken.

(a) Suppose the 8-way implementation has perfect branch prediction and has no fetch alignment restrictions.
Approximately how long (in cycles) will it take to run the program. State any assumptions. Hint: Because
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of the branches it’s > ni

8 .

(b) Repeat the question above for a predictor that always predicts not taken (which essentially means no
predictor).

(c) Repeat the question above for a predictor with a 95% prediction accuracy. (Yes, that means 95% of the
predictions are correct.)

(d) Once again, suppose the 8-way implementation has perfect branch prediction but now fetch is restricted to
aligned groups. Approximately how long (in cycles) will it take to run the program. State any assumptions.

Problem 2: Consider a bimodal branch predictor with a 210-entry branch history table (BHT).

(a) What is the prediction accuracy on the branch below with the indicated behavior assuming no interference.
Assume that the pattern continues to repeat. Provide the accuracy after warmup.
0x1000 beq r1, r2 TARG t t t n t t n n n t t t n t t n n n ...

Problem 3: Suppose that for some crazy reason it’s important that the branch at address 0x1000 be
predicted accurately, even if that means suffering additional mispredictions elsewhere. The result of this
crazyness is the code below, in which the branch in HELPER is intended to help the branch at 0x1000.

(a) Choose an address for HELPER so that 0x1000 is helped.

(b) Given a correct choice for the address of HELPER, find the prediction accuracy of the branch at 0x1000.

jal HELPER

nop

0x1000:

beq r1, r2 TARG t t t n t t n n n t t t n t t n n n ...

...

....

HELPER:

beq r1, r2 SKIP

nop

SKIP:

jr r31

nop
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LSU EE 4720 Homework 1 Due: 3 October 2006

Problem 1: Without looking at the solution solve Spring 2002 Homework 2 Problem 2 parts a-c.
Then, look at the solution and assign yourself a grade in the range [0,1].
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LSU EE 4720 Homework 2 Due: 9 October 2006

Problem 1: Section 2.2.2 of the run and reporting rules for SPECcpu2006,
http://www.spec.org/cpu2006/Docs/runrules.html, specifies that the optimization flags and options
used to obtain the base result must be the same for each benchmark (compiled with the same language, say
C). Why must they be the same?

Problem 2: Section 1.2.3 of the run and reporting rules for SPECcpu2006,
http://www.spec.org/cpu2006/Docs/runrules.html, assumes that the tester is honest. Provide an argu-
ment that many of the run and reporting rules ignore this assumption, or at best are based on the assumption
that the tester is honest but sloppy or unmotivated.

Problem 3: Find the SPECcpu2000 CINT2000 disclosure for the fastest systems using each of the chips
below. All chips implement some form or superset of IA-32 (also known as 80x86). All of the implementations
are superscalar, meaning they can sustain execution of more than one instruction per cycle. In particular, an
n-way superscalar processor can sustain execution of n instructions per cycle on ideal code, on real code the
sustained execution rate is much lower (for reasons to be covered later in the course, such as cache misses).
Some of the implementations are multi-cored. (A core is an entire processor and so a 2-core chip has two
complete processors.)

• Pentium III, 1-core, 2-way

• Pentium 4, 1-core, 3-way

• Pentium Extreme, 2-core, 3-way

• Intel Core 2 Extreme X6800, 2-core, 4-way

• Opteron 256, 1-core, 3-way

• Athlon FX-62, 2-core, 3-way

(a) For each system list the following information:

• The peak (result) ratio (for the suite).

• The clock frequency.

• The gcc peak (result) run time (in seconds).

• The maximum number of instructions the system could have executed during the run of gcc assuming
all cores were used.

• The maximum number of instructions the system could have executed during the run of gcc assuming
one core was used.

• Execution efficiency assuming all cores were used: number of instructions executed divided by max-
imum number of instructions that could have been executed in the same amount of time. Assume
that all systems run the same binary (executable) of gcc and make a guess at how many instructions
would be executed when running the binary for the SPEC inputs.

• Execution efficiency assuming a single core was used: Same as previous value, except assume only one
core used.

(b) The execution efficiency computation was based on the assumption that the number of executed instruc-
tions was the same in all systems. Identify two systems for which this was more likely to be true and two
systems where this was less likely to be true.

(c) How much does a dual-core implementation improve the performance of gcc?
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LSU EE 4720 Homework 3 Due: 20 October 2006

Problem 1: Show the changes to the MIPS implementation below needed to implement the SPARC V8
instructions shown in the sub-problems. (See the SPARC Architecture Manual linked to the course references
page for a description of SPARC instructions.) Do not show control logic changes or additions. For this
problem assume that SPARC has 32 general-purpose registers, just like MIPS. (In reality there are 16n,
n ≥ 4 general-purpose registers organized into windows. An integer instruction sees only 32 of these but
using save and restore instructions a program can replace the values of 16 of them, the feature is intended
for procedure calls and returns. To satisfy curiosity, see the description of register windows in the ISA
manual.)
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For solution can use larger version on next page.

(a) Show the changes for the following instructions. The only changes needed for these are to bit ranges in
the ID stage.

add %g1, %g2, %g3

sub %g4, 5, %g6

(b) Show the changes needed for the store instruction below. This will require more than changing bit ranges.

st %g3, [%g1+%g2]

(c) Show the changes needed to implement the instructions below. The alert student will have noticed the
ALU has a new output labeled cc. That output has condition code values taken from the result of the ALU
operation.

• Don’t forget the changes needed for the branch target.

• The changes should work correctly whether or not the branch immediately follows the CC instruction.

• Cross out the comparison unit if it’s no longer needed.

subcc %g1, %g2, %g3

bge TARG
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LSU EE 4720 Homework 4 Due: 4 December 2006

Problem 1: The floating point pipeline in the MIPS implementation illustrated below must some-
times stall instructions to avoid the WF structural hazard. The WF structural hazard could be
avoided by requiring all instructions that use WF to go through the same number of stages. Note
that instructions that use WB all pass through five stages, even though some instructions, such as
xor, could write back earlier.

Redesign the illustrated implementation so that the WF structural hazard is eliminated by
having WF instructions (consider add.d, sub.d, mul.d, and lwc1) all pass through the same
number of stages. The functional units themselves shouldn’t change (still six multiply steps and
four add steps) but their positions might change.

(a) Show the possibly relocated functional units and their connections. Don’t forget connections
for the lwc1 instruction.

(b) Show any changes to the logic generating the fd, we, and xw signals. Note: The original
assignment did not ask for xw changes.

(c) Show bypass paths needed to avoid stalls between any pair of floating point instructions men-
tioned above.
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Problem 2: Consider the changes to avoid structural hazard stalls from the previous problem.
Provide an argument, either for making the changes and or against making the changes. For your
argument use whatever cost and performance estimates can be made from the previous problem.
Add to that the results of fictitious code analysis experiments and alternative ways of using silicon
area to improve performance.

The code analysis experiments might look at the dynamic instruction stream of selected pro-
grams. For these experiments explain what programs were used and what you looked for in the
instruction stream. Make up results to bolster your argument.

For the alternative ways of using silicon area, consider other ways of avoiding the structural
hazard stalls, or other ways of improving performance. This does not have to be very detailed, but
it must be specific. (For example, “use the silicon area for pipeline improvement” is too vague.)

The argument should be about a page and built on a few specific elements, rather than mean-
dering long-winded generalities.

Problem 3: In the previous problem structural hazards were avoided by having all WF instructions
pass through the same number of stages. If both WB and WF instructions passed through the
same number of stages then, were it not for stores, it would easily be possible for floating-point
instructions to raise precise exceptions without added stalls (even if exceptions could not be detected
until M6).

(a) For this part, ignore store instructions. Explain why having all instructions pass through the
same number of stages makes it easier to implement precise exceptions (without added stalls, etc.)
for floating point instructions.

(b) For this part, include store instructions. Explain how store instructions preclude precise excep-
tions for the implementation outlined above, or at least for a simple one.

(c) For this part, include store instructions. Do something about stores so that the all-instructions-
use-the-same-number-of-stages implementation can provide precise exceptions to floating point in-
structions. It is okay if the modified implementation adds stalls around loads and stores. A good
solution balances cost with performance.

If your solution is costly say so and justify it. If your solution is low cost but lowers performance
say so and show the execution of code samples that encounter stalls.
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LSU EE 4720 Homework 1 Due: 3 March 2006
Several Web links appear below and at least one is long, to avoid the tedium of typing them

view the assignment in Adobe reader and click.

Problem 1: Consider these add instructions in three common ISAs. (Use the ISA manuals linked
to the references page, http://www.ece.lsu.edu/ee4720/reference.html.)

# MIPS64

addu r1, r2, r3

# SPARC V9

add g2, g3, g1

# PA RISC 2

add r1, r2, r3

(a) Show the encoding (binary form) for each instruction. Show the value of as many bits as
possible.

(b) Identify the field or fields in the SPARC add instruction which are the closest equivalent to
MIPS’ func field. (A field is a set of bits in an instruction’s binary representation.)

(c) Identify the field or fields in the PA-RISC add instruction which are the closest equivalent to
MIPS’ func field. Hint: Look at similar PA-RISC instructions such as sub and xor.

(d) The encodings of the SPARC and MIPS add instructions have unused fields: non-opcode fields
that must be set to zero. Identify them.

Problem 2: Read the Overview section of the PA-RISC 2.0 Architecture manual,
http://h21007.www2.hp.com/dspp/files/unprotected/parisc20/PA_1_overview.pdf.
(If that link doesn’t work find the overview section from the course references page,
http://www.ece.lsu.edu/ee4720/reference.html.)

A consequence of the unused fields in MIPS and SPARC add instructions and RISC’s fixed-
width instructions is that the instructions are larger than they need to be.

The PA-RISC overview explains how PA-RISC embodies important RISC characteristics, as
do other RISC ISAs, but also has unique features of its own.

(a) It is because of one of those class of features that the PA-RISC 2.0 add instruction lacks an
unused field. What is PA-RISC’s catchy name for those features?

(b) Provide an objection (from the RISC point of view) to the added functionality of PA-RISC’s add
instruction. If possible, find places in the overview that provide or at least hint at counterarguments
to those objections.
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Problem 3: Many ISAs today started out as 32-bit ISAs and were extended to 64 bits. Two
examples are SPARC (v8 is 32 bits, v9 is 64 bits) and MIPS (MIPS32 and MIPS64). One important
goal is that code compiled for the 32-bit version should run unchanged on the 64-bit version.
Another important goal is to add as little as possible in the 64-bit version. For example, it would
be easy maintain compatibility by adding a new set of 64-bit integer registers and new 64-bit integer
instructions, but that would inflate the cost of the implementation. Another approach would be to
extend the existing 32-bit integer registers to 64 bits and change the existing instructions so they
now operate on 64-bit quantities, but that would break 32-bit code (consider sll followed by srl).

(a) Does a MIPS32 add instruction, for example, add $s1, $s2, $s3, perform 64-bit arithmetic
when run on a MIPS64 implementation? If not, what instruction should be used to perform 64 bit
integer arithmetic?

(b) Does a SPARC v8 add instruction, for example, add %g2, %g3, %g1, perform 64-bit arithmetic
when run on a v9 implementation? If not, what instruction should be used?

Problem 4: Continuing with techniques for extending 32-bit ISAs to 64 bits, consider the problem
of floating-point registers. Both MIPS32 and SPARC v8 have 32 32-bit FP registers that can be
used in pairs to perform 64-bit FP arithmetic. Both 64-bit versions effectively have 32 64-bit FP
registers, but using different approaches.

(a) Describe the different approaches.
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LSU EE 4720 Homework 2 Due: 13 March 2006

Problem 1: The code fragment below runs on the illustrated implementation. Assume the branch
is always taken.

(a) Show a pipeline execution diagram covering execution to the beginning of the third iteration of
the loop.

(b) What is the CPI for a large number of iterations?
Hint: Pay close attention to dependencies and carefully add the stalls to handle them; also

pay close attention to the timing of the branch. Work from the illustrated implementation, do not
adapt the solution from a similar past assignment, that would be like preparing for a 10 km run by
driving around the jogging trail.

LOOP:

lw $s0, 0($s1)

addi $s3, $s0, 4

bneq $s3, $0 LOOP

add $s1, $s1, $s2

xor $t0, $t1, $t2

or $t3, $t4, $t5

and $t6, $t7, $t8
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Problem 2: The code fragment below (the same as the one above) runs on the illustrated imple-
mentation (different than the one above—and better!). Assume the branch is always taken.

(a) Show a pipeline execution diagram covering execution to the beginning of the third iteration of
the loop.

(b) What is the CPI for a large number of iterations?

(c) An A points to a wire on the illustration. On the pipeline execution diagram show the value
of that wire in every cycle that the corresponding stage holds a “live” instruction.

(d) A B points to a wire on the illustration. On the pipeline execution diagram add a row labeled
B, and on it place an X in a cycle if the value on the wire can be changed without changing the way
the program executes.

LOOP:

lw $s0, 0($s1)

addi $s3, $s0, 4

bneq $s3, $0 LOOP

add $s1, $s1, $s2

xor $t0, $t1, $t2

or $t3, $t4, $t5

and $t6, $t7, $t8
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LSU EE 4720 Homework 3 Due: 20 March 2006

Review Fall 2004 Final Exam Problem 2, which was discussed in class on Monday, 13 March 2006.

Problem 1: Using the solution to Fall 2004 Final Exam problem 2 parts a, b, and d (but not c) as a starting
point, make changes to implement a new two-source register MM instruction add.mmr which operates as
shown in the example below. Hint: The solution requires a register file modification.

add.mmr (r1), (r2), r3 # Mem[r1] = Mem[r2] + r3

Problem 2: Your boss, a stuck-in-the-twentieth-century RISC true believer who only grudgingly agreed to
include add.mm, add.mr, add.rm, and add.mmr in MMMIPS, flies into an incoherent rage when you suggest
also adding add.mmm to MMMIPS. What pushed your boss over the edge? (That is, why is add.mmm much
harder to add to the implementation in the Fall 2004 exam than add.mmr.) Instruction add.mmm operates as
shown below:

add.mmm (r1), (r2), (r3) # Mem[r1] = Mem[r2] + Mem[r3]

Problem 3: Write a pair of programs intended to show the benefit of MMMIPS. Both programs should
do the same thing, program A should use ordinary MIPS instructions and run on the MIPS pipeline shown
below. Program B should use MMMIPS instructions and run on the implementation shown in the exam
solution. Reasonable bypass connections may be added, including those needed for branches.

(a) Show the programs.

(b) Compute the execution time (in cycles) of each program. The comparison should be fair so each program
should be producing the same result.
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Problem 4: Show a program that will run slower on the MMMIPS implementation that the ordinary
MIPS implementation. That program, of course, should not use MMMIPS instructions. Reasonable bypass
connections can be added, including those needed for branches. Hint: Branches are important.
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LSU EE 4720 Homework 4 Due: 17 April 2006

Problem 1: The code below executes on the illustrated MIPS implementation. The FP pipeline is fully
bypassed but the bypass connections are not shown.
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(a) Show a pipeline execution diagram.

(b) Determine the CPI for a large number of iterations.

(c) Add exactly the bypass connections that are needed.

LOOP:

mul.d f2, f2, f4

bneq r1,0 LOOP

addi r1, r1, -1
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Problem 2: Due to a coffee spill the implementation below has a flaw: The inputs to the M2-stage XW
mux have been reversed, the top input should be a 2 but is a 1, and the lower input should be a 1 but is
a 2. There are no other flaws, in particular the control signal for the mux has been designed for a 2 at the
upper input and a 1 at the lower input.

You are stranded alone on an island with this flawed implementation and to get off the island you need
the result computed by the code below. The code was written for a normal MIPS implementation and will
not compute the correct result on the flawed one. Re-write it so that it computes the correct result on the
flawed implementation. (The solution must use the FP arithmetic units, do not simply implement IEEE 754
floating point using integer instructions.)
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hardware.

Bypass from here.

LOOP:

add.d f2, f2, f4

bneq r1,0 LOOP

addi r1, r1, -1
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LSU EE 4720 Homework 5 Due: 28 April 2006

Note: For some sample problems with predictors see the final exam solutions.

Problem 1: The routine samples in the code below is called many times. Consider the execution of the
code on three systems, each system using one of the branch predictors below.

All predictors use a 214-entry branch history table (BHT). (The global predictor does not need its BHT
for predicting branch direction.) The three predictors are:

• System B: bimodal

• System G: global, history length 10. (Accuracy can be approximated.)

• System L: local, history length 10.

(a) Determine the amount of memory (in bits) needed to implement each predictor.

(b) For each loop in samples determine the accuracy of the loop branch (the one that tests the value of i)
after warmup on each system. The accuracy for the global predictor can be approximated, the others must
be determined exactly.

(c) Why would solving the problem above be impossible, or at least tedious, if the BHT size were ≈ 23

entries?

void samples(int& x, int& y, char **string_array )

{

// Loop 5-xor

for( int i = 0; i < 5; i++ )

x = x ^ i;

// Loop 5-len

for( int i = 0; i < 5; i++ )

if( strlen( string_array[i] ) < 20 )

return; // Never executes. <- Important.

// Loop 100-xor

for( int i = 0; i < 100; i++ )

y = y ^ i;

}

There’s more on the next page.

← → Spring 2006 ← → Homework 5 Homework Solution hw05.pdf

http://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/2006/hw05.pdf


Problem 2: The code more, below, runs on four systems. All predictors use a 214-entry branch history
table (BHT). (The global and gshare predictors do not need its BHT for predicting branch direction.) The
predictors are:

• System B: bimodal

• System G: global, history length 10. (Accuracy can be approximated.)

• System X: gshare, history length 10. (Accuracy can be approximated.)

• System L: local, history length 10.

(a) In the code below estimate the prediction accuracy of the following predictors on Branch B and Branch
C (there is no Branch A) after warmup, assuming that more is called many times.

(b) One of the predictors should have a low prediction accuracy. Why? Avoid a sterile description of the
hardware, instead discuss the concept the predictor is based on and why that’s not working here.

void more(int& x, int& y, int a, int& b, int& c)

{

for( int i=0; i<100; i++ ) x = x ^ i;

if( a < 10 ) b++; // Branch B, never taken.

for( int i=0; i<100; i++ ) y = y ^ i;

if( a >= 10 ) c++; // Branch C, always taken.

}
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LSU EE 4720 Homework 1 Due: 26 September 2005

Problem 1: Suppose the base and result (peak) SPEC CINT2000 benchmark scores were identical
on company X’s new processor. Make up an advertising slogan based on the fact that they were
identical. A catchy tune is optional.

Problem 2: According to the CPU performance equation increasing the clock frequency (φ) by a
factor of x without changing instruction count (IC) or cycles per instruction start (CPI) will reduce
execution time by a factor of x. Find two SPEC CINT2000 disclosures (benchmark results) that
provide good evidence for this.

(a) Give the CPU, clock frequency, and the base and result CINT2000 scores.

(b) Explain why for these disclosures φ is different (obvious) but IC and CPI are probably the same
(requires some thinking). It may not be possible to determine this for certain and it may not be
possible to find a pair for which they are exactly the same, it’s sufficient to find a pair in which
they are arguably close.

(c) Based on the assumption of IC and CPI equality, show how closely the CPU performance
equation predicts the performance of one of the systems. Suggest reasons for any difference.

Problem 3: In section 1.2 of the SPEC CPU 2000 run and reporting rules,
http://www.spec.org/cpu2000/docs/runrules.html, there is a bullet item that states, “The
vendor encourages the implementation for general use.” Explain what that means and why it is
there. Why would it be bad if the “implementation” were not “for general use.”
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LSU EE 4720 Homework 4 Due: 7 November 2005

Problem 1: The code below executes on the implementation illustrated.

(a) Draw a pipeline execution diagram up until the first fetch of the third iteration.

(b) What is the CPI for a large number of iterations?

addi r3, $0, 123

LOOP:

lw r1, 0(r2)

bne r1, r3, LOOP

lw r2, 4(r1)
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Problem 2: Is there any way to add bypass paths to the implementation above so that the code
executes with fewer stalls:

(a) Suggest bypass paths that might have critical path impact but which probably won’t halve the
clock frequency.

(b) Explain why it is impossible to remove all stalls by adding bypass paths.
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Problem 3: The beqir instruction from the midterm exam solution compares the contents of the
rs register to the immediate, if the two are equal the branch is taken, the address of the branch
target is in the rt register. In the code example below beqir compares the contents of r3 to the
constant 123, if they are equal the branch is taken with register r1 holding the target address, in
this case to TARG. The delay slot, nop, is also executed.

(a) Show the changes needed to implement this instruction on the implementation above.

(b) Include bypass paths so that the code below executes as fast as possible:

lui r1, hi(TARG)

ori r1, r1, lo(TARG)

beqir r3, 123, r1

nop

# Lots more code.

TARG:

xor r9, r10, r11

← → Fall 2005 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/ee4720/2005f/hw04.pdf


LSU EE 4720 Homework 5 Due: 30 November 2005

Problem 1: The execution of a new MIPS instruction blcz TARG, branch unless loop count register is zero,
will result in a delayed control transfer to TARG unless the contents of a new register, lc, is zero; the target is
computed in the same way as ordinary branch instructions. Execution of blcz will also decrement lc unless
it is already zero. The lc register is loaded by two new instructions mtlc and mtlci. The code below uses
some of the new instructions and the diagram shows a possible implementation.

mtlc 100 # Load lc register for a 101-iteration loop

LOOP:

sw r0, 0(r1)

blcz LOOP # If lc is not zero branch to LOOP, lc = lc - 1.

addiu r1, r1, 4
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(a) Re-write the code above using ordinary MIPS instructions and write it so that the loop uses as few
instructions as possible. Hint: A three-instruction loop body is possible.

(b) Using pipeline execution diagrams determine the speed of the sample program and your program from
the previous part. Only use bypass paths that have been provided.

(c) Unless the control logic is appropriately modified the implementation above may not realize precise excep-
tions for all integer instructions. In fact, the problem could occur in the example program. Explain what the
problem is and show a pipeline execution diagram in which the control logic insures that execution proceeds
so that exceptions will be precise. Hint 1: The exception does not occur in any of the new instructions. Hint
2: One of the two remaining instructions in the example can not raise an exception so it must be the other
one.

(d) Modify the implementation so that precise exceptions are again possible for all integer instructions (while
retaining the loop count instructions) without sacrificing performance.

1
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LSU EE 4720 Homework 1 Due: 11 February 2005

Problem 1: POWER is an IBM ISA developed for engineering workstations, PowerPC is an ISA
developed by IBM, Apple, and Motorola for personal computers and is based on POWER. POWER
and PowerPC have instructions in common but each has instructions the other lacks (and some of
the common instructions behave differently). Therefore a POWER implementation could not run
every PowerPC program and vice versa.

(a) Show the gcc 3.4.3 compiler switches used to compile code for a POWER implementation. Hint:
Google is your friend, look for gcc documentation.

(b) Show the gcc 3.4.3 compiler switches used to compile code for a PowerPC implementation.

(c) Is it possible to use gcc 3.4.3 to compile a program that will run on both? If yes, show the
switches.

Problem 2: From the SPEC Web site, http://www.spec.org, find the fastest result on the
SPECFP2000 (that’s FP, not INT) benchmark for each of the following implementations: IBM
POWER5, Intel Itanium2, Intel Pentium 4, Fujitsu SPARC64 v, and AMD FX-55. (Use the
configurable search form and have it display the processor name.)

(a) The non-IA-32 implementations (POWER5, Itanium2, and SPARC64 V) blow away the IA-32
implementations on one benchmark. Which one? Which company (of those listed above) would
want that benchmark removed?

(b) The POWER5 can decode five instructions per clock, the Itanium 2 can decode six instructions
per clock, the Pentium 4 and FX-55 each can decode three (what are essentially) instructions per
clock, and the SPARC64 V can decode four per clock. Based on the SPECFP2000 results used in
the first part, which processor is making best use of these decode opportunities? In other words,
if one processor could decode 1012 instructions during execution of the suite and another could
decode 5 × 1012 instructions during execution of the suite, the first would be more efficient since it
ran the suite using fewer instructions. (See last semester’s Homework 1 for a similar problem.)

Problem 3: As pointed out in class a processor’s CPI varies depending on the program being
executed. For the questions below write a program in MIPS assembler (see
http://www.ece.lsu.edu/ee4720/mips32v2.pdf for a list of instructions), some other assembly
language, or assembly pseudocode, as requested below.

(a) Write a program that might be used to determine the minimum possible CPI. Suppose you
actually used the program to determine the minimum CPI on processor X. How would the CPI
be computed? Show an example using made up numbers based on your program an hypothetical
processor X. Explain why the result would be the minimum CPI (or close to it).

(b) Write a program that might be used to determine the maximum possible CPIand as with
the previous part, show how CPI is computed. Your answer should include information about
instructions in processor X used in your program. Explain why the result would be the maximum
CPI (or close to it).
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LSU EE 4720 Homework 2 Due: 9 March 2005
For answers to the questions below refer to the PowerPC description Book I which can be found

on the class references page, http://www.ece.lsu.edu/ee4720/reference.html.

Problem 1: One instruction that MIPS lacks but many RISC ISAs have is an indexed load. Find
the closest equivalent PowerPC instruction to SPARC’s lw [%r2+%r3],%r1.

(a) Show the instruction in PowerPC assembly language.

(b) Show how the instruction is coded, include the register numbers.

Problem 2: One instruction that MIPS lacks but that a few other RISC ISAs have is autoin-
crement addressing. PowerPC has an instruction that can be used for autoincrement addressing
but is more powerful than the autoincrement addressing described in class. Find the PowerPC
instruction.

(a) Show the assembly language for the PowerPC instruction doing the same thing as the following
autoincrement instruction: lw r1, (r2)+.

(b) Show the coding for the instruction above.

(c) The PowerPC instruction is more powerful than an ordinary autoincrement instruction. Show
a code sample using the PowerPC instruction for which an ordinary autoincrement would not be
suitable. Briefly explain why an ordinary autoincrement would not do.

Problem 3: PowerPC has a wide variety of load and store instructions. Find the load instruction
that is least suitable for a RISC ISA based upon the criteria discussed in class. Explain why it’s
least suitable.

Problem 4: Some instructions are more difficult to implement than others, one reason is that
the difficult instruction does something very different from normal instructions requiring at least a
moderate amount of additional hardware. Some difficult-to-implement instructions are listed below.
Explain what the difficulty is (what extra hardware or control complications would be needed).

(a) An indexed store instruction. (An indexed load instruction would not be considered difficult.)

(b) Autoincrement (or PowerPC’s version) load instructions. (The autoincrement or PowerPC
version of the store instructions are not difficult.)
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LSU EE 4720 Homework 3 Due: 25 April 2005

Problem 1: Do Problem 1 in the Spring 2004 EE 4720 final exam. Grade yourself using the
solution, the grade should be out of five points. When grading yourself please explain what the
mistakes were and what the correct answer should be, as a helpful grader would. Be polite in your
explanations unless there was no serious attempt to solve the problem. In that case point out how
final exam study time is being undermined by the need to catch up.

Problem 2: In Method 3 the commit register map is used to recover the state the ID register map
was in just after the most recently committed instruction was decoded. In a system in which the
ID register map is checkpointed for predicted CTIs, the commit register map won’t be used very
often.

(a) Describe how a system using Method 3 but without the commit register map could recover the
ID map state before a faulting instruction. The ID map would be recovered using information in
the ROB at and after the faulting instruction.

• Explain, with an example, what steps the processor takes to recover the information.

(b) Show new connections to the ID register map to implement this. Try to do it without adding
new read and write ports (that is, use existing ports).

(c) Describe the impact on performance when the technique is used for exceptions.

(d) Describe the impact on performance when the technique is used for mispredicted branches.

Problem 3: Consider the commit mapless system from the previous problem. Suppose it were
possible to sequentially read the ROB from two locations, the head (as is currently done for com-
mitting instructions) and some other place, say at a mispredicted branch.

(a) How might this be used to recover the ID map faster than was done in the previous problem.

(b) If this can be made to work for branches then there would be no need for checkpointing the
register map. The impact on performance when using the mechanism for mispredicted branches
depends on the following factors: how fast instructions are fetched, how many cycles it takes to
resolve a branch (determine if the prediction was correct), how long it takes the fetch mechanism to
bring correct-path instruction to ID, and how fast recovery can be done. Show a formula that will
give the number of extra cycles needed to recover from a branch misprediction using this scheme
(compared to checkpointing). For the formula, use the factors listed above and any other that is
relevant.

Note that the amount of time to fetch the first correct-path instruction is a variable, it can be
more than the one cycle shown in most other problems.
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LSU EE 4720 Homework 1 Due: 15 September 2004

Problem 1: Select two pairs of disclosures (that’s four total) from the CPU2000 benchmark results posted
at www.spec.org. A pair should be for machines using the same ISA but having different implementations.
Make the implementations as different as possible. Explain why you think the implementations are very
different.

Some ISAs and implementations are listed in lecture set 1, but the solution is not restricted to those.
Feel free to ask if you’re not sure what ISA a processor implements or whether two ISAs are considered the
same or different.

For each disclosure list: the ISA, the implementation, the peak (result) performance, and file name of
the HTML-formatted disclosure.

Problem 2: The processors below have roughly the same SPEC CINT2000 peak (result) scores but are
very different. (The links should be clickable in Acrobat Reader.)

ISA: Power, Implementation: POWER5, Decode: 5-way Superscalar*
Disclosure: http://www.spec.org/osg/cpu2000/results/res2004q3/cpu2000-20040804-03314.pdf

ISA: Itanium (IA-64), Implementation: Itanium 2, Decode: 6-way Superscalar*
Disclosure: http://www.spec.org/osg/cpu2000/results/res2004q1/cpu2000-20040126-02775.pdf

ISA: IA-32, Implementation: Xeon, Decode: 3-way Superscalar*
Disclosure: http://www.spec.org/osg/cpu2000/results/res2004q3/cpu2000-20040727-03291.pdf

ISA: ≈IA-32, Implementation: Athlon, Decode: 3-way Superscalar*
Disclosure: http://www.spec.org/osg/cpu2000/results/res2003q3/cpu2000-20030908-02502.pdf

ISA: SPARC V9, Implementation: SPARC64 V, Decode: 4-way Superscalar*
Disclosure: http://www.spec.org/osg/cpu2000/results/res2004q2/cpu2000-20040518-03044.pdf

(a) The performance of the processors, based on the peak result, are roughly the same. On the same graph
plot the performance in the following ways:

• Using the SPEC peak (result) scores.

• Assume that performance is proportional to clock frequency. Determine the score of a processor by
comparing its clock frequency to that of the SPARC64 and using that to scale the SPARC64 peak
result.

• The table above shows how many instructions a processor can decode per cycle. (Four-way superscalar
means four per cycle, see explanation below.) Determine the performance by comparing the number
of instructions fetched per second to the SPARC64 and use that to scale the SPARC64 peak result.

What conclusions can be drawn from the plotted data?

*The following information is not needed to solve this assignment. The decode widths shown above are
the maximum number of instructions that can be decoded per cycle. For any real program the number will be
much lower due to a variety of factors, which will be covered later in the semester. One relatively minor factor
is the instruction mix. The POWER5 (implementation), Itanium (ISA), and to a lesser extent the others
limit the kinds of instructions that can be decoded together. More on this later in the semester. The decode
widths for the Xeon and Athlon don’t refer to IA-32 instructions: these processors take IA-32 instructions
and break them into simpler instructions called micro-ops by Intel and (favoring marketing over descriptive
accuracy) macro-ops by AMD. The three instructions per cycle for the Xeon and Athlon are actually three
micro- or macro-ops per cycle.

(b) The Xeon and Athlon systems in the disclosures above have about the same performance. AMD might
argue that those disclosures don’t show the full potential of the Athlon. Find a system that uses an Athlon
and scores much better, and explain what accounts for the difference.

(c) There is a system characteristic that affects the performance of benchmark mcf. What is it?

(d) Nominate a disclosure for The Most Desperate Peak Tuning award.
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LSU EE 4720 Homework 3 Due: 3 November 2004

Problem 1: Do Problems 1 and 2 From Spring 2004 Homework 3
http://www.ece.lsu.edu/ee4720/2004/hw03.pdf. After completing the problems look at the solution and
assign yourself a grade. The maximum grade should be 10 points, divide the points between problems as
you wish.

Problem 2: A new instruction, copyTreg rt, rs, will read the contents of register rt and rs and will
write the contents of rs to the register number specified by the contents of register rt (not into register rt).
For example,

# Before: $1 = 4, $2 = 0x1234, $4 = 0

copyTreg $1, $2

# After: $1 = 4, $2 = 0x1234, $4 = 0x1234;

# (Register $4 written with contents of register 2.)

Note that this is a variation on Midterm Exam 1 Problem 3, with the destination, rather than the
source, being specified in a register.

(a) Modify the pipeline below to implement this instruction.

(b) Add the bypass connections needed so that the code below executes correctly.

# Before: $1 = 4, $2 = 0x1234, $4 = 0, $5 = 0

addi $1, $0, 5

copyTreg $1, $2

# After: $1 = 5, $2 = 0x1234, $4 = 0, $5 = 0x1234;

format
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Problem 3: In the problem above the register number to write to is in a register. Here consider copyFreg
rt, rs in which, like the test question, the register to copy from is in a register. That is,

# Before: $1 = 2, $2 = 0x1234, $4 = 0

copyFreg $4, $1

# After: $1 = 2, $2 = 0x1234, $4 = 0x1234;

# (Register $4 written with contents of register 2.)

Explain a difficulty in implementing this instruction on the pipeline below without vitiating its sublime
elegance.

format
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Problem 4: No, we are not vitiators. Instead consider copyBreg rd in which the source register to read
is specified in the rs register of the preceding instruction, that value is written into the rd register of this
instruction. (Okay, maybe we are vitiators.) For example,

# Before: $1 = 2, $2 = 0x1234, $4 = 0

add $0, $1, $0 # Instruction below uses rs ($1 here) of this insn.

copyBreg $4

# After: $1 = 2, $2 = 0x1234, $4 = 0x1234;

# (Register $4 written with contents of register 2.)

Implement this instruction on the pipeline above (from the previous problem).
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LSU EE 4720 Homework 1 Due: 18 February 2004

Problem 1: Write a MIPS program to count the number of words in a C-style string.
See http://www.ece.lsu.edu/ee4720/2004/hw1.html for details.

Problem 2: As of this writing (13 February 2004, 13:07:05 CST) the two highest scoring CINT2000 systems
use Intel D875PBZ motherboards, one has a “result” of 1620, the other 1509 (both October 2003 disclosures).

What accounts for this difference? Some programs in the suite run at about the same speed on the two
systems, some take different amounts of time. Why might only some programs show improvement?
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LSU EE 4720 Homework 3 Due: 15 March 2004

Problem 1: The MIPS program below copies a region of memory and runs on the illustrated implementa-
tion. In the sub-problems below use only the bypass connections shown in the illustration.

(a) Show a pipeline execution diagram for the code running on the illustrated implementation for two
iterations.

(b) Compute the CPI and the rate at which memory is copied in bytes per cycle assuming a large number of
iterations.

• Don’t forget, when computing the number of cycles per iteration be sure not to count a cycle more,
or less, than once.

LOOP:

lw $t0, 0($a0)

sw 0($a1), $t0

addi $a0, $a0, 4

bne $a0, $a2 LOOP

addi $a1, $a1, 4

format
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Problem 2: Execution should be inefficient in the problem above.

(a) Add exactly the bypass connections needed so that the program above executes as fast as possible.

• Don’t forget that branch uses ID-stage comparison units.

• Don’t forget the store.

(b) Show a pipeline execution diagram of the code on the improved implementation.

(c) For each bypass path that you’ve added show the cycles in which it will be used by writing the cycle
number near the bypass path. If a bypass path goes to several places (for example, both ALU muxen) put
the cycle number at the place(s) that use the signal.

(d) Re-compute the CPI and the rate at which memory is copied.
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LSU EE 4720 Homework 4 Due: 22 March 2004

Problem 1: Suppose code like the memory copy program above (from Homework 3) appears
frequently enough in the execution of programs so that new instructions should be added to the
ISA to allow improved execution. (It does and they have been.)

Following the points below devise new instruction(s) that can be used to write a new memory
copy loop that would execute more efficiently than is possible with existing MIPS-I instructions. A
goal is to copy at the rate of two bytes per cycle. See the subparts after the bulleted points below.

LOOP:

lw $t0, 0($a0)

sw 0($a1), $t0

addi $a0, $a0, 4

bne $a0, $a2 LOOP

addi $a1, $a1, 4

format
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• The instructions must use the existing MIPS formats.

• An instruction can do more than one thing (as long as it follows the points below). For
example, an instruction that does more than one thing is a post-increment load. To reach
the two bytes / cycle limit one might need to combine a branch with something.

• The instructions cannot use implicit registers. (A register is implicit if it does not appear in
the encoded instruction. For example, register 31 is implicit in the jal instruction.)

• To achieve two bytes per cycle the instructions might need to do something unusual with
operands. Please ask if you’re not sure if something is too unusual.

• As with all other ordinary instructions, the new instructions must advance one stage per
cycle (unless stalled, if so they would sit idle).
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• The modified pipeline must still use the same memory port and no new memory ports can
be added.

• Modifications such as bypass paths can be added to speed the instructions.

(a) Show an example of each new instruction and show how it is coded.

(b) Show how the instructions would be implemented on the pipeline.

(c) Write a memory copy program using the new instructions.

(d) Show a pipeline execution diagram for the memory copy code.

(e) A two bytes per cycle solution would require doing something interesting for the branch. Explain
what that is and show a pipeline execution diagram for the memory copy loop finishing a copy
(where the interesting stuff would be done).
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LSU EE 4720 Homework 5 Due: 21 April 2004

Problem 1: One question when extending an ISA from 32 to 64 bits is what to do about the shift
instructions. Because of the way that the shift instructions are encoded in MIPS two new shifts
(of each type) were added to MIPS-64.

(a) What do you think the MIPS-32 sra instruction should do in MIPS-64? Remember that an
implementation of MIPS-64 must run MIPS-32 code correctly. Please answer this question before
answering the next parts (but feel free to look at the questions). Hint: Any serious answer will get
full credit. A smart-alec answer will get full credit only if it’s particularly witty.

(b) Give two reasons why the MIPS-32 sra (not srav) instruction could not be used for all right
arithmetic shifts needed in a 64-bit program.

(c) What are the new MIPS-64 shift right arithmetic instructions? Give the mnemonics.

(d) Why were two (as opposed to one) new shift instructions of each type added to MIPS-64?

Problem 2: Do the Problem 2 (a) through (d) from the Fall 2003 EE 4720 final exam (the one
on floating point instructions). (http://www.ece.lsu.edu/ee4720/2003f/fe.pdf) Do not look
at the solution until after you have solved the problem or gave it a good try.
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Problem 3: In the diagram below the we pipeline latches carry write enable signals for use in
floating point writeback. If the functional units were arranged differently the we pipeline latches
could be used as a reservation register (for detecting WF structural hazards).
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(a) Redraw the diagram with that arrangement. Hint: Try to use the we signal in the diagram
above for a reservation register. Figure out why that won’t work and come up with a solution.

(b) Suppose the ID stage has boxes uses FP ADD and uses FP MUL to detect which (if any)
floating point functional unit an instruction would use. Design the control logic to generate a stall
signal if there would be a write float structural hazard.

(c) Add the connections necessary for a lwc1 instruction. Include the connections needed to detect
a WF structural hazard (as was done for ADD and MUL in the previous part).
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LSU EE 4720 Homework 6 Due: 28 April 2004

Problem 1: Read the Microprocessor Report article on the IBM PowerPC 970 (a.k.a. the G5),
used in a popular person computer. The article is available at
http://www.ece.lsu.edu/ee4720/s/mprppc.pdf. If accessing from outside the lsu.edu domain
provide user name ee4720 and the password given in class. Answer the following questions: (Please
read the entire article, additional questions might be asked in a future assignment.)

(a) One might infer from the second paragraph that deeper pipelines are used to inflate clock
frequencies solely for marketing purposes. Why do deeper pipelines allow higher clock frequencies?
Are there reasons other than marketing to do that?

(b) The article describes the PPC 970 as a 5-way superscalar processor, which is consistent with
the definition used in class. How could overzealous marketing people inflate that number using
features of the microarchitecture? Describe the specific feature. Why would that be overzealous?

The following two problems are nearly identical to Spring 2003 Homework 6. The main differ-
ence is in the stages that are used. It is okay to peek at the solutions for hints, for best results leave
twelve hours between looking at those solutions (or solutions to similar problems) and completing
this assignment.

Problem 2: Show the execution of the MIPS code fragment below for three iterations on a four-
way dynamically machine using Method 3 (physical register file) with a 256-entry reorder buffer.
Though the machine is four-way, assume that there can be any number of write-backs per cycle. Use
Method 3 as described in the study guide at http://www.ece.lsu.edu/ee4720/guides/ds.pdf

with for the following differences:

• The FP multiply functional unit is three stages (M1, M2, and M3) with an initiation interval
of 1.

• Assume that the branch and branch target are always correctly predicted in IF so that when
the branch is in ID the predicted target is being fetched.

• There are an unlimited number of functional units.

(a) Show the pipeline execution diagram, indicate where each instruction commits.

(b) Determine the CPI for a large number of iterations. (The method used for statically scheduled
systems will work here but will be very inconvenient. There is a much easier way to determine the
CPI.)

LOOP: # LOOP = 0x1000

ldc1 f0, 0(t1)

mul.d f2, f2, f0

bneq t1, t2 LOOP

addi t1, t1, 8
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Problem 3: The execution of a MIPS program on a one-way dynamically scheduled system is
shown below. The value written into the destination register is shown to the right of each in-
struction. Below the program are tables showing the contents of the ID Map, Commit Map, and
Physical Register File (PRF) at each cycle. The tables show initial values (before the first instruc-
tion is fetched), in the PRF table the right square bracket “]” indicates that the register is free.
(Otherwise the right square bracket shows when the register is freed.)

(a) Show where each instruction commits.

(b) Complete the ID and Commit Map tables.

(c) Complete the PRF table. Show the values and use a “[” to indicate when a register is removed
from the free list and a “]” to indicate when it is put back in the free list. Be sure to place these
in the correct cycle.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (Result)

lw r1, 0(r2) IF ID Q L1 L2 L2 WB (0x100)

ori r1, r1, 6 IF ID Q EX WB (0x106)

subi r2, r1, 2 IF ID Q EX WB (0x104)

xor r1, r3, r3 IF ID Q EX WB (0)

addi r2, r1, 0x700 IF ID Q EX WB (0x700)

subi r1, r2, 4 IF ID Q EX WB (0x6fc)

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ID Map

r1 96

r2 92

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Commit Map

r1 96

r2 92

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Physical Register File

99 112 ]

98 583 ]

97 174 ]

96 309

95 606 ]

94 058 ]

93 285 ]

92 1234

91 518 ]

90 207 ]

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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LSU EE 4720 Homework 7 Due: 5 May 2004

The PPC 970 which was the subject of a question in Homework 6 is very similar to the
POWER4 chip, the main differences being that the POWER4 lacks the packed-operand instructions
and POWER4 includes two processors on a single chip.

Answer the following questions about the POWER4 based on information in “POWER4 Sys-
tem Microarchitecture,” by Tendler et al, available via
http://www.ece.lsu.edu/ee4720/doc/power4.pdf. The questions can be answered without read-
ing the entire paper. In particular, there is no need to read past page 17.

Problem 1: Translate the following terms, as used in class, to their nearest equivalent in the
paper.

• Integer Instruction

• Instruction Queue

• Reorder Buffer

• Physical Register

Problem 2: The pipeline execution diagram below shows MIPS code on the dynamically scheduled
system described in the study guide.

(a) Re-draw the diagram using the stages from POWER4. (Do not translate the instructions into
the POWER assembly language.) Just show one iteration and assume that the four instructions
are formed into one group. Also assume that the branch does not have a delay slot. Use stages F1,
F2, and F3 for the multiply.

(b) In your diagram identify the fetch and execute pipelines, as defined in class.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LOOP:

ldc1 f0, 0(t1) IF ID Q RR EA ME WB C

mul f2, f2, f0 IF ID Q RR M1 M2 M3 WB C

addi t1, t1, 8 IF ID Q RR EX WB C

bneq t1, t2 LOOP IF ID Q RR B WB C

Problem 3: The POWER4 uses what is commonly called a hybrid predictor in which each branch
is predicted by two different predictors and a third predictor predicts the prediction to use. One
predictor is something like the bimodal predictor discussed in class and the other is something like
the gshare predictor discussed in class.

(a) Provide a code example in which the bimodal predictor described in class will do better than
the POWER4’s almost equivalent predictor. (Ignore the selector.)

(b) How might the POWER4 designers justify the differences with the bimodal predictor given the
lower performance in the example above?

(c) Provide a code example in which the gshare predictor described in class outperforms the
POWER4’s almost equivalent predictor. (Ignore the selector.)

(d) How might the POWER4 designers justify the differences with the gshare predictor given the
lower performance in the example above?
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LSU EE 4720 Homework 1 Due: 17 September 2003

Problem 1: Look at the following SPEC CINT2000 disclosures for these Dell and HP Itanium 2 systems:
HP: http://www.spec.org/osg/cpu2000/results/res2003q3/cpu2000-20030711-02389.html
Dell: http://www.spec.org/osg/cpu2000/results/res2003q3/cpu2000-20030701-02367.html. (Note:
Links are clickable within Acrobat reader.)

The CPU performance equation decomposes execution time into three components, clock frequency, φ,
instruction count, IC, and CPI. For each component determine if its value on the two systems is definitely the
same, probably the same, probably different, definitely different. Hint: The answer for the clock frequency
is easy, the others require a little understanding of what IC and CPI are. Briefly justify your answers.

Problem 2: Though one may normally think of an implementation as a microprocessor chip, the definition
can also include other parts of the system, such as memory and even disk. Why is that important in the
problem above?

Problem 3: Differences in ISA, compiler, and implementation all affect the execution time of programs,
and the impact of these factors can vary from program to program. For example, an implementation with
faster floating point will have a larger impact on programs that do more floating-point computations.

From a look at the SPEC disclosures one can see that the fastest program on one system may not be
the fastest program on another. (Use the int2000 results. From the spec CPU2000 results page find the
configurable query form and request a page sorted by “Result” in descending order. It would be helpful
to include the processor and compiler in the results. If your system is slow omit results before 2002.) For
example, the Dell system from the first problem ran vortex fastest (of all the benchmarks), while the HP
system ran mcf fastest. In this case the difference in fastest benchmark could not be the ISA, but it could be
the compiler or the implementation. Call the speed ranking of benchmarks for a system its character. The
character of the Dell system is vortex, gcc, eon, . . . (benchmarks from fastest to slowest) and the character
of the HP system is mcf, vortex, gcc, . . ..

The differences in character are due in part to the ISA, compiler, and implementation. Using the SPEC
CINT2000 disclosures determine which is most important in determining character. Please do not try to
look at all disclosures, just enough to determine an answer, even if that answer might change if you were to
look at more.

In your answer, state which (ISA, compiler, or implementation) is most important, which disclosures
you looked at, and how you drew that conclusion. This question is easy to answer (once it’s understood).

As best you can explain why a particular factor is most important and why it is least important. You
are not expected to answer this question very well, most of the material has not been covered yet. Don’t take
too much time and do your best with what has been covered and what you already know.

Additional Information:
Here are some ISAs and implementations of processors listed:
IA-32 ISA: (includes variations) implemented by Pentium 4 (and other Pentia) Xeon, Athlon, Opteron.

Power Architecture ISA: Implementated by POWER4, RS64IV. Itanium ISA: Implementated by Itanium 2.
Alpha ISA: Implementated by Alpha 21164, 21264, 21364. SPARC V9 ISA: Implementated by SPARC64V,
UltraSPARC III Cu MIPS ISA: Implementated by R14000

Problem 4: The two procedures below are compiled with optimization on but with no special optimization
options. Why might the second one run faster? (This is very similar to the classroom example.)
void add_array_first_one(int *a, int *b, int *x)

{

for ( int i = 0; i < 100; i++ ) a[i] = b[i] + *x;

}

void add_array_second_one(int *a, int *b, int *x)

{

int xval = *x;

for ( int i = 0; i < 100; i++ ) a[i] = b[i] + xval;

}
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LSU EE 4720 Homework 3 Due: 31 October 2003

Problem 1: Unlike MIPS, PA-RISC 2.0 has a post-increment load and a load using scaled-index
addressing. The code fragments below are from the solution to Problem 2 in the midterm exam the
fragments show several MIPS instructions under “Combine” and a new instruction under “Into.”
For each “Into” instruction show the closest equivalent PA-RISC instructions and show the coding
of the PA-RISC instruction. (See the references page for information on PA-RISC 2.0)

(The term offset used in the PA-RISC manual is equivalent to the term effective address used
in class, and is not to be confused with offset as used in this class. Assume that the s field and cc

fields in the PA-RISC format are zero.)
Show all the fields in the format, including their names and their values.

Combine:

lbu $t1, 0($t0)

addi $t0, $t0, 1

Into:

lbu.ai $t1, 0($t0)+ # Post increment load.

Combine:

sll $t1, $t1, 2

add $t3, $a1, $t1

lw $t4, 0($t3)

Into:

lw.si $t4, ($t3,$t1) # Scaled index addressing.

1
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Problem 2: The code fragment below runs on the implementation illustrated below.

(a) Show a pipeline execution diagram for the code fragment on the implementation up to the
second fetch of the sub instruction; assume the branch will be taken.

(b) Show the value of the labeled wires (A, B, and C) at each cycle in which a value can be
determined.

For maximum pedagogical benefit please pay close attention to the following:

• As always, look for dependencies.

• Pay attention to the RAW hazard between sub and sw and the RAW hazard between andi

and bne.

• Make sure that add is fetched in the right time in the second iteration.

• Base timing on the implementation diagram, not on rules inferred from past solutions.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC

CA

mux
alub

control

B

30 2
"0"

LOOP:

add r1, r2, r3

sub r3, r1, r4

sw r3, 0(r5)

andi r6, r3, 0x7

bne r6, $0, LOOP

addi r2, r2, 0x8

2
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Problem 3: Consider the implementation from the previous problem, repeated below.

(a) There is a subtle reason why the implementation cannot execute a jr instruction. What is it?
Modify the hardware to correct the problem.

(b) There are two reasons why it cannot execute a jalr instruction, one given in the previous part
and a second reason. What is it? Modify the hardware to correct the problem.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC

CA

mux
alub

control

B

30 2
"0"

3
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LSU EE 4720 Homework 4 Due: 14 November 2003

Problem 1: Design the control logic for the store value multiplexor (the one that writes pipeline
latch ex_mem_rtv). The control logic must be in the ID stage. Hint: This is a fairly easy problem.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

15:0

1
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Problem 2: One problem with a post-increment load is storing the incremented base register
value into a register file with one write port. Suppose a post-increment, register-indirect load were
added to MIPS and implemented in the pipeline on the next page. This post-increment load does
not use an offset, instead the effective address is just the contents of the rs register.

One option for storing the incremented base register value is to stall the following instruction
and write back the value when the bubble reaches WB. We would like to avoid stalls if we have
to, so for this problem design hardware that will use the WB stage of the instruction before [sic]
or after the post-increment load if one of those instructions does not perform a writeback. For
example:

bneq $s0, $s1, SKIP (Not taken)

lw $t1, ($t2)+

j TARG

add $s3, $s1, $s2

lw $t1, ($t2)+

sub $s4, $s5, $s6

The first post-increment load could writeback when either the bneq or the j were in the WB
stage since neither performs writeback. The second post-increment load would have to insert a
stall.

(a) Show the hardware needed to implement the post-increment load in this way.

• Remember that this load does not have an offset.

• Use a =PIL box to identify post-increment loads (input is opcode, output is 1 if it is a

post-increment load, 0 otherwise).

• A stall signal is available in each stage; if the signal is asserted the instruction in that and
preceding stages will stall and a nop instruction will move into the next stage (for each cycle
hold is asserted).

• Show any new paths added for the incremented value, perhaps to the register file write port
(which still has one write port).

• Add any new paths needed to get the correct register number to the register file write port.

• Ignore bypassing of the incremented address to other instructions.

• Show the added control logic, which does not have to be in the ID stage. (In fact it would
be difficult to put all of control logic for this instruction in the ID stage.)

• Last but not least, a design goal is low cost, so add as little hardware as necessary to
implement the instruction.

(b) If you’re like most people, you didn’t worry about precise exceptions when solving the previous
part. Explain how the need for precise exceptions can complicate the design.

2
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format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

15:0
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Problem 3: Answer these questions about interrupts in the PowerPC, as described in the PowerPC
Programming Environments Manual, linked to
http://www.ece.lsu.edu/ee4720/reference.html.

(a) Listed below are the three types of interrupts using the terminology presented in class. What
are the equivalent terms used for the PowerPC.

• Hardware Interrupt

• Exception

• Trap

(b) In which register is the return address saved?

4
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LSU EE 4720 Homework 1 Due: 10 February 2003
At the time this was assigned computer accounts and solution templates were not ready.

If they become available they can be used for the solution, either way a paper submission
is acceptable.

Problem 1: When compiling code to be distributed widely one should be conservative
when selecting the target ISA but less caution needs to be taken with the target imple-
mentation. Explain what “conservative” and less caution mean here, and explain why
conservatism and in one case less caution in the other can be taken.

Problem 2: Based on the SPECINT2000 results for the fastest Pentium and the fastest
Alpha, which programs would a shameless and unfair Alpha advocate choose if the number
of programs in the suite were being reduced to five. Justify your answer.

Problem 3: The Pentium 4 can execute at a maximum rate of three instructions (actually,
microops, but pretend they’re instructions) per cycle (IPC), the Alpha 21264 can execute
at most 4 IPC and the Itanium 2 can execute at most 6 IPC. Assume that the number of
instructions for perlbmk, one of the SPECINT2000 programs, is the same for the Alpha,
Itanium 2, and Pentium 4 (pretending micro-ops are instructions, if you happen to know
what micro-ops are).

(a) Based upon the SPECINT2000 results (not base) for the perlbmk benchmark, which
processor comes closest to executing instructions at its maximum rate? (“Its”, not “the”.)

(b) Are these numbers consistent with the expected tradeoffs for increasing clock frequency
(mentioned in class) and for increasing the number of instructions that can be started per
cycle?
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Problem 4: Complete the lookup routine below so that it counts the number of times an
integer appears in an array of 32-bit integers. Register $a0 holds the address of the first
array element, $a1 holds the number of elements in the array, and $a2 holds the integer
to look for. The return value should be written into $v0.

lookup:

# Call Arguments

#

# $a0: Address of first element of array. Array holds 32-bit integers.

# $a1: Number of elements in array.

# $a2: Element to count.

#

# Return Value

#

# $v0: Number of times $a2 appears in the array starting at $a0

# [ ] Fill as many delay slots as possible.

# [ ] Avoid using too many instructions.

# [ ] Avoid obviously unnecessary instructions.

# A correct solution uses 11 instructions, including 6 in

# the loop body. A different number of instructions can be used.

# Solution Starts Here

# Use the two lines to return, fill the delay slot if possible.

jr $ra

nop
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LSU EE 4720 Homework 2 Due: 7 March 2003

Design a stack ISA with the following characteristics:

• Memory has a 64-bit address space and consists of 8-bit characters.

• The stack consists of 64-bit registers.

• The ISA uses 2’s complement signed integers.

• Only add other data types as necessary.

The stack ISA must realize these goals:

• Small program size.

• Low energy consumption. (For here, assume energy consumption is proportional to dynamic
instruction count.)

• Relatively simple implementation. Instructions should be no more complex than RISC in-
structions.

Design the instruction set based on the sample programs in the problems below and the
following:

Arithmetic and Logical Instructions

They should read their source operands from the top of stack (top one or two items) and push
their result on the top of stack. Arithmetic instructions cannot read memory and they cannot read
beyond the top two stack elements. (That is, you can’t add an element five registers down to one
ten registers down. Instead use rearrangement instructions before the add.) Specify whether the
arithmetic and logical instructions pop their source operands. One can have both versions of an
instruction. For example, add might pop its two source operands off the stack while addkeep might
leave the two operands:

# Stack: 26 3 2003

add

# Stack: 29 2003

addkeep

# Stack: 2032 29 2003

Remember that arithmetic and logical instructions cannot rearrange the stack and cannot
access memory.

Immediates

Decide how immediates will be handled. There can be immediate versions of arithmetic in-
structions or one can have push immediate instructions. See the example below. Keep in mind
that the register size is 64 bits.
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# Stack: 123

addi 3 # An immediate add.

# Stack: 126

pushi 3

# Stack: 3 126

add

# Stack: 129

Load and Store Instructions
Memory is read only by load instructions which push the loaded item on the stack. Memory is

written only by store instructions which get the data to store from the top of the stack. Determine
which addressing modes are needed for loads and stores, and design instructions with those modes.

Stack Rearrangement Instructions
The stack rearrangement instructions change the order of items on the stack. Consider adding

the following: exch, swaps the top two stack elements. roll n j, remove the top j stack elements
and insert them starting after what was the nth stack element. (See the example.) Other stack
rearrangement instructions are possible.

# stack 11 22 33 44 55 66

exch

# stack 22 11 33 44 55 66

roll 5 2

# stack 33 44 55 22 11 66

Control Transfer Instructions
Your ISA must have instructions to perform conditional branches, unconditional jumps, indi-

rect jumps, and procedure calls. It must be possible to jump or make a procedure call to anywhere
in the address space. (The only thing special the instruction used for a procedure call has to do
is save a return address.) The branch instructions can (but do not have to) use a condition code
register. No other registers can be used (other than those in the stack). Don’t forget about the
target address.

Problem 1: As specified below, describe your ISA and the design decisions used. (Don’t com-
pletely solve this part until you have solved the other problems.)

(a) For each instruction used to solve the problems below or requested above, show the assembler
syntax and the instruction’s coding. The coding should show the opcode, immediate, and any
other fields that are present. Don’t forget the design goals. Also don’t forget about control transfer
targets.

There is no need to list a complete set of instructions, but for coding purposes assume their
existence. (There must be a way of coding a complete set of instructions that realize the goals of
this stack ISA.)

(b) Determine the size of the stack. Specify instruction coding and implementation issues used to
determine the size.

(c) Explain your decision on whether there are immediate versions of arithmetic instructions. (The
alternative is instructions like pushi.)
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(d) Explain your selection of memory addressing modes. Also, pick an addressing mode that you
did not use and explain why not.

(e) Explain how other design decisions you have made help realize the goals of small program size,
low energy, or simple implementation.

(f) Describe any design decision you made that involved a tradeoff between code size, energy, or
implementation simplicity. (Pick any pair.) The original question asked only about code size and
energy. If you didn’t make such a decision make one up.

Problem 2: Re-write the following MIPS code in your stack ISA.

lui $a0, %hi(array) # High 16 bits of symbol array.

ori $a0, $a0, %lo(array) # Low 16 bits of symbol array.

jal lookup # The name of a routine.

nop

Problem 3: Re-write the solution to Homework 1 in your stack ISA, use the template below. (Use
your own solution or the one posted.)

lookup:

# Call Arguments (TOS is the top of the stack.)

#

# TOS: Return address

# TOS + 1: ADDR of first element of array. Array holds 64-bit integers.

# TOS + 2: Number of elements in array.

# TOS + 3: TARGET, element to count.

#

# Return Value

#

# TOS: Number of times TARGET appears in the array starting at ADDR.

# Solution Here

#

# [ ] Don’t forget the return.
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LSU EE 4720 Homework 3 Due: 19 March 2003

Problem 1: Consider the code below.

# Cycle 0 1

add $t1, $t2, $t3 IF ID

sub $t4, $t5, $t1

lw $t6, 4($t1)

sw 0($t4), $t6

(a) Show a pipeline execution diagram for the code running on the following illustration.
Note that the add is fetched in cycle zero.

• Take great care in determining the number of stall cycles.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC
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Problem 2: The code below is the same as in the previous problem.

# Cycle 0 1

add $t1, $t2, $t3 IF ID

sub $t4, $t5, $t1

lw $t6, 4($t1)

sw 0($t4), $t6

(a) Show a pipeline execution diagram (PED) of the code running on the system below.

(b) In the PED circle each stage that sends a bypassed value. In the diagram label each
bypass path with the cycle in which it is used. To avoid ambiguity, label the end of the
path (at the mux input).

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
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The problem below is tricky. If necessary use Spring 2001 Homework 2 problem 3 for
practice.

Problem 3: The program below has an infinite loop and runs on the bypassed implemen-
tation below.

# Initially $t0 = LOOP (address of jalr)

LOOP:

jalr $t0

addi $t0, $ra, -4

bne $t0, $0 LOOP

addi $t0, $t0, -4

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

(a) Show a pipeline execution diagram for this program up to a point at which a pattern
starts repeating. Beware, the loop is tricky! Read the fine print below for hints.

Note that jalr reads and writes a register. The jalr instruction should be fetched twice per repeating pattern. The addi instruction should be fetched three times per

repeating pattern.

(b) In the PED circle each stage that sends a bypassed value. In the diagram label each
bypass path with the cycle in which it is used. To avoid ambiguity, label the end of the
path (at the mux input).

(c) Determine the CPI for a large number of iterations.
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Problem 4: SPARC V9 has multiple floating-point condition code (FCC) registers. See
the references pages for more information on SPARC V8 and V9.

(a) Write a program that uses multiple FCC’s in a way that reduces program size. As an
example, the SPARC program below uses a single FCC. (To solve this problem first find
instructions that set and use the multiple FCC registers in the SPARC V9 Architecture
Manual. Then write a program that needs the result of one comparison (say, a < b)
several times while also using the result of another (say, c > d). A program not using
multiple condition code registers should have to do the comparison multiple times whereas
the program you write does each comparison once.)

! 10 ! {

! 11 ! sum = sum + 4.0 / i; i += 2;

.L77000016:

/* 0x0020 11 */ fdivd %f4,%f30,%f6

/* 0x0024 */ faddd %f30,%f2,%f8

! 12 ! sum = sum - 4.0 / i; i += 2;

/* 0x0028 12 */ faddd %f8,%f2,%f30

/* 0x002c */ fcmped %f30,%f0

/* 0x0030 */ fdivd %f4,%f8,%f8

/* 0x0034 11 */ faddd %f10,%f6,%f6

/* 0x0038 12 */ fbl .L77000016

/* 0x003c */ fsubd %f6,%f8,%f10

! 13 ! }

(b) SPARC V9 is the successor to SPARC V8, which has only one FCC register. (SPARC
V9 implementations can run SPARC V8 code.) Did the addition of multiple FCC’s require
the addition of new instructions or the extension of existing instructions? Answer the
question by citing the old and new instructions and details of their coding.

(c) Do you think the designers of SPARC V8 planned for multiple FCC’s in a future version
of the ISA?
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LSU EE 4720 Homework 4 Due: 31 March 2003

Problem 1: The two code fragments below call trap number 7. How do the respective
handlers determine that trap 7 was called?
! SPARC V8

ta %g0,7

# MIPS

teq $0, $0, 7

Problem 2: There is a difference between the software emulation of unimplemented
SPARC V8 instructions triggered by an illegal opcode exception, such as faddq, and
Alpha’s use of PALcode for certain instructions. (See the respective ISA manuals on the
references Web page. For SPARC, see Appendix G, it should not be difficult to find the
PALcode information for Alpha.)

(a) What is similar about the two?

(b) What is the difference between the kinds of instructions emulated using the two tech-
niques? Why would it not make sense to use PALcode for quad-precision arithmetic
instructions?

Problem 3: In both SPARC and MIPS each trap table entry contains the first few in-
structions of the respective trap handler. On some ISAs a vector table is used instead,
each vector table entry holds the address of the respective handler.

Why would the use of a vector table (rather than a trap table) be difficult for the
MIPS implementation below?

format
immed

IR

Addr
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IR

IF ID EX WBMEM

IR IR
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Problem 4: One way of implementing a vector table interrupt system on the MIPS imple-
mentation above would be by injecting hardware-generated instructions into the pipeline
to initiate the handler. These instructions would be existing ISA instructions or new
instructions similar to existing instructions.

What sort of instructions would be injected and how would they be generated? Show
changes needed to the hardware, including the injection of instructions. In the hardware
diagram the instructions can be generated by a magic cloud [tm] but the cloud must have
all the inputs for information it needs.

Include a program and pipeline execution diagram to show how your scheme works.

• Assume an exception code is available in the MEM stage.

• Include a vector base register, (VBR), which holds the address of the first table
entry.
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LSU EE 4720 Homework 5 Due: 4 April 2003

Problem 1: [Easy] Complete pipeline execution diagrams for the following code fragments running
on the fully bypassed MIPS implementations with floating point units as described below.

# One ADD unit, latency 3, initiation interval 1.

add.d f0, f2, f4

sub.d f6, f0, f8

add.d f8, f10, f12

# One ADD unit, latency 3, initiation interval 2.

add.d f0, f2, f4

sub.d f6, f0, f8

add.d f8, f10, f12

# Two ADD units (A and B), latency 3, initiation interval 4.

add.d f0, f2, f4

sub.d f6, f0, f8

add.d f8, f10, f12

Problem 2: [Easy] Choose the latency and initiation interval for the add and multiply functional
units so that the two instructions stall to avoid a structural hazard. Show a pipeline execution
diagram consistent with them. (The easy way to solve it is to do the PED first, then figure out the
latency and initiation interval.)

mul.d f0, f2, f4

add.d f6, f8, f10

Problem 3: The two PEDs below show execution of MIPS code produce that produces wrong
answers. For each explain why and show a PED of correct execution.

# PED showing a DESIGN FLAW. (The code runs incorrectly.)

add.s f1, f10, f11 IF ID A1 A2 A3 A4 WF

sub.d f2, f0, f4 IF ID A1 A2 A3 A4 WF

# PED showing a DESIGN FLAW. (The code runs incorrectly.)

mul.d f0, f2, f4 IF ID M1 M2 M3 M4 M5 M6 WF

sub.s f1, f10, f11 IF ID A1 A2 A3 A4 WF
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Problem 4: As described below design the logic for the floating-point register file in the MIPS
implementation below. The FP portion shows only part of add functional unit. Assume that is the
only functional unit.

• Describe how the FP register file works. For reference, here is a description of the integer
register file: The integer register file has two read ports and a write port. Each read port
has a five-bit address input and a 32-bit data output. The write port has a five-bit address
input and a 32-bit data input. Reads from zero retrieve 0, writes to zero have no effect.

• The following signals are available: is dbl ; if 1 the instruction uses double-precision

operands, otherwise single-precision. FP dst : if 1 the instruction writes the floating-point

register file, otherwise it does not (possibly because it’s not a floating-point instruction).

• Show all connections to the FP register file. Show the number of bits or the bit range for
each connection.

• The WF stage provides two signals, FPU (the value to write back) and fd, something gen-
erated in ID (as part of the solution). Additional signals can be sent down the pipeline.

• Keep In Mind: The hardware should work for both single and double operands. (That’s
what makes the problem interesting. If you’re confused first solve it assuming only double
operands, then attempt the full problem.)

• Make sure the fragments from the previous problem would run correctly.

format
immed

IR

Addr
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20:16

IR
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LSU EE 4720 Homework 6 Due: 25 April 2003

Problem 1: Show the execution of the MIPS code fragment below for three iterations on a four-
way dynamically machine using method 3 (physical register file). Though the machine is four-way,
assume that there can be any number of write-backs per cycle.

• Assume that the branch and branch target are correctly predicted in IF so that when the
branch is in ID the predicted target is being fetched.

• The FP multiply functional unit is three stages (M1, M2, and M3) with an initiation interval
of 1.

• There are an unlimited number of functional units.

(a) Show the pipeline execution diagram, indicate where each instruction commits.

(b) Determine the CPI for a large number of iterations. (The method used for statically scheduled
systems will work here but will be very inconvenient. There is a much easier way to determine the
CPI.)

LOOP: # LOOP = 0x1000

ldc1 f0, 0(t1)

mul.d f2, f2, f0

bneq t1, t2 LOOP

addi t1, t1, 8
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Problem 2: The execution of a MIPS program on a one-way dynamically scheduled system is
shown below. The value written into the destination register is shown to the right of each in-
struction. Below the program are tables showing the contents of the ID Map, Commit Map, and
Physical Register File (PRF) at each cycle. The tables show initial values (before the first instruc-
tion is fetched), in the PRF table the right square bracket “]” indicates that the register is free.
(Otherwise the right square bracket shows when the register is freed.)

(a) Show where each instruction commits.

(b) Complete the ID and Commit Map tables.

(c) Complete the PRF table. Show the values and use a “[” to indicate when a register is removed
from the free list and a “]” to indicate when it is put back in the free list. Be sure to place these
in the correct cycle.
# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (Result)

lw r1, 0(r2) IF ID Q L1 L2 L2 WB (0x100)

ori r1, r1, 6 IF ID Q EX WB (0x106)

subi r2, r1, 2 IF ID Q EX WB (0x104)

xor r1, r3, r3 IF ID Q EX WB (0)

addi r2, r1, 0x700 IF ID Q EX WB (0x700)

subi r1, r2, 4 IF ID Q EX WB (0x6fc)

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ID Map

r1 96

r2 92

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Commit Map

r1 96

r2 92

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Physical Register File

99 112 ]

98 583 ]

97 174 ]

96 309

95 606 ]

94 058 ]

93 285 ]

92 1234

91 518 ]

90 207 ]

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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EE 4720 Homework 1 Due: 18 September 2002
At the time this was assigned computer accounts and solution templates were not ready. If they

become available they can be used for the solution, either way a paper submission is acceptable.

Problem 1: Write a MIPS assembly language program that copies and converts an array of
integers to an array of doubles. Use the template below.

################################################################################

## cpy_w_to_dbl

## Register Usage

#

# $a0: Procedure input: Address of start of integer array (to read).

# $a1: Procedure input: Length of integer array.

# $a2: Procedure input: Address of start of double array (to write).

.globl cpy_w_to_dbl

cpy_w_to_dbl:

# Your code can modify $a0-$a2 and $t registers.

# A correct solution uses 8 instructions (not including jr, nop),

# a different number of instructions are okay.

# Points will be deducted for obviously unnecessary instructions.

#

# Solution starts here.

jr $ra

nop

Problem 2: What do the Sun compiler -xarch and -xchip options as used below do, and what
are the equivalent gcc 2.95 (GNU C compiler) switches.

cc myprog.c -o myprog -xarch=v8 -xchip=super

See http://gcc.gnu.org/onlinedocs/ for gcc and http://docs.sun.com for the Sun Forte
C 6 / Sun Workshop 6 cc compiler.

← → Fall 2002 ← → Homework 1 Homework Solution hw01.pdf

http://gcc.gnu.org/onlinedocs/
http://docs.sun.com
https://www.ece.lsu.edu/ee4720/2002f/hw01.pdf


Problem 3: In Sun’s CINT2000 SPEC Benchmark disclosure for the Sun Blade 1000 Model 900
Cu they specify a -xregs=syst compiler flag for several of the benchmarks compiled under the
peak rules. Hint: Use a search engine to find this rare flag. Guess what many of the search hits
are to?

(a) What does this flag do?

(b) How does it improve performance? Hint: It affects one of the few low-level optimizations covered
in class up to this point.

(c) How often could this option be used in the real world?

Problem 4: Benchmark suites are suites because a single program might run well on a processor
that runs most other code poorly.

At http://www.spec.org find the fastest processors using the “result” numbers from the
SPEC CINT2000 benchmarks in the following categories: The fastest two Pentium 4s, the fastest
Athlon, and the fastest Alpha. (Figure out how to get a result-sorted list of machines that shows
processor type.)

(a) What programs might an unfair Intel advocate want removed from the suite?
For the parts below consider the relative performance of the programs in the suite. (Put the

bar graphs for two different systems side by side and note the difference in shape.)

(b) Why might one expect the top two Pentia to be very similar? Are they in fact very similar?

(c) Why might one expect the Athlon to be more similar to the Pentium than to the Alpha? Does
it?
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EE 4720 Homework 2 Due: 9 October 2002

ISA manuals are needed for some problems below. Links to the ISA manuals can be found on the new
references Web page: http://www.ece.lsu.edu/ee4720/reference.html

Problem 1: Consider the following SPARC instructions:

sub %g3, %g2, %g1 ! g1 = g3 - g2;

and %g1, 0xf, %g1 ! g1 = g1 & 0xf

Wouldn’t it be nice to have a sub.and instruction that would do both:

sub.and %g3, %g2, 0xf, %g1 ! g1 = ( g3 - g2 ) & 0xf

(a) Could the SPARC V9 ISA easily be extended to support such double-op instructions? If yes, explain
how they would be coded.

(b) Estimate how useful double-op instructions would be, using the data below. Usefulness here is con-
veniently defined as the dynamic instruction count. Consider a large class of double-op instructions that
operate on two source registers and an immediate. For example, add.add, sll.add, and and.or. The data
below does not provide important statistics needed to estimate the usefulness. Describe what statistics are
needed and make up numbers. The made up numbers can be totally arbitrary (as long as they are possible).

The data below show instruction category and immediate sizes running the gcc compiler (cc1). Assume
that this is a representative program and so the results apply to others. The data show the total number
of instructions, and the breakdown by category, including ALU instructions that use an immediate, ALU
instructions that use two source registers, etc. Following that histograms of the immediate sizes are shown
for four instruction categories. This is very similar to the data shown in class. The percentage at each size
and a cumulative percentage are shown. For example, 11.12% of ALU immediate instructions use two bits
and 55.40% use two bits or fewer.

[drop] % echo /opt/local/lib/gcc-lib/sparc-sun-solaris2.6/2.95.2/cc1 \

els.i -O3 -quiet isize

Analyzed 156423240 instructions:

48483403 ( 31.0%) ALU Immediate

23886739 ( 15.3%) ALU Two Source Register

6353567 ( 4.1%) sethi

34039161 ( 21.8%) Loads and Stores

30331049 ( 19.4%) Branches

13329321 ( 8.5%) Other

ALU Immediate Size Distribution

Bits Pct Cum

0 25.96% 25.96% *******************

1 18.32% 44.28% *************

2 11.12% 55.40% ********

3 15.59% 70.99% ***********

4 3.16% 74.15% ***

5 6.10% 80.25% *****

6 7.31% 87.56% ******

7 6.81% 94.37% *****

8 0.76% 95.13% *

9 2.13% 97.26% **

10 2.64% 99.90% **

11 0.01% 99.91% *

12 0.08% 99.99% *

13 0.01% 100.00% *
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SETHI Immediate Size Distribution

Bits Pct Cum

0 0.00% 0.00% *

1 0.00% 0.00% *

2 0.02% 0.02% *

3 0.72% 0.74% *

4 0.43% 1.17% *

5 0.09% 1.26% *

6 0.66% 1.93% *

7 2.00% 3.93% **

8 4.53% 8.45% ****

9 3.14% 11.60% ***

10 5.86% 17.46% *****

11 5.54% 23.00% ****

12 72.67% 95.67% ***************************************************

13 0.09% 95.76% *

14 0.13% 95.89% *

15 0.10% 95.99% *

16 0.01% 96.00% *

17 0.00% 96.01% *

18 0.49% 96.50% *

19 3.14% 99.63% ***

20 0.02% 99.66% *

21 0.33% 99.99% *

22 0.01% 100.00% *

Memory Offset Distribution

Bits Pct Cum

0 4.93% 4.93% ****

1 0.11% 5.04% *

2 2.51% 7.55% **

3 15.95% 23.50% ************

4 24.41% 47.91% ******************

5 10.36% 58.27% ********

6 4.90% 63.17% ****

7 6.89% 70.06% *****

8 5.79% 75.85% *****

9 4.98% 80.82% ****

10 16.09% 96.92% ************

11 2.38% 99.30% **

12 0.70% 100.00% *

13 0.00% 100.00%

Branch Displacement Distribution

Bits Pct Cum

0 0.00% 0.00%

1 0.00% 0.00% *

2 13.06% 13.06% **********

3 22.20% 35.26% ****************

4 16.58% 51.84% ************

5 18.94% 70.79% **************

6 15.69% 86.48% ***********
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7 6.74% 93.22% *****

8 3.47% 96.69% ***

9 1.63% 98.31% **

10 0.71% 99.02% *

11 0.27% 99.29% *

12 0.41% 99.69% *

13 0.01% 99.71% *

14 0.00% 99.71%

15 0.00% 99.71% *

16 0.21% 99.91% *

17 0.01% 99.92% *

18 0.08% 100.00% *

19 0.00% 100.00%

20 0.00% 100.00%

21 0.00% 100.00%

22 0.00% 100.00%

Problem 2: It’s time to go instruction hunting!

(a) The Alpha does not have a general set of double-op instructions but it does have one that can replace
the two SPARC V9 instructions below. What is it? Replace the two instructions below with the Alpha
instruction. (For full credit [another 0.5 point, maybe] take into account that SPARC V9 and not SPARC
V8 was specified.)

sll %g2, 2, %g1 ! g1 = g2 << 2;

add %g3, %g1, %g1 ! g1 = g3 + g1

(b) SPARC V9 does not have a full set of predicated instructions, but it does have a predicated instruction
that can replace the code fragment below. What is it?

subcc %g1, 0, %g0 ! Set integer condition codes.

be SKIP ! Branch if result equal to zero.

nop

add %g3, 0, %g4 ! g4 = g3 + 0

SKIP:

Problem 3: Complete Spring 2002 Homework 2 Problems 2 and 3.
(At http://www.ece.lsu.edu/ee4720/2002/hw02.pdf.) (The Verilog part is optional.) This is a very
important type of problem, similar problems will be appearing all semester. You must solve the problem,
that is, scratch your head, figure it out, and work it through. If you’re stuck, feel free to ask for help. When
you’re done look at a solution and assign yourself a grade. Grade on a scale of 0 to 1 (real, not integer!)

Not solving it or solving it with too many glances at the solution will leave you ill-prepared for the
test. Yes, you can solve it the night before the test (if you have time), but that won’t help you understand
everything presented in class between now and then. You have been warned.
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LSU EE 4720 Homework 4 Due: 27 November 2002

Problem 1: Consider the solution to Spring 2002 Homework 4, shown on the next page. (The solution was
updated 19 November 2002, the PED is shown in dynamic order instead of the nearly-impossible-to-read
static order.)

(a) Show the contents of the reorder buffer in cycle 12. For each entry show the values of the fields from
the illustration below, for the PC show the instruction (ldc1, mul.d, etc.). (The fields are ST, dst, dstPR,
and incumb.) If a field value cannot be determined from the solution leave it blank, that will include fields
related to registers $2 and $3.

(b) For the solution to the part above, number each instruction. (1, 2, 3, etc.) Show the contents of the
instruction queue at cycle 12 identifying each instruction by these numbers.

(c) On the illustration there are three wires labeled with big lower-case letters, a, b, and c, and corresponding
rows in a table in the middle of the next page. Based on the solution to last semester’s problem, show what
values are on those wires in each cycle that they are used. Omit cycles where a value cannot be determined.
Note that the illustration is for a one-way (non-superscalar) processor but the program runs on a four-way
system. That means each wire can hold up to four values in one cycle. Hint: The solution for at least one
of the letters already appears. Just label the row(s) in the appropriate table with the letter. At least one of
the letters does not appear, so that will have to be written in.
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LOOP: # Instructions shown in dynamic order. (Instructions repeated.)

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ldc1 f0, 0($1) IF ID Q L1 L2 WC

mul.d f0, f0, f2 IF ID Q M1 M2 M3 M4 M5 M6 WC

sdc1 0($1), f0 IF ID Q L1 L2 WC

addi $1, $1, 8 IF ID Q EX WB C

bne $2, $0 LOOP IF ID Q B WB C

sub $2, $1, $3 IF ID Q EX WB C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ldc1 f0, 0($1) IF ID Q L1 L2 WB C

mul.d f0, f0, f2 IF ID Q M1 M2 M3 M4 M5 M6 WC

sdc1 0($1), f0 IF ID Q L1 L2 WC

addi $1, $1, 8 IF ID Q EX WB C

bne $2, $0 LOOP IF ID Q B WB C

sub $2, $1, $3 IF ID Q EX WB C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ldc1 f0, 0($1) IF ID Q L1 L2 WB C

mul.d f0, f0, f2 IF ID Q M1 M2 M3 M4 M5 M6 WC

sdc1 0($1), f0 IF ID Q L1 L2 WC

addi $1, $1, 8 IF ID Q EX WB C

bne $2, $0 LOOP IF ID Q B WB C

sub $2, $1, $3 IF ID Q EX WB C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ldc1 f0, 0($1) IF ID Q L1 L2 WB

mul.d f0, f0, f2 IF ID Q M1 M2 M3 M4 M5

...

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ID Map

f0 99 97,96 94,93 91,90

$1 98 95 92 89

# In cycle one first 97 is assigned to f0, then 96 (replacing 97). The

# same sort of replacement occurs in cycles 4 and 7.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

# FALL 2002 HERE

a

b

c

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Commit Map

f0 99 97 96 94 93 91 90

$1 98 95 92 89

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Physical Register File

99 1.0 ]

98 0x1000 ]

97 [ 10 ]

96 [ 11 ]

95 [ 0x1008 ]

94 [ 20 ]

93 [ 2.2 ]

92 [ 0x1010 ]

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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LSU EE 4720 Homework 5 Due: 3 December 2002

To answer the questions below you need to use the PSE dataset viewer program. PSE (pro-
nounced see) runs on Solaris and Linux; you can use the computer accounts distributed in class to
run it, a Linux distribution may also be provided for running it on other systems.

Procedures for setting up the class account and using PSE are at
http://www.ece.lsu.edu/ee4720/proc.html; preliminary documentation for PSE is at
http://www.ece.lsu.edu/ee4720/pse.pdf.

Problem 1: Near the beginning of the semester the performance of a program to compute π was
evaluated with and without optimization. It’s back, down below.

Follow instructions referred to above to view the execution of the optimized and unoptimized
versions of the pi program running on a simulated 4-way dynamically scheduled superscalar machine
with a 48-instruction reorder buffer. The datasets to use are pi_opt.ds and pi_noopt.ds.

(a) Based on the pipeline execution diagram compute the CPI of the main loop for a large number
of iterations in the optimized version. Do not use the IPC displayed by PSE, instead base it on the
PED. In your answer describe how the CPI was determined.

(b) Consider first the optimized version of the program. Would it run faster with a larger reorder
buffer? Would it run faster on an 8-way superscalar machine? How else might the processor be
modified to improve performance? Explain each answer.

(c) Now consider the un-optimized version. Would it run faster with a larger reorder buffer? Should
a computer designer pay attention to the performance of un-optimized code? Explain each answer.

(d) The simulated processors use a gshare branch predictor. Use pi_opt.ds to answer this question.
How many bits is the global history register? Entries in the PHT are initialized to 1 and the GHR is
initialized to zero. The PHT is updated when the branches resolve (in the cycle after they execute).
Explain your answer.

(e) Would execution be any different if the PHT were updated when the instructions commit?

#include <stdio.h>

int

main(int argv, char **argc)

{

double i;

double sum = 0; // Line 7

for(i=1; i<5000;) // Line 9

{

sum = sum + 4.0 / i; i += 2; // Line 11

sum = sum - 4.0 / i; i += 2; // Line 12

}

printf("After %d iterations sum = %.8f\n", (int)(i-1)/2, sum); // Line 15

return 0;

}
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EE 4720 Homework 6 Due: Not Collected

To answer the questions below you need to use the PSE dataset viewer program. PSE (pro-
nounced see) runs on Solaris and Linux; you can use the computer accounts distributed in class to
run it, a Linux distribution may also be provided for running it on other systems.

Procedures for setting up the class account and using PSE are at
http://www.ece.lsu.edu/ee4720/proc.html; preliminary documentation for PSE is at
http://www.ece.lsu.edu/ee4720/pse.pdf.

Problem 1: The code in http://www.ece.lsu.edu/ee4720/2002f/hw6.pdf includes two rou-
tines to perform a linear search, lookup_array and lookup_ll. Routine lookup_array(aws,foo)

searches aws for element foo. The list itself is an ordinary C array, structure aws (array with size)
includes the array and its size. Routine lookup_ll(head,foo) searches for foo in the linked list
starting at head.

The code calls the search routines under realistic conditions: Before the linked list is allocated
dynamic storage is fragmented and before the searches are performed the level-1 cache is flushed.
See the code for more details.

The code was executed on a simulated 4-way superscalar dynamically scheduled machine with
a 64-entry reorder buffer and a two-level cache. The simulation was recorded in hw6.ds; view this
dataset file using PSE to answer the questions below.

The code initializes the lists with identical data and then calls the search routines looking for
the same value. Answer the following questions about the execution of the two lookup routines.
When browsing the dataset be aware that the time spent in the lookup routines is dwarfed by the
time needed for setting everything up and so only the last few segments need to be examined.

(a) Would increasing the ROB size improve the performance of the linked list routine, lookup_ll?
Explain.

(b) Would increasing the ROB size improve the performance of the array routine, lookup_array?
Explain.

(c) As can be seen viewing the PED plots, the array routine follows a regular pattern while the
linked list code starts off slowly but as it nears completion it runs much faster. Why does the linked
list code speed up like that?

(d) How could one determine the line size from the PED plots? Be specific and use numbers from
the dataset. (The line size can be found two other ways, if you come upon them by all means use
them to check your answer that is based on the PED plot.)

(e) Before people stopped replacing $2,500 computers every six months computer engineers would
loose sleep worrying about The Memory Wall, the growing gap in performance between processors
and memory (e.g., the number of instructions that could have been executed while waiting for
memory). What is it about the array routine that lets it sail over the memory wall while the linked
list routine is stopped dead? The answer should take into account certain load instructions and the
critical path. Discuss how the performance of the routines change as the L1 miss time gets longer
and longer.
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LSU EE 4720 Homework 1 Due: 15 February 2002
At the time this was assigned computer accounts and solution templates were not available. If

they become available they can be used for the solution, either way a paper submission is acceptable.

Problem 1: The value computed by the program below approaches π. Re-write the program in
MIPS assembler. The code should execute quickly. Assume that all integer instructions take one
cycle, floating-point divides take ten cycles, floating-point compares take one cycle, and all other
floating-point instructions, including conversion, take four cycles. Note: As originally assigned only
the time for divides and adds was given. Make changes to the code to improve speed (possibly using
an integer for i or even using both an integer and double). Do not use a different technique for
computing π.
int

main(int argv, char **argc)

{

double i;

double sum = 0;

for(i=1; i<50000000;)

{

sum = sum + 4.0 / i; i += 2;

sum = sum - 4.0 / i; i += 2;

}

printf("After %d iterations sum = %.8f\n", (int)(i-1)/2, sum);

return 0;

}

Problem 2: The program below is used to generate a password based on the outcome of several
rolls of a twenty-sided die. The program was compiled using the Sun Workshop Compiler 5.0
targeting SPARC V7 (-xarch=v7) and SPARC V9 (-xarch=v8plus, code which can run on a V9
processor with a 32-bit OS), the output of the compiler is shown for the for loop.

Use the V8 architecture manual to look up V7 instructions, available at
https://www.ece.lsu.edu/ee4720/samv8.pdf; the V9 architecture manual is available at
https://www.ece.lsu.edu/ee4720/samv9.pdf.

Here are a few useful facts about SPARC:
Register names for SPARC are: %g0-%g7 (global), %l0-%l7 (local), %i0-%i7 (input), %o0-%o7

(output), and %f0-%f31 (floating point). Registers %fp (frame pointer) and %sp are aliases for %i6
and %o6, respectively. Register %g0 is a zero register.

Local variables (the only kind used in the code fragment shown) are stored in memory at some
offset from the stack pointer (in %sp). For example, ldd [%sp+96],%f0 loads a local variable into
register %f0.

All V7 and V8 integer registers are 32 bits. V9 registers are 64 bits but with the v8plus option
only the 32 lower bits are used.

Unlike MIPS and DLX, the last register in an assembly language instruction is the destination.
For example, add %g1, %g2, %g3, puts the sum of g1 and g2 in register g3.

Like MIPS, SPARC branches are delayed. Unlike MIPS, some delayed branches are annulled,
indicated with a “,a” in the mnemonic. In an annulled branch the instruction in the delay slot is
executed if and only if the branch is taken.
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(a) For each compilation, identify which registers are used for which program variables.

(b) For each instruction used in the V9 version of the code but not in the V7 version, explain what
it does and how it improves execution over the V7 version.
int

main(argc, argv)

int argc;

char **argv;

{

int die_rolls[] = {15, 17, 6, 10, 19, 19, 15, 17, 16, 5, 0 };

int *rolls_ptr = &die_rolls[0];

char pw[8];

char *pw_ptr = &pw[0];

int faces_per_die = 20; /* Available at Little Wars in Village Square */

double bits_per_roll = log(faces_per_die)/log(2.0);

double bits_per_letter = log(26.0) / log(2.0);

double bits = 0.0;

uint64_t seed = 0; /* A 64-bit integer. */

int roll;

while( ( roll = *rolls_ptr++ ) )

{

seed = faces_per_die * seed + (roll-1);

bits += bits_per_roll;

}

for( ; bits >= bits_per_letter; bits -= bits_per_letter )

{

*pw_ptr++ = ’a’ + seed % 26;

seed = seed / 26;

}

*pw_ptr = 0;

printf("The password is %s\n",pw);

return 0;

}

! Compiled with -xarch=v7

!

! 32 ! for( ; bits >= bits_per_letter; bits -= bits_per_letter )

/* 0x010c 32 */ ldd [%sp+96],%f0

.L900000118:

/* 0x0110 32 */ fcmped %f30,%f0

/* 0x0114 */ nop

/* 0x0118 */ fbul .L77000009

/* 0x011c */ or %g0,0,%o2

.L900000116:

! 33 ! {
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! 34 ! *pw_ptr++ = ’a’ + seed % 26;

/* 0x0120 34 */ or %g0,%i2,%o1

/* 0x0124 */ or %g0,%i1,%o0

/* 0x0128 */ or %g0,26,%o3

/* 0x012c */ call __urem64 ! params = %o0 %o1 %o2 %o3 ! Re-

sult = %o0

/* 0x0130 */ std %f30,[%sp+104]

/* 0x0134 */ add %o1,97,%g2

/* 0x0138 */ stb %g2,[%i0]

! 35 ! seed = seed / 26;

/* 0x013c 35 */ or %g0,%i1,%o0

/* 0x0140 */ or %g0,0,%o2

/* 0x0144 */ or %g0,26,%o3

/* 0x0148 */ call __udiv64 ! params = %o0 %o1 %o2 %o3 ! Re-

sult = %o0

/* 0x014c */ or %g0,%i2,%o1

/* 0x0150 */ ldd [%sp+96],%f0

/* 0x0154 34 */ add %i0,1,%i0

/* 0x0158 35 */ or %g0,%o0,%i1

/* 0x015c */ ldd [%sp+104],%f30

/* 0x0160 */ fsubd %f30,%f0,%f30

/* 0x0164 */ fcmped %f30,%f0

/* 0x0168 */ or %g0,%o1,%i2

/* 0x016c */ fbge .L900000116

/* 0x0170 */ or %g0,0,%o2

.L77000009:

! 36 ! }

! Compiled With -xarch=v8plus

!

! 32 ! for( ; bits >= bits_per_letter; bits -= bits_per_letter )

/* 0x00e8 32 */ fcmped %fcc0,%f8,%f4

.L900000117:

/* 0x00ec 32 */ fbul,a,pt %fcc0,.L900000115

/* 0x00f0 */ stb %g0,[%i0]

! 33 ! {

! 34 ! *pw_ptr++ = ’a’ + seed % 26;

/* 0x00f4 34 */ udivx %o0,26,%g2

.L900000114:

/* 0x00f8 34 */ mulx %g2,26,%g3

/* 0x00fc */ sub %o0,%g3,%g3

! 35 ! seed = seed / 26;

/* 0x0100 35 */ or %g0,%g2,%o0

/* 0x0104 */ fsubd %f8,%f4,%f8

/* 0x0108 34 */ add %g3,97,%g3
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/* 0x010c */ stb %g3,[%i0]

/* 0x0110 */ add %i0,1,%i0

/* 0x0114 35 */ fcmped %fcc1,%f8,%f4

/* 0x0118 */ fbge,a,pt %fcc1,.L900000114

/* 0x011c */ udivx %o0,26,%g2

.L77000009:

! 36 ! }
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EE 4720 Homework 2 Due: 6 March 2002

Problem 1: Two VAX instructions appear below. VAX documentation can be found via
http://www.ece.lsu.edu/ee4720/doc/vax.pdf. Don’t print it, it’s 544 pages. Take advantage
of the extensive bookmarking of the manual to find things quickly. Chapter 5 describes the ad-
dressing modes and assembler syntax, Chapter 8 summarizes the VAX ISA, and Chapter 9 lists the
instructions. For the instructions look up ext and add then find the mnemonics used below. Pay
attention to operand order.

(a) Translate the VAX code below to MIPS (without changing what it does, of course). Ignore
overflows and the setting of condition codes.

extzv #10, #5, r1, r2

addl2 @0x12034060(r3), (r4)+ # Don’t overlook the "@" and "+".

(b) (Extra Credit) Show how the instructions above are coded.
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Problem 2: A pipelined MIPS implementation and some MIPS code appear below. The results
computed by the MIPS instructions are shown in the comments.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0

>0
<0

E
Z
N
P

NPC

A B C D

E

LOOP: # LOOP = 0x1000

addi $1, $2, 4 # 0x24

sub $3, $0, $3 # 0x30

and $1, $1, $6 # 0x20

or $4, $1, $5 # 0x70

bne $4, $3, LOOP # Taken

sw $4, 7($8) # $8 = 0x801

add $10, $11, $12 # 0x230

add $13, $11, $12 # 0x230

add $14, $11, $12 # 0x230

(a) Draw a pipeline execution diagram showing the execution of the code on the implementation.
Base your pipeline execution diagram on the illustrated pipeline, do not depend solely on memorized
execution timing rules, since they depend on details of the hardware which vary from problem to
problem. Show execution until the second fetch of the first instruction.

(b) Determine the CPI for a large number of iterations.

(c) Certain wires in the implementation diagram are labeled with letters. (The circled letters with
arrows.) Beneath the pipeline execution diagram show the value on those wires at near the end
of each cycle. (Write sideways if necessary.) Do not show values if the corresponding stage holds
a bubble or a squashed instruction. Only show immediate values if the corresponding instruction
uses one. Hint: Three instructions above use an immediate.

(d) This is a special bonus question that did not appear in the original assignment! For those
students who have taken EE 3755 in Fall 2001, identify the Verilog code in
http://www.ece.lsu.edu/ee4720/v/mipspipe.html corresponding to each labeled wire.
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Problem 3: Add exactly the bypass paths needed so that the code in the previous problem will
run on the implementation below (the same as the one above) with the minimum number of stalls.
Indicate the cycles in which the bypass paths will be used and the values bypassed on them.
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EE 4720 Homework 3 Due: 20 March 2002

Problem 1: The exception mechanism used in the MIPS 32 ISA differs in some ways from the
SPARC V8 mechanism covered in class. See Chapter 7 in http://www.ece.lsu.edu/ee4720/sam.pdf

for the SPARC V8 exception information and http://www.ece.lsu.edu/ee4720/mips32v3.pdf

for a description of the MIPS mechanism. The MIPS description is a bit dense, so start early and
ask for help if needed.

(a) Describe how the methods used to determine which exception was raised differ in SPARC V8
and MIPS 32. Use an illegal (reserved) instruction error as an example. Shorter answers will get
more credit so concentrate on explaining how the processor identifies the exception (was it an illegal
instruction, an arithmetic overflow, etc) and avoid irrelevant details. For example, details on how
the processor switches to system mode is irrelevant.

(b) Where do the two ISAs store the address of the faulting instruction? Both ISAs have delayed
branches, so why does SPARC store two return addresses while MIPS gets away with one?

(SPARC registers are organized like a stack, on a procedure call a save instruction “pushes” a
fresh set of registers on the stack, and a restore instruction “pops” the registers, returning to the
previous set. The set of visible registers is called a window. This mechanism reduces the need to
save and restore registers in memory. This piece of information is needed for the previous problem.)

Problem 2: The pipeline execution diagram below is for code running on a MIPS implementation
developed just for this homework problem! Note that the program itself is missing. The dog deleted
it. The M_ and A_ refer to parts of the multiply and add functional units with segment numbers
omitted for this problem. A WBx indicates that an instruction does not write back to avoid a WAW
hazard.

IF ID M_ M_ M_ M_ M_ M_ WB

IF ID ----> M_ M_ M_ M_ M_ M_ WB

IF ----> ID ----> A_ A_ WB

IF ----> ID M_ M_ M_ M_ M_ M_ WBx

IF ID A_ A_ WB

IF ID A_ A_ WB

(a) Write a program consistent with the diagram. Pay attention to dependencies.

(b) Identify the latency and initiation interval of the functional units. Fill in the segment numbers.

Problem 3: In the MIPS implementation below (also shown in class) branches are resolved in
the ID stage. Resolution of a branch direction (determining whether it was taken) must wait for
register values to be retrieved and, for some branches, compared to each other. Suppose this takes
too long.
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format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

(a) Show the modifications needed to do the equality comparison in the EX stage. The modified
hardware must use as little additional hardware as possible and, to maximize performance, should
only do an EX-stage equality comparison when necessary. Don’t forget about branch target address
handling. Hint: The modifications are easy.

(b) Write a code fragment that runs differently on the two implementations and show pipeline
execution diagrams for the code on the two implementations.

(c) The table below lists SPARC instructions and indicates how frequently they were used when
running TEX to prepare this homework assignment. (Many rows were omitted to save space, so the
“%exec” column will not add to 100%.) Suppose that the instruction percentages are identical for
MIPS (which means totally ignoring the cc instructions). Assume that SPARC be and be,a are
equivalent to MIPS beq, SPARC bne and bne,a are equivalent to MIPS bne, and that the other
branch instructions (they begin with a b), are equivalent to branch instructions that compare to
zero (bgez, etc.).

Suppose the clock frequency of the original design is 1.0000 GHz. Based on the data below and
making any necessary assumptions, for what clock frequency would the new design run a program
in the same amount of time as the old one? What column would you add (what additional data
do you need) to the table to make your answer more precise?

Assume that floating-point instructions are insignificant and that there are no stalls due to
memory access.
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opcode #exec %exec

subcc 4659360 12.6187%

lduw 4521722 12.2459%

add 4159629 11.2653%

or 3110542 8.4241%

sethi 3066797 8.3056%

stw 1848293 5.0056%

sll 1402122 3.7973%

be 1393475 3.7739%

jmpl 1140223 3.0880%

call 1088068 2.9467%

ldub 1064918 2.8841%

bne 936493 2.5362%

stb 687981 1.8632%

srl 609402 1.6504%

save 526477 1.4258%

restore 526474 1.4258%

bne,a 453545 1.2283%

nop 433253 1.1734%

bge 429978 1.1645%

ldsb 429497 1.1632%

orcc 382947 1.0371%

and 370967 1.0047%

be,a 360057 0.9751%

sub 354847 0.9610%

ba 321970 0.8720%

bl 297715 0.8063%

andcc 270465 0.7325%

bgu 235304 0.6373%

bl,a 216074 0.5852%

sra 204610 0.5541%

ble 198154 0.5366%

xor 185137 0.5014%

bcs 182153 0.4933%

addcc 155156 0.4202%

bleu 142755 0.3866%

bg 117582 0.3184%

mulscc 88681 0.2402%
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EE 4720 Homework 4 Due: 22 April 2002
To solve Problem 3 and the next assignment a paper has to be read. Do not leave the reading

to the last minute, however try attempting the first problem below before reading the paper.

Problem 1: The pipeline below was derived from the five-stage statically scheduled MIPS imple-
mentation by splitting each stage (except writeback) into two stages. Each pair of stages (say IF1

and IF2) does the same thing as the original stage (say IF), but because it is broken in to two
stages it takes two rather than one clock cycle. The diagram shows only a few details. Bypass
connections into the ALU are available from all stages from MEM1 to WB.

IF1 IF2 ID1 ID2 EX1 EX2
MEM

1
MEM

2
WB

PC

The advantage of this pipeline is that the clock frequency can be doubled. (Actually not quite
times two.) Perfect execution is shown in the diagram below:

add $1, $2, $3 IF1 IF2 ID1 ID2 EX1 EX2 ME1 ME2 WB

sub $4, $5, $6 IF1 IF2 ID1 ID2 EX1 EX2 ME1 ME2 WB

and $7, $8, $9 IF1 IF2 ID1 ID2 EX1 EX2 ME1 ME2 WB

(a) Suppose the old five-stage system ran at a clock frequency of 1 GHz and the new system runs
at 2 GHz. How does the execution time compare on the new system when execution is perfect?

(b) Show a pipeline execution diagram of the code below on the new pipeline. Note dependencies
through registers $10 and $11.

add $10, $2, $3

sub $4, $10, $6

and $11, $8, $9

or $20, $21, $22

xor $7, $11, $0

(c) In the previous part there should be a stall on the new pipeline that does not occur on the
original pipeline. (It’s not too late to change your answer!) How does that affect the usefulness of
splitting pipeline stages?

(d) (Optional, complete before reading paper.) To get that I’m-so-clever feeling answer the following:
Suppose there is no way a 32-bit add can be completed in less than two cycles. Is there any way
to perform addition so that results can be bypassed to an immediately following instruction, as
in the example above, but without stalling? The technique must work when adding any two 32-
bit numbers. Hint: The adder would have to be redesigned. (A question in the next homework
assignment revisits the issue.)
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Problem 2: Note: The following problem is similar to one given in the Fall 2001 semester, see
http://www.ece.lsu.edu/ee4720/2001f/hw03.pdf (the problem) and
http://www.ece.lsu.edu/ee4720/2001f/hw03_sol.pdf (the solution). For best results do not
look at the solutions until you’re really stuck. This problem below uses MIPS instead of DLX and is
for Method 3 instead of Method 1. The code below executes on a dynamically scheduled four-way
superscalar MIPS implementation using Method 3, physical register numbers.

• Loads and stores use the load/store unit, which consists of segments L1 and L2.

• The floating-point multiply unit is fully pipelined and consists of six segments, M1 to M6.

• The usual number of instructions (for a 4-way superscalar machine) can be fetched, decoded,
and committed per cycle.

• An unlimited number of instructions can complete (but not commit) per cycle. (Not realistic,
but it makes the solution easier.)

• There are an unlimited number of reservation stations, reorder buffer entries, and physical
registers.

• The target of a branch is fetched in the cycle after the branch is in ID, whether or not the
branch condition is available. (We’ll cover that later.)

(a) Show a pipeline execution diagram for the code below until the beginning of the fourth iteration.
Show where instructions commit.

(b) What is the CPI for a large number of iterations? Hint: There should be less than six cycles
per iteration.

(c) Show the entries in the ID and commit register maps for registers f0 and $1 for each cycle in
the first two iterations. If several values are assigned in the same cycle show each one separated by
commas.

(d) Show the values in the physical register file for f0 and $1 for the first two iterations. Use a “]”
to show when a physical register is removed from the free list and use a “[” to show when it is put
back in the free list.

LOOP: # LOOP = 0x1000

ldc1 f0, 0($1)

mul.d f0, f0, f2

sdc1 0($1), f0

addi $1, $1, 8

bne $2, $3 LOOP

sub $2, $1, $3

# Initial Values

free list: 99, 98, 97, etc. The next free register is 99.

f0: 1.0

$1: 0x1000

f2: 1.1

Mem[0x1000] = 10.0

Mem[0x1008] = 20.0

Mem[0x1010] = 30.0

etc.
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The following is an introduction to the next few problems.
As mentioned several times in class many of the performance-enhancing microarchitectural

features that came in to wide use in the closing decades of the twentieth century (I love the way
that sounds!) are much easier to apply to RISC ISAs than CISC ISAs. Bound by golden handcuffs
to the CISCish IA-32 ISA, Intel was forced to get RISC-level performance from IA-32. (Not just
Intel, DEC [now Compaq, perhaps soon HP] faced the problem with the VAX ISA and IBM with
360.) The solution chosen by Intel (and also DEC) was to translate individual IA-32 instructions
in to one or more µops (micro-operations). Each µop is something like a RISC instruction and so
the parts of the hardware beyond the IA-32 to µop translation can employ the same techniques
used to implement RISC ISAs.

The paper at http://www.intel.com/technology/itj/q12001/articles/art_2.htm
and http://www.ece.lsu.edu/ee4720/s/hinton_p4.pdf (password needed off campus, will be
given in class) describes the Pentium 4 implementation of IA-32, including µops (which are typeset
using “u” instead of the Greek letter “µ”, except occasionally in figures). This paper was not
written for a senior-level computer architecture class four weeks from the end of the semester and
so it will include material which we have not yet covered (caches and TLBs) and some material not
covered at all. Some stuff in the paper is not explained (how they do branch prediction or what
the Pentium 4 pipeline segments in Figure 3 mean), some of this can be figured out other things
have to be found out elsewhere (but not for this assignment).

Read the paper and answer the question below. The next homework assignment will include
additional questions on the paper. For this initial reading skip or lightly read material on the L2
cache, L1 data cache, and the ITLB. Questions on the cache material might be asked in a later
assignment.

Problem 3: What does the paper call the following actions and components (that is, translate
from the terminology used in class to the terminology used in the paper):

Commit
ID Register Map
Commit Register Map
Physical Register File
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EE 4720 Homework 5 Due: 26 April 2002

The following questions are based on the paper at
http://www.intel.com/technology/itj/q12001/articles/art_2.htm

and http://www.ece.lsu.edu/ee4720/s/hinton_p4.pdf (password needed off campus, will be
given in class). See Homework 4 (http://www.ece.lsu.edu/ee4720/2002/hw04.pdf) for an in-
troduction to the paper.

Problem 1: What is the maximum IPC of the IA-32 (in µops)? Put another way, the Pentium 4
is an n-way superscalar processor, what is n?

Problem 2: The Pentium 4 can decode no more than one IA-32 instruction per cycle. How then
can it execute more than one IA-32 instruction per cycle (at least for small code fragments prepared
by a friendly programmer)?

Problem 3: One problem with superscalar systems noted in class is the wasted instructions fol-
lowing the delay slot of a taken branch near the beginning of a fetch group. How does the Pentium
4 avoid this?

Problem 4: The fast (2×) integer ALUs have three stages, an initiation interval of 1 fast cycle (1
2

processor cycle), and a latency of zero fast cycles. Why is this surprising (not the one half part)?
How does it do it?

Problem 5: In describing store-to-load forwarding the paper describes a special case for which
data could be forwarded (bypassed) but is not because it would be too costly. Using MIPS code
(or IA-32 if you prefer) provide an example of this special case.

Problem 6: In Figure 8 the performance of a 1 GHz Pentium III is compared to a 1.5 GHz Pentium
4. Why is it reasonable for the Pentium 4 to be compared at a higher clock frequency?
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EE 4720 Homework 1 Due: 10 October 2001

Problem 1: In DLX the three instructions below, though they do very different things, are of the
same type (format).

bnez r2, SKIP

lw r1, 1(r2)

addi r1, r2, #1

SKIP:

Because of their similarity their implementations in the diagram below shares a lot of hardware.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

(a) Show how these DLX instructions are coded.

(b) Find corresponding instructions in the SPARC V9 ISA. (See the SPARC Architecture Manual
V9, http://www.ece.lsu.edu/ee4720/samv9.pdf) (The DLX branch instruction will have to be
replaced by two instructions, one to set the condition code registers.)

(c) Show the coding of the SPARC V9 branch, load, and add immediate instructions (but not the
condition code setting instruction).

(d) Do these codings allow the same degree of hardware sharing?
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Problem 2: Write a DLX assembly language program that determines the length of the longest
run of consecutive elements in an array of words. For example, in array {1, 7, 7, 1, 5, 5, 5, 7, 7} the
longest run is three: the three 5’s (the four 7’s are not consecutive). The comments below show
how registers are initialized and where to place the longest run length.

! r10 Beginning of array (of words).

! r11 Number of elements.

! r1 At finish, should contain length of the longest run.

Problem 3: Small integers can be stored in a packed array to reduce the amount of storage
required; the array can be unpacked into an ordinary array when the data is needed. Write a DLX
assembly language program to unpack an array containing n b-bit integers stored as follows. The
low b bits (bits 0 to b − 1) of the first word of the packed array contain the first integer, bits b to
2b − 1 contain the next, and so on. When the end of the word is reached integers continue on the
second word, etc. Size b is not necessarily a factor of n and so an integer might span two words.

The diagram below shows how the first 6 integers i0, i1, . . . , i5 are stored for b = 12 bits and
n ≥ 6.

i2

low part

31 24

i1

23 12

i0

11 0

i5

low part

31 28

i4

27 16

i3

15 4

i2

high part

3 0

Write DLX assembly language code to unpack such an array into an array of signed words.
The packed array consists of n b-bit signed numbers, with b ∈ [1, 32]. Initial values of registers are
given below.

! Initial values

! r10: Address of start of packed array.

! r11: Number of elements (n).

! r12: Size of each element, in bits (b).

! r14: Address of start of unpacked array.
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EE 4720 Homework 2 Due: 5 November 2001

Problem 1: Answer the following questions about the MIPS Technologies 4Km processor core.
The processor is documented in
http://www.mips.com/declassified/Declassified_2000/MD00016-2B-4K-SUM-01.15.pdf.

(a) For each stage in the statically scheduled DLX implementation show where the same work is
done in the 4Km pipeline. Note that work done in one DLX stage might be performed in more
than one 4Km pipeline stage.

(b) The 4Km documentation uses the term stall differently than used in class. How do their usages
differ? What term does the documentation use that is close to stall as used in class? (See section
2.8.1)

(c) A MIPS implementation needs to do all of the following:

(1) arithmetic and logical operations for ordinary instructions
(2) compute the target of a branch
(3) compute the effective address of a load or store

In the first pipelined DLX implementation all of these were performed by the ALU. MIPS has
a branch instruction in which a branch is taken if two registers are equal (beq) or not equal (bne).
So it must also

(4) determine if two values are equal

How many of these are shared? If they are not shared, why not? (The documentation does
not state exactly what hardware is present, answer the question by looking at how instructions
execute.)
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Problem 2: The program below runs on the DLX implementation shown below. The hardware
makes no special provisions for the tricky technique used. The coding for a nop (actually add r0,

r0, r0) is all zeros.
Why isn’t this an infinite loop? (For those who know why it matters, assume there is no

cache.)
Why will the code run for at least one iteration?
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IR
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LOOP:

lw r1, 0(r2)

addi r2, r2, #4

add r3, r3, r1

sw 0x100(r0), r0

LINE: LINE = 0x100

j LOOP
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Problem 3: Show a pipeline execution diagram for the code below running on a 4-way statically
scheduled superscalar processor. All needed bypass paths are available, including one for the branch
condition. Determine the CPI for a large number of iterations.

and r2, r2, r8

LOOP: ! LOOP = 0x1008

lw r1, 0(r2)

add r3, r3, r1

addi r2, r2, #4

sub r4, r2, r5

bneq r4, LOOP

Problem 4: The code from the problem above can be improved (stalls can be removed) to a small
extent by scheduling, but that would still leave some stalls. This might see like a good candidate
for loop unrolling.

(a) Show why it would take alot of unrolling to eliminate all stalls. (You don’t have to show the
unrolled code, since it would be long.)

(b) Use software pipelining and scheduling to remove the stalls. (Hint: to software pipeline switch
the lw and add instructions, and make any other necessary changes.) What is the CPI for a large
number of iterations of the modified code?

(c) Would loop unrolling provide further gains?
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EE 4720 Homework 3 Due: 14 November 2001

Problem 1: The code below executes on a dynamically scheduled four-way superscalar DLX
implementation that uses reorder buffer entry numbers to name destination registers.

• Loads and stores use the load/store unit, which consists of segments L1 and L2.

• The floating-point multiply unit is fully pipelined and consists of six segments.

• The usual number of instructions (for a 4-way superscalar machine) can be fetched, decoded,
and committed per cycle.

• An unlimited number of instructions can complete per cycle. (This makes the solution
easier.)

• There are an unlimited number of reservation stations and reorder buffer entries.

• The target of a branch is fetched in the cycle after the branch is in ID, whether or not the
branch condition is available. (We’ll cover that later.)

(a) Show a pipeline execution diagram for the code below until the beginning of the fourth iteration.
Show where instructions commit.

(b) What is the CPI for a large number of iterations? Hint: There should be less than six cycles
per iteration.

(c) Show the entries in the register map for registers f0 and r1 for each cycle. (Make up reorder
buffer entry numbers.)

LOOP: ! LOOP = 0x1000

ld f0, 0(r1)

muld f0, f0, f2

sw 0(r1), f0

addi r1, r1, #8

sub r2, r1, r3

bnez r2, LOOP

(d) The first two instructions of the code below are different than the code above, the other instruc-
tions are identical. It runs on a system identical to the one above except that there are only 1000
reorder buffer entries. (That’s actually a lot, but it’s not unlimited.) What is the CPI for a large
number of iterations? Is the CPI really lower in the period before reorder buffers are used up? If
you can, solve the problem without drawing a complete pipeline execution diagram.

LOOP: ! LOOP = 0x1000

ld f4, 0(r1)

muld f0, f0, f4

sw 0(r1), f0

addi r1, r1, #8

sub r2, r1, r3

bnez r2, LOOP
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Problem 2: When the MIPS program below starts register $t0 holds the address of a string, the
program converts the string to upper case.

(For MIPS documentation see http://www.ece.lsu.edu/ee4720/mips32v1.pdf and
http://www.ece.lsu.edu/ee4720/mips32v2.pdf. Here are the relevant differences with DLX:
branches and jumps are delayed (1 cycle). Some branch instructions compare two registers. Register
$0 works like DLX r0.)

LOOP:

lbu $t1, 0($t0)

addi $t0, $t0, 1

beq $t1, $0, DONE

slti $t2, $t1, 97 # < ’a’

bne $t2, $0 LOOP

slti $t2, $t1, 123 # ’z’ + 1

beq $t2, $0, LOOP

addi $t1, $t1, -32

j LOOP

sb $t1,-1($t0)

DONE:

Convert the program to IA-64 assembly language using predicated instructions. (You’re not
expected to know it at this point.) IA-64 is described in the IA-64 Application Developer’s Archi-
tecture Guide, available at http://www.ece.lsu.edu/ee4720/ia-64.pdf.

For this problem one can ignore alot of IA-64’s features. Here is what you will need to know:
IA-64 has 64 1-bit predicate registers, p0 to p63, which are written by cmp (compare) and other
instructions. Predicates can be specified for most instructions, including cmp itself. See 11.2.2 for
a description of how to use IA-64 predicates.

To solve the problem look at the following sections: 9.3, 9.3.1, and 9.3.2 (a brief description
of where to place stops); 11.2.2 (predicate description and some more information on stops); and
Chapter 7 (for instruction descriptions). The following instructions will be needed: cmp (compare,
look at the normal [none] and and comparison types), br (branch), load, store, and add.

• Use general-purpose registers r0-r31 and predicate registers p1-p63 in your solution. (There
are 128 general-purpose registers, but those above r31 must be allocated.)

• Minimize the number of instructions per iteration assuming about half the characters are
lower case.

• Use predicates to eliminate some branches.

• Make use of post-increment loads or stores.

• Pay attention to data type sizes.

• Show stops but do not show bundle boundaries.
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EE 4720 Homework 4 Due: 28 November 2001

Problem 1: Solve Problems 3 and 4 from Fall 2000 Homework 5, available via
http://www.ece.lsu.edu/ee4720/2000f/hw05.pdf. Using the solutions at
http://www.ece.lsu.edu/ee4720/2000f/hw05_sol.pdf assign yourself a grade in the range [0, 1]. Either:
indicate the grade you assigned yourself or write “Did not solve.” A solution can be provided along with a
grade. It will be corrected but your grade will be used. If you opt not to solve it you will receive full credit
but will be hurting your ability to solve future problems.

For the following questions read Kenneth C. Yeager, “The Mips R10000 Superscalar Microprocessr,”
IEEE Micro, April 1996, pp. 28-40. A restricted-access copy can be found at
http://www.ece.lsu.edu/ee4720/s/yeager96.pdf. Access is allowed from within the lsu.edu domain or
by using the userid “ee4720” and the correct password. Though not needed for this assignment, information
on the MIPS64 4 ISA (implemented by R10000) can be found in
http://www.ece.lsu.edu/ee4720/mips64v1.pdf and http://www.ece.lsu.edu/ee4720/mips64v2.pdf.

Skip over the material on the memory system (under heading “Memory Hierarchy”) and the system
interface. Material related to memory will be covered later in the semester.

Problem 2: The paper uses the four terms below, for each show the corresponding, or most similar, term
used in class.

• Graduate

• Active List

• Tag

• Logical Register

Problem 3: For the superscalar processors described in class taken branches resulted in higher than ideal
CPI; the higher the fetch/decode width (the n in n-way superscalar) the worse the problem was. Why is
this problem not as severe in the R10000? (Branch prediction is not the answer.)

Problem 4: The MIPS R10000 does not have anything like a commit register map or a commit free list.
(The register map and free list at the bottom of the figure from the class notes on the next page.) How
were those used with exceptions in the Method-3 dynamically scheduled processor described in class? How
does the R10000 deal with exceptions given their absence? Do not describe the entire exception process, just
those pieces of hardware and steps needed to do what was done with the commit free list and register map.
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Problem 5: Figure 5, reproduced below, shows the information that will be placed in the active list and
floating-point queue for an instruction being decoded. Various field names are shown along the bottom of the
figure. The instruction format fields are shown at the top. Fields fR, fS, fT are source registers (not every
instruction uses three); field fD is the destination register, FLTX is the opcode, and MADD is an extension
of the of the opcode field (as func is in DLX). (The figure appears to be using field values rather than
names for the first and last fields. MADD is the name of an instruction, multiply-add, and FLTX may be an
abbreviation for floating-point extended, though the architecture manual calls the field value COP1X. They
probably should have used opcode instead of FLTX and function instead of MADD.)

Write the field names from the bottom of Figure 5 next to the corresponding fields in the figure, from
the class notes, below. Though Figure 5 shows a floating-point instruction assume that integer instructions
are handled the same way. Some fields have no analog in the figure below, these can be omitted; Tag is not
a field that can be omitted.
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EE 4720 Homework 5 Due: 5 December 2001

Problem 1: An ISA has a character size of c = 9 bits (one more than most other ISA’s!) and a
30-bit address space (A). An implementation has a bus width of w = 72 bits and has no cache.
Show how 220 × 36 memory devices can be connected to implement the entire address space for
this implementation. Show only the connections needed for loads. Show the alignment network as
a box. Label inputs and outputs and be sure to specify which address bits are being used. The
solution will require many memory devices so use ellipses (· · ·) between the first and last of a large
group of items.

Problem 2: The program below computes the sum of an array of doubles and also computes the
sum of the characters in the array. The system uses a direct-mapped cache consisting of 1024 lines
with a line size of 256 bits.

void p3(double *dstart, double *dend)

{

double dsum = 0.0;

int csum = 0;

double *d = dstart; // sizeof(double) = 8 characters

unsigned char *c = (unsigned char *) dstart; // A character is 8 bits.

unsigned char *cend = (unsigned char *) dend;

int dlength = dend - d;

int clength = cend - c;

while( d < dend ) dsum += *d++;

if( ! LAST_PART ) flush_the_cache(); // Removes all data from the cache.

while( c < cend ) csum += *c++;

}

When the procedure is called none of the data in the array is cached. When answering the
questions below consider only memory accesses needed for the array (double or character). Assume
that the number of iterations is some convenient number, except zero of course.

Note: Though they both access the same amount of data the number of iterations of the two
loops are different. The first while loop is equivalent to: for(i=0; i<dlength; i++) dsum = dsum

+ dstart[i];

(a) What is the hit ratio for the first while loop? Assuming the cache is flushed (emptied) between
the two while loops, what is the hit ratio for the second while loop?

(b) Consider a single-issue (one-way) statically scheduled system in which the pipeline stalls on a
cache miss. The cache miss delay is 1000 cycles. Roughly how does the time needed to execute the
two loops compare? Assume that when there’s a cache hit the time needed for one iteration is the
same for both loops.

(c) Consider a single-issue (one-way) dynamically scheduled system with perfect branch and branch
target prediction, a non-blocking cache, and a reorder buffer that can hold sixteen iterations of the
while loops. The miss delay is still 1000 cycles however assume that for cache misses there is an
initiation interval of one cycle so that the data for misses at t = 0 and t = 1 will arrive at t = 1000
and t = 1001, respectively. Now how do the two loops compare?
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(d) Suppose the cache is not flushed before the second while loop executes. What is the smallest
value of dlength (dee, not cee) for which the hit ratio of the second loop is less than 1.0?

Problem 3: The SPARC V9 program below adds an array of integers.
(See http://www.ece.lsu.edu/ee4720/samv9.pdf for a description of SPARC V9.) Except for
prefetch these instructions (or similar ones) have been covered before. The prefetch instruction
is used to avoid the type of cache misses suffered by the program in the previous problem. It is like
a nop in that it does not modify registers or memory, however like a load instruction, it moves data
into the cache. As used below it will fetch data that will be needed ten iterations later. The data
will be moved in to the cache (if not already present) but not in to a register. Ten iterations later
the ldx instruction will move the data in to register %l2. Unlike loads, prefetch instructions never
raise an exception. If the address is invalid or there is another problem the prefetch instruction
does nothing, so there is no danger in prefetching, say, past the end of an array.

Unlike for a load that misses the cache, a statically scheduled processor would not stall on a
prefetch miss. (There’d be no point in that!)

! Reminder: In SPARC assembler the destination register is on the right side.

LOOP:

ldx [%l1], %l2 ! Load extended word (64 bits, same size as reg)

prefetch [80+%l1], 1 ! Prefetch from address 40+%l1, type 1

add %l1, 8, %l1

subcc %l4, %l1, %g0 ! %g0 = %l4 - %l1. (%g0 is zero register.) Set cc.

bpg LOOP,pt ! Branch if condition code >0, predict taken

add %l3, %l2, %l3 ! Branch delay slot.

(a) In the code above the prefetch distance is ten iterations. What is the problem with the distance
being too large or too small?

(b) Suppose SPARC V9 did not have a prefetch instruction. Explain how ldxa could be used as
a prefetch. Show a replacement for prefetch in the program above.

The ldxa and similar instructions include an address space identifier (ASI) which specifies
which address space to load or store from. The ASI can be specified with an immediate or the
%asi register. See the architecture manual. Normal loads and stores use the ASI_PRIMARY address
space. ldxa lets you specify a different one. A load from a particular address in two different address
spaces may load from two different memory locations or may load the same memory location in
different ways. For example, an ordinary load of an address, ldx [%l1], %l2, would load an
integer using big-endian ordering. But a load to the same address using the ASI_PRIMARY_LITTLE,
ldxa [%l1] ASI_PRIMARY_LITTLE, %l2 loads an integer using little-endian ordering. Table 12 in
the architecture manual lists some of the address spaces.

Hint: Think about the destination register and the ASI.
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EE 4720 Homework 1 Due: 7 February 2001

Problem 1: Write a DLX program to reverse a C-style string, as described below. The address of
the start of the string is in r1. The string consists of a sequence of characters and is terminated by
a zero (NULL). The string length is not stored anywhere, it can only be determined by looking for
the NULL. Put the reversed string in memory starting at the address in r2. Be sure to terminate
the reversed string.
! r1 holds address of first character of original string.

! r2 holds address of first character of reversed string.

! Strings end with a zero (NULL) character.

Problem 2: The DLX program below copies a block of memory starting at address r1 to the
address r3, the block is of length r2 bytes. The problem is it won’t always work. Explain why not
and fix the problem without unnecessarily increasing the number of loop iterations. (The program
will be slower, except for special cases.) Be sure to modify the program, not a specification of what
the program is supposed to do.
! r1 Start address of data to copy.

! r2 Number of bytes to copy.

! r3 Start address of place to copy data to.

LOOP:

slti r4, r2, #4

bnez r4, LOOP2

lw r5, 0(r1)

sw 0(r3), r5

addi r1, r1, #4

addi r3, r3, #4

subi r2, r2, #4

j LOOP

LOOP2:

beqz r2, EXIT

lb r5, 0(r1)

sb 0(r3), r5

addi r1, r1, #1

addi r3, r3, #1

subi r2, r2, #1

j LOOP2

EXIT:
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Problem 3: Implement the following procedure in DLX assembly language. The procedure is
given two ways, both do the same thing, look at either one. The return address is stored in r31.
The C short int data type here is two bytes (as it is on many real systems). The registers used
for the procedure arguments are specified by the C variable names.
void sum_arrays(short int *s_r1, float *f_r2, double *d_r3, int size_r4)

{

while( size_r4-- ) *d_r3++ = *s_r1++ + *f_r2++;

}

void sum_arrays(short int *s_r1, float *f_r2, double *d_r3, int size_r4)

{

int i;

for(i=0; i<size_r4; i++) d_r3[i] = s_r1[i] + f_r2[i];

}

Problem 4: The code below contains two sets of add instructions, one in DLX assembler, the
other in Compaq (née DEC) Alpha assembler. The first instruction in each group adds two integer
registers, the second instruction in each group adds an integer to an immediate, the last adds
two floating point registers. Information on the Alpha architecture can be found in the Alpha
Architecture Handbook, http://www.ee.lsu.edu/ee4720/alphav4.pdf. It’s 371 pages, don’t
print the whole thing.

! DLX Assembly Code

add r1, r2, r3 ! r1 = r2 + r3

addi r4, r5, #6

addf f0, f1, f2

! Alpha Assembly Code (Destination is last operand.)

addq r2, r3, r1 ! r1 = r2 + r3

addq r5, #6, r4

addt f1, f2, f0

Though the DLX and Alpha instructions are similar they are not identical.

• How do the data types and immediates differ between the corresponding DLX and Alpha
instructions?

• Show the coding for the DLX and Alpha instructions above. Show the contents of as many
fields as possible. For DLX, the addi opcode is 1. The add func field is 0 and the addf func
field is 1d16. For the Alpha fields, see the Alpha Architecture Manual and use the following
information: The Trapping mode should be imprecise and the Rounding mode should be
Normal. (Trapping [raising an exception] will be covered later in the semester.)

• How do the approaches used to specify the immediate version of an integer instruction differ?

• How is the approach used to code floating-point instructions different in Alpha than DLX?
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EE 4720 Homework 2 Due: 21 February 2001

Problem 1: Translate the following C program to DLX assembly, use the minimum number
of comparison instructions. Pay attention to data type sizes. The line labels are provided for
convenience, please use them in the assembly language version.

extern int r1, r2, r3, r10, r11;

extern int *r20, *r21;

/* For DLX: sizeof(int) = sizeof(int*) = 4 */

/* For IA-64: sizeof(int) = sizeof(int*) = 8 */

if( r1 < 3 )

{

LINE1:

if( r2 == r3 )

{

LINE11: r10 = *r20++;

}

else

{

LINE10: r10 = 4720;

}

LINE1E:

r11 = r11 + r10;

}

else

{

LINE0:

r21 = r21 + 7;

if( r2 == r3 )

{

LINE01: r10 = *r21++;

}

else

{

LINE00: r10 = 7700;

}

}

DONE:
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Problem 2: Translate the C program from the previous problem into IA-64 assembly using pred-
icated instructions. (You’re not expected to know it at this point.) IA-64 is described in the IA-64
Application Developer’s Architecture Guide, available at
http://developer.intel.com/design/ia64/downloads/adag.pdf.

For this problem one can ignore alot of IA-64’s features. Here is what you will need to know:
IA-64 has 64 1-bit predicate registers, p0 to p63, which are written by cmp (compare) and other
instructions. Predicates can be specified for most instructions, including cmp. See 11.2.2 for a
description of how to use IA-64 predicates.

To solve the problem look at the following sections: 11.2.2 (predicate description) and Chapter
7 (for instruction descriptions). The following instructions will be needed: cmp (compare, look at
the normal [none] and unc comparison types), ld1, ld2,. . . (loads), and add.

To save time, ignore instruction stops (;;) and consider only normal loads. (Post-increment
like loads are considered normal here.)

• Use general-purpose registers r0-r31 and predicate registers p1-p63 in your solution. (There
are 128 general-purpose registers, but those above r31 must be allocated.)

• Do not use branches (or any other CTI).

• Ignore stops. (These will be covered later.)

• Use the minimum number of cmp instructions. (Three is possible.)

• Do not assign a value to a register unless it’s needed.

• Make use of post-increment loads.

• Pay attention to data type sizes.
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Problem 3: Show a pipeline execution diagram of the code below on each implementation. (There
should be a total of two diagrams.) The branch is always taken, show the diagram until the second
execution of the first instruction reaches WB. If a bypass path is not shown, it’s not there.
LOOP:

addi r2, r2, #4

lw r1, 0(r2)

add r3, r3, r1

slt r4, r2, r5

beqz r4, LOOP

xor r5, r4, r1
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Problem 4: For each implementation from the problem above, determine the CPI for a large
number of iterations.

Problem 5: For the second pipeline execution diagram above, show the location(s) of the latest
value of r1 and r2 at the beginning of each cycle on the diagram below. For r1 box the appropriate
cycle numbers and draw an arrow to the locations. For r2 circle the cycle numbers and draw an
arrow to the locations. In the diagram below this has been completed for cycles zero and two,
assuming addi is in IF at cycle zero. The arrows should only point to register values that are valid
at the indicated cycles. Note: A valid value can be in more than one location at once.
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EE 4720 Homework 3 Solution Due: 12 March 2001

Problem 1: Consider three variations on the Chapter-3 DLX implementation. In implementation
I the FP Add unit has an initiation interval of 2 and a latency of 3. In implementation II there are
two FP Add units, each unit has an initiation interval of 4 and a latency of 3. In implementation
III the FP Add unit has an initiation interval of 1 and a latency of 3. Other features of the
implementations are identical. All implementations are fully bypassed.

Write two programs. Program A should run slower on implementation I than on implementa-
tions II and III. Program B should run the same speed on implementations I and II and faster on
implementation III. For this problem base program speed on the time from the fetch of the first
instruction to the WB of the last instruction.

Show pipeline execution diagrams for each program on each implementation. The programs
need be no longer than four instructions each.

! Program A

! I

addd f0, f2, f4 IF ID A1 A1 A2 A2 WB

addd f6, f8, f10 IF ID -> A1 A1 A2 A2 WB

! II

addd f0, f2, f4 IF ID A A A A WB

addd f6, f8, f10 IF ID B B B B WB

! III

addd f0, f2, f4 IF ID A1 A1 A2 A2 WB

addd f6, f8, f10 IF ID A1 A1 A2 A2 WB

! Program B
! I

addd f0, f2, f4 IF ID A1 A1 A2 A2 WB

addd f6, f8, f10 IF ID -> A1 A1 A2 A2 WB

addd f12, f14, f16 IF -> ID -> A1 A1 A2 A2 WB

! II

addd f0, f2, f4 IF ID A A A A WB

addd f6, f8, f10 IF ID B B B B WB

addd f12, f14, f16 IF ID ----> A A A A WB

! III

addd f0, f2, f4 IF ID A1 A1 A2 A2 WB

addd f6, f8, f10 IF ID A1 A1 A2 A2 WB

addd f12, f14, f16 IF ID A1 A1 A2 A2 WB
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Problem 2: Modify the pipeline below so that it can execute jr instructions and add PC mux
control logic.

• Modify the pipeline so that it can execute jr instructions. (See Spring 1999 Homework 3,
http://www.ee.lsu.edu/ee4720/1999/hw03_sol.pdf.)

• Include control logic for the multiplexor that connects to PC. The control logic should
correctly handle branch and jump instructions. Interrupts should be ignored. To recognize
instructions use boxes such as = bnez , the outputs will be 1 if the instruction matches.

• Show the logic for a squash signal for use in EX to squash the fall-through instruction on a
taken branch. (The fall through instruction could have been squashed in IF or ID, but for
this problem it will be squashed in EX.)
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Problem 3: How would the hardware designed above have to be modified if DLX had two-slot
(yes, two slots!) delayed branches? Jumps still have no delay slots. Ignore interrupts, they will be
considered in the next problem.

Problem 4: In an ISA without delayed branches it would be sufficient for the hardware to save
the PC when an exception occurs. Why would this not be sufficient on a system with delayed
branches. Provide an example illustrating what might go wrong.

One could not properly resume execution if the faulting instruction were in a branch delay slot. To resume execution
properly the exception handler needs the PC of the faulting instruction and the PC of the next instruction to execute. In
most cases the next instruction to execute is at PC+4 (assuming four-character instructions) but if the faulting instruction
were in the delay slot of a taken branch the next instruction to execute would be the branch target.

Suppose that lw raises an exception in the example below. If the handler only saves the address of lw, 0x1004,
then when execution resumes the branch will not be taken. By saving 0x1004 and the address of the next instruction,
0x2000, the handler can restore execution so that the branch will be taken.

0x1000: beqz r0, TARGET
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0x1004: lw r2, 0(r3)

0x1008: add r3, r3, r4

TARGET:

0x2000: or r5, r6, r7

Problem 5: The Hewlett Packard Precision Architecture RISC 2.0 (PA-RISC 2.0) uses an in-
struction address offset queue rather than a plain-old program counter. See the PA-RISC 2.0 Ar-
chitecture [Manual], http://devresource.hp.com/devresource/Docs/Refs/PA2_0/acd-1.html.
Ignore the material on [address] space IDs and privilege levels. Concentrate on the material in
Chapter 4 and 5 and use the index.

PA-RISC 2.0 has delayed branches. Explain how the use of an instruction address offset queue
rather than a PC helps with the difficulty alluded to in the previous problem.

The address of the executing instruction and the next instruction can be saved and restored as a unit.

Problem 6: Explain the relationship between the terms interrupt, hw interrupt, exception, and
trap provided in class and the terms interruption, fault, interrupt, trap, and check defined for
PA-RISC 2.0. Explain the relationships, do not simply provide definitions.

Problem 7: Name a difference between the trap table used in Sun SPARC V8 (presented in class
and described in the SPARC Architecture Manual V8, http://www.ee.lsu.edu/ee4720/sam.pdf)
and the interruption vector table used in PA-RISC 2.0.

The Sun SPARC table holds four instructions, the PA-RISC table holds eight instructions, otherwise they are very
similar.
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EE 4720 Homework 4 Due: 9 April 2001

Problem 1: Complete a pipeline execution diagram for the following code running on a two-way
statically scheduled superscalar processor. Show execution until the second fetch of the first add.
The processor fetches instructions in aligned groups and is fully bypassed. The branch will be
taken. There is no branch prediction hardware.

What is the CPI for a large number of iterations?

LOOP: ! LOOP = 0x1004

add r1, r2, r3

add r4, r5, r6

add r9, r4, r7

lw r10, 0(r4)

add r11, r11, r10

or r12, r11, r13

xor r15, r16, r17

bnez r10, LOOP

Problem 2: Schedule the code from the problem above so that it executes efficiently. The solution
can contain added nop instructions. Do not try to unroll the loop. A correct solution contains two
stalls plus the branch delay.

Now, what is the CPI for a large number of iterations?

Problem 3: Show the execution of the code from Problem 1 on a two-way superscalar dynamically
scheduled machine using Method 1. The number of reservation stations, functional units, and
reorder buffer entries is unlimited. Do not show reservation station numbers or reorder buffer entry
numbers in the diagram. Do show where instructions commit. Assume that the machine has perfect
branch and branch target prediction and so a branch target will be fetched when the branch is in
ID. Complete the diagram to the point where all instructions in the first iteration commit, showing
what happens to instructions in the second iteration up to that point.

Now, what is the CPI for a large number of iterations?

More problems on the next page.

1
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Problem 4: Convert the code below to VLIW DLX as described in the notes. The maximum
lookahead value is 15, use that for bundles that do not modify any registers. Set the lookahead
values and serial bits for maximum performance. (The lookahead values will mostly be small.) How
would a modification of the end-of-loop test improve performance on a VLIW implementation?

j TEST

LOOP:

lw r1, 0(r10)

lw r2, 4(r10)

lw r3, 8(r10)

lw r4, 12(r10)

andi r1, r1, #15

andi r2, r2, #15

andi r3, r3, #15

andi r4, r4, #15

sw 0(r10), r1

sw 4(r10), r2

sw 8(r10), r3

sw 12(r10), r4

addi r10, r10, #16

TEST:

slt r11, r10, r12

bnez r11, LOOP

Problem 5: Insert the minimum number of IA-64-style stops in the DLX code below. Do not
convert the instructions themselves to IA-64, just insert the stops.

The material on stops was covered in class and will be in the notes. A primary reference is
Appendix A of the IA-64 Application Developer’s Architecture Guide, available at
http://developer.intel.com/design/ia64/downloads/adag.pdf. Appendix A describes how
stops affect the execution of code.

j TEST

LOOP:

lw r1, 0(r10)

lw r2, 4(r10)

lw r3, 8(r10)

lw r4, 12(r10)

andi r1, r1, #15

andi r2, r2, #15

andi r3, r3, #15

andi r4, r4, #15

sw 0(r10), r1

sw 4(r10), r2

sw 8(r10), r3

sw 12(r10), r4

addi r10, r10, #16

TEST:

slt r11, r10, r12

bnez r11, LOOP

2
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EE 4720 Homework 5 Due: 18 March 2001

Problem 1: Solve Problems 3 and 4 from Fall 2000 Homework 5, available via
http://www.ee.lsu.edu/ee4720/2000f/hw05.pdf. Using the solutions at
http://www.ee.lsu.edu/ee4720/2000f/hw05_sol.pdf assign yourself a grade in the range [0, 1].
Either: indicate the grade you assigned yourself or write “Did not solve.” A solution can be
provided along with a grade. It will be corrected but your grade will be used. If you opt not to
solve it you will receive full credit but will be hurting your ability to solve future problems.

Most of the problems below ask about the Alpha 21264 implementation of the Alpha Architec-
ture. The answers to these questions can be found in Kessler 99, R. E. Kessler, “The Alpha 21264
microprocessor,” IEEE Micro Magazine, March 1999, vol. 19, no. 2, pp. 24–36, available via
http://www.ee.lsu.edu/ee4720/kessler99.pdf

Problem 2: Which of the dynamic scheduling methods described in class most closely matches
the 21264? What terminology does Kessler 99 use for the following three terms (as used in class):
Reorder Buffer, Commit, and Physical Register Number?

Problem 3: The 21264 is described as a four-way superscalar processor. What are the maximum
number of instructions that can issue per cycle? What are the maximum number of instructions
that can commit per cycle? How do these numbers differ from the corresponding values for the
default dynamically scheduled machine as described in class? Call the higher of these two numbers
x. Why would DEC (okay, Compaq) dare not call the 21264 an x-way superscalar processor?

Problem 4: What is the size of the reorder buffer in the 21264? How is its use slightly different
than the one described in class?

Problem 5: The stages making up the 21264 (Figure 2 in Kessler 99) differ from the stages in
the dynamically scheduled DLX implementation (using the appropriate method) described in class.
For each 21264 stage indicate which DLX stage does the equivalent (or close) work. Consider Slot
1 to be an extension of the fetch stage.

1
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Problem 6: A gshare or gselect two-level predictor can perfectly predict the loop branches for
loops with a small, constant number of iterations, such as:
addi r1, r0, #3

LOOP:

lw r2,0(r3)

beqz r2, SKIP

sw 4(r3), r2

SKIP:

addi r3, r3, #8

subi r1, r1, #1

bnez r1, LOOP

Consider a processor using a gshare predictor with a 12-bit global history register. Would
the processor predict the last branch perfectly (after warmup and assuming no collisions in the
BHT)? Hint: Yes. Modify the loop above by adding code between LOOP and SKIP so that the
gshare predictor no longer predicts the last branch correctly. The number of loop iterations must
not change.

Problem 7: Suppose the code from the previous problem, translated to Alpha, ran on the Alpha
21264. Assuming no collisions, why would the modifications made in the previous problem not
remove the perfect prediction of the last branch?

(Information to solve the problem can be found on page 27 (PDF page 4) of
http://www.ee.lsu.edu/ee4720/kessler99.pdf. The McFarling paper, not needed to solve this
problem but referenced by Kessler, can be found via http://www.ee.lsu.edu/tca/mcf.pdf.)

2
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EE 4720 Homework 1 Due: 1 September 2000

Problem 1: Find the SPECint2000 results for the API UP2000 750 MHz processor, it can be
found at the http://www.spec.org web site. This processor has a SPECint2000 rating of 456.
Find another processor with a slower rating but for which individual benchmarks are faster. (Look
for different CPU families.) How many of the benchmarks are faster on the slower processor?

Problem 2: Write a DLX assembly language program to convert a string of characters to lower
case. The string is NULL-terminated (the character following the end of the string is a zero). Register
r1 contains the address of the start of the string. Any register can be modified. The code for an
upper-case A is 65 and the code for a lower-case a is 97. Modify the string, do not create a new
one.

Problem 3: Write a DLX assembly language program that loads an element of a two-dimensional
array to a register.

Register r1 holds address of the start of the array, register r2 holds the row of the element
to retrieve, and register r3 holds the column of the element to retrieve. Put the retrieved element
in f0. The array dimensions are 256 rows × 1024 columns. Each element of the array is a double
precision floating point number.

Elements are arranged in memory in the following order:

a0,0 a0,1 a0,2 · · · a1,0 a1,1 a1,2 · · · a2,0 · · ·

where ai,j is the element at row i, column j.
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EE 4720 Homework 2 Due: 22 September 2000

Problem 1: Compare the coding of the DLX instructions:

add r1, r2, r3

addi r4, r5, #6

to the corresponding Sun SPARC V8 instructions:

add %g3, %g2, %g1 ! g1 = g2 + g3

add %g5, 6, %g4 ! g4 = g5 + 6

The definition of the SPARC V8 architecture is available via
http://www.ee.lsu.edu/ee4720/sam.pdf or http://www.sparc.com/standards/V8.pdf. Hint:
The information needed to solve the problem is in Appendix B.

How are the approaches used to code immediate variants of the add instructions different in
the two ISAs?

Problem 2: DLX does not have indexed addressing nor does it have autoincrement addressing.
Suppose one wanted to include those addressing modes in an extended version of DLX, call it
DLX-BAM (better addressing modes). The addressing modes would be used in load and store
instructions. Show how they would best be coded, where the fewer changes to the coding structure
the better. (For example, adding a fourth instruction type [say Type-A], would be a big change
and so would be bad.) Sample mnemonics for these instructions appear below:

! Indexed addressing.

lw r1, (r2+r3) ! r1 = MEM[ r2 + r3 ];

sw (r2+r3), r4 ! MEM[ r2 + r3 ] + r4;

! Autoincrement addressing.

lb r1, 3(+r2) ! r1 = MEM[ r2 + 3 ]; r2 = r2 + 1;

lw r4, 8(+r5) ! r4 = MEM[ r5 + 8 ]; r5 = r5 + 4;

sw 4(+r7), r8 ! MEM[ r7 + 4 ] = r8; r7 = r7 + 4;

1
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Problem 3: Write a C program that does the same thing as the DLX program below.

! r2: Start of table of indices, used to retrieve elements

! from the character table.

! r4: Start of table of characters.

! r6: Location to copy characters to.

! r8: Address of end of index table.

LOOP:

lw r1, 0(r2)

add r3, r1, r4

lb r5, 0(r3)

sb 0(r6), r5

addi r2, r2, #4

addi r6, r6, #1

slt r7, r2, r8

bneq r7, LOOP

Solution template available via: http://www.ee.lsu.edu/ee4720/2000f/hw02.c

void

untangle(int *r2, char *r4, char *r6, int *r8)

{

/* Put solution here. */

}

Problem 4: Re-code the DLX program above using DLX-BAM, taking advantage of the new
instructions.
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EE 4720 Homework 3 Due: 2 October 2000

Problem 1: What changes would have to be made to the pipeline below to add the DLX-BAM indexed
addressing instructions (from homework 2). Hint: The load is easy and inexpensive, the store requires a
substantial change. Add the changes to the diagram below, but omit the control logic. Do explain how the
control logic would have to be changed.

! Indexed addressing.

lw r1, (r2+r3) ! r1 = MEM[ r2 + r3 ];

sw (r2+r3), r4 ! MEM[ r2 + r3 ] + r4;
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Problem 2: For maximum pedagogical benefit solve the problem above before attempting this one. The
integer pipeline of the Sun Microsystems microSPARC-IIep implementation of the SPARC V8 ISA is similar
to the Chapter-3 implementation of DLX that is being covered in class.

What are the stage names and abbreviations used in the microSPARC-IIep? Hint: This is really easy
once you’ve found the right page.

SPARC V8 includes indexed addressing, for example:
ld [%o3+%o0], %o2 ! Load word: %o2 = MEM[ %o3 + %o0 ]

st %o0, [%o1+%g1] ! Store word: MEM[ %o1 + %g1 ] = %o0

(Register %o0 is a real register, not a special zero register.) What are the differences between the micro-
SPARC-IIep integer pipeline and the Chapter-3 DLX pipeline that allow it to execute an indexed store? Be
sure to answer the question directly, do not copy or paraphrase irrelevant material. A shorter answer is
preferred.

Information on the microSPARC-IIep can be found via
http://www.sun.com/microelectronics/manuals/microSPARC-IIep/802-7100-01.pdf

or http://www.ee.lsu.edu/ee4720/microsparc-IIep.pdf. Those who enjoy a challenge can study the
diagram on page 10, however the material to answer the question can be found early in Chapter 3. The
manual uses many terms which have not yet been covered in class, the question can still be answered once
the right page is found. The manual is 256 pages so don’t print the whole thing.
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Problem 3: The following pipeline execution diagram shows the execution of a program on the DLX
implementation shown below. The implementation uses forwarding (bypassing) to avoid some data hazards
and stalls to avoid others; connections needed to implement the jalr instruction are not shown. A value
can be read from the register file in the same cycle it is written. Instructions are squashed (nulled) in this
problem by replacing them with or r0,r0,r0. All instructions stall in the ID stage.

Add the datapath connections needed so the jalr executes as shown.

! Initially, r1=0x100, r2=0x200, r3=0x300, r4 = 0x68

! The lw will read 0xaaa0.

! Cycle 0 1 2 3 4 5 6 7 8 9 10

sub r0, r0, r0 WB

sub r0, r0, r0 ME WB

sub r0, r0, r0 EX ME WB

sub r0, r0, r0 ID EX ME WB

START: ! START = 0x50

add r2, r2, r3 IF ID EX ME WB

lw r2,4(r2) IF ID EX ME WB

sw 8(r2), r1 IF ID -> EX WE WB

jalr r4 IF -> ID EX ME WB

xor r4, r1, r2 IFx

subi r2, r1, #0x10

andi r2, r2, #0x20 IF ID EX ME WB

slti r3, r3, #0x30 IF ID EX ME
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The table on the next page shows the contents of pipeline registers and changes to architecturally visible
registers r1-r31 over time. The first two columns are completed; fill in the rest of the table. Use a “?”
for the value of the “immediate field” of a type R instruction and for the output of the memory when no
memory read is performed. Show pipeline register values even if they’re not used. The row labeled “Reg.
Chng.” shows a new register value that is available at the beginning of the cycle. If r0 is written leave the
entry blank.

Hint: For hints and confirmation see Spring 1999 HW 3, Fall 1999 HW 2, and Spring 2000 HW 2,
linked to http://www.ee.lsu.edu/ee4720/prev.html, for similar problems. It’s important that the problem
is solved by inspection of the diagram, not by inferring mindless, unworthy-of-an-engineer rules from past
solutions. Mindless rules are hard to remember and are useless in new situations.

2

← → Fall 2000 ← → Homework 3 Homework Solution hw03.pdf

http://www.ee.lsu.edu/ee4720/prev.html
https://www.ece.lsu.edu/ee4720/2000f/hw03.pdf


Cycle 0 1 2 3 4 5 6 7 8 9

PC 50 54

IF/ID.IR sub add

Reg. Chng. r0 ←0 r0 ←0

ID/EX.IR sub sub

ID/EX.A 0 0

ID/EX.B 0 0

ID/EX.IMM ? ?

EX/MEM.IR sub sub

EX/MEM.ALU 0 0

EX/MEM.B 0 0

MEM/WB.IR sub sub

MEM/WB.ALU 0 0

MEM/WB.MD ? ?

Problem 4: Draw a pipeline execution diagram showing the execution of the familiar code below until the
second fetch of lw (the beginning of the second iteration). Hint: There are RAW hazards associated with the
loads, stores, and the branch. What is the CPI for a large number of iterations?
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LOOP:

lw r1, 0(r2)

add r3, r1, r4

lb r5, 0(r3)

sb 0(r6), r5

addi r2, r2, #4

addi r6, r6, #1

slt r7, r2, r8

bneq r7, LOOP

xor r10, r11, r12

Problem 5: Rearrange (schedule) the instructions in the program from the previous problem to minimize
the number of stalls. Now what is the CPI for a large number of iterations? Hint: The offsets in the load
and store instructions can be changed, even to negative numbers.
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EE 4720 Homework 4 Due: 3 November 2000

Problem 1: Show a pipeline execution diagram for the execution of the DLX program below on
a single-issue statically scheduled (plain old chapter 3) fully bypassed implementation in which
the add functional unit is two stages (A1, A2) with an initiation interval of 2 (latency 3) and the
multiply unit is six stages (M1 through M6) with an initiation interval of 1 (latency 5). (This problem
is very similar to Spring 2000 homework 3 problem 1. Check the solution to that assignment only
if completely lost.)

addd f0, f2, f4

addd f6, f0, f8

addd f10, f12, f14

multd f16, f18, f20

Problem 2: Show a pipeline execution diagram for the execution of the DLX program below on
a single-issue statically scheduled fully bypassed implementation in which there are two add units,
both consisting of one stage with an initiation interval of 4 (latency 3, unpipelined). Use symbol A
for one adder and B for the other. The program below is slightly different than the one above.

addd f0, f2, f4

addd f6, f0, f8

addd f10, f12, f14

addd f16, f18, f20

Problem 3: Show a pipeline execution diagram for the execution of the DLX program below on
a two-way superscalar statically scheduled fully bypassed implementation in which there are two
add units, both consisting of one stage with an initiation interval of 4 (latency 3, unpipelined). Use
symbol A for one adder and B for the other.

LINE1: ! LINE1 = 0x1000

addd f0, f2, f4

addd f6, f0, f8

addd f10, f12, f14

addd f16, f18, f20

1
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Problem 4: Show a pipeline execution diagram for the DLX code below executing on a processor
with the following characteristics:

• Statically scheduled two-way superscalar.

• Unlimited number of functional units.

• Six stage fully pipelined multiply.

• Can handle an unlimited number of write backs per cycle. (Unrealistic, but reduces adidactic
tedium.)

• Fully bypassed, including the branch condition.

The diagram should start at the first iteration and end after 30 cycles or until a repeating pat-
tern is encountered, whichever is sooner. Note that there is a floating-point loop-carried dependency
(f2). What is the CPI for a large number of iterations?

LOOP: ! LOOP = 0x1004

ld f0, 0(r1)

muld f2, f0, f2

addi r1, r1, #8

sub r2, r1, r3

bneq r2, LOOP

xor r10, r11, r12

and r13, r14, r15

or r16, r17, r18

sgt r19, r20, r21

Problem 5: Unroll and schedule the loop from the problem above for maximum efficiency. Unroll
the loop four times; the number of iterations will always be a multiple of four. Use software pipelin-
ing and take advantage of associativity to overlap the multiply latency. (In software pipelining a
computation is spread over several iterations.) Code may be added before the LOOP label.

2
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EE 4720 Homework 5 Due: 17 November 2000

Problem 1: The familiar loop below executes on a dynamically scheduled machine using a reorder
buffer to name destination registers. The machine has the following characteristics:

• Two-way superscalar. An unlimited number of write-backs per cycle.

• A 16-entry reorder buffer.

• A six-stage fully pipelined floating point multiply unit.

• Perfect branch target prediction. (Branch target in IF when branch is in ID.)

Show a pipeline execution diagram up to the fetch of the third iteration.
Explain why the first two iterations cannot be used to determine the CPI for a large number

of iterations in this case. Estimate the CPI for a large number of iterations (a pipeline execution
diagram is not necessary).

LOOP: ! LOOP = 0x1000

ld f0, 0(r1)

muld f2, f0, f2

addi r1, r1, #8

sub r2, r1, r3

bneq r2, LOOP

xor r10, r11, r12

and r13, r14, r15

or r16, r17, r18

sgt r19, r20, r21

Problem 2: Unroll the loop in the problem above twice. (In the last homework it was unrolled
four times.) Again exploiting the associativity of multiplication, rearrange the multiplies to improve
the performance, but this time without using software pipelining. Why is software pipelining not
necessary here?

1
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Problem 3: The code below executes on a system using a one-level branch predictor with a
16-entry BHT. Which entries will the branches use?

If the number of iterations is large, the prediction accuracy will be high. If a certain number of
additional nops are inserted before SKIP1 the prediction accuracy will drop. How many and why?

! Note: r2 is not modified inside the loop.

LOOP: ! LOOP = 0x1000

subi r1, r1, #1

bneq r2, SKIP1

add r10, r10, r11

nop

SKIP1:

beqz r2, SKIP2

add r12, r12, r13

SKIP2

bneq r1, LOOP

Problem 4: Determine the prediction accuracy of a one-level branch predictor on each branch in
the code below. The predictor uses a 1024-entry BHT. There is a .5 probability that a loaded value
will be zero.

LOOP:

addi r2, r2, #4

lw r1, 0(r2)

bneq r1, SKIP1

add r10, r10, r11

SKIP1:

andi r3, r2, #4

bneq r3, SKIP2

add r11, r11, r12

SKIP2:

beqz r1, SKIP3

add r12, r12, r11

SKIP3:

andi r4, r2, #12

bneq r4, SKIP4

add r13, r13, r11

SKIP4:

sub r5, r2, r6

bneq r5, LOOP

Problem 5: How many BHT entries will the branches in the code above use in the middle of
its execution (explained below) in a two-level gselect predictor that uses 10 bits of global branch
history and 6 instruction address bits? The loop iterates many times, the middle of its execution
starts after many iterations.

How many bits of global branch history are needed so that the branch following SKIP3 is
predicted very accurately?
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36 Spring 2000
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EE 4720 Homework 1 Due: 9 February 2000

Problem 1: Using the SPARC Architecture Manual (SAM) V8 answer the questions below. The
SPARC Architecture Manual is distributed with the source for the microSPARC IIep in directory
.../models/sparc_v8/docs/pdf of the distribution which can be downloaded from
http://www.sun.com/microelectronics/communitysource/sparcv8/.
Alternate instructions will be given in class.

The SAM is 295 pages, so don’t print it all out. It is not necessary that you understand
everything in the SAM to answer these questions. See Appendix B to answer the last question.

• What size integers does the ISA support?

• What size floating-point numbers does the ISA support?

• How many floating-point registers does the ISA support, how large are they, and how are
the different-sized FP numbers placed in them?

• What is the binary coding of the following SPARC v8 instruction:

ldsh [%r8 + 2], %r9 ! Load signed half, r9 = Mem[r8 + 2]

Problem 2: Find the static and dynamic instruction count for the DLX program below. (DLX is
described in Chapter 2 of the text and summarized in the last two pages. Comments, preceded by
a !, describe what the instructions do.) The program adds up a table of numbers.

lhi r2, #0x1234 ! Load high: r2 = 0x12340000

ori r2, r2, #0x5678 ! r2 = r2 0x5678

addi r4, r0, #10 ! r4 = r0 + 10, r0 always = 0

sub r3, r3, r3 ! r3 = 0. There are lots of ways to do this!

LOOP:

lw r1, 0(r2) ! r1 = Mem[r2+0]

add r3, r3, r1 ! r3 = r3 + r1

addi r2, r2, #4 ! r2 = r2 + 4

subi r4, r4, #1 ! r4 = r4 - 1

bneq r4, LOOP ! if r4 != 0 goto LOOP

Problem 3: DLX does not allow arithmetic instructions to access memory. Suppose they could
and suppose all the addressing modes in Figure 2.5 of the text were available. Re-write the program
to use as few instructions as possible (but still perform the same function).

Problem 4: Find the static and dynamic instruction count of the program written for the question
above.

Problem 5: What factors (relating to CPI and φ) would one have to take into account to compare
the execution time using the dynamic instruction count of the original program and the re-written
program?
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EE 4720 Homework 2 Due: 23 February 2000

Problem 1: The program below executes on the DLX implementation shown below. The implementation
uses forwarding (bypassing) to avoid some data hazards and stalls to avoid others. All forwarding paths are
shown. (If a needed forwarding path is not there, sorry, you’ll have to stall.) A value can be read from the
register file in the same cycle it is written. The destination field in the beqz is zero. Instructions are nulled
(squashed) in this problem by replacing with slt r0,r0,r0. All instructions stall in the ID stage.

! Initially, r1=0x1000, r2=0x2000, r3=0x3000

! MEM[0x1000] = 0xa0, MEM[0x1001] = 0xa1, MEM[0x1002] = 0xa2, etc.

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

START: ! START = 0x50

addi r1, r1, #8

lh r2, 2(r1)

sw 4(r1), r2

bneq r2, START (taken)

sub r2, r3, r1

sub r0, r0, r0

sub r0, r0, r0

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

The table below shows the contents of pipeline registers and changes to architecturally visible registers
r1-r31 over time. Cycle zero is the time that addi is in instruction fetch. The first two columns are
completed; fill in the rest of the table. Use a “?” for the value of the “immediate field” of a type R
instruction and for the output of the memory when no memory read is performed. Show pipeline register
values even if they’re not used. Assume that the ALU performs the branch target computation even though
it was already computed in ID. The row labeled “Reg. Chng.” shows a new register value that is available
at the beginning of the cycle. If r0 is written leave the entry blank.

Hint: See Spring 1999 HW 3 and Fall 1999 HW 2 for similar problems.

Cycle 0 1 2 3 4 5 6 7 8 9 10

PC 0x50 0x54

IF/ID.IR sub addi

Reg. Chng. r0←0 r0←0

ID/EX.IR sub sub

ID/EX.A 0 0

ID/EX.B 0 0

ID/EX.IMM ? ?

EX/MEM.IR sub sub

EX/MEM.ALU 0 0

EX/MEM.B 0 0

MEM/WB.IR sub sub

MEM/WB.ALU 0 0

MEM/WB.MD ? ?
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Problem 2: The execution of the code in the problem above should suffer a stall (not including the branch
delay). Add bypass path(s) to the diagram below needed to avoid the stall(s). Add only the bypass paths
needed to avoid the stalls encountered in the problem above, and no others. (The diagram below is the same
as the one in the first problem.)

START:

addi r1, r1, #8

lh r2, 2(r1)

sw 4(r1), r2

bneq r2, START

sub r2, r3, r1

sign
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IR
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EE 4720 Homework 3 Due: 15 March 2000

Problem 1: Show a pipeline execution diagram for the following DLX code fragment on a statically
scheduled implementation in which the add functional unit has a latency of 3 (four stages) and an
initiation interval of 2 (not the usual 1) and the multiply unit has a latency of 5 (six stages) and
has an initiation interval of 3 (not the usual 1).

addf f0, f1, f2

addf f3, f0, f4

addf f5, f0, f7

gtf f0, f8

multf f9, f0, f10

Problem 2: Show a pipeline execution diagram for the following DLX code fragment on a statically
scheduled implementation in which the add functional unit has a latency of 3 (four stages) and an
initiation interval of 1 (the usual 1) and the multiply unit has a latency of 5 (six stages) and has
an initiation interval of 1 (the usual 1).

The implementation uses ID-stage branch target calculation. As is true for the pipelines used
in class, the branch condition is not bypassed.

Instructions stall in ID to avoid structural hazards.
There are bypass paths from the WB stage to the inputs of the floating-point functional units.

(a) What is the CPI for a large number of iterations of the loop?

(b) If the multiply functional unit latency were long enough the second iteration would take longer
than the first iteration. (An iteration starts when the first instruction is in IF.) What is the
smallest such latency?

LOOP:

multd f0, f0, f2

ld f4, 0(r1)

addd f2, f2, f4

addi r1, r1, #8

sub r2, r1, r3

bneq r2, LOOP

xor r10,r11,r12

Problem 3: Schedule—but don’t unroll—the code from the problem above to avoid as many stalls
as possible. Show a pipeline execution diagram of the scheduled code. Hint: you can change the
offset of the load double instruction.

1
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Problem 4: Unroll the loop below so that two iterations of the original loop form one unrolled
loop. Schedule the code so that it executes as efficiently as possible. Assume there will be an even
number of iterations and that every register not used in the original code is available and so can be
used in the unrolled loop. The loop runs on the implementation described in the second problem.

LOOP:

ld f0, 0(r1)

multd f0, f0, f2

addd f0, f0, f4

sd 8(r1), f0

addi r1, r1, #16

sub r2, r1, r3

bneq r2, LOOP
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EE 4720 Homework 4 Due: 17 April 2000

Problem 1: The diagram below shows the execution of code on a dynamically scheduled machine
that uses physical register numbers to name destination operands. Show the state of the ID register
map, the commit register map, their free lists, and the physical register file for each cycle of the
execution below. In the register maps and file show only values related to registers f0 and f3.
Initially, f0=0, f1=10, f2=20, etc. Initially, register f0 is assigned to physical register 12 and f3

is assigned to physical register 15 (ignore the other architected registers). Initially, both free lists
contain physical register numbers {7, 8, 9, 10, 11}.

Note: As originally assigned the initial free lists did not contain register 11 and the pipeline
execution diagram showed reservation station (RS) segments. Both were mistakes and have been
corrected.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

multf f0, f1, f2 IF ID Q M0 M1 M2 M3 M4 M5 WC

addf f3, f0, f2 IF ID Q A0 A1 WC

subf f0, f4, f5 IF ID Q A0 A1 WB C

addf f3, f0, f5 IF ID Q A0 A1 WB C

addf f0, f2, f1 IF ID Q A0 A1 WB C

Problem 2: Repeat the problem above assuming that there is an exception in stage A1 of the
execution of addf f3, f0, f5, as shown below: The solution can start at the cycle in which the
tables will differ from the solution above.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

multf f0, f1, f2 IF ID Q M0 M1 M2 M3 M4 M5 WC

addf f3, f0, f2 IF ID Q A0 A1 WC

subf f0, f4, f5 IF ID Q A0 A1 WB C

addf f3, f0, f5 IF ID Q A0*A1*WB Cx

addf f0, f2, f1 IF ID Q A0 A1 WB

1
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Problem 3: The diagram below, of a dynamically scheduled processor, omits hardware that checks
whether the register map should be updated in the WB stage. (The hardware was described in
class.) Add the hardware to the diagram (at the same level of detail as other parts of the diagram).
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Problem 4: Draw a pipeline execution diagram for the DLX code below running on a dynamically
scheduled 4-way superscalar implementation with the following characteristics:

• Dynamically scheduled using a reorder buffer to name registers (method 1).

• One load/store functional unit with stages L1 and L2.

• No dynamic (hardware) branch prediction, all branches are predicted not taken. Branch
predictor uses the B functional unit and must wait for its operand like any other instruction.

• Four integer execution units.

Find the IPC for an execution of a large number of iterations. Show the execution for 14 cycles
or until there is enough information to compute the IPC, which ever is shorter.

! Note: runs for many iterations.

add r3, r0, r0

LOOP:! LOOP = 0x1000

lw r1, 4(r2)

add r3, r3, r1

lw r2, 8(r2)

bneq r2, LOOP

xor r0, r0, r0

Problem 5: Repeat the problem above when the branch is statically predicted as taken and the
branch target is computed in the ID stage.

3
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Problem 6: Repeat the superscalar problem when the branch is statically predicted taken and in
which the address of LOOP it 0x1004.

! Note: runs for many iterations.

add r3, r0, r0

LOOP:! LOOP = 0x1004

lw r1, 4(r2)

add r3, r3, r1

lw r2, 8(r2)

bneq r2, LOOP

xor r0, r0, r0
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EE 4720 Homework 5 Due: 24 April 2000

Problem 1: The code below is run on three machines each using a slightly different one-level
branch predictor. Each machine’s branch predictor uses a 1024-entry BHT. The first machine uses
2-bit saturating counters (as described in class), the second machine uses the 2-bit prediction scheme
illustrated in Figure 4.13 of the text, and the third uses a 3-bit saturating counter. (The scheme
illustrated in Figure 4.13 uses two bits, but it’s not a saturating counter.) Find the prediction
accuracy for each scheme on each branch instruction for a large number of iterations.

! r1 is initially set to a large value.

LOOP1:

subi r1, r1, #1

beqz r1, EXIT

andi r2, r1, #6

bneq r2, SKIP1

add r3, r3, #1

SKIP1:

andi r2, r1, #2

bneq r2, SKIP2

add r3, r3, #1

SKIP2:

j LOOP1

EXIT:

Problem 2: What is the largest BHT size (number of entries) for which there will be collisions
between at least two branches in the code above?
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Problem 3: The program below runs on a system using a gselect branch predictor with a 14-bit
branch history and a 222-entry BHT.

Show the value of the global branch history just before executing each branch after a large
number of iterations. (The branch can be taken or not taken.) Also show the address used to index
(lookup the value in) the BHT.

Determine the prediction accuracy of each branch assuming no collisions in the BHT.

! r2 is initially set to a large value.

LOOP1: ! LOOP1 = 0x1000

addi r1, r1, #2

LOOP2: ! LOOP2 = 0x1080

subi r1, r1, #1

bneq r1, LOOP2

A: ... ! Nonbranch instructions.

addi r1, r1, #3

LOOP3: LOOP3 = 0x1100

subi r1, r1, #1

bneq r1, LOOP3

B: ... ! Nonbranch instructions.

subi r2, r2, #1

LINE: ! LINE = 0x1180

bneq r2, LOOP1

Problem 4: Suppose the problem above ran on a gshare branch predictor with a 10-bit branch
history and a 210-entry BHT. Determine addresses for LOOP1, LOOP2, LOOP3, and LINE for
which there would be collisions in the BHT after a large number of iterations. (Try to retain
program order.)
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EE 4720 Homework 6 Due: Not Collected
If you only have time for one of these problems, do problem three (the one on connecting

memory devices to implement a cache). If you have or are hoping to get a job interview with a
company that makes processors or which requires strong familiarity with them, do problems one and
two. If you want to practice Verilog or VHDL do problem four. It you had the time to read this far
you have no excuse for not doing at least one of the problems.

Base answers to the problems below on information in the white paper at
http://www.cpus.hp.com/techreports/PA-8700wp.pdf. This is a very concise technical sum-
mary of the distinctive features of the Hewlett Packard PA-8700 processor, which implements the
Precision Architecture (PA). It was written to sell processors, so though technically informative
certain adjectives must be taken in context. Familiarity with the PA ISA is not needed to solve this
assignment. If nevertheless you’re curious, there is a brief description of the PA ISA (along with
others) in Appendix C of the text and a complete description can be found at
http://www.hp.com/ahp/framed/technology/micropro/architecture/docs/instarch.html.

Problem 1: Describe how dynamic scheduling on the Hewlett Packard PA-8700 is similar to and
different from dynamic scheduling methods 1, 2, and 3 presented in class. The description should
include handling of register values and how exception recovery might be performed. The description
of dynamic scheduling in the white paper is very brief, get what you can from the description and
the figure and make reasonable guesses at the rest. There is additional information on dynamic
scheduling at the top of page 12.

Problem 2: How does the dynamic branch prediction performed by the PA-8700 differ from the
one-level (2-bit saturating counter) scheme presented in class? How might a compiler (that knows
the microarchitecture of the target) use this difference to eliminate the performance penalty of
some collisions? Would this work for all collisions?

The problems below are not based on the white paper.

Problem 3: Show how memory devices using 12-bit addresses can be connected to implement a
217-byte two-way set-associative cache. The memory devices can store 212 items of x bits each.
Each memory can have its own width (x), (but of course, all the items in a particular memory are
the same width). The system has an address space of a = 32 bits, a bus width of w = 8 bytes, and
a block size of L = 2l = 24 = 16 bytes. The character size is one byte. Show which address bits are
used to index the memories and which bits are used to determine a hit. Show only the parts used
to read data on a cache hit. (This problem would be easier if memory devices with any address
size could be used. If your stuck, try that first.)

For students in 4702 or others who know Verilog, VHDL, or some other HDL.

Problem 4: Write a Verilog or VHDL description of a module that will determine which is the
least-recently used block in a four-way set-associative cache cache set. This is to be based on
information kept in a special memory (like a tag store, but there’s only one of them for all the
ways). The module will read this information at its inputs. It will generate an updated version of
this information at its output for storage. It will also generate an output indicating which set is
least recently used. There will be a clock input, inputs to the module must be read on the positive
edge. You may specify other inputs that the module might need. (For example, the memory
operation.)
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EE 4720 Homework 1 Due: 10 September 1999

Problem 1: What are the static and dynamic instruction counts of the two DLX programs below?
(DLX is described in Chapter 2 of the text and summarized in the last two pages. Comments,
preceded by a !, describe what the instructions do.) Be sure to use the value for r2 specified in
the comments. Both programs find the population (number of 1’s) in the binary representation
of the value in r2. (For example, the population of 1210 = 11002 is 2, 710 = 01112 is 3, and
d06f00d16 = 21855847710 = 11010000011011110000000011012 is 12.)

! Program 1.

! r2 = 0xd06f00d

add r1, r0, r0 ! r1 = 0. Initialize total.

LOOP:

andi r3, r2, #1 ! r3 = r2 & 0x1. Put least-significant bit in r3.

add r1, r1, r3 ! r1 = r1 + r3. Add to total.

srli r2, r2, #1 ! r2 = r2 >> 1. Shift right logical. Shift off LSB.

bneq r2, LOOP ! Branch if r2 not zero. Loop if more.

! Program 2.

! r2 = 0xd06f00d

! r4 = Base of table. Entry i is number of 1’s in binary i.

add r1, r0, r0 ! r1 = 0. Initialize total.

LOOP:

andi r3, r2, # 0xff ! r3 = r2 & 0xff. Put 8 least significant bits in r3.

add r5, r4, r3 ! r5 = r4 + r3. Add to base of population table.

lbu r6, 0(r5) ! r6 = Mem[0+r5] Load byte unsigned, Load population of r3

add r1, r1, r6 ! r1 = r1 + r6. Add to the total.

srli r2, r2, #8 ! r2 = r2 >> 8. Shift right logical. Shift off 8 bits.

bneq r2, LOOP ! Loop if r2 not zero.

Problem 2: Suppose the programs above are run on machines that execute one instruction at
a time without overlap (unlike most of the examples shown in class) and with no gaps between.
Suppose the CPI for all instructions is 1 cycle and the clock frequency is 625 MHz (period is about
1.6 ns). How long would it take each program to run? Suppose the CPI for the lbu instruction was
3 cycles. How long would program 2 take?

Problem 3: What changes would have to be made to program 2 if the lbu instruction (load byte
unsigned) were changed to lhu (load half unsigned)?

1
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Problem 4: The Easy ISA as described in class has only five instructions with no straightforward
way of adding new ones. A non-straightforward way of adding instructions is to take advantage of
the fact that the coding does not use all possible combination of bits. In particular, it is possible
to specify an immediate as the destination of an arithmetic instruction even though the ISA has
no corresponding instruction. For example, consider:

add

000

0 2

Imm.

01

3 4

3

3

5 24

Reg.

00

25 26

r1

1

27 33

Imm.

01

34 35

12

0xc

36 55

This could be interpreted as instruction add 3, r1, 12, however there is no such instruction in
the Easy ISA. (If there was, what would it do?)

Explain how this “hole” can be used to code additional instructions. Use this coding to add
and, or, sll (shift left logical), and sra (shift right logical) instructions. The new instructions
should use the same addressing modes as the existing arithmetic instructions.

Problem 5: Recall that an issue (it’s not okay to say problem anymore) with the Easy ISA is that
there is no CTI (control-transfer instruction: branch, jump, call, return, etc.) that will branch to
an address held in a register. Only self-modifying code can do that. Write such code. The code
should branch to an address held in register r100. The solution may use the instructions added
above. Addresses in Easy ISA do not have to be aligned. Assume the most significant bit of the
address is always zero. Hint: This assumption and the lack of alignment restrictions makes things
alot easier.
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EE 4720 Homework 2 Due: t,

where t =

{
4 October 1999, if 29 September class held;
6 October 1999, if 29 September class cancelled;
8 October 1999, if 29 September and 1 October class cancelled.

Problem 1: Suppose the coding of DLX instructions were changed so the destination appeared
before the source operands, as shown in the codings below:

New Type R:

Opcode

0

0 5

rd

6 10

rs1

11 15

rs2

16 20

func

21 31

New Type I:

Opcode

0 5

rd

6 10

rs1

11 15

Immediate

16 31

Type J: (no change)

Opcode

0 5

Offset

6 31

Show the changes needed to the pipeline below to implement this new ISA. The changes should
only effect the ID and WB stages. If there are differences in the control inputs to multiplexors
or other units, explain what those differences are. Make sure that your design executes store
instructions correctly.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

1
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Problem 2: The program below executes on the DLX implementation shown below. The imple-
mentation uses forwarding (bypassing) to avoid some data hazards and stalls to avoid others. All
forwarding paths are shown. (If a needed forwarding path is not there, sorry, you’ll have to stall.)
A value can be read from the register file in the same cycle it is written. The destination field in
the beqz is zero. Instructions are nulled (squashed) in this problem by replacing them with slt

r0,r0,r0. All instructions stall in the ID stage.

! Initially, r1=0x101, r2=0x202, r3=0x303

! MEM[0x103] = 0xfe

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

START: ! START = 0x50

lb r1, 2(r1)

addi r1, r1, #3

or r1, r1, r2

beqz r2, SKIP !(taken)

add r3, r1, r2

sub r0, r0, r0

sub r0, r0, r0

SKIP:

xor r3, r1, r3

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

The table below shows the contents of pipeline registers and changes to architecturally visible
registers r1-r31 over time. Cycle zero is the time that lb is in instruction fetch. The first two
columns are completed; fill in the rest of the table. Use a “?” for the value of the “immediate field”
of a type R instruction and for the output of the memory when no memory read is performed.
Show pipeline register values even if they’re not used. Assume that the ALU performs the branch
target computation even though it was already computed in ID. The row labeled “Reg. Chng.”
shows a new register value that is available at the beginning of the cycle. If no register value is
written leave the entry blank.

Hints: See Spring 1999 HW 3 for a similar problem. One feature of the solution would not be
present if lb were replaced by a addi. Another feature may not be present if lb were replaced by
lw.
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Cycle 0 1 2 3 4 5 6 7 8 9 10

PC 0x50 0x54

IF/ID.IR sub lb

Reg. Chng. r0←0 r0←0

ID/EX.IR sub sub

ID/EX.A 0 0

ID/EX.B 0 0

ID/EX.IMM ? ?

EX/MEM.IR sub sub

EX/MEM.ALU 0 0

EX/MEM.B 0 0

MEM/WB.IR sub sub

MEM/WB.ALU 0 0

MEM/WB.MD ? ?
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Problem 3: Consider the program:

LOOP:

lw r1, 0(r2)

add r3, r1, r3

addi r2, r2, #4

bneq r1, LOOP

or r4, r5, r6

For each implementation below provide a pipeline execution diagram showing execution up to
the third fetch of lw and determine the CPI for a large number of iterations.

Not Bypassed:
sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Bypassed:
sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Problem 4: Schedule (rearrange) the instructions in the program used in the previous problem
to improve execution speed. (Do not change what the program does!). Show pipeline execution
diagrams and determine CPI for the two implementations.
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Problem 5: Show the changes needed to implement the predicated instructions presented in class.
(Set 4, page 25, as of this writing.) Describe the instruction format and show any datapath and
control changes to the implementation below.

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

= Type R

11..15

16..20

31

0

= Link CTI

= Type I
ALU

RD RD

= Non-link
CTI

= Load

=Store

RD

00

01

10

11
00

01

10

11

MSB

LSB

(Not Connected)
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EE 4720 Homework 3 Due: 15 October 1999

Problem 1: Consider the following method of implementing precise exceptions in DLX. An
Exception Handler Address (EHA) register holds the address of the exception handler and an
Exception Return Address (ERA) register holds the address of the faulting instruction. A new
instruction (not in book) set.eha 〈rs1〉 places the contents of register 〈rs1〉 in EHA. After an
exception occurs the address of the faulting instruction should be put in ERA and control should
jump to the address stored in EHA. When an rfe (return from exception) instruction is executed
control should jump back to the address stored in ERA.

Each stage has a squash signal that effectively replaces any instruction present with a nop.
(See the illustration below.) Each stage also has an EXC signal which, in the middle of the cycle,
is true if an exception is discovered in that stage. EXC will not be asserted if the stage contains an
already squashed instruction. Registers EHA and ERA will be written with data at their in inputs if
en is asserted using the same master /slave timing as the other registers and latches.

The diagram below shows a DLX implementation with the new squash signals (IF.SQ, etc.),
exception signals (in every stage except WB), and the two new registers. The hardware shown can
implement set.eha but does not implement exceptions or rfe. Add the hardware needed to do
these. In particular:

• After an exception occurs control should jump to the address in EHA.

• Exceptions must be precise and handled in program order.

• rfe must return control to the faulting instruction.

• If the multiplexor in IF needs additional inputs, use the Taken signal to create the new
multiplexor control signal. Taken is asserted only when the ID-stage adder produces the
target address.

• Do not implement instructions that transfer ERA to and from an integer register.

• Assume that exception handlers will never encounter exceptions. (They do in real life, so
the handler would need a way to save registers before any exceptions occur.)

• Do not test or set processor status bits for privileged state.

1
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Decode

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NOPNOPNOP

NOP

IF.SQ ID.SQ EX.SQ MEM.SQ

EXC

EXC

EXC

Control

Taken

0

1

EXC

=set.eha

ERA
in

en

out

EHA
in

en

out

Continued on next page.
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Based on your design, show a pipeline execution diagram for the code below in which the lw

instruction raises a page fault exception in MEM and ant raises an illegal instruction exception
in ID. Show the execution through the first two lines of the handler. Also show execution of the
return from the handler and the second call of the handler for the ant instruction.

lhi r20, hi(HANDLER) ! Put high 16 bits in r20.

or r20, r20, lo(HANDLER) ! Put low 16 bits in r20

set.eha r20 ! In real systems only OS can use this instruction.

add r1, r2, r3

lw r4, 0(r5)

ant r6, r7, r8

sub r9, r10, r11

and r12, r13, r15

or r15, r16, r17

HANDLER:

sw 1000(r0), r1

sw 1004(r0), r2

...

! Return address still in ERA.

lw r1, 1000(r0)

rfe ! Handler returns here, code below shouldn’t execute.

LINEX:

add r1, r2, r3

sub r4, r5, r6

xor r7, r8, r9
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In all the problems below all register values are available when the code starts executing. The
datapath is fully pipelined so execution of floating point operations can start in the cycle after
results are produced, just as the integer instructions do. Unless they are provided, use the following
latency and initiation intervals: add unit: latency 3, initiation interval 1; multiply unit: latency 5,
initiation interval 1; divide unit: latency 19, initiation interval 20.

Problem 2: Show a pipeline execution diagram for the code below. The branch is not taken.
multd f0, f2, f4

beqz r1, SKIP ! Not taken.

multd f0, f2, f6

multd f0, f0, f8

add r1, r1, r2

Problem 3: Show a pipeline execution diagram for the code below. The add functional unit has
a latency of 3 and an initiation interval of 2. Hint: This problem tests knowledge of initiation
intervals, use of functional units by different instructions, and usage of registers by single- and
double-precision instructions.
LOOP:

gtd f12, f14

addd f0, f2, f4

addd f6, f8, f10

addf f16, f7, f18

Problem 4: Show a pipeline execution diagram for the code below starting from the first iteration
until the CPI for a large number of iterations can be determined. What is that CPI?

The branch condition is bypassed to the ID stage so the branch does not have to stall for r1.
(See 1998 HW 3.)
LOOP:

subi r1, r1, #1

multd f0, f0, f2

bneq r1, LOOP

and r2, r3, r4

4
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EE 4720 Homework 1 Due: 5 February 1999

The code fragment below, in C source and assembler forms, is referred to in the problems below.

for(i=0; i<1000; i++) if( s[i].type == 0 )

suma += s[i].score; else sumb+=s[i].score;

! r3 initialized to address of first element.

add r1, r0, r0 ! i=0

LOOP:

slti r2, r1, #1000 ! r2 = 1 if r1 < 1000, otherwise r2 = 0.

beqz r2, DONE

lw r4, 0(r3)

ld f0, 16(r3)

bneq r4, SUMB ! Taken half the time.

addd f2, f2, f0

j NEXT

SUMB:

addd f4, f4, f0

NEXT:

addi r3, r3, #64 ! Size of element is 64 bytes.

addi r1, r1, #1 ! Increment loop index.

j LOOP

DONE:

Problem 1: Determine the static and dynamic instruction count for the DLX program above.
The branch that tests r4 will be taken half the time.

Problem 2: Suppose the program runs for 1 millisecond on a system with a 10 MHz clock. As-
suming no cache misses (an assumption that will be made for most of these problems), what is the
average CPI?

Problem 3: Divide the instructions into two classes: floating-point and others. (The floating-
point instructions include the addd and ld instructions.) Suppose on implementation A the CPI of
floating-point instructions, CPIfp, is twice the CPI of the other instructions, CPIother. If implemen-
tation A uses a 10 MHz clock and runs the program in 1 millisecond (like the previous problem),
what would the CPIs be? Implementation B is the same as implementation A except floating-point
instructions have an average CPI that is 3 times the integer instructions. Estimate how long it will
take to run the program on implementation B using a 10 MHz clock.

Problem 4: Suppose that an implementation executed instructions one after another with no
overlapping and no gaps between instructions. If each instruction took five cycles to execute and
the clock frequency was 10 MHz, how long would program execution take?

Problem 5: Suppose, somehow, a load double instruction using scaled addressing were added to
DLX. The assembler syntax is similar to the one in table 2.5 of the text, except a displacement is
included at the end. For example, the execution of ld f0, 10(r20)[r30]40 will load f0 (and f1)
with the contents of memory at address 10 + r20 + r30 * 40. Rewrite the program above using
the new instruction.
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EE 4720 Homework 2 Due: 19 February 1999

The SPARC assembly language program below is used in the problems that follow. SPARC
register names are %g0-%g7, %i0-%i7, %l0-%l7, and %o0-%o7; and %g0 is a zero register (like r0 in
DLX). The destination for arithmetic, logical, and load instructions is the rightmost register (add
%l1,%l2,%l3 means %l3=%l1+%l2). SPARC uses a condition code register and special condition-
code-setting instructions for branches. Branches include a delay slot.

LOOP:

ld [%l1], %l2 ! Load l2 = MEM[ l1 ]

addcc %l2, %g0, %g0 ! g0 = g0 + l2. Sets cond. codes. Note: g0 is zero reg.

be DONE ! Branch if result zero.

nop ! Fill delay slot with nop.

add %l6, %l2, %l6 ! l6 = l6 + l2

andcc %l3, 1, %g0 ! g0 = 1 & l3. Sets cond. codes. Note: g0 is zero reg.

be SKIP1

nop

add %l4, 1, %l4

SKIP1:

subcc %l3, 1000, %g0

bpos SKIP2 ! Branch if >= 0;

nop

add %l4, %l3, %l4

SKIP2:

andcc %l3, 1, %g0

be SKIP3

nop

add %l4, %l4, %l4

SKIP3:

add %l1, 4, %l1

ba LOOP ! Branch always. (Jump.)

nop

DONE:

Problem 1: An execution of the code above on a SPARC implementation takes 1000 cycles. The
dynamic instruction count is ICall of which ICnop instructions are nop’s. Consider two ways of
computing CPI:

CPIA =
t

ICall
and CPIB =

t

ICall − ICnop
,

where t is the execution time in cycles. Which is better? Justify your answer; an argument for
either formula can be correct.

Problem 2: SPARC branches have a one-instruction delay slot, in the code above they are filled
with nop’s. Re-write the code filling as many slots with useful instructions as possible, reducing
the number of instructions in the program.

Problem 3: Re-write the program in DLX, taking advantage of DLX’s use of general purpose
registers for specifying branch conditions.

1
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Problem 4: The program below executes on the DLX implementation shown below. The com-
ments show the results of the xori, or, and lw instructions.

! Initially, r1=11, r2=22, r3=33, etc.

addi r0, r0, #0

addi r0, r0, #0

addi r0, r0, #0

addi r0, r0, #0

addi r0, r0, #0

START: ! START = 0x50

xori r1, r9, #7 !99 ⊕ 7 = 100

or r2, r3, r4 !33 or 44 = 45

lw r5, 9(r6) !Mem[9+66]=42

sw 10(r7), r8

addi r0, r0, #0

addi r0, r0, #0

addi r0, r0, #0

addi r0, r0, #0

addi r0, r0, #0

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

The table below shows the contents of pipeline registers and changes to architecturally visible
registers r1-r31 over time. Cycle zero is the time that xori is in instruction fetch. The first two
columns are completed, continue filling the table up until the sw instruction finishes writeback.
Ignore values which are not used and which depend on the func field of type-R instructions. Values
which are not used and don’t depend on the func field should be shown. The output of the data
memory is zero when a store or no memory operation is performed. The row labeled “Reg. Chng.”
shows a new register value that is available at the beginning of the cycle. If no register value is
written leave the entry blank.

Cycle 0 1 2 3 4 5 6 7 8 9 10

PC 0x50 0x54

IF/ID.IR addi xori

Reg. Chng. r0← 0 r0← 0

ID/EX.IR addi addi

ID/EX.A 0 0

ID/EX.B 0 0

ID/EX.IMM 0 0

EX/MEM.IR addi addi

EX/MEM.ALU 0 0

EX/MEM.B 0 0

MEM/WB.IR addi addi

MEM/WB.ALU 0 0

MEM/WB.MD 0 0
2
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EE 4720 Homework 3 Due: 8 March 1999

In all problems below assume there are no cache misses and that all register values are available at
the beginning of execution.

Problem 1: The pipeline shown below cannot execute the jal or jalr instructions. Identify and
fix the problem. (Hint: Think about a difference between jal and beqz besides the fact that jal is
unconditional.)

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

1
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Problem 2: The program below executes on the DLX implementation shown below. The com-
ments show the results of some instructions. The implementation uses forwarding (bypassing) to
avoid some data hazards and stalls to avoid others. The forwarding paths are shown. A value can
be read from the register file in the same cycle it is written. The destination field in the bneq is
zero. Instructions are nulled (squashed) in this problem by replacing them with or r0,r0,r0.

! Initially, r1=0x11, r2=0x22, r3=0x33, etc.

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

START: ! START = 0x50

addi r1, r2, #1

add r2, r1, r6

xor r2, r1, r2

bneq r1, START

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

The table below shows the contents of pipeline registers and changes to architecturally visible
registers r1-r31 over time. Cycle zero is the time that add is in instruction fetch. The first two
columns are completed, filling up the rest of the table. Ignore values which are not used and which
depend on the func field of type-R instructions. Values which are not used and don’t depend on the
func field should be shown. Don’t forget the IMM values for bneq. The row labeled “Reg. Chng.”
shows a new register value that is available at the beginning of the cycle. If no register value is
written leave the entry blank.

Cycle 0 1 2 3 4 5 6 7 8 9 10

PC 0x50 0x54

IF/ID.IR sub addi

Reg. Chng. r0← 0 r0← 0

ID/EX.IR sub sub

ID/EX.A 0 0

ID/EX.B 0 0

ID/EX.IMM 0 0

EX/MEM.IR sub sub

EX/MEM.ALU 0 0

EX/MEM.B 0 0

MEM/WB.IR sub sub

MEM/WB.ALU 0 0

MEM/WB.MD 0 0

2
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Problem 3: The program below executes on the implementation also shown below.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

add r1, r2, r3

and r4, r1, r5

sw 0(r4), r1

lw r1, 8(r4)

xori r5, r1, #1

beqz r5, TARGET

sub r5, r5, r5

...

TARGET:

or r10, r5, r1

The implementation includes only the forwarding paths that are shown in the figure. A new
register value can be read in the same cycle it is written. Show a pipeline execution diagram for
an execution of the code in which the branch is taken.

Problem 4: Add exactly those forwarding paths (but no others) that are needed in the DLX
implementation used in the problem above so that the code above executes as quickly as possible.
Show a pipeline execution diagram of the code (repeated below) on the modified implementation.

add r1, r2, r3

and r4, r1, r5

sw 0(r4), r1

lw r1, 8(r4)

xori r5, r1, #1

beqz r5, TARGET

sub r5, r5, r5

...

TARGET:

or r10, r5, r1

3
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Problem 5: The code below executes on the DLX implementation shown below which also includes
the following floating-point hardware:

• As described in Section 3.7 of the text and in class, there is a four-stage FP add unit, a
seven-stage multiply unit, and a 25-cycle FP divide unit (not used in the code below). The
FP add unit also performs FP comparisons, such as eqf.

• The floating-point branch instructions, bfpt and bfpf, are executed in the ID stage just as
the integer branches, beqz and bneq. The FP condition code register (also not shown) is
updated in the WB cycle but the value to be written is forwarded to the controller at the
beginning of WB.

• All stalls are in the ID stage. Floating-point instructions skip the MEM stage.

• Floating-point values are forwarded from the WB stage to the inputs of the FP execution
units. A value written to a FP register can be read in the same cycle.

(a) Show a pipeline execution diagram for two iterations of the code below in which bfpt is taken
in the first iteration but not taken in the second. (Note: the loop is infinite.)

(b) Determine the CPI of an execution of the code for a large number of iterations in which bfpt

is always taken.

(c) Determine the CPI of an execution of the code for a large number of iterations in which bfpt

is never taken.

(d) Determine the CPI of an execution of the code for a large number of iterations in which bfpt

is taken 50% of the time.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

LOOP:

addi r1, r1, #8

lf f0, 0(r1)

addf f1, f1, f0

eqf f0, f2

bfpt LOOP

multf f1, f1, f3

beqz r0, LOOP

xor r2, r1, r3

4
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EE 4720 Homework 4 & 5 Due: 23 April 1999

In all problems below assume there are no cache misses and that all register values are available at the
beginning of execution.

Problem 1: Show a pipeline execution diagram for the first 41 cycles of the code below on a dynamically
scheduled implementation of DLX in which:

• There is one floating point multiply unit with a latency of 5 and an initiation interval of 2.

• There is a load/store functional unit with a latency of 1. The segments are labeled L1 and L2.

• The FP add functional unit has a latency of 3 and an initiation interval of 1.

• The integer functional unit has a latency of 0 and an initiation interval of 1.

• The functional units have reservation stations with the following numbers: integer, 6-9; fp add, 0-1;
fp multiply, 2-3; load/store, 4-5.

• There is no reorder buffer.

• The branch delay is one. (There are no branch delay slots.)

• Ignore load/store ordering.

Initially all reservation stations are available.
LOOP:

addi r1, r1, #8

sub r2, r1, r3

lf f0, 0(r1)

multf f1, f0, f0

multf f2, f0, f1

sf 4(r1), f1

bneq r2, LOOP ! Assume always taken.

xor r4, r5, r6

Problem 2: Determine the CPI for a large number of iterations of the loop above (or give a good reason
why it would be very difficult to determine the CPI).

Problem 3: What are the minimum number of reservation stations of each type needed so that the code
above executes at maximum speed? What is the CPI at maximum speed? (This part was not in the problem
as originally assigned:) The CDB can handle any number of writebacks per cycle and there are an unlimited
number of functional units.

The problem as originally assigned was more tedious than intended. To solve it one would need to find
a repeating pattern of iterations. Because of contention for the CDB, the repeating pattern does not occur in
the first few iterations and so one would have to tediously construct the diagram for many iterations.

Problem 4: The code below executes on a machine similar to the type described in the first problem except
that it uses a reorder buffer. Draw a pipeline execution diagram for the code below, be sure to show when
each instruction commits. Remember that instructions stall in the functional unit if they are not granted
access to the CDB.
LOOP:

lf f0, 0(r1)

multf f1, f0, f0

multf f2, f0, f1

addf f3, f3, f0

lf f4, 8(r1)

sf 4(r1), f1

1
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multf f1, f4, f4

multf f2, f4, f1

addi r1, r1, #16

sub r3, r4, r5

xor r6, r7, r8

or r9, r10, r11

Problem 5: Consider the code execution from the problem above. Suppose there is an exception in the L2

segment executing the second lf. At what cycle would the trap instruction be inserted? What might go
wrong if a reorder buffer had not been used?

Problem 6: Show the execution of the code below on a dynamically scheduled 4-way superscalar machine
using a reorder buffer. Instruction fetch is aligned. There is one of each floating-point functional unit, with
latencies and initiation intervals given in the first problem. There are four integer execution units. The
reservation station numbers are as given in the first problem.
LOOP: = 0x1008

lf f0, 0(r1)

multf f1, f0, f0

multf f2, f0, f1

addf f3, f3, f0

lf f4, 8(r1)

sf 4(r1), f1

multf f1, f4, f4

multf f2, f4, f1

addi r1, r1, #16

sub r3, r4, r5

xor r6, r7, r8

or r9, r10, r1

Problem 7: (Modified 12 November 1999) Rewrite the code below for the VLIW DLX ISA presented in
class. Instructions can be rearranged and register numbers changed. In order of priority, try to minimize the
number of bundles, minimize the use of the serial bit, and maximize the value of the lookahead field. When
determining the lookahead assume that any register can be used following the last bundle in your code.
LOOP:

lf f0, 0(r1)

multf f1, f0, f0

multf f2, f0, f1

addf f3, f3, f0

lf f4, 8(r1)

sf 4(r1), f1

multf f1, f4, f4

multf f2, f4, f1

addi r1, r1, #16

sub r3, r4, r5

xor r6, r7, r8

or r9, r10, r11

2
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EE 4720 Homework 1 Due: 18 February 1998

The code fragment below, in C source and assembler forms, is referred to in the problems below.
The distribution of elements in array is unknown.

/* C Source Code Fragment */

#define ISIZE 10

#define JSIZE 20

#define BINS 1024

short int array[ISIZE*JSIZE]; /* sizeof(short int) = 2 */

int hist[BINS]; /* sizeof(int) = 4 */

for(i=0; i<ISIZE; i++)

for(j=0; j<JSIZE; j++)

{

int e = array[ i * JSIZE + j ];

hist[ e ]++;

}

! DLX Assembly Code Below (Simplified)

! Register usage:

! r1 = i, r2 = j, r3 = hist, r4 = array

ADDI r10, r0, #20 ! r10 = JSIZE

MOVI2FP f0, r10 ! Move r10 to FP register for int mult.

ADDI r1, r0, #0 ! i=0

NEXTI:

SGEI r10, r1, #10 ! if i >= ISIZE ...

BNEZ r10, DONEI ! ... exit loop.

ADDI r2, r0, #0 ! j=0

NEXTJ:

SGEI r10, r2, #20 ! if j >= JSIZE ...

BNEZ r10, DONEJ ! ... exit loop

MOVI2PF f1, r1 ! Move i to FP register.

MULT f1, f1, f0 ! i * JSIZE

MOVFP2I r10, f1

ADD r10, r10, r2 ! i * JSIZE + j

SLLI r10, r10, #1 ! ( i * JSIZE + j ) * sizeof(short int)

ADD r10, r10, r4 ! r10 = &array[ i*JSIZE + j ]

LH r10, 0(r10) ! r10 = array[ i*JSIZE + j ]

SLLI r10, r10, #2 ! r10 = e = array[ i*JSIZE + j ] * sizeof(int)

ADD r10, r10, r3 ! r10 = &hist[ e ];

LW r11, 0(r10) ! r11 = hist[ e ];

ADDI r11, rll, #1 ! r11 = hist[ e ] + 1;

SW 0(r10), rll ! hist[e] = r11

ADDI r2, r2, #1 ! r2 = j+1

J NEXTJ

DONEJ:

ADDI r1, r1, #1 ! r1 = i+1

J NEXTI

DONEI:

1
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Problem 1: In the program above, identify memory accesses that exhibit temporal locality, mem-
ory accesses that exhibit spatial locality, and memory accesses that may exhibit neither property.

Problem 2: Compute the dynamic and static instruction counts of the DLX program above.

Problem 3: Port the program above to an ISA derived from DLX by adding the addressing modes
in Figure 2.5 of the text. In this ISA any operand can use any addressing mode. The ISA also
includes an integer multiply instruction that actually uses the integer registers. The ported program
should use fewer instructions than the original one, the fewer the better. What are the new static
and dynamic instruction counts?

Problem 4: Suppose an implementation of the original DLX is clocked at 1 GHz, and uses 0.25
CPI. Suppose the instruction time of an implementation of the new ISA is also 0.25 CPI. At what
clock frequency will the implementation of the new ISA be just as fast as the old one (based on
your answers to the previous questions)?

To make headlines nowadays you need at least a 1-GHz clock frequency. An alternate
implementation of the new ISA is clocked at 1 GHz. At what instruction execution time (CPI) will
this implementation be the same speed as the original one?

Problem 5: Optional (zero credit, but you’ll feel good about it and it may help you on future
assignments). Type the C code above into a file and have a C compiler generate assembler code
without optimization. From the assembler code, determine the static and dynamic instruction
counts. How does the real assembler code differ from the code above? Compile the code with
optimization and repeat.

On the Suns running Solaris 2.X, the -S switch directs the C compiler to produce assembler
output (in file foo.s). For example,

[sol] % cc sample.c -S

puts the compiled output in assembler form in file sample.s. The -fast switch (not used) tells
the compiler (and linker) to optimize (for speed).

2
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EE 4720 Homework 2 Due: 6 March 1998

The program below is referred to in the problems.

!! r4 holds a limit

!! r5 holds the first array element address

add r2, r0, r0 ! Clear sum register.

add r5, r10, rll ! Set r5 to first element.

LOOP:

lw r6, 0(r5)

add r2, r2, r6

slt r3, r2, r4

addi r5, r5, #4

bneq r3, LOOP:

Problem 1: Draw a pipeline execution diagram showing the first three iterations of the program
above (assuming that it executes for at least three iterations, of course). The program runs on the
DLX implementation shown in Figure 3.4 of the text (and below) in which a register can be read
from the register file in the same cycle it was written to the register file. The processor will stall in
the face of hazards, but there’s no data forwarding or other neat stuff covered later in Chapter 3.
Note that the execution of the first iteration is different than subsequent iterations.

Problem 2: Show the contents of the pipeline registers (stage latches) and the register file the
first time the addi instruction (just before bneq) is in the memory stage. Assume that the first
element of the array is 10, the second element is 20, etc. Show only registers that are being used
(e.g., don’t show r22), use a “??” for pipeline register values that cannot be determined or are not
being used.

=0

IR
IR

IMM

Addr

Addr

Addr

Data

Data

Data In

A

B

ALU

SIGN
EXT

6..10

11..15

16..31

IR

NPCNPC

PC

Memory Port

Addr Data

4

Memory Port

Addr

In

Out

IR

11..15
or
16..20

I F I D E X M E M WB

Problem 3: What is the CPI while running the loop above? Ignore initialization and the first
iteration.
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EE 4720 Homework 3 Due: 13 March 1998

The program below is referred to in the problems.

!! r4 holds a limit

!! r5 holds the first array element address

add r2, r0, r0 ! Clear sum register.

add r5, r10, rll ! Set r5 to first element.

LOOP:

lw r6, 0(r5)

add r2, r2, r6

slt r3, r2, r4

addi r5, r5, #4

bneq r3, LOOP

Data

ALU

Sign
extend

16 32

memory

PC

Instruction
memory

ADD

ADD

IF/ID

4

ID/EX

EX/MEM MEM/WB

IR
6..10

MEM/WB.IR

IR
11..15

Registers

Zero?

M
u
x

M
u
x

M
u
x

IR

FIGURE 3.22  The stall from branch hazards can be reduced by moving the zero test and branch target calculation 
into the ID phase of the pipeline.

The program exe-
cutes on the DLX Chapter-3
implementation in which the
branch address is computed
in the ID stage, as shown in
the corrected version of Fig-
ure 3.22 (COPYRIGHT 1990,
1996 MORGAN KAUF-
MANN PUBLISHERS, INC.
ALL RIGHTS RESERVED),
to the right. The pipeline
also includes bypass (forward-
ing) paths to the ALU (not
shown).

Problem 1: Draw a pipeline execution diagram showing the first two iterations of the program
executing on the implementation above. What is the CPI while executing the loop?

Problem 2: Explain how adding forwarding paths to the ID stage would speed the execution of
the branch instruction.

Problem 3: Consider an implementation that uses the ID-stage forwarding paths mentioned in
the problem above and which also has a branch delay slot. Re-write the program above so that
it executes as fast as possible. Draw a pipeline execution diagram showing the first two iterations
and compute the CPI of the loop execution.
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EE 4720 Homework 4 Due: 13 April 1998

Problem 1: The pipeline execution diagram below shows two floating-point instructions on the
Chapter-3 implementation of DLX, where the divide unit, which is not pipelined, has latency 24
and initiation interval 24, and the multiply unit, which is fully pipelined, has a latency of 6 and an
initiation interval of 1.

div IF ID D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 ... D24 MEM WB

mul IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

Finding structural hazards with the notation above is tricky because there is no indication that D1
and D2 refer to the same piece of hardware while M1 and M2 refer to different hardware. (The
code above does not encounter a structural hazard; it would if the second instruction were also a
divide.) Develop a notation that fixes the problem and can be used for any latency and initiation
interval. Use the notation in the pipeline execution diagram for problem 2.

Problem 2: An implementation of DLX performs in-order execution (but out-of-order comple-
tion), is fully bypassed, and properly interlocked (the implementation discussed in Chapter 3).
MEM-stage structural hazards are resolved by stalling just before the MEM stage. WAW haz-
ards are handled by nulling the earlier instruction. The floating-point functional units perform the
operations as described in Chapter 3, however the timings are as described below:
Unit Init. Inter. Latency
DIV 16 15
MUL 2 3
ADD 1 2

Find the pipeline execution diagram for the following code on this system

div f3, f4, f5

mul f0, f1, f2

mul f3, f6, f7

sub f8, f9, f10

mul f11, f0, f12

Problem 3: Repeat the problem above on an implementation that is the same as the one above
except MEM-stage structural hazards are resolved by stalling in ID.

Problem 4: The program below runs on a DLX implementation that uses dynamic scheduling
with Tomasulo’s algorithm and register renaming. The multiply unit has a latency of 8 and an
initiation interval of 1, and has two reservation stations, numbered 1 and 2. Branch targets are
computed in the ID stage.

Show the execution of the code below up to the second writeback of the multiply instruc-
tion assuming (as we have so far) there are no cache misses.

addi r1, r0, #1000

LOOP:

ld f1, 1024(r1)

subi r1, r1, #8

mul f0, f0, f1

bneq r1, LOOP

Problem 5: For the problem above, how large can multiply’s latency be (with an initiation interval
of 1) without running out of reservation stations after some number of iterations?
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EE 4720 Homework 5 Due: 22 April 1998
The code below is referred to in the problems.

LOOP: ! LOOP = 0x5000

lw r1, 0(r2)

addi r2, r2, #4

beqz r1, TARG

sub r4, r4, r1

j LOOP

TARG:

subi r5, r5, #1

bnez r5, LOOP

and r4, r4, r6

or r4, r4, r7

sw 0(r8), r4

addi r8, r8, #4

jr r31

Problem 1: Show the execution of the code above up to IF of the third iteration on a 4-way su-
perscalar implementation of DLX which is statically scheduled, instruction fetches are 4-instruction
aligned, is fully bypassed including ID stage bypassing for branch conditions, and in which hard-
ware is fully duplicated (including writeback). Assume that the first conditional branch is not
taken in the first iteration, but taken in the second iteration, and that the code executes for many
iterations. Branches do not have delay slots, hardware cannot detect branch target/fall through
overlap, there is no branch prediction hardware, and no branch target prediction hardware. Indi-
cate the cancelling of an instruction by an x in the earliest cycle that the hardware could cancel
it. (Do not assume the implementation can predict the future using unspecified hardware or any
other means.) For example in a single-issue implementation:

Time 0 1 2 3 4 5 6

beqz r0, TARG IF ID EX MEM WB

add r1, r2, r2 IF x

...

TARG:

sub r1, r3, r4 IF ID EX MEM WB

Problem 2: Compute the CPI of the execution of a large number of iterations of the loop above
when 30% of the words starting at the initial value of r2 hold zero.

Problems on next page.

1
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Problem 3: How effective and how practical would each of the following be in speeding execution
of the loop (compared to the problem-1 DLX implementation):

• Branch delay slots.

• Dynamic scheduling.

• Branch target buffer.

• Predicated execution.

• Loop unrolling. (See section 4.1)

The answer should specify how each technique would avoid specific bubbles (if possible) present in
the solution to problem 1.

Problem 4: A 4-way VLIW ISA (derived from DLX) includes predicated execution in the following
way: the first instruction of a bundle can be a bundle execution specifier (BX) instruction which
specifies whether the remaining three instructions execute. The instruction has three register
operands, corresponding to the second, third, and fourth instruction in the bundle. Each register
operand has a negation bit, indicated in assembly language by an exclamation point. If the negation
bit is zero then the corresponding instruction executes if the register contents is non-zero. If the
negation bit is one then the corresponding instruction executes if the register contents is zero.

For example, consider the following bundle:

bx r1,!r2,!r0

add r4, r5, r6

sub r7, r8, r9

div f0, f1, f2

The add executes if r1 is non-zero, the sub executes if r2 is zero, and the divide always executes.

If the first instruction of a bundle is not bx all instructions will execute (including the first, as an
ordinary instruction). Source registers in a bundle refer to values produced in preceding bundles.

Convert the DLX program below to this VLIW ISA.

beqz r1, ELSE

add r2, r3, r4

j ENDIF

ELSE:

add r2, r3, r5

ENDIF:

sub r6, r6, r2

bnez r1, SKIP

addi r7, r7, #1

SKIP:

addi r8, r2, #12

slt r1, r8, r9

and r10, r8, r11

2
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EE 4720 Homework 6 Due: 4 May 1998

Problem 1: The program below executes on a single-issue (not superscalar) DLX implementation
that uses Tomasulo’s algorithm for dynamic execution. It also includes dynamic branch prediction
using an ID-stage BHT (but no target prediction) and a reorder buffer to support speculative
execution.

Instruction execution proceeds speculatively using a predicted path when a branch condition can-
not be immediately determined. When the condition is determined the instructions following the
branch are cancelled if the prediction was wrong (otherwise execution proceeds normally). Branch
instructions use a special branch functional unit, including reservation stations, located in the ID
stage. If a branch condition is available when a branch instruction is in the ID stage (the register
value is in the register file or can be bypassed to the ID stage that cycle) the branch is executed
normally. Otherwise it waits in the branch functional unit until the register value it needs is ready
while following instructions execute. Those following instructions may start at the branch target
(as soon as available) or the fall through (the instruction after the branch), depending on how the
branch is predicted. When the branch outcome is determined it is compared to the prediction,
instructions following the branch are cancelled if the prediction was wrong, otherwise execution
proceeds normally.

Assume that the reorder buffer has an unlimited capacity. At most one entry per cycle can be
retired from the reorder buffer, but any number of elements can be deleted in one cycle. The
system has five reservation stations per functional unit, including the integer functional unit, EX,
and the branch functional unit, BR.

Show a pipeline execution diagram for the code below when the branch is mispredicted as taken.
(That is, the outcome of the branch is not-taken, but it is predicted taken.) Show the contents of
the re-order buffer at each cycle, include only the instructions shown below. Show execution until
the reorder buffer is empty of the instructions encountered in the execution of the code below. For
each entry in the reorder buffer show the instruction mnemonic and place a check next to it if it
has completed execution.

The eqf instruction uses the floating-point add functional unit and bfpt uses the branch functional
unit described above. Note that there is a dependency between bfpt and eqf.

multf f4, f5, f6

addf f0, f1, f2

eqf f0, f3 ! Set floating point condition code to true iff f0=f3

bfpt TARG ! Branch if floating point condition true.

add r1, r2, r3

sub r4, r5, r6

...

TARG:

and r1, r2, r3

or r4, r5, r6

...

More problems on next page.

1
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Problem 2: The program below runs on a system using a 3-bit branch history branch predictor,
with a branch predicted taken if the count is 5 or greater. Initially all entries in the branch history
table are zero. What will the prediction accuracy be during the execution of this program? (The
program never finishes, for simplicity consider execution until r1 reaches 231 − 1.)

add r1, r0, r0

LOOP:

andi r2, r1, #0x10

beqz r2, CONTINUE

addi r3, r3, #1

CONTINUE:

addi r1, r1, #1

j LOOP

Problem 3: Maybe, just maybe, the behavior of a branch in a procedure depends on where the
procedure was called from. Suppose it does. Show how to implement a branch predictor that
would use this information (the identity of the branch instruction and the caller of the “procedure”
containing the branch instruction) to select branch history. The size of the BHT should be limited
to 212 entries. Assume that procedures are always called using the jal and jalr instructions. Be
sure to show where the address lines for the BHT come from. The solution does not have to show
details of the counter predict and update hardware.

Problem 4: Show how 32 b× 223 memory devices can be connected to implement a 27-bit, byte-
addressed address space in which the CPU fetches 64-bit aligned doublewords. (Using the notation
from class, a = 27, w = 64 b, c = 8 b.) Indicate which memory devices store each of these addresses:
0x0, 0x7e33b8e, 0x3396891.

2

← → Spring 1998 ← → Homework 6 Homework Sol Code hw06.pdf

https://www.ece.lsu.edu/ee4720/1998/hw06.pdf


40 Spring 1997

480

← → Spring 1997 ← → Homework 1 Homework Solution hw01.pdf

https://www.ece.lsu.edu/ee4720/1997/hw01.pdf


EE 4720 Homework 1 Due: 3 February 1997

The table below, used in the next two problems, gives the run times on two machines for
programs being considered for a benchmark suite.

Program A1 A2 A3 B1 B2 C1 C2 C3 C4
Base machine 54 40 17 40 71 40 3 111 7
Test machine 20 35 10 20 20 19 1 40 2

Problem 1: Find the arithmetic mean, harmonic mean, and geometric mean of the run times in
the table above.

Problem 2: The programs in the table above are being considered for a benchmark suite. Three
types of programs are represented: compilers (A1, A2, and A3), database programs (B1 and B2),
and oating-point intensive programs (C1 through C4). Assume the programs are written using a
variety of programming styles and compilers and are a good representation of programs that Real
People run. Assume that the base machine used for the numbers above does not run any program
particularly fast or particularly slow.

Devise a way of combining the run times of the programs on the base machine and a test
machine into a number called the TigerMark so that:

� The TigerMark indicates how much faster the test machine is than the base machine. (E.g.,
2.1 times faster for a TigerMark of 2.1.)

� Each type of program (compiler, database, oating-point) is of equal importance.

� As many programs as possible are used.

What is the TigerMark rating of the test machine in the table above?

Problem 3: A new instruction is being considered for an ISA which does the same computation
as a sequence of �ve instructions on the current version of the ISA. (That is, the �ve-instruction
sequence can be replaced with the new instruction.) The new instruction takes nine cycles, while
the �ve-instruction sequence takes twelve cycles.

One bene�t of the new instruction is the three-cycle savings. Give another bene�t and
two reasons why the new instruction might not be such a good idea.

Problem 4: Computer designers are considering two implementations (A and B) and two compil-
ers (I and II) for an ISA. Instructions are divided into three categories, 1, 2, and 3. In implemen-
tation A, instruction execution times (in cycles) are CPI1(A) = 2, CPI2(A) = 2, and CPI3(A) = 3.
The number of executed instructions (by category) of a test program compiled using compiler I
are IC1(I) = 1500, IC2(I) = 1500, and IC3(I) = 5000. The number of executed instructions (by
category) of a test program compiled using compiler II are IC1(II) = 900, IC2(II) = 2500, and
IC3(II) = 5000. For the test program compiled with each compiler, �nd the average instruction
execution time and total run time on a system with a 1MHz clock. Is CPI a good predictor of
implementation performance in this case?

Repeat the problem for implementation B in which CPI1(B) = 3, CPI2(B) = 1, and
CPI3(B) = 3.

1
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EE 4720 Homework 2 Due: 17 February 1997

Problem 1: The assembly language program below is written using DLX-like mnemonics, but for
a richer ISA. Re-write the program in DLX. Be sure to consider immediate sizes.

LW R1, (#0x123456) ! Load R1 with contents of memory location 0x123456.

MOV R3, #0x1234 ! Load R3 with constant 0x1234.

LW R2, @(R3) ! Memory indirect addressing, R2 = Mem[Mem[R3]]

SUB R4, R1, R2

BN Skip ! Branch if last result negative.

LW R4, #0

Skip:

RET ! Return from subroutine.

Problem 2: Do problem 2.3 (page 12) in the book.
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EE 4720 Homework 3 Due: 3 March 1997

In predicated execution a condition-code bit or register is used to determine if an instruction will execute.
In a simple version some machine instructions have predicated forms, for example, with a predicated load
word the following conventional code

BNEQZ skip ! Branch if condition codes indicate != 0.

LW R1,12(R2) ! Load register R1.

skip:

ADD R3, R1, R2

can be replaced with

LW,EQ R1,12(R2) ! Load register R1 if condition codes indicate = 0, otherwise do nothing.

ADD R3, R1, R2

saving not just one instruction, but also possible stall cycles.
The branch and LW,EQ use condition code registers, while DLX uses regular registers for conditions.

The means that there would be no place to specify a condition register in a DLX LW,EQ without removing
the immediate.

Another way of adding predicated execution to DLX makes use of a special PM, predicate mask,
instruction. The instruction specifies a condition register and two 8-bit execution masks, the first mask is
used if the register contents is non-zero, the other if the contents is zero. The 8 bits in a mask refer to the
next 8 instructions in program order (e.g., following branches) to be executed, the LSB (bit 0) refers to the
next instruction, bit 1 refers to the instruction after that, and so on. (Control flow instructions make things
interesting, for now ignore them.) If a mask bit is zero the corresponding instruction does not execute, if
the bit is one it does. An instruction not executed in this manner is said to be nullified. The mnemonic for
PM indicates the register to test and the mask to use if the register contents is non-zero and the mask to use
if the register contents is zero. For example, if the instruction indicated by

PM R1, 0x00, 0xff ! Note, 0x00 = 00000000 (binary) and 0xff = 11111111 (binary)

executes and R1 is not equal to zero, the next eight instructions are not executed; if R1 is equal to zero the
next eight instructions are executed.

The PM instruction is used in the first code fragment as follows:

PM R4, 0xfe, 0xff ! Note: 0xfe = 11111110 (binary)

LW R1,12(R2) ! Load register R1 if R4 equals zero.

ADD R3, R1, R2 ! Always executes.

Problem 1: Show two DLX code fragments, one with and one without PM designed to show PM in the best
possible light (using analysis from next problem).

Problem 2: Consider the pipelined DLX implementation presented in class and the text. Suppose taken
branches stall this implementation by three cycles but no stalls result from PM instructions. (The nullified
instructions are not counted as stalls.) Determine the CPI and execution time on this machine of the code
fragments developed above. (Nullified instructions are not tallied in the instruction count.)

Problem 3: Show how the pipelined DLX implementation would have to be modified to implement PM. Be
sure to show any registers added and to explain what additional actions are performed by the controller.

Problem 4: The description above did not specify constraints on what instructions can follow a PM. Deter-
mine which instructions would cause problems and provide suggestions on what to do about them. Problems
might include ambiguity on which instructions execute and confusing execution paths with no apparent
computational benefit.
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EE 4720 Homework 4 Due: 12 March 1997

Consider a DLX implementation fabricated based on the solution to homework 3 part 3 given
in http://www.ee.lsu.edu/koppel/ee4720/1997/hw03 sol.html, and which also includes register for-
warding connections so that only load instructions would stall because of RAW hazards.

Problem 1: Consider the fragment below.

PM R4, 0xfd, 0xfa ! Note: 0xfd = 11111101 0xfa = 11111010

ADD R3, R1, R2

LW R7, 0(R20)

SUB R6, R7, R8

Using a timing diagram (the table with IF, ID, etc. entries for each instruction) show what would
happen when the fragment is executed with R4 both equal to zero and not equal to zero. Repeat
the problem for the fragment below, in which the contents of R5 is zero.

PM R4, 0x13, 0xfc

LOOP:

ADD R3, R1, R2

BEQZ R5, LOOP

SUB R6, R7, R8

Problem 2: Suppose a DLX implementation was fabricated based on the solution to homework 3
part 3 given in http://www.ee.lsu.edu/koppel/ee4720/1997/hw03 sol.html, and also included reg-
ister forwarding connections so that only load instructions would have RAW hazards. Users of
this chip are advised never to place a control-transfer or load instruction in the eight instructions
following a PM unless the corresponding bits of the execution masks for the instruction and those
following are one. For example

PM R4, 0xfc, 0xff ! Note: 0xfe = 11111100 (binary)

ADD R3, R1, R2

SUB R6, R7, R8

BNEQ R5, SOMEWHERE

is okay because the mask bits will be one for the branch and following instructions. Anyone violating
these rules would have to answer to Mike. Since not everyone realizes that this threat has teeth, an
illegal instruction exception (non-precise) should be generated when the rule is violated. Modify
the solution to HW 3 so that a signal is generated, PM VIOL, if the rule is violated. How difficult
would it be to make this exception precise?

Problem 3: Suppose we don’t want to proscribe loads and branches in the scope of a PM. Modify
the solution to homework 3 problem 3 so that such loads and branches are handled properly. Note
that if a branch is taken, the remaining execution mask bits would apply to the instructions at the
target.
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EE 4720 Homework 5 Due: 7 April 1997

Problem 1: Design an interlock mechanism to handle RAW hazards on the DLX pipeline with

oating-point execution units. Develop and describe the design so that it can easily be modi�ed

to accommodate changes in the timing of the functional units. For example, it should be easy to

change the design if the latency and initiation interval of the divide unit were changed to 18 and

the initiation interval of the multiplier were raised to 2.
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EE 4720 Homework 6 Due: 16 April 1997

Problem 1: Show timing diagrams verifying the latencies given in Figure 4.2 on page 224.

Problem 2: (The solution to this problem is based on material in section 3.9, which was not
covered in class.) Show the timing of the following code fragment on the MIPS R4000 pipeline
based on the pipeline stages given in Figure 3.56. Assume instructions in the RF stage stall (slip
in MIPS parlance) only if there is any structural hazard in the oating point execution units or if
there are any RAW hazards. (The issue rules in a MIPS R4000 processor are stricter than that.
Those who are curious or need material to reinforce section 3.9 can follow
http://www.sgi.com/MIPS/products/r4400/UMan/R4000.book 1.html, keeping in mind that ac-
tual R4000 issue rules should not be used in the solution. )

LD F0, 0(R2)

NEG F0, F0 ! Negate F0. (F0 = -F0)

ADD F2, F0, F4

CGT F6, F8 ! Set FP cond to true if F6 > F8. (FP Compare.)

ADD F10, F12, F14
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EE 4720 Homework 7 Due: 23 April 1997

Problem 1: Consider a version of the Chapter-4 DLX pipeline that uses the following implemen-
tation of Tomasulo's Approach: Each functional unit has two reservation stations, numbered as
follows: 1 and 2 for EX, 3 and 4 for ADD, 5 and 6 for MUL, and 7 and 8 for DIV. The integer
execution unit is one stage and has an initiation interval of 1; all oating point units units are four
stages and also have an initiation interval of 1 (these are the Chapter-4 DLX pipeline functional-
unit timings). There is no bypassing other than that provided by the common data bus, so the
timings given in Table 4.2 don't apply. Assume that all integer instructions use the memory stage
but none of the oating-point instructions do. Load and store instructions use the integer pipeline
in the same way as other integer instructions (do not assume special load and store bu�ers, do
not worry about cache misses, and especially don't worry about why cache misses are something
one might worry about). Show a timing diagram for the code below executing on this system up
to (and including) the second fetch of the �rst ld instruction. Assume that all register values are
available when the fragment starts.

muld f10, f20, f22

addd f22, f10, f10

muld f24, f10, f26

subd f0, f10, f30

loop:

ld f2, 0(r2)

subd f0, f0, f2

ld f2, 8(r2)

subd f0, f0, f2

ld f2, 16(r2)

subd f0, f0, f2

subi r3, r3, #1

addi r2, r2, #24

bnez r3, loop

Problem 2: Design hardware implementing (m;n)-bit correlating branch prediction for the Chap-
ter 3 DLX pipeline using a 2h-entry BHT. (Ignore the fact that a branch prediction in the Chapter
3 DLX pipeline is not useful.) The hardware should generate a PRED TAKEN signal in ID when
the instruction is a branch and is predicted taken. Don't forget to update the BHT based on
branch outcome. Draw a logic diagram showing details of added hardware. Include address, data,
and read/write signals for the BHT and any other storage devices used. Show the execution of a
branch on the modi�ed pipeline, indicating where important actions take place (e.g., BHT written,
prediction ready).
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EE 4720 Homework 8 Due: 2 May 1997

The following code fragment is used in several problems below.

add r1, r2, r3

sub r6, r7, r8

lw r10, 0(r20)

add r11, r10, r12

sub r14, r1, r9

add r1, r14, r15

sub r16, r17, r18

add r19, r21, r22

sw 0(r20), r6

Problem 1: A 3-way VLIW version of the DLX ISA, 3VDLX, packs three DLX instructions into
a single 3VDLX instruction. The values of source registers in a 3VDLX instruction are based on
the execution of the previous instructions, not the current one.

An implementation of 3VDLX must be fully pipelined and bypassed. Like the DLX
implementations, integer arithmetic values are available in the next cycle, but loads are available to
instructions fetched two cycles later (than the 3VDLX instruction containing the load instruction).

Show how the DLX code fragment above can be re-written for 3VDLX, showing one
3VDLX instruction as three DLX instructions on a line separated by semicolons. Show a timing
diagram for the execution of the code fragment. The fragment should be written to execute quickly.

Problem 2: Show how the code fragment would execute on a static-issue, 3-way superscalar
machine. The superscalar machine is similar to the DLX implementations but has three complete
pipelines, it is fully bypassed.

Problem 3: Show how the code fragment would execute on a dynamic-issue, 3-way superscalar
machine using Tomasulo's Approach, similar to the DLX implementations. There are three integer
execution units, three load/store units, and two reservation stations for each functional unit. The
memory stage is used only by load and store instructions.

Problem 4: Using 218-entry by 16-bit memory devices, design a memory system that will provide
16:777216MB = 224 bytes of memory1 in 32-bit words. (This is only slightly more complicated
than the simple case given in class.)

1 \M" is a combining form meaning 1,000,000. Unfortunately, in certain contexts it is used for 1,048,576,
and it's not always clear which of the two interpretations is intended. In this class \M" will always mean
1,000,000.
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LSU EE 4720 Homework 1 Solution Due: 4 February 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
To solve this assignment students are expected to avail themselves of references provided in class
and on the Web site, such as for MIPS instructions and the SPIM simulator, and to seek out any ad-
ditional help and resources that might be needed. (Of course this doesn’t mean asking someone else
to solve it for you.) Students are expected to experiment to learn how MIPS instructions work, and
how to code assembly language sequences. Experimentation might be done on old homework assign-
ments or the simple code samples provided in /home/faculty/koppel/pub/ee4720/hw/practice.
Students are also expected to learn what error messages mean by consulting documentation and by
asking others (including Dr. Koppelman), and also to develop debugging skills. It is each student’s
duty to him or herself to resolve frustrations and roadblocks quickly. (Just ask for help!)

This assignment cannot be solved by blindly pasting together code fragments found in class
notes or past assignments. Solving the assignment is a multi-step learning processes that takes
effort, but one that also provides the satisfaction of progress and of developing skills and under-
standing.

Problem 0: Follow the instructions for class account setup and for homework workflow in
https://www.ece.lsu.edu/ee4720/proc.html. Review the comments in hw01.s and look for the
area labeled “Problem 1”.

Those who want to start before getting to the lab can find the assembler for the entire as-
signment at https://www.ece.lsu.edu/ee4720/2025/hw01.s.html. For MIPS references see the
course references page,
https://www.ece.lsu.edu/ee4720/reference.html. Easy MIPS practice problems can be found
in the practice directory, see MIPS Homework and Practice Workflow in
https://www.ece.lsu.edu/ee4720/proc.html.

Using LSU version of SPIM
This assignment requires a modified version of the SPIM simulator originally developed by James
Larus. Instructions for using this simulator appear on the course procedures page. When running
SPIM check the LSU version date, there should be a line reading LSU Version Date: 2025-02-04.
Make sure that the date is there and is no earlier than 4 February 2024. (The date will appear
on the console output near the top when run non-graphically, and in the lowermost window pane
when run graphically.)

1
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Debugging
To facilitate debugging the code can be run so that the simulator emits a trace of executed instruc-
tions, plus an indication of changed register values.

The best way to get a trace is to run the code non-graphically. To do so load the code into an
Emacs buffer in a properly set up account. Press Ctrl - F9 to start the simulator non-graphically.
That should pop up a window showing a simulator banner followed by a prompt:

SPIM Version 6.3.1 lsu of 9 November 2001, 17:34:35 CST

LSU Version Date: 2024-02-04

Copyright 1990-2000 by James R. Larus (larus@cs.wisc.edu).

All Rights Reserved.

See the file README for a full copyright notice.

Includes LSU modifications.

File loaded.

Type "run" to run normally.

Type "step 100" to execute next 100 instructions with tracing.

Type "help" for more help.

To see a trace of instructions enter step followed by the number of instructions, say step 100.
This will execute next 100 instructions but will only trace instructions in the assignment routine
(when running this homework assignment). To illustrate stepping consider the lookup routine from
2023 Homework 1. Suppose that the lookup routine starts with the following code:

lookup:

addi $v0, $0, -1

START_WORD:

addi $t0, $a0, 0

addi $v0, $v0, 1

Then a trace of execution would produce the following:

(spim) step 100

[0x004000cc] 0x4080b000 mtc0 $0, $22 ; 278: mtc0 $0, $22

[0x00400118] 0x0c100000 jal 0x00400000 [lookup] ; 299: jal lookup

# Change in $31 ($ra) 0 -> 0x400120 Decimal: 0 -> 4194592

[0x0040011c] 0x40154800 mfc0 $21, $9 ; 300: mfc0 $s5, $9

# Change in $21 ($s5) 0 -> 0x14 Decimal: 0 -> 20

[0x00400000] 0x2002ffff addi $2, $0, -1 ; 16: addi $v0, $0, -1

[0x00400004] 0x20880000 addi $8, $4, 0 ; 18: addi $t0, $a0, 0

# Change in $8 ($t0) 0 -> 0x1001024f Decimal: 0 -> 268501583

[0x00400008] 0x20420001 addi $2, $2, 1 ; 19: addi $v0, $v0, 1

Each line starting with square brackets shows the execution of an instruction. The address of
the instruction is shown inside the square brackets. After the square brackets the instruction is
shown in three different forms. First encoded, shown in hexadecimal. Then a disassembled form
(which is based on the encoded instruction). Finally, after the semicolon the instruction is shown
as it appears in the assembler file. Immediately after the semicolon is a line number.

The lines that start with a # show register values that change. The values are shown both in
hexadecimal and decimal. In the example above the first three instructions are from the testbench,
the fourth instruction shown, at address 0x400000, is the first instruction of lookup.
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Homework Background
When completed MIPS assembly language routine justify will justify a string of text. The jus-

tify routine can be found in hw01.s. Also in that file is a test routine that calls justify and
prints out the formatted text. To make the problem less tedious to solve the string of text provided
to justify will not contain any line feeds (or carriage returns or the equivalent). In the version
used as of this writing the text is 1028 characters long which might be possible to read on one of
those ridiculously wide curved monitors. When solved correctly justify will add spaces and line
feeds to make the text more readable. The input text starts:

We introduce our first-generation reasoning models, DeepSeek-R1-Zero and

That text is to be justified using left margins and text lengths provided to justify (to be
explained below). Unlike conventional boring justification where the left margin and text length is
the same for every line (except maybe for an initial indentation), justify can use a different left
margin and text length for each line. The correctly justified text for a run of the homework code
is:

Formatted text appears below.

We introduce

our first-generation

reasoning models, DeepSeek-R1-Zero

and DeepSeek-R1. DeepSeek-R1-Zero, a model

trained via large-scale reinforcement learning (RL)

without supervised fine-tuning (SFT) as a preliminary step,

demonstrated remarkable performance on reasoning. With RL, DeepSeek-R1-Zero

naturally emerged with numerous powerful and interesting reasoning

behaviors. However, DeepSeek-R1-Zero encounters challenges

such as endless repetition, poor readability,

and language mixing. To address

these issues and further

enhance reasoning

performance,

we introduce DeepSeek-R1,

which incorporates cold-start

data before RL. DeepSeek-R1 achieves performance

comparable to OpenAI-o1 across math, code, and reasoning

tasks. To support the research community, we have open-sourced

DeepSeek-R1-Zero, DeepSeek-R1, and six dense models distilled from DeepSeek-R1

based on Llama and Qwen. DeepSeek-R1-Distill-Qwen-32B outperforms

OpenAI-o1-mini across various benchmarks, achieving

new state-of-the-art results for dense models.

Formatted text appears above.

Input string length 1028 characters.

Output string length 1425 characters.

Executed 7336 instructions at rate of 0.140 char/insn.

In addition to the justified text, the output above includes messages printed by the testbench.
(The text is from the readme file in the DeepSeek-R1-Zero repo containing parameters distilled for a
smaller model. See https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B.)

Routine justify is called with three arguments. Register a0 is set to the address of the string
to justify. Call it the input string. Register a1 is set to the address where the justified string is to
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be written. Call it the output string. Register a2 holds the address of the line shape table.
Each entry of the line shape table holds two bytes. The first byte indicates the left margin

size. The second byte indicates the minimum length of the text on the line (not including the left
margin).

The code below reads the first entry in the line shape table:

lb $t1, 0($a2) # Left margin of first line.

lb $t2, 1($a2) # Length of text of first line (not including margin)

Suppose t1 is 30. (Which is what the testbench sets it to AoTW.) Then the left margin must
be 30, meaning there should be 30 spaces before the text. The justify routine must start out
writing 30 spaces beginning at the address in a1 and then start copying the text from a0, which in
the example above starts We introduce, to a1+30.

The second item in a shape entry is the text length, in register t2 above. This is the minimum
length of text after the left margin. For the example data t1+t2 = 30 + 10 = 40. At character
position 40 on the first line is the letter c in introduce. The justify routine is to start the next
word, our, on a new line. Character 40 is within the word introduce and so justify should
continue copying text from a0 to a1 until a space is reached. It should then start a new line. That
new line will start with our (after the new left margin.)

Let L denote the left margin (t1=30 above) and W the margin (t2=10 above) for a line. That
line should start with L spaces. After the spaces, the line should have characters copied from a0.
Copying continues until the line length is L + W and a new word starts. In real-world formatting
routines L + W would be the maximum length, not the minimum length as it is here.

Each time a line is completed the next entry in the shape table should be read. There might
be fewer entries in the shape table than there are lines of formatted text. When there are no more
entries in the shape table the justify routine should start from the beginning of the shape table.
The end of the shape table is marked by L = 255 and W = 255.

The text in a0 has intentionally be kept simple. It does not contain line feeds or similar
characters. The only whitespace is a space, and there is never (or shouldn’t be) more than one
consecutive space.

The testbench does not check for correctness. To verify correct line start positions when run-
ning non-graphically put the cursor of the first character in a line. The line and column (character)
number is shown in the text editor status bar at the bottom.
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Unsolved justify Routine Getting-Started Code
In the unsolved assignment the justify routine will copy two characters of the input string (the
unformatted text) to the output string. When run it prints the word We. It also loads the first two
entries in the Line Shape Table, but does not do anything with them. Here is an excerpt from that
code, with many of the comments omitted:

.text
justify:

## Register Usage
#

# CALL VALUES

# $a0: Address of start of text to justify.

# $a1: Starting address where justified text is to be written.

# $a2: Line Shape Table.

# Two bytes per entry.

# First byte is left margin.

# Second byte is length of text.

# Load the first entry of the Line Shape Table.

#

lb $t1, 0($a2) # Left margin of first line.

lb $t2, 1($a2) # Length of text of first line (not including margin)

#

# Load the second entry of the Line Shape Table.

#

lb $t3, 2($a2) # Left margin of second line.

lb $t4, 3($a2) # Length of text of second line (not including margin)

# Copy first two characters. (Ignoring left margin.)

#

lb $t0, 0($a0)

sb $t0, 0($a1)

lb $t0, 1($a0)

sb $t0, 1($a1)

jr $ra

nop

One way to get started on the solution would be to copy more than two characters by using
a loop. Then, try inserting a line feed every 64 characters, perhaps by using a loop nest with the
inner loop iterating 64 times. Next, try inserting a bunch of spaces at the beginning of each line.
Keep adding functionality until the problem is solved.

Testbench Output
The test program prints information that might be helpful in getting the code working and improv-
ing performance. The last three lines of output (if the code ran to completion) will be something
like:

Input string length 1028 characters.

Output string length 1425 characters.
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Executed 7336 instructions at rate of 0.140 char/insn.

The input string length reported above should ordinarily not change. It is the length of the
input to justify provided by the testbench. Search for tb_text_start to find the string. If it
helps, one can temporarily change the string at tb_text_start to facilitate the solution. The
length of the output string should be longer than the input string due to the left margin.

The last line shows the number of instructions executed and the execution rate. A goal of
this assignment is to minimize the number of instructions executed, so the lower both numbers the
better. The execution rate is the number of input characters divided by the number of instructions.
In the example above that works out to about 7 instructions for each input character.

Helpful Examples
For your convenience three sample MIPS programs are included right in the assignment directory,
strlen.s, 2022-hw01.s and 2022-hw01-sol.s. The strlen.s contains the string length we did
in class. Look at it if you are rusty. In 2022 Homework 1 a fast string length routine was to
be written. This might help with writing the left margin (but not copying the text). For more
examples look in the practice directory and at Homework 1 assignments from earlier semesters.
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Problem 1: This problem is optional. It’s here to help people get started. If you’ve solved this
problem but then have gone on to the following problems you can delete or comment out the code.
Modify justify so that it copies the string at a0 to a1 breaking lines so that they are 64 characters
long, even if that means breaking a line in the middle of a word.

Solution appears below.

p1_justify:

# Input registers.

# $a0: Address of start of text to justify.

# $a1: Address where justified text is to be written.

# $a2: Array of margins. Left margin, text length.

# Each is 1 byte. Negative, go back?

ori $t9, $0, 10 # t9: Line feed.

p1_line_loop:

## Each iteration of p1_line_loop writes one 64-character line.

addi $t0, $a1, 64 # t0: Where to end line based on write address.

p1_text_loop:

## Each iteration of p1_text_loop copies one character.
#

# Loop body contains 6 instructions.

#

lb $t1, 0($a0) # Read one character from input string.

sb $t1, 0($a1) # Write it to the output string.

beq $t1, $0, p1_done # Check whether it’s a null (end of string).

addi $a1, $a1, 1 # Increment output string address.

bne $a1, $t0, p1_text_loop # If not at 64’th char, continue.

addi $a0, $a0, 1 # Increment input string address.

sb $t9, 0($a1) # Put a line feed at the end of the line.

j p1_line_loop

addi $a1, $a1, 1

p1_done:

jr $ra

nop
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Problem 2: Complete justify so that it justifies text as described above, following the restrictions
given in the routine, such as which registers to use. In the unmodified file justify copies two
characters and loads the first entry in the shape table. Be sure to remove this getting-started code.

The first challenge in this problem is to get the solution to work. The second one is to make
if fast. For full credit the code writing the left margin should use sw instructions where possible,
reducing the number of instructions needed to write the left margin.

Alignment restrictions will make it difficult (but not impossible) to use lw and sw for copying
text, and so full credit will be awarded to solutions that use lb and sb for copying text.

The solution can be found in three places. In the original assignment directory at
/home/faculty/koppel/pub/ee4720/hw/2025/hw01/hw01-sol.s,
at https://www.ece.lsu.edu/ee4720/2025/hw01-sol.s.html, or here several pages ahead.

It is faster than the version of the code used to generate the example above. The solution executes just 7259
instructions at a rate of 0.142 characters per instruction.

Here are common problems encountered by students to this assignment.

Problems that would result in instruction exceptions (errors) during execution.

Executing sw with an unaligned address.
Consider sw r1, 0(r2) and suppose r2=0x1003. This will result in an execution error because r2 is not a

multiple of 4. (To be a multiple of 4 the least significant digit in hexadecimal must be 0, 4, 8, or c.)

Problems that would result in a loss of points, even if the code computes the correct answer for
the testbench given with the assignment.

Using disallowed (for this assignment) pseudoinstructions.
The only pseudoinstructions that are allowed are nop and la (load address). Others, such as move, li (load

immediate), and bgt (branch greater-than), are not allowed.

Assuming that the shape table had 12 entries (13 including the marker).
This assumption makes writing the code easier and is not realistic because justify can be called using shape

tables of different sizes.

Assuming that the table ends when the left margin is equal to the text length.
This assumption makes writing the code easier and is not realistic because justify can be called using a shape

table in which the left margin and text length are the same.

Forgetting that the jr (like all jumps and branches) have delay slots, and jr is the last instruction
in the program.

If jr is the last instruction in justify then we don’t know what the delay slot instruction is. (Okay, we could
determine that by looking further down and noticing the string length routine, but I don’t think people did that.) But
suppose there was nothing after justify. Then it would be up to the linker to decide what goes after jr and it might
be an illegal instruction. (Uninitialized memory, part of a data section, etc.)

Problems that may have caused confusion before being worked around.

Use lb rather than lbu to read shape table.
By using lb to read the left margin length the end-of-table-marker, 255, is read as -1. Some just checked for a -1.

Problems that resulted in lower performance.

Filling branch and jump delay slots with nops rather than useful instructions.
Many did not bother filling delay slots, even when it would be easy to do so. In the solution every delay slot is filled

except the final jr.

Putting an instruction or instructions in a loop that could have been placed before the loop.
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For example, an instruction that writes a space (32) into a register. In some cases lots of instructions appeared in a
loop body that could have been placed before the loop. For example, in jf margin loop fast the sw writes register
t4. Register t4 is initialized much earlier, outside of the loop. Had t4 been initialized in the loop the loop would five
rather than three instructions.

Having a loop’s branch instruction check an iteration counter register.
If a loop is supposed to execute for, say, 5 iterations one could initialize a register with 5 (the iteration counter

register), decrement it in the loop body, and exit the loop when the register is zero. But in justify loops are used for
writing text (the left margin or copying from the input string). So rather than having a separate iteration counter as almost
everyone did, just compute the address of the *last* character to be written and test that. See jf margin loop fast

in the solution.

Solution continued on the next page.
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justify:

# Input registers.

# $a0: Address of start of text to justify.

# $a1: Address where justified text is to be written.

# $a2: Array of margins. Left margin, text length.

# Each is 1 byte. Negative, go back?

## SOLUTION

## Put Useful Constants In Registers – In Advance

# Put four spaces in $t4.

#

lui $t4, 0x2020

ori $t4, $t4, 0x2020 # t4: Four spaces.

addi $t6, $0, 32 # t6: One space

ori $t8, $0, 255 # t8: Value used for end of shape table.

ori $t9, $0, 10 # t9: Line feed

addi $v1, $0, -4 # v1: 0xfffffffc Mask used for rounding.

## Make Copies of Input Registers – Important for a2.
#

addi $t5, $a1, 0 # t5: Address of next character to write.

addi $t7, $a2, 0 # t7: Beginning of shape table.

jf_line_loop:

## Each iteration of jf_line_loop processes one line of text.

# Read an entry from the shape table.

#

lbu $t0, 0($t7) # t0: Left margin length.

lbu $t1, 1($t7) # t1: Text length.

# If this isn’t the end of the table go to left-margin code.

bne $t0, $t8, jf_alignment_check

addi $t7, $t7, 2 # Advance to next shape table entry.

# At this point we are at the end of the shape table ..

# .. so reset the shape table address to the beginning of the table.

j jf_line_loop

addi $t7, $a2, 0 # Reset to beginning of shape table and try again.

Continued on next page.
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jf_alignment_check:

## Check whether t5 (write address) is word-aligned, if not align it.
#

# An address is word-aligned (in MIPS) if it’s a multiple of 4.

and $v0, $t5, $v1 # Using mask (v1), set v0 to t5 with 2 LSB zeroed.

#

# Note: v0 is t5 rounded *down* to a multiple of 4.

# For example, if t5 = 0x1003 -> v0 = 0x1000 (zero 2 LSB).

# if t5 = 0x1004 -> v0 = 0x1004 (no change).

# If v0 = t5 then t5 is already aligned.

beq $v0, $t5, jf_aligned_now

add $t2, $t5, $t0 # t2: Starting address of text in current line.

# At this point we know that t5 is not aligned.

# Write 3 spaces. Maybe one or two of those won’t be needed ..

# .. but checking whether they are needed ..

# .. is more trouble than just writing them.

#

sb $t6, 0($t5) # This space definitely needed.

sb $t6, 1($t5) # Might be needed.

sb $t6, 2($t5) # Might be needed.

# Compute aligned address rounded *up* from t5. (v0 rounded down)

#

addi $t5, $v0, 4 # t5: Write address, now aligned (rounded up).

jf_aligned_now:

# We also need to round the left margin stop address, t2, up

# to a multiple of 4.

addi $t3, $t2, 3 # Add 3 to stop address.

and $t3, $t3, $v1 # Round t3 *down* to a multiple of 4.

jf_margin_loop_fast:

## Each iteration of margin_loop writes four spaces in the left margin.
#

# Loop body executes 3 instructions.

#

sw $t4, 0($t5) # Write four spaces.

bne $t5, $t3, jf_margin_loop_fast

addi $t5, $t5, 4

# Last iteration of loop above may write one to three extra spaces ..

# .. and so t5 might be too large.

ori $t5, $t2, 0 # Set t5 to the correct write address.

add $t2, $t5, $t1 # Compute the minimum address to end the line.

Continued on next page.

11

← → Spring 2025 ← → Homework 1 Homework Solution Sol Code hw01 sol.pdf

https://www.ece.lsu.edu/ee4720/2025/hw01_sol.pdf


jf_text_loop:

## Each iteration copies one character of text.
#

# Loop body executes 6 instructions when within words.

#

lb $t0, 0($a0)

jf_text_loop_plus_one:

slt $t1, $t6, $t0 # Check for whitespace and null (zero terminator).

addi $a0, $a0, 1

sb $t0, 0($t5)

bne $t1, $0, jf_text_loop

addi $t5, $t5, 1

# At this point character is whitespace or a null.

# This is still part of the text loop body, though it is

# executed less frequently.

beq $t0, $0, jf_DONE # If character is a null we’re done.

slt $t1, $t5, $t2 # Check whether text length is below minimum.

bne $t1, $0, jf_text_loop_plus_one

lb $t0, 0($a0) # This is the "first" insn of next iteration.

# At this point text on current line is at or above the

# minimum length and the current character (t0) is whitespace,

# so we can write a line feed and start a new line.

j jf_line_loop

sb $t9, -1($t5) # Write linefeed in same location as whitespace.

jf_DONE:

jr $ra

nop
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################################################################################

##

## LSU EE 4720 Spring 2025 Homework 1 -- SOLUTION
##

##

 # Assignment https://www.ece.lsu.edu/ee4720/2025/hw01.pdf

 # Solution discussion: https://www.ece.lsu.edu/ee4720/2025/hw01_sol.pdf

 ## Additional Resources

  #

  # MIPS Architecture Manual Volume 2 (Contains a list of instructions.)

  #      https://www.ece.lsu.edu/ee4720/mips32v2.pdf

  #      Note: SPIM implements MIPS-I instructions.

  #

  # SPIM Documentation:

  #      https://www.ece.lsu.edu/3755/spim.pdf

  #

  # Account Setup and Emacs (Text Editor) Instructions

  #      https://www.ece.lsu.edu/ee4720/proc.html

  #      To learn Emacs look for and follow instructions for the Emacs tutorial.

################################################################################

## Problem 1
#

#  Copy text, breaking it into 64-character lines.

p1_justify:

        # Input registers.

        #  $a0: Address of start of text to justify.

        #  $a1: Address where justified text is to be written.

        #  $a2: Array of margins. Left margin, text length.

        #       Each is 1 byte.  Negative, go back?

        # Assume: Never two or more spaces.

        ## SOLUTION

        ori $t9, $0, 10       # t9: Line feed.

p1_line_loop:

        ## Each iteration of p1_line_loop writes one 64-character line.

        addi $t0, $a1, 64     # t0: Where to end line based on write address.

p1_text_loop:

        ## Each iteration of p1_text_loop copies one character.

        #

        #  Loop body contains 6 instructions.

        #

        lb $t1, 0($a0)        # Read one character from input string.

        sb $t1, 0($a1)        # Write it to the output string.

        beq $t1, $0, p1_done  # Check whether it's a null (end of string).

        addi $a1, $a1, 1      # Increment output string address.

        bne $a1, $t0, p1_text_loop  # If not at 64'th char, continue.

        addi $a0, $a0, 1      # Increment input string address.

        sb $t9, 0($a1)        # Put a line feed at the end of the line.

        j p1_line_loop

        addi $a1, $a1, 1

p1_done:

        jr $ra

        nop

################################################################################

## Problem 2
#

#  Write memory at a1 with formatted version of input string at a0

#  using left margins and text lengths found in shape table at a2.

#  See https://www.ece.lsu.edu/ee4720/2025/hw01.pdf for details.

justify:

        # Input registers.

        #  $a0: Address of start of text to justify.

        #  $a1: Address where justified text is to be written.

        #  $a2: Array of margins. Left margin, text length.

        #       Each is 1 byte.  Negative, go back?

        # Assume: Never two or more spaces.
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        ## SOLUTION

        ## Put Useful Constants In Registers -- In Advance

        #

        # Put four spaces in $t4.

        #

        lui $t4, 0x2020

        ori $t4, $t4, 0x2020  # t4: Four spaces.

        

        addi $t6, $0, 32      # t6: One space

        ori $t8, $0, 255      # t8: Value used for end of shape table.

        ori $t9, $0, 10       # t9: Line feed

        addi $v1, $0, -4      # v1: 0xfffffffc  Mask used for rounding.

        ## Make Copies of Input Registers -- Important for a2.

        #

        addi $t5, $a1, 0      # t5: Address of next character to write.

        addi $t7, $a2, 0      # t7: Beginning of shape table.

jf_line_loop:

        ## Each iteration of jf_line_loop processes one line of text.

        # Read an entry from the shape table.

        #

        lbu $t0, 0($t7)       # t0: Left margin length.

        lbu $t1, 1($t7)       # t1: Text length.

        # If this isn't the end of the table go to left-margin code.

        bne $t0, $t8, jf_alignment_check

        addi $t7, $t7, 2      # Advance to next shape table entry.

        # At this point we are at the end of the shape table ..

        # .. so reset the shape table address to the beginning of the table.

        j jf_line_loop

        addi $t7, $a2, 0      # Reset to beginning of shape table and try again.

        

jf_alignment_check:

        ## Check whether t5 (write address) is word-aligned, if not align it.

        #

        #  An address is word-aligned (in MIPS) if it's a multiple of 4.

        and $v0, $t5, $v1     # Using mask (v1), set v0 to t5 with 2 LSB zeroed.

        #

        # Note: v0 is t5 rounded *down* to a multiple of 4.

        #       For example, if t5 = 0x1003  -> v0 = 0x1000 (zero 2 LSB).

        #                    if t5 = 0x1004  -> v0 = 0x1004 (no change).

        # If v0 = t5 then t5 is already aligned.

        beq $v0, $t5, jf_aligned_now

        add $t2, $t5, $t0     # t2: Starting address of text in current line.

        # At this point we know that t5 is not aligned.

        # Write 3 spaces. Maybe one or two of those won't be needed ..

        # .. but checking whether they are needed ..

        # .. is more trouble than just writing them.

        #

        sb $t6, 0($t5)        # This space definitely needed.

        sb $t6, 1($t5)        # Might be needed.

        sb $t6, 2($t5)        # Might be needed.

        # Compute aligned address rounded *up* from t5. (v0 rounded down)

        #

        addi $t5, $v0, 4      # t5: Write address, now aligned (rounded up).

jf_aligned_now:

        # We also need to round the left margin stop address, t2, up

        # to a multiple of 4.

        addi $t3, $t2, 3      # Add 3 to stop address.

        and  $t3, $t3, $v1    # Round t3 *down* to a multiple of 4.

jf_margin_loop_fast:

        ## Each iteration of margin_loop writes four spaces in the left margin.

        #

        #  Loop body executes 3 instructions.

        #

        sw $t4, 0($t5)        # Write four spaces.
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        bne $t5, $t3, jf_margin_loop_fast

        addi $t5, $t5, 4

        # Last iteration of loop above may write one to three extra spaces ..

        # .. and so t5 might be too large.

        ori $t5, $t2, 0       # Set t5 to the correct write address.

        add $t2, $t5, $t1     # Compute the minimum address to end the line.

jf_text_loop:

        ## Each iteration copies one character of text.

        #

        # Loop body executes 6 instructions when within words.

        #

        lb $t0, 0($a0)

jf_text_loop_plus_one:

        slt $t1, $t6, $t0  # Check for whitespace and null (zero terminator).

        addi $a0, $a0, 1

        sb $t0, 0($t5)

        bne $t1, $0, jf_text_loop

        addi $t5, $t5, 1

        # At this point character is whitespace or a null.

        # This is still part of the text loop body, though it is

        # executed less frequently.

        beq $t0, $0, jf_DONE    # If character is a null we're done.

        slt $t1, $t5, $t2       # Check whether text length is below minimum.

        bne $t1, $0, jf_text_loop_plus_one

        lb $t0, 0($a0)          # This is the "first" insn of next iteration.

        # At this point text on current line is at or above the

        # minimum length and the current character (t0) is whitespace,

        # so we can write a line feed and start a new line.

        j jf_line_loop

        sb $t9, -1($t5)         # Write linefeed in same location as whitespace.

jf_DONE:

        jr $ra

        nop

        

        

##############################################################################

#

 ## Test Code

#

#  The code below calls the justify routine.

        .data

        .align 2

tb_lengths_start:

        .byte 30, 10

        .byte 25, 20

        .byte 20, 30

        .byte 15, 40

        .byte 10, 50

        .byte 5, 60

        .byte 0, 70

        .byte 5, 60

        .byte 10, 50

        .byte 15, 40

        .byte 20, 30

        .byte 25, 20

        .byte 30, 10

        .byte 255, 255

tb_text_start:

        .asciiz "We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1. DeepSeek-R1-Zero, a model trained v

tb_msg:

        .ascii "Formatted text appears below.\n%/a1/s\n"

        .ascii "Formatted text appears above.\n"

        .ascii "Input  string length %/f0/.0f characters.\n"

        .ascii "Output string length %/t0/d characters.\n"

        .asciiz "Executed %/s4/d instructions at rate of %/f6/.3f char/insn.\n"
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        .align 4

tb_text_formatted:

        .space 2000

        .text

tb_strlen:

        ## Register Usage

        #

        # $a0: Address of first character of string.

        # $v0: Return value, the length of the string.

        #

        addi $v0, $a0, 1        # Set aside a copy of the string start + 1.

STRLEN_LOOP:

        lbu $t0, 0($a0)           # Load next character in string into $t0

        bne $t0, $0, STRLEN_LOOP  # If it's not zero, continue

        addi $a0, $a0, 1          # Increment address. (Note: Delay slot insn.)

        jr $ra

        sub $v0, $a0, $v0

        .globl __start
__start:

        mtc0 $0, $22            # Pause tracing.

        la $a0, tb_text_start

        la $a1, tb_text_formatted

        la $a2, tb_lengths_start

        addi $v0, $0, -1

        mtc0 $v0, $22           # Resume tracing. (No effect if not stepping.)

        jal justify

        mfc0 $s5, $9            # Copy current instruction count. (Before.)

        mfc0 $s4, $9            # Copy current instruction count. (After.)

        mtc0 $0, $22            # Pause tracing.

        la $a0, tb_text_start

        jal tb_strlen

        nop

        addi $s4, $s4, -1

        sub $s4, $s4, $s5

        mtc1 $s4, $f4

        mtc1 $v0, $f0

        cvt.d.w $f0, $f0

        cvt.d.w $f4, $f4

        div.d $f6, $f0, $f4

        la $a0, tb_text_formatted

        jal tb_strlen

        nop

        addi $t0, $v0, 0

        la $a0, tb_msg

        la $a1, tb_text_formatted

        addi $v0, $0, 11

        syscall

        nop

        addi $v0, $0, 10

        syscall

        nop
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LSU EE 4720 Homework 2 Solution Due: 21 February 2025
Formatted 16:20, 6 March 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. It is each student’s duty to him or herself to resolve frustrations and roadblocks quickly,
hopefully helped along by the satisfaction of making progress. There are plenty of old problems
and solutions to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

Resources
For examples of pipeline execution diagrams of given code fragments running on given MIPS im-
plementations see past midterm exams (and final exams, but mostly midterms). The solutions to
almost all past midterms in this course are available. A good place to start would be 2023 Midterm
Exam Problem 2, 3, 4, and 5.

Problem 1: Solve this problem after Problem 2. It appears before Problem 2 so that you don’t
somehow forget it. Complete the first two parts 2024 Final Exam Problem 1, which asks for pipeline
execution diagrams of MIPS implementations. Solve the parts on page 2 and 3. Do not solve the
floating-point question on page 4.

See the posted final exam solution.

There is another problem are on the next page.

1
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Problem 2: Note: The following problem was assigned in all but one of the last eight years, and
its solution is available. DO NOT look at the solution unless you are lost and can’t get help else-
where. Even in that case just glimpse. Appearing below are incorrect executions on the illustrated
implementation. For each one explain why it is wrong and show the correct execution.

IR

Addr25:21

20:16

IF ID EX WBME
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Data
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(a) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until
the lw reaches WB.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID ----> EX ME WB

(b) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

There is no need for a stall because the lw writes r1, it does not read r1.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB

2
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(c) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

A longer stall is needed here because the sw reads r1 and it must wait until add reaches WB.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID ----> EX ME WB

(d) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

The stall above allows the xor, when it is in ID, to get the value of r1 written by the add; that part is correct.
But, the stall starts in cycle 1 before the xor reaches ID, so how could the control logic know that the xor needed r1,
or for that matter that it was an xor? The solution is to start the stall in cycle 2, when the xor is in ID.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID ----> EX ME WB

3

← → Spring 2025 ← → Homework 2 Homework Solution hw02 sol.pdf

https://www.ece.lsu.edu/ee4720/2025/hw02_sol.pdf


LSU EE 4720 Homework 3 Due: 7 March 2025
Solution Formatted 18:16, 21 March 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. It is each student’s duty to him or herself to resolve frustrations and roadblocks quickly,
hopefully helped along by the satisfaction of making progress. There are plenty of old problems
and solutions to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

Resources
For examples of pipeline execution diagrams of given code fragments running on given MIPS im-
plementations see past midterm exams (and final exams, but mostly midterms). The solutions to
almost all past midterms in this course are available. A good place to start would be 2023 Midterm
Exam Problem 2, 3, 4, and 5.

Homework Background
This assignment asks about hypothetical MIPS instruction addsc (scaled addition) that was the
subject of 2014 Homework 3 Problem 3. See that assignment and its solution for a description of
the addsc instruction.

1
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Problem 1: Appearing below is a solution to 2014 Homework 3 Problem 3, though not the same
as the posted solutions. Three of the multiplexors have labels on their select signals: A, B, and C.

format
immed
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The incomplete pipeline execution diagram below shows the progress of instructions through
the implementation and also the value of the select signals A, B, and C in some cycles. If a select
signal value is blank, such as C in cycle 5, then its value does not matter. For example, execution
would be correct whether C = 0 or C = 1 in cycle 5, and so it is blank.

� Fill in instructions, including at least one addsc, that could have resulted in the execution. �Take
care to choose registers so that dependencies and �the use of bypass paths are consistent with
the select signal values.

Solution on next page.
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The solution appears below.
Signal A selects a value headed for two possible destinations, the Left Shift unit in EX and the D In connection to

Mem Port in the ME stage. The Left Shift unit in EX is only used by addsc and the D In connection is only used by store
instructions (sw, for example). There for if a value is shown for A the instruction in EX must be either an addsc or
some kind of store instruction. The value of A indicates whether the RT value is from the register file, A = 1, bypassed
from ME, A = 0, or bypassed from WB, A = 2.

Signal B selects a value for the adder used by addsc; if B = 0 the value is from ME.ALU (which means it is
probably not bypassed), if B = 1 the value is bypassed from WB. If a value is given for B then the instruction in ME

must be an addsc.
If signal C = 1 the value to be written back (in the next cycle) comes from an addsc instruction, if C = 0 the

output of ME.ALU is used. Signal C is blank for load instructions, and for instructions that don’t write back at all.
For the first instruction A is blank (in cycle 2 when it is in EX) so it can’t be an addsc nor a store. When the first

instruction is in ME B is also blank, which is consistent with A being blank in the previous cycle. But C = 0, telling is
that the instruction writes a result coming from the ALU. Any arithmetic or logical function would do, a sub was chosen.

For the second instruction A = 0 when it is in EX, indicating that it is an addsc or store, and that it is bypassing
the result of the previous instruction. Because it is bypassing a value the rt register of the second instruction and the
destination of the first must be the same. Register r3 was chosen. Then the second instruction is in ME the B = 1 and
C = 1 values tell us that it is an addsc and that the rs value is bypassed from the preceding instruction, so the rs
register for the addsc is also r3.

The reasoning for choosing the next two instructions is similar.

# Cycle 0 1 2 3 4 5 6 7

A 0 2 2

B 1 0

C 0 1 1

# Cycle 0 1 2 3 4 5 6 7

sub R3, r5, r6 IF ID EX ME WB

addsc R1, R3, R3, 4 IF ID EX ME WB

sw R3, 0(r8) IF ID EX ME WB

addsc r5, r9, R1, 9 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

3
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Problem 2: Consider the load/use stall in the execution of the code below on an ordinary MIPS
implementation (one without addsc):

# Cycle 0 1 2 3 4 5 6

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r3 IF ID -> EX ME WB

(a) Suppose that instead of the code above the assembly code were generated by a compiler that is
aware of the addsc instruction and run on an implementation that implements addsc.

�Explain how the compiler could avoid the stall.

It is the compiler that reads source code in some high-level language and emits assembly language instructions based
on the source code. Of course, the compiler could avoid the stall in the usual way by separating the lw and add with
some useful instruction. However, the question is about how a compiler aware of addsc could eliminate the stall.

The add is stalling because the load value arrives in ME near the end of the clock period in cycle 3, and so there is
no way to bypass it to EX where the add needs it. But, an addsc instruction does not need its rt value until it is in the
ME stage, and so it could bypass it. Knowing this, the compiler could emit an addsc r1, r2, r3, 0 instead of the
regular add instruction. That’s shown below.

# Cycle 0 1 2 3 4 5 6

lw r2, 0(r4) IF ID EX ME WB

addsc r1, r2, r3, 0 IF ID EX ME WB

xor r4, r5, r6 IF ID EX ME WB <- Trouble if r5 changed to r1

Using addsc is fine in the code above with the xor. But if one of the sources of the xor were r1 then the xor
would have to stall, meaning that substituting and addsc for an add this way eliminates one stall but adds another, and
so there is no net gain. Having to consider all of these possibilities is why people who write compiler optimization code
deserve great respect.

(b) Suppose instead that the original code (at the beginning of the problem) is run on an imple-
mentation which includes addsc and where addsc was encoded (choice of opcode, register fields,
etc.) to avoid such stalls. (This could be the same implementation as the previous part.)

�Explain how such a stall could be avoided on the original code, with the add, by the design of the
encoding of addsc.

In this problem the original code must be used as-is, with the add instruction. Suppose in the design of addsc the
opcode and func field value for the addsc instruction were the same as those of the add instruction: opcode 0 (type
R) and func field value 2016. For the add instruction the sa field is defined to be zero. For addsc the sa is the shift
amount. That means the encoding of addsc r1, r2, r3, 0 is identical to add r1, r3, r3. The hardware
might execute add instructions the same way it executes addsc, meaning it would use the ME-stage adder. If so, then
the stall above is avoided. It might also try to be smart about it, treating an add like an addsc only if that avoids a
stall. Possible midterm question?

There’s another problem on the next page.

4
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Problem 3: Design the following control logic. Some of the logic will need the isADDSC logic
block in ID, which detects whether an addsc instruction is in ID. An SVG of the diagram can be
found at https://www.ece.lsu.edu/ee4720/2025/hw03-scadd.svg. It can be edited by Inkscape
or any other SVG editor, and by plain-text editors for those who are so disposed.

�Design control logic for select signal C. Note: This is easy.

�Design control logic for select signal B.

� Show control logic generating a stall signal for the stalls like those shown in the diagram below.

# Cycle 0 1 2 3 4 5 6

addsc r1, r2, r3, 4 IF ID EX ME WB

add r4, r1, r5 IF ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6

lw r3, 0(r4) IF ID EX ME WB

addsc r1, r2, r3, 4 IF ID -> EX ME WB

Solution appears below. Notice that the control signals are computed in ID and then carried through the pipeline
to ME where they are used. Remember that when addsc is in ID some other instruction is in ME.

It should be easy to see that C should be 1 iff there is an addsc in ME, so compute the value in ID, and carry it
along the pipeline until it is needed in ME. Signal B should be 1 when there is a dependency with the prior instruction.
That is computed in ID by the purple comparison unit and then carried along the pipeline. Because B is only used for
addsc instructions one might be tempted to put an AND gate in there to check. But there’s no need to do so because
it doesn’t matter what value B is when the instruction is not an addsc, so there’s no point wasting an AND gate.

The stall signals are computed by checking dependencies. For the first code fragment the control logic generates the
stall in cycle 2 (the arrow head is where the stall ends, it starts in ID) when the add is in ID and the addsc is in EX.
The logic compares the destination register of the instruction in EX (r1 for the fragment) against the rs and rt sources

of the instruction in ID. The logic assumes that the instruction uses rs as a source (not wise) but uses the rt Source
logic block to check whether the instruction uses rt as a source. (For example, add r1, r2, r3 uses rt, register
r3, as a source but addi r1, r2, 4 does not use rt as a source. [The rt field holds the destination, r1, in this
instruction.]) The stall signal for the first code example is labeled Dependence: addsc ; add src in the diagram.

For the second code fragment the logic checks just for an rt dependence, because there would be no need to stall if
the dependence were through the rs register. That is if the lw wrote r2 instead of r3 there would be no need to stall.

The control logic for A was not part of this problem. Designing that logic was asked on Problem 3c in the Fall 2003
Final Exam.

Diagram on next page.
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LSU EE 4720 Homework 4 Due: 19 Mar 2025 at 09:30 CDT
Solution Formatted 17:23, 19 March 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. It is each student’s duty to him or herself to resolve frustrations and roadblocks quickly,
hopefully helped along by the satisfaction of making progress. There are plenty of old problems
and solutions to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

Resources
See old homework and exams. There are a few questions about VAX in past assignments. There
are question about RISC-V in many of the more recent assignments.
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Problem 1: Remember that VAX is one of the few examples of a good CISC ISA. CISC ISAs
are not considered suitable for current implementation technology, but those who do not learn
by history are doomed to repeat it, so look over the summary of the VAX instruction set which
can be found in Chapter 2 of the VAX 11/780 Architecture Handbook Volume 1, 1977-78. Focus
on Section 2.4, which summarizes the instruction set. Consider item 5 in that section, which
starts “Instructions provided specifically for high-level language constructs.” Three examples of
such instructions are given, ACB, CALLS, and CASE. As guided by the check boxes below, explain
how a register-only version of suitable each instruction is for implementation in a RISC ISA. The
instruction descriptions in the architecture handbook use metasyntactic symbols rx, mx, and wx

to sources and destinations. (In MIPS rs, rt, and rd are metasyntactic symbols.) Symbol rx is
used for a read (source) operand (signified by the r) that can come from a register, immediate,
or memory (signified by the x). Similarly the w in wx signifies an argument that is written (a
destination), and the m in mx signifies an argument that is read and then written. The questions
below ask about hypothetical register-only versions of these instructions in which arguments rx,
mx, and wx refer only to register arguments.

The instructions are explained in the architecture manual, but feel free to seek out other
references. The description of ACB is fairly straightforward. The CALLS instruction is clear but
may be difficult to understand for those who are less familiar with bit masks or bit vectors. In
addition to the Architecture Handbook, see VAX MACRO and Instruction Set Reference Manual
for a description of the CASE instruction and an example of its use. Note that for CASES the table
(displ) is in memory immediately after the instruction. The operation performed by the CASE

instruction is similar to the MIPS assembly code for the dense switch statement presented in the
class control flow demo code. Of course, CASE does most of that with one instruction.

�A register-and-displacement-operand-only version of the ACB instruction © is definitely not suit-

able for a RISC ISA, ×© arguably possible for a RISC ISA, © fits well into a RISC ISA.

�Explain. In your explanation consider how easy it would be to �encode in a RISC ISA (allow

some flexibility) and how easy it would be �to implement in a five-stage pipeline.

Page 8-10 of the Architecture Handbook describes ACB as taking four operands, a limit, add (increment amount),
an index, and a displacement. To execute the branch the hardware computes index+add compares, the sum to limit,
and branches to PC + displacement if the sum is greater than limit (if add is positive) or less than limit (if add is negative).

Encoding all of these operands would be possible, but not easy because there would not be much room for an
immediate and three register fields in a 32-bit instruction. In MIPS one could use sa and func for the displacement
(which would be 11 bits), but that would require a new opcode. (Less radical type-R instructions use the func field as
an opcode extension.) Another possibility is to consider a variation without the add (increment) field, and instead always
just add one. Or, one could dispense with the limit field, and instead take the branch if the result were positive (and so
add [the increment] would have to be negative).

Resolving the branch requires both an addition and a comparison. If using the five-stage MIPS pipeline the comparison
would have to be after EX, in ME. Without branch prediction there would be a two or three instruction penalty (depending
on how long the comparison takes). This would not be a problem with branch prediction. The extra comparison unit
adds to cost, as would the need to carry the branch target to the ME or WB stage. So it’s doable, but it would add
significantly to cost. If the comparison were done before the addition then it would be possible to resolve the branch in
ID so this would be much easier to add to a RISC ISA because it could use the some comparison unit used by existing
branch instructions. In MIPS only equality could be tested without requiring a new comparison unit, but other RISC ISAs
do allow magnitude-comparison jumps so that a new comparison unit would not need to be added.

�The CALLS instruction ×© is definitely not suitable for a RISC ISA, © arguably possible for a

RISC ISA, © fits well into a RISC ISA.
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�Explain. In your explanation consider how easy it would be to �encode in a RISC ISA (allow

some flexibility) and how easy it would be �to implement in a five-stage pipeline.

The CALLS instruction extends the stack (an area of memory used for storing register values, local variables, and
other information associated with a called procedure), and the writes the stack with several register values, including a
return address and caller-save registers. The list of the caller save register is specified in a bit mask placed in the first
part of the called procedure.

Encoding calls is not a problem because it has two arguments, numarg specifies the number of parameters in
the called function, and dst specifies the address of the target. A register or small immediate could hold numarg, and
a larger immediate could hold dst as a displacement from PC, for example.

Implementing the instruction is definitely a problem because the hardware must first load the entry mask at the
beginning of an instruction, then store the value of those registers specified in the entry mask, in addition to always-save
values such as the return address. In a pipelined implementation there is one memory port for loads and stores, and that
is in ME (using MIPS stage names). An instruction only gets to use ME for one cycle, so it could not perform the load and
stores that are needed. So that rules it out. Do not expect to convince management otherwise.

Those who nevertheless want to make a case for such an instruction, read on. The only way to implement this in
what before this instruction was a typical pipelined RISC implementation would be for the CALLS instruction to “take
over” the pipeline and operate it as a CISC implementation would, meaning it would execute over multiple steps, using
the ALU and memory port multiple times as directed by either really complex control logic or a smaller computer, called
a microprogrammed control unit. As most have probably guessed, CISC implementations use microprogrammed
control units.

�A register-operand-only version of the CASE instruction © is definitely not suitable for a RISC

ISA, ×© arguably possible for a RISC ISA, © fits well into a RISC ISA.

�Explain. In your explanation consider how easy it would be to �encode in a RISC ISA (allow

some flexibility) and how easy it would be �to implement in a five-stage pipeline.

The CASE instruction has three operands, selector (s), base (b), and limit (l). Also, immediately following each
CASE instruction is a table of memory addresses. If s < l execution continues after the table. Otherwise execution jumps
to PC + M [PC + 2(s− b)], where M [a] is the two bytes of memory starting at address a.

Because it has three source operands, it is easy enough to encode in a RISC ISA(with the source operands all being
registers).

An implementation would need to compute address PC + 2(s− b). For b = 0 this would be little different than
computing branch target. (For MIPS multiply by 4 instead of 2, but for RISC-V branch displacements are in units of
half-instructions.) To tack this on to a RISC implementation one might design an ALU that can compute PC+2(s− b)
in one cycle. That’s not impossible but it is doable. Expect an argument from management. An alternative would be
to add a second EX stage. If this is a five-stage pipeline before the change then getting that additional stage approved
just for this would be very difficult. Perhaps the easiest thing to do is to implement a version of CASE that lacks a base
argument, meaning that the EX stage would just have to compute PC + 2s. This is almost like a MIPS branch, except
that in a branch the s would be the immediate value.

In EX the value of PC + 2(s− b) (or PC + 2s) is connected to the Addr input of the memory port and a read
operation is performed, reading the address to jump to. In WB the value loaded from memory is connected to the PC

(rather than being written to memory). This last part, writing the PC when an instruction is in WB rather than ID, also
might make RISC purists defensive. There is the cost of another input to the multiplexor feeding PC, and also the large
penalty. Assuming there is a delay slot, the penalty would be three cycles. In the example below the first six elements of
the dependency table (two bytes each) are fetched as though they are instructions. They are squashed in cycle 4. The
control logic could also have stalled fetch in cycle 2, since by then it had seen the CASE pass through ID a cycle earlier.
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# Cycle 0 1 2 3 4 5 6 7 8 9

CASE r1, r2, r3 IF ID EX ME WB

nop IF ID EX ME WB

dep[0] dep[1] IF ID EXx

dep[2] dep[3] IF IDx

dep[4] dep[5] IFx

casex:

sw r1, 2(re) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9

So this is doable, especially without the base. Appearing below is what MIPS code might be used without a CASE
instruction, (based on the course example for coding a dense switch statement). With a CASE instruction the correct
target is reached in 5 cycles, without such an instruction it takes 7 cycles, and that’s for a base of zero and without
checking whether t1 is out of range.

.data
## Dispatch table, holding address of case statements.

DTABLE:

.word CASE0

.word CASE1

.word CASE2

.word CASE3

.word CASE4

.word CASE5

.text

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

lui $t5, hi(DTABLE) IF ID EX ME WB

ori $t5, $t5, lo(DTABLE) IF ID EX ME WB

sll $t6, $t1, 2 IF ID EX ME WB

add $t6, $t6, $t5 IF ID EX ME WB

lw $t7, 0($t6) IF ID EX ME WB

jr $t7 IF ID EX ME WB

nop IF ID EX ME WB

....

CASEx:

xor $s1, $s2, $s3 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11
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Problem 2: RSMIPS is a hypothetical ISA with similarities to MIPS. Appearing below is
RSMIPS’ instruction format R, which is identical to MIPS’ format R (except for the names of
the source fields). Unlike MIPS, in RSMIPS all instructions that write a result to a register use
the rd field for the register number (and the rd field is always in bits 15:11). Yes, RSMIPS is Real
Strict about source and destination register fields, hence the name. Also notice that different from
MIPS the RSMIPS source fields are named rs1 and rs2. Remember that in MIPS, rt can be used
as either a source or destination, depending on the instruction.

RSMIPS R:

Opcode

31 26

rs1

25 21

rs2

20 16

rd

15 11

tba

10 6

Function

4 0

RSMIPS I:

Opcode

31 26

rs1

25 21

rs2

20 16

Immed

15 0

Because of this Real Strict provision, something like MIPS’ format I can’t be used for instruc-
tions such as addi and lw, but format I can be used for instructions such as sw and beq.

(a) In RSMIPS format DI is used for immediate instructions that write a result. Show a possible
format DI. This is easy for those that understand what an instruction format is. (Note that RISC-V
also follows this Real Strict philosophy, but the answer to this question is not an exact copy of a
RISC-V instruction format.)

� Show a possible format DI.

Solution appears below. There are two new fields, immhi and immlo, both are used for the 16-bit immediate.

RSMIPS DI:

Opcode

31 26

rs1

25 21

immhi

20 16

rd

15 11

immlo

10 0
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(b) Convert the MIPS implementation below into an RSMIPS that works with format DI, format
I, and format R RSMIPS instructions as requested in the checkbox items below. The illustration
in SVG format can be found at https://www.ece.lsu.edu/ee4720/2025/hw04-rsmips.svg. It
can be modified with your favorite SVG editor, even if it’s not Inkscape.

�Modify the control logic to extract the correct destination register.

�Modify the datapath and control logic to provide the correct immediate.

�Be sure that the logic works with RSMIPS’ format I, DI, and R instructions.

The solution appears on the lower part of the next page. The low 11 bits of the format immed input are always
connected to bits 10:0 of the instruction. For the remaining bits of the format immed input a multiplexor selects
either bits 20:16 (for format DI instructions) or bits 15:11 (for format I instructions). The No dest logic (finishing
with the big OR gate) detects format I (and harmlessly format J), and is used as a select signal for the new blue format
immed mux.

Since the destination register now never comes from the (now non-existent) rt field, that input to the dst mux

was removed, as was the control logic selecting the rt input. This simplifies the remaining control logic: the is Type R
is no longer needed and the two-input OR gates are now just wire.
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LSU EE 4720 Homework 5 Due: 7 April 2025
Solution Formatted 15:45, 29 April 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. It is each student’s duty to him or herself to resolve frustrations and roadblocks quickly,
hopefully helped along by the satisfaction of making progress. There are plenty of old problems
and solutions to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

Resources
Questions about MIPS floating-point implementation can be found in most final exams.

Problem 1: Solve the last part of 2024 Final Exam Problem 1, in which the execution of FP code
on an ordinary MIPS FP implementation is to be shown.

See the final exam solution at https://www.ece.lsu.edu/ee4720/2024/fe_sol.pdf.

Next problem on next page.
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Problem 2: Consider 2024 Final Exam Problem 3, in which some control logic is to be designed
for a FP implementation in which an add.s instruction normally goes through the same number
of stages as a mul.s, though only using four of those for computation, but in which an add.s

instruction can also hop ahead if WF is available in an earlier cycle, thus reaching WF one or two
cycles earlier.

A copy of the illustration used in the exam, in SVG format, can be found at
https://www.ece.lsu.edu/ee4720/2024/fe-fp-hop.svg. It can be edited using Inkscape or any
other SVG editor.

(a) Solve 2024 Final Exam Problem 3.

See the final exam solution at https://www.ece.lsu.edu/ee4720/2024/fe_sol.pdf.

(b) The italicized text in Problem 3 mulls that maybe hopping isn’t such a good idea, that it might
be less costly to bypass than hop. Modify the implementation so that rather than hopping bypass
paths are provided for instructions in a5 and a6. This is actually an easy problem since there is no
need to show control logic for this part. Maybe for the final exam.

Solution appears below in green. All one needed to do is connect the pipeline latches carrying the data to the
A1-stage multiplexors. The connections shown allow maximum flexibility, for example, bypassing the value written by the
instruction in a5 to the fs operand and the value written by the instruction in a6 to the ft operand. Using the output
of the Hop6 multiplexor would have lowered costs but would have limited bypass to only one value. Note that the WF-stage
mux could not be used since it would be needed for writing a value to the FP register file.

FP Reg File
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LSU EE 4720 Homework 6 Due: 23 April 2025
Solution Formatted 18:21, 30 April 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. It is each student’s duty to him or herself to resolve frustrations and roadblocks quickly,
hopefully helped along by the satisfaction of making progress. There are plenty of old problems
and solutions to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

Resources
Questions about superscalar MIPS implementations can be found in most final exams.
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Problem 1: The following questions are based on 2021 Final Exam Problem 2(c), but it is not
identical.

(a) Appearing below is a 4-way superscalar MIPS implementation which is slightly different in an
important way from the one appearing in the 2021 Final Exam. In both this implementation and
the one on the 2021 exam fetch is not aligned (which makes things easier). Also, there is no branch
prediction, which is how we have been doing things in class.
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� Show the execution of the code below for enough iterations to determine instruction throughout
(IPC). (Note: There is no need to put slot numbers on the stage labels.) �Don’t forget that it
is 4-way superscalar.

The solution is on the next page.
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The difference between the implementation above and the one in the exam is that the one above has multiplexors on the
path to the memory port D In connections, and so store instructions can bypass store values. This reduces the number of
stalls suffered by the sw instruction.

Solution appears below. To keep instructions in order in ID, the stall of one instruction in ID stalls all instructions
ahead in ID. So, in cycle 1 and 2 the add is stalling for the lw value. That forces the sw and addi to stall too, even
though the bne and addi are not waiting for anything. The branch resolves in ID and so the target is not fetched until
the branch is in EX, resulting in the squash of six instructions, the first two are shown, the next four are the instructions
after the xor which are not shown.

The first iteration starts in cycle 0, the second starts in cycle 6, and so the instruction throughput is 6
6−0 =

1 insn/cycle.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 First Iteration

lw R10, 0(r1) IF ID EX ME WB

add R3, R10, r3 IF ID ----> EX ME WB

sw R3, 0(r5) IF ID -------> EX ME WB

addi r5, r5, 4 IF ID -------> EX ME WB

bne r1, r9, LOOP IF -------> ID EX ME WB

addi r1, r1, 4 IF -------> ID EX ME WB

lb r8, 0(r9) IF -------> IDx

xor r11, r8, r10 IF -------> IDx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Second Iter

lw R10, 0(r1) IF ID EX ME WB

add R3, R10, r3 IF ID ----> EX ME WB

sw R3, 0(r5) IF ID -------> EX ME WB

addi r5, r5, 4 IF ID -------> EX ME WB

bne r1, r9, LOOP IF -------> ID EX ME WB

addi r1, r1, 4 IF -------> ID EX ME WB

lb r8, 0(r9) IF -------> IDx

xor r11, r8, r10 IF -------> IDx
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(b) The code from the solution to Final Exam 2021 2(c) has an instruction throughput of Θc =
0.75 insn/cycle. The solution to part 2(d) did not give the instruction throughput of the solution
but did explain that the unrolled code is four times faster.

�What is the instruction throughput (IPC) of the 2(d) solution? (The pipeline execution diagram
is in the solution, use that!)

The instruction throughput is 10 insn
(4−0) cyc = 2.5 insn/cycle

.

�Why can’t we use the instruction throughput of parts (c) and (d) to show how much faster part
(d) is?

In general, one can’t compare the execution time of two different code fragments by comparing their instruction throughput
(IPC) because one also need to know how many instructions each code fragment executes. It does make sense to use IPC
to compare the execution time of the same code fragment on two different implementations, which is something that is
frequently done in this class.

Also note that the code for part (d) is unrolled degree 2, and so it operates on two elements per iteration, while the
original code in (c) just operates on one element per iteration. Just comparing IPC we would conclude that the part-(d)
code is 2.5

0.75 = 3.33 times faster, which isn’t bad. But to compare the two we should look at how much work is done
per cycle. For the part (c) code that would be 1

8−0 = 0.125 work items per cycle. For part (d) it is 2
4−0 = 0.5 work

items per cycle, and so the part (d) code is 0.5
0.125 = 4 times faster, even better than 3.33.

(c) In part (d) the loop was to be unrolled degree 2. Here, unroll the loop degree 3 (start with three
copies of the loop body) but for the implementation shown here (not from the exam). A correct
solution should execute without stalls, but instructions will be squashed due to the branch (which
can’t be avoided in a 4-way superscalar without branch prediction).

�Unroll degree 3 and optimize so there are no stalls.

The solution appears below. The prologue and epilogue are omitted. Notice that the add instructions are positions so
that they will be in different fetch groups.

# SOLUTION

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10

sw r13, 0(r5) IF ID EX ME WB

sw r3, 4(r5) IF ID EX ME WB

sw r23, 8(r5) IF ID EX ME WB

add r13, r10, r3 IF ID EX ME WB

addi r5, r5, 12 IF ID EX ME WB

add r14, r12, r13 IF ID EX ME WB

lw r10, 0(r1) IF ID EX ME WB

lw r12, 4(r1) IF ID EX ME WB

add r3, r22, r14 IF ID EX ME WB

lw r22, 8(r1) IF ID EX ME WB

bne r1, r9, LOOP IF ID EX ME WB

addi r1, r1, 12 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10

sw r13, 0(r5) IF ID EX ME WB

sw r3, 4(r5) IF ID EX ME WB

sw r23, 8(r5) IF ID EX ME WB

add r13, r10, r3 IF ID EX ME WB

addi r5, r5, 12 IF ID EX ME WB

add r14, r12, r13 IF ID EX ME WB

4
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lw r10, 0(r1) IF ID EX ME WB

lw r12, 4(r1) IF ID EX ME WB

add r3, r22, r14 IF ID EX ME WB

lw r22, 8(r1) IF ID EX ME WB

bne r1, r9, LOOP IF ID EX ME WB

addi r1, r1, 12 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10

Problem 2: Solve 2024 Final Exam Problem 2 (all parts), in which code for a 2-way superscalar
MIPS implementation is to be completed (a) and the execution of code on a 4-way superscalar
MIPS implementation is to be found.

See the final exam solution at https://www.ece.lsu.edu/ee4720/2024/fe_sol.pdf.
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LSU EE 4720 Homework 7 Due: 28 April 2025 7:30
Solution Formatted 10:29, 6 May 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. It is each student’s duty to him or herself to resolve frustrations and roadblocks quickly,
hopefully helped along by the satisfaction of making progress. There are plenty of old problems
and solutions to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

Resources
Questions about superscalar MIPS implementations can be found in most final exams.

1
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Problem 1: Locate 2024 Final Exam Problem 4, which asks for analysis of two patterns on
bimodal and local predictors.

(a) Solve 2024 Final Exam Problem 4(a).

See the posted solution.

(b) What is the smallest local history size for which branches B1 and B2 (from 2024 Final Exam
Problem 4) are each predicted at 100% accuracy? This could have been part b on the final exam
question. The branch outcomes are shown below for convenience, they are the same as those in the
final exam.

B1: N N T T T N T N N T T T N T N N T T T N T <- Outcome

B2: N T N T N T N T N T N T N T N T N T N T N <- Outcome

The first table below shows that on a 3-outcome local history predictor pattern NTN occurs in both branches and that
they harmfully collide, meaning they share a PHT entry and their next outcomes are different. After that is a table
showing the 7 rotations of the patterns of B1 and the 2 rotations of the patterns of B2. The patterns are sorted to make
it easy to find PHT collisions. For the pattern starting NTN four outcomes are needed to distinguish B1 from B2, and for
the pattern starting TNT five outcomes are needed to distinguish them. So the minimum local history size is 5 .

Three-Outcome B1 Local Histories Followed By Next (4th) B1 and B2 Outcomes

Patrn B1 B2

N N T T

N T T T

T T T N

T T N T

T N T N N

N T N N T

T N N T

Twelve-Outcome Local History Patterns

N N T T T N T N N T T T B1

-------

N T N N T T T N T N N T B1

N T N T N T N T N T N T B2

------- <- Need four outcomes to use separate PHT entries.

N T T T N T N N T T T N B1

T N N T T T N T N N T T B1

---------

T N T N N T T T N T N N B1

T N T N T N T N T N T N B2

--------- <- Need five outcomes to use separate PHT entries.

T T N T N N T T T N T N B1

T T T N T N N T T T N T B1

2
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(c) Someone foolishly argues that limiting the local history to only three outcomes keeps the cost of
the branch prediction hardware a tiny fraction of the cost of one with a 16-outcome local history.
Explain why that argument is foolish based on the diagram below. Use the sizes, in bits, of the BHT
and PHT in your explanation. Note: the “tiny fraction” phrase was not in the original problem.

PC

2-bit
counter

1:1

Target

Post-resolve
2-b counter.

2

Target

+1

-1

Outcome (1=T, 0=N)

Pre-resolve 2-b counter

IF ID

Tr
a
v
e
ls

 w
it

h
 i
n
st

ru
ct

io
n
,

u
se

d
 w

h
e
re

 b
ra

n
ch

 r
e
so

lv
e
d

.

Fro
m

 M
E
 (o

r sta
g
e

w
h
e
re

 b
ra

n
ch

 re
so

lv
e
d
).

BHT
a d

a d in

PC

15:2

15:2

we

PC (resolve)

Target

Is Branch (1, branch; 0, anything else.)

P
C

 (
re

so
lv

e
)

Is Branch

Is Branch

P
re

d
ic

to
r 

U
p

d
a
te

 H
a
rd

w
a
re

(r
e
so

lv
e
) 

S
h
o
w

n
 i
n
 G

re
e
n

P
re

d
ic

to
r 

P
re

d
ic

ti
o
n
 H

a
rd

w
a
re

S
h
o
w

n
 i
n
 B

la
ck

P
re

d
ic

te
d

D
ir

e
ct

io
n

(N
 o

r 
T
)

P
re

d
ic

te
d

Ta
rg

e
t

P
re

d
ic

te
d

Is
 B

ra
n
ch

PHT
a d

a d in
we

Local History
h-1:0

Updated local history

Local history
that had been
used for prediction.

h-2:0

h-1:0

lsb

msb

Pre-Resolve Local History

h-1:0

The point of the problem was to notice that the BHT size includes the target and that doesn’t change with local history
size.

For an h-outcome local history the PHT size is 2×2h. Consider a change from 16 outcomes to 3. That would reduce
the cost of the PHT from 217 = 131072 b to 24 = 16 b. That’s a big improvement. But one must also consider the
BHT. Assuming the Target field is 16 bits and 1 for the Is Branch field, the size of an entry is 1+16+h. The number of
entries in the illustrated BHT is 216−2 = 214 = 16834. For h = 16 the BHT size is 214(1+16+16) = 540672 b
and the total predictor size is 671744 b. Dropping to h = 3 the BHT cost is about half, 214(1+16+3) = 327680 b
and the total cost is 327696 b, about half. However the prediction accuracy would be much lower.

To better see the comparison look at h = 8. The size of the PHT and BHT would be 410112 b, only 25% higher
than the 3-outcome predictor, but the accuracy would be much higher.

There is another problem on the next page.
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Problem 2: The diagram below is of a bimodal predictor in which the BHT (branch history table)
can keep track of eight times as many branches as the BTB (branch target buffer). Some purple
text on the left explains that the BTB should only be updated for a branch that will be predicted
taken next time.
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Show two sets of branches. In the first set heeding the advice of that text improves performance.
In the other set a branch predictor that updates every time would do as well as one that updates
only for a branch that will be predicted taken the next time it is encountered. The solution should
look something like the sample below, but with the branch addresses, such as 0x12340, and outcome
patterns changed. Additional branches can be added to each set.

Solution on next page.
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First, the two branches need to collide, so change their addresses so they use the same BTB entry. That’s the case for
both sets below. (They use the same BTB entriy if bits 14:2 in the two are the same.) For that purple text to be effective
the predictor needs to know whether a colliding branch will be predicted taken and so the two branches need to use a
different BHT entry. So in Set 1 make sure bits 17:15 of the two branches are different (while keeping bits 14:2 the same).
Bias the first branch, B11, not-taken and the second branch, B12, taken. If the purple text is heeded then the predictor
won’t waste a BTB entry on B11 and so B12 can use the entry, which it needs for its target. If the purple text is ignored
on the Set 1 branches the predictor will correctly predict B12 taken, but the BTB entry will be for B11 and so there will
be no target (at least not a correct one).

Next consider Set 2. Because the two branches use the same BHT entry there is no way to reliably correctly predict
that B21 will be not-taken next time and so no way to prevent the B21 target from overwriting the B22 target in the
BTB.

# Set 1: Branches have same BTB entry but different BHT entries.

0x10000 B11: N N N N ...

0x18000 B12: T T T T ...

# Set 2: Branches have same BTB entry and same BHT entries.

0x100000 B21: N N N N ...

0x200000 B22: T T T T ...

5
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################################################################################

##

## LSU EE 4720 Spring 2024 Homework 1 -- SOLUTION
##

##

 # Assignment https://www.ece.lsu.edu/ee4720/2024/hw01.pdf

################################################################################

## Problem 1
#

#  Instructions: https://www.ece.lsu.edu/ee4720/2024/hw01.pdf

#

        .text

aadd1:   ## ASCII Add

        ## Register Usage

        #

        # CALL VALUES

        #  $a0: Address of the output buffer in which to write the result.

        #  $a1: Address of operand 1, an ASCII string.

        #  $a2: Address of operand 2, an ASCII string.

        #  $a3: Length of operands:

        #       Operand 1 length: bits 31:16

        #       Operand 2 length: bits 15:0

        #

        # RETURN VALUE

        #  $v0: Address of start of the result. Must be within output buffer.

        #

        # [✔] Can only modify these registers: $t0-$t9, $a0-$a3,  $v0,$v1

        # [✔] The fewer instructions executed, the better. But not a priority.

        # [✔] Write code clearly, comment for an expert MIPS programmer.

        # [✔] Do not use pseudoinstructions except for nop.

        srl $t8, $a3, 16         # Length of operand 1

        andi $t9, $a3, 0xffff    # Length of operand 2

        ## Problem 1 -- SOLUTION

        #

        #  This code just copies operand 1 into the output buffer.

        #  It does not perform addition. See the Problem 2 solution

        #  for code that adds to two operands together.

        addi $v0, $a0, 0  # Put address of copied operand (the result) in v0.

TRY_LOOP:

        lb $t0, 0($a1)         # Load a character from operand 1 ..

        sb $t0, 0($a0)         # .. and write it into the output buffer.

        addi $a0, $a0, 1       # Increment output buffer address.

        bne $t0, $0, TRY_LOOP  # Check whether operand 1 ends.

        addi $a1, $a1, 1       # Increment operand 1 address.

        #

        # Note that the addi $a1 above executes whether or not bne is taken.

        jr $ra
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        nop

################################################################################

## Problem 2
#

#  Instructions: https://www.ece.lsu.edu/ee4720/2024/hw01.pdf

#

        .text

aadd:   ## ASCII Add

        ## Register Usage

        #

        # CALL VALUES

        #  $a0: Address of the output buffer in which to write the result.

        #  $a1: Address of operand 1, an ASCII string.

        #  $a2: Address of operand 2, an ASCII string.

        #  $a3: Length of operands:

        #       Operand 1 length: bits 31:16

        #       Operand 2 length: bits 15:0

        #

        # RETURN VALUE

        #  $v0: Address of start of the result. Must be within output buffer.

        #

        # [✔] Write memory at a0 with string holding sum of a1 and a2 ..

        #     .. all are decimal integers in ASCII string representation.

        # [✔] Do not convert operands 1 and 2 to integer values ..

        #     .. operate on them as ASCII strings.

        #

        # [✔] Testbench should show zero errors.

        # [✔] Can only modify these registers: $t0-$t9, $a0-$a3,  $v0,$v1

        # [ ] The fewer instructions executed, the better. But not a priority.

        # [✔] Write code clearly, comment for an expert MIPS programmer.

        # [✔] Do not use pseudoinstructions except for nop.

        srl $t8, $a3, 16         # t8: Length of operand 1

        andi $t9, $a3, 0xffff    # t9: Length of operand 2

        ## SOLUTION -- Simple

        #

        # This solution was written to be easy to understand, rather

        # than to be fast. It is kept simple by having one main loop

        # and by not tossing instructions far from their natural place

        # for the sake of filling a delay slot.

        

        ## Performance Comparison

        #

        ## This (Simple) Solution

        #

        # Num Insn:    33  Correct:  1 + 1 = 2 

        # Num Insn:    53  Correct:  45 + 55 = 100 

        # Num Insn:   110  Correct:  999999 + 1 = 1000000 

        # Num Insn:   154  Correct:  765432 + 12345678 = 13111110 

        # Num Insn:   295  Correct:  184737252196092 + 8383352872579977 = 8568090124776069

        #
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        ## Fast Solution

        #

        # Num Insn:    30  Correct:  1 + 1 = 2 

        # Num Insn:    45  Correct:  45 + 55 = 100 

        # Num Insn:    62  Correct:  999999 + 1 = 1000000 

        # Num Insn:   113  Correct:  765432 + 12345678 = 13111110 

        # Num Insn:   217  Correct:  184737252196092 + 8383352872579977 = 856809

        ## SOLUTION

        # Write LSD of sum near the end of the output buffer. Assume

        # output buffer size is 20 characters.

        #

        addi $v0, $a0, 20    # v0: Pointer into output buffer. Start at end.

        # Write null terminator into output buffer.

        #

        addi $v0, $v0, -1

        sb $0, 0($v0)        # Write sum's null terminator.

        # Compute the address of the null terminator of operands 1 and 2.

        #

        add $t1, $a1, $t8    # t1: Operand 1 pointer.  Set to null pointer addr.

        add $t2, $a2, $t9    # t2: Operand 2 pointer.  Set to null pointer addr.

        # Initialize a carry register and a handy constant.

        #

        addi $t5, $0, 0      # t5: The carry register. Initialize to zero.

        addi $v1, $0, 57     # v1: A handy constant. ASCII character '9'

        ## Main Loop

        #

        # Each iteration of the main loop adds a digit of operand 1

        # (if any) to a digit of operand 2 (if any) plus the carry

        # from the previous iteration (carried by t5).

        # 

        # Example values are shown in comments prefixed with Eg. In

        # particular they show the operand 1 digit as '4', the operand

        # 2 digit as '7', and a carry in (t5 is 1).

LOOP:

        beq $t1, $a1, OP2_CHECK  # If no more digits of op 1, check operand 2.

        addi $t3, $0, 48     # Put ASCII '0' in t3. Used only if beq taken.

        addi $t1, $t1, -1    # Decrement operand 1 pointer.

        lb $t3, 0($t1)       # Load an ASCII digit of operand 1

                             # Eg: t3 <- 52  or  '4' (ASCII)

OP2_CHECK:

        beq $t2, $a2, DIGITS_ADD  # If no more digits of op 2, start adding.

        addi $t4, $0, 0      # Put value 0 in t4. Used only if beq taken.

        addi $t2, $t2, -1    # Decrement operand 2 pointer

        lb $t4, 0($t2)       # Load an ASCII digit of operand 2

                             # Eg: t4 <- 55  or  '7' (ASCII)

        addi $t4, $t4, -48   # Convert operand 2 from ASCII to an integer.

                             # Eg: t4 <- 7

DIGITS_ADD:
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        add $t3, $t3, $t4    # Add operand 1 (ASCII) to operand 2 (integer).

                             # Eg: t3 <- 52 + 7 = 59  or  '4' + 7 = ';'

        add $t3, $t3, $t5    # Add carry to ASCII digit.

                             # Eg: t3 <- 59 + 1 = 60  or  ';' + 1 = '<'

        slt $t5, $v1, $t3    # Check whether ASCII digit >9 (whether carried)

                             # Eg: t5 <- 57 < 60 = 1 (true)  or  '9' < '<' = 1

        beq $t5, $0, No_CAR  # If so, skip digit adjustment.

        nop

        addi $t3, $t3, -10   # Digit adjustment: remove carried 10.

                             # Eg: t3 <- 60 - 10 = 50  or  ';' - 10 = '2'

No_CAR:

        addi $v0, $v0, -1    # Decrement pointer ..

        bne $t1, $a1, LOOP   # If still more of operand 1, loop.

        sb $t3, 0($v0)       # .. but don't forget to  store digit of sum!

        bne $t2, $a2, OP2_CHECK  # If still more of operand 2, loop.

        addi $t3, $0, 48     # Put ASCII '0' in t3. Ignored if not taken

        # All digits of operand 1 and 2 have been examined. Just need

        # to check if there is a carry out.

        beq $t5, $0, DONE

        addi $t0, $0, 49     # ASCII '1'.  Ignored if taken.

        addi $v0, $v0, -1    # Decrement pointer ..

        jr $ra

        sb $t0, 0($v0)       # .. and write ASCII '1' just as we are returning!

DONE:

        jr $ra

        nop

################################################################################

## Problem 2 -- SOLUTION -- FASTER
#

#  Instructions: https://www.ece.lsu.edu/ee4720/2024/hw01.pdf

#

        .text

faadd:  ## ASCII Add

        ## Register Usage

        #

        # CALL VALUES

        #  $a0: Address of the output buffer in which to write the result.

        #  $a1: Address of operand 1, an ASCII string.

        #  $a2: Address of operand 2, an ASCII string.

        #  $a3: Length of operands:

        #       Operand 1 length: bits 31:16

        #       Operand 2 length: bits 15:0

        #

        # RETURN VALUE

        #  $v0: Address of start of the result. Must be within output buffer.

        #
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        # [✔] Write memory at a0 with string holding sum of a1 and a2 ..

        #     .. all are decimal integers in ASCII string representation.

        # [✔] Do not convert operands 1 and 2 to integer values ..

        #     .. operate on them as ASCII strings.

        #

        # [✔] Testbench should show zero errors.

        # [✔] Can only modify these registers: $t0-$t9, $a0-$a3,  $v0,$v1

        # [✔] The fewer instructions executed, the better. But not a priority.

        # [✔] Write code clearly, comment for an expert MIPS programmer.

        # [✔] Do not use pseudoinstructions except for nop.

        srl $t8, $a3, 16         # t8: Length of operand 1

        andi $t9, $a3, 0xffff    # t9: Length of operand 2

        ## SOLUTION -- FAST

        #

        # This solution was written to be fast. The key to making the

        # code fast is by using three specialized loops. Each loop

        # uses fewer instructions than the all-purpose loop in the

        # simple solution. The first specialized loop is for when

        # operand 1 is no shorter than operand 2, and iterates only

        # while there are remaining digits in both operands. The loop

        # exit test only looks at operand 2. The second specialized

        # loop handles the remaining digits of operand 1 when there is

        # a carry. The third specialized loop handles the remaining

        # digits of operand 1 when there is no carry: all it does is

        # copy digits from operand 1 to the output buffer.

        

        ## Performance Comparison

        #

        ## Simple Solution

        #

        # Num Insn:    33  Correct:  1 + 1 = 2 

        # Num Insn:    53  Correct:  45 + 55 = 100 

        # Num Insn:   110  Correct:  999999 + 1 = 1000000 

        # Num Insn:   154  Correct:  765432 + 12345678 = 13111110 

        # Num Insn:   295  Correct:  184737252196092 + 8383352872579977 = 8568090124776069

        #

        ## This (Fast) Solution

        #

        # Num Insn:    30  Correct:  1 + 1 = 2 

        # Num Insn:    45  Correct:  45 + 55 = 100 

        # Num Insn:    62  Correct:  999999 + 1 = 1000000 

        # Num Insn:   113  Correct:  765432 + 12345678 = 13111110 

        # Num Insn:   217  Correct:  184737252196092 + 8383352872579977 = 8568090124776069 

        ## SOLUTION

        ## Insure that Operand 2 Length is Shorter or Same as Operand 1

        slt $t0, $t8, $t9    # Check whether operand 1 shorter than 1

        beq $t0, $0, OP1_LARGER

        addi $v1, $0, 57     # v1: A handy constant. ASCII character '9'
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        # Operand 2 length is *longer* than operand 1 ..

        # .. so the code below will swap them.

        #

        addi $t0, $a1, 0

        addi $a1, $a2, 0         # a1: Address of start of longer operand.

        addi $a2, $t0, 0         # a2: Address of start of shorter operand.

        andi $t8, $a3, 0xffff    # t8: Length of longer operand.

        srl $t9, $a3, 16         # t9: Length of shorter operand.

        #

        # The swap took five instructions. It would only take two

        # instructions if MIPS had a swap instruction.

OP1_LARGER:

        # Operand 1 is now longer, perhaps because we swapped them.

        # Write LSD of sum near the end of the output buffer. Assume

        # output buffer size is 20 characters.

        #

        addi $t7, $a0, 19    # Address in the middle of the output buffer.

        sb $0, 1($t7)        # Write sum's null terminator.

        # Compute the address of the null terminator of operands 1 and 2.

        #

        add $t1, $a1, $t8    # t1: Operand 1 pointer.  Set to null pointer addr.

        add $t2, $a2, $t9    # t2: Operand 2 pointer.  Set to null pointer addr.

        # Initialize a carry register.

        #

        addi $t5, $0, 0      # t5: The carry register. Initialize to zero.

        ## Main Loop

        #

        # Each iteration of the main loop adds a digit of operand 1 to

        # a digit of operand 2. The number of iterations of the main

        # loop is equal to the length of operand 2 (the shorter

        # operand).

        #

        # Comments prefixed with Eg: show example values. In

        # particular they show the operand 1 digit as '4', the operand 2

        # digit as '7', and a carry in (t5 is 1).

MLOOP:

        addi $t1, $t1, -1    # Decrement operand 1 pointer.

        addi $t2, $t2, -1    # Decrement operand 2 pointer

        lb $t3, 0($t1)       # Load an ASCII digit of operand 1

                             # Eg: t3 <- 52  or  '4' (ASCII)

        lb $t4, 0($t2)       # Load an ASCII digit of operand 2

                             # Eg: t4 <- 55  or  '7' (ASCII)

        addi $t4, $t4, -48   # Convert operand 2 from ASCII to an integer.

                             # Eg: t4 <- 7

        add $t3, $t3, $t4    # Add operand 1 (ASCII) to operand 2 (integer).

                             # Eg: t3 <- 52 + 7 = 59  or  '4' + 7 = ';'

        add $t3, $t3, $t5    # Add carry to ASCII digit.

                             # Eg: t3 <- 59 + 1 = 60  or  ';' + 1 = '<'

        slt $t5, $v1, $t3    # Check whether ASCII digit >9 (whether carried)
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                             # Eg: t5 <- 57 < 60 = 1 (true)  or  '9' < '<' = 1

        beq $t5, $0, NO_CAR  # If so, skip digit adjustment.

        addi $t7, $t7, -1    # Either way, decrement output buffer pointer.

        addi $t3, $t3, -10   # Digit adjustment: remove carried 10.

                             # Eg: t3 <- 60 - 10 = 50  or  ';' - 10 = '2'

NO_CAR:

        bne $t2, $a2, MLOOP  # If still more of operand 2, loop.

        sb $t3, 1($t7)       # Either way, store digit of sum.

        #

        # Notice that the offset in "sb $t3, 1($t7)" is 1. That's

        # because t7 is decremented *before* the sb is executed but we

        # want to use the value in t7 before the decrement. To get

        # that we add 1 (undoing the decrement).

        ## No More Operand 2 Digits

        # If there is no carry out, jump to code that copies the

        # remainder of operand 1 (if any) to the output buffer.

        #

        beq $t5, $0, NO_MORE_CARRYS_EVER_CHECK_OP1

        addi $t0, $0, 48     # t0: Prepare ASCII '0'. Not needed if taken.

        # If there are no more operand 1 digits, jump to the code that

        # writes the final carry out digit (a '1').

        # 

        beq $t1, $a1, ULTIMATE_CARRY

        addi $t1, $t1, -1    # Decrement operand pointer. Not needed if taken.

        ## Operand 1 Carry Loop

        #

        # We're past the end of operand 2. Each iteration adds the

        # carry to a digit of operand 1 and writes the sum to the

        # output buffer. The loop ends when there is no carry or we

        # reach the MSD of operand 1, whichever happens first. Notice

        # that there is only a carry when the operand digit is '9',

        # and that while in the loop the only digit written is '0'.

        #

OP1_CARRY_LOOP:

        lb $t3, 0($t1)       # Load next digit from operand 1.

        # If digit is not '9' (v1) then branch to no-more-carries loop.

        bne $t3, $v1, NO_MORE_CARRYS_EVER_STORE_DIGIT 

        addi $t7, $t7, -1

        sb $t0, 1($t7)       # Write digit '0' (t0).

        bne $t1, $a1, OP1_CARRY_LOOP  # Check whether there's more of operand 1.

        addi $t1, $t1, -1

ULTIMATE_CARRY:              # One final carry out to write.

        addi $t0, $0, 49     # ASCII '1'

        sb $t0, 0($t7)       # Write ASCII '1'.

        jr $ra

        addi $v0, $t7, 0

        ## Operand 1 Copy Loop
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        #

        # At this point there is no carry in, and so there can't be a

        # carry out so just copy the remainder of operand 1 to the

        # output buffer.

        # We can arrive at this loop from the OP1_CARRY_LOOP. Before

        # entering the OP1_COPY_LOOP we need to store a leftover sum

        # digit from the carry loop.

        #

NO_MORE_CARRYS_EVER_STORE_DIGIT:

        addi $t3, $t3, 1     # Add carry on to digit.

        sb $t3, 1($t7)       # Store that leftover digit from the carry loop.

        addi $t7, $t7, -1

        bne $t1, $a1, OP1_COPY_LOOP  # Enter copy loop if there is more to copy.

        addi $t1, $t1, -1

        jr $ra

        addi $v0, $t7, 2

OP1_COPY_LOOP:

        lb $t3, 0($t1)

        sb $t3, 1($t7)

NO_MORE_CARRYS_EVER_CHECK_OP1:

        addi $t7, $t7, -1

        bne $t1, $a1, OP1_COPY_LOOP

        addi $t1, $t1, -1

        jr $ra

        addi $v0, $t7, 2

##############################################################################

#

 ## Test Code

#

#  The code below calls the lookup routine.

.text

tb_strlen:

        ## Register Usage

        #

        # $a0: Address of first character of string.

        # $v0: Return value, the length of the string.

        #

        addi $v0, $a0, 1        # Set aside a copy of the string start + 1.

STRLEN_LOOP:

        lbu $t0, 0($a0)           # Load next character in string into $t0

        bne $t0, $0, STRLEN_LOOP  # If it's not zero, continue

        addi $a0, $a0, 1          # Increment address. (Note: Delay slot insn.)

        jr $ra

        sub $v0, $a0, $v0
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strnext:

        ## Not written for general use.

        # CALL VALUE

        #  $s4: Address of a string.

        # RETURN VALUE

        #  $s4: One plus the address of the null terminator.

SN_LOOP:

        lb $t0, 0($s4)

        bne $t0, $0, SN_LOOP

        addi $s4, $s4, 1

        jr $ra

        nop

        .data

.globl table_numbers
table_numbers:

        .asciiz "12321", "0", "12321"

        .asciiz "1", "1", "2"

        .asciiz "45", "55", "100"

        .asciiz "9007", "2", "9009"

        .asciiz "5107", "8", "5115"

        .asciiz "3", "9002",  "9005"

        .asciiz "789", "67", "856"

        .asciiz "67", "789", "856"

        .asciiz "999999", "1", "1000000"

        .asciiz "765432", "12345678", "13111110"

        .asciiz "184737252196092", "8383352872579977", "8568090124776069"

table_numbers_end:

        .byte 0,0,0

        .align 4

buffer_result:

        .space 20

buffer_result_end:

        .space 4

text_v0_too_low:

        .asciiz "** $v0 too low **"

text_v0_too_high:

        .asciiz "** $v0 too high **"

text_correct:

        .asciiz "Correct"

text_wrong:

        .asciiz "Wrong  "

msg_result:

        .asciiz "Num Insn: %/s3/5d  %/t0/s:  %/s1/s + %/s2/s = %/s0/s \n"

msg_end:

        .asciiz "TOTALS:   Correct: %/s6/3d    Wrong: %/s5/2d\n"

        .align 4
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stack:

        .space 256

stack_end:

        .text

        .globl __start

        # s0: result str to show in output.

        # s1: first operand

        # s2: second operand

        # s3: insn count before call

        # s4: pointer into table_numbers

        # s5: n errs

        # s6: n corr

        # s7: aadd output

__start:

        mtc0 $0, $22            # Pause tracing.

        la $s4, table_numbers

        addi $s5, $0, 0         # Number of errors.

        addi $s6, $0, 0        # Number correct.

TB_LOOP:

        # Put address of next operands in $a1 and $a2

        jal strnext

        addi $s1, $s4, 0

        addi $s2, $s4, 0

        # Write output buffer with X's.

        #

        la $t3, buffer_result

        la $t4, buffer_result_end

        lui $t1, 0x5858       # Two upper-case Xs.

        ori $t1, $t1, 0x5858  # Two upper-case Xs.

TB_ZLOOP:

        sw $t1, 0($t3)

        bne $t3, $t4, TB_ZLOOP

        addi $t3, $t3, 4

        sw $0, -4($t3)

        # Compute length of operands.

        jal tb_strlen

        addi $a0, $s1, 0

        sll $a3, $v0, 16  # Length of first operand in upper 16 bits.

        jal tb_strlen

        addi $a0, $s2, 0

        or $a3, $a3, $v0  # Length of second operand.

        la $a0, buffer_result

        addi $a1, $s1, 0

        addi $a2, $s2, 0

        addi $v0, $0, -1

        mtc0 $v0, $22           # Resume tracing. (No effect if not stepping.)
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        jal aadd

        mfc0 $s3, $9            # Copy current instruction count. (Before.)

        mfc0 $t0, $9            # Copy current instruction count. (After.)

        mtc0 $0, $22            # Pause tracing.

        sub $s3, $t0, $s3

        addi $s7, $v0, 0        # Make a copy of the result starting point.

        # Get address of correct result. (Will be in $s4)

        #

        jal strnext

        nop

        la $t1, buffer_result

        sub $t0, $s7, $t1

        bgez $t0, TB_V0_LOW_OK

        nop

        la $s0, text_v0_too_low

        j TB_FOUND_ERR

        nop

TB_V0_LOW_OK:

        la $t1, buffer_result_end

        sub $t0, $t1, $s7

        bgez $t0, TB_V0_HIGH_OK

        nop

        la $s0, text_v0_too_high

        j TB_FOUND_ERR

        nop

TB_V0_HIGH_OK:

        addi $s0, $s7, 0

        # Check result.

        addi $t0, $s4, 0  # Correct value from table.

        addi $a0, $s7, 0  # Value of v0 returned by aad.

TB_CHLOOP:

        lb $t1, 0($t0)  # From table of correct results.

        lb $t2, 0($a0)  # Written by aadd

        bne $t1, $t2, TB_FOUND_ERR

        addi $t0, $t0, 1

        bne $t1, $0, TB_CHLOOP

        addi $a0, $a0, 1

        # Result is correct!

        la $t0, text_correct

        j TB_REPORT_RESULT

        addi $s6, $s6, 1

TB_FOUND_ERR:

        la $t0, text_wrong

        addi $s5, $s5, 1

TB_REPORT_RESULT:
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        la $a0, msg_result

        addi $v0, $0, 11

        syscall

        # Move to first operand of next problem.

        jal strnext

        nop

        la $t1, table_numbers_end

        slt $t0, $s4, $t1

        bne $t0, $0, TB_LOOP

        nop

        # Report final results

        #

        la $a0, msg_end

        addi $v0, $0, 11

        syscall

        addi $v0, $0, 10

        syscall

        nop
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################################################################################

##

## LSU EE 4720 Spring 2024 Homework 1 -- SOLUTION
##

##

 # Assignment https://www.ece.lsu.edu/ee4720/2024/hw01.pdf

################################################################################

## Problem 1 -- SOLUTION
#

        .text

aadd1:  ## Note: Not called by testbench.

        ## Register Usage

        #

        # CALL VALUES

        #  $a0: Address of the output buffer in which to write the result.

        #  $a1: Address of operand 1, an ASCII string.

        #  $a2: Address of operand 2, an ASCII string.

        #  $a3: Length of operands:

        #       Operand 1 length: bits 31:16

        #       Operand 2 length: bits 15:0

        #

        # RETURN VALUE

        #  $v0: Address of start of the result. Must be within output buffer.

        #

        # [✔] Can only modify these registers: $t0-$t9, $a0-$a3,  $v0,$v1

        # [✔] The fewer instructions executed, the better. But not a priority.

        # [✔] Write code clearly, comment for an expert MIPS programmer.

        # [✔] Do not use pseudoinstructions except for nop.

        srl $t8, $a3, 16         # Length of operand 1

        andi $t9, $a3, 0xffff    # Length of operand 2

        ## Problem 1 -- SOLUTION

        #

        #  This code just copies operand 1 into the output buffer.

        #  It does not perform addition. See the Problem 2 solutions

        #  for code that adds to two operands together.

        addi $v0, $a0, 0  # Put address of copied operand (the result) in v0.

TRY_LOOP:

        lb $t0, 0($a1)         # Load a character from operand 1 ..

        sb $t0, 0($a0)         # .. and write it into the output buffer.

        addi $a0, $a0, 1       # Increment output buffer address.

        bne $t0, $0, TRY_LOOP  # Check whether operand 1 ends.

        addi $a1, $a1, 1       # Increment operand 1 address.

        #

        # Note that the addi $a1 above executes whether or not bne is taken.

        jr $ra

        nop
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################################################################################

## Problem 2 -- SOLUTION -- Simple
#

        .text

aadd:   ## ASCII Add

        ## Register Usage

        #

        # CALL VALUES

        #  $a0: Address of the output buffer in which to write the result.

        #  $a1: Address of operand 1, an ASCII string.

        #  $a2: Address of operand 2, an ASCII string.

        #  $a3: Length of operands:

        #       Operand 1 length: bits 31:16

        #       Operand 2 length: bits 15:0

        #

        # RETURN VALUE

        #  $v0: Address of start of the result. Must be within output buffer.

        #

        # [✔] Write memory at a0 with string holding sum of a1 and a2 ..

        #     .. all are decimal integers in ASCII string representation.

        # [✔] Do not convert operands 1 and 2 to integer values ..

        #     .. operate on them as ASCII strings.

        #

        # [✔] Testbench should show zero errors.

        # [✔] Can only modify these registers: $t0-$t9, $a0-$a3,  $v0,$v1

        # [ ] The fewer instructions executed, the better. But not a priority.

        # [✔] Write code clearly, comment for an expert MIPS programmer.

        # [✔] Do not use pseudoinstructions except for nop.

        srl $t8, $a3, 16         # t8: Length of operand 1

        andi $t9, $a3, 0xffff    # t9: Length of operand 2

        ## SOLUTION -- Simple

        #

        # This solution was written to be easy to understand rather

        # than to be fast. It is kept simple by having one main loop

        # and by not tossing instructions far from their natural place

        # just for the sake of filling a delay slot. A fast solution

        # (which does toss instructions around) follows this simple

        # one.

        

        ## Performance Comparison

        #

        ## This (Simple) Solution

        #

        # Num Insn:    33  Correct:  1 + 1 = 2 

        # Num Insn:    53  Correct:  45 + 55 = 100 

        # Num Insn:   110  Correct:  999999 + 1 = 1000000 

        # Num Insn:   154  Correct:  765432 + 12345678 = 13111110 

        # Num Insn:   295  Correct:  184737252196092 + 8383352872579977 = 8568090124776069

        #

        ## Fast Solution (Further Below)

        #
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        # Num Insn:    30  Correct:  1 + 1 = 2 

        # Num Insn:    45  Correct:  45 + 55 = 100 

        # Num Insn:    62  Correct:  999999 + 1 = 1000000 

        # Num Insn:   113  Correct:  765432 + 12345678 = 13111110 

        # Num Insn:   217  Correct:  184737252196092 + 8383352872579977 = 856809

        ## SOLUTION -- Simple

        # Write LSD of sum near the end of the output buffer. Assume

        # output buffer size is 20 characters.

        #

        addi $v0, $a0, 20    # v0: Pointer into output buffer. Start at end.

        # Write null terminator into output buffer.

        #

        addi $v0, $v0, -1

        sb $0, 0($v0)        # Write sum's null terminator.

        # Compute the address of the null terminator of operands 1 and 2.

        #

        add $t1, $a1, $t8    # t1: Operand 1 pointer.  Set to null pointer addr.

        add $t2, $a2, $t9    # t2: Operand 2 pointer.  Set to null pointer addr.

        # Initialize a carry register and a handy constant.

        #

        addi $t5, $0, 0      # t5: The carry register. Initialize to zero.

        addi $v1, $0, 57     # v1: A handy constant: the ASCII character '9'

        ## Main Loop

        #

        # Each iteration of the main loop adds a digit of operand 1

        # (if any remain) to a digit of operand 2 (if any remain) plus

        # the carry from the previous iteration (carried by t5).

        # 

        # Example values are shown in comments prefixed with Eg. In

        # particular they show the operand 1 digit as '4', the operand

        # 2 digit as '7', and a carry in (t5 is 1).

LOOP:

        beq $t1, $a1, OP2_CHECK  # If no more digits of op 1, check operand 2.

        addi $t3, $0, 48     # Put ASCII '0' in t3. Used only if beq taken.

        addi $t1, $t1, -1    # Decrement operand 1 pointer.

        lb $t3, 0($t1)       # Load the next ASCII digit of operand 1

                             # Eg: t3 <- 52  or  '4' (ASCII)

OP2_CHECK:

        beq $t2, $a2, DIGITS_ADD  # If no more digits of op 2, start adding.

        addi $t4, $0, 0      # Put value 0 in t4. Used only if beq taken.

        addi $t2, $t2, -1    # Decrement operand 2 pointer

        lb $t4, 0($t2)       # Load the next ASCII digit of operand 2

                             # Eg: t4 <- 55  or  '7' (ASCII)

        addi $t4, $t4, -48   # Convert operand 2 from ASCII to an integer.

                             # Eg: t4 <- 55 - 48 = 7 (integer)

DIGITS_ADD:

        add $t3, $t3, $t4    # Add operand 1 (ASCII) to operand 2 (integer).

                             # Eg: t3 <- 52 + 7 = 59  or  '4' + 7 = ';'
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        add $t3, $t3, $t5    # Add carry to ASCII digit.

                             # Eg: t3 <- 59 + 1 = 60  or  ';' + 1 = '<'

        slt $t5, $v1, $t3    # Check whether ASCII digit >9 (whether carried)

                             # Eg: t5 <- 57 < 60 = 1 (true)  or  '9' < '<' = 1

        beq $t5, $0, No_CAR  # If so, skip digit adjustment.

        nop                  # Oh my, an unfilled delay slot.

        addi $t3, $t3, -10   # Subtract 10, t5 will carry it to next iteration.

                             # Eg: t3 <- 60 - 10 = 50  or  ';' - 10 = '2'

No_CAR:

        addi $v0, $v0, -1    # Decrement output buffer pointer ..

        bne $t1, $a1, LOOP   # If still more of operand 1, loop.

        sb $t3, 0($v0)       # .. but don't forget to store digit of sum!

        bne $t2, $a2, OP2_CHECK  # If still more of operand 2, loop.

        addi $t3, $0, 48     # Put ASCII '0' in t3. Ignored if not taken

        # At this point all digits of operand 1 and 2 have been

        # examined. Just need to check if there is a final carry out.

        beq $t5, $0, DONE

        addi $t0, $0, 49     # ASCII '1'.  Ignored if taken.

        addi $v0, $v0, -1    # Decrement pointer ..

        jr $ra

        sb $t0, 0($v0)       # .. and write ASCII '1' just as we are returning!

DONE:

        jr $ra

        nop

################################################################################

## Problem 2 -- SOLUTION -- Fast
#

#

        .text

faadd:  ## ASCII Add

        ## Register Usage

        #

        # CALL VALUES

        #  $a0: Address of the output buffer in which to write the result.

        #  $a1: Address of operand 1, an ASCII string.

        #  $a2: Address of operand 2, an ASCII string.

        #  $a3: Length of operands:

        #       Operand 1 length: bits 31:16

        #       Operand 2 length: bits 15:0

        #

        # RETURN VALUE

        #  $v0: Address of start of the result. Must be within output buffer.

        #

        # [✔] Write memory at a0 with string holding sum of a1 and a2 ..

        #     .. all are decimal integers in ASCII string representation.

        # [✔] Do not convert operands 1 and 2 to integer values ..
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        #     .. operate on them as ASCII strings.

        #

        # [✔] Testbench should show zero errors.

        # [✔] Can only modify these registers: $t0-$t9, $a0-$a3,  $v0,$v1

        # [✔] The fewer instructions executed, the better. But not a priority.

        # [✔] Write code clearly, comment for an expert MIPS programmer.

        # [✔] Do not use pseudoinstructions except for nop.

        srl $t8, $a3, 16         # t8: Length of operand 1

        andi $t9, $a3, 0xffff    # t9: Length of operand 2

        ## SOLUTION -- Fast

        #

        # This solution was written to be fast. The key to making the

        # code fast is the use of three specialized loops. Each

        # specialized loop uses fewer instructions than the

        # all-purpose loop in the simple solution. The first

        # specialized loop is used as long as both operands have

        # digits remaining, and it only checks for the end of operand

        # 2. So if operand 1 is shorter than operand 2 the operands

        # are swapped before entering the first loop. The second

        # specialized loop handles the remaining digits of operand 1

        # until there is no carry. The third specialized loop handles

        # the remaining digits of operand 1 when there is no carry:

        # all it does is copy digits from operand 1 to the output

        # buffer.

        #

        # In addition to the three specialized loops, performance is

        # increased by filling more delay slots.

        #

        # Note that for this assignment, and this assignment ONLY,

        # performance is synonymous with the number of executed

        # instructions.

        

        ## Performance Comparison

        #

        ## Simple Solution (Further Above)

        #

        # Num Insn:    33  Correct:  1 + 1 = 2 

        # Num Insn:    53  Correct:  45 + 55 = 100 

        # Num Insn:   110  Correct:  999999 + 1 = 1000000 

        # Num Insn:   154  Correct:  765432 + 12345678 = 13111110 

        # Num Insn:   295  Correct:  184737252196092 + 8383352872579977 = 8568090124776069

        #

        ## This (Fast) Solution

        #

        # Num Insn:    30  Correct:  1 + 1 = 2 

        # Num Insn:    45  Correct:  45 + 55 = 100 

        # Num Insn:    62  Correct:  999999 + 1 = 1000000 

        # Num Insn:   113  Correct:  765432 + 12345678 = 13111110 

        # Num Insn:   217  Correct:  184737252196092 + 8383352872579977 = 8568090124776069 

        ## Insure that Operand 2 Length is Shorter or Same as Operand 1
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        slt $t0, $t8, $t9    # Check whether operand 1 shorter than 1

        beq $t0, $0, OP1_LARGER

        addi $v1, $0, 57     # v1: A handy constant. ASCII character '9'

        # Operand 2 length is *longer* than operand 1 ..

        # .. so the code below will swap them.

        #

        addi $t0, $a1, 0

        addi $a1, $a2, 0         # a1: Address of start of longer operand.

        addi $a2, $t0, 0         # a2: Address of start of shorter operand.

        andi $t8, $a3, 0xffff    # t8: Length of longer operand.

        srl $t9, $a3, 16         # t9: Length of shorter operand.

        #

        # The swap took five instructions. It would only take two

        # instructions if MIPS had a swap instruction.

OP1_LARGER:

        # Operand 1 is now longer, perhaps because we swapped them.

        # Write LSD of sum near the end of the output buffer. Assume

        # output buffer size is 20 characters.

        #

        addi $t7, $a0, 19    # t7: Output buffer pointer. Init to LSD address.

        sb $0, 1($t7)        # Write sum's null terminator.

        # Compute the address of the null terminator of operands 1 and 2.

        #

        add $t1, $a1, $t8    # t1: Operand 1 pointer.  Set to null pointer addr.

        add $t2, $a2, $t9    # t2: Operand 2 pointer.  Set to null pointer addr.

        # Initialize a carry register.

        #

        addi $t5, $0, 0      # t5: The carry register. Initialize to zero.

        ## Main Loop

        #

        # Each iteration of the main loop adds a digit of operand 1 to

        # a digit of operand 2. The number of iterations of the main

        # loop is equal to the length of operand 2 (which can't be

        # longer than operand 1).

        #

        # Comments prefixed with Eg: show example values. In

        # particular they show the operand 1 digit as '4', the operand 2

        # digit as '7', and a carry in (t5 is 1).

MLOOP:

        addi $t1, $t1, -1    # Decrement operand 1 pointer.

        addi $t2, $t2, -1    # Decrement operand 2 pointer

        lb $t3, 0($t1)       # Load next ASCII digit of operand 1

                             # Eg: t3 <- 52  or  '4' (ASCII)

        lb $t4, 0($t2)       # Load next ASCII digit of operand 2

                             # Eg: t4 <- 55  or  '7' (ASCII)

        addi $t4, $t4, -48   # Convert operand 2 from ASCII to an integer.

                             # Eg: t4 <- 7

        add $t3, $t3, $t4    # Add operand 1 (ASCII) to operand 2 (integer).
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                             # Eg: t3 <- 52 + 7 = 59  or  '4' + 7 = ';'

        add $t3, $t3, $t5    # Add carry to ASCII digit.

                             # Eg: t3 <- 59 + 1 = 60  or  ';' + 1 = '<'

        slt $t5, $v1, $t3    # Check whether ASCII digit >9 (whether carried)

                             # Eg: t5 <- 57 < 60 = 1 (true)  or  '9' < '<' = 1

        beq $t5, $0, NO_CAR  # If no carry, skip digit adjustment.

        addi $t7, $t7, -1    # Either way, decrement output buffer pointer.

        addi $t3, $t3, -10   # Digit adjustment: remove carried 10.

                             # Eg: t3 <- 60 - 10 = 50  or  ';' - 10 = '2'

NO_CAR:

        bne $t2, $a2, MLOOP  # If still more of operand 2, loop.

        sb $t3, 1($t7)       # Either way, store digit of sum.

        #

        # Notice that the offset in "sb $t3, 1($t7)" is 1. That's

        # because t7 is decremented *before* the sb is executed but we

        # want to use the value in t7 before the decrement. To get

        # that we add 1 (undoing the decrement).

        ## No More Operand 2 Digits

        # If there is no carry out, jump to code that copies the

        # remainder of operand 1 (if any) to the output buffer.

        #

        beq $t5, $0, OP1_COPY_ITER_TEST  # Jump to middle of loop.

        addi $t0, $0, 48     # t0: Prepare ASCII '0'. Not needed if taken.

        # If there are no more operand 1 digits, jump to the code that

        # writes the final carry out digit (a '1').

        # 

        beq $t1, $a1, ULTIMATE_CARRY

        addi $t1, $t1, -1    # Decrement operand pointer. Not needed if taken.

        ## Operand 1 Carry Loop

        #

        # We're past the end of operand 2 and we know there is a carry

        # in. Each iteration of the Operand 1 Carry Loop adds the

        # carry to a digit of operand 1 and writes the sum to the

        # output buffer. The loop ends when there is no carry or we

        # reach the MSD of operand 1, whichever happens first.

        #

OP1_CARRY_LOOP:

        lb $t3, 0($t1)       # Load next digit from operand 1.

        # If digit is not '9' (v1) then prepare to enter operand 1 copy loop.

        bne $t3, $v1, OP1_COPY_PROLOGUE

        addi $t7, $t7, -1

        sb $t0, 1($t7)       # Write digit '0' (t0).

        bne $t1, $a1, OP1_CARRY_LOOP  # Check whether there's more of operand 1.

        addi $t1, $t1, -1

ULTIMATE_CARRY:              # One final carry out to write.

        addi $t0, $0, 49     # ASCII '1'

        sb $t0, 0($t7)       # Write ASCII '1'.

        jr $ra
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        addi $v0, $t7, 0

        # We can arrive at this loop from the OP1_CARRY_LOOP. Before

        # entering the OP1_COPY_LOOP we need to store a leftover sum

        # digit from the carry loop.

        #

OP1_COPY_PROLOGUE:

        addi $t3, $t3, 1     # Add carry on to digit.

        sb $t3, 1($t7)       # Store that leftover digit from the carry loop.

        addi $t7, $t7, -1

        bne $t1, $a1, OP1_COPY_LOOP  # Enter copy loop if there is more to copy.

        addi $t1, $t1, -1

        jr $ra

        addi $v0, $t7, 2

        ## Operand 1 Copy Loop

        #

        # At this point there is no carry in, and so there can't be a

        # carry out so just copy the remainder of operand 1 to the

        # output buffer.

OP1_COPY_LOOP:

        lb $t3, 0($t1)

        sb $t3, 1($t7)

OP1_COPY_ITER_TEST:

        addi $t7, $t7, -1

        bne $t1, $a1, OP1_COPY_LOOP

        addi $t1, $t1, -1

        jr $ra

        addi $v0, $t7, 2

##############################################################################

#

 ## Test Code

#

#  The code below calls the lookup routine.

.text

tb_strlen:

        ## Register Usage

        #

        # $a0: Address of first character of string.

        # $v0: Return value, the length of the string.

        #

        addi $v0, $a0, 1        # Set aside a copy of the string start + 1.

STRLEN_LOOP:

        lbu $t0, 0($a0)           # Load next character in string into $t0

        bne $t0, $0, STRLEN_LOOP  # If it's not zero, continue

        addi $a0, $a0, 1          # Increment address. (Note: Delay slot insn.)
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        jr $ra

        sub $v0, $a0, $v0

strnext:

        ## Not written for general use.

        # CALL VALUE

        #  $s4: Address of a string.

        # RETURN VALUE

        #  $s4: One plus the address of the null terminator.

SN_LOOP:

        lb $t0, 0($s4)

        bne $t0, $0, SN_LOOP

        addi $s4, $s4, 1

        jr $ra

        nop

        .data

.globl table_numbers
table_numbers:

        .asciiz "12321", "0", "12321"

        .asciiz "1", "1", "2"

        .asciiz "45", "55", "100"

        .asciiz "9007", "2", "9009"

        .asciiz "5107", "8", "5115"

        .asciiz "3", "9002",  "9005"

        .asciiz "789", "67", "856"

        .asciiz "67", "789", "856"

        .asciiz "999999", "1", "1000000"

        .asciiz "765432", "12345678", "13111110"

        .asciiz "184737252196092", "8383352872579977", "8568090124776069"

table_numbers_end:

        .byte 0,0,0

        .align 4

buffer_result:

        .space 20

buffer_result_end:

        .space 4

text_v0_too_low:

        .asciiz "** $v0 too low **"

text_v0_too_high:

        .asciiz "** $v0 too high **"

text_correct:

        .asciiz "Correct"

text_wrong:

        .asciiz "Wrong  "

msg_result:

        .asciiz "Num Insn: %/s3/5d  %/t0/s:  %/s1/s + %/s2/s = %/s0/s \n"

msg_end:

        .asciiz "TOTALS:   Correct: %/s6/3d    Wrong: %/s5/2d\n"

← → Spring 2024 ← → Homework 1 Homework Sol Code Sol Code hw01-sol.s.html

https://www.ece.lsu.edu/ee4720/2024/hw01-sol.s.html


aadd_name:

        .asciiz "Routine aadd - Simple"

faadd_name:

        .asciiz "Routine faadd - Fast"

msg_routine:

        .asciiz "\n** Running %/t3/s **\n"

rut_data: # Routine Under Test

        .word aadd

        .word aadd_name

        .word faadd

        .word faadd_name

        .word 0

        .word 0

        .align 4

rut_pos:

        .word rut_data

        .align 4

stack:

        .space 256

stack_end:

        .text

        .globl __start

        # s0: result str to show in output.

        # s1: first operand

        # s2: second operand

        # s3: insn count before call

        # s4: pointer into table_numbers

        # s5: n errs

        # s6: n corr

        # s7: aadd output

__start:

        mtc0 $0, $22            # Pause tracing.

RUT_LOOP:

        la $t0, rut_pos

        lw $t1, 0($t0)

        lw $t2, 0($t1)

        beq $t2, $0, RUT_EXIT

        lw $t3, 4($t1)

        sw $t2, 16($sp)

        addi $t1, $t1, 8

        sw $t1, 0($t0)

        la $a0, msg_routine

        addi $v0, $0, 11

        syscall
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        la $s4, table_numbers

        addi $s5, $0, 0         # Number of errors.

        addi $s6, $0, 0        # Number correct.

TB_LOOP:

        # Put address of next operands in $a1 and $a2

        jal strnext

        addi $s1, $s4, 0

        addi $s2, $s4, 0

        # Write output buffer with X's.

        #

        la $t3, buffer_result

        la $t4, buffer_result_end

        lui $t1, 0x5858       # Two upper-case Xs.

        ori $t1, $t1, 0x5858  # Two upper-case Xs.

TB_ZLOOP:

        sw $t1, 0($t3)

        bne $t3, $t4, TB_ZLOOP

        addi $t3, $t3, 4

        sw $0, -4($t3)

        # Compute length of operands.

        jal tb_strlen

        addi $a0, $s1, 0

        sll $a3, $v0, 16  # Length of first operand in upper 16 bits.

        jal tb_strlen

        addi $a0, $s2, 0

        or $a3, $a3, $v0  # Length of second operand.

        la $a0, buffer_result

        addi $a1, $s1, 0

        addi $a2, $s2, 0

        lw $t0, 16($sp)

        addi $v0, $0, -1

        mtc0 $v0, $22           # Resume tracing. (No effect if not stepping.)

        jalr $t0

        mfc0 $s3, $9            # Copy current instruction count. (Before.)

        mfc0 $t0, $9            # Copy current instruction count. (After.)

        mtc0 $0, $22            # Pause tracing.

        sub $s3, $t0, $s3

        addi $s7, $v0, 0        # Make a copy of the result starting point.

        # Get address of correct result. (Will be in $s4)

        #

        jal strnext

        nop

        la $t1, buffer_result

        sub $t0, $s7, $t1

        bgez $t0, TB_V0_LOW_OK

        nop
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        la $s0, text_v0_too_low

        j TB_FOUND_ERR

        nop

TB_V0_LOW_OK:

        la $t1, buffer_result_end

        sub $t0, $t1, $s7

        bgez $t0, TB_V0_HIGH_OK

        nop

        la $s0, text_v0_too_high

        j TB_FOUND_ERR

        nop

TB_V0_HIGH_OK:

        addi $s0, $s7, 0

        # Check result.

        addi $t0, $s4, 0  # Correct value from table.

        addi $a0, $s7, 0  # Value of v0 returned by aad.

TB_CHLOOP:

        lb $t1, 0($t0)  # From table of correct results.

        lb $t2, 0($a0)  # Written by aadd

        bne $t1, $t2, TB_FOUND_ERR

        addi $t0, $t0, 1

        bne $t1, $0, TB_CHLOOP

        addi $a0, $a0, 1

        # Result is correct!

        la $t0, text_correct

        j TB_REPORT_RESULT

        addi $s6, $s6, 1

TB_FOUND_ERR:

        la $t0, text_wrong

        addi $s5, $s5, 1

TB_REPORT_RESULT:

        la $a0, msg_result

        addi $v0, $0, 11

        syscall

        # Move to first operand of next problem.

        jal strnext

        nop

        la $t1, table_numbers_end

        slt $t0, $s4, $t1

        bne $t0, $0, TB_LOOP

        nop

        # Report final results

        #

        la $a0, msg_end

        addi $v0, $0, 11
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        syscall

        j RUT_LOOP

        nop

RUT_EXIT:

        addi $v0, $0, 10

        syscall

        nop
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LSU EE 4720 Homework 3 Solution Due: 28 March 2024

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find
a solution. It is the students’ responsibility to resolve frustrations and roadblocks quickly, and
hopefully with the satisfaction of making progress. There are plenty of old problems and solutions
to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

For the 2020 Final Exam, and other exams and solutions visit
https://www.ece.lsu.edu/ee4720/prev.html.

Problem 1 on the next page.

1
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Problem 1: Appearing below is the slightly lower cost MIPS implementation from the 2020
midterm exam. In the 2020 exam three EX-stage select signals were labeled, (A-C), here all five
are, (A-E). Below that is an incomplete pipeline execution diagram (it lacks a code fragment) and
a timing diagram showing values on the labeled select signals over time. In 2020 midterm exam
Problem 1(a) these signal values had to be found given a code fragment. For this problem, the
signal values are given. Write a code fragment that could have produced these signals. Feel free to
look at the solution to 2020 Problem 1(a) for help and practice.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv
IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

A B C

rt is src

D
E

D

E

�Write a program that could have resulted in these select signal values.

The solution appears below. Registers carrying dependencies are shown in upper case. The last instruction had to
be some kind of a store because the A and B signals, in cycle 5, indicated that a value bypassed from ME was needed, but
because C=1, that value could only be needed for the EX/ME.rtv latch, which is used for the store value.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7

addi R1, r2, 3 IF ID EX ME WB

sub r4, R1, r3 IF ID EX ME WB

add R5, R1, R1 IF ID EX ME WB

sw R5, 2(r3) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

A X 0 1 0

B X 1 0 0

C 1 0 0 1

# Cycle 0 1 2 3 4 5 6 7

D 1 X X 1

E 0 1 1 0

# Cycle 0 1 2 3 4 5 6 7

2
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Problem 2: Appearing below is the solution to 2020 Midterm Exam Problem 2, showing control
logic for those slightly lower cost bypass paths, with one unfortunate change. The bottom input

to the 3-input AND gate is supposed to connect to the rt is src logic block. Due to some defect

that input is stuck at 1. (This is known as a stuck-at fault.) This stuck-at fault is shown on the
diagram.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv
IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

A B C

rt is src

=' ME By

rt By

WB By

Stall

type R

=' ='

='

ME By
rt By

0
1

0
10

1

rs 25:21

rt 20:16

Stuck At 1
1'b1

Continued on Next Page
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�Write a code fragment that will not execute as intended on this hardware due to the stuck-at fault.
Note: In the original assignment the phrase “execute correctly” was used instead of “execute as
intended”.

Solution appears below. In the code fragment registers written with upper-case letters were specially chosen to
expose the flaw (by setting up certain dependencies). To understand the solution work out the select signal values (those
labeled A-E) in cycle 3. They should show that Stall is 1 when it should be 0, the problem that the code fragment
is exposing. The ori instruction is the victim in this code fragment, in that its control signals are wrong, including the
erroneous stall.

To expose the flaw three conditions have to be satisfied. These are explained briefly here, and in detail below.
Condition (1): The last instruction had to be a type I instruction that writes a register, ori is chosen here. Condition
(2): The same register number must be used rt register of the last instruction and the destination of the first (of three)
instruction. The first instruction is add and the matching register is r1. When the first two conditions are satisfied the
output of the 3-input AND gate and the rt By signal will be 1 when they should have been 0. Condition (3): There
must be a dependency between the second and third instructions. In the solution that dependence is carried by r4. The
second instruction is sub but any arithmetic or logical instruction will do. As a result of the third condition (combined
with the first two) there will be a stall that would not occur without the stuck-at fault.

Here is a more detailed explanation. The bottom input to the 3-input AND gate is stuck at 1. For something to go
wrong we need a situation in which the bottom input should have been 0. The bottom 3-input AND gate input connects
to rt is src , which is 0 when there is a type-I arithmetic or logical instruction in ID. In the solution below an ori r1,

r4, 7 is chosen, notice that it is in ID in cycle 3. The output of the 3-input AND gate is used to compute the rt By

signal (for the B mux) and to compute the stall signal. To cause execution to differ a code fragment must be found which
will result in Stall being 1 when it should have been 0. For that we need the output of the 3-input AND gate to be 1
(when it should have been 0) and for the upper input to the Stall (green) AND gate to be 1.

To get the output of the 3-input AND gate to be 1, we need a match between the rt register of the ori instruction
(r1) with the destination of the instruction in ME in cycle 3. To get that match an add r1, r2, r3 instruction is
chosen. The ori we have chosen will result in the middle input to the 3-input AND being 0, and so with the ori and
add instructions the 3-input AND gate output will be 1 when it should have been 0.

To get the Stall signal to be 1 when it should have been zero we need to set up conditions for an ME bypass
(legitimately, not due to the fault). As a result of the true ME bypass and the flaw-induced WB By there will be a stall
that would not occur otherwise. To get ME By to be 1 in cycle 3, the destination of the second instruction is chosen to
match the rs source of the ori. A sub r4, r5, r6 achieves this.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7

add R1, r2, r3 IF ID EX ME WB

sub R4, r5, r6 IF ID EX ME WB

ori R1, R4, 7 IF ID -> EX ME WB # Unnecessary stall in cycle 3.

As luck would have it this defect has occurred in a computer that’s on Mars. The computer can’t
be fixed, but it is possible to download new software to this computer.

�Can the software be re-written to avoid this stuck-at fault? �Explain.

No problem. Have your compiler people avoid type-I destination registers that match the destination of the instruction
two instructions back (the instruction before the previous one). In the solution to the previous part that would mean the
destination of the ori would need to be changed from r1 to some other free register, say r9. The change from r1 to
r9 would need also to be made in instructions that follow the ori.

4
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Problem 3: Appearing below is the slightly lower cost MIPS implementation, including the control
logic from the 2020 Midterm Exam solution. Design the control logic for the select signal labeled E.
Hint: Not much needs to be added if some existing logic is used. The SVG source for the diagram
can be found at https://www.ece.lsu.edu/ee4720/2024/hw03-lite-logic-e.svg.

�Design control logic for select signal E.

Solution appears below in blue, along with a code fragment to help explain the solution. The lower input of the E
mux is used if a bypass is needed from either ME or WB for the rs register. In the example code fragment that bypass is
from ME, from the add to the sub. There is already logic to detect the dependencies between the rs source and the two
preceding instructions. A new OR gate checks whether either dependence is present, producing the new rs Byp signal
which will be used for the E select signal. Of course, rs Byp is computed when the instruction needing the bypass (such
as sub) is in ID, so the signal is put through the ID/EX pipeline latch so that it can be used when the instruction is in
EX.

In the example below, E should be 1 for the sub instruction (due to dependence through rs register) but 0 for the
xor instruction (no dependence through the rs register). For the sub instruction the output of the new OR gate is 1
in cycle 2 (detecting the dependence carried by r1), the bypass is used when the sub is in EX, in cycle 3. For the xor
instruction the output of the new OR gate is 0 in cycle 3 (neither of the last two instructions writes r7, E doesn’t care
about the rt register, r4), the EX.rsv value is used when the xor is in EX, in cycle 4.

Common Errors: Signal E should be 1 only if there is a dependence through the rs register. It is wrong to
set E to 1 if there is a dependence with the rt register but not with the rs register.

Another common error was to connect the control logic directly to the multiplexor select signals. (I will not
show an example of this incorrect connection lest anyone remember the connection but not that its
wrong.) The control logic is computing select signals for the instruction in ID, those select signals will be used one cycle
later when the instruction is in EX, and for that reason they pass through the ID/EX pipeline latch. If those control
signals instead were to connect directly to the multiplexor select signals they would be affecting the previous instruction.
That’s like ordering cheese in one of those assembly-line sandwich shops, and having them put the cheese not on your
sandwich, but the sandwich ordered by the person immediately ahead of you in line.

# Cycle 0 1 2 3 4 5 # Example used to explain solution.

add R1, r2, r3 IF ID EX ME WB

sub R4, R1, r5 IF ID EX ME WB # E=1 was computed in cyc 2, used in cyc 3.

xor r6, r7, R4 IF ID EX ME WB # E=0 was computed in cyc 3, used in cyc 4.

E 0 1 0 # Cycle in which E is used.

# Cycle 0 1 2 3 4 5

5
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Changes appear below in blue. Explanation is on previous page.
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immed
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preceeding 
instructions.
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LSU EE 4720 Homework 4 Solution Due: 15 April 2024

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. A very good strategy for those who are completely lost is to solve simpler problems on
the same topic. It is each student’s duty to himself or herself to resolve frustrations and roadblocks
quickly, perhaps just by first solving easier problems, perhaps by asking for help. There are plenty
of old problems and solutions to look at.

For EE 4720 exams, homework assignments, and their solutions visit
https://www.ece.lsu.edu/ee4720/prev.html.

Problem 1: Solve 2021 Final Exam Problem 2(a). (The solution is available. For maximum
pedagogical benefit make an earnest attempt to solve it. You’ll need the practice for the next
problem, not to mention the final exam.)

See solution at https://www.ece.lsu.edu/ee4720/2021/fe_sol.pdf.

Problem 2: Solve 2023 Final Exam Problem 3, in which a second write port is to be added to
the FP register file. The solution is not available, you’ll need to solve this one for real. Do not
attempt this problem until solving the 2021 final exam problem mentioned above, and if necessary
other example problems given in the floating point slides and lectures page.

See solution at https://www.ece.lsu.edu/ee4720/2023/fe_sol.pdf.

1
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LSU EE 4720 Homework 5 Solution Due: 24 April 2024

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. A very good strategy for those who are completely lost is to solve simpler problems on
the same topic. It is each student’s duty to himself or herself to resolve frustrations and roadblocks
quickly, perhaps just by first solving easier problems, perhaps by asking for help. There are plenty
of old problems and solutions to look at.

For EE 4720 exams, homework assignments, and their solutions visit
https://www.ece.lsu.edu/ee4720/prev.html.

Problem 1: Solve 2017 Final Exam Problem 2 (a) and (b). (The solution is available. For
maximum pedagogical benefit make an earnest attempt to solve it. You’ll need the practice for the
next problem, not to mention the final exam.)

See solution at https://www.ece.lsu.edu/ee4720/2017/fe_sol.pdf.

Problem 2: Solve 2023 Final Exam Problem 1c, in which the execution of code on a 4-way MIPS
implementation is to be found.

See solution at https://www.ece.lsu.edu/ee4720/2023/fe_sol.pdf.

There is another problem on the next page.

1
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Problem 3: The two-way superscalar MIPS implementation below is a reduced cost version of
the two-way implementation usually shown in class. Red exes show where bypass connections are
removed, and a new multiplexor appears in blue (in the bottom of the EX stage).
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(a) Show a code fragment that would stall on this implementation but would not stall if the exed-out
bypass connections were not removed.

# Cycle 0 1 2 3 4 5 6 7

add R1, r2, r3 IF ID EX ME WB

sub R4, r5, r6 IF ID EX ME WB

and r7, r8, r9 IF ID EX ME WB

or r10, r11, r12 IF ID EX ME WB

xor r13, R1, R4 IF ID -> EX ME WB

slt r15, r16, r17 IF ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6 7

The solution appears to the right. The xor stalls
because it would need to bypass two results from the
WB stage in cycle 4, one through r1 and the other
through r4. If could only bypass one result, and so it
stalls in ID until cycle 4, which is when the values it
needs are written to the register file.

(b) Write a code fragment in which the new mux select signal, labeled A, must be 0 in one cycle
and 1 in another cycle. Show the value of the select signal in a pipeline execution diagram, leaving
the value blank where its value does not matter.

# Cycle 0 1 2 3 4 5 6 7

add R1, r2, r3 IF ID EX ME WB

sub r4, r5, r6 IF ID EX ME WB

and r7, r8, r9 IF ID EX ME WB

or R10, r11, r12 IF ID EX ME WB

xor r13, R1, r14 IF ID EX ME WB

lw r18, 0(r19) IF ID EX ME WB

slt r15, R10, r16 IF ID EX ME WB

lui r17, 0xffff IF ID EX ME WB

A 0 1

# Cycle 0 1 2 3 4 5 6 7

The solution appears to the right. The value of
select signal A is 0 if a bypass is needed from the in-
struction in WB slot 0, and 1 if a bypass is needed from
WB slot 1. In cycle 4 the xor instruction needs the
value of r1 bypassed from slot 0 in WB. In cycle 5 the
slt instruction needs the value of r10 bypassed from
slot 1 in WB.
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################################################################################
##
## LSU EE 4720 Spring 2023 Homework 1 -- SOLUTION
##
##
 # Assignment https://www.ece.lsu.edu/ee4720/2023/hw01.pdf

################################################################################
## Problem 1
#
#  Instructions: https://www.ece.lsu.edu/ee4720/2023/hw01.pdf
#

        .text
lookup:
        ## Register Usage

        #
        # CALL VALUES
        #  $a0: Word to look up.
        #  $a1: Start of word table.
        #  $a2: Start of length table.
        #
        # RETURN VALUE
        #  $v0: Index of word (at $a0), or -1 if word is not in table.
        #
        # [✔] Testbench should show zero errors.
        # [✔] Can only modify these registers: $t0-$t9, $a0-$a3,  $v0,$v1
        # [ ] The fewer instructions executed, the better.
        # [✔] Write code clearly, comment for an expert MIPS programmer.
        # [✔] Do not use pseudoinstructions except for nop.
        # [✔] There is no storage that can be used between calls.

        addi $t3, $a1, 0  # Word table location.
        addi $t2, $a2, 0  # Length table.

        ## Determine the size of the lookup word.

        #
        addi $t0, $a0, 0
SIZE_LOOP:
        lb $t1, 1($t0)
        bne $t1, $0, SIZE_LOOP
        addi $t0, $t0, 1
        #
        sub $t8, $t0, $a0   # t8: Length of lookup word.

WORD_LOOP:
        ## Check Next Word in Word Table

        #
        lb $t0, 0($t2)      # Length of current word-table word

        # Check whether loop has reached the end of the word table.
        beq $t0, $0, WORD_NOT_FOUND
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        addi $t2, $t2, 1

        addi $t5, $t3, 0    # First character in table word to use now.

        # Compare length of table word (t0) to length of lookup word (t8)
        #
        bne $t0, $t8, WORD_LOOP
        add $t3, $t3, $t0   # First character in table word to use later.

        # The lengths match, so need to check the words character by
        # character.

        addi $t4, $a0, 0    # First character of lookup word.

        ## Compare lookup word and table word.

        #
CHAR_LOOP:
        beq $t5, $t3, CASE_TABLE_WORD_END
        lb $t7, 0($t4)      # Lookup word
        lb $t6, 0($t5)      # Table word
        addi $t5, $t5, 1
        
        beq $t6, $t7, CHAR_LOOP
        addi $t4, $t4, 1

        # Characters don't match. Check whether current position in
        # word table alphabetically precedes the lookup word. If so
        # move on to the next word.
        #
        slt $t6, $t6, $t7
        bne $t6, $0, WORD_LOOP
        nop

WORD_NOT_FOUND:
        # Here word hasn't been and won't be found.
        jr $ra
        addi $v0, $0, -1

CASE_TABLE_WORD_END:
        # Check whether lookup word has ended, if not no match yet.
        bne $t7, $0, WORD_LOOP
        sub $v0, $t2, $a2
        
        # Found a match!
        jr $ra
        addi $v0, $v0, -1

##############################################################################
#
 ## Test Code

#
#  The code below calls the lookup routine.

.data
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 ## Word Table

table_words:  # Total size 532 characters.
        .ascii "aah"                    # Index  0   Length 3
        .ascii "aardvark"               # Index  1   Length 8
        .ascii "able"                   # Index  2   Length 4
        .ascii "accoutering"            # Index  3   Length 11
        .ascii "accouterments"          # Index  4   Length 13
        .ascii "altarpieces"            # Index  5   Length 11
        .ascii "altars"                 # Index  6   Length 6
        .ascii "alter"                  # Index  7   Length 5
        .ascii "alterable"              # Index  8   Length 9
        .ascii "alteration"             # Index  9   Length 10
        .ascii "as"                     # Index 10   Length 2
        .ascii "asbestos"               # Index 11   Length 8
        .ascii "bibliographic"          # Index 12   Length 13
        .ascii "bibliographical"        # Index 13   Length 15
        .ascii "bibliographically"      # Index 14   Length 17
        .ascii "blur"                   # Index 15   Length 4
        .ascii "blurb"                  # Index 16   Length 5
        .ascii "blurbs"                 # Index 17   Length 6
        .ascii "counselors"             # Index 18   Length 10
        .ascii "counsels"               # Index 19   Length 8
        .ascii "count"                  # Index 20   Length 5
        .ascii "countable"              # Index 21   Length 9
        .ascii "countably"              # Index 22   Length 9
        .ascii "countdown"              # Index 23   Length 9
        .ascii "cross"                  # Index 24   Length 5
        .ascii "crystalline"            # Index 25   Length 11
        .ascii "crystallization"        # Index 26   Length 15
        .ascii "diagrammatic"           # Index 27   Length 12
        .ascii "diagrammatically"       # Index 28   Length 16
        .ascii "diagrammed"             # Index 29   Length 10
        .ascii "electroencephalogram"   # Index 30   Length 20
        .ascii "electromagnetically"    # Index 31   Length 19
        .ascii "elucidations"           # Index 32   Length 12
        .ascii "elude"                  # Index 33   Length 5
        .ascii "eluded"                 # Index 34   Length 6
        .ascii "fishwives"              # Index 35   Length 9
        .ascii "fishy"                  # Index 36   Length 5
        .ascii "fissile"                # Index 37   Length 7
        .ascii "fission"                # Index 38   Length 7
        .ascii "fissionable"            # Index 39   Length 11
        .ascii "fissure"                # Index 40   Length 7
        .ascii "i"                      # Index 41   Length 1
        .ascii "mucky"                  # Index 42   Length 5
        .ascii "mucous"                 # Index 43   Length 6
        .ascii "mucus"                  # Index 44   Length 5
        .ascii "mud"                    # Index 45   Length 3
        .ascii "oversimple"             # Index 46   Length 10
        .ascii "oversimplification"     # Index 47   Length 18
        .ascii "oversimplifications"    # Index 48   Length 19
        .ascii "oversimplified"         # Index 49   Length 14
        .ascii "weightlessly"           # Index 50   Length 12
        .ascii "weightlessness"         # Index 51   Length 14
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        .ascii "weightlifter"           # Index 52   Length 12
        .ascii "zucchinis"              # Index 53   Length 9
        .ascii "zwieback"               # Index 54   Length 8
        .ascii "zydeco"                 # Index 55   Length 6
        .ascii "zygote"                 # Index 56   Length 6
        .ascii "zygotes"                # Index 57   Length 7
                                        # Combined Lengths  532
        .byte 0

 ## Word Length Table

table_word_lengths:
        .byte  3   # Index  0  aah
        .byte  8   # Index  1  aardvark
        .byte  4   # Index  2  able
        .byte 11   # Index  3  accoutering
        .byte 13   # Index  4  accouterments
        .byte 11   # Index  5  altarpieces
        .byte  6   # Index  6  altars
        .byte  5   # Index  7  alter
        .byte  9   # Index  8  alterable
        .byte 10   # Index  9  alteration
        .byte  2   # Index 10  as
        .byte  8   # Index 11  asbestos
        .byte 13   # Index 12  bibliographic
        .byte 15   # Index 13  bibliographical
        .byte 17   # Index 14  bibliographically
        .byte  4   # Index 15  blur
        .byte  5   # Index 16  blurb
        .byte  6   # Index 17  blurbs
        .byte 10   # Index 18  counselors
        .byte  8   # Index 19  counsels
        .byte  5   # Index 20  count
        .byte  9   # Index 21  countable
        .byte  9   # Index 22  countably
        .byte  9   # Index 23  countdown
        .byte  5   # Index 24  cross
        .byte 11   # Index 25  crystalline
        .byte 15   # Index 26  crystallization
        .byte 12   # Index 27  diagrammatic
        .byte 16   # Index 28  diagrammatically
        .byte 10   # Index 29  diagrammed
        .byte 20   # Index 30  electroencephalogram
        .byte 19   # Index 31  electromagnetically
        .byte 12   # Index 32  elucidations
        .byte  5   # Index 33  elude
        .byte  6   # Index 34  eluded
        .byte  9   # Index 35  fishwives
        .byte  5   # Index 36  fishy
        .byte  7   # Index 37  fissile
        .byte  7   # Index 38  fission
        .byte 11   # Index 39  fissionable
        .byte  7   # Index 40  fissure
        .byte  1   # Index 41  i
        .byte  5   # Index 42  mucky
        .byte  6   # Index 43  mucous
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        .byte  5   # Index 44  mucus
        .byte  3   # Index 45  mud
        .byte 10   # Index 46  oversimple
        .byte 18   # Index 47  oversimplification
        .byte 19   # Index 48  oversimplifications
        .byte 14   # Index 49  oversimplified
        .byte 12   # Index 50  weightlessly
        .byte 14   # Index 51  weightlessness
        .byte 12   # Index 52  weightlifter
        .byte  9   # Index 53  zucchinis
        .byte  8   # Index 54  zwieback
        .byte  6   # Index 55  zydeco
        .byte  6   # Index 56  zygote
        .byte  7   # Index 57  zygotes

 ## Lookup Words

test_words:
        .asciiz "a"                     # Index  -1
        .asciiz "aah"                   # Index  0
        .asciiz "able"                  # Index  2
        .asciiz "i"                     # Index  41
        .asciiz "blank"                 # Index  -1
        .asciiz "counselor"             # Index  -1
        .asciiz "county"                # Index  -1
        .asciiz "fish"                  # Index  -1
        .asciiz "gram"                  # Index  -1
        .asciiz "palindromic"           # Index  -1
        .asciiz "zymurgy"               # Index  -1
        .asciiz "bibliographical"       # Index  13
        .asciiz "bibliographically"     # Index  14
        .asciiz "cross"                 # Index  24
        .asciiz "zydeco"                # Index  55
        .asciiz "zygotes"               # Index  57

        .align 4
test_data:
        .half   0,  -1  # a
        .half   2,   0  # aah
        .half   6,   2  # able
        .half  11,  41  # i
        .half  13,  -1  # blank
        .half  19,  -1  # counselor
        .half  29,  -1  # county
        .half  36,  -1  # fish
        .half  41,  -1  # gram
        .half  46,  -1  # palindromic
        .half  58,  -1  # zymurgy
        .half  66,  13  # bibliographical
        .half  82,  14  # bibliographically
        .half 100,  24  # cross
        .half 106,  55  # zydeco
        .half 113,  57  # zygotes
test_data_end:

msg_correct:
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        .asciiz "%/s0/-17s   Num Insn: %/t1/5d   Index: %/v1/3d -- Correct\n"
msg_incorrect:                                
        .asciiz "%/s0/-17s   Num Insn: %/t1/5d   Index: %/v1/3d Er SHOULD BE %/t2/d\n"
end_msg:
        .asciiz "TOTALS:             Num Insn: %/k0/5d   Tests: %/k1/3d    Errors: %/s1/2d\n"

        .text
        .globl __start

__start:
        mtc0 $0, $22            # Pause tracing.

        # s0: Address of test word.
        addi $s1, $0, 0        # Number of incorrect indices.
        la $s2, test_data_end  # Holds same value.
        # s5: Number of instructions before.
        la $s6, test_words  # Holds same value. 
        la $s7, test_data   # Incremented each iteration.
        addi $k0, $0, 0  # Total number of instructions.
        addi $k1, $0, 0  # Total number of lookup words.
        # Number correct.

TB_LOOP:
        lh $t0, 0($s7)  # Offset in word table.
        addi $k1, $k1, 1
        add $s0, $s6, $t0
        add $a0, $s0, $0
        la $a1, table_words
        la $a2, table_word_lengths
        addi $v0, $0, -1
        mtc0 $v0, $22           # Resume tracing. (No effect if not stepping.)
        jal lookup
        mfc0 $s5, $9            # Copy current instruction count. (Before.)
        mfc0 $t0, $9            # Copy current instruction count. (After.)
        mtc0 $0, $22            # Pause tracing.
        addi $v1, $v0, 0
        sub $t1, $t0, $s5
        add $k0, $k0, $t1
        lh $t2, 2($s7)  # Correct index.
        la $a0, msg_correct        
        beq $t2, $v1, TB_SKIP
        nop
        addi $s1, $s1, 1
        la $a0, msg_incorrect
TB_SKIP:
        addi $v0, $0, 11
        syscall
        addi $s7, $s7, 4
        bne $s7, $s2, TB_LOOP
        nop

        la $a0, end_msg
        addi $v0, $0, 11
        syscall
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        addi $v0, $0, 10
        syscall
        nop
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################################################################################
##
## LSU EE 4720 Spring 2023 Homework 1 -- SOLUTION
##
##
 # Assignment https://www.ece.lsu.edu/ee4720/2023/hw01.pdf

################################################################################
## Problem 1
#
#  Instructions: https://www.ece.lsu.edu/ee4720/2023/hw01.pdf
#

        .text
lookup:
        ## Register Usage

        #
        # CALL VALUES
        #  $a0: Word to look up.
        #  $a1: Start of word table.
        #  $a2: Start of length table.
        #
        # RETURN VALUE
        #  $v0: Index of word (at $a0), or -1 if word is not in table.
        #
        # [✔] Testbench should show zero errors.
        # [✔] Can only modify these registers: $t0-$t9, $a0-$a3,  $v0,$v1
        # [✔] The fewer instructions executed, the better.
        # [✔] Write code clearly, comment for an expert MIPS programmer.
        # [✔] Do not use pseudoinstructions except for nop.
        # [✔] There is no storage that can be used between calls.

        ## Fast Solution

        #

        addi $t3, $a1, 0  # Word table location.
        addi $t2, $a2, 0  # Length table.

        ## Determine the size of the lookup word.

        #
        addi $t0, $a0, 0
SIZE_LOOP:
        lb $t1, 1($t0)
        bne $t1, $0, SIZE_LOOP
        addi $t0, $t0, 1
        #
        sub $t8, $t0, $a0   # t8: Length of lookup word.

        # Hold on to the first character of the lookup word.
        #
        lb $t9, 0($a0)      # t9: First character of lookup word.
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WORD_LOOP:
        lb $t0, 0($t2)      # Length of current word-table word
WORD_LOOP2:
        beq $t0, $0, WORD_NOT_FOUND
        add $t3, $t3, $t0   # Start of next word.

        # Check whether length of lookup word and table word match.
        bne $t0, $t8, WORD_LOOP
        addi $t2, $t2, 1    # Start of next length.

        sub $t5, $t3, $t0   # Re-compute start of table word.

        # Check whether first characters match ..
        # .. and if not, whether lookup word is after table word alphabetically.
        #
        lb $t6, 0($t5)      # Table word
        beq $t6, $t9, CHAR_LOOP_PRE
        slt $t6, $t6, $t9
        #
        bne $t6, $0, WORD_LOOP2
        lb $t0, 0($t2)      # Word length

        # At this point lookup word follows table word, so the word
        # can't be in the table.
        jr $ra
        addi $v0, $0, -1

        # Compare lookup word and table word ..
        # .. starting at SECOND character.
        #
CHAR_LOOP_PRE:
        addi $t4, $a0, 1    # Addr in lookup word.
CHAR_LOOP:
        addi $t5, $t5, 1
CHAR_BODY:
        beq $t5, $t3, CASE_TABLE_WORD_END
        lb $t7, 0($t4)      # Lookup word
        lb $t6, 0($t5)      # Table word
        beq $t6, $t7, CHAR_LOOP
        addi $t4, $t4, 1
        slt $t6, $t6, $t7
        bne $t6, $0, WORD_LOOP2
        lb $t0, 0($t2)      # Word length       
WORD_NOT_FOUND:
        # Here word hasn't been and won't be found.
        jr $ra
        addi $v0, $0, -1

CASE_TABLE_WORD_END:
        # Found a match!
        sub $v0, $t2, $a2
        jr $ra
        addi $v0, $v0, -1
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##############################################################################
#
 ## Test Code

#
#  The code below calls the lookup routine.

.data

 ## Word Table

table_words:  # Total size 532 characters.
        .ascii "aah"                    # Index  0   Length 3
        .ascii "aardvark"               # Index  1   Length 8
        .ascii "able"                   # Index  2   Length 4
        .ascii "accoutering"            # Index  3   Length 11
        .ascii "accouterments"          # Index  4   Length 13
        .ascii "altarpieces"            # Index  5   Length 11
        .ascii "altars"                 # Index  6   Length 6
        .ascii "alter"                  # Index  7   Length 5
        .ascii "alterable"              # Index  8   Length 9
        .ascii "alteration"             # Index  9   Length 10
        .ascii "as"                     # Index 10   Length 2
        .ascii "asbestos"               # Index 11   Length 8
        .ascii "bibliographic"          # Index 12   Length 13
        .ascii "bibliographical"        # Index 13   Length 15
        .ascii "bibliographically"      # Index 14   Length 17
        .ascii "blur"                   # Index 15   Length 4
        .ascii "blurb"                  # Index 16   Length 5
        .ascii "blurbs"                 # Index 17   Length 6
        .ascii "counselors"             # Index 18   Length 10
        .ascii "counsels"               # Index 19   Length 8
        .ascii "count"                  # Index 20   Length 5
        .ascii "countable"              # Index 21   Length 9
        .ascii "countably"              # Index 22   Length 9
        .ascii "countdown"              # Index 23   Length 9
        .ascii "cross"                  # Index 24   Length 5
        .ascii "crystalline"            # Index 25   Length 11
        .ascii "crystallization"        # Index 26   Length 15
        .ascii "diagrammatic"           # Index 27   Length 12
        .ascii "diagrammatically"       # Index 28   Length 16
        .ascii "diagrammed"             # Index 29   Length 10
        .ascii "electroencephalogram"   # Index 30   Length 20
        .ascii "electromagnetically"    # Index 31   Length 19
        .ascii "elucidations"           # Index 32   Length 12
        .ascii "elude"                  # Index 33   Length 5
        .ascii "eluded"                 # Index 34   Length 6
        .ascii "fishwives"              # Index 35   Length 9
        .ascii "fishy"                  # Index 36   Length 5
        .ascii "fissile"                # Index 37   Length 7
        .ascii "fission"                # Index 38   Length 7
        .ascii "fissionable"            # Index 39   Length 11
        .ascii "fissure"                # Index 40   Length 7
        .ascii "i"                      # Index 41   Length 1
        .ascii "mucky"                  # Index 42   Length 5
        .ascii "mucous"                 # Index 43   Length 6
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        .ascii "mucus"                  # Index 44   Length 5
        .ascii "mud"                    # Index 45   Length 3
        .ascii "oversimple"             # Index 46   Length 10
        .ascii "oversimplification"     # Index 47   Length 18
        .ascii "oversimplifications"    # Index 48   Length 19
        .ascii "oversimplified"         # Index 49   Length 14
        .ascii "weightlessly"           # Index 50   Length 12
        .ascii "weightlessness"         # Index 51   Length 14
        .ascii "weightlifter"           # Index 52   Length 12
        .ascii "zucchinis"              # Index 53   Length 9
        .ascii "zwieback"               # Index 54   Length 8
        .ascii "zydeco"                 # Index 55   Length 6
        .ascii "zygote"                 # Index 56   Length 6
        .ascii "zygotes"                # Index 57   Length 7
                                        # Combined Lengths  532
        .byte 0

 ## Word Length Table

table_word_lengths:
        .byte  3   # Index  0  aah
        .byte  8   # Index  1  aardvark
        .byte  4   # Index  2  able
        .byte 11   # Index  3  accoutering
        .byte 13   # Index  4  accouterments
        .byte 11   # Index  5  altarpieces
        .byte  6   # Index  6  altars
        .byte  5   # Index  7  alter
        .byte  9   # Index  8  alterable
        .byte 10   # Index  9  alteration
        .byte  2   # Index 10  as
        .byte  8   # Index 11  asbestos
        .byte 13   # Index 12  bibliographic
        .byte 15   # Index 13  bibliographical
        .byte 17   # Index 14  bibliographically
        .byte  4   # Index 15  blur
        .byte  5   # Index 16  blurb
        .byte  6   # Index 17  blurbs
        .byte 10   # Index 18  counselors
        .byte  8   # Index 19  counsels
        .byte  5   # Index 20  count
        .byte  9   # Index 21  countable
        .byte  9   # Index 22  countably
        .byte  9   # Index 23  countdown
        .byte  5   # Index 24  cross
        .byte 11   # Index 25  crystalline
        .byte 15   # Index 26  crystallization
        .byte 12   # Index 27  diagrammatic
        .byte 16   # Index 28  diagrammatically
        .byte 10   # Index 29  diagrammed
        .byte 20   # Index 30  electroencephalogram
        .byte 19   # Index 31  electromagnetically
        .byte 12   # Index 32  elucidations
        .byte  5   # Index 33  elude
        .byte  6   # Index 34  eluded
        .byte  9   # Index 35  fishwives
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        .byte  5   # Index 36  fishy
        .byte  7   # Index 37  fissile
        .byte  7   # Index 38  fission
        .byte 11   # Index 39  fissionable
        .byte  7   # Index 40  fissure
        .byte  1   # Index 41  i
        .byte  5   # Index 42  mucky
        .byte  6   # Index 43  mucous
        .byte  5   # Index 44  mucus
        .byte  3   # Index 45  mud
        .byte 10   # Index 46  oversimple
        .byte 18   # Index 47  oversimplification
        .byte 19   # Index 48  oversimplifications
        .byte 14   # Index 49  oversimplified
        .byte 12   # Index 50  weightlessly
        .byte 14   # Index 51  weightlessness
        .byte 12   # Index 52  weightlifter
        .byte  9   # Index 53  zucchinis
        .byte  8   # Index 54  zwieback
        .byte  6   # Index 55  zydeco
        .byte  6   # Index 56  zygote
        .byte  7   # Index 57  zygotes

 ## Lookup Words

test_words:
        .asciiz "a"                     # Index  -1
        .asciiz "aah"                   # Index  0
        .asciiz "able"                  # Index  2
        .asciiz "i"                     # Index  41
        .asciiz "blank"                 # Index  -1
        .asciiz "counselor"             # Index  -1
        .asciiz "county"                # Index  -1
        .asciiz "fish"                  # Index  -1
        .asciiz "gram"                  # Index  -1
        .asciiz "palindromic"           # Index  -1
        .asciiz "zymurgy"               # Index  -1
        .asciiz "bibliographical"       # Index  13
        .asciiz "bibliographically"     # Index  14
        .asciiz "cross"                 # Index  24
        .asciiz "zydeco"                # Index  55
        .asciiz "zygotes"               # Index  57

        .align 4
test_data:
        .half   0,  -1  # a
        .half   2,   0  # aah
        .half   6,   2  # able
        .half  11,  41  # i
        .half  13,  -1  # blank
        .half  19,  -1  # counselor
        .half  29,  -1  # county
        .half  36,  -1  # fish
        .half  41,  -1  # gram
        .half  46,  -1  # palindromic
        .half  58,  -1  # zymurgy

← → Spring 2023 ← → Homework 1 Homework Sol Code Sol Code hw01-sol-fast.s.html

https://www.ece.lsu.edu/ee4720/2023/hw01-sol-fast.s.html


        .half  66,  13  # bibliographical
        .half  82,  14  # bibliographically
        .half 100,  24  # cross
        .half 106,  55  # zydeco
        .half 113,  57  # zygotes
test_data_end:

msg_correct:
        .asciiz "%/s0/-17s   Num Insn: %/t1/5d   Index: %/v1/3d -- Correct\n"
msg_incorrect:                                
        .asciiz "%/s0/-17s   Num Insn: %/t1/5d   Index: %/v1/3d Er SHOULD BE %/t2/d\n"
end_msg:
        .asciiz "TOTALS:             Num Insn: %/k0/5d   Tests: %/k1/3d    Errors: %/s1/2d\n"

        .text
        .globl __start

__start:
        mtc0 $0, $22            # Pause tracing.

        # s0: Address of test word.
        addi $s1, $0, 0        # Number of incorrect indices.
        la $s2, test_data_end  # Holds same value.
        # s5: Number of instructions before.
        la $s6, test_words  # Holds same value. 
        la $s7, test_data   # Incremented each iteration.
        addi $k0, $0, 0  # Total number of instructions.
        addi $k1, $0, 0  # Total number of lookup words.
        # Number correct.

TB_LOOP:
        lh $t0, 0($s7)  # Offset in word table.
        addi $k1, $k1, 1
        add $s0, $s6, $t0
        add $a0, $s0, $0
        la $a1, table_words
        la $a2, table_word_lengths
        addi $v0, $0, -1
        mtc0 $v0, $22           # Resume tracing. (No effect if not stepping.)
        jal lookup
        mfc0 $s5, $9            # Copy current instruction count. (Before.)
        mfc0 $t0, $9            # Copy current instruction count. (After.)
        mtc0 $0, $22            # Pause tracing.
        addi $v1, $v0, 0
        sub $t1, $t0, $s5
        add $k0, $k0, $t1
        lh $t2, 2($s7)  # Correct index.
        la $a0, msg_correct        
        beq $t2, $v1, TB_SKIP
        nop
        addi $s1, $s1, 1
        la $a0, msg_incorrect
TB_SKIP:
        addi $v0, $0, 11
        syscall
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        addi $s7, $s7, 4
        bne $s7, $s2, TB_LOOP
        nop

        la $a0, end_msg
        addi $v0, $0, 11
        syscall

        addi $v0, $0, 10
        syscall
        nop
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LSU EE 4720 Homework 2 Solution Due: 8 March 2023

Problem 1: The code fragment below was taken from the course hex string assembly example. (The hex
string example was not covered this semester. The full example can be found at
https://www.ece.lsu.edu/ee4720/2022/hex-string.s.html.) The fragment below converts the value in
register a0 to an ASCII string, the string is the value in hexadecimal (though initially backward).

LOOP:

andi $t0, $a0, 0xf # Retrieve the least-significant hex digit.

srl $a0, $a0, 4 # Shift over by one hex digit.

slti $t1, $t0, 10 # Check whether the digit is in range 0-9

bne $t1, $0, SKIP # Don’t forget that delay slot insn always exec.

addi $t2, $t0, 48 # If 0-9, add 48 to make ASCII ’0’ - ’9’.

addi $t2, $t0, 87 # If 10-15, add 87 to make ASCII ’a’ - ’z’.

SKIP:

sb $t2, 0($a1) # Store the digit.

bne $a0, $0, LOOP # Continue if value not yet zero.

addi $a1, $a1, 1 # Move string pointer one character to the left.

(a) Show the encoding of the MIPS bne a0, 0, LOOP instruction. Note: This is not the same as
the instruction used in last year’s Homework 2. Include all parts, including—especially—the immediate.
For a quick review of MIPS, including the register numbers corresponding to the register names, visit
https://www.ece.lsu.edu/ee4720/2023/lmips.s.html.

The encoding appears below. Note that register a0 (procedure call argument 0) is a helpful name for r4, and so a 4 is placed
in the rs field. If the bne is taken it jumps backward by eight instructions (starting from the delay-slot instruction), and so the
immediate field holds a -8 (which is 1111 1111 1111 10002 in a two’s complement, 16-bit representation).

MIPS I:

Opcode

0x05

31 26

RS

4

25 21

RT

0

20 16

Immed

1111 1111 1111 10002

15 0

(b) RISC-V RV32I has a bne instruction too, though it is not exactly the same. Show the encoding of the
RV32I version of the bne a0, 0, LOOP instruction. For this subproblem assume that the bne will jump
backward eight instructions, just as it does in the code sample above.

To familiarize yourself with RISC-V start by reading Chapter 1 of Volume I of the RISC-V specification,
especially the Chapter 1 Introduction and Sections 1.1 and 1.3. Skip Section 1.2 unless you are comfortable
with operating system and virtualization concepts. Other parts of Chapter 1 are interesting but less relevant
for this problem. Also look at Section 2.5 (Control Transfer Instructions). The spec can be found in the
class references page at https://www.ece.lsu.edu/ee4720/reference.html.

The branch instructions are discussed in Section 2.5 under the Conditional Branches heading. There are two significant
differences with the MIPS bne. First, there is no delay slot. That’s not relevant in this problem. Second, the immediate field value
is used differently. Let IMM denote the immediate field value (based on the bits set in the instruction). The branch target is then
PC + 2 * IMM, where PC is the address of the branch. (In MIPS the target would be PC + 4 + 4 * IMM.) So, we need to
set the immediate to the number of bytes to skip divided by two. The problem says to jump back eight instructions, in RISC-V (and
most RISC ISAs) that’s 32 bytes, and so the immediate field should be set to -16 which is 1111 1111 00002 in a two’s complement,
12-bit representation.

Though Section 2.5 shows the encoding of a bne instruction, it does not provide the values for opcode fields and their extensions,
instead using names: BRANCH for the opcode field and BNE for the funct3 field. The values can be found in Chapter 24.

The encoding appears below. The instruction field names have been abbreviated, such as im12 for imm[12]. Also note that in
RISC-V immediate field names use the bit numbers within the immediate. So, for example, imm[4:1] (abbreviated im4:1 below)
indicates that the four bits in the instruction field (00002 in the example) are placed in bit positions 4:1 of the immediate. There is
no field named imm[0] because the corresponding immediate bit is always set to zero. So, the IMM*2 is computed by putting the
twelve immediate bits in the instruction in bits 12:1 of the immediate, setting bit 0, the LSB, to zero.

1
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In MIPS format I-instructions the 16-bit immediate is put in bits 15:0 of the instruction, which is straightforward and easy to
understand. In RISC-V B-format instructions the 12-bit immediate is scrambled into four fields of the instruction. Following the
convention of the B-format instruction the immediate bit positions will be numbered 12 to 1. (There is a bit position zero but it is
always zero and so it does not appear in the instruction.) Bit 12 of the immediate is found in bit position 31 of the instruction. Bits
10:5 [sic] of the immediate are in bits 30:25 of the instruction. Where is bit 11 of the immediate? It’s at bit 7, hanging out next to
bits 4:1 of the immediate which are at bits 11:8 of the instruction. This bit scrambling is done to simplify hardware, as is explained in
section 2.3 of the RISC-V standard. A question about the rationale for this bit scrambling may be asked on the 2023 midterm exam.

RISC-V B:

im12

12

31

im10:5

11 11112

30 25

rs2

0

24 20

rs1

4

19 15

fun3

0012

14 12

im4:1

00002

11 8

im11

12

7

opcode

110 00112

6 0

(c) Consider the four-instruction sequence from the code above:

slti $t1, $t0, 10 # Check whether the digit is in range 0-9

bne $t1, $0, SKIP # Don’t forget that delay slot insn always exec.

addi $t2, $t0, 48 # If 0-9, add 48 to make ASCII ’0’ - ’9’.

addi $t2, $t0, 87 # If 10-15, add 87 to make ASCII ’a’ - ’z’.

SKIP:

Re-write this sequence in RISC-V RV32I, and take advantage of RISC-V branch behavior to reduce this
to three instructions (plus possibly one more instruction before the loop). For this problem one needs to
focus on RISC-V branch behavior. Assume that the RISC-V slti and addi instructions are identical to
their MIPS counterparts at the assembly language level. It is okay to retain the MIPS register names. Hint:
One change needs to be made for correctness, another for efficiency.

Solution appears below. Before the loop is entered the addi instruction sets t6 to 10, a constant that will come in handy.
Inside the loop the four MIPS instructions are replaced by three RISC-V instructions. First, the slti is no longer necessary because
RISC-V has a blt (branch less than). The blt itself checks whether t0 is less than 10 (which is in t6). Using the blt to do the
comparison is the efficiency change mentioned in the hint. Because RISC-V lacks delay slots the addi t2,t0,48 had to be moved
before the blt. That’s the correctness change mentioned in the hint. Notice that RISC-V has register names that are similar to
MIPS, such as t0-t6 for caller-save (temporary) registers.

# Instruction inserted before the loop to put 10 into register t6.

addi t6, zero, 10

LOOP:

# These instructions replace the four MIPS instructions.

addi t2, t0, 48 # Convert assuming t0 in range 0-9 ..

blt t0, t6, SKIP # .. if that’s correct, branch ..

addi t2, t0, 87 # .. otherwise convert assuming a-f.

SKIP:

2

← → Spring 2023 ← → Homework 2 Homework Solution hw02 sol.pdf

https://www.ece.lsu.edu/ee4720/2023/hw02_sol.pdf


Problem 2: Note: The following problem was assigned in each of the last six years, and its solution is
available. DO NOT look at the solution unless you are lost and can’t get help elsewhere. Even in that case
just glimpse. Appearing below are incorrect executions on the illustrated implementation. For each one
explain why it is wrong and show the correct execution.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D
 

dstdst

E
2'b0 format

immed =

(a) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until the lw reaches
WB.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID ----> EX ME WB

(b) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

There is no need for a stall because the lw writes r1, it does not read r1.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB

3
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(c) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

A longer stall is needed here because the sw reads r1 and it must wait until add reaches WB.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID ----> EX ME WB

(d) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

The stall above allows the xor, when it is in ID, to get the value of r1 written by the add; that part is correct. But, the stall
starts in cycle 1 before the xor reaches ID, so how could the control logic know that the xor needed r1, or for that matter that
it was an xor? The solution is to start the stall in cycle 2, when the xor is in ID.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID ----> EX ME WB

4

← → Spring 2023 ← → Homework 2 Homework Solution hw02 sol.pdf

https://www.ece.lsu.edu/ee4720/2023/hw02_sol.pdf


LSU EE 4720 Homework 3 Solution Due: 24 March 2023

Problem 1: Appearing below are incorrect executions on the illustrated implementation. For each exe-
cution explain why it is wrong and show the correct execution. Note: This problem was assigned in 2020,
2021, and 2022, and their solutions are available. DO NOT look at the solutions unless you are lost and
can’t get help elsewhere. Even in that case just glimpse.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

(a) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID -> EX ME WB

There is a bypass path available so that there is no need to stall.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID EX ME WB

1
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(b) The execution of the branch below has two errors. One error is due to improper handling of the andi

instruction. (That is, if the andi were replaced with a nop there would be no problem in the execution
below.) The other is due to the way the beq executes. As in all code fragments in this problem, the program
is correct, the only problem is with the illustrated execution timing.

# Cycle: 0 1 2 3 4 5 6 7 8

andi r2, r2, 0xff IF ID EX ME WB

beq r1, r2, TARG IF ID EX ME WB

add r3, r4, r5 IF ID EX ME WB

xor IFx

TARG:

sw r6, 7(r8) IF ID EX ME WB

# Cycle: 0 1 2 3 4 5 6 7 8

Briefly, the two problems are the lack of a stall for the andi/beq dependence carried by r2 and because the branch target is
fetched one cycle later than it should be. The correct execution appears below.

Detailed explanation: In the illustrated implementation the = in ID is used to compute the branch condition for beq (and
bne). When the branch reaches ID, in cycle 2, the value of r2 retrieved from the register file is outdated, it needs to use the value
computed by andi. Since there are no bypass paths to the = logic the branch will need to stall until andi reaches writeback.
The stalls occur in cycles 2 and 3.

The illustrated implementation resolves the branch in ID, and so the branch target should be in IF when the branch is in EX.
In the execution above the target isn’t fetched until the branch is in ME, in cycle 4. That is fixed below by fetching the target a cycle
earlier. The xor is no longer fetched and squashed.

# Cycle: 0 1 2 3 4 5 6 7 8 9 SOLUTION

andi r2, r2, 0xff IF ID EX ME WB

beq r1, r2, TARG IF ID ----> EX ME WB

add r3, r4, r5 IF ----> ID EX ME WB

xor

TARG:

sw r6, 7(r8) IF ID EX ME WB

# Cycle: 0 1 2 3 4 5 6 7 8 9
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(c) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until the lw reaches
ME so that the add can bypass from WB.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID -> EX ME WB

(d) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

There is no need for a stall because r1 is not a source register of lw. Note that r1 is a destination of lw.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB
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(e) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

No stall is needed here because the sw can use the ME-to-EX bypass path.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID EX ME WB
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Problem 2: Illustrated below is a MIPS implementation in which each multiplexor has a label, such as a
circled A at the multiplexor providing a value for the PC. (The implementation debuted on the 2018 midterm
exam.) The multiplexor inputs are also numbered. Below the illustration an execution of the program on
the implementation is shown for two iterations of a loop. Below the execution is a table with one row for
each labeled multiplexor. Complete the table so that it shows the values on the multiplexors’ select signals
at each cycle based on the execution. Leave an entry blank if its value does not make a difference.

Wire thicknesses and colors have been varied to make it easier to trace them through the diagram. Before
attempting this problem, solve 2018 Midterm Exam Problem 2b, which also appeared as 2022 Homework 3
Problem 2. Also see the 2014 Midterm Exam Problem 1 for a similar problem.
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Continued on the next page.
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� Complete the table (the rows starting with A:, B:, etc.) based on the execution below.

� Omit select signal values if they do not matter. For example, omit values for E for cycles in which there is
not a store instruction in EX.

� Assume that the branch is taken the second time it appears. (No assumption needed for its first appearance.)

addi r1, r1, -4 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9

sw r2, 4(r1) IF ID EX ME WB

lw r1, 8(r2) IF ID EX ME WB

bne r2, r3, LOOP IF ID EX ME WB

add r2, r2, r6 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9

sw r2, 4(r1) IF ID EX ME WB

lw r1, 8(r2) IF ID EX ME WB

bne r2, r3, LOOP IF ID EX ME WB

add r2, r2, r6 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

A: 3 3 3 3 1 3 3 3 1

B:

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

C: 2 0 2 2 2 3 2

D: 2 2 2 1 2 2 1

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

E: 1 0

F: 1 0 1 0 1

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
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Problem 3: Show the execution of the code fragments on the following implementations for enough iter-
ations to determine the instruction throughput (IPC). As always, base the behavior of branches and the
availability of bypasses on the implementations. Also, don’t forget that MIPS branches have a delay slot.
Sorry for yelling, but I hate it when students miss things.

This problem appeared as most of Problem 1 on the 2022 Final Exam. A solution is not yet available.
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� Show execution and � determine instruction throughput (IPC) based on a large number of iterations.

The solution appears below. The branch is resolved in ME, and so the target is fetched (in IF) in the next cycle, when the
branch is in WB. Two wrong-path instructions are fetched, xor and sub. They are squashed when the branch is resolved. (Of course,
they would not be squashed if the branch were not taken.)

The instruction throughput is 2 insn
(8−4) cyc = 2

4 insn/cycle based on the second iteration starting at cycle 4 and the third
iteration starting at cycle 8.

# SOLUTION -- Dynamic Instruction Order

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

bne r1, r2, LOOP IF ID EX ME WB # First Iteration

addi r1, r1, 4 IF ID EX ME WB

xor r5, r6, r7 IF IDx

sub r8, r9, r10 IFx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

bne r1, r2, LOOP IF ID EX ME WB # Second Iteration

addi r1, r1, 4 IF ID EX ME WB

xor r5, r6, r7 IF IDx

sub r8, r9, r10 IFx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

bne r1, r2, LOOP IF ID EX ME WB

...

# These instructions will be completely executed after the last iteration.

xor r5, r6, r7

sub r8, r9, r10

7

← → Spring 2023 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4720/2023/hw03_sol.pdf


format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

� Show execution and � determine instruction throughput (IPC) based on a large number of iterations.

The solution appears below. The good news in this pipeline the branch is resolved in ID, meaning that zero wrong-path
instructions are fetched. The bad news is that there is a dependence carried by r1 that stalls bne in ID for two cycles. For this
reason, the instruction throughput is the same: 2 insn

(6−2) cyc = 2
4 insn/cycle based on the second iteration starting at cycle 2 and

the third iteration starting at cycle 6.

LOOP: # Code in Static Instruction Order

bne r1, r2, LOOP

addi r1, r1, 4

xor r5, r6, r7

sub r8, r9, r10

# SOLUTION -- Dynamic Instruction Order

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

bne r1, r2, LOOP IF ID EX ME WB # First Iteration

addi r1, r1, 4 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

bne r1, r2, LOOP IF ID ----> EX ME WB # Second Iteration

addi r1, r1, 4 IF ----> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

bne r1, r2, LOOP IF ID ----> EX ME WB

addi r1, r1, 4 IF ----> ID EX ME WB

# These instructions will be executed after the last iteration.

xor r5, r6, r7

sub r8, r9, r10
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� Show execution and � determine instruction throughput (IPC) based on a large number of iterations.

In this implementation there is a bypass that helps with the branch condition dependence, reducing the stall from two cycles to
one cycle. The instruction throughput is higher, 2 insn

(5−2) cyc = 2
3 insn/cycle based on the second iteration starting at cycle 2 and

the third iteration starting at cycle 5.

LOOP: # Code in Static Instruction Order

bne r1, r2, LOOP

addi r1, r1, 4

xor r5, r6, r7

sub r8, r9, r10

# SOLUTION -- Dynamic Instruction Order

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11

bne r1, r2, LOOP IF ID EX ME WB # First Iteration

addi r1, r1, 4 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11

bne r1, r2, LOOP IF ID -> EX ME WB # Second Iteration

addi r1, r1, 4 IF -> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11

bne r1, r2, LOOP IF ID -> EX ME WB

addi r1, r1, 4 IF -> ID EX ME WB
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LSU EE 4720 Homework 4 Solution Due: 19 April 2023

In the problems below a new MIPS instruction, integer fmadd, (hypothetical of course) is to be added to our
pipelined MIPS implementation. A simpler implement-the-instruction problem was the subject of Fall 2010
Homework 3, in which a shift unit is added to MIPS to implement shift instructions. The 2010 problem is
simpler because the shift unit occupies just one stage, while the fmadd for this assignment spans multiple
stages. For past assignments in which integer arithmetic hardware spans several stages see 2020 Homework
2, 3, and 4 and 2020 midterm exam Problem 5. In these 2020 problems an integer multiply instruction was
to be implemented.

Problem 1: A fused multiply/add instruction, such as fmadd r1, r2, r3, r4, computes r1 = r2r3 + r4.
Such instructions are useful for both floating-point and integer calculations, and integer version is considered
here. The goal in this problem is to extend MIPS with an integer multiply/add instruction, fmadd. The
new fmadd instruction will be encoded in MIPS Format R with the SA field being used to specify the third
source register, r4 in the example.

MIPS R:

Opcode

0

31 26

RS

2

25 21

RT

3

20 16

RD

1

15 11

SA

4

10 6

Function

fmadd

4 0

The hardware to compute the multiply/add will consist of two types of units: a carry-save multiplier
(CSM) and integer adders (labeled ADD). The connection of these two types of units needed to compute a
multiply/add are shown below.

CSM ADDA

B

A×B

A×B+C.9 .45 ADD

.45 

C

The CSM takes 0.9 clock cycles to compute a result and each adder takes 0.45 clock cycles, so the critical
path through the hardware shown above is 1.8 clock cycles. Because the critical path is greater than one
clock cycle the hardware cannot be placed in one stage. (Unless the clock frequency were to be decreased
from φ to φ/1.8, which would slow everything down and so of course we don’t want to do it.)
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Note: For the three parts below a single hardware solution can be provided. That is, a correct solution to part
c also can be a correct solution to parts b and a, and so there is no need to draw three hardware designs.

(a) Add the CSM and ADD units to the MIPS implementation below to efficiently implement the fmadd

instruction. For this sub-problem provide the hardware needed so that fmadd can execute without stalls
when there are no nearby dependencies, such as in the execution below.

# There are no dependencies in this code fragment.

# Cycle 0 1 2 3 4 5 6 7 8

add r1, r2, r3 IF ID EX ME WB

sub r4, r5, r6 IF ID EX ME WB

fmadd r7, r8, r9, r10 IF ID EX ME WB

fmadd r11, r12, r13, r14 IF ID EX ME WB

xori r15, r16, 17 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8

Put your solution on the larger diagram several pages ahead.
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Put your solution on the larger diagram several pages ahead.

� Add the CSM and ADD units to the implementation above so that the can implement the fmadd instruction.

� Provide the datapath needed so that operands can reach the CSM and ADD units and � the result can
reach the register file.

� Don’t forget that this instruction has three source operands.

� Do not increase the critical path.

� As always, consider cost. Assume that an n-bit register costs twice as much as an n-bit, 2-input multiplexor.

� fmadd should execute without stalls when there are no nearby dependencies.

� Do not design control logic for this assignment.

The solution and its discussion appear several pages ahead.
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(b) In the code fragments below the fmadd depends on prior instructions.

� Add bypass paths to the fmadd implementation so that all of the executions below are possible.

The solution and its discussion appear on the next page.

# Fragment A

# Cycle 0 1 2 3 4 5 6

add R1, r2, r3 IF ID EX ME WB

sub R4, r5, r6 IF ID EX ME WB

fmadd r7, R1, R4, r9 IF ID EX ME WB

# Fragment B

# Cycle 0 1 2 3 4 5 6 7

sub R9, r5, r6 IF ID EX ME WB

fmadd R7, r1, r4, R9 IF ID EX ME WB

fmadd r2, r3, r5, R7 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

# Fragment C

# Cycle 0 1 2 3 4 5 6

add R1, r2, r3 IF ID EX ME WB

lw R9, 0(r10) IF ID EX ME WB

fmadd r7, R1, r4, R9 IF ID EX ME WB

(c) Using additional ADD unit(s) modify the implementation so that it can execute Fragments L and D
correctly. This will require some tricky bypassing. Note that stalls will be needed when the dependent
instruction following the fmadd does not use the adder, such as in Fragment E. Note: In the original
problem just one adder was to be used. That is probably impossible without critical path impact.

� Add a second adder and bypass paths so that fragments L and D execute as shown.

The solution and its discussion appear on the next page.

# Fragment L

# Cycle 0 1 2 3 4 5 6

fmadd R7, r1, r4, r9 IF ID EX ME WB

lw r10, 16(R7) IF ID EX ME WB # No stall!

# Fragment D

# Cycle 0 1 2 3 4 5 6

fmadd R7, r1, r4, r9 IF ID EX ME WB

add r2, R7, r3 IF ID EX ME WB # No stall!

# Fragment E

# Cycle 0 1 2 3 4 5 6

fmadd R7, r1, r4, r9 IF ID EX ME WB

or r2, R7, r3 IF ID -> EX ME WB # A stall. :-(
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Use the diagram below for your solution, or download
https://www.ece.lsu.edu/ee4720/2023/mpipei3.svg and edit with your favorite SVG editor. (The dia-
gram was drawn with Inkscape.)

Solution appears below. The changes for parts a and b are shown in blue and the changes for part c are shown in green.
For part a, the most important thing was not to put CSM and an ADD in the same stage, because the delay of CSM already

used most of the clock cycle. Notice that CSM’s inputs are obtained from the ALU’s multiplexors, so that for the multiplier and
multiplicand operands of fmadd no further changes are needed for bypassing.

The fmadd instruction uses a third source operand, sa. For this operand a third read port is added to the register file (in
ID). In EX the sa value uses the rtv path to reach ME, saving the need for an sav pipeline latch between EX and ME. The output
of the second ADD is the result of the fmadd instruction, it is connected to a new mux at the top of ME where it joins the path
leading to the register file input.

The changes described above provide the bypass paths needed for Fragment A. For fragments B and C a bypass is needed for
the sa value, for example R9 in Fragment C. That bypass is provided by the mux in the lower part of ME. Other bypasses needed
for the sa value are provided by the existing mux that provides a value for the ME.rtv pipeline latch.

For part c two ADD units are used, these are shown in green. (The original problem was to use just one, which is probably
impossible without critical path impact.)
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LSU EE 4720 Homework 5 Solution Due: 21 April 2023

Problem 1: In this problem consider the encoding of integer and floating-point addition instructions in
MIPS and RISC-V. Descriptions of MIPS and RISC-V are linked to the course references page,
https://www.ece.lsu.edu/ee4720/reference.html.

(a) Show the encoding of MIPS instructions add r1, r2, r3 and add.s f4, f5, f6.

The encoding of add r1, r2, r3 is:

MIPS

Opcode

0

31 26

rs

2

25 21

rt

3

20 16

rd

1

15 11

sa

0

10 6

func

10 0000

5 0

Instruction add.s f4, f5, f6 is floating-point and in MIPS its format differs significantly from the integer instructions.
(In many ISAs FP and integer instructions are encoded differently.) The register number fields are in different positions, and there is
a format field, fmt, for specifying whether the operands are single- or double-precision. (The values for the fmt field can be found
in Volume I Appendix A in Table A-11, in which the fmt field is confusingly called the rs field.)

MIPS

Opcode

01 00012

31 26

fmt

100002

25 21

ft

6

20 16

fs

5

15 11

fd

4

10 6

func

0

5 0

(b) Show the encoding of RISC-V RV32IF instructions add x7, x8, x9 and fadd f10, f11, f12.

The encoding for add x7, x8, x9 appears below. The encoding is most conveniently found in Chapter 24, RV32/64G
Instruction Set Listing.

RISC-V R:

func7

0

31 25

rs2

9

24 20

rs1

8

19 15

fun3

0002

14 12

rd

7

11 7

opcode

OP=011 00112

6 0
The encoding for fadd f10, f11, f12 appears below. The encoding is most conveniently found in Chapter 24, RV32/64G

Instruction Set Listing, in the table for RV32F. The problem did not specify which rounding mode (rm)to use, the encoding below
uses round-to-nearest, ties to even.

RISC-V R:

func5

0

31 27

fmt

002

26 25

rs2

12

24 20

rs1

11

19 15

rm

0002

14 12

rd

10

11 7

opcode

OP-FP=101 00112

6 0

(c) Notice that the register fields in the integer and floating-point RISC-V RV32IF instructions are the
same, while the register fields in the two MIPS instructions are different. One possible reason for RISC-V’s
matching fields was to simplify implementations of the Zfinx variant. (Web search for it.) How do the
matching fields reduce the cost of implementations of the RISC-V Zfinx variant?

In the Zfinx variant there is no separate floating-point register file. Instead, both integer and floating-point instructions’ operands
are from the same register file, the integer register file. Because integer and FP instructions operand fields are in the same place the
connections from needed to retrieve integer instruction operands will also work for floating-point instruction operands.
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ARM A64 Background
The following background will help in solving the next problem. MIPS and many other ISAs have a set of
integer registers and a set of floating-point registers. Many newer ISAs, including ARM A64, have a set of
vector registers in lieu of floating-point registers. Extensions of legacy ISAs, such as Intel 64 AVX2, have
vector registers but retain floating-point registers for compatibility.

In many ISAs, including ARM A64, a vector register can be used to hold one FP value, just as a
traditional FP register would, or a vector register can hold several values. Scalar instructions read or write
one value per vector register, and vector instructions read and write multiple values per register.

In ARM A64 there are 32 128-bit vector registers, named v0 to v31. When used in scalar instructions
operating on single-precision FP values they are known by the names s0 to s31 and by the names d0 to d31

by double-precision scalar instructions. For example, the ARM A64 assembler instruction fadd s0, s1,

s2 computes s0=s1+s2 and fadd d0, d1, d2 computes d0=d1+d2. In both cases the operands were taken
from vector registers v0, v1, and v2. The assembler name s0 means use the low 32 bits of v0 and interpret
the value as an IEEE 754 single. The assembler name d0 means use the low 64 bits of v0 and interpret the
value as an IEEE 754 double.

In the next problem, the one with sum_thing_unusual, the ARM code contains only scalar floating
point instructions and base (integer register) instructions. To solve the next problem one needs to look up
instructions in the ARM Architecture Reference Manual. Instructions that operate on vector registers, in-
cluding fadd can be found in the Advanced SIMD and Floating Point section, C7.2 for the list of instructions.
Other instructions can be found in the A64 Base Instruction section, C6.2 for the list of instructions.

Vector instructions are not needed in this assignment, but they will be briefly described anyway. For
vector instructions the vector register name indicates how many elements in the vector to use, and what
their format is. For example, v0.4s, means to use vector register v0 and to split its 128 bits into 4 32-bit
lanes, with each lane holding one float (the s). The names can be used in instructions such as fadd v0.4s,

v0.4s, v1.4s. This instruction performs four additions, one on each lane of the vector register.

2

← → Spring 2023 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/ee4720/2023/hw05_sol.pdf


Problem 2: Appearing below is a C++ procedure with a for loop that computes the sum of elements in
an array. This would be a totally ordinary loop were it not for the fact that the iteration variable, i, and
the increment, delta, are both floats. Since i is a float the number of iterations, depending on delta,
can be less than 1024 (say, if delta=2.3) or more than 1024 (say, if delta=0.25). Below the C code are
MIPS-I and ARM A64 assembler versions of the loop. Yes, that means you don’t have to write them! (The
MIPS-I code was hand written, and the A64 was based on code generated by a compiler.) Notice that the
ARM code is shorter than the MIPS code. That’s because some of the ARM instructions do the equivalent
of several MIPS instructions.

� Next to each ARM instruction indicate the MIPS instruction(s) from the MIPS code that it corresponds to.

� When an ARM instruction corresponds to more than one MIPS instruction explain what the ARM instruction
is doing.

A short reference for MIPS floating-point instructions is the course lfp.s notes. This should be sufficient
for all but the MIPS-II trunc instruction. For the trunc instruction see the MIPS documentation (linked
to the course ISA page).

float sum_thing_unusual( float *a, float delta ) {

float sum = 0;

for ( float i = 0; i < 1024; i += delta ) sum += a[int(i)];

return sum;

}

# MIPS Code for sum_thing_unusual.

#

# $a0: The address of array a.

# $f0: i. At this point it contains a zero.

# $f4: delta.

# $f5: The constant 1024, in FP format.

# $f8: sum. At this point it contains a zero.

LOOP:

trunc.w.s $f6, $f0 # Note: This is a MIPS-II instruction.

mfc1 $t1, $f6

sll $t1, $t1, 2

add $t2, $t1, $a0

lwc1 $f7, 0($t2)

add.s $f0, $f0, $f4

c.lt.s $f0, $f5

bc1f LOOP

add.s $f8, $f8, $f7

Solution on next page.
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The ARM instruction use is described below. Unlike MIPS, the ARM64 conversion instruction converts from FP to integer
format, and writes the result to the integer register file. The ARM memory instructions, including ldr, can do more to compute an
address than MIPS load instructions. They not only can add two registers, but also shift one of the registers, reducing the amount
of code needed for array access.

.arch arm

@ ARM A64 Code for sum_thing_unusual.

@

@ x0-x31: Integer registers. x31 is sometimes the zero register.

@ s0-s31: Scalar single-precision floating-point registers.

@

@ x0: The address of array a.

@ s0: sum. At this point it contains a zero.

@ s1: i. At this point it contains a zero.

@ s3: delta.

@ s4: The contains 1024, in FP format.

@@ SOLUTION
LOOP:

fcvtzs x1, s1

@ MIPS trunc. and mfc1.

@ Convert FP in s1 to an integer, with truncation and write

@ result in integer register x1.

fadd s1, s1, s3 @ MIPS add.s f0

fcmpe s1, s4

@ The closest equivalent instruction is MIPS c.lt.s.

@ But this instruction sets the comparison flags, NZCV, based

@ on the comparison. (The names N, Z, C, V are for the result

@ of an integer operation, but ARM uses the for FP comparisons too.)

ldr s2, [x0, x1, lsl 2]

@ MIPS sll, add, lwc1

@ ldr first computes an address by shifting x1 left two bits,

@ then adds the result to x0. The memory at that address (and

@ the three following) is read and the value placed in

@ register s2. Put another way:

@ s2 = Mem[ x0 + x1*4 ];

fadd s0, s0, s2 @ MIPS add.s f8

bmi LOOP @ MIPS bc1t and partly c.lt.s
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LSU EE 4720 Homework 6 Solution Due: 28 April 2023

Problem 1: Solve 2022 Final Exam Problem 2, in which code fragments are either written or analyzed for
our MIPS FP implementation.

See the final exam solution at https://www.ece.lsu.edu/ee4720/2022/fe_sol.pdf.

Problem 2: Solve the last part of 2022 Final Exam Problem 1, the one with the 4-way superscalar pipeline.
(You can tell it’s 4-way because the superscripts range from 0 to 3.) There is no need to show superscripts
on the stage labels in your execution diagram. For sample problems see past final exams, such as 2021
Problem 2.

See the final exam solution at https://www.ece.lsu.edu/ee4720/2022/fe_sol.pdf.

There is another problem on the next page.
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Problem 3: Appearing below is our MIPS FP implementation but with an unpipelined FP add unit. Some
of the control logic needed to generate stalls when a FP add instruction is in flight is in the magic cloud
labeled “Future HW Solution”. Design that logic. For similar logic see the logic on the Partially Pipelined
pages from Set 9 slides (about page 14). Hint: This does not require much hardware. For similar problems
see 2020 Spring Homework 5 and 2020 Spring Final Exam Problem 2.

Use the execution below to help you design the hardware:

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

add.d f0, f2, f4 IF ID A A A A WF

add.d f6, f8, f10 IF ID -------> A A A A WF

addi r1, r1, 8 IF -------> ID EX ME WB

add.d f12, f18, f14 IF ID ----> A A A A WF

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

An SVG version of the image can be found at https://www.ece.lsu.edu/ee4720/2023/hw06-fp-aaaa.svg,
use Inkscape or some other SVG editor, or even a text editor.

The solution appears below in blue. The OR gate now has three new inputs, which are the ad signals in the M3, M4, and M5

stages.
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LSU EE 4720 Homework 7 Solution Due: 1 May 2023

Problem 1: Solve 2022 Final Exam Problem 3, in which hardware is added to a variation on a 2-way
superscalar MIPS implementation.

See the final exam solution at https://www.ece.lsu.edu/ee4720/2022/fe_sol.pdf.
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LSU EE 4720 Homework 1 Solution Due: 4 February 2022

Problem 0: Follow the instructions for class account setup and for homework workflow in
https://www.ece.lsu.edu/ee4720/proc.html. Review the comments in hw01.s and look for the
areas labeled “Problem 1” and “Problem 2.”

Those who want to start before getting to the lab can find the assembler for the entire as-
signment at https://www.ece.lsu.edu/ee4720/2022/hw01.s.html. For MIPS references see the
course references page,
https://www.ece.lsu.edu/ee4720/reference.html. Easy MIPS practice problems can be found
in the practice directory, see MIPS Homework and Practice Workflow in
https://www.ece.lsu.edu/ee4720/proc.html.

This Assignment
In class as MIPS review we wrote a routine, strlen, to find the length of a C string. In our
completed routine (shown below) the main loop consisted of three instructions, and would load one
character per iteration. Therefore at best it could run at the rate of 1

3 characters per instructions.

strlen:

# Register Usage

# $a0: Address of first character of string.

# $v0: Return value, the length of the string.

addi $v0, $a0, 1 # Set aside a copy of the string start + 1.

LOOP:

lbu $t0, 0($a0) # Load next character in string into $t0

bne $t0, $0, LOOP # If it’s not zero, continue

addi $a0, $a0, 1 # Increment address. (Note: Delay slot insn.)

jr $ra

sub $v0, $a0, $v0

Can we do better? Since the main loop only consists of three instructions there is little that
can be done to make it shorter, at least using MIPS I instructions. Notice that a character is
loaded using lbu (load byte unsigned). Suppose instead a lw (load word) were used. Then four
characters would be loaded. If our loop body contained 12 instructions (including the lw) then it
would execute at the same rate as our original strlen because it would operate on 4 characters
per 12 instructions or at the rate of 1

3 characters per instruction. If we could somehow check for a
null with fewer than 12 instructions our new code would be faster.

In Problem 1 such a string length routine is to be completed. It is assumed that most students’
MIPS skills are rusty so the starting point is code using a lhu instruction. In the solution to Problem
1 I attained a rate of 0.392 char/insn, not much better than .329 attained by our original routine.

In Problem 2 the strlen routine is to be written using additional non MIPS-I instructions.
These include orc.b from a RISC-V extension, and clz and clo from MIPS32 (based on their r6
versions). Using these instructions my solution achieves 0.942 chars per insn.

Test Routine
The code for this assignment includes a test routine that runs three string length routines: the
routines to be written for Problems 1 and 2, and the string length routine written in class (called
strlen_ref here). Each routine is run on several strings, including all lengths from 0 to 5, plus
strings of length 23 and 196. The shorter-length strings are there to make sure that the routines
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are correct and to check how fast they are on short strings. The longest string is there to test
performance. The performance numbers from the previous section are based on the longest string.

Here is the output from the unmodified assignment:

** Starting Test of Routine "strlen_p1 (Problem 1 - Bit Ops)" **

String 1: Length 1 is correct. Took 10 insn or 0.100 char/insn

String 2: Length 2 is correct. Took 13 insn or 0.154 char/insn

String 3: Length 3 is correct. Took 16 insn or 0.188 char/insn

String 4: Length 4 is correct. Took 19 insn or 0.211 char/insn

String 5: Length 5 is correct. Took 22 insn or 0.227 char/insn

String 6: Length 0 is correct. Took 7 insn or 0.000 char/insn

String 7: Length 23 is correct. Took 76 insn or 0.303 char/insn

String 8: Length 196 is correct. Took 595 insn or 0.329 char/insn

** Starting Test of Routine "strlen_p2 (Problem 2 - RISC V orc insn)" **

String 1: Length 1 is correct. Took 11 insn or 0.091 char/insn

String 2: Length 2 is correct. Took 15 insn or 0.133 char/insn

String 3: Length 3 is correct. Took 19 insn or 0.158 char/insn

String 4: Length 4 is correct. Took 23 insn or 0.174 char/insn

String 5: Length 5 is correct. Took 27 insn or 0.185 char/insn

String 6: Length 0 is correct. Took 7 insn or 0.000 char/insn

String 7: Length 23 is correct. Took 99 insn or 0.232 char/insn

String 8: Length 196 is correct. Took 791 insn or 0.248 char/insn

** Starting Test of Routine "strlen_ref (Simple strlen routine.)" **

String 1: Length 1 is correct. Took 9 insn or 0.111 char/insn

String 2: Length 2 is correct. Took 12 insn or 0.167 char/insn

String 3: Length 3 is correct. Took 15 insn or 0.200 char/insn

String 4: Length 4 is correct. Took 18 insn or 0.222 char/insn

String 5: Length 5 is correct. Took 21 insn or 0.238 char/insn

String 6: Length 0 is correct. Took 6 insn or 0.000 char/insn

String 7: Length 23 is correct. Took 75 insn or 0.307 char/insn

String 8: Length 196 is correct. Took 594 insn or 0.330 char/insn

To see all of this output when running graphically it might be necessary to make the pop-up
window larger. It is possible to scroll the text in the pop-up window by focusing the window and
using the arrow keys.

Each line shows the result from one string. The length of the string is shown, as well as the
number of instructions executed in the string length routine, and the execution rate. If the returned
length had been wrong both the returned and correct length would be shown but the instruction
count would be omitted.

The strings themselves can be found in the test code after the str label. The testbench does
not print out the strings, just their lengths. Feel free to modify the strings if it helps with debugging,
but please restore them before the deadline.

Using LSU version of SPIM
This assignment requires a modified version of the SPIM simulator originally developed by James
Larus. Instructions for using this simulator appear on the course procedures page. When running
SPIM check the LSU version date, there should be a line reading LSU Version Date: 2022-01-31.
Make sure that the date is there and is no earlier than 31 January 2022. (The date will appear
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on the console output near the top when run non-graphically, and in the lowermost window pane
when run graphically.)

Two changes were made for this assignment: implementation of the RISC-V-like orb.c in-
struction, and implementation of the MIPS32 r6 (revision 6) clo (count leading ones) instruction.
Also new is the ability to start and stop tracing.

Debugging
To facilitate debugging the code can be run so that the simulator emits a trace of executed in-
structions, plus an indication of changed register values. The trace will mostly include the three
string length routines, but it will also include a few testbench instructions. The trace includes line
numbers so that there should be no confusion about where an instruction is from.

The best way to get a trace is to run the code non-graphically. To do so load the code into an
Emacs buffer in a properly set up account. Press Ctrl - F9 to start the simulator non-graphically.
That should pop up a window showing a simulator banner followed by a prompt:

SPIM Version 6.3.1 lsu of 9 November 2001, 17:34:35 CST

LSU Version Date: 2022-01-31

Copyright 1990-2000 by James R. Larus (larus@cs.wisc.edu).

All Rights Reserved.

See the file README for a full copyright notice.

Includes LSU modifications.

File loaded.

Type "run" to run normally.

Type "step 100" to execute next 100 instructions with tracing.

Type "help" for more help.

(spim)

At the prompt enter step 100 to run the next 100 instructions. The instructions in the string
length routines will be traced, but the count of 100 instructions also includes the test routine (as
of this writing). For example:

(spim) step 100

[0x00400064] 0x4080b000 mtc0 $0, $22 ; 218: mtc0 $0, $22

** Starting Test of Routine "strlen_p1 (Problem 1 - Bit Ops)" **

[0x004000d0] 0x0100f809 jalr $31, $8 ; 251: jalr $t0

# Change in $31 ($ra) 0x4000bc -> 0x4000d8 Decimal: 4194492 -> 4194520

[0x004000d4] 0x40154800 mfc0 $21, $9 ; 252: mfc0 $s5, $9

# Change in $21 ($s5) 0 -> 0x23 Decimal: 0 -> 35

[0x00400000] 0x20820000 addi $2, $4, 0 ; 84: addi $v0, $a0, 0

# Change in $2 ($v0) 0xffffffff -> 0x10010000 Decimal: -1 -> 268500992

[0x00400004] 0x94880000 lhu $8, 0($4) ; 87: lhu $t0, 0($a0)

# Change in $8 ($t0) 0x400000 -> 0x3100 Decimal: 4194304 -> 12544

[0x00400008] 0x3109ff00 andi $9, $8, -256 ; 88: andi $t1, $t0, 0xff00

# Change in $9 ($t1) 0x100101f0 -> 0x3100 Decimal: 268501488 -> 12544

[0x0040000c] 0x11200006 beq $9, $0, 24 [DONE0-0x0040000c]; 89: beq $t1, $0, DONE0

[0x00400010] 0x310900ff andi $9, $8, 255 ; 90: andi $t1, $t0, 0xff

Each line starting with square brackets shows the execution of an instruction. The address of
the instruction is shown inside the square brackets. After the square brackets the instruction is
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shown in three different forms. First encoded, shown in hexadecimal. Then a disassembled form
(which is based on the encoded instruction). Finally, after the semicolon the instruction is shown
as it appears in the assembler file. Immediately after the semicolon is a line number.

The lines that start with a # show register values that change. The values are shown both in
hexadecimal and decimal.

Problem 1: Routine strlen_p1 in hw01.s computes the length of a string using a loop that loads
two characters at a time. It achieves a rate of .329 char/insn. Modify it so that it uses a lw instead
of lhu. (Note that there is no such thing as lwu in MIPS I. Such an instruction only makes sense
if registers are larger than 32 bits.) It is possible to achieve .393 chars /insn, or maybe even faster.

The string starting address will be in register a0. That address will be a multiple of 4. Strings
end with a null (a zero). The byte after the null is not part of the string and can be of any value.
Don’t assume it is a particular value.

Your solution should use MIPS-I instructions and should not use pseudo instructions except
for nop. See the check-box comments (such as [ ] Code should be efficient.) for additional
restrictions, requirements, and reminders.

The solution appears below. The complete solution file is at
https://www.ece.lsu.edu/ee4720/2022/hw01-sol.s.html. The easy part is changing lhu to a lw and
changing addi a0, a0, 2 to addi a0, a0, 4. Next we need to modify the code so that it looks at the two
most significant bytes. Because MIPS immediates are 16 bits we can’t simply use an instruction like andi t1, t1,

0xff000000. But we can use an instructions like lui to load the constant in to a register, t6 in the solution, then
mask using and t1, t1, t6. Something is similar for mask 0xff0000. Finally we need to adjust and add DONE

targets for the different cases.
Since performance is important the masks are prepared before the loop is entered. The solution appears below.

strlen_p1:

# CALL VALUE

# $a0: Address of first character of string.

# RETURN

# $v0: The length of the string (not including the null).

addi $v0, $a0, 0

# SOLUTION: Prepare masks for two high bytes.

lui $t6, 0xff00 # t6 -> 0xff000000

lui $t7, 0xff # t7 -> 0xff0000

LOOP: # SOLUTION described by comments below.

lw $t0, 0($a0) # Change lhu to lw

and $t1, $t0, $t6 # Mask off most-significant byte ..

beq $t1, $0, DONE0 # .. if it is zero we are done ..

and $t1, $t0, $t7 # .. otherwise mask off next byte ..

beq $t1, $0, DONE1 # .. and if that one is zero we’re done ..

andi $t1, $t0, 0xff00 # .. otherwise mask the next one ......

beq $t1, $0, DONE2

andi $t1, $t0, 0xff

bne $t1, $0, LOOP

addi $a0, $a0, 4

4
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sub $v0, $a0, $v0

jr $ra

addi $v0, $v0, -1

DONE2: # SOLUTION: Modify the case for byte 2

sub $v0, $a0, $v0

jr $ra

addi $v0, $v0, 2

DONE1: # SOLUTION: Add a case for byte 1

sub $v0, $a0, $v0

jr $ra

addi $v0, $v0, 1

DONE0:

jr $ra

sub $v0, $a0, $v0

Problem 2: Complete strlen_p2 so that it determines the string length by loading four characters
(using a lw) and checks for the null using the RISC-V-like orc.b (Bitwise OR-Combine, byte
granule) instruction. Also helpful will be the MIPS32 r6 clz and clo instructions.

The orc.b instruction is part of the RISC-V bit manipulation ISA extensions. See the docu-
mentation for this instruction for details on what it does. The documentation is linked to the course
references page and of course can be found on the RISC-V site. The orc.b is in the strlen_p2

routine, but it doesn’t do anything useful. Of course, that should be changed as part of the solution.
The MIPS32 clz and clo might also come in handy. Look for the MIPS32 r6 (not the older

versions) Volume 2 manuals on the course references page.
It is possible to complete this so that it runs at 0.947 char /insn or faster.

The solution appears below. The complete solution file is at
https://www.ece.lsu.edu/ee4720/2022/hw01-sol.s.html.

The orc.b r1, r2 instruction operates on each byte of the r2 value. If the byte is non-zero it is replaced by
0xff otherwise it remains zero. The transformed value is returned. So for r2 = 0x1100aa00 the value assigned to
r1 would be 0xff00ff00. If r2 holds four bytes of a string, then a value of r1=0xffffffff indicates that no null
has been found.

The number of bytes before a null can be determined by counting the number of leading ones (the number of
consecutive 1’s starting at the most-significant bit position). As suggested in the assignment a clo instruction does just
that.

Since performance is a goal, the main loop must be written using as few instructions as possible. For that reason
the code in the main loop checks only that there are no nulls, and leaves the task of determining how many characters
preceded the null to the code after the loop exit. In the solution appearing below the main loop consists of just four
instructions: lw, orc.b, bne, and addi.

After the exit a clo counts the most-significant 1’s and a srl is used to divide that value by 8, converting bits to
chars. See the comments in the solution for details.

Grading note: Many seemingly did not take into account that when performance is important nothing should be
done in a main loop that could be done either before or after the main loop. For example, in the solution below the main
loop uses a value of t3 that was prepared before the loop was entered.

strlen_p2:
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# CALL VALUE

# $a0: Address of first character of string.

# RETURN

# $v0: The length of the string (not including the null).

addi $v0, $a0, 4

addi $t3, $0, -1 # SOLUTION: Prepare value: 0xffffffff

LOOPB:

lw $t0, 0($a0)

orc.b $t1, $t0

# SOLUTION: Example execution of orc.b:

# String at address in $a0: "AB"

# t0: A B X <-- Value in ASCII. is null, X unknown.

# t0: 0x41420099 <-- Value in hex.

# t0: 0x41 0x42 0x00 0x99 <-- Value separated into four bytes

# t1: 0xff 0xff 0x00 0xff <-- Result. Non-zero bytes changed to 0xff

# t1: 0xffff00ff <-- Result. Non-zero bytes changed to 0xff

beq $t1, $t3, LOOPB # If t1 is 0xffffffff then no null found ..

addi $a0, $a0, 4 # .. so increment address for next word.

# A null has been found. Count number of leading 1’s to find out.

# t1: 0xffff00ff <-- Continuing with example.

clo $t2, $t1

# t2: 16 <-- Found 16 consecutive 1’s starting at MSB.

sra $t2, $t2, 3 # Effectively divide by 8.

# t2: 2 <-- 16 1’s means 2 bytes

sub $v0, $a0, $v0 # Add on number of bytes before null.

jr $ra

add $v0, $v0, $t2
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################################################################################

##

## LSU EE 4720 Spring 2022 Homework 1
##

##

 ## SOLUTION

 # Assignment https://www.ece.lsu.edu/ee4720/2022/hw01.pdf

 # Solution Discussion https://www.ece.lsu.edu/ee4720/2022/hw01_sol.pdf

################################################################################

## Problem 1
#

#  Instructions: https://www.ece.lsu.edu/ee4720/2022/hw01.pdf

strlen_p1:

        ## Register Usage

        #

        # CALL VALUE

        #  $a0: Address of first character of string.

        #       This address will be a multiple of 4.

        #

        # RETURN

        #  $v0: The length of the string (not including the null).

        #

        # Note:

        #  Can modify registers $t0-$t9, $a0-$a3, $v0, $v1.

        #  DO NOT modify other registers.

        #

        # [✔] The testbench should show 0 errors.

        # [✔] Try to reduce the number of executed instructions.

        # [✔] Do not use pseudoinstructions except for nop.

        #     Do not use: li, la, mov, bgt, blt, etc.

        #

        # [✔] Code should be efficient.

        # [✔] The code should be clearly written.

        # [ ] Comments should be written for an experienced programmer.

        addi $v0, $a0, 0

        # SOLUTION: Prepare masks for two high bytes.

        #

        lui $t6, 0xff00   # t6 ->  0xff000000

        lui $t7, 0xff     # t7 ->    0xff0000

        #

        # In the version using lhu it was possible to mask off each

        # byte using an immediate, such as in "andi $t1, $t0, 0xff".

        # But since immediate values are limited to 16 bits we need to

        # use some other method to get the mask in a register. The

        # method used above is an lui instruction.

        

LOOP:                         # SOLUTION described by comments below.

        lw $t0, 0($a0)        # Change lhu to lw
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        and $t1, $t0, $t6     # Mask off most-significant byte ..

        beq $t1, $0, DONE0    # .. if it is zero we are done ..

        and $t1, $t0, $t7     # .. otherwise mask off next byte ..

        beq $t1, $0, DONE1    # .. and if that one is zero we're done ..

        andi $t1, $t0, 0xff00 # .. otherwise mask the next one ......

        beq $t1, $0, DONE2

        andi $t1, $t0, 0xff

        bne $t1, $0, LOOP

        addi $a0, $a0, 4

        sub $v0, $a0, $v0

        jr $ra

        addi $v0, $v0, -1

DONE2:  # SOLUTION: Modify the case for byte 2

        sub $v0, $a0, $v0

        jr $ra

        addi $v0, $v0, 2

DONE1:  # SOLUTION: Add a case for byte 1

        sub $v0, $a0, $v0

        jr $ra

        addi $v0, $v0, 1

DONE0:

        jr $ra

        sub $v0, $a0, $v0

################################################################################

## Problem 2
#

strlen_p2:

        # CALL VALUE

        #  $a0: Address of first character of string.

        #       This address will be a multiple of 4.

        #

        # RETURN

        #  $v0: The length of the string (not including the null).

        #

        # Note:

        #  Can modify registers $t0-$t9, $a0-$a3, $v0, $v1.

        #  DO NOT modify other registers.

        #

        # [✔] Use lw to load from string. (Replace the lbu)

        # [✔] Make use of orc.b insn. Consider using clz, clo.

        # [✔] The testbench should show 0 errors.

        # [✔] Try to reduce the number of executed instructions.

        # [✔] Do not use pseudoinstructions except for nop.

        #     Do not use: li, la, mov, bgt, blt, etc.

        #

        # [✔] Code should be efficient.

        # [✔] The code should be clearly written.

        # [ ] Comments should be written for an experienced programmer.
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        ## SOLUTION Approach

        #

        # In main loop check whether there is a null and do so using

        # the minimum number of instructions. The orc.b instruction

        # returns a 0xffffffff if no null is found, and it's easy to

        # check for that. If a null is found, exit the loop and *then*

        # figure out where.

        addi $v0, $a0, 4

        addi $t3, $0, -1  # SOLUTION: Prepare value: 0xffffffff

        

LOOPB:

        lw $t0, 0($a0)

        orc.b $t1, $t0

        # SOLUTION:  Example execution of orc.b:

        #       String at address in $a0: "AB"

        # t0:   A B ∅ X            <-- Value in ASCII. ∅ is null, X unknown.

        # t0: 0x41420099           <-- Value in hex.

        # t0: 0x41 0x42 0x00 0x99  <-- Value separated into four bytes

        # t1: 0xff 0xff 0x00 0xff  <-- Result. Non-zero bytes changed to 0xff

        # t1: 0xffff00ff           <-- Result. Non-zero bytes changed to 0xff

        beq $t1, $t3, LOOPB        # If t1 is 0xffffffff then no null found ..

        addi $a0, $a0, 4           # .. so increment address for next word.

        # A null has been found. Count number  of leading 1's to find out.

        # t1: 0xffff00ff           <-- Continuing with example.

        clo $t2, $t1

        # t2: 16                   <-- Found 16 consecutive 1's starting at MSB.

        sra $t2, $t2, 3            # Effectively divide by 8.

        # t2:  2                   <-- 16 1's means 2 bytes

        sub $v0, $a0, $v0          # Add on number of bytes before null.

        jr $ra

        add $v0, $v0, $t2

##############################################################################

 #

strlen_ref:

        ## Register Usage

        #

        # $a0: Address of first character of string.

        # $v0: Return value, the length of the string.

        addi $v0, $a0, 1        # Set aside a copy of the string start + 1.

        

REF_LOOP:

        lbu $t0, 0($a0)         # Load next character in string into $t0
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        bne $t0, $0, REF_LOOP   # If it's not zero, continue

        addi $a0, $a0, 1        # Increment address. (Note: Delay slot insn.)

                

        jr $ra

        sub $v0, $a0, $v0

##############################################################################

#

 ## Test Code

#

#  The code below calls the strlen routines.

        .data

str:

        .align 2

        .asciiz "1"

        .align 2, -1

        .asciiz "12"

        .align 2, -1

        .asciiz "123"

        .align 2, -1

        .asciiz "1234"

        .align 2, -1

        .asciiz "12345"

        .align 2, -1

        .asciiz ""

        .align 2, -1

        .asciiz "\"Per aspera, ad astra!\""

        .align 2, -1

        .ascii "eighteen quintillion, four hundred forty six quadrillion, "

        .ascii "seven hundred forty four trillion, seventy three billion, "

        .ascii "seven hundred nine million, five hundred fifty one thousand, "

        .asciiz "six hundred sixteen"

msg:

        .asciiz "String %/s2/2d: Length %/v1/3d is "

msg_good:

        .asciiz "correct. Took %/s4/3d insn or %/f6/.3f char/insn\n"

msg_bad:

        .asciiz "wrong. Should be %/s7/3d.\n"

mut_strlen_p1:

        .word strlen_p1

        .asciiz "strlen_p1  (Problem 1 - Bit Ops)"

mut_strlen_p2:

        .word strlen_p2

        .asciiz "strlen_p2  (Problem 2 - RISC V orc insn)"

mut_strlen_ref:

        .word strlen_ref

        .asciiz "strlen_ref (Simple strlen routine.)"

muts:

        .word mut_strlen_p1

        .word mut_strlen_p2

        .word mut_strlen_ref
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        .word 0

mut_msg:

        .asciiz "\n** Starting Test of Routine \"%/t0/s\" **\n"

        .text

        .globl __start
__start:

        mtc0 $0, $22            # Pause tracing.

        addi $s1, $0, 0

TBOUTER:

        la $t0, muts

        sll $t1, $s1, 2

        add $t1, $t1, $t0

        lw $s0, 0($t1)

        bne $s0, $0, TB_MORE

        nop

        addi $v0, $0, 10        # System call code for exit.

        syscall

TB_MORE:

        la $a0, mut_msg

        addi $t0, $s0, 4

        addi $v0, $0, 11

        syscall

        la $a0, str

        addi $s6, $a0, 0        # Save copy of string starting address.

        addi $s2, $0, 0

TBLOOP:

        addi $a0, $s6, 0

        jal strlen_ref

        addi $s2, $s2, 1

        addi $s7, $v0, 0

        addi $a0, $s6, 0

        addi $v0, $0, -1

        lw $t0, 0($s0)

        mtc0 $v0, $22           # Resume tracing. (No effect if not stepping.)

        jalr $t0

        mfc0 $s5, $9            # Copy current instruction count. (Before.)

        mfc0 $s4, $9            # Copy current instruction count. (After.)

        mtc0 $0, $22            # Pause tracing.

        addi $s4, $s4, -1

        sub $s4, $s4, $s5

        mtc1 $s4, $f4

        cvt.d.w $f4, $f4

        mtc1 $v0, $f0

        cvt.d.w $f0, $f0

        div.d $f6, $f0, $f4

        

        addi $v1, $v0, 0        # Move length of string to $v1
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        addi $v0, $0, 11        # System call code for message.

        la $a0, msg             # Address of message.

        syscall

        la $a0, msg_good

        beq $v1, $s7  TB_CONTINUE

        nop

        la $a0, msg_bad

TB_CONTINUE:

        syscall

        add $s6, $s6, $s7

        ori $s6, $s6, 0x3

        addi $s6, $s6, 1

        la $a0, msg

        slt $t0, $s6, $a0

        bne $t0, $0, TBLOOP

        nop

        j TBOUTER

        addi $s1, $s1, 1
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LSU EE 4720 Homework 2 Solution Due: 21 February 2022

Problem 1: The code fragment below was taken from the course hex string assembly example. (The hex
string example was not covered this semester. The full example can be found at
https://www.ece.lsu.edu/ee4720/2022/hex-string.s.html.) The fragment below converts the value in
register a0 to an ASCII string, the string is the value in hexadecimal (though initially backward).

LOOP:

andi $t0, $a0, 0xf # Retrieve the least-significant hex digit.

srl $a0, $a0, 4 # Shift over by one hex digit.

slti $t1, $t0, 10 # Check whether the digit is in range 0-9

bne $t1, $0, SKIP # Don’t forget that delay slot insn always exec.

addi $t2, $t0, 48 # If 0-9, add 48 to make ASCII ’0’ - ’9’.

addi $t2, $t0, 87 # If 10-15, add 87 to make ASCII ’a’ - ’z’.

SKIP:

sb $t2, 0($a1) # Store the digit.

bne $a0, $0, LOOP # Continue if value not yet zero.

addi $a1, $a1, 1 # Move string pointer one character to the left.

(a) Show the encoding of the MIPS bne t1, 0, SKIP instruction. Include all parts, including—especially—
the immediate. For a quick review of MIPS, including the register numbers corresponding to the register
names, visit https://www.ece.lsu.edu/ee4720/2022/lmips.s.html.

The encoding appears below. Note that register t1 (temporary 1) is a helpful name for r9, and so a 9 is placed in the rt field.
If the bne is taken it advances by two instructions (starting from the delay-slot instruction), and so the immediate field holds a 2.

MIPS I:

Opcode

0x05

31 26

RS

9

25 21

RT

0

20 16

Immed

2

15 0

(b) RISC-V RV32I has a bne instruction too, though it is not exactly the same. Show the encoding of the
RV32I version of the bne t1, 0, SKIP instruction. For this subproblem assume that the bne will jump
ahead two instructions, just as it does in the code sample above.

To familiarize yourself with RISC-V start by reading Chapter 1 of Volume I of the RISC-V specification,
especially the Chapter 1 Introduction and Sections 1.1 and 1.3. Skip Section 1.2 unless you are comfortable
with operating system and virtualization concepts. Other parts of Chapter 1 are interesting but less relevant
for this problem. Also look at Section 2.5 (Control Transfer Instructions). The spec can be found in the
class references page at https://www.ece.lsu.edu/ee4720/reference.html.

The branch instructions are discussed in Section 2.5 under the Conditional Branches heading. There are two significant
differences with the MIPS bne. First, there is no delay slot. That’s not relevant in this problem. Second, the immediate field value
is used differently. Let IMM denote the immediate field value (based on the bits set in the instruction). The branch target is then
PC + 2 * IMM, where PC is the address of the branch. (In MIPS the target would be PC + 4 + 4 * IMM.) So, we need to
set the immediate to the number of bytes to skip divided by two. The problem says to jump ahead two instructions, in RISC-V (and
most RISC ISAs) that’s 8 bytes, and so the immediate field should be set to 4.

Though Section 2.5 shows the encoding of a bne instruction, it does not provide the values for opcode fields and their extensions,
instead using names: BRANCH for the opcode field and BNE for the funct3 field. The values can be found in Chapter 24.

The encoding appears below. The instruction field names have been abbreviated, such as im12 for imm[12]. Also note that in
RISC-V immediate field names use the bit numbers within the immediate. So, for example, imm[4:1] (abbreviated im4:1 below)
indicates that the four bits in the instruction field (a 410 = 01002 in the example) are placed in bit positions 4:1 of the immediate.
There is no imm[0] field in the instruction because that immediate bit is always set to zero. So, the IMM*2 is computed by putting
the twelve immediate bits in the instruction in bits 12:1 of the immediate, setting bit 0, the LSB, to zero.

RISC-V B:

im12

0

31

im10:5

0

30 25

rs2

0

24 20

rs1

9

19 15

fun3

0012

14 12

im4:1

4

11 8

im11

0

7

opcode

110 00112

6 0

1
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(c) Consider the four-instruction sequence from the code above:

slti $t1, $t0, 10 # Check whether the digit is in range 0-9

bne $t1, $0, SKIP # Don’t forget that delay slot insn always exec.

addi $t2, $t0, 48 # If 0-9, add 48 to make ASCII ’0’ - ’9’.

addi $t2, $t0, 87 # If 10-15, add 87 to make ASCII ’a’ - ’z’.

SKIP:

Re-write this sequence in RISC-V RV32I, and take advantage of RISC-V branch behavior to reduce this
to three instructions (plus possibly one more instruction before the loop). For this problem one needs to
focus on RISC-V branch behavior. Assume that the RISC-V slti and addi instructions are identical to
their MIPS counterparts at the assembly language level. It is okay to retain the MIPS register names. Hint:
One change needs to be made for correctness, another for efficiency.

Solution appears below. Before the loop is entered the addi instruction sets t6 to 10, a constant that will come in handy.
Inside the loop the four MIPS instructions are replaced by three RISC-V instructions. First, the slti is no longer necessary because
RISC-V has a blt (branch less than). The blt itself checks whether t0 is less than 10 (which is in t6). Using the blt to do the
comparison is the efficiency change mentioned in the hint. Because RISC-V lacks delay slots the addi t2,t0,48 had to be moved
before the blt. That’s the correctness change mentioned in the hint. Notice that RISC-V has register names that are similar to
MIPS, such as t0-t6 for caller-save (temporary) registers.

# Instruction inserted before the loop to put 10 into register t6.

addi t6, zero, 10

LOOP:

# These instructions replace the four MIPS instructions.

addi t2, t0, 48 # Convert assuming t0 in range 0-9 ..

blt t0, t6, SKIP # .. if that’s correct, branch ..

addi t2, t0, 87 # .. otherwise convert assuming a-f.

SKIP:

2
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Problem 2: Note: The following problem was assigned in each of the last six years, and its solution is
available. DO NOT look at the solution unless you are lost and can’t get help elsewhere. Even in that case
just glimpse. Appearing below are incorrect executions on the illustrated implementation. For each one
explain why it is wrong and show the correct execution.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D
 

dstdst

E
2'b0 format

immed =

(a) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until the lw reaches
WB.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID ----> EX ME WB

(b) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

There is no need for a stall because the lw writes r1, it does not read r1.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB

3
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(c) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

A longer stall is needed here because the sw reads r1 and it must wait until add reaches WB.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID ----> EX ME WB

(d) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

The stall above allows the xor, when it is in ID, to get the value of r1 written by the add; that part is correct. But, the stall
starts in cycle 1 before the xor reaches ID, so how could the control logic know that the xor needed r1, or for that matter that
it was an xor? The solution is to start the stall in cycle 2, when the xor is in ID.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID ----> EX ME WB

4
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LSU EE 4720 Homework 3 Solution Due: 9 March 2022

Note: The following problems (or very similar problems) were assigned in 2020 and 2021, and their
solutions are available. DO NOT look at the solutions unless you are lost and can’t get help elsewhere. Even
in that case just glimpse.

Problem 1: Appearing below are incorrect executions on the illustrated implementation. Notice that this
implementation is different than the one from the previous problem. For each execution explain why it is
wrong and show the correct execution.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

(a) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID -> EX ME WB

There is a bypass path available so that there is no need to stall.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID EX ME WB

1
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(b) The execution of the branch below has two errors. One error is due to improper handling of the andi

instruction. (That is, if the andi were replaced with a nop there would be no problem in the execution
below.) The other is due to the way the beq executes. As in all code fragments in this problem, the program
is correct, the only problem is with the illustrated execution timing.

# Cycle: 0 1 2 3 4 5 6 7 8

andi r2, r2, 0xff IF ID EX ME WB

beq r1, r2, TARG IF ID EX ME WB

add r3, r4, r5 IF ID EX ME WB

xor IFx

TARG:

sw r6, 7(r8) IF ID EX ME WB

# Cycle: 0 1 2 3 4 5 6 7 8

Briefly, the two problems are the lack of a stall for the andi/beq dependence carried by r2 and because the branch target is
fetched one cycle later than it should be. The correct execution appears below.

Detailed explanation: In the illustrated implementation the = in ID is used to compute the branch condition for beq (and
bne). When the branch reaches ID, in cycle 2, the value of r2 retrieved from the register file is outdated, it needs to use the value
computed by andi. Since there are no bypass paths to the = logic the branch will need to stall until andi reaches writeback.
The stalls occur in cycles 2 and 3.

The illustrated implementation resolves the branch in ID, and so the branch target should be in IF when the branch is in EX.
In the execution above the target isn’t fetched until the branch is in ME, in cycle 4. That is fixed below by fetching the target a cycle
earlier. The xor is no longer fetched and squashed.

# Cycle: 0 1 2 3 4 5 6 7 8 9 SOLUTION

andi r2, r2, 0xff IF ID EX ME WB

beq r1, r2, TARG IF ID ----> EX ME WB

add r3, r4, r5 IF ----> ID EX ME WB

xor

TARG:

sw r6, 7(r8) IF ID EX ME WB

# Cycle: 0 1 2 3 4 5 6 7 8 9

2
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format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

(c) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until the lw reaches
ME so that the add can bypass from WB.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID -> EX ME WB

(d) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

There is no need for a stall because r1 is not a source register of lw. Note that r1 is a destination of lw.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB

3
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(e) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

No stall is needed here because the sw can use the ME-to-EX bypass path.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID EX ME WB

4
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Problem 2: Appearing below is the labeled MIPS implementation from 2018 Midterm Exam Problem 2(b),
and as in that problem each mux in the implementation below is labeled with a circled letter, and mux inputs
are numbered. Some wires are colored to make them easier to follow. Write code sequences that use the
mux inputs as requested below. Some code sequences may consist of a single instruction.
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(a) Use F0. Don’t be fancy about it, just one instruction is all it takes.

Solution appears below. F0 is used by values being loaded from memory into the pipeline. Load instructions, include lw, use
F0.

# SOLUTION

# Cycle 0 1 2 3 4

lw r1, 0(r2) IF ID EX ME WB

(b) Use F0, C2, and D3 at the same time. The code should not suffer a stall. More than one instruction is
needed for the solution. Note: This is new in 2022.

The solution appears below. The F0 mux input is used by load instructions. For that a lw instruction is included in the
solution. The D3 mux input is used to bypass something from WB to the second ALU operand. To use F0 and D3 at the same time
the load instruction must be in WB at the same time as the other instruction (an add in the example below) is in EX. The add
instruction uses the D3 bypass to get the value of r1 written by the lw. To use C2 the instruction must use an unbypassed value
for the first source. The first source of the add is r9 which has not been written by the two prior instructions, and so it can use the
value from the register file.

# SOLUTION

# Cycle 0 1 2 3 4 5 6

lw r1, 0(r2) IF ID EX ME WB

xor r5, r6, r7 IF ID EX ME WB

add r3, r9, r1 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

5
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(c) Explain why its impossible to use E0 and D0 at the same time.

If E0 is in use then there must be a store instruction in EX. If D0 is in use then a value is being bypassed to the second ALU
source operand of the instruction in EX. But store instructions use an immediate for the second ALU input, so a store in EX can
only use D2, it can’t use D0 (nor D1 nor D3).

6
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Problem 3: This problem appeared as Problem 2c on the 2020 final exam. Appearing below is our bypassed,
pipelined implementation followed by a code fragment.

It might be helpful to look at Spring 2019 Midterm Exam Problem 4a. That problems asks for the
execution of a loop and for a performance measure based upon how fast that loop executes.
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(a) Show the execution of the code below on the illustrated implementation up to the point where the first
instruction, addi r2,r2,16, reaches WB in the second iteration.

The execution appears below. The execution is shown until the beginning of the third iteration. (A full-credit solution would
only need to show execution until cycle 10, when the addi r2,r2,16 reaches WB in the second iteration.) The only stall is a
1-cycle load/use stall suffered by the sw. The first iteration starts in cycle 0 (when the first instruction, addi, is in IF), the second
iteration starts at cycle 6, and the third at cycle 12.

Note that the pattern of stalls in the second iteration is the same as the pattern in the first. We can expect this pattern to
continue because the contents of the pipeline is the same at the beginning of the second and third iterations. (The second iteration
begins in cycle 6. In that cycle the addi r2 is in IF, the addi r3 is in ID, etc. The contents of the pipeline is the same in cycle
12.)

## SOLUTION
LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

addi r2, r2, 16 IF ID EX ME WB First Iteration

lw r1, 8(r2) IF ID EX ME WB

sw r1, 12(r3) IF ID -> EX ME WB

bne r3, r4, LOOP IF -> ID EX ME WB

addi r3, r3, 32 IF ID EX ME WB

sub r10, r3, r2

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

addi r2, r2, 16 IF ID EX ME WB Second Iteration

lw r1, 8(r2) IF ID EX ME WB

sw r1, 12(r3) IF ID -> EX ME WB

bne r3, r4, LOOP IF -> ID EX ME WB

addi r3, r3, 32 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

addi r2, r2, 16 Third Iteration IF ID EX ME WB

7
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(b) Based on your execution determine how many cycles it will take to complete n iterations of the loop.

The time for n iterations of the loop is n times the duration of one iteration of the loop. The key to solving this correctly is
using the correct duration for an iteration. The duration of an iteration if the time between the start of two consecutive iterations.
In this class the start time of an iteration is the time at which the first instruction is in IF. Using that definition the duration of the
first iteration is 6−0 = 6 cyc and the duration of the second is 12−6 = 6 cyc. So the number of cycles to complete n iterations

is 6n cyc .
An important point to understand is that the definition of duration above insures that iterations don’t overlap. That is, by

defining an iteration duration as starting in the IF of the first instruction of the iteration, there is no possibility that two iterations
overlap and there is no time gap between them. That’s what enables us to multiply a duration by the number of iterations to get a
total time.

Some might be tempted to add another four cycles to account for the addi r3 instruction completing execution. No credit
would be lost for that in a solution, but that is not useful for our purposes because we might want to add together the duration of
different pieces of code, so for us the important thing is when the next instruction can be fetched.

8
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LSU EE 4720 Homework 4 Solution Due: 25 March 2022

Problem 1: Appearing below is our familiar five stage MIPS implementation with a new branch bypass
path shown in blue. For this problem assume that orc.b is executed by the ALU.
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(a) The code below is based on a solution to Homework 1. Show a pipeline execution diagram of this code
on the illustrated hardware. Pay close attention to the behavior of the branch including behavior due to
dependencies with prior instructions. Show enough of the execution to compute the instruction throughput
in units of IPC.

� Show execution on the illustrated hardware. � Compute the instruction throughput (IPC). � Pay
attention to dependencies and available bypass paths.

Solution appears below. The only unbypassable dependency was from orc.b to beq. The beq needs the value of t1 when
beq is in ID but it cannot be bypassed until orc.b reaches ME (using the blue mux) and so the beq stalls one cycle.

The instruction throughput is 4 insn
(6−1) cyc = .8 insn/cycle . Note that the number of cycles in an iteration is computed by

using the fetch of the first instruction in the loop body, the addi. So the number of cycles is 6− 1 = 5.

# SOLUTION

lw $t0, 0($a0) IF ID EX ME WB

LOOPB: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

addi $a0, $a0, 4 IF ID EX ME WB # 1st ITERATION

orc.b $t1, $t0 IF ID EX ME WB

beq $t1, $t3, LOOPB IF ID -> EX ME WB

lw $t0, 0($a0) IF -> ID EX ME WB

LOOPB: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

addi $a0, $a0, 4 IF ID EX ME WB # 2nd ITERATION

orc.b $t1, $t0 IF ID EX ME WB

beq $t1, $t3, LOOPB IF ID -> EX ME WB

lw $t0, 0($a0) IF -> ID EX ME WB
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(b) The code below should have executed more slowly on the illustrated implementation. Explain why. Hint:
The only difference in the code is the branch instruction.

lw $t0, 0($a0)

LOOPB:

addi $a0, $a0, 4

orc.b $t1, $t0

beq $t3, $t1, LOOPB

lw $t0, 0($a0)

� Explain why the code above executes more slowly.

The comparison unit used to evaluate the branch condition (the = box in the ID stage) can bypass an rs register value
(though only from ME) but not an rt value. In both code fragments the beq needs the value of t1 written by the orc.b, but in
the code fragment immediately above t1 is the beq rt register and so there is no bypass path.
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Problem 2: Appearing below is the implementation used in the previous problem. Add control logic for

the branch condition multiplexor (shown in blue). Feel free to insert an is Branch logic block to detect the
presence of a branch based on the instruction opcode. For an Inkscape SVG version of the implementation
follow https://www.ece.lsu.edu/ee4720/2022/hw04-br-byp.svg.

The solution appears below in blue. Note that it was not necessary to check whether the instruction in ID is a branch because
only a branch instruction would use that mux. It is assumed that logic already exists to generate a stall signal when there is a
dependence with the instruction in EX.
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Problem 3: Appearing below is our MIPS implementation (the one we use, we’re not taking credit for
inventing it) with an orc.b unit in the EX stage. Unlike the first problem in this assignment, here the orc.b

instruction is executed by its own unit, not by the ALU. One reason is because orc.b is fairly easy to
compute, and so its output can be available much sooner than the ALU’s output. In fact, it will be available
early enough to be bypassed to ID for use in determining the branch condition.

Connect the orc.b functional unit so that it can be used by orc.b instructions. Paying attention to
cost, connect it so that the following bypasses are possible: (1) A bypass so that an immediately following
dependent branch does not stall. This would eliminate a stall in a solution to Problem 1, and avoid a stall in
Case 1 in the code fragment below. (2) Bypasses to the next two arithmetic/logical instructions. See Case
2 below.

When weighing design alternatives assume that one pipeline latch bit cost twice as much as one mul-
tiplexor bit. Don’t overlook opportunities to reuse existing hardware. The Inkscape SVG source for the
diagram below is at https://www.ece.lsu.edu/ee4720/2022/hw04-orc.svg.

# Case 1

orc.b R1, r9

beq R1, r10, TARG

# Case 2

orc.b R1, r9

add r2, R1, r3 # Bypass from ME

xor r4, R1, r5 # Bypass from WB

or r6, R1, r7 # No bypass needed.

� Connect orc.b unit so code above executes without a stall.

� Show control logic for any multiplexors added. (Control logic does not need to be shown for the branch
condition mux.)

� As always, avoid costly, inefficient, and unclear solutions.
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The solution appears on the next page.
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The solution appears below in turquoise. The orc.b instruction has one source, the rs register value. That value is taken at
the output of the upper ALU mux, this way we can take care of the existing bypass paths and control logic.

The output of orc.b connects to two places. For the important orc.b / beq use case the output is connected directly to
the branch = mux for a stall-free bypass to the branch instruction. For other cases we need to put it on a path to the register file.
The chosen solution first puts it in the rtv mux, because that path is not otherwise used by the orc.b instruction. Then, in the
ME stage a mux is used to put the value on the “main” path back to the register file. The is orc.b signal is used as a select input
to the mux. Of course, the signal travels with the instruction by using pipeline latches.

There are two efficiency issues worth noting. First, it is possible to place a mux between the ALU and the pipeline latch, and
have the orc.b output connect to an input to that mux. That would have received full credit. But, it would be correct to argue
that the output of the ALU was on the critical path and so that should be avoided. That is why in the solution below the path from
the ALU output to the latch is not touched. For the same reason the path from ME.ALU to the memory port address input is not
touched.
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LSU EE 4720 Homework 5 Solution Due: 21 April 2022

Problem 1: Solve 2021 Final Exam Problem 2(a) and (b). Problem 2(a) asks for a pipeline execution
diagram for the execution of floating-point code on a MIPS implementation which is a little different than
the ones in the class notes. Problem 2(a) also asks for additional information, including the instruction
throughput. In Problem 2(b) the floating-point code is to be scheduled to improve the throughput. Note:
A brief summary of the problem is provided here to reduce the chance that you solve the wrong problem, say
by getting the year or problem number wrong.

See posted final exam solution at https://www.ece.lsu.edu/ee4720/2021/fe_sol.pdf.
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LSU EE 4720 Homework 6 Solution Due: 27 April 2022

Problem 1: Solve 2021 Final Exam Problem 2(c). In the problem the execution of a loop on a 4-way
superscalar MIPS implementation is to be shown.

See posted final exam solution at https://www.ece.lsu.edu/ee4720/2021/fe_sol.pdf.

Problem 2: Solve 2021 Final Exam Problem 1. In this problem some features of an unconventional 2-way
superscalar processor are to be completed. The solution to this problem is not as long as it might seem.

See posted final exam solution at https://www.ece.lsu.edu/ee4720/2021/fe_sol.pdf.
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LSU EE 4720 Homework 7 Solution Due: 1 May 2022, 23:59:59

Problem 1: Solve 2021 Final Exam Problem 3 (all parts). The problem has some routine predictor analysis
questions, how to craft a side-channel attack exploiting of local predictor that does not reset its tables at
context switches, and questions about a bimodal predictor with a separate tag store (as covered in class on
Friday). For example local predictor analysis problems see prior years’ final exams.

See posted final exam solution at https://www.ece.lsu.edu/ee4720/2021/fe_sol.pdf.
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LSU EE 4720 Homework 8 Solution Due: 1 May 2022, 23:59:59

Problem 1: Solve 2021 Final Exam Problem 4 parts a,b,c,d. (Don’t solve 4e). These are an assortment of
short answer questions, covering superscalar and vector processors, and other topics.

See posted final exam solution at https://www.ece.lsu.edu/ee4720/2021/fe_sol.pdf.
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LSU EE 4720 Homework 1 Solution Due: 29 January 2021

The solution has been copied into the assignment directory in file hw01-sol.s. An HTML version is at
https://www.ece.lsu.edu/ee4720/2021/hw01-sol.s.html.

Problem 0: Follow the instructions for class account setup and for homework workflow in
https://www.ece.lsu.edu/ee4720/proc.html. Review the comments in hw01.s and look for the
area labeled “Problem 1.”

Those who want to start before getting to the lab can find the assembler for the entire as-
signment at https://www.ece.lsu.edu/ee4720/2021/hw01.s.html. For MIPS references see the
course references page, https://www.ece.lsu.edu/ee4720/reference.html. Easy MIPS practice
problems can be found in the practice directory, see MIPS Homework and Practice Workflow in
https://www.ece.lsu.edu/ee4720/proc.html.

Problem 1: The hw01.s file has a routine called getbit.

(a) Complete the getbit routine so that it returns the value of a bit from a bit vector that spans
one or more bytes. Register $a0 holds the start address of the bit vector and register $a1 holds the
bit number to retrieve. The most-significant bit of the first byte is bit number 0. When getbit

returns register $v0 should be set to 0 or 1.
For example, a 16-bit bit vector is specified in the assembler below starting at the label

bit_vector_start:

bit_vector_start:

.byte 0xc5, 0x1f

In binary this would be 1100 0101 0001 11112. If getbit were called with $a1=0 then bit
number zero, meaning the leftmost bit in 1100 0101 0001 11112, should be returned and so $v0=1.
For $a1=2 a 0 should be returned.

Each memory location holds eight bits of the bit vector. For $a1 values from 0 to 7 the bit will
be in the byte at address $a0. For $a1 values from 8 to 15 the bit will be in the byte at address
$a0+1, and so on.

When the the code in hw01.s is run (by pressing F9 for example) a testbench routine will call

getbit several times. For each call the testbench will print the value returned by getbit (meaning
the value of $v0), whether that value is correct, and if wrong, the correct value. At the end it will
print the number of incorrect values returned by getbit, which hopefully will be zero when you’re
done.

See the checkboxes in the code for more information on what is expected.

The solution appears below:

getbit:

srl $t0, $a1, 3 # Compute byte offset from $a0.

add $t0, $a0, $t0 # Compute address of byte holding bit.

lbu $t1, 0($t0) # Load that byte.

andi $t2, $a1, 0x7 # Compute bit number within loaded byte.

addi $t2, $t2, 24 # Find left shift amt that puts needed bit in MSB.

sllv $t1, $t1, $t2 # Shift so that needed bit is most-significant.

jr $ra

1
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srl $v0, $t1, 31 # Shift so that needed bit is least significant.

The first two instructions, srl and add compute the address of the byte holding the needed bit. The byte is loaded
and shifted left by enough so that the needed bit is in the most-significant position of 32-bit register t1. The register is
then shifted right by 31 bits so that the needed bit is in the least-significant position and all other bits are zero.

(b) The bit vector used by the testbench is specified with:

bit_vector_start: # Note: MIPS is big-endian.

.byte 0xc5, 0x1f

.half 0x05af

.word 0xedcba987

.ascii "1234"

bit_vector_end:

The assembler will convert the lines following data directives .byte, .half, .word, and .ascii

into binary and place them in memory. The total size will be 2× 1 + 2 + 4 + 3 = 11 bytes. For the
purposes of this problem those 11 bytes form a 11× 8 = 88-bit bit vector. In most circumstances
for something like the bit vector above one would use the same kind of data directive for all data,
say using only .byte, but mixing directives is not wrong and in some cases may be convenient for
example when the bit vector is constructed by concatenating pieces of different sizes and types.
Note that the kind of data directives used above does not affect how getbit is written.

Following the bit vector are the tests for the testbench. For each test there is one line consisting
of a bit number and the expected return value. For example, the second test sets $a1=4 and expects
a return value of $v0=0.

testdata:

.half 0, 1

.half 4, 0

.half 10, 0

Add a test to the testdata data to test the part of the bit vector specified using .ascii

"123". The test should be written for .ascii "123" and should report an error if the directive
were changed to .ascii "213".

The 1234 in the data area above follows two bytes, one half, and one word. The total size of these is 2×1+2+4 =
8 bytes. So the 1 in 1234 starts at bit 8× 8 = 64, which is the most-significant bit of the 1. The ASCII for 1 is 3116
and 2 is 3216, these differ in the least-significant bit, so we need to check bit 64 + 7 = 71. It will be 1 for 1. So we
add data items for checking bit 71 for a 1:

testdata:

.half 71, 1 # Solution to 1b.

.half 0, 1

.half 4, 0

.half 10, 0
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################################################################################
##
## LSU EE 4720 Spring 2021 Homework 1 -- SOLUTION
##
##

################################################################################
## Problem 1
#
#  Instructions: https://www.ece.lsu.edu/ee4720/2021/hw01.pdf
#  Solution narrative: https://www.ece.lsu.edu/ee4720/2021/hw01_sol.pdf

.text

getbit:
        ## Register Usage

        #
        # CALL VALUES
        #  $a0: Address of start of array.
        #  $a1: Bit number to retrieve.
        #
        # RETURN
        #  $v0: This bit. (Zero or one.)
        #
        # Note:
        #  Can modify $t0-$t9, $a0-$a3
        #
        # [✔] Test code should show 0 errors.
        # [✔] Code should be correct.
        # [✔] Code should be reasonably efficient.
        # [✔] Do not use pseudoinstructions except for nop and la.

        ## SOLUTION -- Problem 1a.

        #
        srl $t0, $a1, 3     # Compute byte offset from $a0.
        add $t0, $a0, $t0   # Compute address of byte holding bit.
        lbu $t1, 0($t0)     # Load that byte.
        andi $t2, $a1, 0x7  # Compute bit number within loaded byte.
        addi $t2, $t2, 24   # Find left shift amt that puts needed bit in MSB.
        sllv $t1, $t1, $t2  # Shift so that needed bit is most-significant.
        jr $ra
        srl $v0, $t1, 31    # Shift so that needed bit is least significant.

        

################################################################################
## Testbench Routine
#
# 
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        .data
        .align 4
bit_vector_start:  # Note: MIPS is big-endian.
        .byte 0xc5, 0x1f
        .half 0x05af
        .word 0xedcba987
        .ascii "1234"
bit_vector_end:
testdata:
        ## SOLUTION -- Problem 1b.

        #
        #  The "1234" above follows two bytes, one half, and one word.
        #  The total size of these is 2*1 + 2 + 4 = 8 bytes. So the
        #  "1" in "1234" starts at bit 8 * 8 = 64, which is the
        #  most-significant bit of the "1". The ASCII for "1" is 0x31
        #  and "2" is 0x32, these differ in the least-significant bit,
        #  so we need to check bit 64 + 7 = 71. It will be 1 for "1".
        .half 71, 1   # Solution to 1b.

        .half 0, 1
        .half 4, 0
        .half 10, 0
        .half 16, 0,  20,0,  21,1,         # The part specified using ".half"
        .half 32,1    35,0,  39,1,  63,1,  # The part specified using ".word"
        .half 5, 1
        .half 6, 0
        .half 1, 1
        .half 2, 0
        .half 11, 1
        .half 12, 1
        .half 13, 1
        .half 3, 0
        .half 7, 1
        .half 8, 0
        .half 9, 0
        .half 14, 1
        .half 15, 1
        .half -1, -1

msg_good:
        .asciiz "Bit number: %/a1/3d  Val: %/s4/1d, correct\n"
msg_bad:
        .asciiz "Bit number: %/a1/3d  Val: %/s4/1d, wrong. Correct val: %/s5/1d\n"

msg_done:
        .asciiz "Done with tests, %/s6/d errors.\n";

        .text

        .globl __start
__start:
        la $s0, bit_vector_start
        la $s1, testdata
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        addi $s6, $0, 0

TB_LOOP:
        addi $a0, $s0, 0
        lh $a1, 0($s1)
        bltz $a1, TB_DONE
        nop
        jal getbit
        nop
        addi $s4, $v0, 0
        lhu $s5, 2($s1)
        la $a0, msg_good
        beq $v0, $s5, TB_CORRECT
        lh $a1, 0($s1)
        la $a0, msg_bad
        addi $s6, $s6, 11
TB_CORRECT:
        addi $v0, $0, 11
        syscall
        nop
        j TB_LOOP
        addi $s1, $s1, 4

TB_DONE:
        la $a0, msg_done
        addi $v0, $0, 11
        syscall
        nop

        addi $v0, $0, 10
        syscall
        nop
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LSU EE 4720 Homework 2 Solution Due: 8 February 2021

Problem 0: Follow the instructions for class account setup and for homework workflow in
https://www.ece.lsu.edu/ee4720/proc.html. Review the comments in hw02.s and look for the
area labeled “Problem 1.”

Those who want to start before getting to the lab can find the assembler for the entire as-
signment at https://www.ece.lsu.edu/ee4720/2021/hw02.s.html. For MIPS references see the
course references page,
https://www.ece.lsu.edu/ee4720/reference.html. Easy MIPS practice problems can be found
in the practice directory, see MIPS Homework and Practice Workflow in
https://www.ece.lsu.edu/ee4720/proc.html.

This Assignment
One goal of this assignment is to build assembly language proficiency by working with data at
different sizes and by traversing a tree. The sizes are bits for the compressed text, words for the
array of compressed text, half (2-byte) for the tree, and bytes for the dictionary. Another goal is
to provide a starting point for architectural improvements. That is, ISA and hardware changes to
make code go faster.

Huffman Compression Background
One way to compress data is to divide it up into pieces, compute a Huffman coding for the pieces,
then replace each piece with its Huffman code. The size of a Huffman code can vary from 1 bit
(yes, just one), to an arbitrarily long bit vector. Pieces that appear more frequently in the original
text will have short codes and pieces that appear less frequently will have longer codes. Consider
a file containing English text, such as the source file for the Homework 1 handout. One way of
dividing it to pieces is to make each character a piece. For Homework 1 a space was the most
frequent piece (258 times) followed by the letter “e” (174 times). They received codes 1002 and
11102, each of which is shorter than the eight bits used to encode each in the original file. The
character “8” appears just once and gets a long encoding, 110 1100 00012. The compressed data
consists of a concatenation of all of the codes. So “e e” would be encoded 111 0100 11102. The
encoded data does not contain any separators between the pieces. To decode it one needs to first
assume the code is one bit long, see if such a code exists, if not try two bits, and so on. So for the
example one would first look for a code for 12. If it didn’t exist (and it shouldn’t) one checks for
112, which also shouldn’t exist, neither does 1112 (the third try). One the fourth try we look for
11102 and find that this is a code and the value is “e”. The de-coding can continue by trying 12,
102, and finally 1002 which is the code for a space.

Huffman Huff Tree Format for This Assignment
This assignment will use a format in which text is compressed into three arrays, the compressed text,
starting at huff_compressed_text_start, a dictionary of strings, starting at huff_dictionary,
and the Huff Tree (a lookup tree), at huff_tree.

The compressed text is a long bit vector. As with Homework 1, bits are numbered in big-endian
order. The compressed text is specified using words but of course can be read using other sizes.
The dictionary of strings consists of a bunch of null-terminated strings. The Huff Tree is used to
decode compressed pieces. It is traversed using bits of the compressed text (0 for left child, 1 for
right child) and a leaf provides either an index into the dictionary or a character.

Consider the following excerpt from the homework file:

huff_compressed_text_start:

.word 0xd9ac96d8, 0x10b75d4f, 0xa06510d1, 0x7d9961e3, 0xeb6f31f1

1
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# Encoding: .word BIT_START, BIT_END, TREE_POS, DICT_POS, FRAG_LENGTH

huff_debug_samples:

# 0: 0 11011 -> "\n"

.word 0, 5, 0x2ee, 0xa, 1;

# 0: 5 001101 -> " ."

.word 5, 11, 0x32, 0x16, 9;

# 0:11 0110010010 -> "text"

.word 11, 21, 0x110, 0x27b, 4;

# 0:21 11011 -> "\n"

.word 21, 26, 0x2ee, 0xa, 1;

# 0:26 011000000 -> "histo"

.word 26, 35, 0xea, 0xce, 5;

# 1: 3 1000010 -> ":\n"

.word 35, 42, 0x1d6, 0x2e, 2;

The compressed text is shown as 32-bit words, under huff_compressed_text_start and as
an aid in debugging, the start of the same text is shown under huff_debug_samples. The first
piece, 110112, encodes a line feed character (we can see that by looking at the comment). The
second piece, 0011012, encodes “ .” (spaces followed by a period). The first piece is in bits 0 to 4
(inclusive) of the compressed text, and the second piece is in bits 5 to 10. The hexadecimal digits of
the compressed text can be found by concatenating the compressed pieces and then grouping them
into four-bit hex digits: 11011 001101 0110010010 → 1101 1001 1010 1100 1001 0 → d 9 a c

9 ?. That matches the start of the compressed text shown under huff_compressed_text_start.
For this assignment a piece, for example 11011, is decoded by traversing the huff_tree. Each

node in the huff_tree is 16 bits and can be one of three possible kinds: A leaf encoding a character,
a leaf encoding a dictionary entry, or an internal node (with a left and right child). If the value of
a node is <128 it is a leaf encoding a character. Otherwise if the value of a node is >=0x7000 it is
a leaf encoding a dictionary entry. Otherwise it is an internal node.

huff_tree:

# Huffman Lookup Tree

#

huff_tree: # Note: Most entries omitted.

.half 0x01fa # Tree Idx 0 Pointer to right child.

.half 0x011d # Tree Idx 1 0 Pointer to right child.

# [Many entries not shown.]

.half 0x028c # Tree Idx 378 1 Pointer to right child

# [Many entries not shown.]

.half 0x02e2 # Tree Idx 524 11 Pointer to right child.

.half 0x02c7 # Tree Idx 525 110 Pointer to right child.

# [Many entries not shown.]

.half 0x02e1 # Tree Idx 583 1101 Pointer to right child.

# [Many entries not shown.]

.half 0x000a # Tree Idx 609 11011 Literal "\n"

The Huff Tree is an array of nodes, each a 16-bit value. Let T denote such an array. The
root is T [0]. Let i indicate some position in the tree and n = T [i] denote the node at position i.
The assembler data above shows some elements of a Huff Tree. (The entire tree can be found in
hw02.s.) The numbers in binary (following the Tree Idx) show the path to that node.

2
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If n < 128 it is a leaf node encoding a character, and the ASCII value is n. If n ≥ 700016 then
the node is a leaf encoding a dictionary entry. The address of the first character of the dictionary
entry is huff_dictionary + n - 0x7000. The strings in the dictionary are null-terminated.

Let n = T [i] be a non-leaf node, so that n ≥ 128 and n < 700016. Its left child is at T [i + 1]
and its right child is at T [n− 128].

Here is how piece 11011 of the compressed text would be decoded based on the data in the
example above. Start at the root, retrieving T [0]. The value is 1fa16, which is an internal node.
The first bit of 11011 is 1 so we traverse the right child which is at 1fa16 − 8016 = 17a16 = 378.
The entry at tree index 378 (based on the table) is 28c16 which again is an internal node. The
second bit of the piece is 1 so we compute the index of the right child: 28c16− 8016 = 20c16 = 524.
The next compressed bit is zero so we proceed to the left child, at index 524 + 1. The tree excerpt
above includes the entry leading to the leaf node.

The routine below (which can be found in huff-decode.cc in the homework package) decodes
the piece starting at bit bit_offset and writes the decoded piece at dcd_ptr.

void

hdecode(HData& hd, int& bit_offset, char*& dcd_ptr)

{

// Decode one piece, starting at bit position bit_offset and

// write decoded piece starting at dcd_ptr.

// hd.huff_compressed: Compressed text. An array of 32-bit values.

// hd.huff_tree: A tree used to decode the compressed pieces.

// hd.huff_dictionary: Decompressed pieces.

// Start lookup at root of Huffman tree (tree_idx = 0).

//

int tree_idx = 0;

while ( true )

{

// Retrieve node.

uint16_t node = hd.huff_tree[tree_idx];

if ( node < 128 )

{

// Node is a leaf encoding a character.

char c = node; // Node value is an ASCII character.

*dcd_ptr++ = c; // Write character to decoded text pointer ..

return; // .. and return.

}

else if ( node >= 0x7000 )

{

// Node is a leaf holding an index into the dictionary.

// Compute dictionary index.

int idx = node - 0x7000;

3
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// Compute address of first character of dictionary entry.

char* str = hd.huff_dictionary + idx;

// Copy the dictionary entry.

while ( *str ) *dcd_ptr++ = *str++;

return;

}

else

{

// Node is not a leaf, need to set tree_idx to the index of

// either the left or right child of the node. The left

// child is used if the next bit of compressed text is zero

// and the right child is used if the next bit of compressed

// text is 1.

// Get the next bit of compressed text.

//

int comp_idx = bit_offset / 32; // Index of word in huff_compressed.

int bit_idx = bit_offset % 32; // Index of bit. MSB is 0.

uint32_t comp_word = hd.huff_compressed[ comp_idx ];

// Move needed bit to LSB in a way that sets other bits to zero.

bool bit = comp_word << bit_idx >> 31;

bit_offset++;

if ( bit )

{

// Set tree_idx to index of the right child.

tree_idx = node - 128;

}

else

{

// Set tree_idx to index of the left child.

tree_idx++;

}

}

}

}

Homework Package
The homework package consists of files to help with your solution and to satisfy curiosity. Your
solution, of course, goes in hw02.s, which is in the usual SPIM assembler format for this class.

The Huffman compression was performed by the huff perlscript. To compress MYFILE invoke
it using ./huff MYFILE. With no arguments it compresses itself. It will write two files, encoded.s
and encoded.h. The contents of encoded.s could be copied into the hw02.s (replacing what’s
there). Do this if you’d like to run your code on some other input.

File huff-decode.cc is a C++ routine that includes encoded.h and decodes it. It needs to

4
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be re-built for each new input file. (Sorry, I’ve already spent too much time on the assignment.)
Here is how it might be used on a new file:

[koppel@dmk-laptop hw02]$ ./huff ../../hw02.tex

File ../../hw02.tex

Words 366 Codes 366 Resorts 11

[koppel@dmk-laptop hw02]$ gmake -j 4

g++ --std=c++17 -Wall -g huff-decode.cc -o huff-decode

[koppel@dmk-laptop hw02]$ ./huff-decode

Decoded:

\magnification 1095

% TeXize-on

\input r/notes

The assignment was created by compressing histo-bare.s.

Problem 1: Complete routine hdecode so that it decodes the piece of Huffman-compressed text
starting at bit number a1, writes the decoded text to memory starting at the address in a2, and
sets registers v0, v1, a1, and a2 as described below. (Yes, a0 is unused.)

Use symbol huff_compressed_text_start for the address of the start of the compressed text,
huff_tree for the address of the start of the Huff Tree, and huff_dictionary for the address of
the start of the dictionary.

When hdecode returns set v0, v1, a1, and a2 as follows. Set a1 to the next bit position to
use. For example, if the compressed piece were 3 bits and hdecode were called with a1=100 then
when hdecode returns a1 should be set to 103. Set a2 to the address at which to write the next
decoded character. For example, if the decoded text is 9 characters (not including the null) and
initially a2=0x1000 then when hdecode returns a2 should be set to 0x1009. When hdecode returns
v0 should be set to the address of the leaf in the Huff Tree that was used and v1 should be set to
either the address of the dictionary entry used or the value of the character.

Note that the return values of a1 and a2 are useful because they are at the values needed to
call hdecode again for the next piece. The return values of v0 and v1 are for debugging.

When hw02.s is run hdecode will be called multiple times, the return values checked, and the
results printed on the console. It will be called for the first 200 pieces, or until there are three
errors, whichever is sooner. A tally of errors is printed at the end, followed by the decoded text.

Pay attention to the error messages. Once syntax and execution errors are fixed, debug your
code by tracing. To trace start the simulator using Ctrl - F9 if running graphically or just F9

non-graphically. At the spim prompt type step 50 to execute the next 50 instructions. The trace
shows line numbers of source assembly to the right of the semicolon. It also shows changed register
values.

Single stepping is most useful when the first piece fails, which is likely to happen at first. But
before long it will be correct and so viewing the trace will be a pain. To have the testbench start
at your erroneous piece first locate the piece after label huff_debug_samples. The first number
after .word is the Bit Position referred to in the “Decoding of..” message. Copy that line (perhaps
with the comment above it) to just below the label huff_debug_samples.

Two solutions have been prepared and placed in the homework directory,
/home/faculty/koppel/pub/ee4720/hw/2021/hw02. The solution in hw02-sol-easy.s (and at
https://www.ece.lsu.edu/ee4720/2021/hw02-sol-easy.s.html) is easier to understand but is not as
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fast as it could be. The solution in hw02-sol.s (and at
https://www.ece.lsu.edu/ee4720/2021/hw02-sol.s.html) is faster but is harder to understand.

The easy solution executes 25757 instructions and has an efficiency of 22.2 instructions per bit. The faster solution
executes 19351 instructions and has an efficiency of 16.7 instructions per bit. (For both measures lower numbers are
better.)

Both solutions start by loading the first needed word of compressed text into t8 and shifting it so that the next
needed bit is in the most-significant position. After that the main loop (TREE LOOP) is entered. Each time a bit is
extracted t8 is shifted left so that the next bit is in the MSB position. When (if) all bits are used a new word of
compressed text is loaded into t8. Grading note: most solutions would load the compressed text each
time a bit was needed.

This assignment was chosen to reinforce understanding of how memory addresses relate to arrays and their indices.
Consider C++ statement x=a[i];. This loads the element at index i of array a into variable x. A MIPS assembly
language equivalent will use some kind of a load instruction to retrieve a[i], the kind of load depends on the size of the
elements of a. For example, if a were an array of 4-byte integers then a lw would be used, if a were an array of 2-byte
short integers then a lh would be used, etc. The memory address of the load would be computed by adding a to i times
the size of an element (4 for integers, 2 for shorts, etc.). The solution includes access to arrays of varying size. The huff
table uses two-byte elements.

See the code comments for additional description of the solution.

.text
hdecode:

## Register Usage
#

# CALL VALUES

# $a0: Unused

# $a1: Bit position to start at.

# $a2: Address to write decoded data.

#

# RETURN

# $a1: Bit position following encoded piece.

# $a2: Address following decoded piece.

# $v0: Address of leaf of huff tree.

# $v1: Address of dict entry or value of literal character.

## SOLUTION – Easy

# Load the word of compressed text that has the next bit we need.

#

srl $t4, $a1, 5 # Determine word index of next word to read.

sll $t6, $t4, 2 # Determine byte offset of next word to read.

la $t5, huff_compressed_text_start

add $t6, $t6, $t5 # Compute address of next word to read.

lw $t8, 0($t6) # Read next word of compressed text.

# Shift the next bit into the most-significant position of $t8.

#

andi $t7, $a1, 0x1f # Determine bit number of next bit to examine.

sllv $t8, $t8, $t7 # Put needed bit into most-significant position.

# It’s possible that we’ll examine all the bits in t8, at
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# which time the next word needs to be loaded. To check

# whether this has occurred set $t9 to the bit number of the

# first bit in the next word.

#

sll $t9, $t4, 5 # Compute bit number at which a new word ..

addi $t9, $t9, 0x20 # .. will need to be loaded.

la $v0, huff_tree # $v0 will be used for the current node.

addi $t3, $v0, 0 # Note: t3 will not be changed.

TREE_LOOP:

# Live Registers at This Point in Code

#

# $t3: Address of root of huff tree.

# $v0: Address of current node.

#

# $a1: Bit number of next bit (of compressed text) to examine.

# $t8: Compressed text. The next bit to examine is the MSB.

# $t9: Bit number at which the next word must be loaded into t8.

# $t6: Address of the current word of compressed text.

#

# $a2: Address at which to write next decoded character.

# Load value of current node into $t4.

#

lhu $t4, 0($v0)

# Check whether current node is a character leaf.

#

sltiu $t5, $t4, 128

bne $t5, $0, CHAR_LEAF

nop

# Check whether current node is a dictionary leaf.

#

sltiu $t5, $t4, 0x7000

beq $t5, $0, DICT_LEAF

nop

NOT_LEAF:

# Current node is an internal (non-leaf) node, so:

# - Get next bit of compressed text.

# - Based on the value of that bit descent to left or right child.

# Check whether we already have the bit we need.

#

bne $a1, $t9, GET_NEXT_BIT

nop
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# Load next word of compressed text.

#

addi $t6, $t6, 4 # Update address ..

lw $t8, 0($t6) # .. and load the word.

addi $t9, $t9, 0x20 # Also update t9, the load-next-word value.

GET_NEXT_BIT:

# Put the next bit into $t5 and shift next-next bit to MSB.

#

slt $t5, $t8, $0 # Extract the most-significant bit of $t8 ..

sll $t8, $t8, 1 # .. and shift the current word by 1.

# Based on value of next bit descend to either right or left child.

#

bne $t5, $0, RCHILD

addi $a1, $a1, 1 # Increment the bit number of the next bit.

# Descend to Left Child.

#

# The left child is right after the current node.

#

j TREE_LOOP

addi $v0, $v0, 2

RCHILD:

# Descend to Right Child.

#

# The address of the right child is computed using current node value.

#

addi $t4, $t4, -128 # Compute index of right child. (0 is root, etc.)

sll $t4, $t4, 1 # Multiply index by 2 because nodes are two bytes.

j TREE_LOOP

add $v0, $t3, $t4 # Add byte offset to address of root.

CHAR_LEAF:

# Node is a leaf. Its value is a character to append.

#

addi $v1, $t4, 0

sb $t4, 0($a2) # Write the character ..

jr $ra # .. and we’re done ..

addi $a2, $a2, 1 # .. after we increment the pointer.

DICT_LEAF:

# Node is a leaf. Its value is a byte offset into dictionary.

#

addi $t4, $t4, -0x7000

la $t0, huff_dictionary

add $t4, $t4, $t0

add $v1, $t4, $0
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# Copy string from dictionary to output.

CPY_LOOP:

lb $t5, 0($t4)

addi $t4, $t4, 1

sb $t5, 0($a2)

bne $t5, $0, CPY_LOOP

addi $a2, $a2, 1

jr $ra

addi $a2, $a2, -1

The faster solution fills more delay slots and employs other techniques to reduce instruction count.
Effort was focused on the code descending down non-leaf (internal) nodes in the tree, since that it executed most

frequently. So after loading a node the code first checks for a non-leaf, then for a leaf. The check for a non-leaf uses an
unsigned comparison, sltiu, to test for values between 128 and 0x7000 using a single comparison. To do so t4 is set
to the node value, v1, minus 128. A sltiu t5, t4, 0x6f80 will set t5 to true if t4 is between zero and 0x6f80
and false if t4 is less than zero (negative numbers are treated as large positive numbers by sltiu) or ≥ 0x6f80.

.text
hdecode:

## Register Usage
#

# CALL VALUES

# $a0: Unused

# $a1: Bit position to start at.

# $a2: Address to write decoded data.

#

# RETURN

# $a1: Bit position following encoded piece.

# $a2: Address following decoded piece.

# $v0: Address of leaf of huff tree.

# $v1: Address of dict entry or value of literal character.

#

## SOLUTION - Faster

# Load the word of compressed text that has the next bit we need.

#

srl $t4, $a1, 5 # Determine word index of next word to read.

sll $t6, $t4, 2 # Determine byte offset of next word to read.

la $t5, huff_compressed_text_start

add $t6, $t6, $t5 # Compute address of next word to read.

lw $t8, 0($t6) # Read next word of compressed text.

# Shift the next bit into the most-significant position of $t8.

#

andi $t7, $a1, 0x1f # Determine bit number of next bit to examine.

sllv $t8, $t8, $t7 # Put needed bit into most-significant position.

# It’s possible that we’ll examine all the bits in t8, at

9
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# which time the next word needs to be loaded. To check

# whether this has occurred set $t9 to the bit number of the

# first bit in the next word.

#

sll $t9, $t4, 5 # Compute bit number at which a new word ..

addi $t9, $t9, 0x20 # .. will need to be loaded.

la $t3, huff_tree

addi $v0, $t3, -2 # Compensate for crossing left-child code below.

TREE_LOOP_L:

# Descend to Left Child. (Except in first iteration.)

#

addi $v0, $v0, 2

TREE_LOOP:

# Live Registers at This Point in Code

#

# $t3: Address of root of huff tree.

# $v0: Address of current node.

#

# $a1: Bit number of next bit (of compressed text) to examine.

# $t8: Compressed text. The next bit to examine is the MSB.

# $t9: Bit number at which the next word must be loaded into t8.

# $t6: Address of the current word of compressed text.

#

# $a2: Address at which to write next decoded character.

# Load value of current node into $v1

#

lhu $v1, 0($v0)

# First check for a non-leaf node, since that’s most common.

#

addi $t4, $v1, -128 # Compute index of right child.

sltiu $t5, $t4, 0x6f80 # Note: Unsigned comparison.

bne $t5, $0, NOT_LEAF

sll $t7, $t4, 1 # Compute byte offset of right child.

# The node is a leaf. Check if it’s a character or dictionary

# entry and branch to the respective code.

#

bltz $t4, CHAR_LEAF

sb $v1, 0($a2) # Write the character just in case.

j DICT_LEAF

addi $t4, $v1, -0x7000

NOT_LEAF:

# Current node is an internal (non-leaf) node, so:

10
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# - Get next bit of compressed text.

# - Based on the value of that bit descend to left or right child.

# Check whether we already have the bit we need.

#

bne $a1, $t9, EXAMINE_NEXT_BIT

addi $a1, $a1, 1

# Load next word of compressed text.

#

addi $t6, $t6, 4 # Update address ..

lw $t8, 0($t6) # No more bits, load a new word.

addi $t9, $t9, 0x20 # .. and overflow value.

EXAMINE_NEXT_BIT:

# Note: Next bit is in the MSB of t8. The bgez $t8 is taken if

# the MSB of $t8 is zero.

#

bgez $t8, TREE_LOOP_L

sll $t8, $t8, 1 # Shift left so that next bit is in MSB pos.

RCHILD:

# Descend to Right Child.

#

# Register $t7 already contains the byte offset. Just add it

# to the root to get the address of the right child.

#

j TREE_LOOP

add $v0, $t3, $t7

CHAR_LEAF:

# Node is a leaf. Its value is a character to append.

#

# Note: char already written by sb above.

#

jr $ra # .. and we’re done ..

addi $a2, $a2, 1 # .. after we increment the pointer.

DICT_LEAF:

# Node is a leaf. Its value is a byte offset into dictionary.

#

la $t0, huff_dictionary

add $v1, $t4, $t0

# Copy string from dictionary to output.

lb $t5, 0($v1)

addi $t4, $v1, 1

CPY_LOOP:

sb $t5, 0($a2)

11
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addi $a2, $a2, 1

lb $t5, 0($t4)

bne $t5, $0, CPY_LOOP

addi $t4, $t4, 1

jr $ra

nop

12
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################################################################################
##
## LSU EE 4720 Spring 2021 Homework 2 -- SOLUTION - Easy
##
##
 # Assignment https://www.ece.lsu.edu/ee4720/2021/hw02.pdf
 # Solution Writeup https://www.ece.lsu.edu/ee4720/2021/hw02_sol.pdf

################################################################################
## Problem 1
#

        .text
hdecode:
        ## Register Usage

        #
        # CALL VALUES
        #  $a0: Unused
        #  $a1: Bit position to start at.
        #  $a2: Address to write decoded data.
        #
        # RETURN
        #  $a1: Bit position following encoded piece.
        #  $a2: Address following decoded piece.
        #  $v0: Address of leaf of huff tree.
        #  $v1: Address of dict entry or value of literal character.
        #
        # Note:
        #  Can modify registers $t0-$t9, $a0-$a3, $v0, $v1.
        #  DO NOT modify other registers.
        #
        # [✔] The testbench should show 0 errors.
        # [✔] Code should be reasonably efficient.
        # [✔] The code should be clearly written.
        # [✔] Comments should be written for an experienced programmer.
        # [✔] Do not use pseudoinstructions except for nop and la.

        ## SOLUTION - Easy

        # Load the word of compressed text that has the next bit we need.
        #
        srl $t4, $a1, 5      # Determine word index of next word to read.
        sll $t6, $t4, 2      # Determine byte offset of next word to read.
        la $t5, huff_compressed_text_start        
        add $t6, $t6, $t5    # Compute address of next word to read.
        lw $t8, 0($t6)       # Read next word of compressed text.

        # Shift the next bit into the most-significant position of $t8.
        #
        andi $t7, $a1, 0x1f  # Determine bit number of next bit to examine.
        sllv $t8, $t8, $t7   # Put needed bit into most-significant position.

        # It's possible that we'll examine all the bits in t8, at
        # which time the next word needs to be loaded. To check
        # whether this has occurred set $t9 to the bit number of the
        # first bit in the next word.
        #
        sll $t9, $t4, 5      # Compute bit number at which a new word ..
        addi $t9, $t9, 0x20  # .. will need to be loaded.

        la $v0, huff_tree    # $v0 will be used for the current node.
        addi $t3, $v0, 0     # Note: t3 will not be changed.

TREE_LOOP:
        # Live Registers at This Point in Code
        #
        # $t3:  Address of root of huff tree.
        # $v0:  Address of current node.
        #
        # $a1:  Bit number of next bit (of compressed text) to examine.
        # $t8:  Compressed text. The next bit to examine is the MSB.
        # $t9:  Bit number at which the next word must be loaded into t8.
        # $t6:  Address of the current word of compressed text.
        #
        # $a2:  Address at which to write next decoded character.

        # Load value of current node into $t4.
        #
        lhu $t4, 0($v0)
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        # Check whether current node is a character leaf.
        #
        sltiu $t5, $t4, 128
        bne $t5, $0, CHAR_LEAF
        nop

        # Check whether current node is a dictionary leaf.
        #
        sltiu $t5, $t4, 0x7000
        beq $t5, $0, DICT_LEAF
        nop

NOT_LEAF:
        # Current node is an internal (non-leaf) node, so:
        #  - Get next bit of compressed text.
        #  - Based on the value of that bit descend to left or right child.

        # Check whether we already have the bit we need.
        #
        bne $a1, $t9, GET_NEXT_BIT
        nop

        # Load next word of compressed text.
        #
        addi $t6, $t6, 4       # Update address ..
        lw $t8, 0($t6)         # .. and load the word.
        addi $t9, $t9, 0x20    # Also update t9, the load-next-word value.

GET_NEXT_BIT:
        # Put the next bit into $t5 and shift next-next bit to MSB.
        #
        slt $t5, $t8, $0       # Extract the most-significant bit of $t8 ..
        sll $t8, $t8, 1        # .. and shift the current word by 1.

        # Based on value of next bit descend to either right or left child.
        #
        bne $t5, $0, RCHILD
        addi $a1, $a1, 1       # Increment the bit number of the next bit.

        # Descend to Left Child.
        #
        #   The left child is right after the current node.
        #
        j TREE_LOOP
        addi $v0, $v0, 2

RCHILD:
        # Descend to Right Child.
        #
        #   The address of the right child is computed using current node value.
        #
        addi $t4, $t4, -128   # Compute index of right child. (0 is root, etc.)
        sll $t4, $t4, 1       # Multiply index by 2 because nodes are two bytes.
        j TREE_LOOP
        add $v0, $t3, $t4     # Add byte offset to address of root.

CHAR_LEAF:
        # Node is a leaf. Its value is a character to append.
        #
        addi $v1, $t4, 0
        sb $t4, 0($a2)       # Write the character ..
        jr $ra               # .. and we're done ..
        addi $a2, $a2, 1     # .. after we increment the pointer.

DICT_LEAF:
        # Node is a leaf. Its value is a byte offset into dictionary.
        #
        addi $t4, $t4, -0x7000
        la $t0, huff_dictionary
        add $t4, $t4, $t0
        add $v1, $t4, $0

        # Copy string from dictionary to output.
CPY_LOOP:
        lb $t5, 0($t4)
        addi $t4, $t4, 1
        sb $t5, 0($a2)
        bne $t5, $0, CPY_LOOP
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        addi $a2, $a2, 1

        jr $ra
        addi $a2, $a2, -1

        
################################################################################
## Testbench Routine
#
# 

        .data
msg_full_text:
        .asciiz "\nNumber correct %/s6/d,  number wrong %/s5/d.\nDecoded Text:\n%/s0/s\n";

msg_piece_start:
        .asciiz "** Decoding of Bit Position %/a1/d **\n"

msg_bit_pos_ok:
        .asciiz "End bit pos  ($a1 contents) correct: %/a1/d.\n"
msg_bit_pos_bad:
        .asciiz "End bit pos  ($a1 contents) wrong: %/a1/d correct value is %/t0/d.\n"
msg_leaf_addr_ok:
        .asciiz "Leaf address ($v0 contents) correct: %/t4/#x.\n"
msg_leaf_addr_bad:
        .asciiz "Leaf address ($v0 contents) wrong: %/t4/#x correct value is %/t1/#x.\n"

msg_dict_addr_ok:
        .asciiz "Dict address ($v1 contents) correct: %/v1/#x  Entry: \"%/v1/s\".\n"
msg_dict_addr_bad:
        .asciiz "Dict address ($v1 contents) wrong: %/v1/#x correct value is %/t3/#x.\n"

msg_char_val_ok:
        .asciiz "Char value   ($v1 contents) correct: \"%/v1/c\"\n"
msg_char_val_bad:
        .asciiz "Char value   ($v1 contents) wrong: %/v1/d (decimal) correct value is %/t3/d (decimal) or \"%/t3/c\".\n"

msg_char_copied_wrong:
        .asciiz "Char value correct, \"%/v1/c\", but not copied, found \"%/$t4/\".\n"

msg_copied_bad:
        .asciiz "Text copied incorrectly starting at character %/t6/d: \"%/t7/s\"\n"
msg_early_exit:
        .asciiz "** Error limit exceeded, exiting early.\n";
msg_timing:
        .ascii "\nTotal insn %/s2/d, encoded bits %/t0/d, uncompressed bytes %/t1/d.\n"
        .asciiz "Efficiency:  %/f0/4.1f insn/bit  %/f2/4.1f insn/byte.\n"  

tb_timing_data:
        .word 0  # Instruction count.
        .word 0  # Sum of bits examined.
        .word 0  # Sum of characters in decoded text.

        .text
        .globl __start
__start:

        la $s3, huff_debug_samples

        addi $t0, $0, 0

        la $a2, uncompressed

        addi $s2, $0, 0  # Total number of instructions.
        addi $s6, $0, 0  # Number correct
        addi $s7, $0, 0  # Number checked

TLOOP:
        addi $s7, $s7, 1
        lw $a1, 0($s3)

        la $a0, msg_piece_start
        addi $v0, $0, 11
        syscall
        nop

        addi $s4, $a2, 0
        jal hdecode
        mfc0 $s1, $9       # Number of insns before hdecode.
        mfc0 $t1, $9       # Number of insns after hdecode.
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        addi $t1, $t1, -1
        sub $s1, $t1, $s1  # Number of insns executed by hdecode.
        add $s2, $s2, $s1
        sb $0, 0($a2)

        addi $s0, $a0, 0
        addi $t4, $v0, 0

        lw $t0, 4($s3)   # Bit end
        lw $t1, 8($s3)   # Byte offset into huff tree.
        lw $t3, 12($s3)  # Byte offset into dictionary.

        # Compute and store total compressed bits and decompressed bytes.
        #
        lw $t2, 0($s3)
        sub $t2, $t0, $t2
        la $a0, tb_timing_data
        lw $t5, 4($a0)     # Number of compressed bits.
        add $t5, $t5, $t2
        sw $t5, 4($a0)
        lw $t5, 8($a0)     # Total number of decompressed bytes.
        lw $t2, 16($s3)    # Number of bytes in this piece.
        add $t5, $t5, $t2
        sw $t5, 8($a0)

        # Check ending compressed-text bit position.
        #
        la $a0, msg_bit_pos_ok
        beq $t0, $a1, TBIT_SHOW
        nop
        la $a0, msg_bit_pos_bad
TBIT_SHOW:
        addi $v0, $0, 11
        syscall
        nop

        # Check address of huff tree leaf.
        #
        la $t2, huff_tree
        add $t1, $t1, $t2

        la $a0, msg_leaf_addr_ok
        beq $t1, $t4, TLEAF_SHOW
        nop
        la $a0, msg_leaf_addr_bad

TLEAF_SHOW:
        syscall
        nop

        slti $t4, $v1, 128
        bne $t4, $0, TCHAR_CHECK

        # Check address of dictionary entry.
        #
        la $t2, huff_dictionary
        add $t3, $t3, $t2
        la $a0, msg_dict_addr_ok
        beq $v1, $t3, TDICT_SHOW
        nop
        la $a0, msg_dict_addr_bad

TDICT_SHOW:
        syscall
        nop

        bne $v1, $t3, TCHECK_NEXT
        nop

        addi $t6, $t3, 0
        addi $t7, $s4, 0
TCHECK_WORD_LOOP:
        lbu $t4, 0($s4)
        lbu $t5, 0($t3)
        bne $t4, $t5, TCHECK_WORD_WRONG
        addi $s4, $s4, 1
        bne $t5, $0, TCHECK_WORD_LOOP
        addi $t3, $t3, 1

        # Word copied correctly.
        addi $s6, $s6, 1
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        j TCHECK_NEXT
        nop

TCHECK_WORD_WRONG:

        la $a0, msg_copied_bad
        sub $t6, $t3, $t6
        syscall
        nop

        j TCHECK_NEXT
        nop

        # Check value of decoded character.
        #
TCHAR_CHECK:
        beq $v1, $t3, TCHAR_SHOW
        nop
        la $a0, msg_char_val_bad
        syscall
        nop
        j TCHECK_NEXT
        nop

TCHAR_SHOW:
        # Check whether character copied correctly.
        lbu $t4, 0($s4)
        bne $t4, $v1, TCHAR_COPIED_WRONG
        nop

        # Character correct.
        addi $s6, $s6, 1

        la $a0, msg_char_val_ok
        syscall
        nop

        j TCHECK_NEXT
        nop

TCHAR_COPIED_WRONG:
        la $a0, msg_char_copied_wrong
        syscall
        nop

TCHECK_NEXT:
        # Exit loop if error threshold exceeded.
        #
        sub $s5, $s7, $s6
        slti $t1, $s5, 3
        bne $t1, $0, TCHECK_CONTINUE
        nop

        la $a0, msg_early_exit
        syscall
        nop

        j TLOOP_EXIT
        nop
        
TCHECK_CONTINUE:
        # Advance to next piece.
        #
        addi $s3, $s3, 20
        la $t0, huff_compressed_text_start
        slt $t1, $s3, $t0
        bne $t1, $0  TLOOP
        nop
        ##
        ##  End of Loop

TLOOP_EXIT:
        # Compute number of incorrect pieces.
        #
        sub $s5, $s7, $s6

        # Show execution rate.
        #
        la $a0, msg_timing
        la $t4, tb_timing_data
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        lw $t0, 4($t4)
        lw $t1, 8($t4)
        mtc1 $s2, $f20
        cvt.d.w $f22, $f20
        mtc1 $t0, $f10
        cvt.d.w $f12, $f10
        mtc1 $t1, $f14
        cvt.d.w $f16, $f14
        div.d $f0, $f22, $f12
        div.d $f2, $f22, $f16
        addi $v0, $0, 11
        syscall
        nop

        # Show decoded text.
        #
        la $a0, msg_full_text
        la $s0, uncompressed
        addi $v0, $0, 11
        syscall
        nop

        addi $v0, $0, 10
        syscall
        nop

        .data

.align 4
uncompressed:
.space 4000
uncompressed_end:

#  Data from file histo-bare.s

#  Code size 14253 + 1679 + 5176 = 21108  orig 40784 b, ratio 0.518  max 11
#  Words 188  Codes 188  Resorts 10

# Compression Debug Samples
#
# Encoding: .word BIT_START, BIT_END, TREE_POS, DICT_POS, FRAG_LENGTH
#
huff_debug_samples:
#   0: 0  11011 -> "\n"

.word 0, 5, 0x2ea, 0xa, 1;
#   0: 5  001011 -> "        ."

.word 5, 11, 0x2a, 0x16, 9;
#   0:11  0110011000 -> "text"

.word 11, 21, 0x14c, 0x1af, 4;
#   0:21  11011 -> "\n"

.word 21, 26, 0x2ea, 0xa, 1;
#   0:26  011010010 -> "histo"

.word 26, 35, 0x166, 0xc5, 5;
#   1: 3  1000100 -> ":\n"

.word 35, 42, 0x1de, 0x28, 2;
#   1:10  11011 -> "\n"

.word 42, 47, 0x2ea, 0xa, 1;
#   1:15  10101 -> "        "

.word 47, 52, 0x21c, 0, 8;
#   1:20  1101000 -> "addi"

.word 52, 59, 0x2b4, 0x23, 4;
#   1:27  01111 -> " $"

.word 59, 64, 0x1c2, 0x9, 2;
#   2: 0  10011 -> "s"

.word 64, 69, 0x1f0, 0x73, 1;
#   2: 5  000011 -> "1"

.word 69, 75, 0x18, 0x31, 1;
#   2:11  00100 -> ", $"

.word 75, 80, 0x24, 0xf, 3;
#   2:16  00010 -> "r"

.word 80, 85, 0x1c, 0x72, 1;
#   2:21  01000 -> "a"

.word 85, 90, 0x48, 0x61, 1;
#   2:26  00111 -> ", "

.word 90, 95, 0x40, 0xc, 2;
#   2:31  110000 -> "0"

.word 95, 101, 0x24c, 0x30, 1;
#   3: 5  101001000 -> "    # "
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.word 101, 110, 0x204, 0x9d, 6;
#   3:14  0101100111 -> "Make"

.word 110, 120, 0x7c, 0x218, 4;
#   3:24  111 -> " "

.word 120, 123, 0x2ec, 0x20, 1;
#   3:27  01000 -> "a"

.word 123, 128, 0x48, 0x61, 1;
#   4: 0  111 -> " "

.word 128, 131, 0x2ec, 0x20, 1;
#   4: 3  0101110110 -> "copy"

.word 131, 141, 0xb8, 0x1ca, 4;
#   4:13  111 -> " "

.word 141, 144, 0x2ec, 0x20, 1;
#   4:16  0011001 -> "of"

.word 144, 151, 0x34, 0x37, 2;
#   4:23  111 -> " "

.word 151, 154, 0x2ec, 0x20, 1;
#   4:26  10111010 -> "the"

.word 154, 162, 0x23e, 0x43, 3;
#   5: 2  111 -> " "

.word 162, 165, 0x2ec, 0x20, 1;
#   5: 5  0101110000 -> "return"

.word 165, 175, 0xa4, 0x1d6, 6;
#   5:15  111 -> " "

.word 175, 178, 0x2ec, 0x20, 1;
#   5:18  101110011 -> "address"

.word 178, 187, 0x23a, 0x74, 7;
#   5:27  1100010 -> ".\n"

.word 187, 194, 0x250, 0x20, 2;
#   6: 2  10101 -> "        "

.word 194, 199, 0x21c, 0, 8;
#   6: 7  1101010010 -> "jal"

.word 199, 209, 0x2c6, 0x197, 3;
#   6:17  111 -> " "

.word 209, 212, 0x2ec, 0x20, 1;
#   6:20  011011101 -> "upper"

.word 212, 221, 0x19e, 0xcb, 5;
#   6:29  111 -> " "

.word 221, 224, 0x2ec, 0x20, 1;
#   7: 0  111 -> " "

.word 224, 227, 0x2ec, 0x20, 1;
#   7: 3  111 -> " "

.word 227, 230, 0x2ec, 0x20, 1;
#   7: 6  111 -> " "

.word 230, 233, 0x2ec, 0x20, 1;
#   7: 9  111 -> " "

.word 233, 236, 0x2ec, 0x20, 1;
#   7:12  111 -> " "

.word 236, 239, 0x2ec, 0x20, 1;
#   7:15  111 -> " "

.word 239, 242, 0x2ec, 0x20, 1;
#   7:18  111 -> " "

.word 242, 245, 0x2ec, 0x20, 1;
#   7:21  111 -> " "

.word 245, 248, 0x2ec, 0x20, 1;
#   7:24  111 -> " "

.word 248, 251, 0x2ec, 0x20, 1;
#   7:27  111 -> " "

.word 251, 254, 0x2ec, 0x20, 1;
#   7:30  0101010 -> "#"

.word 254, 261, 0x58, 0x23, 1;
#   8: 5  111 -> " "

.word 261, 264, 0x2ec, 0x20, 1;
#   8: 8  0110110001 -> "Convert"

.word 264, 274, 0x182, 0x27d, 7;
#   8:18  111 -> " "

.word 274, 277, 0x2ec, 0x20, 1;
#   8:21  10110010 -> "to"

.word 277, 285, 0x228, 0x4d, 2;
#   8:29  111 -> " "

.word 285, 288, 0x2ec, 0x20, 1;
#   9: 0  011011101 -> "upper"

.word 288, 297, 0x19e, 0xcb, 5;
#   9: 9  111 -> " "

.word 297, 300, 0x2ec, 0x20, 1;
#   9:12  1011000 -> "c"

.word 300, 307, 0x224, 0x63, 1;
#   9:19  01000 -> "a"

.word 307, 312, 0x48, 0x61, 1;
#   9:24  10011 -> "s"

.word 312, 317, 0x1f0, 0x73, 1;

← → Spring 2021 ← → Homework 2 Homework Solution Sol Code Sol Code hw02-sol-easy.s.html

https://www.ece.lsu.edu/ee4720/2021/hw02-sol-easy.s.html


#   9:29  10010 -> "e"
.word 317, 322, 0x1ee, 0x65, 1;

#  10: 2  1100010 -> ".\n"
.word 322, 329, 0x250, 0x20, 2;

#  10: 9  10101 -> "        "
.word 329, 334, 0x21c, 0, 8;

#  10:14  1101000 -> "addi"
.word 334, 341, 0x2b4, 0x23, 4;

#  10:21  01111 -> " $"
.word 341, 346, 0x1c2, 0x9, 2;

#  10:26  10011 -> "s"
.word 346, 351, 0x1f0, 0x73, 1;

#  10:31  110000 -> "0"
.word 351, 357, 0x24c, 0x30, 1;

#  11: 5  00100 -> ", $"
.word 357, 362, 0x24, 0xf, 3;

#  11:10  0101001 -> "a0"
.word 362, 369, 0x54, 0x31, 2;

#  11:17  00111 -> ", "
.word 369, 374, 0x40, 0xc, 2;

#  11:22  110000 -> "0"
.word 374, 380, 0x24c, 0x30, 1;

#  11:28  101001000 -> "    # "
.word 380, 389, 0x204, 0x9d, 6;

#  12: 5  0101100111 -> "Make"
.word 389, 399, 0x7c, 0x218, 4;

#  12:15  111 -> " "
.word 399, 402, 0x2ec, 0x20, 1;

#  12:18  01000 -> "a"
.word 402, 407, 0x48, 0x61, 1;

#  12:23  111 -> " "
.word 407, 410, 0x2ec, 0x20, 1;

#  12:26  0101110110 -> "copy"
.word 410, 420, 0xb8, 0x1ca, 4;

#  13: 4  111 -> " "
.word 420, 423, 0x2ec, 0x20, 1;

#  13: 7  0011001 -> "of"
.word 423, 430, 0x34, 0x37, 2;

#  13:14  111 -> " "
.word 430, 433, 0x2ec, 0x20, 1;

#  13:17  01100111 -> "string"
.word 433, 441, 0x156, 0x5f, 6;

#  13:25  111 -> " "
.word 441, 444, 0x2ec, 0x20, 1;

#  13:28  0101101101 -> "start"
.word 444, 454, 0x94, 0x238, 5;

#  14: 6  111 -> " "
.word 454, 457, 0x2ec, 0x20, 1;

#  14: 9  101110011 -> "address"
.word 457, 466, 0x23a, 0x74, 7;

#  14:18  1100010 -> ".\n"
.word 466, 473, 0x250, 0x20, 2;

#  14:25  10101 -> "        "
.word 473, 478, 0x21c, 0, 8;

#  14:30  1101000 -> "addi"
.word 478, 485, 0x2b4, 0x23, 4;

#  15: 5  01111 -> " $"
.word 485, 490, 0x1c2, 0x9, 2;

#  15:10  0101001 -> "a0"
.word 490, 497, 0x54, 0x31, 2;

#  15:17  00100 -> ", $"
.word 497, 502, 0x24, 0xf, 3;

#  15:22  10011 -> "s"
.word 502, 507, 0x1f0, 0x73, 1;

#  15:27  110000 -> "0"
.word 507, 513, 0x24c, 0x30, 1;

#  16: 1  00111 -> ", "
.word 513, 518, 0x40, 0xc, 2;

#  16: 6  110000 -> "0"
.word 518, 524, 0x24c, 0x30, 1;

#  16:12  101001000 -> "    # "
.word 524, 533, 0x204, 0x9d, 6;

#  16:21  0110011011 -> "R"
.word 533, 543, 0x154, 0x52, 1;

#  16:31  10010 -> "e"
.word 543, 548, 0x1ee, 0x65, 1;

#  17: 4  10011 -> "s"
.word 548, 553, 0x1f0, 0x73, 1;

#  17: 9  01001 -> "t"
.word 553, 558, 0x4a, 0x74, 1;

#  17:14  101111 -> "o"
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.word 558, 564, 0x242, 0x6f, 1;
#  17:20  00010 -> "r"

.word 564, 569, 0x1c, 0x72, 1;
#  17:25  10010 -> "e"

.word 569, 574, 0x1ee, 0x65, 1;
#  17:30  111 -> " "

.word 574, 577, 0x2ec, 0x20, 1;
#  18: 1  01100111 -> "string"

.word 577, 585, 0x156, 0x5f, 6;
#  18: 9  111 -> " "

.word 585, 588, 0x2ec, 0x20, 1;
#  18:12  0101101101 -> "start"

.word 588, 598, 0x94, 0x238, 5;
#  18:22  111 -> " "

.word 598, 601, 0x2ec, 0x20, 1;
#  18:25  101110011 -> "address"

.word 601, 610, 0x23a, 0x74, 7;
#  19: 2  1100010 -> ".\n"

.word 610, 617, 0x250, 0x20, 2;
#  19: 9  111 -> " "

.word 617, 620, 0x2ec, 0x20, 1;
#  19:12  111 -> " "

.word 620, 623, 0x2ec, 0x20, 1;
#  19:15  111 -> " "

.word 623, 626, 0x2ec, 0x20, 1;
#  19:18  111 -> " "

.word 626, 629, 0x2ec, 0x20, 1;
#  19:21  111 -> " "

.word 629, 632, 0x2ec, 0x20, 1;
#  19:24  111 -> " "

.word 632, 635, 0x2ec, 0x20, 1;
#  19:27  111 -> " "

.word 635, 638, 0x2ec, 0x20, 1;
#  19:30  111 -> " "

.word 638, 641, 0x2ec, 0x20, 1;
#  20: 1  11011 -> "\n"

.word 641, 646, 0x2ea, 0xa, 1;
#  20: 6  1101010100 -> "LOOP"

.word 646, 656, 0x2ce, 0x179, 4;
#  20:16  1000100 -> ":\n"

.word 656, 663, 0x1de, 0x28, 2;
#  20:23  10101 -> "        "

.word 663, 668, 0x21c, 0, 8;
#  20:28  101101 -> "l"

.word 668, 674, 0x22c, 0x6c, 1;
#  21: 2  11001101 -> "b"

.word 674, 682, 0x29a, 0x62, 1;
#  21:10  01111 -> " $"

.word 682, 687, 0x1c2, 0x9, 2;
#  21:15  0011000 -> "t0"

.word 687, 694, 0x32, 0x3a, 2;
#  21:22  00111 -> ", "

.word 694, 699, 0x40, 0xc, 2;
#  21:27  110000 -> "0"

.word 699, 705, 0x24c, 0x30, 1;
#  22: 1  10111000 -> "($"

.word 705, 713, 0x234, 0x4a, 2;
#  22: 9  0101001 -> "a0"

.word 713, 720, 0x54, 0x31, 2;
#  22:16  0101101001 -> ")      # "

.word 720, 730, 0x86, 0x24f, 9;
#  22:26  1100101101 -> "Load"

.word 730, 740, 0x28c, 0x156, 4;
#  23: 4  111 -> " "

.word 740, 743, 0x2ec, 0x20, 1;
#  23: 7  1100101010 -> "next"

.word 743, 753, 0x282, 0x174, 4;
#  23:17  111 -> " "

.word 753, 756, 0x2ec, 0x20, 1;
#  23:20  110101111 -> "character"

.word 756, 765, 0x2e8, 0x82, 9;
#  23:29  1100010 -> ".\n"

.word 765, 772, 0x250, 0x20, 2;
#  24: 4  10101 -> "        "

.word 772, 777, 0x21c, 0, 8;
#  24: 9  101001001 -> "beq"

.word 777, 786, 0x206, 0x99, 3;
#  24:18  01111 -> " $"

.word 786, 791, 0x1c2, 0x9, 2;
#  24:23  0011000 -> "t0"

.word 791, 798, 0x32, 0x3a, 2;
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#  24:30  00100 -> ", $"
.word 798, 803, 0x24, 0xf, 3;

#  25: 3  110000 -> "0"
.word 803, 809, 0x24c, 0x30, 1;

#  25: 9  00111 -> ", "
.word 809, 814, 0x40, 0xc, 2;

#  25:14  0101101010 -> "DONE"
.word 814, 824, 0x8a, 0x262, 4;

#  25:24  0101110111 -> "   # "
.word 824, 834, 0xba, 0x1c4, 5;

#  26: 2  01100011000 -> "J"
.word 834, 845, 0x126, 0x4a, 1;

#  26:13  1010001 -> "u"
.word 845, 852, 0x1fc, 0x75, 1;

#  26:20  1100011 -> "m"
.word 852, 859, 0x252, 0x6d, 1;

#  26:27  0101011 -> "p"
.word 859, 866, 0x5a, 0x70, 1;

#  27: 2  111 -> " "
.word 866, 869, 0x2ec, 0x20, 1;

#  27: 5  0101111101 -> "out"
.word 869, 879, 0xd2, 0x1e8, 3;

#  27:15  111 -> " "
.word 879, 882, 0x2ec, 0x20, 1;

#  27:18  0011001 -> "of"
.word 882, 889, 0x34, 0x37, 2;

#  27:25  111 -> " "
.word 889, 892, 0x2ec, 0x20, 1;

#  27:28  101101 -> "l"
.word 892, 898, 0x22c, 0x6c, 1;

#  28: 2  101111 -> "o"
.word 898, 904, 0x242, 0x6f, 1;

#  28: 8  101111 -> "o"
.word 904, 910, 0x242, 0x6f, 1;

#  28:14  0101011 -> "p"
.word 910, 917, 0x5a, 0x70, 1;

#  28:21  111 -> " "
.word 917, 920, 0x2ec, 0x20, 1;

#  28:24  00000 -> "i"
.word 920, 925, 0xa, 0x69, 1;

#  28:29  1101001 -> "f"
.word 925, 932, 0x2b6, 0x66, 1;

#  29: 4  111 -> " "
.word 932, 935, 0x2ec, 0x20, 1;

#  29: 7  01000 -> "a"
.word 935, 940, 0x48, 0x61, 1;

#  29:12  01001 -> "t"
.word 940, 945, 0x4a, 0x74, 1;

#  29:17  111 -> " "
.word 945, 948, 0x2ec, 0x20, 1;

#  29:20  10010 -> "e"
.word 948, 953, 0x1ee, 0x65, 1;

#  29:25  00011 -> "n"
.word 953, 958, 0x1e, 0x6e, 1;

#  29:30  1000010 -> "d"
.word 958, 965, 0x1d6, 0x64, 1;

#  30: 5  111 -> " "
.word 965, 968, 0x2ec, 0x20, 1;

#  30: 8  0011001 -> "of"
.word 968, 975, 0x34, 0x37, 2;

#  30:15  111 -> " "
.word 975, 978, 0x2ec, 0x20, 1;

#  30:18  01100111 -> "string"
.word 978, 986, 0x156, 0x5f, 6;

#  30:26  1100010 -> ".\n"
.word 986, 993, 0x250, 0x20, 2;

#  31: 1  10101 -> "        "
.word 993, 998, 0x21c, 0, 8;

#  31: 6  1101000 -> "addi"
.word 998, 1005, 0x2b4, 0x23, 4;

#  31:13  01111 -> " $"
.word 1005, 1010, 0x1c2, 0x9, 2;

#  31:18  0101001 -> "a0"
.word 1010, 1017, 0x54, 0x31, 2;

#  31:25  00100 -> ", $"
.word 1017, 1022, 0x24, 0xf, 3;

#  31:30  0101001 -> "a0"
.word 1022, 1029, 0x54, 0x31, 2;

#  32: 5  00111 -> ", "
.word 1029, 1034, 0x40, 0xc, 2;

#  32:10  000011 -> "1"
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.word 1034, 1040, 0x18, 0x31, 1;
#  32:16  101001000 -> "    # "

.word 1040, 1049, 0x204, 0x9d, 6;
#  32:25  11001100 -> "I"

.word 1049, 1057, 0x298, 0x49, 1;
#  33: 1  00011 -> "n"

.word 1057, 1062, 0x1e, 0x6e, 1;
#  33: 6  1011000 -> "c"

.word 1062, 1069, 0x224, 0x63, 1;
#  33:13  00010 -> "r"

.word 1069, 1074, 0x1c, 0x72, 1;
#  33:18  10010 -> "e"

.word 1074, 1079, 0x1ee, 0x65, 1;
#  33:23  1100011 -> "m"

.word 1079, 1086, 0x252, 0x6d, 1;
#  33:30  10010 -> "e"

.word 1086, 1091, 0x1ee, 0x65, 1;
#  34: 3  00011 -> "n"

.word 1091, 1096, 0x1e, 0x6e, 1;
#  34: 8  01001 -> "t"

.word 1096, 1101, 0x4a, 0x74, 1;
#  34:13  111 -> " "

.word 1101, 1104, 0x2ec, 0x20, 1;
#  34:16  10110010 -> "to"

.word 1104, 1112, 0x228, 0x4d, 2;
#  34:24  111 -> " "

.word 1112, 1115, 0x2ec, 0x20, 1;
#  34:27  101110011 -> "address"

.word 1115, 1124, 0x23a, 0x74, 7;
#  35: 4  111 -> " "

.word 1124, 1127, 0x2ec, 0x20, 1;
#  35: 7  0011001 -> "of"

.word 1127, 1134, 0x34, 0x37, 2;
#  35:14  111 -> " "

.word 1134, 1137, 0x2ec, 0x20, 1;
#  35:17  1100101010 -> "next"

.word 1137, 1147, 0x282, 0x174, 4;
#  35:27  111 -> " "

.word 1147, 1150, 0x2ec, 0x20, 1;
#  35:30  110101111 -> "character"

.word 1150, 1159, 0x2e8, 0x82, 9;

#
# Huffman Compressed Text
#
huff_compressed_text_start:

.word 0xd96cc6da, 0x51375d0f, 0x9864120f, 0x852167e8, 0xebb733ee

.word 0xbae1ee78, 0xaba976ef, 0xfffffffd, 0x576c7d97, 0x6efb089c

.word 0xb15743e7, 0x81149f0a, 0x42cfd1d7, 0x6e67b3f5, 0xb7dcf157

.word 0x43d49278, 0x1f0a4337, 0x29a6f14b, 0xb3f5b7dc, 0xf17fffff

.word 0xef54895b, 0x735e60f8, 0x5c295a72, 0xdf957d7e, 0x2ad25e60

.word 0x981d6a5d, 0xd8c51c6a, 0xfafbccfb, 0x6fbd5f06, 0x9e84f90e

.word 0x1733d9f1, 0x5743d491, 0x49c3a466, 0xec0a58e, 0x434fb2f7

.word 0x3e67e55f, 0x5f8aba1e, 0x60863206, 0x1c873ad5, 0xe49798f6

.word 0x5ee5dbd7, 0x7eb3b718, 0x1c0ed460, 0x433c9361, 0x61aced48

.word 0x28bf3c86, 0xf41873a, 0xccd2f31c, 0x13ed836d, 0xe830f5eb

.word 0x812e27d9, 0xae8f6c92, 0x99096fad, 0x25f9e4c0, 0xfaa7fd57

.word 0x75ded7f3, 0xbf9524fb, 0xaf957d59, 0xdfac60b7, 0xa65e88e6

.word 0x287285e, 0xc6356b0d, 0x676daf30, 0x4307a1ff, 0xfd57d5ec

.word 0x22d976f7, 0xe6a27285, 0xef1fb97c, 0xa3cc1964, 0xbeb21eb5

.word 0xddd72e7d, 0xd910190c, 0x2ef16bf1, 0xaba2997b, 0x9f33ee5f

.word 0x28c55b42, 0xbe33e171, 0x76b4e5be, 0xe5f2877b, 0x1945b465

.word 0xc13eab99, 0xe906394f, 0xeade7290, 0xf15743e3, 0x24670e91

.word 0x9349c0a5, 0xe7290065, 0x7bafab74, 0x14800cf3, 0xbfe5df27

.word 0x5beb4bfa, 0xa6eb30af, 0x8cf85c5d, 0xeb7ffff5, 0x5dd77b5f

.word 0xcd378a5e, 0xebae3f35, 0x16355e01, 0xfbaf72c5, 0xb5aa2569

.word 0x627cc3ff, 0xffffffff, 0xd57667d1, 0x980657ba, 0xf3459ca1

.word 0x75c3dcf1, 0x5699bdef, 0x38ce574e, 0xcddf4520, 0x1cb6ab6a

.word 0xbf8b22db, 0x67e08269, 0xbca1231f, 0x562bca12, 0x31fd634b

.word 0x5bd7aeac, 0x401a67ee, 0x58956f79, 0x1660d5d1, 0x4f67eb47

.word 0x4ca6900c, 0xaed2c412, 0x5c24251b, 0x6ca21703, 0xb9b1b6fa

.word 0xd1638c05, 0x88315622, 0xd836cc51, 0x83b16626, 0xd11b9fea

.word 0xbae9e77e, 0x3975f694, 0x6694240c, 0xa97b1050, 0x24584c85

.word 0x3c45c0ee, 0x6d11a82e, 0x1b5faff, 0xaefc97ad, 0x7c09ede7

.word 0xb2f17eb0, 0x75b94170, 0xde57e2f, 0xc09f2458, 0x83c602a0

.word 0xa7b5fc24, 0x1a282e01, 0xbccf92fc, 0xc718fb35, 0xc28af194

.word 0xbc260827, 0xf4ca5680, 0x65389f2a, 0x494806e3, 0xcd22bc65

.word 0x484a0b80, 0x6f24f6de, 0x32a423e6, 0x79a5069d, 0x15068a0

.word 0xb806f530, 0x4e7d3065, 0x8fe3be73, 0xf62fb390, 0xa50bd980

.word 0x729eb975, 0xd28b6df3, 0xa25205d5, 0x80729a82, 0xe01bc9a0

.word 0xc852f8ef, 0xb1aa806e, 0x3e68050a, 0x7db3f65e, 0x60194a0b
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.word 0x806f2bf9, 0x8e217b41, 0xaacbd979, 0xca5f51f6, 0xa32c34fa

.word 0x9827304e, 0x6056ac1a, 0xe41a2211, 0xa006e380, 0x69bfcd58

.word 0x80329417, 0x3292e01, 0xbc93e3be, 0xf1da02a0, 0xa7de3f75

.word 0xf350697d, 0x175d75d7, 0x5d751ec0, 0xa57db2e9, 0xa2393aeb

.word 0xaefd47e9, 0x5b6cfdd, 0x74004a0b, 0x806f33c2, 0x14918d78

.word 0x466df453, 0xf1a0a1df, 0x68113e01, 0xfcdb6fbf, 0x1baebaeb

.word 0xaeb5fe63, 0x8c7c2827, 0x403f99c, 0x2a27d665, 0x5c0ca4b

.word 0x806d7ebf, 0xebbf25eb, 0x5f027b79, 0xecbc5f8e, 0x417de2b6

.word 0x481cd417, 0xde4d06, 0x43fa8b89, 0xf0b06429, 0x7d77db2d

.word 0x29e697d1, 0x17832409, 0x2a0b806f, 0x2beb3389, 0xfc9fa608

.word 0x657c778, 0xa5ae03c5, 0xfdd7c9fe, 0x67b0814b, 0xad0a0b80

.word 0x6f53bc52, 0xe98281fc, 0xcf17eb07, 0x5b941703, 0x292d7cee

.word 0x74aa578a, 0xbe8827db, 0x82c7348a, 0xf194a378, 0xe65442d7

.word 0xc371524a, 0x642e10cb, 0x9ecb63fb, 0x17d11a69, 0xbc219636

.word 0x5a742fac, 0x865d30d, 0x9585da1a, 0x420235bc, 0x2195390b

.word 0x2cda2373, 0x62fbd968, 0xb4050fc3, 0xdea110b5, 0xcb87843d

.word 0xe7710b5c, 0xbc3c37b5, 0xd62170af, 0xa39b6cbe, 0x5eee19d6

.word 0x49ec5e39, 0xa5034fcb, 0xced9fb2f, 0x383785ea, 0xe42b121a

.word 0x678b7b2d, 0x98d9655b, 0x7e6dbd7b, 0xdaf712b6, 0xa1ea4ed9

.word 0x6eb6a1e8, 0xcfa86eb, 0xa1f19101, 0x9f0dd743, 0xeec919f2

.word 0xfdc553a2, 0x56615f81, 0xf0b88cd6, 0xb4f7c64b, 0xb3c553b7

.word 0x5d0f8c91, 0x9e1ef75b, 0x50f8cf9d, 0xeeba1f76, 0x48cf0f0d

.word 0xd743f3c9, 0x81e1d0fd, 0x5770c19c, 0x6e2a1c4a, 0xcf35f9e7

.word 0xc2e2335a, 0xd3df192e, 0xcf150f75, 0xd0f8c919, 0xc3dd679a

.word 0xfc0f85c4, 0x66bbaea5, 0xf23dd699, 0xbaac4fb3, 0xc09a686e

.word 0xab63b09d, 0xafd3409, 0xa686eb6a, 0x1f9e75d7, 0x75b61580

.word 0xdfa619f0, 0xb8cf35ac, 0x2059bb09, 0xfa68134c, 0x3269a1bd

.word 0xd752ed2d, 0xd699bae5, 0xcf304c09, 0x86eba1f9, 0xe4c0ec30

.word 0xf75d0f4c, 0x32679e83, 0xeeb6a1f, 0x30cfa86e, 0xba1f6781

.word 0x303861ee, 0xb6a1f3a0, 0x7cef75d0, 0xf9d024e8, 0x1e187b8a

.word 0xa112b685, 0x7c67c2e2, 0x619ad743, 0xe6192619, 0xe1eeb497

.word 0xc64c0eb9, 0xeeba1f9e, 0x4cf387ba, 0xcc56bd2c, 0x248ce1ee

.word 0xab23d390, 0x92740896, 0x1dd5627c, 0x64d386ea, 0xb63b09d0

.word 0xafd38134, 0xe1bae3a3, 0x6bb09fa6, 0x1934e04d, 0x3437558f

.word 0x6b9c4ad3, 0xdf9e44c3, 0x3c550dd6, 0x99bdd743, 0xecf02607

.word 0xf0dd563, 0xdef79c67, 0x2dd726c7, 0xd9763cad, 0x5c85e2c8

.word 0x9cb7b6ec, 0x4c89bfeb, 0x2ec25914, 0xd37eb22c, 0x8b6dd6f6

.word 0xaf33d9fd, 0x97b178ec, 0xe424e209, 0x6452e4d5, 0xe67ebfb4

.word 0xfb431324, 0x6e4da769, 0xf686264b, 0xb728b5f8, 0xd5a0409d

.word 0xe3eb8e20, 0x9ffffff5, 0x5d8d3124, 0x63576ca9, 0xbfb525a6

.word 0xf14a9bdc, 0xd0d475cf, 0xfff7ffff, 0xfeabffff, 0xfffedcd2

.word 0x990a9bfb, 0x9b71a8eb, 0x9edad12a, 0xbfbe33e1, 0x70a75bff

.word 0xfffffaaf, 0x96fd7fd2, 0x2bf1f67c, 0x55d0f524, 0x5270f75a

.word 0x4be32607, 0x6d7755e5, 0xf7648cec, 0x7d807fff, 0xffaaedf3

.word 0xb8438dd6, 0x9efbb261, 0xdadbaaf2, 0xfbb24670, 0xe853bfff

.word 0xfeabb8cb, 0x1c763bc3, 0xdd692fbb, 0x26076b6e, 0xba1f1923

.word 0xc829d437, 0x5a5f6b6e, 0xb3cd7c6c, 0x12941dc2, 0x935db6b1

.word 0x2b4b13c4, 0x8dd699bd, 0xef38ce72, 0x372d5d22, 0xcaf152

.word 0x194983bd, 0xe4713226, 0xffacbb09, 0x6452e4d5, 0xe67e900a

.word 0x69fafe67, 0xb3e264b3, 0xc1c999f6, 0x68b68c8f, 0x75ed90ca

.word 0x4c1e67dd, 0x767c412c, 0x861c9b4e, 0xd3ed0c4c, 0x91b93579

.word 0x9f628885, 0x21a7ebfb, 0x4fb43104, 0xd743e322, 0x93e1b6de

.word 0x2557f798, 0x3e17119a, 0xd69ef304, 0xc0edbeeb, 0xa1f19233

.word 0x87bdd743, 0xe3247900, 0x7bad2c4f, 0x12375591, 0xf6781232

.word 0x29d80000
huff_compressed_text_end:

# Huffman Encoding Word Dictionary
#
huff_dictionary:

.asciiz "        "     # Idx     0  Freq  81   Enc 10101

.asciiz " $"           # Idx     9  Freq  71   Enc 01111

.asciiz ", "           # Idx    12  Freq  57   Enc 00111

.asciiz ", $"          # Idx    15  Freq  55   Enc 00100

.asciiz "t1"           # Idx    19  Freq  38   Enc 100011

.asciiz "        ."    # Idx    22  Freq  28   Enc 001011

.asciiz ".\n"          # Idx    32  Freq  24   Enc 1100010

.asciiz "addi"         # Idx    35  Freq  24   Enc 1101000

.asciiz ":\n"          # Idx    40  Freq  18   Enc 1000100

.asciiz "ascii"        # Idx    43  Freq  18   Enc 1000000

.asciiz "a0"           # Idx    49  Freq  15   Enc 0101001

.asciiz "\"\n"         # Idx    52  Freq  15   Enc 0101000

.asciiz "of"           # Idx    55  Freq  14   Enc 0011001

.asciiz "t0"           # Idx    58  Freq  14   Enc 0011000

.asciiz " \""          # Idx    61  Freq  14   Enc 0011011

.asciiz "t2"           # Idx    64  Freq  12   Enc 10111011

.asciiz "the"          # Idx    67  Freq  12   Enc 10111010

.asciiz "t3"           # Idx    71  Freq  12   Enc 11001111

.asciiz "($"           # Idx    74  Freq  11   Enc 10111000

.asciiz "to"           # Idx    77  Freq  10   Enc 10110010

.asciiz ": "           # Idx    80  Freq   9   Enc 01110010
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.asciiz "        # $"   # Idx    83  Freq   8   Enc 01100100

.asciiz "string"       # Idx    95  Freq   8   Enc 01100111

.asciiz ")\n"          # Idx   102  Freq   7   Enc 00110101

.asciiz "        #\n"   # Idx   105  Freq   7   Enc 00001001

.asciiz "address"      # Idx   116  Freq   6   Enc 101110011

.asciiz "table"        # Idx   124  Freq   6   Enc 101110010

.asciiz "character"    # Idx   130  Freq   6   Enc 110101111

.asciiz "miss"         # Idx   140  Freq   5   Enc 100010111

.asciiz "nop"          # Idx   145  Freq   5   Enc 101001100

.asciiz "bne"          # Idx   149  Freq   5   Enc 101001111

.asciiz "beq"          # Idx   153  Freq   5   Enc 101001001

.asciiz "    # "       # Idx   157  Freq   5   Enc 101001000

.asciiz "Address"      # Idx   164  Freq   4   Enc 011010101

.asciiz "and"          # Idx   172  Freq   4   Enc 011010111

.asciiz "ULOOP"        # Idx   176  Freq   4   Enc 011010110

.asciiz "examined"     # Idx   182  Freq   4   Enc 011010000

.asciiz "being"        # Idx   191  Freq   4   Enc 011010011

.asciiz "histo"        # Idx   197  Freq   4   Enc 011010010

.asciiz "upper"        # Idx   203  Freq   4   Enc 011011101

.asciiz "## "          # Idx   209  Freq   3   Enc 1100111001

.asciiz "################################################################################\n"   # Idx   213  Freq   3   Enc 11001110

.asciiz "stars"        # Idx   295  Freq   3   Enc 1100111011

.asciiz "  # "         # Idx   301  Freq   3   Enc 1100111010

.asciiz "know"         # Idx   306  Freq   3   Enc 1100100101

.asciiz "The"          # Idx   311  Freq   3   Enc 1100100100

.asciiz "one"          # Idx   315  Freq   3   Enc 1100100111

.asciiz ", -"          # Idx   319  Freq   3   Enc 1100100000

.asciiz "strlen"       # Idx   323  Freq   3   Enc 1100100011

.asciiz "        ## "   # Idx   330  Freq   3   Enc 1100100010

.asciiz "Load"         # Idx   342  Freq   3   Enc 1100101101

.asciiz "100"          # Idx   347  Freq   3   Enc 1100101111

.asciiz "add"          # Idx   351  Freq   3   Enc 1100101110

.asciiz " \"\"\n"      # Idx   355  Freq   3   Enc 1100101001

.asciiz "element"      # Idx   360  Freq   3   Enc 1100101000

.asciiz "And"          # Idx   368  Freq   3   Enc 1100101011

.asciiz "next"         # Idx   372  Freq   3   Enc 1100101010

.asciiz "LOOP"         # Idx   377  Freq   3   Enc 1101010100

.asciiz "char"         # Idx   382  Freq   3   Enc 1101010110

.asciiz "that"         # Idx   387  Freq   3   Enc 1101010001

.asciiz "histogram_data"   # Idx   392  Freq   3   Enc 1101010000

.asciiz "jal"          # Idx   407  Freq   3   Enc 1101010010

.asciiz "you"          # Idx   411  Freq   3   Enc 1101011101

.asciiz "..."          # Idx   415  Freq   3   Enc 1101011100

.asciiz " -> "         # Idx   419  Freq   2   Enc 0110000001

.asciiz "Return"       # Idx   424  Freq   2   Enc 0110011001

.asciiz "text"         # Idx   431  Freq   2   Enc 0110011000

.asciiz "not"          # Idx   436  Freq   2   Enc 0110011010

.asciiz "TB_100"       # Idx   440  Freq   2   Enc 0101110101

.asciiz "Test"         # Idx   447  Freq   2   Enc 0101110100

.asciiz "   # "        # Idx   452  Freq   2   Enc 0101110111

.asciiz "copy"         # Idx   458  Freq   2   Enc 0101110110

.asciiz "result"       # Idx   463  Freq   2   Enc 0101110001

.asciiz "return"       # Idx   470  Freq   2   Enc 0101110000

.asciiz "TEST"         # Idx   477  Freq   2   Enc 0101110011

.asciiz "space"        # Idx   482  Freq   2   Enc 0101110010

.asciiz "out"          # Idx   488  Freq   2   Enc 0101111101

.asciiz "asciiz"       # Idx   492  Freq   2   Enc 0101111100

.asciiz "lbu"          # Idx   499  Freq   2   Enc 0101111111

.asciiz "slti"         # Idx   503  Freq   2   Enc 0101111001

.asciiz "... "         # Idx   508  Freq   2   Enc 0101111000

.asciiz "__start"      # Idx   513  Freq   2   Enc 0101111011

.asciiz "then"         # Idx   521  Freq   2   Enc 0101111010

.asciiz "Usage"        # Idx   526  Freq   2   Enc 0101100101

.asciiz "sub"          # Idx   532  Freq   2   Enc 0101100100

.asciiz "Make"         # Idx   536  Freq   2   Enc 0101100111

.asciiz "there"        # Idx   541  Freq   2   Enc 0101100110

.asciiz ".)\n"         # Idx   547  Freq   2   Enc 0101100001

.asciiz "New"          # Idx   551  Freq   2   Enc 0101100000

.asciiz "syscall"      # Idx   555  Freq   2   Enc 0101100011

.asciiz "mtc1"         # Idx   563  Freq   2   Enc 0101100010

.asciiz "start"        # Idx   568  Freq   2   Enc 0101101101

.asciiz "cvt"          # Idx   574  Freq   2   Enc 0101101100

.asciiz " ..\n"        # Idx   578  Freq   2   Enc 0101101111

.asciiz "Orleans"      # Idx   583  Freq   2   Enc 0101101110

.asciiz ")      # "    # Idx   591  Freq   2   Enc 0101101001

.asciiz "for"          # Idx   601  Freq   2   Enc 0101101000

.asciiz "what"         # Idx   605  Freq   2   Enc 0101101011

.asciiz "DONE"         # Idx   610  Freq   2   Enc 0101101010

.asciiz "UDONE"        # Idx   615  Freq   2   Enc 0110110101

.asciiz "Character"    # Idx   621  Freq   2   Enc 0110110100

.asciiz "SLOOP"        # Idx   631  Freq   2   Enc 0110110111
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.asciiz "Convert"      # Idx   637  Freq   2   Enc 0110110001

.asciiz "used"         # Idx   645  Freq   2   Enc 0110110011

.asciiz "doi"          # Idx   650  Freq   2   Enc 0110110010

.asciiz "index"        # Idx   654  Freq   2   Enc 0110111101

.asciiz "means"        # Idx   660  Freq   2   Enc 0110111100

.asciiz "Register"     # Idx   666  Freq   2   Enc 0110111111

# Huffman Index Tree.
#
huff_tree_right_base:

.half 0x80  # Base for right child index.
huff_tree_literal_base:

.half 0  # Base for literal.
huff_tree_dictionary_base:

.half 0x7000  # Base for dict.

# Huffman Lookup Tree
#
huff_tree:

.half 0x0162  # Tree Idx   0               Pointer to right child.

.half 0x00a1  # Tree Idx   1  0            Pointer to right child.

.half 0x0090  # Tree Idx   2  00           Pointer to right child.

.half 0x008d  # Tree Idx   3  000          Pointer to right child.

.half 0x0086  # Tree Idx   4  0000         Pointer to right child.

.half 0x0069  # Tree Idx   5  00000        Literal "i"

.half 0x008c  # Tree Idx   6  00001        Pointer to right child.

.half 0x008b  # Tree Idx   7  000010       Pointer to right child.

.half 0x008a  # Tree Idx   8  0000100      Pointer to right child.

.half 0x0025  # Tree Idx   9  00001000     Literal "%"

.half 0x7069  # Tree Idx  10  00001001     Dict Idx for "        #\n"

.half 0x0077  # Tree Idx  11  0000101      Literal "w"

.half 0x0031  # Tree Idx  12  000011       Literal "1"

.half 0x008f  # Tree Idx  13  0001         Pointer to right child.

.half 0x0072  # Tree Idx  14  00010        Literal "r"

.half 0x006e  # Tree Idx  15  00011        Literal "n"

.half 0x0096  # Tree Idx  16  001          Pointer to right child.

.half 0x0093  # Tree Idx  17  0010         Pointer to right child.

.half 0x700f  # Tree Idx  18  00100        Dict Idx for ", $"

.half 0x0095  # Tree Idx  19  00101        Pointer to right child.

.half 0x0067  # Tree Idx  20  001010       Literal "g"

.half 0x7016  # Tree Idx  21  001011       Dict Idx for "        ."

.half 0x00a0  # Tree Idx  22  0011         Pointer to right child.

.half 0x009b  # Tree Idx  23  00110        Pointer to right child.

.half 0x009a  # Tree Idx  24  001100       Pointer to right child.

.half 0x703a  # Tree Idx  25  0011000      Dict Idx for "t0"

.half 0x7037  # Tree Idx  26  0011001      Dict Idx for "of"

.half 0x009f  # Tree Idx  27  001101       Pointer to right child.

.half 0x009e  # Tree Idx  28  0011010      Pointer to right child.

.half 0x0079  # Tree Idx  29  00110100     Literal "y"

.half 0x7066  # Tree Idx  30  00110101     Dict Idx for ")\n"

.half 0x703d  # Tree Idx  31  0011011      Dict Idx for " \""

.half 0x700c  # Tree Idx  32  00111        Dict Idx for ", "

.half 0x00ed  # Tree Idx  33  01           Pointer to right child.

.half 0x00a6  # Tree Idx  34  010          Pointer to right child.

.half 0x00a5  # Tree Idx  35  0100         Pointer to right child.

.half 0x0061  # Tree Idx  36  01000        Literal "a"

.half 0x0074  # Tree Idx  37  01001        Literal "t"

.half 0x00ae  # Tree Idx  38  0101         Pointer to right child.

.half 0x00ab  # Tree Idx  39  01010        Pointer to right child.

.half 0x00aa  # Tree Idx  40  010100       Pointer to right child.

.half 0x7034  # Tree Idx  41  0101000      Dict Idx for "\"\n"

.half 0x7031  # Tree Idx  42  0101001      Dict Idx for "a0"

.half 0x00ad  # Tree Idx  43  010101       Pointer to right child.

.half 0x0023  # Tree Idx  44  0101010      Literal "#"

.half 0x0070  # Tree Idx  45  0101011      Literal "p"

.half 0x00ce  # Tree Idx  46  01011        Pointer to right child.

.half 0x00bf  # Tree Idx  47  010110       Pointer to right child.

.half 0x00b8  # Tree Idx  48  0101100      Pointer to right child.

.half 0x00b5  # Tree Idx  49  01011000     Pointer to right child.

.half 0x00b4  # Tree Idx  50  010110000    Pointer to right child.

.half 0x7227  # Tree Idx  51  0101100000   Dict Idx for "New"

.half 0x7223  # Tree Idx  52  0101100001   Dict Idx for ".)\n"

.half 0x00b7  # Tree Idx  53  010110001    Pointer to right child.

.half 0x7233  # Tree Idx  54  0101100010   Dict Idx for "mtc1"

.half 0x722b  # Tree Idx  55  0101100011   Dict Idx for "syscall"

.half 0x00bc  # Tree Idx  56  01011001     Pointer to right child.

.half 0x00bb  # Tree Idx  57  010110010    Pointer to right child.

.half 0x7214  # Tree Idx  58  0101100100   Dict Idx for "sub"

.half 0x720e  # Tree Idx  59  0101100101   Dict Idx for "Usage"

.half 0x00be  # Tree Idx  60  010110011    Pointer to right child.

.half 0x721d  # Tree Idx  61  0101100110   Dict Idx for "there"
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.half 0x7218  # Tree Idx  62  0101100111   Dict Idx for "Make"

.half 0x00c7  # Tree Idx  63  0101101      Pointer to right child.

.half 0x00c4  # Tree Idx  64  01011010     Pointer to right child.

.half 0x00c3  # Tree Idx  65  010110100    Pointer to right child.

.half 0x7259  # Tree Idx  66  0101101000   Dict Idx for "for"

.half 0x724f  # Tree Idx  67  0101101001   Dict Idx for ")      # "

.half 0x00c6  # Tree Idx  68  010110101    Pointer to right child.

.half 0x7262  # Tree Idx  69  0101101010   Dict Idx for "DONE"

.half 0x725d  # Tree Idx  70  0101101011   Dict Idx for "what"

.half 0x00cb  # Tree Idx  71  01011011     Pointer to right child.

.half 0x00ca  # Tree Idx  72  010110110    Pointer to right child.

.half 0x723e  # Tree Idx  73  0101101100   Dict Idx for "cvt"

.half 0x7238  # Tree Idx  74  0101101101   Dict Idx for "start"

.half 0x00cd  # Tree Idx  75  010110111    Pointer to right child.

.half 0x7247  # Tree Idx  76  0101101110   Dict Idx for "Orleans"

.half 0x7242  # Tree Idx  77  0101101111   Dict Idx for " ..\n"

.half 0x00de  # Tree Idx  78  010111       Pointer to right child.

.half 0x00d7  # Tree Idx  79  0101110      Pointer to right child.

.half 0x00d4  # Tree Idx  80  01011100     Pointer to right child.

.half 0x00d3  # Tree Idx  81  010111000    Pointer to right child.

.half 0x71d6  # Tree Idx  82  0101110000   Dict Idx for "return"

.half 0x71cf  # Tree Idx  83  0101110001   Dict Idx for "result"

.half 0x00d6  # Tree Idx  84  010111001    Pointer to right child.

.half 0x71e2  # Tree Idx  85  0101110010   Dict Idx for "space"

.half 0x71dd  # Tree Idx  86  0101110011   Dict Idx for "TEST"

.half 0x00db  # Tree Idx  87  01011101     Pointer to right child.

.half 0x00da  # Tree Idx  88  010111010    Pointer to right child.

.half 0x71bf  # Tree Idx  89  0101110100   Dict Idx for "Test"

.half 0x71b8  # Tree Idx  90  0101110101   Dict Idx for "TB_100"

.half 0x00dd  # Tree Idx  91  010111011    Pointer to right child.

.half 0x71ca  # Tree Idx  92  0101110110   Dict Idx for "copy"

.half 0x71c4  # Tree Idx  93  0101110111   Dict Idx for "   # "

.half 0x00e6  # Tree Idx  94  0101111      Pointer to right child.

.half 0x00e3  # Tree Idx  95  01011110     Pointer to right child.

.half 0x00e2  # Tree Idx  96  010111100    Pointer to right child.

.half 0x71fc  # Tree Idx  97  0101111000   Dict Idx for "... "

.half 0x71f7  # Tree Idx  98  0101111001   Dict Idx for "slti"

.half 0x00e5  # Tree Idx  99  010111101    Pointer to right child.

.half 0x7209  # Tree Idx 100  0101111010   Dict Idx for "then"

.half 0x7201  # Tree Idx 101  0101111011   Dict Idx for "__start"

.half 0x00ea  # Tree Idx 102  01011111     Pointer to right child.

.half 0x00e9  # Tree Idx 103  010111110    Pointer to right child.

.half 0x71ec  # Tree Idx 104  0101111100   Dict Idx for "asciiz"

.half 0x71e8  # Tree Idx 105  0101111101   Dict Idx for "out"

.half 0x00ec  # Tree Idx 106  010111111    Pointer to right child.

.half 0x0044  # Tree Idx 107  0101111110   Literal "D"

.half 0x71f3  # Tree Idx 108  0101111111   Dict Idx for "lbu"

.half 0x0159  # Tree Idx 109  011          Pointer to right child.

.half 0x012c  # Tree Idx 110  0110         Pointer to right child.

.half 0x011f  # Tree Idx 111  01100        Pointer to right child.

.half 0x0100  # Tree Idx 112  011000       Pointer to right child.

.half 0x00ff  # Tree Idx 113  0110000      Pointer to right child.

.half 0x00f8  # Tree Idx 114  01100000     Pointer to right child.

.half 0x00f7  # Tree Idx 115  011000000    Pointer to right child.

.half 0x00f6  # Tree Idx 116  0110000000   Pointer to right child.

.half 0x0037  # Tree Idx 117  01100000000  Literal "7"

.half 0x005f  # Tree Idx 118  01100000001  Literal "_"

.half 0x71a3  # Tree Idx 119  0110000001   Dict Idx for " -> "

.half 0x00fc  # Tree Idx 120  011000001    Pointer to right child.

.half 0x00fb  # Tree Idx 121  0110000010   Pointer to right child.

.half 0x002c  # Tree Idx 122  01100000100  Literal ","

.half 0x004e  # Tree Idx 123  01100000101  Literal "N"

.half 0x00fe  # Tree Idx 124  0110000011   Pointer to right child.

.half 0x002a  # Tree Idx 125  01100000110  Literal "*"

.half 0x007c  # Tree Idx 126  01100000111  Literal "|"

.half 0x0036  # Tree Idx 127  01100001     Literal "6"

.half 0x0110  # Tree Idx 128  0110001      Pointer to right child.

.half 0x0109  # Tree Idx 129  01100010     Pointer to right child.

.half 0x0106  # Tree Idx 130  011000100    Pointer to right child.

.half 0x0105  # Tree Idx 131  0110001000   Pointer to right child.

.half 0x0060  # Tree Idx 132  01100010000  Literal "`"

.half 0x003f  # Tree Idx 133  01100010001  Literal "?"

.half 0x0108  # Tree Idx 134  0110001001   Pointer to right child.

.half 0x0078  # Tree Idx 135  01100010010  Literal "x"

.half 0x007e  # Tree Idx 136  01100010011  Literal "~"

.half 0x010d  # Tree Idx 137  011000101    Pointer to right child.

.half 0x010c  # Tree Idx 138  0110001010   Pointer to right child.

.half 0x007b  # Tree Idx 139  01100010100  Literal "{"

.half 0x0040  # Tree Idx 140  01100010101  Literal "@"

.half 0x010f  # Tree Idx 141  0110001011   Pointer to right child.

.half 0x007d  # Tree Idx 142  01100010110  Literal "}"
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.half 0x003b  # Tree Idx 143  01100010111  Literal ";"

.half 0x0118  # Tree Idx 144  01100011     Pointer to right child.

.half 0x0115  # Tree Idx 145  011000110    Pointer to right child.

.half 0x0114  # Tree Idx 146  0110001100   Pointer to right child.

.half 0x004a  # Tree Idx 147  01100011000  Literal "J"

.half 0x0056  # Tree Idx 148  01100011001  Literal "V"

.half 0x0117  # Tree Idx 149  0110001101   Pointer to right child.

.half 0x0045  # Tree Idx 150  01100011010  Literal "E"

.half 0x005b  # Tree Idx 151  01100011011  Literal "["

.half 0x011c  # Tree Idx 152  011000111    Pointer to right child.

.half 0x011b  # Tree Idx 153  0110001110   Pointer to right child.

.half 0x005e  # Tree Idx 154  01100011100  Literal "^"

.half 0x002b  # Tree Idx 155  01100011101  Literal "+"

.half 0x011e  # Tree Idx 156  0110001111   Pointer to right child.

.half 0x0055  # Tree Idx 157  01100011110  Literal "U"

.half 0x0039  # Tree Idx 158  01100011111  Literal "9"

.half 0x0123  # Tree Idx 159  011001       Pointer to right child.

.half 0x0122  # Tree Idx 160  0110010      Pointer to right child.

.half 0x7053  # Tree Idx 161  01100100     Dict Idx for "        # $"

.half 0x002f  # Tree Idx 162  01100101     Literal "/"

.half 0x012b  # Tree Idx 163  0110011      Pointer to right child.

.half 0x0128  # Tree Idx 164  01100110     Pointer to right child.

.half 0x0127  # Tree Idx 165  011001100    Pointer to right child.

.half 0x71af  # Tree Idx 166  0110011000   Dict Idx for "text"

.half 0x71a8  # Tree Idx 167  0110011001   Dict Idx for "Return"

.half 0x012a  # Tree Idx 168  011001101    Pointer to right child.

.half 0x71b4  # Tree Idx 169  0110011010   Dict Idx for "not"

.half 0x0052  # Tree Idx 170  0110011011   Literal "R"

.half 0x705f  # Tree Idx 171  01100111     Dict Idx for "string"

.half 0x013c  # Tree Idx 172  01101        Pointer to right child.

.half 0x0135  # Tree Idx 173  011010       Pointer to right child.

.half 0x0132  # Tree Idx 174  0110100      Pointer to right child.

.half 0x0131  # Tree Idx 175  01101000     Pointer to right child.

.half 0x70b6  # Tree Idx 176  011010000    Dict Idx for "examined"

.half 0x005c  # Tree Idx 177  011010001    Literal "\134"

.half 0x0134  # Tree Idx 178  01101001     Pointer to right child.

.half 0x70c5  # Tree Idx 179  011010010    Dict Idx for "histo"

.half 0x70bf  # Tree Idx 180  011010011    Dict Idx for "being"

.half 0x0139  # Tree Idx 181  0110101      Pointer to right child.

.half 0x0138  # Tree Idx 182  01101010     Pointer to right child.

.half 0x0042  # Tree Idx 183  011010100    Literal "B"

.half 0x70a4  # Tree Idx 184  011010101    Dict Idx for "Address"

.half 0x013b  # Tree Idx 185  01101011     Pointer to right child.

.half 0x70b0  # Tree Idx 186  011010110    Dict Idx for "ULOOP"

.half 0x70ac  # Tree Idx 187  011010111    Dict Idx for "and"

.half 0x014c  # Tree Idx 188  011011       Pointer to right child.

.half 0x0145  # Tree Idx 189  0110110      Pointer to right child.

.half 0x0142  # Tree Idx 190  01101100     Pointer to right child.

.half 0x0141  # Tree Idx 191  011011000    Pointer to right child.

.half 0x003e  # Tree Idx 192  0110110000   Literal ">"

.half 0x727d  # Tree Idx 193  0110110001   Dict Idx for "Convert"

.half 0x0144  # Tree Idx 194  011011001    Pointer to right child.

.half 0x728a  # Tree Idx 195  0110110010   Dict Idx for "doi"

.half 0x7285  # Tree Idx 196  0110110011   Dict Idx for "used"

.half 0x0149  # Tree Idx 197  01101101     Pointer to right child.

.half 0x0148  # Tree Idx 198  011011010    Pointer to right child.

.half 0x726d  # Tree Idx 199  0110110100   Dict Idx for "Character"

.half 0x7267  # Tree Idx 200  0110110101   Dict Idx for "UDONE"

.half 0x014b  # Tree Idx 201  011011011    Pointer to right child.

.half 0x003d  # Tree Idx 202  0110110110   Literal "="

.half 0x7277  # Tree Idx 203  0110110111   Dict Idx for "SLOOP"

.half 0x0150  # Tree Idx 204  0110111      Pointer to right child.

.half 0x014f  # Tree Idx 205  01101110     Pointer to right child.

.half 0x0041  # Tree Idx 206  011011100    Literal "A"

.half 0x70cb  # Tree Idx 207  011011101    Dict Idx for "upper"

.half 0x0154  # Tree Idx 208  01101111     Pointer to right child.

.half 0x0153  # Tree Idx 209  011011110    Pointer to right child.

.half 0x7294  # Tree Idx 210  0110111100   Dict Idx for "means"

.half 0x728e  # Tree Idx 211  0110111101   Dict Idx for "index"

.half 0x0158  # Tree Idx 212  011011111    Pointer to right child.

.half 0x0157  # Tree Idx 213  0110111110   Pointer to right child.

.half 0x003c  # Tree Idx 214  01101111100  Literal "<"

.half 0x005d  # Tree Idx 215  01101111101  Literal "]"

.half 0x729a  # Tree Idx 216  0110111111   Dict Idx for "Register"

.half 0x0161  # Tree Idx 217  0111         Pointer to right child.

.half 0x0160  # Tree Idx 218  01110        Pointer to right child.

.half 0x015d  # Tree Idx 219  011100       Pointer to right child.

.half 0x0027  # Tree Idx 220  0111000      Literal "'"

.half 0x015f  # Tree Idx 221  0111001      Pointer to right child.

.half 0x7050  # Tree Idx 222  01110010     Dict Idx for ": "

.half 0x0022  # Tree Idx 223  01110011     Literal "\""
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.half 0x002e  # Tree Idx 224  011101       Literal "."

.half 0x7009  # Tree Idx 225  01111        Dict Idx for " $"

.half 0x01a2  # Tree Idx 226  1            Pointer to right child.

.half 0x0179  # Tree Idx 227  10           Pointer to right child.

.half 0x0176  # Tree Idx 228  100          Pointer to right child.

.half 0x016d  # Tree Idx 229  1000         Pointer to right child.

.half 0x016a  # Tree Idx 230  10000        Pointer to right child.

.half 0x0169  # Tree Idx 231  100000       Pointer to right child.

.half 0x702b  # Tree Idx 232  1000000      Dict Idx for "ascii"

.half 0x0068  # Tree Idx 233  1000001      Literal "h"

.half 0x016c  # Tree Idx 234  100001       Pointer to right child.

.half 0x0064  # Tree Idx 235  1000010      Literal "d"

.half 0x0034  # Tree Idx 236  1000011      Literal "4"

.half 0x0175  # Tree Idx 237  10001        Pointer to right child.

.half 0x0170  # Tree Idx 238  100010       Pointer to right child.

.half 0x7028  # Tree Idx 239  1000100      Dict Idx for ":\n"

.half 0x0172  # Tree Idx 240  1000101      Pointer to right child.

.half 0x004c  # Tree Idx 241  10001010     Literal "L"

.half 0x0174  # Tree Idx 242  10001011     Pointer to right child.

.half 0x0043  # Tree Idx 243  100010110    Literal "C"

.half 0x708c  # Tree Idx 244  100010111    Dict Idx for "miss"

.half 0x7013  # Tree Idx 245  100011       Dict Idx for "t1"

.half 0x0178  # Tree Idx 246  1001         Pointer to right child.

.half 0x0065  # Tree Idx 247  10010        Literal "e"

.half 0x0073  # Tree Idx 248  10011        Literal "s"

.half 0x018f  # Tree Idx 249  101          Pointer to right child.

.half 0x018e  # Tree Idx 250  1010         Pointer to right child.

.half 0x017f  # Tree Idx 251  10100        Pointer to right child.

.half 0x017e  # Tree Idx 252  101000       Pointer to right child.

.half 0x0032  # Tree Idx 253  1010000      Literal "2"

.half 0x0075  # Tree Idx 254  1010001      Literal "u"

.half 0x0187  # Tree Idx 255  101001       Pointer to right child.

.half 0x0184  # Tree Idx 256  1010010      Pointer to right child.

.half 0x0183  # Tree Idx 257  10100100     Pointer to right child.

.half 0x709d  # Tree Idx 258  101001000    Dict Idx for "    # "

.half 0x7099  # Tree Idx 259  101001001    Dict Idx for "beq"

.half 0x0186  # Tree Idx 260  10100101     Pointer to right child.

.half 0x002d  # Tree Idx 261  101001010    Literal "-"

.half 0x006a  # Tree Idx 262  101001011    Literal "j"

.half 0x018b  # Tree Idx 263  1010011      Pointer to right child.

.half 0x018a  # Tree Idx 264  10100110     Pointer to right child.

.half 0x7091  # Tree Idx 265  101001100    Dict Idx for "nop"

.half 0x003a  # Tree Idx 266  101001101    Literal ":"

.half 0x018d  # Tree Idx 267  10100111     Pointer to right child.

.half 0x0033  # Tree Idx 268  101001110    Literal "3"

.half 0x7095  # Tree Idx 269  101001111    Dict Idx for "bne"

.half 0x7000  # Tree Idx 270  10101        Dict Idx for "        "

.half 0x0197  # Tree Idx 271  1011         Pointer to right child.

.half 0x0196  # Tree Idx 272  10110        Pointer to right child.

.half 0x0193  # Tree Idx 273  101100       Pointer to right child.

.half 0x0063  # Tree Idx 274  1011000      Literal "c"

.half 0x0195  # Tree Idx 275  1011001      Pointer to right child.

.half 0x704d  # Tree Idx 276  10110010     Dict Idx for "to"

.half 0x0076  # Tree Idx 277  10110011     Literal "v"

.half 0x006c  # Tree Idx 278  101101       Literal "l"

.half 0x01a1  # Tree Idx 279  10111        Pointer to right child.

.half 0x019e  # Tree Idx 280  101110       Pointer to right child.

.half 0x019b  # Tree Idx 281  1011100      Pointer to right child.

.half 0x704a  # Tree Idx 282  10111000     Dict Idx for "($"

.half 0x019d  # Tree Idx 283  10111001     Pointer to right child.

.half 0x707c  # Tree Idx 284  101110010    Dict Idx for "table"

.half 0x7074  # Tree Idx 285  101110011    Dict Idx for "address"

.half 0x01a0  # Tree Idx 286  1011101      Pointer to right child.

.half 0x7043  # Tree Idx 287  10111010     Dict Idx for "the"

.half 0x7040  # Tree Idx 288  10111011     Dict Idx for "t2"

.half 0x006f  # Tree Idx 289  101111       Literal "o"

.half 0x01f6  # Tree Idx 290  11           Pointer to right child.

.half 0x01d7  # Tree Idx 291  110          Pointer to right child.

.half 0x01aa  # Tree Idx 292  1100         Pointer to right child.

.half 0x01a7  # Tree Idx 293  11000        Pointer to right child.

.half 0x0030  # Tree Idx 294  110000       Literal "0"

.half 0x01a9  # Tree Idx 295  110001       Pointer to right child.

.half 0x7020  # Tree Idx 296  1100010      Dict Idx for ".\n"

.half 0x006d  # Tree Idx 297  1100011      Literal "m"

.half 0x01ca  # Tree Idx 298  11001        Pointer to right child.

.half 0x01bb  # Tree Idx 299  110010       Pointer to right child.

.half 0x01b4  # Tree Idx 300  1100100      Pointer to right child.

.half 0x01b1  # Tree Idx 301  11001000     Pointer to right child.

.half 0x01b0  # Tree Idx 302  110010000    Pointer to right child.

.half 0x713f  # Tree Idx 303  1100100000   Dict Idx for ", -"

.half 0x0035  # Tree Idx 304  1100100001   Literal "5"
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.half 0x01b3  # Tree Idx 305  110010001    Pointer to right child.

.half 0x714a  # Tree Idx 306  1100100010   Dict Idx for "        ## "

.half 0x7143  # Tree Idx 307  1100100011   Dict Idx for "strlen"

.half 0x01b8  # Tree Idx 308  11001001     Pointer to right child.

.half 0x01b7  # Tree Idx 309  110010010    Pointer to right child.

.half 0x7137  # Tree Idx 310  1100100100   Dict Idx for "The"

.half 0x7132  # Tree Idx 311  1100100101   Dict Idx for "know"

.half 0x01ba  # Tree Idx 312  110010011    Pointer to right child.

.half 0x0057  # Tree Idx 313  1100100110   Literal "W"

.half 0x713b  # Tree Idx 314  1100100111   Dict Idx for "one"

.half 0x01c3  # Tree Idx 315  1100101      Pointer to right child.

.half 0x01c0  # Tree Idx 316  11001010     Pointer to right child.

.half 0x01bf  # Tree Idx 317  110010100    Pointer to right child.

.half 0x7168  # Tree Idx 318  1100101000   Dict Idx for "element"

.half 0x7163  # Tree Idx 319  1100101001   Dict Idx for " \"\"\n"

.half 0x01c2  # Tree Idx 320  110010101    Pointer to right child.

.half 0x7174  # Tree Idx 321  1100101010   Dict Idx for "next"

.half 0x7170  # Tree Idx 322  1100101011   Dict Idx for "And"

.half 0x01c7  # Tree Idx 323  11001011     Pointer to right child.

.half 0x01c6  # Tree Idx 324  110010110    Pointer to right child.

.half 0x007a  # Tree Idx 325  1100101100   Literal "z"

.half 0x7156  # Tree Idx 326  1100101101   Dict Idx for "Load"

.half 0x01c9  # Tree Idx 327  110010111    Pointer to right child.

.half 0x715f  # Tree Idx 328  1100101110   Dict Idx for "add"

.half 0x715b  # Tree Idx 329  1100101111   Dict Idx for "100"

.half 0x01ce  # Tree Idx 330  110011       Pointer to right child.

.half 0x01cd  # Tree Idx 331  1100110      Pointer to right child.

.half 0x0049  # Tree Idx 332  11001100     Literal "I"

.half 0x0062  # Tree Idx 333  11001101     Literal "b"

.half 0x01d6  # Tree Idx 334  1100111      Pointer to right child.

.half 0x01d3  # Tree Idx 335  11001110     Pointer to right child.

.half 0x01d2  # Tree Idx 336  110011100    Pointer to right child.

.half 0x70d5  # Tree Idx 337  1100111000   Dict Idx for "##########################################################################

.half 0x70d1  # Tree Idx 338  1100111001   Dict Idx for "## "

.half 0x01d5  # Tree Idx 339  110011101    Pointer to right child.

.half 0x712d  # Tree Idx 340  1100111010   Dict Idx for "  # "

.half 0x7127  # Tree Idx 341  1100111011   Dict Idx for "stars"

.half 0x7047  # Tree Idx 342  11001111     Dict Idx for "t3"

.half 0x01f5  # Tree Idx 343  1101         Pointer to right child.

.half 0x01dc  # Tree Idx 344  11010        Pointer to right child.

.half 0x01db  # Tree Idx 345  110100       Pointer to right child.

.half 0x7023  # Tree Idx 346  1101000      Dict Idx for "addi"

.half 0x0066  # Tree Idx 347  1101001      Literal "f"

.half 0x01ec  # Tree Idx 348  110101       Pointer to right child.

.half 0x01e5  # Tree Idx 349  1101010      Pointer to right child.

.half 0x01e2  # Tree Idx 350  11010100     Pointer to right child.

.half 0x01e1  # Tree Idx 351  110101000    Pointer to right child.

.half 0x7188  # Tree Idx 352  1101010000   Dict Idx for "histogram_data"

.half 0x7183  # Tree Idx 353  1101010001   Dict Idx for "that"

.half 0x01e4  # Tree Idx 354  110101001    Pointer to right child.

.half 0x7197  # Tree Idx 355  1101010010   Dict Idx for "jal"

.half 0x004d  # Tree Idx 356  1101010011   Literal "M"

.half 0x01e9  # Tree Idx 357  11010101     Pointer to right child.

.half 0x01e8  # Tree Idx 358  110101010    Pointer to right child.

.half 0x7179  # Tree Idx 359  1101010100   Dict Idx for "LOOP"

.half 0x006b  # Tree Idx 360  1101010101   Literal "k"

.half 0x01eb  # Tree Idx 361  110101011    Pointer to right child.

.half 0x717e  # Tree Idx 362  1101010110   Dict Idx for "char"

.half 0x0053  # Tree Idx 363  1101010111   Literal "S"

.half 0x01f0  # Tree Idx 364  1101011      Pointer to right child.

.half 0x01ef  # Tree Idx 365  11010110     Pointer to right child.

.half 0x0028  # Tree Idx 366  110101100    Literal "("

.half 0x0029  # Tree Idx 367  110101101    Literal ")"

.half 0x01f4  # Tree Idx 368  11010111     Pointer to right child.

.half 0x01f3  # Tree Idx 369  110101110    Pointer to right child.

.half 0x719f  # Tree Idx 370  1101011100   Dict Idx for "..."

.half 0x719b  # Tree Idx 371  1101011101   Dict Idx for "you"

.half 0x7082  # Tree Idx 372  110101111    Dict Idx for "character"

.half 0x000a  # Tree Idx 373  11011        Literal "\n"

.half 0x0020  # Tree Idx 374  111          Literal " "
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################################################################################
##
## LSU EE 4720 Spring 2021 Homework 2 -- SOLUTION - Faster
##
##

 # Assignment https://www.ece.lsu.edu/ee4720/2021/hw02.pdf
 # Solution Writeup https://www.ece.lsu.edu/ee4720/2021/hw02_sol.pdf

################################################################################
## Problem 1
#

        .text
hdecode:
        ## Register Usage

        #
        # CALL VALUES
        #  $a0: Unused
        #  $a1: Bit position to start at.
        #  $a2: Address to write decoded data.
        #
        # RETURN
        #  $a1: Bit position following encoded piece.
        #  $a2: Address following decoded piece.
        #  $v0: Address of leaf of huff tree.
        #  $v1: Address of dict entry or value of literal character.
        #
        # Note:
        #  Can modify registers $t0-$t9, $a0-$a3, $v0, $v1.
        #  DO NOT modify other registers.
        #
        # [✔] The testbench should show 0 errors.
        # [✔] Code should be reasonably efficient.
        # [✔] The code should be clearly written.
        # [✔] Comments should be written for an experienced programmer.
        # [✔] Do not use pseudoinstructions except for nop and la.
        
        ## SOLUTION - Faster

        # Load the word of compressed text that has the next bit we need.
        #
        srl $t4, $a1, 5      # Determine word index of next word to read.
        sll $t6, $t4, 2      # Determine byte offset of next word to read.
        la $t5, huff_compressed_text_start        
        add $t6, $t6, $t5    # Compute address of next word to read.
        lw $t8, 0($t6)       # Read next word of compressed text.

        # Shift the next bit into the most-significant position of $t8.
        #
        andi $t7, $a1, 0x1f  # Determine bit number of next bit to examine.
        sllv $t8, $t8, $t7   # Put needed bit into most-significant position.

        # It's possible that we'll examine all the bits in t8, at
        # which time the next word needs to be loaded. To check
        # whether this has occurred set $t9 to the bit number of the
        # first bit in the next word.
        #
        sll $t9, $t4, 5      # Compute bit number at which a new word ..
        addi $t9, $t9, 0x20  # .. will need to be loaded.

        la $t3, huff_tree
        addi $v0, $t3, -2   # Compensate for crossing left-child code below.

TREE_LOOP_L:
        # Descend to Left Child. (Except in first iteration.)
        #
        addi $v0, $v0, 2

TREE_LOOP:
        # Live Registers at This Point in Code
        #
        # $t3:  Address of root of huff tree.
        # $v0:  Address of current node.
        #
        # $a1:  Bit number of next bit (of compressed text) to examine.
        # $t8:  Compressed text. The next bit to examine is the MSB.
        # $t9:  Bit number at which the next word must be loaded into t8.
        # $t6:  Address of the current word of compressed text.
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        #
        # $a2:  Address at which to write next decoded character.

        # Load value of current node into $v1
        #
        lhu $v1, 0($v0)

        # First check for a non-leaf node, since that's most common.
        #
        addi $t4, $v1, -128    # Compute index of right child.
        sltiu $t5, $t4, 0x6f80 # Note: Unsigned comparison.
        bne $t5, $0, NOT_LEAF
        sll $t7, $t4, 1        # Compute byte offset of right child.

        # The node is a leaf. Check if it's a character or dictionary
        # entry and branch to the respective code.
        #
        bltz $t4, CHAR_LEAF
        sb $v1, 0($a2)       # Write the character just in case.

        j DICT_LEAF
        addi $t4, $v1, -0x7000

NOT_LEAF:
        # Current node is an internal (non-leaf) node, so:
        #  - Get next bit of compressed text.
        #  - Based on the value of that bit descend to left or right child.

        # Check whether we already have the bit we need.
        #
        bne $a1, $t9, EXAMINE_NEXT_BIT
        addi $a1, $a1, 1

        # Load next word of compressed text.
        #
        addi $t6, $t6, 4       # Update address ..
        lw $t8, 0($t6)         # No more bits, load a new word.
        addi $t9, $t9, 0x20    # .. and overflow value.

EXAMINE_NEXT_BIT:
        # Note: Next bit is in the MSB of t8. The bgez $t8 is taken if
        # the MSB of $t8 is zero.
        #
        bgez $t8, TREE_LOOP_L
        sll $t8, $t8, 1        # Shift left so that next bit is in MSB pos.

RCHILD:
        # Descend to Right Child.
        #
        # Register $t7 already contains the byte offset. Just add it
        # to the root to get the address of the right child.
        #
        j TREE_LOOP
        add $v0, $t3, $t7

CHAR_LEAF:
        # Node is a leaf. Its value is a character to append.
        #
        # Note: char already written by sb above.
        #
        jr $ra               # .. and we're done ..
        addi $a2, $a2, 1     # .. after we increment the pointer.

DICT_LEAF:
        # Node is a leaf. Its value is a byte offset into dictionary.
        #
        la $t0, huff_dictionary
        add $v1, $t4, $t0

        # Copy string from dictionary to output.

        lb $t5, 0($v1)
        addi $t4, $v1, 1
CPY_LOOP:
        sb $t5, 0($a2)
        addi $a2, $a2, 1
        lb $t5, 0($t4)
        bne $t5, $0, CPY_LOOP
        addi $t4, $t4, 1
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        jr $ra
        nop

################################################################################
## Testbench Routine
#
# 

        .data
msg_full_text:
        .asciiz "\nNumber correct %/s6/d,  number wrong %/s5/d.\nDecoded Text:\n%/s0/s\n";

msg_piece_start:
        .asciiz "** Decoding of Bit Position %/a1/d **\n"

msg_bit_pos_ok:
        .asciiz "End bit pos  ($a1 contents) correct: %/a1/d.\n"
msg_bit_pos_bad:
        .asciiz "End bit pos  ($a1 contents) wrong: %/a1/d correct value is %/t0/d.\n"
msg_leaf_addr_ok:
        .asciiz "Leaf address ($v0 contents) correct: %/t4/#x.\n"
msg_leaf_addr_bad:
        .asciiz "Leaf address ($v0 contents) wrong: %/t4/#x correct value is %/t1/#x.\n"

msg_dict_addr_ok:
        .asciiz "Dict address ($v1 contents) correct: %/v1/#x  Entry: \"%/v1/s\".\n"
msg_dict_addr_bad:
        .asciiz "Dict address ($v1 contents) wrong: %/v1/#x correct value is %/t3/#x.\n"

msg_char_val_ok:
        .asciiz "Char value   ($v1 contents) correct: \"%/v1/c\"\n"
msg_char_val_bad:
        .asciiz "Char value   ($v1 contents) wrong: %/v1/d (decimal) correct value is %/t3/d (decimal) or \"%/t3/c\".\n"

msg_char_copied_wrong:
        .asciiz "Char value correct, \"%/v1/c\", but not copied, found \"%/$t4/\".\n"

msg_copied_bad:
        .asciiz "Text copied incorrectly starting at character %/t6/d: \"%/t7/s\"\n"
msg_early_exit:
        .asciiz "** Error limit exceeded, exiting early.\n";
msg_timing:
        .ascii "\nTotal insn %/s2/d, encoded bits %/t0/d, uncompressed bytes %/t1/d.\n"
        .asciiz "Efficiency:  %/f0/4.1f insn/bit  %/f2/4.1f insn/byte.\n"  

tb_timing_data:
        .word 0  # Instruction count.
        .word 0  # Sum of bits examined.
        .word 0  # Sum of characters in decoded text.

        .text
        .globl __start
__start:

        la $s3, huff_debug_samples

        addi $t0, $0, 0

        la $a2, uncompressed

        addi $s2, $0, 0  # Total number of instructions.
        addi $s6, $0, 0  # Number correct
        addi $s7, $0, 0  # Number checked

TLOOP:
        addi $s7, $s7, 1
        lw $a1, 0($s3)

        la $a0, msg_piece_start
        addi $v0, $0, 11
        syscall
        nop

        addi $s4, $a2, 0
        jal hdecode
        mfc0 $s1, $9       # Number of insns before hdecode.
        mfc0 $t1, $9       # Number of insns after hdecode.
        addi $t1, $t1, -1
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        sub $s1, $t1, $s1  # Number of insns executed by hdecode.
        add $s2, $s2, $s1
        sb $0, 0($a2)

        addi $s0, $a0, 0
        addi $t4, $v0, 0

        lw $t0, 4($s3)   # Bit end
        lw $t1, 8($s3)   # Byte offset into huff tree.
        lw $t3, 12($s3)  # Byte offset into dictionary.

        # Compute and store total compressed bits and decompressed bytes.
        #
        lw $t2, 0($s3)
        sub $t2, $t0, $t2
        la $a0, tb_timing_data
        lw $t5, 4($a0)     # Number of compressed bits.
        add $t5, $t5, $t2
        sw $t5, 4($a0)
        lw $t5, 8($a0)     # Total number of decompressed bytes.
        lw $t2, 16($s3)    # Number of bytes in this piece.
        add $t5, $t5, $t2
        sw $t5, 8($a0)

        # Check ending compressed-text bit position.
        #
        la $a0, msg_bit_pos_ok
        beq $t0, $a1, TBIT_SHOW
        nop
        la $a0, msg_bit_pos_bad
TBIT_SHOW:
        addi $v0, $0, 11
        syscall
        nop

        # Check address of huff tree leaf.
        #
        la $t2, huff_tree
        add $t1, $t1, $t2

        la $a0, msg_leaf_addr_ok
        beq $t1, $t4, TLEAF_SHOW
        nop
        la $a0, msg_leaf_addr_bad

TLEAF_SHOW:
        syscall
        nop

        slti $t4, $v1, 128
        bne $t4, $0, TCHAR_CHECK

        # Check address of dictionary entry.
        #
        la $t2, huff_dictionary
        add $t3, $t3, $t2
        la $a0, msg_dict_addr_ok
        beq $v1, $t3, TDICT_SHOW
        nop
        la $a0, msg_dict_addr_bad

TDICT_SHOW:
        syscall
        nop

        bne $v1, $t3, TCHECK_NEXT
        nop

        addi $t6, $t3, 0
        addi $t7, $s4, 0
TCHECK_WORD_LOOP:
        lbu $t4, 0($s4)
        lbu $t5, 0($t3)
        bne $t4, $t5, TCHECK_WORD_WRONG
        addi $s4, $s4, 1
        bne $t5, $0, TCHECK_WORD_LOOP
        addi $t3, $t3, 1

        # Word copied correctly.
        addi $s6, $s6, 1
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        j TCHECK_NEXT
        nop

TCHECK_WORD_WRONG:

        la $a0, msg_copied_bad
        sub $t6, $t3, $t6
        syscall
        nop

        j TCHECK_NEXT
        nop

        # Check value of decoded character.
        #
TCHAR_CHECK:
        beq $v1, $t3, TCHAR_SHOW
        nop
        la $a0, msg_char_val_bad
        syscall
        nop
        j TCHECK_NEXT
        nop

TCHAR_SHOW:
        # Check whether character copied correctly.
        lbu $t4, 0($s4)
        bne $t4, $v1, TCHAR_COPIED_WRONG
        nop

        # Character correct.
        addi $s6, $s6, 1

        la $a0, msg_char_val_ok
        syscall
        nop

        j TCHECK_NEXT
        nop

TCHAR_COPIED_WRONG:
        la $a0, msg_char_copied_wrong
        syscall
        nop

TCHECK_NEXT:
        # Exit loop if error threshold exceeded.
        #
        sub $s5, $s7, $s6
        slti $t1, $s5, 3
        bne $t1, $0, TCHECK_CONTINUE
        nop

        la $a0, msg_early_exit
        syscall
        nop

        j TLOOP_EXIT
        nop
        
TCHECK_CONTINUE:
        # Advance to next piece.
        #
        addi $s3, $s3, 20
        la $t0, huff_compressed_text_start
        slt $t1, $s3, $t0
        bne $t1, $0  TLOOP
        nop
        ##
        ##  End of Loop

TLOOP_EXIT:
        # Compute number of incorrect pieces.
        #
        sub $s5, $s7, $s6

        # Show execution rate.
        #
        la $a0, msg_timing
        la $t4, tb_timing_data
        lw $t0, 4($t4)
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        lw $t1, 8($t4)
        mtc1 $s2, $f20
        cvt.d.w $f22, $f20
        mtc1 $t0, $f10
        cvt.d.w $f12, $f10
        mtc1 $t1, $f14
        cvt.d.w $f16, $f14
        div.d $f0, $f22, $f12
        div.d $f2, $f22, $f16
        addi $v0, $0, 11
        syscall
        nop

        # Show decoded text.
        #
        la $a0, msg_full_text
        la $s0, uncompressed
        addi $v0, $0, 11
        syscall
        nop

        addi $v0, $0, 10
        syscall
        nop

        .data

.align 4
uncompressed:
.space 4000
uncompressed_end:

#  Data from file histo-bare.s

#  Code size 14253 + 1679 + 5176 = 21108  orig 40784 b, ratio 0.518  max 11
#  Words 188  Codes 188  Resorts 10

# Compression Debug Samples
#
# Encoding: .word BIT_START, BIT_END, TREE_POS, DICT_POS, FRAG_LENGTH
#
huff_debug_samples:
#   0: 0  11011 -> "\n"

.word 0, 5, 0x2ea, 0xa, 1;
#   0: 5  001011 -> "        ."

.word 5, 11, 0x2a, 0x16, 9;
#   0:11  0110011000 -> "text"

.word 11, 21, 0x14c, 0x1af, 4;
#   0:21  11011 -> "\n"

.word 21, 26, 0x2ea, 0xa, 1;
#   0:26  011010010 -> "histo"

.word 26, 35, 0x166, 0xc5, 5;
#   1: 3  1000100 -> ":\n"

.word 35, 42, 0x1de, 0x28, 2;
#   1:10  11011 -> "\n"

.word 42, 47, 0x2ea, 0xa, 1;
#   1:15  10101 -> "        "

.word 47, 52, 0x21c, 0, 8;
#   1:20  1101000 -> "addi"

.word 52, 59, 0x2b4, 0x23, 4;
#   1:27  01111 -> " $"

.word 59, 64, 0x1c2, 0x9, 2;
#   2: 0  10011 -> "s"

.word 64, 69, 0x1f0, 0x73, 1;
#   2: 5  000011 -> "1"

.word 69, 75, 0x18, 0x31, 1;
#   2:11  00100 -> ", $"

.word 75, 80, 0x24, 0xf, 3;
#   2:16  00010 -> "r"

.word 80, 85, 0x1c, 0x72, 1;
#   2:21  01000 -> "a"

.word 85, 90, 0x48, 0x61, 1;
#   2:26  00111 -> ", "

.word 90, 95, 0x40, 0xc, 2;
#   2:31  110000 -> "0"

.word 95, 101, 0x24c, 0x30, 1;
#   3: 5  101001000 -> "    # "

.word 101, 110, 0x204, 0x9d, 6;

← → Spring 2021 ← → Homework 2 Homework Solution Sol Code Sol Code hw02-sol.s.html

https://www.ece.lsu.edu/ee4720/2021/hw02-sol.s.html


#   3:14  0101100111 -> "Make"
.word 110, 120, 0x7c, 0x218, 4;

#   3:24  111 -> " "
.word 120, 123, 0x2ec, 0x20, 1;

#   3:27  01000 -> "a"
.word 123, 128, 0x48, 0x61, 1;

#   4: 0  111 -> " "
.word 128, 131, 0x2ec, 0x20, 1;

#   4: 3  0101110110 -> "copy"
.word 131, 141, 0xb8, 0x1ca, 4;

#   4:13  111 -> " "
.word 141, 144, 0x2ec, 0x20, 1;

#   4:16  0011001 -> "of"
.word 144, 151, 0x34, 0x37, 2;

#   4:23  111 -> " "
.word 151, 154, 0x2ec, 0x20, 1;

#   4:26  10111010 -> "the"
.word 154, 162, 0x23e, 0x43, 3;

#   5: 2  111 -> " "
.word 162, 165, 0x2ec, 0x20, 1;

#   5: 5  0101110000 -> "return"
.word 165, 175, 0xa4, 0x1d6, 6;

#   5:15  111 -> " "
.word 175, 178, 0x2ec, 0x20, 1;

#   5:18  101110011 -> "address"
.word 178, 187, 0x23a, 0x74, 7;

#   5:27  1100010 -> ".\n"
.word 187, 194, 0x250, 0x20, 2;

#   6: 2  10101 -> "        "
.word 194, 199, 0x21c, 0, 8;

#   6: 7  1101010010 -> "jal"
.word 199, 209, 0x2c6, 0x197, 3;

#   6:17  111 -> " "
.word 209, 212, 0x2ec, 0x20, 1;

#   6:20  011011101 -> "upper"
.word 212, 221, 0x19e, 0xcb, 5;

#   6:29  111 -> " "
.word 221, 224, 0x2ec, 0x20, 1;

#   7: 0  111 -> " "
.word 224, 227, 0x2ec, 0x20, 1;

#   7: 3  111 -> " "
.word 227, 230, 0x2ec, 0x20, 1;

#   7: 6  111 -> " "
.word 230, 233, 0x2ec, 0x20, 1;

#   7: 9  111 -> " "
.word 233, 236, 0x2ec, 0x20, 1;

#   7:12  111 -> " "
.word 236, 239, 0x2ec, 0x20, 1;

#   7:15  111 -> " "
.word 239, 242, 0x2ec, 0x20, 1;

#   7:18  111 -> " "
.word 242, 245, 0x2ec, 0x20, 1;

#   7:21  111 -> " "
.word 245, 248, 0x2ec, 0x20, 1;

#   7:24  111 -> " "
.word 248, 251, 0x2ec, 0x20, 1;

#   7:27  111 -> " "
.word 251, 254, 0x2ec, 0x20, 1;

#   7:30  0101010 -> "#"
.word 254, 261, 0x58, 0x23, 1;

#   8: 5  111 -> " "
.word 261, 264, 0x2ec, 0x20, 1;

#   8: 8  0110110001 -> "Convert"
.word 264, 274, 0x182, 0x27d, 7;

#   8:18  111 -> " "
.word 274, 277, 0x2ec, 0x20, 1;

#   8:21  10110010 -> "to"
.word 277, 285, 0x228, 0x4d, 2;

#   8:29  111 -> " "
.word 285, 288, 0x2ec, 0x20, 1;

#   9: 0  011011101 -> "upper"
.word 288, 297, 0x19e, 0xcb, 5;

#   9: 9  111 -> " "
.word 297, 300, 0x2ec, 0x20, 1;

#   9:12  1011000 -> "c"
.word 300, 307, 0x224, 0x63, 1;

#   9:19  01000 -> "a"
.word 307, 312, 0x48, 0x61, 1;

#   9:24  10011 -> "s"
.word 312, 317, 0x1f0, 0x73, 1;

#   9:29  10010 -> "e"
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.word 317, 322, 0x1ee, 0x65, 1;
#  10: 2  1100010 -> ".\n"

.word 322, 329, 0x250, 0x20, 2;
#  10: 9  10101 -> "        "

.word 329, 334, 0x21c, 0, 8;
#  10:14  1101000 -> "addi"

.word 334, 341, 0x2b4, 0x23, 4;
#  10:21  01111 -> " $"

.word 341, 346, 0x1c2, 0x9, 2;
#  10:26  10011 -> "s"

.word 346, 351, 0x1f0, 0x73, 1;
#  10:31  110000 -> "0"

.word 351, 357, 0x24c, 0x30, 1;
#  11: 5  00100 -> ", $"

.word 357, 362, 0x24, 0xf, 3;
#  11:10  0101001 -> "a0"

.word 362, 369, 0x54, 0x31, 2;
#  11:17  00111 -> ", "

.word 369, 374, 0x40, 0xc, 2;
#  11:22  110000 -> "0"

.word 374, 380, 0x24c, 0x30, 1;
#  11:28  101001000 -> "    # "

.word 380, 389, 0x204, 0x9d, 6;
#  12: 5  0101100111 -> "Make"

.word 389, 399, 0x7c, 0x218, 4;
#  12:15  111 -> " "

.word 399, 402, 0x2ec, 0x20, 1;
#  12:18  01000 -> "a"

.word 402, 407, 0x48, 0x61, 1;
#  12:23  111 -> " "

.word 407, 410, 0x2ec, 0x20, 1;
#  12:26  0101110110 -> "copy"

.word 410, 420, 0xb8, 0x1ca, 4;
#  13: 4  111 -> " "

.word 420, 423, 0x2ec, 0x20, 1;
#  13: 7  0011001 -> "of"

.word 423, 430, 0x34, 0x37, 2;
#  13:14  111 -> " "

.word 430, 433, 0x2ec, 0x20, 1;
#  13:17  01100111 -> "string"

.word 433, 441, 0x156, 0x5f, 6;
#  13:25  111 -> " "

.word 441, 444, 0x2ec, 0x20, 1;
#  13:28  0101101101 -> "start"

.word 444, 454, 0x94, 0x238, 5;
#  14: 6  111 -> " "

.word 454, 457, 0x2ec, 0x20, 1;
#  14: 9  101110011 -> "address"

.word 457, 466, 0x23a, 0x74, 7;
#  14:18  1100010 -> ".\n"

.word 466, 473, 0x250, 0x20, 2;
#  14:25  10101 -> "        "

.word 473, 478, 0x21c, 0, 8;
#  14:30  1101000 -> "addi"

.word 478, 485, 0x2b4, 0x23, 4;
#  15: 5  01111 -> " $"

.word 485, 490, 0x1c2, 0x9, 2;
#  15:10  0101001 -> "a0"

.word 490, 497, 0x54, 0x31, 2;
#  15:17  00100 -> ", $"

.word 497, 502, 0x24, 0xf, 3;
#  15:22  10011 -> "s"

.word 502, 507, 0x1f0, 0x73, 1;
#  15:27  110000 -> "0"

.word 507, 513, 0x24c, 0x30, 1;
#  16: 1  00111 -> ", "

.word 513, 518, 0x40, 0xc, 2;
#  16: 6  110000 -> "0"

.word 518, 524, 0x24c, 0x30, 1;
#  16:12  101001000 -> "    # "

.word 524, 533, 0x204, 0x9d, 6;
#  16:21  0110011011 -> "R"

.word 533, 543, 0x154, 0x52, 1;
#  16:31  10010 -> "e"

.word 543, 548, 0x1ee, 0x65, 1;
#  17: 4  10011 -> "s"

.word 548, 553, 0x1f0, 0x73, 1;
#  17: 9  01001 -> "t"

.word 553, 558, 0x4a, 0x74, 1;
#  17:14  101111 -> "o"

.word 558, 564, 0x242, 0x6f, 1;
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#  17:20  00010 -> "r"
.word 564, 569, 0x1c, 0x72, 1;

#  17:25  10010 -> "e"
.word 569, 574, 0x1ee, 0x65, 1;

#  17:30  111 -> " "
.word 574, 577, 0x2ec, 0x20, 1;

#  18: 1  01100111 -> "string"
.word 577, 585, 0x156, 0x5f, 6;

#  18: 9  111 -> " "
.word 585, 588, 0x2ec, 0x20, 1;

#  18:12  0101101101 -> "start"
.word 588, 598, 0x94, 0x238, 5;

#  18:22  111 -> " "
.word 598, 601, 0x2ec, 0x20, 1;

#  18:25  101110011 -> "address"
.word 601, 610, 0x23a, 0x74, 7;

#  19: 2  1100010 -> ".\n"
.word 610, 617, 0x250, 0x20, 2;

#  19: 9  111 -> " "
.word 617, 620, 0x2ec, 0x20, 1;

#  19:12  111 -> " "
.word 620, 623, 0x2ec, 0x20, 1;

#  19:15  111 -> " "
.word 623, 626, 0x2ec, 0x20, 1;

#  19:18  111 -> " "
.word 626, 629, 0x2ec, 0x20, 1;

#  19:21  111 -> " "
.word 629, 632, 0x2ec, 0x20, 1;

#  19:24  111 -> " "
.word 632, 635, 0x2ec, 0x20, 1;

#  19:27  111 -> " "
.word 635, 638, 0x2ec, 0x20, 1;

#  19:30  111 -> " "
.word 638, 641, 0x2ec, 0x20, 1;

#  20: 1  11011 -> "\n"
.word 641, 646, 0x2ea, 0xa, 1;

#  20: 6  1101010100 -> "LOOP"
.word 646, 656, 0x2ce, 0x179, 4;

#  20:16  1000100 -> ":\n"
.word 656, 663, 0x1de, 0x28, 2;

#  20:23  10101 -> "        "
.word 663, 668, 0x21c, 0, 8;

#  20:28  101101 -> "l"
.word 668, 674, 0x22c, 0x6c, 1;

#  21: 2  11001101 -> "b"
.word 674, 682, 0x29a, 0x62, 1;

#  21:10  01111 -> " $"
.word 682, 687, 0x1c2, 0x9, 2;

#  21:15  0011000 -> "t0"
.word 687, 694, 0x32, 0x3a, 2;

#  21:22  00111 -> ", "
.word 694, 699, 0x40, 0xc, 2;

#  21:27  110000 -> "0"
.word 699, 705, 0x24c, 0x30, 1;

#  22: 1  10111000 -> "($"
.word 705, 713, 0x234, 0x4a, 2;

#  22: 9  0101001 -> "a0"
.word 713, 720, 0x54, 0x31, 2;

#  22:16  0101101001 -> ")      # "
.word 720, 730, 0x86, 0x24f, 9;

#  22:26  1100101101 -> "Load"
.word 730, 740, 0x28c, 0x156, 4;

#  23: 4  111 -> " "
.word 740, 743, 0x2ec, 0x20, 1;

#  23: 7  1100101010 -> "next"
.word 743, 753, 0x282, 0x174, 4;

#  23:17  111 -> " "
.word 753, 756, 0x2ec, 0x20, 1;

#  23:20  110101111 -> "character"
.word 756, 765, 0x2e8, 0x82, 9;

#  23:29  1100010 -> ".\n"
.word 765, 772, 0x250, 0x20, 2;

#  24: 4  10101 -> "        "
.word 772, 777, 0x21c, 0, 8;

#  24: 9  101001001 -> "beq"
.word 777, 786, 0x206, 0x99, 3;

#  24:18  01111 -> " $"
.word 786, 791, 0x1c2, 0x9, 2;

#  24:23  0011000 -> "t0"
.word 791, 798, 0x32, 0x3a, 2;

#  24:30  00100 -> ", $"

← → Spring 2021 ← → Homework 2 Homework Solution Sol Code Sol Code hw02-sol.s.html

https://www.ece.lsu.edu/ee4720/2021/hw02-sol.s.html


.word 798, 803, 0x24, 0xf, 3;
#  25: 3  110000 -> "0"

.word 803, 809, 0x24c, 0x30, 1;
#  25: 9  00111 -> ", "

.word 809, 814, 0x40, 0xc, 2;
#  25:14  0101101010 -> "DONE"

.word 814, 824, 0x8a, 0x262, 4;
#  25:24  0101110111 -> "   # "

.word 824, 834, 0xba, 0x1c4, 5;
#  26: 2  01100011000 -> "J"

.word 834, 845, 0x126, 0x4a, 1;
#  26:13  1010001 -> "u"

.word 845, 852, 0x1fc, 0x75, 1;
#  26:20  1100011 -> "m"

.word 852, 859, 0x252, 0x6d, 1;
#  26:27  0101011 -> "p"

.word 859, 866, 0x5a, 0x70, 1;
#  27: 2  111 -> " "

.word 866, 869, 0x2ec, 0x20, 1;
#  27: 5  0101111101 -> "out"

.word 869, 879, 0xd2, 0x1e8, 3;
#  27:15  111 -> " "

.word 879, 882, 0x2ec, 0x20, 1;
#  27:18  0011001 -> "of"

.word 882, 889, 0x34, 0x37, 2;
#  27:25  111 -> " "

.word 889, 892, 0x2ec, 0x20, 1;
#  27:28  101101 -> "l"

.word 892, 898, 0x22c, 0x6c, 1;
#  28: 2  101111 -> "o"

.word 898, 904, 0x242, 0x6f, 1;
#  28: 8  101111 -> "o"

.word 904, 910, 0x242, 0x6f, 1;
#  28:14  0101011 -> "p"

.word 910, 917, 0x5a, 0x70, 1;
#  28:21  111 -> " "

.word 917, 920, 0x2ec, 0x20, 1;
#  28:24  00000 -> "i"

.word 920, 925, 0xa, 0x69, 1;
#  28:29  1101001 -> "f"

.word 925, 932, 0x2b6, 0x66, 1;
#  29: 4  111 -> " "

.word 932, 935, 0x2ec, 0x20, 1;
#  29: 7  01000 -> "a"

.word 935, 940, 0x48, 0x61, 1;
#  29:12  01001 -> "t"

.word 940, 945, 0x4a, 0x74, 1;
#  29:17  111 -> " "

.word 945, 948, 0x2ec, 0x20, 1;
#  29:20  10010 -> "e"

.word 948, 953, 0x1ee, 0x65, 1;
#  29:25  00011 -> "n"

.word 953, 958, 0x1e, 0x6e, 1;
#  29:30  1000010 -> "d"

.word 958, 965, 0x1d6, 0x64, 1;
#  30: 5  111 -> " "

.word 965, 968, 0x2ec, 0x20, 1;
#  30: 8  0011001 -> "of"

.word 968, 975, 0x34, 0x37, 2;
#  30:15  111 -> " "

.word 975, 978, 0x2ec, 0x20, 1;
#  30:18  01100111 -> "string"

.word 978, 986, 0x156, 0x5f, 6;
#  30:26  1100010 -> ".\n"

.word 986, 993, 0x250, 0x20, 2;
#  31: 1  10101 -> "        "

.word 993, 998, 0x21c, 0, 8;
#  31: 6  1101000 -> "addi"

.word 998, 1005, 0x2b4, 0x23, 4;
#  31:13  01111 -> " $"

.word 1005, 1010, 0x1c2, 0x9, 2;
#  31:18  0101001 -> "a0"

.word 1010, 1017, 0x54, 0x31, 2;
#  31:25  00100 -> ", $"

.word 1017, 1022, 0x24, 0xf, 3;
#  31:30  0101001 -> "a0"

.word 1022, 1029, 0x54, 0x31, 2;
#  32: 5  00111 -> ", "

.word 1029, 1034, 0x40, 0xc, 2;
#  32:10  000011 -> "1"

.word 1034, 1040, 0x18, 0x31, 1;
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#  32:16  101001000 -> "    # "
.word 1040, 1049, 0x204, 0x9d, 6;

#  32:25  11001100 -> "I"
.word 1049, 1057, 0x298, 0x49, 1;

#  33: 1  00011 -> "n"
.word 1057, 1062, 0x1e, 0x6e, 1;

#  33: 6  1011000 -> "c"
.word 1062, 1069, 0x224, 0x63, 1;

#  33:13  00010 -> "r"
.word 1069, 1074, 0x1c, 0x72, 1;

#  33:18  10010 -> "e"
.word 1074, 1079, 0x1ee, 0x65, 1;

#  33:23  1100011 -> "m"
.word 1079, 1086, 0x252, 0x6d, 1;

#  33:30  10010 -> "e"
.word 1086, 1091, 0x1ee, 0x65, 1;

#  34: 3  00011 -> "n"
.word 1091, 1096, 0x1e, 0x6e, 1;

#  34: 8  01001 -> "t"
.word 1096, 1101, 0x4a, 0x74, 1;

#  34:13  111 -> " "
.word 1101, 1104, 0x2ec, 0x20, 1;

#  34:16  10110010 -> "to"
.word 1104, 1112, 0x228, 0x4d, 2;

#  34:24  111 -> " "
.word 1112, 1115, 0x2ec, 0x20, 1;

#  34:27  101110011 -> "address"
.word 1115, 1124, 0x23a, 0x74, 7;

#  35: 4  111 -> " "
.word 1124, 1127, 0x2ec, 0x20, 1;

#  35: 7  0011001 -> "of"
.word 1127, 1134, 0x34, 0x37, 2;

#  35:14  111 -> " "
.word 1134, 1137, 0x2ec, 0x20, 1;

#  35:17  1100101010 -> "next"
.word 1137, 1147, 0x282, 0x174, 4;

#  35:27  111 -> " "
.word 1147, 1150, 0x2ec, 0x20, 1;

#  35:30  110101111 -> "character"
.word 1150, 1159, 0x2e8, 0x82, 9;

#
# Huffman Compressed Text
#
huff_compressed_text_start:

.word 0xd96cc6da, 0x51375d0f, 0x9864120f, 0x852167e8, 0xebb733ee

.word 0xbae1ee78, 0xaba976ef, 0xfffffffd, 0x576c7d97, 0x6efb089c

.word 0xb15743e7, 0x81149f0a, 0x42cfd1d7, 0x6e67b3f5, 0xb7dcf157

.word 0x43d49278, 0x1f0a4337, 0x29a6f14b, 0xb3f5b7dc, 0xf17fffff

.word 0xef54895b, 0x735e60f8, 0x5c295a72, 0xdf957d7e, 0x2ad25e60

.word 0x981d6a5d, 0xd8c51c6a, 0xfafbccfb, 0x6fbd5f06, 0x9e84f90e

.word 0x1733d9f1, 0x5743d491, 0x49c3a466, 0xec0a58e, 0x434fb2f7

.word 0x3e67e55f, 0x5f8aba1e, 0x60863206, 0x1c873ad5, 0xe49798f6

.word 0x5ee5dbd7, 0x7eb3b718, 0x1c0ed460, 0x433c9361, 0x61aced48

.word 0x28bf3c86, 0xf41873a, 0xccd2f31c, 0x13ed836d, 0xe830f5eb

.word 0x812e27d9, 0xae8f6c92, 0x99096fad, 0x25f9e4c0, 0xfaa7fd57

.word 0x75ded7f3, 0xbf9524fb, 0xaf957d59, 0xdfac60b7, 0xa65e88e6

.word 0x287285e, 0xc6356b0d, 0x676daf30, 0x4307a1ff, 0xfd57d5ec

.word 0x22d976f7, 0xe6a27285, 0xef1fb97c, 0xa3cc1964, 0xbeb21eb5

.word 0xddd72e7d, 0xd910190c, 0x2ef16bf1, 0xaba2997b, 0x9f33ee5f

.word 0x28c55b42, 0xbe33e171, 0x76b4e5be, 0xe5f2877b, 0x1945b465

.word 0xc13eab99, 0xe906394f, 0xeade7290, 0xf15743e3, 0x24670e91

.word 0x9349c0a5, 0xe7290065, 0x7bafab74, 0x14800cf3, 0xbfe5df27

.word 0x5beb4bfa, 0xa6eb30af, 0x8cf85c5d, 0xeb7ffff5, 0x5dd77b5f

.word 0xcd378a5e, 0xebae3f35, 0x16355e01, 0xfbaf72c5, 0xb5aa2569

.word 0x627cc3ff, 0xffffffff, 0xd57667d1, 0x980657ba, 0xf3459ca1

.word 0x75c3dcf1, 0x5699bdef, 0x38ce574e, 0xcddf4520, 0x1cb6ab6a

.word 0xbf8b22db, 0x67e08269, 0xbca1231f, 0x562bca12, 0x31fd634b

.word 0x5bd7aeac, 0x401a67ee, 0x58956f79, 0x1660d5d1, 0x4f67eb47

.word 0x4ca6900c, 0xaed2c412, 0x5c24251b, 0x6ca21703, 0xb9b1b6fa

.word 0xd1638c05, 0x88315622, 0xd836cc51, 0x83b16626, 0xd11b9fea

.word 0xbae9e77e, 0x3975f694, 0x6694240c, 0xa97b1050, 0x24584c85

.word 0x3c45c0ee, 0x6d11a82e, 0x1b5faff, 0xaefc97ad, 0x7c09ede7

.word 0xb2f17eb0, 0x75b94170, 0xde57e2f, 0xc09f2458, 0x83c602a0

.word 0xa7b5fc24, 0x1a282e01, 0xbccf92fc, 0xc718fb35, 0xc28af194

.word 0xbc260827, 0xf4ca5680, 0x65389f2a, 0x494806e3, 0xcd22bc65

.word 0x484a0b80, 0x6f24f6de, 0x32a423e6, 0x79a5069d, 0x15068a0

.word 0xb806f530, 0x4e7d3065, 0x8fe3be73, 0xf62fb390, 0xa50bd980

.word 0x729eb975, 0xd28b6df3, 0xa25205d5, 0x80729a82, 0xe01bc9a0

.word 0xc852f8ef, 0xb1aa806e, 0x3e68050a, 0x7db3f65e, 0x60194a0b

.word 0x806f2bf9, 0x8e217b41, 0xaacbd979, 0xca5f51f6, 0xa32c34fa
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.word 0x9827304e, 0x6056ac1a, 0xe41a2211, 0xa006e380, 0x69bfcd58

.word 0x80329417, 0x3292e01, 0xbc93e3be, 0xf1da02a0, 0xa7de3f75

.word 0xf350697d, 0x175d75d7, 0x5d751ec0, 0xa57db2e9, 0xa2393aeb

.word 0xaefd47e9, 0x5b6cfdd, 0x74004a0b, 0x806f33c2, 0x14918d78

.word 0x466df453, 0xf1a0a1df, 0x68113e01, 0xfcdb6fbf, 0x1baebaeb

.word 0xaeb5fe63, 0x8c7c2827, 0x403f99c, 0x2a27d665, 0x5c0ca4b

.word 0x806d7ebf, 0xebbf25eb, 0x5f027b79, 0xecbc5f8e, 0x417de2b6

.word 0x481cd417, 0xde4d06, 0x43fa8b89, 0xf0b06429, 0x7d77db2d

.word 0x29e697d1, 0x17832409, 0x2a0b806f, 0x2beb3389, 0xfc9fa608

.word 0x657c778, 0xa5ae03c5, 0xfdd7c9fe, 0x67b0814b, 0xad0a0b80

.word 0x6f53bc52, 0xe98281fc, 0xcf17eb07, 0x5b941703, 0x292d7cee

.word 0x74aa578a, 0xbe8827db, 0x82c7348a, 0xf194a378, 0xe65442d7

.word 0xc371524a, 0x642e10cb, 0x9ecb63fb, 0x17d11a69, 0xbc219636

.word 0x5a742fac, 0x865d30d, 0x9585da1a, 0x420235bc, 0x2195390b

.word 0x2cda2373, 0x62fbd968, 0xb4050fc3, 0xdea110b5, 0xcb87843d

.word 0xe7710b5c, 0xbc3c37b5, 0xd62170af, 0xa39b6cbe, 0x5eee19d6

.word 0x49ec5e39, 0xa5034fcb, 0xced9fb2f, 0x383785ea, 0xe42b121a

.word 0x678b7b2d, 0x98d9655b, 0x7e6dbd7b, 0xdaf712b6, 0xa1ea4ed9

.word 0x6eb6a1e8, 0xcfa86eb, 0xa1f19101, 0x9f0dd743, 0xeec919f2

.word 0xfdc553a2, 0x56615f81, 0xf0b88cd6, 0xb4f7c64b, 0xb3c553b7

.word 0x5d0f8c91, 0x9e1ef75b, 0x50f8cf9d, 0xeeba1f76, 0x48cf0f0d

.word 0xd743f3c9, 0x81e1d0fd, 0x5770c19c, 0x6e2a1c4a, 0xcf35f9e7

.word 0xc2e2335a, 0xd3df192e, 0xcf150f75, 0xd0f8c919, 0xc3dd679a

.word 0xfc0f85c4, 0x66bbaea5, 0xf23dd699, 0xbaac4fb3, 0xc09a686e

.word 0xab63b09d, 0xafd3409, 0xa686eb6a, 0x1f9e75d7, 0x75b61580

.word 0xdfa619f0, 0xb8cf35ac, 0x2059bb09, 0xfa68134c, 0x3269a1bd

.word 0xd752ed2d, 0xd699bae5, 0xcf304c09, 0x86eba1f9, 0xe4c0ec30

.word 0xf75d0f4c, 0x32679e83, 0xeeb6a1f, 0x30cfa86e, 0xba1f6781

.word 0x303861ee, 0xb6a1f3a0, 0x7cef75d0, 0xf9d024e8, 0x1e187b8a

.word 0xa112b685, 0x7c67c2e2, 0x619ad743, 0xe6192619, 0xe1eeb497

.word 0xc64c0eb9, 0xeeba1f9e, 0x4cf387ba, 0xcc56bd2c, 0x248ce1ee

.word 0xab23d390, 0x92740896, 0x1dd5627c, 0x64d386ea, 0xb63b09d0

.word 0xafd38134, 0xe1bae3a3, 0x6bb09fa6, 0x1934e04d, 0x3437558f

.word 0x6b9c4ad3, 0xdf9e44c3, 0x3c550dd6, 0x99bdd743, 0xecf02607

.word 0xf0dd563, 0xdef79c67, 0x2dd726c7, 0xd9763cad, 0x5c85e2c8

.word 0x9cb7b6ec, 0x4c89bfeb, 0x2ec25914, 0xd37eb22c, 0x8b6dd6f6

.word 0xaf33d9fd, 0x97b178ec, 0xe424e209, 0x6452e4d5, 0xe67ebfb4

.word 0xfb431324, 0x6e4da769, 0xf686264b, 0xb728b5f8, 0xd5a0409d

.word 0xe3eb8e20, 0x9ffffff5, 0x5d8d3124, 0x63576ca9, 0xbfb525a6

.word 0xf14a9bdc, 0xd0d475cf, 0xfff7ffff, 0xfeabffff, 0xfffedcd2

.word 0x990a9bfb, 0x9b71a8eb, 0x9edad12a, 0xbfbe33e1, 0x70a75bff

.word 0xfffffaaf, 0x96fd7fd2, 0x2bf1f67c, 0x55d0f524, 0x5270f75a

.word 0x4be32607, 0x6d7755e5, 0xf7648cec, 0x7d807fff, 0xffaaedf3

.word 0xb8438dd6, 0x9efbb261, 0xdadbaaf2, 0xfbb24670, 0xe853bfff

.word 0xfeabb8cb, 0x1c763bc3, 0xdd692fbb, 0x26076b6e, 0xba1f1923

.word 0xc829d437, 0x5a5f6b6e, 0xb3cd7c6c, 0x12941dc2, 0x935db6b1

.word 0x2b4b13c4, 0x8dd699bd, 0xef38ce72, 0x372d5d22, 0xcaf152

.word 0x194983bd, 0xe4713226, 0xffacbb09, 0x6452e4d5, 0xe67e900a

.word 0x69fafe67, 0xb3e264b3, 0xc1c999f6, 0x68b68c8f, 0x75ed90ca

.word 0x4c1e67dd, 0x767c412c, 0x861c9b4e, 0xd3ed0c4c, 0x91b93579

.word 0x9f628885, 0x21a7ebfb, 0x4fb43104, 0xd743e322, 0x93e1b6de

.word 0x2557f798, 0x3e17119a, 0xd69ef304, 0xc0edbeeb, 0xa1f19233

.word 0x87bdd743, 0xe3247900, 0x7bad2c4f, 0x12375591, 0xf6781232

.word 0x29d80000
huff_compressed_text_end:

# Huffman Encoding Word Dictionary
#
huff_dictionary:

.asciiz "        "     # Idx     0  Freq  81   Enc 10101

.asciiz " $"           # Idx     9  Freq  71   Enc 01111

.asciiz ", "           # Idx    12  Freq  57   Enc 00111

.asciiz ", $"          # Idx    15  Freq  55   Enc 00100

.asciiz "t1"           # Idx    19  Freq  38   Enc 100011

.asciiz "        ."    # Idx    22  Freq  28   Enc 001011

.asciiz ".\n"          # Idx    32  Freq  24   Enc 1100010

.asciiz "addi"         # Idx    35  Freq  24   Enc 1101000

.asciiz ":\n"          # Idx    40  Freq  18   Enc 1000100

.asciiz "ascii"        # Idx    43  Freq  18   Enc 1000000

.asciiz "a0"           # Idx    49  Freq  15   Enc 0101001

.asciiz "\"\n"         # Idx    52  Freq  15   Enc 0101000

.asciiz "of"           # Idx    55  Freq  14   Enc 0011001

.asciiz "t0"           # Idx    58  Freq  14   Enc 0011000

.asciiz " \""          # Idx    61  Freq  14   Enc 0011011

.asciiz "t2"           # Idx    64  Freq  12   Enc 10111011

.asciiz "the"          # Idx    67  Freq  12   Enc 10111010

.asciiz "t3"           # Idx    71  Freq  12   Enc 11001111

.asciiz "($"           # Idx    74  Freq  11   Enc 10111000

.asciiz "to"           # Idx    77  Freq  10   Enc 10110010

.asciiz ": "           # Idx    80  Freq   9   Enc 01110010

.asciiz "        # $"   # Idx    83  Freq   8   Enc 01100100
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.asciiz "string"       # Idx    95  Freq   8   Enc 01100111

.asciiz ")\n"          # Idx   102  Freq   7   Enc 00110101

.asciiz "        #\n"   # Idx   105  Freq   7   Enc 00001001

.asciiz "address"      # Idx   116  Freq   6   Enc 101110011

.asciiz "table"        # Idx   124  Freq   6   Enc 101110010

.asciiz "character"    # Idx   130  Freq   6   Enc 110101111

.asciiz "miss"         # Idx   140  Freq   5   Enc 100010111

.asciiz "nop"          # Idx   145  Freq   5   Enc 101001100

.asciiz "bne"          # Idx   149  Freq   5   Enc 101001111

.asciiz "beq"          # Idx   153  Freq   5   Enc 101001001

.asciiz "    # "       # Idx   157  Freq   5   Enc 101001000

.asciiz "Address"      # Idx   164  Freq   4   Enc 011010101

.asciiz "and"          # Idx   172  Freq   4   Enc 011010111

.asciiz "ULOOP"        # Idx   176  Freq   4   Enc 011010110

.asciiz "examined"     # Idx   182  Freq   4   Enc 011010000

.asciiz "being"        # Idx   191  Freq   4   Enc 011010011

.asciiz "histo"        # Idx   197  Freq   4   Enc 011010010

.asciiz "upper"        # Idx   203  Freq   4   Enc 011011101

.asciiz "## "          # Idx   209  Freq   3   Enc 1100111001

.asciiz "################################################################################\n"   # Idx   213  Freq   3   Enc 11001110

.asciiz "stars"        # Idx   295  Freq   3   Enc 1100111011

.asciiz "  # "         # Idx   301  Freq   3   Enc 1100111010

.asciiz "know"         # Idx   306  Freq   3   Enc 1100100101

.asciiz "The"          # Idx   311  Freq   3   Enc 1100100100

.asciiz "one"          # Idx   315  Freq   3   Enc 1100100111

.asciiz ", -"          # Idx   319  Freq   3   Enc 1100100000

.asciiz "strlen"       # Idx   323  Freq   3   Enc 1100100011

.asciiz "        ## "   # Idx   330  Freq   3   Enc 1100100010

.asciiz "Load"         # Idx   342  Freq   3   Enc 1100101101

.asciiz "100"          # Idx   347  Freq   3   Enc 1100101111

.asciiz "add"          # Idx   351  Freq   3   Enc 1100101110

.asciiz " \"\"\n"      # Idx   355  Freq   3   Enc 1100101001

.asciiz "element"      # Idx   360  Freq   3   Enc 1100101000

.asciiz "And"          # Idx   368  Freq   3   Enc 1100101011

.asciiz "next"         # Idx   372  Freq   3   Enc 1100101010

.asciiz "LOOP"         # Idx   377  Freq   3   Enc 1101010100

.asciiz "char"         # Idx   382  Freq   3   Enc 1101010110

.asciiz "that"         # Idx   387  Freq   3   Enc 1101010001

.asciiz "histogram_data"   # Idx   392  Freq   3   Enc 1101010000

.asciiz "jal"          # Idx   407  Freq   3   Enc 1101010010

.asciiz "you"          # Idx   411  Freq   3   Enc 1101011101

.asciiz "..."          # Idx   415  Freq   3   Enc 1101011100

.asciiz " -> "         # Idx   419  Freq   2   Enc 0110000001

.asciiz "Return"       # Idx   424  Freq   2   Enc 0110011001

.asciiz "text"         # Idx   431  Freq   2   Enc 0110011000

.asciiz "not"          # Idx   436  Freq   2   Enc 0110011010

.asciiz "TB_100"       # Idx   440  Freq   2   Enc 0101110101

.asciiz "Test"         # Idx   447  Freq   2   Enc 0101110100

.asciiz "   # "        # Idx   452  Freq   2   Enc 0101110111

.asciiz "copy"         # Idx   458  Freq   2   Enc 0101110110

.asciiz "result"       # Idx   463  Freq   2   Enc 0101110001

.asciiz "return"       # Idx   470  Freq   2   Enc 0101110000

.asciiz "TEST"         # Idx   477  Freq   2   Enc 0101110011

.asciiz "space"        # Idx   482  Freq   2   Enc 0101110010

.asciiz "out"          # Idx   488  Freq   2   Enc 0101111101

.asciiz "asciiz"       # Idx   492  Freq   2   Enc 0101111100

.asciiz "lbu"          # Idx   499  Freq   2   Enc 0101111111

.asciiz "slti"         # Idx   503  Freq   2   Enc 0101111001

.asciiz "... "         # Idx   508  Freq   2   Enc 0101111000

.asciiz "__start"      # Idx   513  Freq   2   Enc 0101111011

.asciiz "then"         # Idx   521  Freq   2   Enc 0101111010

.asciiz "Usage"        # Idx   526  Freq   2   Enc 0101100101

.asciiz "sub"          # Idx   532  Freq   2   Enc 0101100100

.asciiz "Make"         # Idx   536  Freq   2   Enc 0101100111

.asciiz "there"        # Idx   541  Freq   2   Enc 0101100110

.asciiz ".)\n"         # Idx   547  Freq   2   Enc 0101100001

.asciiz "New"          # Idx   551  Freq   2   Enc 0101100000

.asciiz "syscall"      # Idx   555  Freq   2   Enc 0101100011

.asciiz "mtc1"         # Idx   563  Freq   2   Enc 0101100010

.asciiz "start"        # Idx   568  Freq   2   Enc 0101101101

.asciiz "cvt"          # Idx   574  Freq   2   Enc 0101101100

.asciiz " ..\n"        # Idx   578  Freq   2   Enc 0101101111

.asciiz "Orleans"      # Idx   583  Freq   2   Enc 0101101110

.asciiz ")      # "    # Idx   591  Freq   2   Enc 0101101001

.asciiz "for"          # Idx   601  Freq   2   Enc 0101101000

.asciiz "what"         # Idx   605  Freq   2   Enc 0101101011

.asciiz "DONE"         # Idx   610  Freq   2   Enc 0101101010

.asciiz "UDONE"        # Idx   615  Freq   2   Enc 0110110101

.asciiz "Character"    # Idx   621  Freq   2   Enc 0110110100

.asciiz "SLOOP"        # Idx   631  Freq   2   Enc 0110110111

.asciiz "Convert"      # Idx   637  Freq   2   Enc 0110110001
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.asciiz "used"         # Idx   645  Freq   2   Enc 0110110011

.asciiz "doi"          # Idx   650  Freq   2   Enc 0110110010

.asciiz "index"        # Idx   654  Freq   2   Enc 0110111101

.asciiz "means"        # Idx   660  Freq   2   Enc 0110111100

.asciiz "Register"     # Idx   666  Freq   2   Enc 0110111111

# Huffman Index Tree.
#
huff_tree_right_base:

.half 0x80  # Base for right child index.
huff_tree_literal_base:

.half 0  # Base for literal.
huff_tree_dictionary_base:

.half 0x7000  # Base for dict.

# Huffman Lookup Tree
#
huff_tree:

.half 0x0162  # Tree Idx   0               Pointer to right child.

.half 0x00a1  # Tree Idx   1  0            Pointer to right child.

.half 0x0090  # Tree Idx   2  00           Pointer to right child.

.half 0x008d  # Tree Idx   3  000          Pointer to right child.

.half 0x0086  # Tree Idx   4  0000         Pointer to right child.

.half 0x0069  # Tree Idx   5  00000        Literal "i"

.half 0x008c  # Tree Idx   6  00001        Pointer to right child.

.half 0x008b  # Tree Idx   7  000010       Pointer to right child.

.half 0x008a  # Tree Idx   8  0000100      Pointer to right child.

.half 0x0025  # Tree Idx   9  00001000     Literal "%"

.half 0x7069  # Tree Idx  10  00001001     Dict Idx for "        #\n"

.half 0x0077  # Tree Idx  11  0000101      Literal "w"

.half 0x0031  # Tree Idx  12  000011       Literal "1"

.half 0x008f  # Tree Idx  13  0001         Pointer to right child.

.half 0x0072  # Tree Idx  14  00010        Literal "r"

.half 0x006e  # Tree Idx  15  00011        Literal "n"

.half 0x0096  # Tree Idx  16  001          Pointer to right child.

.half 0x0093  # Tree Idx  17  0010         Pointer to right child.

.half 0x700f  # Tree Idx  18  00100        Dict Idx for ", $"

.half 0x0095  # Tree Idx  19  00101        Pointer to right child.

.half 0x0067  # Tree Idx  20  001010       Literal "g"

.half 0x7016  # Tree Idx  21  001011       Dict Idx for "        ."

.half 0x00a0  # Tree Idx  22  0011         Pointer to right child.

.half 0x009b  # Tree Idx  23  00110        Pointer to right child.

.half 0x009a  # Tree Idx  24  001100       Pointer to right child.

.half 0x703a  # Tree Idx  25  0011000      Dict Idx for "t0"

.half 0x7037  # Tree Idx  26  0011001      Dict Idx for "of"

.half 0x009f  # Tree Idx  27  001101       Pointer to right child.

.half 0x009e  # Tree Idx  28  0011010      Pointer to right child.

.half 0x0079  # Tree Idx  29  00110100     Literal "y"

.half 0x7066  # Tree Idx  30  00110101     Dict Idx for ")\n"

.half 0x703d  # Tree Idx  31  0011011      Dict Idx for " \""

.half 0x700c  # Tree Idx  32  00111        Dict Idx for ", "

.half 0x00ed  # Tree Idx  33  01           Pointer to right child.

.half 0x00a6  # Tree Idx  34  010          Pointer to right child.

.half 0x00a5  # Tree Idx  35  0100         Pointer to right child.

.half 0x0061  # Tree Idx  36  01000        Literal "a"

.half 0x0074  # Tree Idx  37  01001        Literal "t"

.half 0x00ae  # Tree Idx  38  0101         Pointer to right child.

.half 0x00ab  # Tree Idx  39  01010        Pointer to right child.

.half 0x00aa  # Tree Idx  40  010100       Pointer to right child.

.half 0x7034  # Tree Idx  41  0101000      Dict Idx for "\"\n"

.half 0x7031  # Tree Idx  42  0101001      Dict Idx for "a0"

.half 0x00ad  # Tree Idx  43  010101       Pointer to right child.

.half 0x0023  # Tree Idx  44  0101010      Literal "#"

.half 0x0070  # Tree Idx  45  0101011      Literal "p"

.half 0x00ce  # Tree Idx  46  01011        Pointer to right child.

.half 0x00bf  # Tree Idx  47  010110       Pointer to right child.

.half 0x00b8  # Tree Idx  48  0101100      Pointer to right child.

.half 0x00b5  # Tree Idx  49  01011000     Pointer to right child.

.half 0x00b4  # Tree Idx  50  010110000    Pointer to right child.

.half 0x7227  # Tree Idx  51  0101100000   Dict Idx for "New"

.half 0x7223  # Tree Idx  52  0101100001   Dict Idx for ".)\n"

.half 0x00b7  # Tree Idx  53  010110001    Pointer to right child.

.half 0x7233  # Tree Idx  54  0101100010   Dict Idx for "mtc1"

.half 0x722b  # Tree Idx  55  0101100011   Dict Idx for "syscall"

.half 0x00bc  # Tree Idx  56  01011001     Pointer to right child.

.half 0x00bb  # Tree Idx  57  010110010    Pointer to right child.

.half 0x7214  # Tree Idx  58  0101100100   Dict Idx for "sub"

.half 0x720e  # Tree Idx  59  0101100101   Dict Idx for "Usage"

.half 0x00be  # Tree Idx  60  010110011    Pointer to right child.

.half 0x721d  # Tree Idx  61  0101100110   Dict Idx for "there"

.half 0x7218  # Tree Idx  62  0101100111   Dict Idx for "Make"

← → Spring 2021 ← → Homework 2 Homework Solution Sol Code Sol Code hw02-sol.s.html

https://www.ece.lsu.edu/ee4720/2021/hw02-sol.s.html


.half 0x00c7  # Tree Idx  63  0101101      Pointer to right child.

.half 0x00c4  # Tree Idx  64  01011010     Pointer to right child.

.half 0x00c3  # Tree Idx  65  010110100    Pointer to right child.

.half 0x7259  # Tree Idx  66  0101101000   Dict Idx for "for"

.half 0x724f  # Tree Idx  67  0101101001   Dict Idx for ")      # "

.half 0x00c6  # Tree Idx  68  010110101    Pointer to right child.

.half 0x7262  # Tree Idx  69  0101101010   Dict Idx for "DONE"

.half 0x725d  # Tree Idx  70  0101101011   Dict Idx for "what"

.half 0x00cb  # Tree Idx  71  01011011     Pointer to right child.

.half 0x00ca  # Tree Idx  72  010110110    Pointer to right child.

.half 0x723e  # Tree Idx  73  0101101100   Dict Idx for "cvt"

.half 0x7238  # Tree Idx  74  0101101101   Dict Idx for "start"

.half 0x00cd  # Tree Idx  75  010110111    Pointer to right child.

.half 0x7247  # Tree Idx  76  0101101110   Dict Idx for "Orleans"

.half 0x7242  # Tree Idx  77  0101101111   Dict Idx for " ..\n"

.half 0x00de  # Tree Idx  78  010111       Pointer to right child.

.half 0x00d7  # Tree Idx  79  0101110      Pointer to right child.

.half 0x00d4  # Tree Idx  80  01011100     Pointer to right child.

.half 0x00d3  # Tree Idx  81  010111000    Pointer to right child.

.half 0x71d6  # Tree Idx  82  0101110000   Dict Idx for "return"

.half 0x71cf  # Tree Idx  83  0101110001   Dict Idx for "result"

.half 0x00d6  # Tree Idx  84  010111001    Pointer to right child.

.half 0x71e2  # Tree Idx  85  0101110010   Dict Idx for "space"

.half 0x71dd  # Tree Idx  86  0101110011   Dict Idx for "TEST"

.half 0x00db  # Tree Idx  87  01011101     Pointer to right child.

.half 0x00da  # Tree Idx  88  010111010    Pointer to right child.

.half 0x71bf  # Tree Idx  89  0101110100   Dict Idx for "Test"

.half 0x71b8  # Tree Idx  90  0101110101   Dict Idx for "TB_100"

.half 0x00dd  # Tree Idx  91  010111011    Pointer to right child.

.half 0x71ca  # Tree Idx  92  0101110110   Dict Idx for "copy"

.half 0x71c4  # Tree Idx  93  0101110111   Dict Idx for "   # "

.half 0x00e6  # Tree Idx  94  0101111      Pointer to right child.

.half 0x00e3  # Tree Idx  95  01011110     Pointer to right child.

.half 0x00e2  # Tree Idx  96  010111100    Pointer to right child.

.half 0x71fc  # Tree Idx  97  0101111000   Dict Idx for "... "

.half 0x71f7  # Tree Idx  98  0101111001   Dict Idx for "slti"

.half 0x00e5  # Tree Idx  99  010111101    Pointer to right child.

.half 0x7209  # Tree Idx 100  0101111010   Dict Idx for "then"

.half 0x7201  # Tree Idx 101  0101111011   Dict Idx for "__start"

.half 0x00ea  # Tree Idx 102  01011111     Pointer to right child.

.half 0x00e9  # Tree Idx 103  010111110    Pointer to right child.

.half 0x71ec  # Tree Idx 104  0101111100   Dict Idx for "asciiz"

.half 0x71e8  # Tree Idx 105  0101111101   Dict Idx for "out"

.half 0x00ec  # Tree Idx 106  010111111    Pointer to right child.

.half 0x0044  # Tree Idx 107  0101111110   Literal "D"

.half 0x71f3  # Tree Idx 108  0101111111   Dict Idx for "lbu"

.half 0x0159  # Tree Idx 109  011          Pointer to right child.

.half 0x012c  # Tree Idx 110  0110         Pointer to right child.

.half 0x011f  # Tree Idx 111  01100        Pointer to right child.

.half 0x0100  # Tree Idx 112  011000       Pointer to right child.

.half 0x00ff  # Tree Idx 113  0110000      Pointer to right child.

.half 0x00f8  # Tree Idx 114  01100000     Pointer to right child.

.half 0x00f7  # Tree Idx 115  011000000    Pointer to right child.

.half 0x00f6  # Tree Idx 116  0110000000   Pointer to right child.

.half 0x0037  # Tree Idx 117  01100000000  Literal "7"

.half 0x005f  # Tree Idx 118  01100000001  Literal "_"

.half 0x71a3  # Tree Idx 119  0110000001   Dict Idx for " -> "

.half 0x00fc  # Tree Idx 120  011000001    Pointer to right child.

.half 0x00fb  # Tree Idx 121  0110000010   Pointer to right child.

.half 0x002c  # Tree Idx 122  01100000100  Literal ","

.half 0x004e  # Tree Idx 123  01100000101  Literal "N"

.half 0x00fe  # Tree Idx 124  0110000011   Pointer to right child.

.half 0x002a  # Tree Idx 125  01100000110  Literal "*"

.half 0x007c  # Tree Idx 126  01100000111  Literal "|"

.half 0x0036  # Tree Idx 127  01100001     Literal "6"

.half 0x0110  # Tree Idx 128  0110001      Pointer to right child.

.half 0x0109  # Tree Idx 129  01100010     Pointer to right child.

.half 0x0106  # Tree Idx 130  011000100    Pointer to right child.

.half 0x0105  # Tree Idx 131  0110001000   Pointer to right child.

.half 0x0060  # Tree Idx 132  01100010000  Literal "`"

.half 0x003f  # Tree Idx 133  01100010001  Literal "?"

.half 0x0108  # Tree Idx 134  0110001001   Pointer to right child.

.half 0x0078  # Tree Idx 135  01100010010  Literal "x"

.half 0x007e  # Tree Idx 136  01100010011  Literal "~"

.half 0x010d  # Tree Idx 137  011000101    Pointer to right child.

.half 0x010c  # Tree Idx 138  0110001010   Pointer to right child.

.half 0x007b  # Tree Idx 139  01100010100  Literal "{"

.half 0x0040  # Tree Idx 140  01100010101  Literal "@"

.half 0x010f  # Tree Idx 141  0110001011   Pointer to right child.

.half 0x007d  # Tree Idx 142  01100010110  Literal "}"

.half 0x003b  # Tree Idx 143  01100010111  Literal ";"
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.half 0x0118  # Tree Idx 144  01100011     Pointer to right child.

.half 0x0115  # Tree Idx 145  011000110    Pointer to right child.

.half 0x0114  # Tree Idx 146  0110001100   Pointer to right child.

.half 0x004a  # Tree Idx 147  01100011000  Literal "J"

.half 0x0056  # Tree Idx 148  01100011001  Literal "V"

.half 0x0117  # Tree Idx 149  0110001101   Pointer to right child.

.half 0x0045  # Tree Idx 150  01100011010  Literal "E"

.half 0x005b  # Tree Idx 151  01100011011  Literal "["

.half 0x011c  # Tree Idx 152  011000111    Pointer to right child.

.half 0x011b  # Tree Idx 153  0110001110   Pointer to right child.

.half 0x005e  # Tree Idx 154  01100011100  Literal "^"

.half 0x002b  # Tree Idx 155  01100011101  Literal "+"

.half 0x011e  # Tree Idx 156  0110001111   Pointer to right child.

.half 0x0055  # Tree Idx 157  01100011110  Literal "U"

.half 0x0039  # Tree Idx 158  01100011111  Literal "9"

.half 0x0123  # Tree Idx 159  011001       Pointer to right child.

.half 0x0122  # Tree Idx 160  0110010      Pointer to right child.

.half 0x7053  # Tree Idx 161  01100100     Dict Idx for "        # $"

.half 0x002f  # Tree Idx 162  01100101     Literal "/"

.half 0x012b  # Tree Idx 163  0110011      Pointer to right child.

.half 0x0128  # Tree Idx 164  01100110     Pointer to right child.

.half 0x0127  # Tree Idx 165  011001100    Pointer to right child.

.half 0x71af  # Tree Idx 166  0110011000   Dict Idx for "text"

.half 0x71a8  # Tree Idx 167  0110011001   Dict Idx for "Return"

.half 0x012a  # Tree Idx 168  011001101    Pointer to right child.

.half 0x71b4  # Tree Idx 169  0110011010   Dict Idx for "not"

.half 0x0052  # Tree Idx 170  0110011011   Literal "R"

.half 0x705f  # Tree Idx 171  01100111     Dict Idx for "string"

.half 0x013c  # Tree Idx 172  01101        Pointer to right child.

.half 0x0135  # Tree Idx 173  011010       Pointer to right child.

.half 0x0132  # Tree Idx 174  0110100      Pointer to right child.

.half 0x0131  # Tree Idx 175  01101000     Pointer to right child.

.half 0x70b6  # Tree Idx 176  011010000    Dict Idx for "examined"

.half 0x005c  # Tree Idx 177  011010001    Literal "\134"

.half 0x0134  # Tree Idx 178  01101001     Pointer to right child.

.half 0x70c5  # Tree Idx 179  011010010    Dict Idx for "histo"

.half 0x70bf  # Tree Idx 180  011010011    Dict Idx for "being"

.half 0x0139  # Tree Idx 181  0110101      Pointer to right child.

.half 0x0138  # Tree Idx 182  01101010     Pointer to right child.

.half 0x0042  # Tree Idx 183  011010100    Literal "B"

.half 0x70a4  # Tree Idx 184  011010101    Dict Idx for "Address"

.half 0x013b  # Tree Idx 185  01101011     Pointer to right child.

.half 0x70b0  # Tree Idx 186  011010110    Dict Idx for "ULOOP"

.half 0x70ac  # Tree Idx 187  011010111    Dict Idx for "and"

.half 0x014c  # Tree Idx 188  011011       Pointer to right child.

.half 0x0145  # Tree Idx 189  0110110      Pointer to right child.

.half 0x0142  # Tree Idx 190  01101100     Pointer to right child.

.half 0x0141  # Tree Idx 191  011011000    Pointer to right child.

.half 0x003e  # Tree Idx 192  0110110000   Literal ">"

.half 0x727d  # Tree Idx 193  0110110001   Dict Idx for "Convert"

.half 0x0144  # Tree Idx 194  011011001    Pointer to right child.

.half 0x728a  # Tree Idx 195  0110110010   Dict Idx for "doi"

.half 0x7285  # Tree Idx 196  0110110011   Dict Idx for "used"

.half 0x0149  # Tree Idx 197  01101101     Pointer to right child.

.half 0x0148  # Tree Idx 198  011011010    Pointer to right child.

.half 0x726d  # Tree Idx 199  0110110100   Dict Idx for "Character"

.half 0x7267  # Tree Idx 200  0110110101   Dict Idx for "UDONE"

.half 0x014b  # Tree Idx 201  011011011    Pointer to right child.

.half 0x003d  # Tree Idx 202  0110110110   Literal "="

.half 0x7277  # Tree Idx 203  0110110111   Dict Idx for "SLOOP"

.half 0x0150  # Tree Idx 204  0110111      Pointer to right child.

.half 0x014f  # Tree Idx 205  01101110     Pointer to right child.

.half 0x0041  # Tree Idx 206  011011100    Literal "A"

.half 0x70cb  # Tree Idx 207  011011101    Dict Idx for "upper"

.half 0x0154  # Tree Idx 208  01101111     Pointer to right child.

.half 0x0153  # Tree Idx 209  011011110    Pointer to right child.

.half 0x7294  # Tree Idx 210  0110111100   Dict Idx for "means"

.half 0x728e  # Tree Idx 211  0110111101   Dict Idx for "index"

.half 0x0158  # Tree Idx 212  011011111    Pointer to right child.

.half 0x0157  # Tree Idx 213  0110111110   Pointer to right child.

.half 0x003c  # Tree Idx 214  01101111100  Literal "<"

.half 0x005d  # Tree Idx 215  01101111101  Literal "]"

.half 0x729a  # Tree Idx 216  0110111111   Dict Idx for "Register"

.half 0x0161  # Tree Idx 217  0111         Pointer to right child.

.half 0x0160  # Tree Idx 218  01110        Pointer to right child.

.half 0x015d  # Tree Idx 219  011100       Pointer to right child.

.half 0x0027  # Tree Idx 220  0111000      Literal "'"

.half 0x015f  # Tree Idx 221  0111001      Pointer to right child.

.half 0x7050  # Tree Idx 222  01110010     Dict Idx for ": "

.half 0x0022  # Tree Idx 223  01110011     Literal "\""

.half 0x002e  # Tree Idx 224  011101       Literal "."
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.half 0x7009  # Tree Idx 225  01111        Dict Idx for " $"

.half 0x01a2  # Tree Idx 226  1            Pointer to right child.

.half 0x0179  # Tree Idx 227  10           Pointer to right child.

.half 0x0176  # Tree Idx 228  100          Pointer to right child.

.half 0x016d  # Tree Idx 229  1000         Pointer to right child.

.half 0x016a  # Tree Idx 230  10000        Pointer to right child.

.half 0x0169  # Tree Idx 231  100000       Pointer to right child.

.half 0x702b  # Tree Idx 232  1000000      Dict Idx for "ascii"

.half 0x0068  # Tree Idx 233  1000001      Literal "h"

.half 0x016c  # Tree Idx 234  100001       Pointer to right child.

.half 0x0064  # Tree Idx 235  1000010      Literal "d"

.half 0x0034  # Tree Idx 236  1000011      Literal "4"

.half 0x0175  # Tree Idx 237  10001        Pointer to right child.

.half 0x0170  # Tree Idx 238  100010       Pointer to right child.

.half 0x7028  # Tree Idx 239  1000100      Dict Idx for ":\n"

.half 0x0172  # Tree Idx 240  1000101      Pointer to right child.

.half 0x004c  # Tree Idx 241  10001010     Literal "L"

.half 0x0174  # Tree Idx 242  10001011     Pointer to right child.

.half 0x0043  # Tree Idx 243  100010110    Literal "C"

.half 0x708c  # Tree Idx 244  100010111    Dict Idx for "miss"

.half 0x7013  # Tree Idx 245  100011       Dict Idx for "t1"

.half 0x0178  # Tree Idx 246  1001         Pointer to right child.

.half 0x0065  # Tree Idx 247  10010        Literal "e"

.half 0x0073  # Tree Idx 248  10011        Literal "s"

.half 0x018f  # Tree Idx 249  101          Pointer to right child.

.half 0x018e  # Tree Idx 250  1010         Pointer to right child.

.half 0x017f  # Tree Idx 251  10100        Pointer to right child.

.half 0x017e  # Tree Idx 252  101000       Pointer to right child.

.half 0x0032  # Tree Idx 253  1010000      Literal "2"

.half 0x0075  # Tree Idx 254  1010001      Literal "u"

.half 0x0187  # Tree Idx 255  101001       Pointer to right child.

.half 0x0184  # Tree Idx 256  1010010      Pointer to right child.

.half 0x0183  # Tree Idx 257  10100100     Pointer to right child.

.half 0x709d  # Tree Idx 258  101001000    Dict Idx for "    # "

.half 0x7099  # Tree Idx 259  101001001    Dict Idx for "beq"

.half 0x0186  # Tree Idx 260  10100101     Pointer to right child.

.half 0x002d  # Tree Idx 261  101001010    Literal "-"

.half 0x006a  # Tree Idx 262  101001011    Literal "j"

.half 0x018b  # Tree Idx 263  1010011      Pointer to right child.

.half 0x018a  # Tree Idx 264  10100110     Pointer to right child.

.half 0x7091  # Tree Idx 265  101001100    Dict Idx for "nop"

.half 0x003a  # Tree Idx 266  101001101    Literal ":"

.half 0x018d  # Tree Idx 267  10100111     Pointer to right child.

.half 0x0033  # Tree Idx 268  101001110    Literal "3"

.half 0x7095  # Tree Idx 269  101001111    Dict Idx for "bne"

.half 0x7000  # Tree Idx 270  10101        Dict Idx for "        "

.half 0x0197  # Tree Idx 271  1011         Pointer to right child.

.half 0x0196  # Tree Idx 272  10110        Pointer to right child.

.half 0x0193  # Tree Idx 273  101100       Pointer to right child.

.half 0x0063  # Tree Idx 274  1011000      Literal "c"

.half 0x0195  # Tree Idx 275  1011001      Pointer to right child.

.half 0x704d  # Tree Idx 276  10110010     Dict Idx for "to"

.half 0x0076  # Tree Idx 277  10110011     Literal "v"

.half 0x006c  # Tree Idx 278  101101       Literal "l"

.half 0x01a1  # Tree Idx 279  10111        Pointer to right child.

.half 0x019e  # Tree Idx 280  101110       Pointer to right child.

.half 0x019b  # Tree Idx 281  1011100      Pointer to right child.

.half 0x704a  # Tree Idx 282  10111000     Dict Idx for "($"

.half 0x019d  # Tree Idx 283  10111001     Pointer to right child.

.half 0x707c  # Tree Idx 284  101110010    Dict Idx for "table"

.half 0x7074  # Tree Idx 285  101110011    Dict Idx for "address"

.half 0x01a0  # Tree Idx 286  1011101      Pointer to right child.

.half 0x7043  # Tree Idx 287  10111010     Dict Idx for "the"

.half 0x7040  # Tree Idx 288  10111011     Dict Idx for "t2"

.half 0x006f  # Tree Idx 289  101111       Literal "o"

.half 0x01f6  # Tree Idx 290  11           Pointer to right child.

.half 0x01d7  # Tree Idx 291  110          Pointer to right child.

.half 0x01aa  # Tree Idx 292  1100         Pointer to right child.

.half 0x01a7  # Tree Idx 293  11000        Pointer to right child.

.half 0x0030  # Tree Idx 294  110000       Literal "0"

.half 0x01a9  # Tree Idx 295  110001       Pointer to right child.

.half 0x7020  # Tree Idx 296  1100010      Dict Idx for ".\n"

.half 0x006d  # Tree Idx 297  1100011      Literal "m"

.half 0x01ca  # Tree Idx 298  11001        Pointer to right child.

.half 0x01bb  # Tree Idx 299  110010       Pointer to right child.

.half 0x01b4  # Tree Idx 300  1100100      Pointer to right child.

.half 0x01b1  # Tree Idx 301  11001000     Pointer to right child.

.half 0x01b0  # Tree Idx 302  110010000    Pointer to right child.

.half 0x713f  # Tree Idx 303  1100100000   Dict Idx for ", -"

.half 0x0035  # Tree Idx 304  1100100001   Literal "5"

.half 0x01b3  # Tree Idx 305  110010001    Pointer to right child.
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.half 0x714a  # Tree Idx 306  1100100010   Dict Idx for "        ## "

.half 0x7143  # Tree Idx 307  1100100011   Dict Idx for "strlen"

.half 0x01b8  # Tree Idx 308  11001001     Pointer to right child.

.half 0x01b7  # Tree Idx 309  110010010    Pointer to right child.

.half 0x7137  # Tree Idx 310  1100100100   Dict Idx for "The"

.half 0x7132  # Tree Idx 311  1100100101   Dict Idx for "know"

.half 0x01ba  # Tree Idx 312  110010011    Pointer to right child.

.half 0x0057  # Tree Idx 313  1100100110   Literal "W"

.half 0x713b  # Tree Idx 314  1100100111   Dict Idx for "one"

.half 0x01c3  # Tree Idx 315  1100101      Pointer to right child.

.half 0x01c0  # Tree Idx 316  11001010     Pointer to right child.

.half 0x01bf  # Tree Idx 317  110010100    Pointer to right child.

.half 0x7168  # Tree Idx 318  1100101000   Dict Idx for "element"

.half 0x7163  # Tree Idx 319  1100101001   Dict Idx for " \"\"\n"

.half 0x01c2  # Tree Idx 320  110010101    Pointer to right child.

.half 0x7174  # Tree Idx 321  1100101010   Dict Idx for "next"

.half 0x7170  # Tree Idx 322  1100101011   Dict Idx for "And"

.half 0x01c7  # Tree Idx 323  11001011     Pointer to right child.

.half 0x01c6  # Tree Idx 324  110010110    Pointer to right child.

.half 0x007a  # Tree Idx 325  1100101100   Literal "z"

.half 0x7156  # Tree Idx 326  1100101101   Dict Idx for "Load"

.half 0x01c9  # Tree Idx 327  110010111    Pointer to right child.

.half 0x715f  # Tree Idx 328  1100101110   Dict Idx for "add"

.half 0x715b  # Tree Idx 329  1100101111   Dict Idx for "100"

.half 0x01ce  # Tree Idx 330  110011       Pointer to right child.

.half 0x01cd  # Tree Idx 331  1100110      Pointer to right child.

.half 0x0049  # Tree Idx 332  11001100     Literal "I"

.half 0x0062  # Tree Idx 333  11001101     Literal "b"

.half 0x01d6  # Tree Idx 334  1100111      Pointer to right child.

.half 0x01d3  # Tree Idx 335  11001110     Pointer to right child.

.half 0x01d2  # Tree Idx 336  110011100    Pointer to right child.

.half 0x70d5  # Tree Idx 337  1100111000   Dict Idx for "##########################################################################

.half 0x70d1  # Tree Idx 338  1100111001   Dict Idx for "## "

.half 0x01d5  # Tree Idx 339  110011101    Pointer to right child.

.half 0x712d  # Tree Idx 340  1100111010   Dict Idx for "  # "

.half 0x7127  # Tree Idx 341  1100111011   Dict Idx for "stars"

.half 0x7047  # Tree Idx 342  11001111     Dict Idx for "t3"

.half 0x01f5  # Tree Idx 343  1101         Pointer to right child.

.half 0x01dc  # Tree Idx 344  11010        Pointer to right child.

.half 0x01db  # Tree Idx 345  110100       Pointer to right child.

.half 0x7023  # Tree Idx 346  1101000      Dict Idx for "addi"

.half 0x0066  # Tree Idx 347  1101001      Literal "f"

.half 0x01ec  # Tree Idx 348  110101       Pointer to right child.

.half 0x01e5  # Tree Idx 349  1101010      Pointer to right child.

.half 0x01e2  # Tree Idx 350  11010100     Pointer to right child.

.half 0x01e1  # Tree Idx 351  110101000    Pointer to right child.

.half 0x7188  # Tree Idx 352  1101010000   Dict Idx for "histogram_data"

.half 0x7183  # Tree Idx 353  1101010001   Dict Idx for "that"

.half 0x01e4  # Tree Idx 354  110101001    Pointer to right child.

.half 0x7197  # Tree Idx 355  1101010010   Dict Idx for "jal"

.half 0x004d  # Tree Idx 356  1101010011   Literal "M"

.half 0x01e9  # Tree Idx 357  11010101     Pointer to right child.

.half 0x01e8  # Tree Idx 358  110101010    Pointer to right child.

.half 0x7179  # Tree Idx 359  1101010100   Dict Idx for "LOOP"

.half 0x006b  # Tree Idx 360  1101010101   Literal "k"

.half 0x01eb  # Tree Idx 361  110101011    Pointer to right child.

.half 0x717e  # Tree Idx 362  1101010110   Dict Idx for "char"

.half 0x0053  # Tree Idx 363  1101010111   Literal "S"

.half 0x01f0  # Tree Idx 364  1101011      Pointer to right child.

.half 0x01ef  # Tree Idx 365  11010110     Pointer to right child.

.half 0x0028  # Tree Idx 366  110101100    Literal "("

.half 0x0029  # Tree Idx 367  110101101    Literal ")"

.half 0x01f4  # Tree Idx 368  11010111     Pointer to right child.

.half 0x01f3  # Tree Idx 369  110101110    Pointer to right child.

.half 0x719f  # Tree Idx 370  1101011100   Dict Idx for "..."

.half 0x719b  # Tree Idx 371  1101011101   Dict Idx for "you"

.half 0x7082  # Tree Idx 372  110101111    Dict Idx for "character"

.half 0x000a  # Tree Idx 373  11011        Literal "\n"

.half 0x0020  # Tree Idx 374  111          Literal " "
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LSU EE 4720 Homework 3 Solution Due: 1 March 2021

Do not hand in paper copies. Instead, E-mail your solution to koppel@ece.lsu.edu. The preferred format
is a PDF file.

Problem 1: Note: The following problem was assigned in each of the last five years, and its solution is
available. DO NOT look at the solution unless you are lost and can’t get help elsewhere. Even in that case
just glimpse. Appearing below are incorrect executions on the illustrated implementation. For each one
explain why it is wrong and show the correct execution.
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(a) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until the lw reaches
WB.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID ----> EX ME WB

(b) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

There is no need for a stall because the lw writes r1, it does not read r1.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB
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(c) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

A longer stall is needed here because the sw reads r1 and it must wait until add reaches WB.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID ----> EX ME WB

(d) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

The stall above allows the xor, when it is in ID, to get the value of r1 written by the add; that part is correct. But, the stall
starts in cycle 1 before the xor reaches ID, so how could the control logic know that the xor needed r1, or for that matter that
it was an xor? The solution is to start the stall in cycle 2, when the xor is in ID.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID ----> EX ME WB

2
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Problem 2: Appearing below are incorrect executions on the illustrated implementation. Notice that this
implementation is different than the one from the previous problem. For each execution explain why it is
wrong and show the correct execution.
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(a) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until the lw reaches
ME so that the add can bypass from WB.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID -> EX ME WB

(b) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

There is no need for a stall because r1 is not a source register of lw. Note that r1 is a destination of lw.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB

3

← → Spring 2021 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4720/2021/hw03_sol.pdf


(c) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

No stall is needed here because the sw can use the ME-to-EX bypass path.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID EX ME WB

(d) Explain error and show correct execution. Note that this execution differs from the one from the previous
problem.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID ----> EX ME WB

There is a bypass path available so that there is no need to stall.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID EX ME WB

4
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Problem 3: Appearing below is the labeled MIPS implementation from 2018 Midterm Exam Problem 2(b),
and as in that problem each mux in the implementation below is labeled with a circled letter, and mux inputs
are numbered. Some wires are colored to make them easier to follow. Write code sequences that use the
mux inputs as requested below. Some code sequences may consist of a single instruction.
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(a) Use F0.

Solution appears below. F0 is used by values being loaded from memory into the pipeline. Load instructions, include lw, use
F0.

# SOLUTION

# Cycle 0 1 2 3 4

lw r1, 0(r2) IF ID EX ME WB

(b) Use F0 and C3 at the same time. The code should not suffer a stall.

The solution appears below. The C3 mux input is used to bypass something from WB to the first ALU operand. To use both
at the same time we need some kind of a load instruction in WB writing rX at the same time there is some instruction in EX that
uses rX as the first operand. In the solution below the lw writes r1 in cycle 4. The instruction after the instruction after the lw,
an add below, will be in EX at this time (since we are assuming no stalls). The first source operand of the add is set to r1 so that
the C3 bypass input will be used.

# SOLUTION

# Cycle 0 1 2 3 4 5 6

lw r1, 0(r2) IF ID EX ME WB

xor r5, r6, r7 IF ID EX ME WB

add r3, r1, r4 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

(c) Explain why its impossible to use E0 and D0 at the same time.

5
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If E0 is in use then there must be a store instruction in EX. If D0 is in use then a value is being bypassed to the second ALU
source operand of the instruction in EX. But store instructions use an immediate for the second ALU input, so a store in EX can
only use D2, it can’t use D0 (nor D1 nor D3).

6
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Problem 4: This problem appeared as Problem 2c on the 2020 final exam. Appearing below is our bypassed,
pipelined implementation followed by a code fragment.

It might be helpful to look at Spring 2019 Midterm Exam Problem 4a. That problems asks for the
execution of a loop and for a performance measure based upon how fast that loop executes.
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(a) Show the execution of the code below on the illustrated implementation up to the point where the first
instruction, addi r2,r2,16, reaches WB in the second iteration.

The execution appears below. The execution is shown until the beginning of the third iteration. (A full-credit solution would
only need to show execution until cycle 10, when the addi r2,r2,16 reaches WB in the second iteration.) The only stall is a
1-cycle load/use stall suffered by the sw. The first iteration starts in cycle 0 (when the first instruction, addi, is in IF), the second
iteration starts at cycle 6, and the third at cycle 12.

Note that the pattern of stalls in the second iteration is the same as the pattern in the first. We can expect this pattern to
continue because the contents of the pipeline is the same at the beginning of the second and third iterations. (The second iteration
begins in cycle 6. In that cycle the addi r2 is in IF, the addi r3 is in ID, etc. The contents of the pipeline is the same in cycle
12.)

## SOLUTION
LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

addi r2, r2, 16 IF ID EX ME WB First Iteration

lw r1, 8(r2) IF ID EX ME WB

sw r1, 12(r3) IF ID -> EX ME WB

bne r3, r4, LOOP IF -> ID EX ME WB

addi r3, r3, 32 IF ID EX ME WB

sub r10, r3, r2

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

addi r2, r2, 16 IF ID EX ME WB Second Iteration

lw r1, 8(r2) IF ID EX ME WB

sw r1, 12(r3) IF ID -> EX ME WB

bne r3, r4, LOOP IF -> ID EX ME WB

addi r3, r3, 32 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

addi r2, r2, 16 Third Iteration IF ID EX ME WB

7
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(b) Based on your execution determine how many cycles it will take to complete n iterations of the loop.

The time for n iterations of the loop is n times the duration of one iteration of the loop. The key to solving this correctly is
using the correct duration for an iteration. The duration of an iteration if the time between the start of two consecutive iterations.
In this class the start time of an iteration is the time at which the first instruction is in IF. Using that definition the duration of the
first iteration is 6−0 = 6 cyc and the duration of the second is 12−6 = 6 cyc. So the number of cycles to complete n iterations

is 6n cyc .
An important point to understand is that the definition of duration above insures that iterations don’t overlap. That is, by

defining an iteration duration as starting in the IF of the first instruction of the iteration, there is no possibility that two iterations
overlap and there is no time gap between them. That’s what enables us to multiply a duration by the number of iterations to get a
total time.

Some might be tempted to add another four cycles to account for the addi r3 instruction completing execution. No credit
would be lost for that in a solution, but that is not useful for our purposes because we might want to add together the duration of
different pieces of code, so for us the important thing is when the next instruction can be fetched.

8
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LSU EE 4720 Homework 4 Solution Due: 15 March 2021

Do not hand in paper copies. Instead, E-mail your solution to koppel@ece.lsu.edu. The preferred format
is a PDF file.

Problem 1: Recall that code for the solution to Homework 2 included a loop that traversed a tree. The
decision on whether to descend to the left or right child of a node was based on the next bit of compressed
text. Several instructions were devoted to testing that next bit, and to checking whether a new word of
bits needed to be loaded. In this assignment we are going to add a new instruction, bnbb (branch next bit
big-endian), to MIPS that will allow such code to be written with fewer instructions.

Instruction bnbb rV, rP, TARG0, TARG1 works as follows. Register rV holds a bit vector, and register
rP holds a position in the bit vector. (A bit vector is just a number, but it’s called a bit vector when we are
interested in examining specific bits in the number’s binary representation.) If the value of rP is 0 then it
refers to the MSB of rV, if the value of rP is 1 it refers to position 1 (to the right of the MSB), etc. Let pos
refer to bits 5:0 of rP. If pos is in the range 0 to 31 (inclusive) then bnbb will be taken, otherwise (values
from 32 to 63) bnbb is not taken. When bnbb is taken it will branch to TARG0 if bit pos in rV is 0 and to
TARG1 if bit pos in rV is 1. Regardless of whether bnbb is taken register rP is written with rP+1. See the
code and comments below:

# With sample values below bnbb is taken to LCHILD since bit 30 of 0x5 is zero.

# $t8 = 0x5 (bit vector), $t9 = 30 (pos)

bnbb $t8, $t9, LCHILD, RCHILD

addi $v0, $t9, 0 # Delay slot insn. Here t9 is 31.

# This code is only executed when $t9 in range 32-63 before bnbb executes.

# Fall through. Updates t8 and t9

addi $t6, $t6, 4 # Update address ..

lw $t8, 0($t6) # No more bits, load a new word.

addi $t9, $0, 0

The bnbb instruction can be used to eliminate at least two instructions in the hw02 solution. First,
there would no longer be a need to shift the bit vector (the sll $t8, $t8, 1 instruction). Instead, the bnbb

instruction would automatically increment a bit position register. Also, there would no longer be a need for
a second branch to check whether all 32 bits in the bit vector were examined. (That was the bne $a1, $t9,

EXAMINE_NEXT_BIT instruction.)
In the subproblems below complete the specification for bnbb and show hardware to implement it.
An Inkscape SVG version of the hardware diagram can be found at

https://www.ece.lsu.edu/ee4720/2021/hw04-br-3way.svg.

(a) The description above leaves out a few details. In this problem fill them in. It may be helpful to attempt
a solution to the next parts before answering this part.

Show a possible encoding for bnbb. That possible encoding must be based on format I. Show how the
two targets are specified and and whether rV is encoded in the rt or rs fields.

The format appears below. The RT register field is used for rP and the RS for rV. Placing rP in the RT field simplifies the
decoding logic by a small amount. That’s because the hardware needs to write back the incremented value of rP and there is already
logic that sets the dst control signal to the RT field in format I instructions.

As with other branches, the bnbb will use displacement addressing, but unlike other branches there are two displacements (one
displacement for TARG0 and one displacement for TARG1). To accommodate two displacements the immediate field has been split
in two as shown below. Note that with just eight bits of displacement the targets must be within 128 instructions of the branch (128
before the delay slot or 127 after the delay slot).

MIPS Ib:

Opcode

0x2d

31 26

RS

rV

25 21

RT

rP

20 16

Imm0

15 8

Imm1

7 0
Here is the original MIPS format I:
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MIPS I:

Opcode

31 26

RS

25 21

RT

20 16

Immed

15 0

(b) For bbnb to work correctly the rP register value needs to be incremented. It would be nice if an existing
ALU operation could do that. Explain why the add operation, used for the add, addi, lw, and other
instructions, would not work.

The bbnb instruction needs to add a 1 to the rP value. The ALU add operation used for those instructions computes the
sum of the upper and lower ALU inputs. One of those inputs would be the rP value, but there is no way to set the other ALU input
to 1 with the illustrated hardware. The add operation could be used if a new input were added to one of the ALU multiplexors and
that input was set to the constant 1.
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(c) The diagram below shows a five-stage MIPS implementation including some branch hardware. Also shown
is logic to detect the bnbb instruction and two placeholder wires, bnbb-t0-taken and bnbb-t1-taken. Wire
bnbb-t0-taken should be set to 1 if there is a bnbb in the ID stage and it should be taken to TARG0. The
definition of bnbb-t1-taken is similar. If there is not a bnbb in ID or if there is and it’s not taken, then
both wires should be 0.

In this problem design the logic to drive those wires. (The solution to this and the following problem
can be done on the same diagram, or on separate diagrams.)

The solution appears after part d.
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(d) Modify the hardware below so that when bnbb-t0-taken is 1 target TARG0 is used and when bnbb-t1-

taken is 1 target TARG1 is used. Follow the points below.

• Design for lower cost rather than higher performance.

• There is an unused input on the PC mux. That can be used, but does not have to be used.

• As always, hardware must be reasonably efficient.

• As always, do not break other instructions.

The solution is on the next page.
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The solution for parts c and d appears below. A multiplexor extracts the needed bit from rsv. To keep costs low bnbb

computes the target address using the same adder as other branch instructions.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2
2'b0

PC

+

25:0

29:26

29:0

15:0

D
 

dstdst

 

is J

is BEQ

is BNE

is BGTZ

is BGEZ

opc 31:26

rt 20:16

=0

31:31

lsb

msb
10

01

jmp

t-br

jmp

t-br

inc

01

00

10

msb lsb

msb

lsb

format
immed

=

is bnbb

11

bnbb-t0-taken

bnbb-t1-taken
0:0

30:30

31:31

4:0 5:5
rtv (used for rP)

rs
v
 (

u
se

d
 f

o
r 

rV
)

8

8

7:0

15:8

0

lsb

msb

5

← → Spring 2021 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4720/2021/hw04_sol.pdf


LSU EE 4720 Homework 5 Solution Due: 12 April 2021

Do not hand in paper copies. Instead, E-mail your solution to koppel@ece.lsu.edu. The preferred format
is a PDF file.

Problem 1: Look over SPECcpu2017 run and reporting rules, available at
http://www.spec.org/cpu2017/Docs/runrules.html. Start with Sections 1.1 to 1.5 and read other sec-
tions as needed to answer the questions below.

(a) Section 1.2.3 of the run and reporting rules lists several assumptions about the tester.
Consider the following testing scenario: The SUT (system being benchmarked) is a new product and

that the tester works for the company that developed it. The company spent lots of money developing the
product and their potential customers will use SPECcpu2017 when making buying decisions.

� Explain why assumptions b and c seem reasonable given the testing scenario above.

It is in the company’s interest that benchmark scores are high, so we can safely assume that they choose someone knowledgeable
about the SUT (item c) and give that person time and other resources to learn what compilation options and other configuration
details can be changed and how to best set them for the SUT(item b). Even if the company intended to submit a misleading benchmark
run, they would make sure that the tester new what the rules said.

� Explain why assumption d also seems reasonable, given other stipulations set forth in the run and reporting
rules (and discussed in class).

We can safely assume honesty on the part of the tester because any dishonesty would quickly be caught. The rules require that
any publicly divulged results be accompanied by a config file which can be used to reproduce the results. We can safely assume that
the company expects its competitors to buy a system and use the config file to reproduce the results. Further, the company would
not expect its competitors to keep quite about any discrepancies.

(b) The SPECcpu benchmarks can be prepared at base and peak tuning levels (or builds). These are described
in Section 1.5. Section 2.3.1 stipulates that base optimizations are expected to be safe.

� What is an unsafe optimization? (Points deducted for irrelevant or lengthy answers, especially if they appear
copied.)

An optimization should transform unoptimized code into optimized code which does exactly the same thing, but does so faster,
using less energy, using fewer instructions, or realizing some other benefit. An optimization is unsafe if sometimes the transformed
code computes different results than the unoptimized code. In practice, compilers do not attempt unsafe optimizations because
programmers have enough problems finding their own bugs. The last thing they need to worry about is a bug being introduced by
the compiler.

Item e in Section 2.3.1 states that there is evidence an optimization is unsafe if it is used to prepare a run of the benchmarks and
the outputs fail to validate. Presumably a company preparing the benchmark run in this scenario would have their compiler people
fix the unsafe optimization so that it is correct (validates) on the SPEC benchmarks, but is still unsafe on other code.
Does that mean peak optimizations are unsafe? Does that mean peak results can be obtained with unsafe,
don’t-try-this-at-home optimizations?

� Why would it be bad if peak results were obtained with unsafe optimizations?

Because in that case peak results would not be useful to many people because they could not rely on their code reaching similar
performance levels while computing correct results.

� What rules ensure that optimizations used to obtain peak results aren’t too unsafe?

Section 1.3.2 stipulates that components used to build the benchmarks (especially compilers) be of production quality, rather
than something quickly thrown together to complete one job, or a buggy prototype. It would not be very meaningful if the rules
required that components be of production quality but went no further. Otherwise when challenged a tester would respond, “we
believe that all of the components used to build the benchmarks are of production quality or better.” To provide some objective
criteria, the rules require that the components are real products. (A non-real product is one that violates the items in 1.3.2. For
example, the customer is not aware of the name of the product, the product will not be available for years, is undocumented and
there’s no support either.) These criteria are not a guarantee that the optimizations will be safe because there are (or have been)
companies that sell lousy products.
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Problem 2: The illustration below is our familiar 5-stage MIPS implementation with the destination reg-
ister mux and an immediate mux shown. Modify it so that it is consistent with the RISC-V RV32I version
as described below. The modifications should include datapath and labels, but not control logic. For this
problem use RISC-V specification 20191213 available at
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf.

The Inkscape SVG source for the image is at
https://www.ece.lsu.edu/ee4720/2021/hw05-mips-id-mux.svg. It can be edited with your favorite SVG
or plain text editor.

In some ways RISC-V is similar to MIPS, but there are differences. Pay attention to the encoding of
the store instructions. Also pay attention to how branch and jump targets are computed.

Be sure to change the following:

� Bit ranges at the register file inputs.

� The bit ranges used to extract the immediate.

� The bit ranges used for the offsets of branch and jump instructions and the hardware used to compute branch
and jump targets.

� The inputs to the destination register mux (which connects to the dst pipeline latch).

� The names used in the pipeline latches.

� Add or remove unneeded pipeline latches. (Such changes will be needed for branches and jumps.)

Consider the following instructions:

� Two-register and immediate arithmetic instructions, such as add and addi.

� The lui instruction (which is similar but not identical to MIPS’ lui).

� Branch instructions as well as jal and jalr.

� The load and store instructions. (Only the store instructions will require a change beyond what is required
for arithmetic instructions.)

Note:

• Do not show control logic such as logic driving mux select inputs.

• Do not show the logic to decide whether a branch is taken.

The solution diagram appears on the next page, beneath the original MIPS implementation.
A common mistake was including r31 and some second field in the destination-register mux. RISC-V does not have any assumed

destination register, so r31 is not needed. Also, if an instruction does write a register, then the register is always specified in the rd
field. (That’s why the immediate for store instructions is a special case.)

Another common mistake was using NPC to compute branch and jump targets. In RISC-V branch and jump displacements are
added to the PC of the branch or jump.
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SVG source at https://www.ece.lsu.edu/ee4720/2021/hw05-mips-id-mux.svg.

Solution appears below, beneath the MIPS implementation.
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LSU EE 4720 Homework 2 Solution Due: 9 March 2020

Problem 1: The illustration below (and on the next page, there’s no need to squint) shows our 5-stage
MIPS implementation with some new hardware including: a Y1 unit in EX and a Y2 unit in ME. These are
the two stages of a pipelined integer multiplication unit. They are to be used to implement a MIPS32 mul

instruction (not to be confused with a MIPS-I mult instruction). The mul instruction executes as you would
expect it to, for example mul r1, r2, r3 writes r1 with the product of r2 and r3. Because of the need to
reduce (add together) all of the partial products, the multiplication hardware spans two stages, in contrast
to an integer add which is one in one stage (in the ALU of course). Note: The mult instruction was the
subject of 2013 Homework 4.
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Here is how mul should execute:

# Cycle 0 1 2 3 4 5 6 7 8

add R1, r2, r3 IF ID EX ME WB

mul r4, R1, r5 IF ID Y1 Y2 WB

mul R6, r7, R1 IF ID Y1 Y2 WB

sub r8, R6, r9 IF ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8

First of all, notice that there is no problem over-
lapping the two multiplies. Also notice that there is no
problem bypassing a value to the source of a multiply.

(a) Add datapath hardware so that the multiply can execute as shown above.

• Assume that the Y1 and Y2 units each have about two multiplexor delays of slack. (Meaning if the
path into the inputs of Y1 or out of the output of Y2 passes through more than two multiplexors the
clock period would have to be increased, and we don’t want that.)

• Pay attention to cost. Assume that the cost of one pipeline latch bit is the same as two multiplexor
bits. Make other reasonable cost assumptions.

• Do not lengthen the critical path.

• Make sure that the code fragment above will execute as shown.

• Don’t break other instructions.

Solution appears on next page in purple. The inputs to the Y1 unit are provided by the same multiplexors that feed the ALU.
This saves the trouble of adding new multiplexors just for the Y1 unit. The output of the Y2 unit is connected to a new ME-stage
mux. The added cost is only the new ME-stage mux.

It would be more costly to connect the Y2 output to a new pipeline latch, since the per-bit cost of registers is higher than
muxes, and a new mux (or mux input) would be needed anyway in the WB stage.

(b) Add control logic for the existing WB-stage multiplexor and for any new multiplexors you might have
added. Hint: This problem is easy, especially if you use two-input muxen.

• Use a pipeline execution diagram (such as the one above) to make sure that the value computed for
a multiplexor select signal is the correct value when it is used, perhaps several stages later.

Solution appears in green. For the mul instruction all that’s necessary is to send the output of = mul through the pipeline
and use it as the new mux’s select signal. Something similar is done for load instructions.

(c) At the lower-right is a big OR gate, its output is labeled STALL. Add an input to that OR gate which will
be one when an instruction must stall due to a dependency with a mul. The sub from the execution above
suffers such a stall.
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Solution appears in turquoise. There is logic to detect a true dependency between the instruction in ID and EX. The stall
signal is generated if there is a dependency and if the instruction in EX is a mul.

(Not interesting enough? There is another problem on the next page!) Use this page for the solution or
download illustration Inkscape SVG source from https://www.ece.lsu.edu/ee4720/2020/hw02-p1.svg

and use that one way or another to prepare a solution.

Solution to both problems appears below.
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At least one ALU input is zero.

Insn in ID depends on mul in EX.
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Problem 2: Though two stages (Y1 and Y2) may be necessary to compute the product of arbitrary 32-bit
signed integers, there are special cases that can be computed in less time, for example when either operand
is zero or one.

If the Y units compute the product then it doesn’t matter what operation the ALU is set to, but to
handle special case(s) suppose that the control logic set the ALU operation to bitwise AND when decoding
a mul instruction. In that case the output of the ALU would be correct for some multiplication operations
and so the product would be ready in time to bypass to the next instruction. Add control logic to detect
such situations and suppress the stall when present. Don’t design the logic to set the ALU operation itself,
we’ll leave that to the Magic Cloud [tm].

Solution appears in orange.
Since the ALU is computing a bitwise AND we need to detect situations in which a bitwise AND computes the correct product.

That is the case if an operand is zero. Logic is added to detect if either operand is zero, and if so a multiply dependency stall is
suppressed.
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LSU EE 4720 Homework 3 Solution Due: 30 March 2020

Please E-mail solutions of this assignment to koppel@ece.lsu.edu by the evening of the due date. PDF files
are preferred. These can be generated by scanning software that you might have installed with a multifunction
printer. A PDF can also be assembled from photos of a hand-completed copy. The disorganized homework
penalty will be ignored for the remainder of the semester (unless we return early) so an E-mail with multiple
image attachments will be accepted without penalty. Do not physically mail them to my office address, I will
not be able to pick them up.

Problem 1: Appearing below is the solution to Homework 2 with labels added to some wires, which is
followed by an execution of the code showing values on those labeled wires. The execution is based on the
code fragment shown plus nop instructions before the first instruction (addi) and after the last instructions
(nop).
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# Cycle 0 1 2 3 4 5 6

addi R2, r0, 0 IF ID EX ME WB

mul R1, R2, r3 IF ID EX ME WB

add r4, R2, R1 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

A 0 1 1

B 0 1 0

C 0 1 1

# Cycle 0 1 2 3 4 5 6

D 0 1 0

E 1 1 1

F 0 0 0 0

# Cycle 0 1 2 3 4 5 6

G 2 1 4

H 2 1 4

# Cycle 0 1 2 3 4 5 6
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(a) Refer to the table on the previous page for this problem. Notice that the value in the B row (above) in
cycle 1 is 0. According to the problem statement the instruction before addi is a nop.

Why would that value be 0 regardless of what instruction came before addi?

Short Answer: Because the rs register is r0, and the output of the =’ comparison unit is 0 when either input is 0 (even
if both inputs are 0).

Explanation: The B signal is 1 when the rs register of the instruction in ID is the same as the destination register of the
instruction in EX. The rs register is the register specified by bits 25:21 if the instruction, and is usually the first source register
of the instruction when written in assembly language. In the code fragment above the rs register for the addi is r0 and the rs
register for the mul and add are r2. (Register r2 is the same as R2, upper case is used only for emphasis.) Depending on the
instruction the destination register might be in the rd field (most type R instructions), the rt field (many type I) instructions, or an
implicit r31 (the jal instruction). If an instruction does not write any general purpose (integer) register, the destination register 0
is used.

The output of the comparison unit =’ is 1 when the two inputs (which are 5-bit quantities) are equal, with one exception: if
both inputs are zero the output is 0. The reason for the exception is that r0 is not a real register, meaning that an instruction with
r0 as a source (such as addi) does not need to wait for an instruction to write r0 (such as the nop before the addi).

Suppose the addi r2, r0, 0 were changed to addi r2, r7, 0. Why would the value in the B row still
be 0?

Because the destination of a nop is r0 and 0 6= 7.

2

← → Spring 2020 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4720/2020/hw03_sol.pdf


format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

Y1 Y2

= mul

is load

a

b

a
*b

rt is src

STALL

mx mx
lx lx lx

1 0

='

=0

=0

='rt 20:16

rs 25:21

A

B

C

D

E

F

H
G

(b) Appearing below is a different code fragment. Complete the table so that it shows the values on the
labeled wires.

The solution appears below. As a start to understanding the solution examine row G and H, these show the destination register
of the instruction in ID and ME, respectively. Row D is also straightforward, it is 1 when the instruction in EX is a mul.

To solve line E one needs to determine if the value of at least one of the operands of the instruction in EX is zero. This is
certainly false in cycle 3 when sub is in EX because r2 must be non-zero (look at the ori instruction). But, r1 must be zero and
so B is true in cycle 4. Because the multiplicand of the first multiply is r1 the product, r3 must also be zero. Back in cycle 2, when
the ori is in EX, there is no way to tell if r6 is zero, so the B value is shown as ?.

# Cycle 0 1 2 3 4 5 6 7

ori r2, r6, 7 IF ID EX ME WB

sub r1, r2, r2 IF ID EX ME WB

mul r3, r8, r1 IF ID EX ME WB

mul r5, r3, r4 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 ## SOLUTION

A 0 1 1 1

B 0 1 0 1

C 0 1 1 1

# Cycle 0 1 2 3 4 5 6

D 0 0 1 1

E ? 0 1 1

F 0 0 0 0

# Cycle 0 1 2 3 4 5 6

G 2 1 3 5

H 2 1 3 5

# Cycle 0 1 2 3 4 5 6
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(c) Appearing below are completed tables, but without a code fragment. Show a code fragment that could
have produced those table values.

The originally assigned problem contained an error which made it difficult to solve. Shown below is the
originally table, followed by the intended table. The solution uses the intended table.

# As originally assigned. Contains an error in F at cycle 3.

# Cycle 0 1 2 3 4 5 6 7

A 0 1 0 1

B 0 1 1 0

C 0 1 1 1

# Cycle 0 1 2 3 4 5 6 7

D 0 1 0 0

E 0 0 0 0

F 0 0 0 0

# Cycle 0 1 2 3 4 5 6 7

G 2 3 4 8

H 2 3 4 8

# Cycle 0 1 2 3 4 5 6 7

# Intended problem.

# Cycle 0 1 2 3 4 5 6 7

A 0 1 0 1

B 0 1 1 0

C 0 1 1 1

# Cycle 0 1 2 3 4 5 6 7

D 0 1 0 0 0

E 0 0 0 0

F 0 1 0 0 0

# Cycle 0 1 2 3 4 5 6 7

G 2 3 4 8

H 2 3 4 8

# Cycle 0 1 2 3 4 5 6 7

Solution appears below. Lower case characters are used for register numbers and instructions which are one of several possible
correct answers. For example, the first instruction orI, could have been any type I instruction that wrote a register, such as addI
and xorI. The destination of orI must be r2 (and so it is written as R2) but the first source could be any register.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8

orI R2, r2, 7 IF ID EX ME WB

MUL R3, R2, r2 IF ID EX ME WB

addI R4, R3, 9 IF ID -> EX ME WB

sub R8, r10, R4 IF -> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8
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Problem 2: Appearing below and on the next page is the solution to Homework 2 Problem 1. In this
problem add hardware to handle a different and less special multiplication special case. Suppose that the
middle output of the Y1 stage of the multiplier held the correct product whenever the high 24 bits of its b

input are zero. For example, when b is 1, 5, or 255. Call such values small. In all cases the correct product
appears at the output of Y2.

Note: All outputs of Y1 arrive with zero slack, even the center output with the small b special case.
That means that nothing can be done with these values until the next clock cycle, at least without reducing
the clock frequency.
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(a) Add hardware to bypass the product to the ALU and to the rtv mux when b is small. (There is a larger
diagram on the next page.) The bypass should allow the first code fragment below to execute without a
stall.

(b) Add control logic to suppress the stall when it is possible to bypass.

In the first code fragment below the stall is avoided because the b value (which is the rtv) is small, in
the second it is too large.

# Cycle 0 1 2 3 4 5 6 7

addi r1, r0, 23 IF ID EX ME WB

mul r2, r3, r1 IF ID EX ME WB

sub r4, r2, r5 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

addi r1, r0, 300 IF ID EX ME WB

mul r2, r3, r1 IF ID EX ME WB

sub r4, r2, r5 IF ID -> EX ME WB

• Make sure that the changes don’t break existing instructions.

• As always avoid costly solutions.

• As always pay attention to critical path.

5
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The SVG source for the illustration below is at https://www.ece.lsu.edu/ee4720/2020/hw03-p2.svg.
It can be edited using Inkscape or any other SVG editor, or (not recommended) a text editor.

Solution appears below with part (a), the datapath, in green and part (b), the control logic, in purple.
A path is provided from the middle Y1 output to the ME-to-EX bypass paths and uses a new multiplexor which selects between

ME.ALU and ME.Ym. Pipeline latch register ME.mx is used as the select signal for this mux. Note that the mux does not affect the
path from ME.ALU to the Mem Port Addr input. That’s important because we always assume that the Mem Port Addr input and D
Out are on the critical path and so anything that increases the length (time) of the path will slow the clock frequency.

For part (b) we need to suppress the stall if the b input to the multiplier is < 256. For unsigned values that is true if bits 8
to 31 are zero, which is easily checked by an NOR gate. The logic that is shown checks whether the value is not small (≥ 256), and
uses that as an additional condition for the stall. (So the multiply-dependence stall will not be asserted if the value is small.)

Alternative Solution: Rather than adding a new multiplexor, the ME.Ym signal could have been connected to the three
EX-stage muxen. This would have cost more and made the control logic more complicated, but it possibly would be faster, depending
on how the five-input multiplexors were synthesized. Such solutions received full credit, even without the control logic for the EX-stage
multiplexors.
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LSU EE 4720 Homework 4 Solution Due: 1 April 2020

It’s up to all of us: r > 2 m⇒ Re < 1 where r is the radius of the largest circle with you at the center
and containing only people in your household, and Re is the effective reproduction number, the number of
people infected by an infected person.

Problem 1: Appearing below is the code fragment from Homework 3.

# Cycle 0 1 2 3 4 5 6

addi R2, r0, 0 IF ID EX ME WB

mul R1, R2, r3 IF ID EX ME WB

add r4, R2, R1 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

(a) Does this code fragment look like it was compiled with optimization on?
If your answer is something like “yes, it could be part of optimized code” then explain why you think

it so and provide any missing context. (Do not change or re-arrange the three instructions above.)

If your answer is something like “no, it does not appear optimized” then show what the code would look
like after optimization. Hint: A correct answer can start with either “Yes it does” or “No it doesn’t”. The
“No” answer is straightforward.

No, because with constant propagation and folding none of the instructions are necessary. We know that r2 will be assigned
0, and then r1 and r4 will also be zero. Any uses of those registers in the same basic block can be replaced by zero. (See previous
answer.)

1
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Problem 2: MIPS does not appear to have a muli instruction.

(a) Comment on the following:

MIPS has a mul instruction but does not have a muli instruction because, as the solution to Homework
2 shows, the additional hardware for muli (beyond that used for mul) would be too costly.

Is the statement above reasonable or unreasonable? Explain.

Unreasonable, because the connection to the lower input of the Y1 unit is from the lower ALU mux, which has a connection to
the immediate. Therefore, the implementation of the muli would only require changes to control logic.

(b) Show the encoding of MIPS instruction mul r1, r2, r3. Show all 32 bits of the instruction, divided
into fields (each field can be shown in the radix of your choice). (The MIPS ISA manuals are linked to the
course Web page. Instruction encodings are in Volume II.)

A quick lookup in the ISA manual reveals that the opcode is 1c16 and the Func field value is 2. As with most type-R instructions
the order of the assembly language arguments are rd, rs, rt. The sa field is—must be—zero.

MIPS R:

Opcode

0x1c

31 26

rs

2

25 21

rt

3

20 16

rd

1

15 11

sa

0

10 6

Func

0x2

4 0

(c) Some possible reasons that there is no muli instruction in MIPS is that either there are no Format-I
opcodes available (they are all used by other instructions) or that the few remaining opcodes are being kept
in reserve for a better instruction than a muli.

Based on the MIPS Architecture Manuals (they are linked to the course references page) how many
opcodes are available for new Format-I instructions? The easy way to solve this is to find the right table.
The hard way to solve this is to go through the 144 or so pages of instruction descriptions. Hint: Look in
volume I.

The following solution is based on the MIPS manuals linked to the course Web page, which are Revision 0.95 and describe MIPS
before Release 6.

Table A-2 shows the encoding of the Opcode field. Twelve entries in the table appear blank. Assuming they are supposed to
be blank, and are not a problem with either the PDF encoding of the manual or of the PDF viewer I am using, then there are 12
opcode slots available.

Assuming there is a PDF problem of some kind then the number of free opcodes are the number of entries in Table A-2 with
the symbol shown in the first row of Table A-1, the row for “Operations . . . reserved for future use” instructions.

2
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Problem 3: Perhaps you saw this coming: Time to add muli to MIPS.

(a) Show how a Format-R muli instruction with a ten-bit immediate might be defined using unused fields
in the Format-R encoding. Make up your own function field value, but try to pick one that’s unused. (See
the previous problem.) Show how muli r1, r2, 43 might be encoded for your muli definition.

Table A-5 of the Revision 0.95 shows function field values used by the family of instructions that includes mul. The mul

instruction is in the first row of the table and the second row appears empty (see the gripe about the PDF manual from previous
problem’s solution). Lets reserve the second row for immediate-value versions of first-row instructions. So the function field value
for mul is 000 0102. So lets make the function field for muli 001 0102. The opcode will remain 1c16. To encode the 10-bit
immediate use bits 20:16 (the rt field) for the upper 5 bits and use bits 10:6 (the sa field) for the lower 5 bits. So to encode
4310 = 00 0010 10112 set the rt field to 000012 and the sa field to 010112 = b16.

MIPS R:

Opcode

0x1c

31 26

rs

2

25 21

rt

1

20 16

rd

1

15 11

sa

0xb

10 6

Func

0x2

4 0

(b) Modify the hardware below (there’s a copy on the next page) to implement this new instruction. The
modified hardware should provide the immediate needed by muli. Show datapath but not control logic. Of
course, any changes should not break existing instructions.

Pay attention to cost and performance. This can easily be solved by adding a mux in the ID stage.
Hint: The solution is not much more than a mux. Be sure to carefully label the inputs.
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The SVG source for the diagram below is available at
https://www.ece.lsu.edu/ee4720/2020/hw03-p2.svg.

Solution appears below in green. Since no other instruction concatenates the rt and sa fields to extract an immediate, that
hardware had to be added. The lower input to the new ID-stage mux consists of those concatenated fields and also includes 6 zero
bits on the most-significant side. The resulting constant is 16 bits, the same size as ordinary immediate. The format immed block
sign-extends the value to 32 bits, which will have no effect for the muli immediate but is still needed for the other immediates.
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LSU EE 4720 Homework 5 Solution Due: 27 April 2020

It’s up to all of us: r > 2 m ⇒ Re < 1 where r is the radius of the largest circle with you at the center
and containing only people in your household, and Re is the effective reproduction number, the number of
people infected by an infectious person.

Problem 1: Solve 2019 Final Exam Problem 2, which asks for a pipeline execution diagram of FP code on
our FP MIPS implementation, but with the comparison functional unit and floating-point condition code
register added. For more information on the implementation of the floating-point compare instructions see
2018 Final Exam Problem 3. Please don’t get confused about which problem to solve and which to use for
background!

See the posted final exam solution.

Problem 2: The following question appeared as Spring 2010 Homework 3 Problem 3, but in this ten-year
anniversary version the solution must contain control logic for the multiplexors at the inputs to the A1 and
A2 units. Try to initially solve it without looking at the solution, but use the solution if you get stuck.

Replace the fully pipelined adder in our FP pipeline (which appears on the next page) with one with an
initiation interval of two and an operation latency of four. (The existing FP adder has an initiation interval
of one and an operation latency of four.) See 2010 Homework 3 Problem 3 for more details.

Show datapath and control logic. Be sure to show control logic for the multiplexors at the inputs to
A1 and A2, this control logic does not appear in the solution to the 2010 assignment. Hint: This additional
control logic is really easy to do, it can be done just with wires, no gates!

Solution on next page.
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Solution appears below. Note to Spring 2020 students: The control logic for the WF-stage mux is different, perhaps simpler,
than in the FP pipelines used elsewhere in class. The ad pipeline latch signal is 1 in stages with an instruction using the FP add
functional unit. The connections to the ad pipeline latch are equivalent to connections to the LSB (bit 0:0) of the xw pipeline
latch. Note to future students: the WF-stage mux logic here might be used in the default class FP pipeline in
future semester.

The changes in green allow data to pass through the A1 and A2 units twice. The control logic, in purple provides the select
signal for the new multiplexors at the A1 and A2 inputs.

The stall condition for an add.s in ID must now check for an add.s in the first pass through A1, those two conditions are
checked by the purple OR gate.
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An Inkscape SVG version of the MIPS implementation below can be found at
https://www.ece.lsu.edu/ee4720/2020/mpipei_fp_by.svg.
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LSU EE 4720 Homework 6 Solution Due: 1 May 2020

It’s up to all of us: r > 2 m ⇒ Re < 1 where r is the radius of the largest circle with you at the center
and containing only people in your household, and Re is the effective reproduction number, the number of
people infected by an infectious person.

Problem 1: Solve 2017 Final Exam Problem 2, which asks for a PED of some code fragments on a 2-way
superscalar MIPS implementation. The solution is available, but make every effort to solve it on your own.
Use the posted solution only if you get stuck. Solving the 2017 problem will make the problem below easier.

Problem 2: Solve 2019 Final Exam Problem 1, including the bonus question (part d), which asks for
datapath and control logic for a 2-way superscalar implementation, some associated with a dependence
leading to a sw instruction. Parts a and b ask for typical hardware. Part c is more interesting because the
hardware is essentially avoiding a stall by skipping an instruction in a dependence chain. The dependence
chain is or → add → sw and the skipped instruction is the or. Part d, the bonus question, asks whether
this is worth it.
An Inkscape SVG version of the MIPS implementation from Problem 1 of the exam can be found at
https://www.ece.lsu.edu/ee4720/2019/fe-fuse.svg.

See posted exam solution at https://www.ece.lsu.edu/ee4720/2019/fe_sol.pdf
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################################################################################
##
## LSU EE 4720 Fall 2019 Homework 1
##
##
 ## SOLUTION

 # Assignment https://www.ece.lsu.edu/ee4720/2019/hw01.pdf

################################################################################
## Problem 1

        .text

get_index:
        ## Register Usage

        #
        # CALL VALUES:
        #  $a0: Address word to lookup. Word will be at least 3 chars.
        #  $a1: Address of start of word table.
        #  $a2: Address of end of word table.
        #  $a3: Address of storage for hash table.
        #
        # RETURN:
        #  $v0: If found, word position (first is 1, second is 2, etc.);
        #       if not found, 0;
        #  $v1: If not in hash table, hash index;
        #       if in hash table, 0x100 + hash index.
        #
        # Note:
        #  Can modify $t0-$t9, $a0-$a3

        # [✔] Code should be correct.
        # [✔] Code should be reasonably efficient.
        # [✔] Do not use pseudoinstructions except for nop and la.

        ## SOLUTION

        addi $t6, $ra, 0  # Save return address.
        addi $t5, $a1, 0  # Save start address of word table.

        # Compute hash.
        lb $t0, 0($a0)
        lb $t1, 1($a0)
        sra $t2, $t1, 2
        xor $t0, $t0, $t2
        sll $t2, $t1, 6
        xor $t0, $t0, $t2
        lb $t1, 2($a0)
        sra $t2, $t1, 4
        xor $t0, $t0, $t2
        sll $t2, $t1, 4
        xor $t0, $t0, $t2

← → Spring 2019 ← → Homework 1 Homework Sol Code hw01-sol.s.html

https://www.ece.lsu.edu/ee4720/2019/hw01.pdf
https://www.ece.lsu.edu/ee4720/2019/hw01-sol.s.html


        andi $v1, $t0, 0xff
        sll $t0, $v1, 2
        add $t3, $a3, $t0

        lhu $v0, 2($t3)
        beq $v0, $0,  NOT_IN_HASH
        lhu $t2, 0($t3)

        jal streq
        add $a1, $t5, $t2
        add $ra, $t6, $0

        beq $v0, $0, NOT_IN_HASH
        addi $a1, $t5, 0

        lhu $v0, 2($t3)

        jr $ra
        ori $v1, $v1, 0x100
        

NOT_IN_HASH:
        addi $t2, $0, 1

LOOP:
        jal streq
        sub $t4, $a1, $t5

        beq $v0, $0,  MISMATCH
        nop

        # Match
        sh $t4, 0($t3)
        sh $t2, 2($t3)
        
        jr $t6
        addi $v0, $t2, 0

MISMATCH:
        # Scan to next null.
        lbu $t1, 0($a1)
        bne $t1, $0 MISMATCH
        addi $a1, $a1, 1

        slt $t1, $a1, $a2
        bne $t1, $0, LOOP
        addi $t2, $t2, 1

DONE:
        jr $t6
        addi $v0, $0, 0

← → Spring 2019 ← → Homework 1 Homework Sol Code hw01-sol.s.html

https://www.ece.lsu.edu/ee4720/2019/hw01-sol.s.html


streq:
        ## Register Usage

        #
        # CALL VALUES:
        #  $a0: Address of string 1.
        #  $a1: Address of string 2.
        #
        # RETURN:
        #  $v0: If strings match, 1; otherwise, 0;
        #  $a1: At null or first mismatched character.

        add $t8, $0, $a0

SE_LOOP:
        lbu $t7, 0($t8)
        lbu $t9, 0($a1)
        bne $t7, $t9, SE_MISMATCH
        addi $t8, $t8, 1
        bne $t7, $0, SE_LOOP
        addi $a1, $a1, 1
        
        jr $ra
        addi $v0, $0, 1

SE_MISMATCH:
        jr $ra
        addi $v0, $0, 0

################################################################################
## Testbench Routine
#
# 

.data
word_list_start:

.asciiz "aardvark"

.asciiz "ark"

.asciiz "bark"

.asciiz "barkeeper"

.asciiz "persevere"

.asciiz "bird"

.asciiz "box"

.asciiz "sox"

.asciiz "lox"

.asciiz "soy"

.asciiz "sax"

.asciiz "brain"
word_list_end:
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test_words_start:
.asciiz "ark"
.asciiz "box"
.asciiz "sox"
.asciiz "soy"
.asciiz "sax"
.asciiz "sod"
.asciiz "barkeeper"
.asciiz "bark"
.asciiz "woof"
.asciiz "bar"
.asciiz "ark"
.asciiz "bar"
.asciiz "bark"
.asciiz "barkeeper"
.asciiz "arkansas"
.asciiz "lox"
.asciiz "box"
.asciiz "sox"
.asciiz "sax"
.asciiz "soy"
.asciiz "aardvark"
.asciiz "persevere"

test_words_end:
        .byte 0 0 0 0
        .align 4
results_start:

.word   2  0x4b  # ark

.word   7  0x3e  # box

.word   8  0x2f  # sox

.word  10  0x3f  # soy

.word  11  0xac  # sax

.word   0  0xee  # sod

.word   4  0x1d  # barkeeper

.word   3  0x1d  # bark

.word   0  0x5a  # woof

.word   0  0x1d  # bar

.word   2 0x14b  # ark

.word   0  0x1d  # bar

.word   3 0x11d  # bark

.word   4  0x1d  # barkeeper

.word   0  0x4b  # arkansas

.word   9  0x30  # lox

.word   7 0x13e  # box

.word   8 0x12f  # sox

.word  11 0x1ac  # sax

.word  10 0x13f  # soy

.word   1  0x1e  # aardvark

.word   5   0xe  # persevere

hash_table:
        .space 1024

msg:

← → Spring 2019 ← → Homework 1 Homework Sol Code hw01-sol.s.html

https://www.ece.lsu.edu/ee4720/2019/hw01-sol.s.html


        .asciiz "Pos: %/s1/3d %/t5/1c  Hash 0x%/v1/3x %/t3/1c%/t4/1c  Word: %/s0/s\n"

msg_at_end:
        .asciiz "Done with tests: Errors: %/s3/d pos, %/s5/d hash found, %/s4/d hash idx\n"

        .text
        .globl __start

__start:

        la $s0, test_words_start
        la $s2, test_words_end
        addi $s3, $0, 0  # Word position error count.
        addi $s4, $0, 0  # Hash index error count.
        addi $s5, $0, 0  # Hash found error count.
        la $s6, results_start

TB_WORD_LOOP:
        addi $a0, $s0, 0
        la $a1, word_list_start
        la $a2, word_list_end
        la $a3, hash_table
        jal get_index
        addi $v0, $0, -2

        lw $t0, 0($s6) # Word Position
        beq $t0, $v0, TB_DONE_POS_CHECK
        addi $t5, $0, 95  # '_'
        addi $t5, $0, 88  # 'X'
        addi $s3, $s3, 1
TB_DONE_POS_CHECK:
        lw $t0, 4($s6) # Hash
        andi $t1, $t0, 0x100
        andi $t2, $v1, 0x100
        beq $t1, $t2, TB_DONE_HASH_FOUND_CHECK
        addi $t3, $0, 95  # '_' 
        addi $t3, $0, 88  # 'X' 
        addi $s5, $s5, 1
TB_DONE_HASH_FOUND_CHECK:
        andi $t1, $t0, 0xff
        andi $t2, $v1, 0xff
        beq $t1, $t2, TB_DONE_HASH_IDX_CHECK
        addi $t4, $0, 95  # '_' 
        addi $t4, $0, 88  # 'X' 
        addi $s4, $s4, 1
TB_DONE_HASH_IDX_CHECK:
        addi $s6, $s6, 8
        
        addi $s1, $v0, 0
        la $a0, msg
        addi $v0, $0, 11
        syscall

TB_CHAR_LOOP:
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        lbu $t0, 0($s0)
        bne $t0, $0, TB_CHAR_LOOP
        addi $s0, $s0, 1

        slt $t0, $s0, $s2
        bne $t0, $0, TB_WORD_LOOP
        nop

        la $a0, msg_at_end
        addi $v0, $0, 11
        syscall

        addi $v0, $0, 10
        syscall
        nop
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LSU EE 4720 Homework 3 Solution Due: 20 February 2019

Before solving the branch hardware problem below it might be helpful to look at 2016 Homework 2.

Problem 1: The code below should suffer a stall on the illustrated implementation due to a dependency
between the addi and bne instructions. The stall can be avoided by scheduling the loop, but lets consider a
hardware solution for code fragments like this in which an addi rX, rY, IMM is followed by a bne rX, r0,

T or by a beq rX, r0, T.

LOOP:

addi r3, r3, -1

bne r3, r0, LOOP

lw r1, 4(r1)

One way to avoid the stall (which would work for more than just the cases outlined above) would be
to have the ALU generate an =0 signal which, if the dependencies were right, could be used by the branch
hardware. Alas, the ALU people are on vacation, so lets try something else.

As alert students may have realized by now, all the branch hardware has to do is check whether rY ==

-IMM, which is r3 == 1 in the example. The comparison itself can be done using the existing comparison
logic. The challenge is delivering the operands to that logic at the right time.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv
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NPC

ALU
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dst
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30 2
2'b0

PC

+
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25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

Attention students who have forgotten how to use a pencil (or never learned): An Inkscape SVG version of
the implementation can be found at https://www.ece.lsu.edu/ee4720/2019/mpipei3.svg.

Solution on next page.
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(a) Add hardware to the implementation above to deliver the correct operands to the comparison unit so
code fragments like the one above can execute without a stall.

• Pay attention to cost, including the number of bits in each wire used. (For example, don’t add a
second comparison unit.)

• The changes should not prevent other code from executing correctly. (For example, a branch such as
beq r1,r2, T should execute correctly.)

• Don’t overlook that rX and rY are not necessarily the same register.

Solution appears above in blue. Note that the rs value from the addi is obtained from the register file using a 5-bit mux to
replace the branch’s rs with that of the addi. A more costly alternative would be to bypass the entire 32-bit value EX.rsv. Also
note that the immediate value from the EX stage is being used, because that’s where the addi will be.

(b) Add control logic to generate a BY signal which is set to logic 1 when the branch can use the bypass. The
control logic must detect that the correct instructions (including the registers) are present.

Solution appears above in green. The logic checks that there is a bne in ID, that the branch’s rt register is zero, that the
branch’s rs register matches the addi destination, and that there is an addi in the EX stage.

(c) If the design above was done correctly the highest cost part is the logic handling the immediate. Show
how the cost of that logic can be reduced while still retaining most (but not all) of the benefits of the full-cost
design. Your argument should include examples of “typical” code. (Assume [actually assert] that your code
samples are typical [reflects what is running by users most of the time]. Later in the semester we’ll remove
the scare-quotes from “typical”.)

Solution appears above in purple. It is reasonable to expect that—I assert that!!—many loops will have an addi/bne instruction
sequence like the one above in which the immediate value is small, perhaps just -1. Suppose that the immediate fits in w bits and is

2
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negative. Then the negation logic need handle only w bits and the mux going into the comparison unit would only need to provide
the w least significant bits. The remaining 32 − w bits would come from the rt value, which must be zero. The control logic needs
to check whether the immediate fits in w bits, that is done by the purple AND gate which examines bits 15 : w of the immediate.
(There is no need to examine bits 31:0 since they are all zeros or all ones.)

The least expensive option would be to design the hardware to work only with an immediate value of -1. In that case the
negation logic would no longer be necessary since we know that the result can only be 1.

3
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LSU EE 4720 Homework 4 Solution Due: 22 February 2019

Problem 1: The three loops below (probably on the next page) copy an area of memory starting at the
address in r2 to an area of memory starting at the address in r3. The number of bytes to copy is in r5.

format
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Solution appears on the next page.
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(a) Show a pipeline execution diagram for each loop on the illustrated implementation.

Solution appears below.

# Loop A -- SOLUTION Part a

add r4, r3, r5 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 -- 1st Iter

lb r1, 0(r2) IF ID EX ME WB

sb r1, 0(r3) IF ID -> EX ME WB

addi r2, r2, 1 IF -> ID EX ME WB

addi r3, r3, 1 IF ID EX ME WB

bne r3, r4, LOOP IF ID ----> EX ME WB

nop IF ----> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 -- 2nd Iter

lb r1, 0(r2) IF ID EX ME WB

# Loop B -- SOLUTION Part a

add r4, r3, r5 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 -- 1st Iter

lw r1, 0(r2) IF ID EX ME WB

sw r1, 0(r3) IF ID -> EX ME WB

addi r2, r2, 4 IF -> ID EX ME WB

addi r3, r3, 4 IF ID EX ME WB

bne r3, r4, LOOP IF ID ----> EX ME WB

nop IF ----> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 -- 2nd Iter

lw r1, 0(r2) IF ID EX ME WB

# Loop C -- SOLUTION Part a

add r4, r3, r5 IF ID EX ME WB

addi r4, r4, -8 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 -- 1st Iter

lw r1, 0(r2) IF ID EX ME WB

lw r10, 4(r2) IF ID EX ME WB

sw r1, 0(r3) IF ID EX ME WB

sw r10, 4(r3) IF ID EX ME WB

addi r2, r2, 8 IF ID EX ME WB

bne r3, r4, LOOP IF ID EX ME WB

addi r3, r3, 8 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 -- 2nd Iter

lw r1, 0(r2) IF ID EX ME WB

2
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(b) Compute the rate that each loop copies data in units of bytes per cycle. Base this on your execution
diagrams.

Based on the time that the first instruction of the loop, lb, is in IF one iteration of Loop A takes 10 − 1 = 9 cycles. Each
iteration copies one byte, so Loop A copies at a rate of 1

9 ≈ 0.111 bytes per cycle.
An iteration of Loop B also takes 9 cycles, but it copies four bytes and so Loop B copies at a rate of 4

9 ≈ 0.444 bytes per
cycle, four times faster!

An iteration of Loop C takes 9 − 2 = 7 cycles and copies 8 bytes, so its rate is 8
7 ≈ 1.143 bytes per cycle, more than twice

as fast as Loop B!

(c) Loop A has a wasted delay slot and should suffer stalls. Schedule the code (re-arrange instructions) to
fill the delay slot and minimize the number of stalls. Feel free to change instructions and to add new ones,
though the loop should still copy one byte per iteration and should copy the data as described above.

The solution appears below. The delay slot was filled by the store instruction, which uses a negative offset because r3 is
incremented before it executes. The increment of r3 is put a the beginning so that its value will be ready when the bne is in ID.

# Loop A -- SOLUTION Part c

add r4, r3, r5 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9

addi r3, r3, 1 IF ID EX ME WB

lb r1, 0(r2) IF ID EX ME WB

addi r2, r2, 1 IF ID EX ME WB

bne r3, r4, LOOP IF ID EX ME WB

sb r1, -1(r3) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9

(d) Loop A can be safely substituted for Loop C. That is, if a program calls Loop C then that call can be
changed to a call of Loop A or B and the program will still work correctly. However, if a program calls Loop
A, substituting B will not work. Explain why and show sample values for r2, r3, and r5 for which this is
true.

The number of bytes copied by Loop B is a multiple of 4 and the starting address too must be a multiple of 4. Loop A has no
such restrictions. Values that will work for A but not B are r2=0x1001, r3=0x2002, r5=3.

(e) If a program calls Loop B substituting C will not work. Explain why and show sample values for r2, r3,
and r5 for which this is true.

The number of values copied by Loop C must be a multiple of 8. Sample register values that work for B but not C are
r2=0x1000, r3=0x2000, and r5=4.

3
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LSU EE 4720 Homework 5 Solution Due: 5 April 2019

Problem 1: Solve Midterm Exam Problem 1b, in which code is to be completed using the ×jr instruction.

See the midterm exam solution.

Problem 2: The next page shows the original solution to Midterm Exam Problem 3 (the one appearing
in the exam before 20 April 2019). In this solution the Taken signal is set for a bne using the rsv and rtv

values (from the register file) even if there is a dependence with an slt in the EX stage. Modify the logic to
fix this.

For your solving convenience, the original solution illustration appears on the next page and in Inkscape
SVG at https://www.ece.lsu.edu/ee4720/2019/mt-p3-slt-bne-sol.svg

See the midterm exam solution. The solution to 3b now includes a solution to this problem (shown in orange).

1
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LSU EE 4720 Homework 8 Solution Due: 11 April 2019

Problem 1: The following problem is an enhanced version of 2018 Final Exam Problem 1 (c). Appearing
below is our 2-way superscalar MIPS with ID-stage hardware to determine branch direction (near the top
in blue) and ID-stage hardware to squash instructions (near the bottom in blue). The Inkscape SVG source
for this image can be found at https://www.ece.lsu.edu/ee4720/2019/hw08-ss.svg.

There are two outputs of the branch direction hardware logic, indicating whether the respective ID-stage
slot has a taken branch. For example, if Taken0 is 1 then there is a branch in slot 0 and that branch is
taken. Of course, assume that this logic is correct.

There is a squash logic with two inputs at the bottom. If input Sq0 is 1 then the instruction in ID-stage
slot 0 will be squashed, likewise for Sq1.

In this implementation fetch groups are not aligned.
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(a) When a branch is taken we may need to squash one or two instructions (the number of instructions to
squash depends on the whether the branch is in slot 0 or slot 1). Design logic to set the Sq0 and Sq1 inputs
so that appropriate instructions are squashed. It will be very helpful to draw pipeline execution diagrams
showing a taken branch in slot 0 and slot 1.

� Draw PEDs for the two cases.

Solution appears below. If the branch is in Slot 0 (Case 0) then both IF-stage instructions are squashed, if the branch is in Slot
1 (Case 1) then only the slot-1 instruction in IF is squashed.

� Add hardware to set SQ signals.

The solution appears above. Notice that the squash signals are put in the pipeline latch so they move with the IF-stage
instruction.
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# SOLUTION - Case 0: Branch in slot 0.

# Cycle 0 1 2 3 4 5 6 7

sw r7, 4(r15) IF ID EX ME WB

addi r15, r15, 4 IF ID EX ME WB

beq r1, r2, TARG IF ID EX ME WB

add r3, r4, r5 IF ID EX ME WB

slti r16, r17, 8 IFx

or r18, r19, r20 IFx

xor r10, r11, r12

TARG:

sub r7, r8, r9 IF ID EX ME WB

lw r14, 0(r15) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

# SOLUTION - Case 1: Branch in slot 1.

# Cycle 0 1 2 3 4 5 6 7

sw r7, 4(r15) IF ID EX ME WB

addi r15, r15, 4 IF ID EX ME WB

beq r1, r2, TARG IF ID EX ME WB

add r3, r4, r5 IF ID EX ME WB

slti r16, r17, 8 IFx

xor r10, r11, r12

TARG:

sub r7, r8, r9 IF ID EX ME WB

lw r14, 0(r15) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

2
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(b) Notice that the branch hardware shown can only provide the target for a branch in slot 1. Add hardware
for providing the branch target of a branch in slot 0. Note that unlike the final exam, in this problem fetches
are not aligned. That precludes the more efficient solution given in the final exam.

Do not add hardware for checking the branch condition. Show logic computing the select signals for
any multiplexors you add, but do not show any other control logic. Note: In the original assignment the
direction to show logic computing select signals was omitted.

� Add hardware for a slot-0 branch.

� Pay attention to cost.

� Be sure the hardware computes the correct target address. Think about the value of NPC (or related value)
that’s needed.

Solution appears below. The slot-1 immediate is selected by the upper-left green mux if there is a branch in slot 1, otherwise
the slot-0 immediate is selected (and is ignored if neither slot holds a branch). If the branch is in slot 1 then ID.npc is the branch
PC plus 4, which is just what we need to calculate PC+4+imm*4. (The actual computation is effectively 4*( (PC+4)/4 + imm

).) If the branch is in slot 0 then ID.npc is the branch PC plus 8. In order to compute the correct target 1 is subtracted from the
immediate. That is, we compute 4*( (PC+8)/4 + imm - 1 ).

Note that by subtracting 1 from the immediate we only need a 16-bit subtractor. Had we näıvley subtracted 4 from ID.npc

we would need a 30-bit (or even a 32-bit) subtractor.
In the final exam fetch groups were aligned and so a lower-cost solution was possible. See the final exam solution.
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################################################################################

##

## LSU EE 4720 Fall 2018 Homework 1 -- SOLUTION
##

##

 # Assignment http://www.ece.lsu.edu/ee4720/2018/hw01.pdf

################################################################################

## Problem 1 -- unsqw Routine
        .text

unsqw:
        ## Register Usage
        #

        # CALL VALUES:

        #  $a0: Address of start of compressed string.

        #  $a1: Address of area to decompress into.

        #

        # RETURN:

        #  [✔] Write memory starting at a1 with decompressed string.

        #

        # Note:

        #  Can modify $t0-$t9, $a0-$a3

        # [✔] Code should be correct.

        # [✔] Code should be reasonably efficient.

        # [✔] Do not use pseudoinstructions except for nop and la.

        ## Both Methods
        #

        #  A reference starts with a character of value 0x80 or higher.

        #  This byte is called the reference marker.

        #

        ## Simple Method:
        #    0x80      B1 B2 :

        #  = 1000_0000 B1 B2 :

        #    0x80 is the reference marker.

        #      B1 is length,

        #      B2 is distance.

        #

        ## Better Method:
        #    1000_0000 B1 B2:

        #    0x80 = 1000_0000 is the reference marker.

        #      B1 is length,

        #      B2 is distance.

        #    10LL_LLLL B1:

        #    10LL_LLLL is the reference marker.

        #      LL_LLLL (low 6 bits) are length,

        #      B1 is distance.

        #    1100_0000 B1 B2 B3:

        #    0xc0 = 1100_0000 is the reference marker.

        #      B1 holds length.

        #      B2 holds bits 15:8 of distance and

        #      B3 holds bits 7:0 of distance.

        #    11LL_LLLL B1 B2:

        #    11LL_LLLL is the reference marker.

        #      LL_LLLL (low 6 bits) are length,

        #      B1 holds bits 15:8 of distance and

        #      B2 holds bits 7:0 of distance.

 ## SOLUTION

        j LOOP

        nop

LITERAL_CHAR:
        sb $t0, 0($a1)          # Write literal character to output buffer.

        beq $t0, $0, DONE       # If 0, we're at the end of the string.

        addi $a1, $a1, 1

LOOP:
        lb $t0, 0($a0)          # Load next character of compressed text.

        bgez $t0, LITERAL_CHAR  # If it's non-negative, it's an ordinary char.

        addi $a0, $a0, 1        # Either way, increment address.

REFERENCE:
        ## Reference Marker Found
        #

        #  At this point in the code:

        #    Reference Marker is in $t0.

        andi $t3, $t0, 0x3f    # Extract length from marker. (Bits 6-0.)

        bne $t3, $0, SKIP_LB   # If this length is non-zero, get distance.

        lbu $t4, 0($a0)        # Load next byte. Could be length or dist.

        ## Case 1 and 3 -- Length is in byte immediately following marker.
        #

        #  At this point in code:

        #    Reference marker is in $t0

        #    Length is in register $t4.
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        addi $t3, $t4, 0   # Move distance into register t3.

        lbu $t4, 1($a0)    # Load next byte, the first distance byte.

        addi $a0, $a0, 1

SKIP_LB:
        ## Check whether distance is in one or two bytes (case 3 & 4).

        #  At this point in code:

        #    Reference marker is in $t0.

        #    Length is in register $t3.

        #    First distance byte is in register $t4.

        andi $t1, $t0, 0x40    # Check whether distance is stored in two bytes.

        beq $t1, $0, SKIP_2B_DISTANCE  # If taken, $t4 is the distance.

        nop

        ## Cases 3 and 4 -- Length is stored in two bytes.
        #

        #  At this point in code:

        #    Reference marker is in $t0.

        #    Length is in register $t3.

        #    Most (more) significant distance byte is in register $t4.

        #

        lbu $t5, 1($a0)    # Load second distance byte.

        sll $t4, $t4, 8    # Combine two distance bytes by shifting LSB ...

        or $t4, $t4, $t5   # ... and oring them together.

        addi $a0, $a0, 1

SKIP_2B_DISTANCE:

        ## All Cases
        #

        #  Copy the prior occurrence of text from some part of the

        #  output buffer to the end of the output buffer.

        #  At this point in code:

        #    Reference marker is in $t0.

        #    Length is in register $t3.

        #    Distance is in register $t4.

        #

        sub $t4, $a1, $t4  # Compute starting address of prior occurrence.

        add $t5, $t4, $t3  # Compute ending address of prior occurrence.

        addi $a0, $a0, 1

COPY_LOOP:
        lbu $t0, 0($t4)    # Load character of prior occurrence ..

        sb $t0, 0($a1)     # .. and write it to the end of the output buffer.

        addi $t4, $t4, 1

        bne $t4, $t5, COPY_LOOP

        addi $a1, $a1, 1

        j LOOP

        nop

DONE:
        jr $ra

        nop

################################################################################

## Testbench Routine
#

#

.data

uncomp:  # Uncompressed data.
        .ascii "[Note: it has been cold cold cold cold!]"    # Idx:    0 -   39

        .ascii "\n======================================="   # Idx:   40 -   79

        .ascii "===============================\nAnother "   # Idx:   80 -  119

        .ascii "frigid Arctic airmass is already pushing"    # Idx:  120 -  159

        .ascii " into the region\nand will provide bitter"   # Idx:  160 -  199

        .ascii "ly cold temperatures. Temperatures will\n"   # Idx:  200 -  239

        .ascii "plunge into the teens and 20s tonight an"    # Idx:  240 -  279

        .ascii "d could be quite similar\nWednesday night"   # Idx:  280 -  319

        .ascii ".\n======================================"   # Idx:  320 -  359

        .ascii "================================\n* TEMPE"   # Idx:  360 -  399

        .ascii "RATURE...Lows will fall into the mid tee"    # Idx:  400 -  439

        .ascii "ns to lower 20s\nalong and north of the I"   # Idx:  440 -  479

        .ascii "-10/12 corridor. South of I-10 lows\nwill"   # Idx:  480 -  519

        .ascii " range from 20 to 25. These temperatures"    # Idx:  520 -  559

        .ascii " will be similar\nWednesday night.\n\n* DUR" # Idx:  560 -  599

        .ascii "ATION...Freezing conditions will likely "    # Idx:  600 -  639

        .ascii "last for 12 to 26\nhours over much of the"   # Idx:  640 -  679

        .ascii " warned area tonight and then 12 to 18\nh"   # Idx:  680 -  719

        .asciiz "ours Wednesday night."                      # Idx:  720 -  740

comp_simple:  # Compressed data Simple Method.
        .ascii "[Note: it has been cold"                     # Idx:    0 -   22

       # Idx:   18 =   23 -   5 =  0x17 -   0x5.  Len:  15 =  0xf.

        .byte 0x80  15   5  # " cold cold cold"

        .ascii "!]\n="                                       # Idx:   38 -   41

       # Idx:   41 =   42 -   1 =  0x2a -   0x1.  Len:  69 = 0x45.

        .byte 0x80  69   1  # "====================================================================="

        .ascii "\nAnother frigid Arctic airmass is alread"   # Idx:  111 -  150

        .ascii "y pushing into the region\nand will provi"   # Idx:  151 -  190

        .ascii "de bitterly"                                 # Idx:  191 -  201

       # Idx:   28 =  202 - 174 =  0xca -  0xae.  Len:   6 =  0x6.
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        .byte 0x80   6 174  # " cold "

        .ascii "temperatures. T"                             # Idx:  208 -  222

       # Idx:  209 =  223 -  14 =  0xdf -   0xe.  Len:  11 =  0xb.

        .byte 0x80  11  14  # "emperatures"

       # Idx:  180 =  234 -  54 =  0xea -  0x36.  Len:   5 =  0x5.

        .byte 0x80   5  54  # " will"

        .ascii "\nplunge"                                    # Idx:  239 -  245

       # Idx:  160 =  246 -  86 =  0xf6 -  0x56.  Len:  10 =  0xa.

        .byte 0x80  10  86  # " into the "

        .ascii "teens "                                      # Idx:  256 -  261

       # Idx:  177 =  262 -  85 = 0x106 -  0x55.  Len:   4 =  0x4.

        .byte 0x80   4  85  # "and "

        .ascii "20s tonight"                                 # Idx:  266 -  276

       # Idx:  261 =  277 -  16 = 0x115 -  0x10.  Len:   5 =  0x5.

        .byte 0x80   5  16  # " and "

        .ascii "could be quite similar\nWednesday "          # Idx:  282 -  314

       # Idx:  272 =  315 -  43 = 0x13b -  0x2b.  Len:   5 =  0x5.

        .byte 0x80   5  43  # "night"

        .ascii ".\n"                                         # Idx:  320 -  321

       # Idx:   67 =  322 - 255 = 0x142 -  0xff.  Len:  44 = 0x2c.

        .byte 0x80  44 255  # "============================================"

       # Idx:  365 =  366 -   1 = 0x16e -   0x1.  Len:  26 = 0x1a.

        .byte 0x80  26   1  # "=========================="

        .ascii "\n* TEMPERATURE...Low"                       # Idx:  392 -  411

       # Idx:  233 =  412 - 179 = 0x19c -  0xb3.  Len:   6 =  0x6.

        .byte 0x80   6 179  # "s will"

        .ascii " fall"                                       # Idx:  418 -  422

       # Idx:  246 =  423 - 177 = 0x1a7 -  0xb1.  Len:  10 =  0xa.

        .byte 0x80  10 177  # " into the "

        .ascii "mi"                                          # Idx:  433 -  434

       # Idx:  206 =  435 - 229 = 0x1b3 -  0xe5.  Len:   4 =  0x4.

        .byte 0x80   4 229  # "d te"

       # Idx:  258 =  439 - 181 = 0x1b7 -  0xb5.  Len:   4 =  0x4.

        .byte 0x80   4 181  # "ens "

        .ascii "to lower"                                    # Idx:  443 -  450

       # Idx:  265 =  451 - 186 = 0x1c3 -  0xba.  Len:   4 =  0x4.

        .byte 0x80   4 186  # " 20s"

        .ascii "\nalong"                                     # Idx:  455 -  460

       # Idx:  277 =  461 - 184 = 0x1cd -  0xb8.  Len:   5 =  0x5.

        .byte 0x80   5 184  # " and "

        .ascii "north of"                                    # Idx:  466 -  473

       # Idx:  428 =  474 -  46 = 0x1da -  0x2e.  Len:   5 =  0x5.

        .byte 0x80   5  46  # " the "

        .ascii "I-10/12 corridor. Sou"                       # Idx:  479 -  499

       # Idx:  469 =  500 -  31 = 0x1f4 -  0x1f.  Len:   6 =  0x6.

        .byte 0x80   6  31  # "th of "

       # Idx:  479 =  506 -  27 = 0x1fa -  0x1b.  Len:   4 =  0x4.

        .byte 0x80   4  27  # "I-10"

       # Idx:  445 =  510 -  65 = 0x1fe -  0x41.  Len:   4 =  0x4.

        .byte 0x80   4  65  # " low"

        .ascii "s\n"                                         # Idx:  514 -  515

       # Idx:  414 =  516 - 102 = 0x204 -  0x66.  Len:   5 =  0x5.

        .byte 0x80   5 102  # "will "

        .ascii "range from 20"                               # Idx:  521 -  533

       # Idx:  442 =  534 -  92 = 0x216 -  0x5c.  Len:   4 =  0x4.

        .byte 0x80   4  92  # " to "

        .ascii "25. These temperature"                       # Idx:  538 -  558

       # Idx:  412 =  559 - 147 = 0x22f -  0x93.  Len:   7 =  0x7.

        .byte 0x80   7 147  # "s will "

        .ascii "be similar\nWednesday night.\n\n* DURATION." # Idx:  566 -  605

        .ascii "..Freezing condition"                        # Idx:  606 -  625

       # Idx:  559 =  626 -  67 = 0x272 -  0x43.  Len:   7 =  0x7.

        .byte 0x80   7  67  # "s will "

        .ascii "likely last for 12"                          # Idx:  633 -  650

       # Idx:  534 =  651 - 117 = 0x28b -  0x75.  Len:   5 =  0x5.

        .byte 0x80   5 117  # " to 2"

        .ascii "6\nhours over muc"                           # Idx:  656 -  671

       # Idx:  470 =  672 - 202 = 0x2a0 -  0xca.  Len:   9 =  0x9.

        .byte 0x80   9 202  # "h of the "

        .ascii "warned area to"                              # Idx:  681 -  694

       # Idx:  587 =  695 - 108 = 0x2b7 -  0x6c.  Len:   5 =  0x5.

        .byte 0x80   5 108  # "night"

       # Idx:  461 =  700 - 239 = 0x2bc -  0xef.  Len:   5 =  0x5.

        .byte 0x80   5 239  # " and "

        .ascii "then"                                        # Idx:  705 -  708

       # Idx:  648 =  709 -  61 = 0x2c5 -  0x3d.  Len:   7 =  0x7.

        .byte 0x80   7  61  # " 12 to "

        .ascii "18"                                          # Idx:  716 -  717

       # Idx:  657 =  718 -  61 = 0x2ce -  0x3d.  Len:   7 =  0x7.

        .byte 0x80   7  61  # "\nhours "

       # Idx:  577 =  725 - 148 = 0x2d5 -  0x94.  Len:  16 = 0x10.

        .byte 0x80  16 148  # "Wednesday night."

        .byte 0

        # Original: 741 B,  Simple Compressed: 508 B,  Ratio: 0.686

comp_better:  # Compressed data Better Method.
        .ascii "[Note: it has been cold"                     # Idx:    0 -   22

       # Idx:   18 =   23 -   5 =  0x17 -   0x5.  Len:  15 =  0xf.

        .byte 0x8f           0x05  # " cold cold cold"

        .ascii "!]\n="                                       # Idx:   38 -   41

       # Idx:   41 =   42 -   1 =  0x2a -   0x1.  Len:  69 = 0x45.

        .byte 0x80 0x45      0x01  # "====================================================================="

        .ascii "\nAnother frigid Arctic airmass is alread"   # Idx:  111 -  150

        .ascii "y pushing into "                             # Idx:  151 -  165

       # Idx:  115 =  166 -  51 =  0xa6 -  0x33.  Len:   3 =  0x3.

        .byte 0x83           0x33  # "the"

        .ascii " region\nand will provide bitterly"          # Idx:  169 -  201
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       # Idx:   28 =  202 - 174 =  0xca -  0xae.  Len:   6 =  0x6.

        .byte 0x86           0xae  # " cold "

        .ascii "temperatures. T"                             # Idx:  208 -  222

       # Idx:  209 =  223 -  14 =  0xdf -   0xe.  Len:  11 =  0xb.

        .byte 0x8b           0x0e  # "emperatures"

       # Idx:  180 =  234 -  54 =  0xea -  0x36.  Len:   5 =  0x5.

        .byte 0x85           0x36  # " will"

        .ascii "\nplunge"                                    # Idx:  239 -  245

       # Idx:  160 =  246 -  86 =  0xf6 -  0x56.  Len:  10 =  0xa.

        .byte 0x8a           0x56  # " into the "

        .ascii "t"                                           # Idx:  256 -  256

       # Idx:   15 =  257 - 242 = 0x101 -  0xf2.  Len:   3 =  0x3.

        .byte 0x83           0xf2  # "een"

       # Idx:  143 =  260 - 117 = 0x104 -  0x75.  Len:   3 =  0x3.

        .byte 0x83           0x75  # "s a"

       # Idx:  178 =  263 -  85 = 0x107 -  0x55.  Len:   3 =  0x3.

        .byte 0x83           0x55  # "nd "

        .ascii "20s tonight"                                 # Idx:  266 -  276

       # Idx:  261 =  277 -  16 = 0x115 -  0x10.  Len:   5 =  0x5.

        .byte 0x85           0x10  # " and "

        .ascii "cou"                                         # Idx:  282 -  284

       # Idx:  205 =  285 -  80 = 0x11d -  0x50.  Len:   3 =  0x3.

        .byte 0x83           0x50  # "ld "

        .ascii "be quite similar\nWednesday "                # Idx:  288 -  314

       # Idx:  272 =  315 -  43 = 0x13b -  0x2b.  Len:   5 =  0x5.

        .byte 0x85           0x2b  # "night"

        .ascii "."                                           # Idx:  320 -  320

       # Idx:   40 =  321 - 281 = 0x141 - 0x119.  Len:  72 = 0x48.

        .byte 0xc0 0x48 0x01 0x19  # "\n======================================================================\n"

        .ascii "* TEMPERATURE...Low"                         # Idx:  393 -  411

       # Idx:  233 =  412 - 179 = 0x19c -  0xb3.  Len:   6 =  0x6.

        .byte 0x86           0xb3  # "s will"

        .ascii " fa"                                         # Idx:  418 -  420

       # Idx:  416 =  421 -   5 = 0x1a5 -   0x5.  Len:   3 =  0x3.

        .byte 0x83           0x05  # "ll "

       # Idx:  247 =  424 - 177 = 0x1a8 -  0xb1.  Len:   9 =  0x9.

        .byte 0x89           0xb1  # "into the "

        .ascii "mi"                                          # Idx:  433 -  434

       # Idx:  206 =  435 - 229 = 0x1b3 -  0xe5.  Len:   4 =  0x4.

        .byte 0x84           0xe5  # "d te"

       # Idx:  258 =  439 - 181 = 0x1b7 -  0xb5.  Len:   4 =  0x4.

        .byte 0x84           0xb5  # "ens "

       # Idx:  426 =  443 -  17 = 0x1bb -  0x11.  Len:   3 =  0x3.

        .byte 0x83           0x11  # "to "

        .ascii "lower"                                       # Idx:  446 -  450

       # Idx:  265 =  451 - 186 = 0x1c3 -  0xba.  Len:   4 =  0x4.

        .byte 0x84           0xba  # " 20s"

        .ascii "\nalong"                                     # Idx:  455 -  460

       # Idx:  277 =  461 - 184 = 0x1cd -  0xb8.  Len:   5 =  0x5.

        .byte 0x85           0xb8  # " and "

        .ascii "north of"                                    # Idx:  466 -  473

       # Idx:  428 =  474 -  46 = 0x1da -  0x2e.  Len:   5 =  0x5.

        .byte 0x85           0x2e  # " the "

        .ascii "I-10/12"                                     # Idx:  479 -  485

       # Idx:  281 =  486 - 205 = 0x1e6 -  0xcd.  Len:   3 =  0x3.

        .byte 0x83           0xcd  # " co"

        .ascii "rridor. Sou"                                 # Idx:  489 -  499

       # Idx:  469 =  500 -  31 = 0x1f4 -  0x1f.  Len:   6 =  0x6.

        .byte 0x86           0x1f  # "th of "

       # Idx:  479 =  506 -  27 = 0x1fa -  0x1b.  Len:   4 =  0x4.

        .byte 0x84           0x1b  # "I-10"

       # Idx:  445 =  510 -  65 = 0x1fe -  0x41.  Len:   4 =  0x4.

        .byte 0x84           0x41  # " low"

        .ascii "s\n"                                         # Idx:  514 -  515

       # Idx:  414 =  516 - 102 = 0x204 -  0x66.  Len:   5 =  0x5.

        .byte 0x85           0x66  # "will "

        .ascii "ra"                                          # Idx:  521 -  522

       # Idx:  243 =  523 - 280 = 0x20b - 0x118.  Len:   4 =  0x4.

        .byte 0xc4      0x01 0x18  # "nge "

        .ascii "from"                                        # Idx:  527 -  530

       # Idx:  451 =  531 -  80 = 0x213 -  0x50.  Len:   3 =  0x3.

        .byte 0x83           0x50  # " 20"

       # Idx:  442 =  534 -  92 = 0x216 -  0x5c.  Len:   4 =  0x4.

        .byte 0x84           0x5c  # " to "

        .ascii "25. Thes"                                    # Idx:  538 -  545

       # Idx:  254 =  546 - 292 = 0x222 - 0x124.  Len:   4 =  0x4.

        .byte 0xc4      0x01 0x24  # "e te"

       # Idx:  224 =  550 - 326 = 0x226 - 0x146.  Len:  15 =  0xf.

        .byte 0xcf      0x01 0x46  # "mperatures will"

       # Idx:  287 =  565 - 278 = 0x235 - 0x116.  Len:   4 =  0x4.

        .byte 0xc4      0x01 0x16  # " be "

       # Idx:  297 =  569 - 272 = 0x239 - 0x110.  Len:  25 = 0x19.

        .byte 0xd9      0x01 0x10  # "similar\nWednesday night.\n"

       # Idx:  392 =  594 - 202 = 0x252 -  0xca.  Len:   3 =  0x3.

        .byte 0x83           0xca  # "\n* "

        .ascii "DU"                                          # Idx:  597 -  598

       # Idx:  400 =  599 - 199 = 0x257 -  0xc7.  Len:   3 =  0x3.

        .byte 0x83           0xc7  # "RAT"

        .ascii "ION"                                         # Idx:  602 -  604

       # Idx:  406 =  605 - 199 = 0x25d -  0xc7.  Len:   3 =  0x3.

        .byte 0x83           0xc7  # "..."

        .ascii "Freez"                                       # Idx:  608 -  612

       # Idx:  157 =  613 - 456 = 0x265 - 0x1c8.  Len:   4 =  0x4.

        .byte 0xc4      0x01 0xc8  # "ing "

        .ascii "conditio"                                    # Idx:  617 -  624

       # Idx:  440 =  625 - 185 = 0x271 -  0xb9.  Len:   3 =  0x3.

        .byte 0x83           0xb9  # "ns "

       # Idx:  561 =  628 -  67 = 0x274 -  0x43.  Len:   5 =  0x5.
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        .byte 0x85           0x43  # "will "

        .ascii "likely last for "                            # Idx:  633 -  648

       # Idx:  484 =  649 - 165 = 0x289 -  0xa5.  Len:   3 =  0x3.

        .byte 0x83           0xa5  # "12 "

       # Idx:  535 =  652 - 117 = 0x28c -  0x75.  Len:   4 =  0x4.

        .byte 0x84           0x75  # "to 2"

        .ascii "6\nhours ov"                                 # Idx:  656 -  665

       # Idx:  449 =  666 - 217 = 0x29a -  0xd9.  Len:   3 =  0x3.

        .byte 0x83           0xd9  # "er "

        .ascii "muc"                                         # Idx:  669 -  671

       # Idx:  470 =  672 - 202 = 0x2a0 -  0xca.  Len:   9 =  0x9.

        .byte 0x89           0xca  # "h of the "

        .ascii "warned area"                                 # Idx:  681 -  691

       # Idx:  269 =  692 - 423 = 0x2b4 - 0x1a7.  Len:  13 =  0xd.

        .byte 0xcd      0x01 0xa7  # " tonight and "

       # Idx:  677 =  705 -  28 = 0x2c1 -  0x1c.  Len:   3 =  0x3.

        .byte 0x83           0x1c  # "the"

        .ascii "n"                                           # Idx:  708 -  708

       # Idx:  648 =  709 -  61 = 0x2c5 -  0x3d.  Len:   7 =  0x7.

        .byte 0x87           0x3d  # " 12 to "

        .ascii "18"                                          # Idx:  716 -  717

       # Idx:  657 =  718 -  61 = 0x2ce -  0x3d.  Len:   7 =  0x7.

        .byte 0x87           0x3d  # "\nhours "

       # Idx:  577 =  725 - 148 = 0x2d5 -  0x94.  Len:  16 = 0x10.

        .byte 0x90           0x94  # "Wednesday night."

        .byte 0

        # Original: 741 B,  Better Compressed: 428 B,  Ratio: 0.578

msg:
        .asciiz "Unsqwished Data:\n------------------------------------------------------------------------------\n%/a2/s\n---------------

msg_err:
        .asciiz "Input %/a2/s: Error at idx %/t4/d. Text below is from idx %/t6/d - %/t8/d.\n  Found: \"%/t5/s\"\nCorrect: \"%/t7/s\"\n\n"

msg_correct:
        .asciiz "Input %/a2/s: Decompressed text is all correct.\n\n"

dname_simple:
        .asciiz "Simple"

dname_better:
        .asciiz "Better"

data_out:
        .space 512

        .text

        .globl __start

__start:

        la $a0, msg

        la $a2, uncomp

        addi $v0, $0, 11

        syscall

        la $a0, comp_simple

        la $a1, data_out

        jal unsqw

        nop

        la $a2, dname_simple

        jal TB_CHECK

        nop

        la $a0, comp_better

        la $a1, data_out

        addi $t0, $a1, 512

TB_LOOP_CLEAR:
        sb $0, 0($a1)

        bne $a1, $t0, TB_LOOP_CLEAR

        addi $a1, $a1, 1

        la $a1, data_out

        jal unsqw

        nop

        la $a2, dname_better

        jal TB_CHECK

        nop

        addi $v0, $0, 10

        syscall

        nop

TB_CHECK:
        la $t0, uncomp

        la $t1, data_out

TB_COMPARE:
        lbu $t2, 0($t0)

        lbu $t3, 0($t1)

        bne $t2, $t3, TB_ERROR
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        addi $t0, $t0, 1

        bne $t2, $0, TB_COMPARE

        addi $t1, $t1, 1

        j TB_CORRECT

        nop

TB_ERROR:
        la $a0, msg_err

        addi $v0, $0, 11

        la $t5, data_out

        sub $t4, $t1, $t5

        addi $t7, $0, 10 # Amount of context

        sub $t6, $t4, $t7

        bgez $t6, TB_POS

        nop

        addi $t6, $0, 0

TB_POS:
        add $t5, $t5, $t6

        la $t7, uncomp

        add $t7, $t7, $t6

        addi $t8, $t4, 1

        sb $0, 1($t0)

        sb $0, 2($t1)

        syscall

        nop

        j TB_DONE

        nop

TB_CORRECT:
        la $a0, msg_correct

        addi $v0, $0, 11

        syscall

TB_DONE:
        jr $ra

        nop
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LSU EE 4720 Homework 2 Solution Due: 16 February 2018

The solution to several of the problems in this assignment requires material about to be covered in
class, in particular, stalling instructions to avoid hazards. For coverage of this material see slide set six,
http://www.ece.lsu.edu/ee4720/2018/lsli06.pdf. For a solved problem see 2014 Homework 1 Problem
3. Feel free to look through old homework and exams for other similar problems, but when doing so make
sure that the MIPS implementation matches the one in this problem: the muxen at the ALU inputs should
each have just 2 inputs.

Problem 1: Recall that in the unsqw program from Homework 1 there was a loop that had to copy the
prior occurrence of a piece of text to the output buffer. That loop from the solution appears below, and
again re-written to improve performance, at least that was the goal.

# Original Code --------------------------------------------------------------

# Copy the prior occurrence of text from some part of the

# output buffer to the end of the output buffer.

# At this point in code:

# Reference marker is in $t0.

# Length is in register $t3.

# Distance is in register $t4.

#

sub $t4, $a1, $t4 # Compute starting address of prior occurrence.

add $t5, $t4, $t3 # Compute ending address of prior occurrence.

addi $a0, $a0, 1

COPY_LOOP:

lb $t0, 0($t4) # Load character of prior occurrence ..

sb $t0, 0($a1) # .. and write it to the end of the output buffer.

addi $t4, $t4, 1

bne $t4, $t5, COPY_LOOP

addi $a1, $a1, 1

j LOOP

nop
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# Improved Code --------------------------------------------------------------

# Copy the prior occurrence of text to the end of the output buffer.

# At this point in code:

# Reference marker is in $t0.

# Length is in register $t3.

# Distance is in register $t4.

#

sub $t4, $a1, $t4 # Compute starting address of prior occurrence.

addi $a0, $a0, 1

# Round length (L) up to a multiple of 4.

#

addi $t7, $t3, 3

andi $t8, $t7, 0xfffc # Note: this only works if L < 65536

sub $t6, $t8, $t3

#

# At this point:

# $t8: L’, rounded-up length.

# $t6: Amount added to L to round it up. That is, L’ - L

# t6 can be 0, 1, 2, or 3.

# If t6 is 0, then L’ = L;

# if t6 is 1, then L’ = L + 1; etc.

# Decrement prior-occurrence and output-buffer pointers.

#

sub $t4, $t4, $t6

sub $a1, $a1, $t6

# Jump to one of the four lb instructions in the copy loop.

#

la $t7, COPY_LOOPd4 # Get address of first lb instruction.

sll $t6, $t6, 3 # Compute offset to lb that we want to start at.

add $t7, $t7, $t6 # Compute address of starting lb ..

jr $t7 # .. and jump to it.

add $t5, $t4, $t8 # Don’t forget to compute stop address.

COPY_LOOPd4:

lb $t0, 0($t4)

sb $t0, 0($a1)

lb $t0, 1($t4)

sb $t0, 1($a1)

lb $t0, 2($t4)

sb $t0, 2($a1)

lb $t0, 3($t4)

sb $t0, 3($a1)

addi $t4, $t4, 4

bne $t4, $t5, COPY_LOOPd4

addi $a1, $a1, 4

j LOOP

nop

Let L denote the length of the prior occurrence of text to copy.

(a) Determine the number of instructions executed by the original code in terms of L. Include the copy loop
and the instructions before it shown above. State any assumptions.

The number of instructions executed is: 3+5L+2 = 5+5L. This includes the nop since the time to execute the program
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includes the time to handle nops.

(b) Determine the number of instructions executed by the improved code in terms of L. Include the copy
loop and the instructions before it shown above. State any assumptions.

Short Answer: The number of instructions executed is: 13 + 2L + 3⌈L/4⌉ + 2 = 15 + 2L + 3⌈L/4⌉ ≈ 15 + 2.75L.
Explanation: The 15 term covers instructions outside of the loop. Each full iteration of the loop executes four lb/sb instruction

pairs however the loop can be entered at any one of the four lb instructions, with the entry point chosen so that exactly L characters
are copied. The 2L term covers the lb/sb pairs. The loop also includes two addi instructions and a branch. These are executed
once per iteration and there are ⌈L/4⌉ iterations. These three instructions are covered by the 3⌈L/4⌉ term.

(c) What is the minimum value of L for the improved method to actually be faster?

An approximate solution can be found by solving 5 + 5L = 15 + 2.75L for L, yielding L = 40
9 ≈ 4.44. Because L must

be an integer and because we ignored the ceiling function we need to investigate values of L around 4. For L = 6 the improved

method is 2 instructions faster, for all 0 < L < 6 the original method takes fewer cycles. So the minimum value is L = 6 .

(d) What is it about the improved code that helps performance?

Short Answer: The two addis and the bne are executed just once for each four characters copied.
Long Answer: In both the original and improved code one lb and one sb are executed for each character copied. That is

captured in the 2L term in the expression for the improved code and part of the 5L term in the expression for the original code.
So for these the two codes are comparable. But in the improved code the two addi instructions and the bne are executed once for
every four characters copied while in the original code they are executed four times as often: one for each character copied. That is
what is responsible for the improved performance.
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Problem 2: Note: The following problem is identical to 2016 Homework 1 Problem 1. Try to solve it
without looking at the solution. Answer each MIPS code question below. Try to answer these by hand
(without running code).

(a) Show the values assigned to registers t1 through t8 (the lines with the tail comment Val:) in the code
below. Refer to the MIPS review notes and MIPS documentation for details.

Solution appears below (to the right of SOLUTION, of course).

.data
myarray:

.byte 0x10, 0x11, 0x12, 0x13

.byte 0x14, 0x15, 0x16, 0x17

.byte 0x18, 0x19, 0x1a, 0x1b

.byte 0x1c, 0x1d, 0x1e, 0x1f

.text
la $s0, myarray # Load $s0 with the address of the first value above.

# Show value retrieved by each load below.

lbu $t1, 0($s0) # Val: SOLUTION: 0x10

lbu $t2, 1($s0) # Val: SOLUTION: 0x11

lbu $t2, 5($s0) # Val: SOLUTION: 0x15

lhu $t3, 0($s0) # Val: SOLUTION: 0x1011

lhu $t4, 2($s0) # Val: SOLUTION: 0x1213

addi $s1, $0, 3

add $s3, $s0, $s1

lbu $t5, 0($s3) # Val: SOLUTION: 0x13

sll $s4, $s1, 1 SOLUTION: Note: s4 <= 3<<1 = 6

add $s3, $s0, $s4

lhu $t6, 0($s3) # Val: SOLUTION: 0x1617

sll $s4, $s1, 2 SOLUTION: Note: s4 <= 3<<2 = 12

add $s3, $s0, $s4

lhu $t7, 0($s3) # Val: SOLUTION: 0x1c1d

lw $t8, 0($s3) # Val: SOLUTION: 0x1c1d1e1f

(b) The last two instructions in the code above load from the same address. Given the context, one of those
instructions looks wrong. Identify the instruction and explain why it looks wrong. (Both instructions should
execute correctly, but one looks like it’s not what the programmer intended.)

Register s0 holds an address that the programmer decided to call myarray, so lets think of the data starting at that address
as an array. Normally, to access element i of an array that starts at address a, you load data at address a + i * s, where s is
the size of an array element. In the code fragment above, register s0 holds the starting address (a in the example). From the way
the code is written it looks like register s1 is holding the element index (i in the example). Because the sll in the last group of
four instructions is effectively multiplying s1 by 4, it looks like the load should be of the s1’th element of an array of elements of
size 4. That’s consistent with the lw, which loads a 4-byte element, and the last lhu looks out of place. The lhu that loads t6
looks fine, because its address was computed from a value of s1 multiplied by 2.

(c) Explain why the following answer to the question above is wrong for the MIPS 32 code above: “The lw

instruction should be a lwu to be consistent with the others.”
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There is no lwu, because when loading a 32-bit quantity into a 32-bit register there is no need to distinguish between a signed
and unsigned quantity. In contrast, the lhu and lh load a 16-bit quantity into a 32-bit register, the lhu sets the high 16 bits to
zero, it zero-pads, while lh sets the high 16 bits to the value of the MSB of the loaded value, it sign extends.
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Problem 3: Note: The following problem was assigned in each of the last three years, and its solution is
available. DO NOT look at the solution unless you are lost and can’t get help elsewhere. Even in that case
just glimpse. Appearing below are incorrect executions on the illustrated implementation. For each one
explain why it is wrong and show the correct execution.
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(a) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until the lw reaches
WB.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(b) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

There is no need for a stall because the lw writes r1, it does not read r1.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7
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(c) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

A longer stall is needed here because the sw reads r1 and it must wait until add reaches WB.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(d) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

The stall above allows the xor, when it is in ID, to get the value of r1 written by the add; that part is correct. But, the stall
starts in cycle 1 before the xor reaches ID, so how could the control logic know that the xor needed r1, or for that matter that
it was an xor? The solution is to start the stall in cycle 2, when the xor is in ID.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7
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Problem 4: The MIPS code below is taken from the solution to 2018 Homework 1. Show the execution
of this MIPS code on the illustrated implementation for two iterations. The register file is designed so that
if the same register is simultaneously written and read, the value that will be read will be the value being
written. (In class we called such a register file internally bypassed.)

• Check carefully for dependencies.

• Focus on when the branch target is fetched and on when wrong-path instructions are squashed.

• Be sure to stall when necessary.
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The solution appears below. Each iteration includes two stalls due to dependencies, and two squashes due to the taken branch.
The first stall occurs in cycles 3 and 4 and is due to the dependence between the lbu and sb carried by t0. The second stall
occurs in cycles 7 and 8 and is due to the dependence between the first addi and the bne carried by t4. Because branches are
resolved in ME (look for the path from EX/ME.ALU back to PC) two wrong-path instructions will be fetched before the control logic
can determine that they are indeed wrong-path instructions. During the cycle at which the branch is resolved the two wrong path
instructions are squashed, this occurs below in cycle 10. The wrong-path instructions in this example are called X1 and X2, these
are whatever instructions appear in memory after the second addi.

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lbu $t0, 0($t4) IF ID EX ME WB

sb $t0, 0($a1) IF ID ----> EX ME WB

addi $t4, $t4, 1 IF ----> ID EX ME WB

bne $t4, $t5, CLOOP IF ID ----> EX ME WB

addi $a1, $a1, 1 IF ----> ID EX ME WB

X1 IF IDx

X2 IFx

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lbu $t0, 0($t4) IF ID EX ME WB

sb $t0, 0($a1) IF ID ----> EX ME WB

addi $t4, $t4, 1 IF ----> ID EX ME WB

bne $t4, $t5, CLOOP IF ID ----> EX ME WB

addi $a1, $a1, 1 IF ----> ID EX ME WB

X1 IF IDx

X2 IFx

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lbu $t0, 0($t4) IF ID
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LSU EE 4720 Homework 3 Solution Due: 5 March 2018

Problem 1: Appearing below are two MIPS implementations, The First Implementation is taken
from Homework 2 Problem 4. Branches suffer a two-cycle penalty on this implementation since
they resolve in ME. On the The Second Implementation branches resolve in EX reducing the penalty
to one cycle. For convenience for those using 2-sided printers the same implementations are shown
again on the next page.

The First (HW2 P4) Implementation
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The Second Implementation
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The First (HW2 P4) Implementation The Second Implementation

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2

PC

15:0

D
 

dstdst

E

2'b0 format
immed =

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2

PC

15:0

D
 

dstdst

2'b0 format
immed =

The code fragment below and its execution on The First Implementation is taken from the
solution to Homework 2 Problem 4. Notice that the branch suffers a two-cycle branch penalty.

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 The 1st Implementation

lbu $t0, 0($t4) IF ID EX ME WB

sb $t0, 0($a1) IF ID ----> EX ME WB

addi $t4, $t4, 1 IF ----> ID EX ME WB

bne $t4, $t5, CLOOP IF ID ----> EX ME WB

addi $a1, $a1, 1 IF ----> ID EX ME WB

X1 IF IDx

X2 IFx

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lbu $t0, 0($t4) IF ID EX ME WB

sb $t0, 0($a1) IF ID ----> EX ME WB

addi $t4, $t4, 1 IF ----> ID EX ME WB

bne $t4, $t5, CLOOP IF ID ----> EX ME WB

addi $a1, $a1, 1 IF ----> ID EX ME WB

X1 IF IDx

X2 IFx

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lbu $t0, 0($t4) IF ID

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 The 2nd Implementation

lbu $t0, 0($t4) IF ID EX ME WB

sb $t0, 0($a1) IF ID ----> EX ME WB

addi $t4, $t4, 1 IF ----> ID EX ME WB

bne $t4, $t5, CLOOP IF ID ----> EX ME WB

addi $a1, $a1, 1 IF ----> ID EX ME WB

X1 IFx

X2

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lbu $t0, 0($t4) IF ID EX ME WB

sb $t0, 0($a1) IF ID ----> EX ME WB

addi $t4, $t4, 1 IF ----> ID EX ME WB

bne $t4, $t5, CLOOP IF ID ----> EX ME WB

addi $a1, $a1, 1 IF ----> ID EX ME WB

X1 IFx

X2

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lbu $t0, 0($t4) IF ID EX ME
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(a) On The Second Implementation the branch penalty would only be one cycle. But, as we
discussed in class, moving branch resolution from ME to EX might impact the critical path. Let φ1 =
1 GHz denote the clock frequency on The First Implementation and call the clock frequency on The
Second Implementation φ2. For what value of φ2 would the performance of the two implementations
be the same when executing the code above for a large number of iterations?

Show your work.

Short answer: φ2 = φ1
10
11 = 909.09 MHz.

Explanation: One loop iteration on The First Implementation takes 11 clock cycles. (The duration of loop iteration
x can be found by subtracting the fetch time of the first instruction of iteration x from the fetch time of the first instruction
of iteration x + 1. In the loop above iteration 0 takes 11 − 0 = 11 cyc and iteration 1 takes 22 − 11 = 11 cyc.
There’s no guarantee that iteration 0 and 1 will take the same amount of time. However we can expect iteration 2 to take
as much time as iteration 1 because the state of the pipeline is identical at cycles 11 and 22: lbu in IF, addi in ME,
and bne in WB.) By similar reasoning one loop iteration on The Second Implementation takes 10 cycles. Dividing cycles
by clock frequency gives time, so 11 cycles on The First Implementation takes 11

φ1
= 11 ns. To find the clock frequency

for The Second Implementation at which the two perform equally solve 11
φ1

= 10
φ2

for φ2, φ2 = φ1
10
11 = 909.09 MHz.

Grading Note: A common mistake was to assume that in The Second Implementation the sb and bne suffer
only 1-cycle stalls rather than the 2-cycles that they suffer in The First Implementation. That’s not a good mistake to
make because the only change between the two implementations is where the branch resolves. The two-cycle stall starting
in cycle 3 is due to the sb waiting for the value produced by the lbu, the stall starting in cycle 7 is due to the bne
waiting for the value of t4 written by addi. The change does not effect either stall.
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Problem 2: The code below is taken from the solution to Homework 2 Problem 1. Sharp students
might remember that the loop can be entered at four places: the COPY_LOOPd4 label (which is the
normal way to enter such a loop), the second lb, the third lb, or the fourth lb. For this problem
assume that the loop can only be entered at the COPY_LOOPd4 label.

COPY_LOOPd4:

lb $t0, 0($t4) # First lb

sb $t0, 0($a1)

lb $t0, 1($t4) # Second lb

sb $t0, 1($a1)

lb $t0, 2($t4) # Third lb

sb $t0, 2($a1)

lb $t0, 3($t4) # Fourth lb

sb $t0, 3($a1)

addi $t4, $t4, 4

bne $t4, $t5, COPY_LOOPd4

addi $a1, $a1, 4

format
immed
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(a) Schedule the code (rearrange the instructions) so that it executes without a stall on the imple-
mentation shown above.

The solution appears below. The sb instructions have been moved away from the lb instructions, avoiding lb/sb
stalls. The increment of t4 has been moved up, avoiding the need for the branch to stall. Note that the destination
register of all but the first lb and the source of all but the first sb had to be changed to avoid the second lb clobbering
the value loaded by the first lb, etc.

Grading Note: One common mistake was to leave the lb and sb registers unchanged.

COPY_LOOPd4: SOLUTION

lb $t0, 0($t4) IF ID EX ME WB

lb $t1, 1($t4) IF ID EX ME WB

lb $t2, 2($t4) IF ID EX ME WB

lb $t9, 3($t4)

addi $t4, $t4, 4

sb $t0, 0($a1)

sb $t1, 1($a1)

sb $t2, 2($a1)

sb $t9, 3($a1)

bne $t4, $t5, COPY_LOOPd4

addi $a1, $a1, 4
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Problem 3: Perhaps some students have already wondered why, if the goal were to reduce dy-
namic instruction count, the previous occurrence loop (the subject of the first two problems and
of Homework 2) wasn’t written using lw and sw instructions since they handle four times as much
data. Such a loop appears below. Alas, the loop won’t work for every situation, for one reason due
to MIPS’ alignment restrictions.

Let ap denote the address of the previous text occurrence (the value is in t4), let ao denote the
address of the next character to write into the output buffer (the value is in a1), and let L denote
the length of the previous occurrence to copy. (Register t5 is ap + L.)

COPY_LOOP44:

lw $t0, 0($t4)

sw $t0, 0($a1)

addi $t4, $t4, 4

bne $t4, $t5, COPY_LOOP44

addi $a1, $a1, 4

j LOOP

nop

(a) In terms of ap, ao, and L, specify the conditions under which the loop above will run correctly.
Also show that the loop would work for about only 1 out of 64 copies assuming that the values
of ap, ao, and L, are uniformly distributed over some large range. For this part don’t assume any
special code added before or after.

The loop will only run correctly if ap, ao, and L are all multiples of 4 and if L ≥ 4. That is ap mod 4 = 0,
ao mod 4 = 0, L mod 4 = 0, and L ≥ 4.

Suppose that previous occurrence lengths are uniformly distributed over range [1, 4M ], for some integer M . Be-
cause they are uniformly distributed the probability of each value in the range is P (L = x) = 1

4M for 1 ≤ x ≤ 4M .
Since L mod 4 = 0 for M values in the range, those values occur 1

4 of the time. The same argument can be made for
the address of the previous occurrence and the current buffer location. If each is a multiple of four 1

4 of the time and

assuming their values are independent, all of them are multiples of four
(

1
4

)3
= 1

64 of the time.

(b) Suppose one added prologue code before the loop to copy the first few characters and epilogue
code after the loop to copy the last few characters, with the goal of being able to use the loop for
more than 1

64 th (or 100
64 %) of copies.

In terms of ap, ao, and L, specify the conditions under which the loop will run correctly and
show that the fraction of copies that the loop can handle is about 1

4 .
Also show the number of characters that should be copied by the prologue code and the number

of characters that should be copied by the epilogue code.

If the only requirement were that L be a multiple of 4, then prologue code could copy the first L mod 4 characters
and the loop would handle the remaining L′ = L − L mod 4 characters. But t4 and a1 must both also be a multiple
of 4 when the COPY LOOP44 loop is entered. Both!

Suppose (ap mod 4) = (ao mod 4) and let m = (ao mod 4) and b =

{
0, if m = 0;
4 − m, otherwise.

. If the prologue

loop executes b iterations (and advances t4 and a1) then when the COPY LOOP44 is entered both t4 and a1 will be
multiples of 4. Execute L′ = ⌊(L − b)/4⌋ iterations in COPY LOOP44 and then execute L − 4L′ − b iterations in
the epilogue code.

If ap mod 4 6= ao mod 4 then COPY LOOP44 cannot work.
Suppose ap, a0, and L are uniformly distributed and independent, as considered in the second part. Then

ap mod 4 = ao mod 4 occurs 1
4 of the times because there are 4 possible values of ap mod 4 and 4 values for ao mod 4,

for a total of 16 pairs. Each pair is equally likely with probability 1
16 . For four of those pairs ap mod 4 = ao mod 4,

5
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the probability of any of those favorable pairs occurring is 4 1
16 = 1

4 . The value of L does not matter so long as it is
L ≥ 10 since the epilogue will handle the last 1-3 characters.
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LSU EE 4720 Homework 5 Solution Due: XX11 13 April 2018

This assignment consists of questions on the ARM A64 (AAarch64) ISA. (Not to be confused
with ARM A32, which might be called classic ARM. Older information sources that refer to ARM
are probably referring to A32, which is not relevant to this assignment.)

A description of the ARM ISA is linked to the course references page, at
http://www.ece.lsu.edu/ee4720/reference.html. Feel free to seek out introductory material
as a suppliment.

ARM A64 was used in EE 4720 Spring 2017 Homework 4 and Spring 2017 Midterm Exam
Problems 2 and 3. It may be useful to see those assignments for code samples, but the questions
themselves are different.

Appearing on the next page is a simple C routine, lookup, that returns a constant from a list.
The routine appears to have been written with the expectation that its call argument, i, would be
either 0, 1, or 2. Following the C code is ARM A64 code for lookup as compiled by gcc version 8.

Use the course reference materials and external sources to understand the ARM code below.
The course references page has a link to the ARM ISA manual which should be sufficient to answer
questions in this assignment. Feel free to seek out introductory material on ARM A64 (AArch64)
assembly language, but after doing so use the ARM Architecture Reference Manual to answer
questions in this assignment.

Full-length versions of the code on the next page, along with other code examples can be found
at http://www.ece.lsu.edu/ee4720/2018/hw05.c.html and
http://www.ece.lsu.edu/ee4720/2018/hw05-arm.s.html. These include the pi program and a
simple copy program that was a part of the decompress program used in Homeworks 1, 2, and 3.

Code on next page, problems on following pages.
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int lookup(int i)

{

int c[] = { 0x12345678, 0x1234, 0x1234000 };

return c[i];

}

@ ARM A64 Assembly Code. C code appears in comments.

lookup:
@@ R e g i s t e r U s a g e

@

@ CALL VALUE

@ w0: The value of i (from the C routine above).

@

@ RETURN VALUE

@ w0: The value of c[i].

@

@ Note: The size of int here is 4 bytes.

@ const int c[] = { 0x12345678, 0x1234, 0x1234000 };

adrp x1, .LC1

mov w2, 0x4000

ldr d0, [x1, #:lo12:.LC1]

movk w2, 0x123, lsl 16

str w2, [sp, 8]

str d0, [sp]

@ return c[i];

ldr w0, [sp, w0, sxtw 2]

ret

. s e  t i o n

.rodata.cst8,"aM",@progbits,8

.LC1:

.word 0x12345678

.word 0x1234

Problems start on next page.
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Problem 1: The ARM code above uses three kinds of register names, those starting with d, w,
and x.

(a) Explain the difference between each.

The d registers are registers in the SIMD & floating-point register file. The w and x are in the general-purpose
register file. The GPR file contains 32 64-bit registers, r0 to r31. In assembly language x0 to x30 refer to the entire
64 bits of r0 to r30, while w0 to w30 refer to the lower 32-bits of r0 to r30. In assembly language w31 and x31 refer
to the constant zero and SP refers to register r31. The SIMD & FP register file contains 32 128-bit registers, v0 to
v31. In assembly language d0 to d31 refer to the low 64 bits. See section B1.2.1 of the ARM V8 Architecture Reference
Manual (2017).

(b) MIPS has general-purpose registers and four sets of co-processor registers. Indicate the name
of the register set for each of the three types of ARM registers above. Hint: two are part of the
same set.

See answer above.

Problem 2: The mov moves constant 0x4000 into register w2. Actually, mov is a pseudo instruction.

(a) What are pseudo instructions called in ARM?

They are called aliases.

(b) What is the real instruction that the assembler will use in this particular case?

The real instruction is movz with the shift amount set to zero.

(c) Show the encoding for this use of mov. Be sure to show how w2 and 0x4000 fit into the fields.

Solution appears below. The sf field is set to 0 because we are using a w register, which is 32 bits. The opcode fields
are set based on the description in the architecture manual. The hw field is set to zero to indicate that the immediate is
not shifted. The imm16 is the value appearing in the assembly code and Rd is the register number.

movz:

sf

0

31

opc

102

30 29

opc2

1001012

28 23

hw

0

22 21

imm16

400016

20 5

Rd

2

4 0

Problem 3: MIPS-I does not have an instruction like adrp.

(a) Describe what the adrp instruction does in general.

The adrp instruction writes its destination register with ( PC & bitwise not 0xfff ) + ( imm << 12

), where PC & bitwise not 0xfff is the address of the adrp instruction with the 12 least-significant bits set to
zero. See the next part for an example.

(b) Explain what it is doing in the code above. (It might be easier to look at the documentation
for adr first.)

It is setting register x1 to the address .LC1 & bitwise not 0xfff (address .LC1 with the 12 least-significant
bits set to zero). Instruction ldr d0, [x1, #:l012:.LC1] computes its address by adding the least significant
bits of .LC1, which is the same as .LC1 & 0xfff, to x1, the result of which is .LC1. The immediate value in the
adrp instruction was set to (.LC1 >> 12 ) - ( PC >> 12 ).

The alert student may wonder why the compiler didn’t choose an instruction that would set x1 to exactly .LC1,
such as adr. It’s hard to know for sure, but one possible reason was so the same register, x1 could be used as a base for
accesses to multiple addresses, say .LC1, .LC2, etc., all of which had the same values for bits 63 to 12.

(c) Show MIPS code that writes the same value to its destination as adrp. Do not use MIPS pseudo
instructions other than la. Assume that MIPS integer registers are 64 bits.
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subi r3, r0, 0x1000 # Write r3 with 0xfffff000

la r2, .LC1

and r1, r2, r3 # Write r1 with low 12 bits set to zero.

Problem 4: The movk instruction is sort of an improved version of lui.

(a) Describe what the movk instruction does in general.

It moves a 16-bit immediate into a 16-bit section of its destination register, leaving the other 16 or 48 bits unchanged.

(b) Explain why a single MIPS lui instruction could not do what the movk is doing in the code
above.

Because the lui always zeros the low 16 bits.

4
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Problem 5: Add comments to the ARM code above that explain what the code is doing, rather
than what the individual instructions do.

// SOLUTION

int lookup(int i) { int c[] = { 0x12345678, 0x1234, 0x1234000 }; return c[i]; }

@ ARM A64 Assembly Code. C code appears in comments.

lookup:
@@ R e g i s t e r U s a g e

@

@ CALL VALUE

@ w0: The value of i (from the C routine above).

@

@ RETURN VALUE

@ w0: The value of c[i].

@

@ Note: The size of int here is 4 bytes.

@ const int c[] = { 0x12345678, 0x1234, 0x1234000 };

@

@ Read the first two elements of the c array from memory at

@ address .LC1, and compute the third element using immediates.

@

adrp x1, .LC1 @ Load x1 with base of c original array.

mov w2, 0x4000 @ Compute lower 16-bits of 3rd c array elt.

ldr d0, [x1, #:lo12:.LC1] @ Load 1st and 2nd elts of c array.

movk w2, 0x123, lsl 16 @ Compute 3rd elt, 0x1234000

@

@ Write a copy of the c array to memory ...

@ ... starting at the address in register sp.

@

str w2, [sp, 8] @ Write 3rd elt to a c array copy.

str d0, [sp] @ Write 1st and 2nd elts to c array copy.

@ return c[i];

ldr w0, [sp, w0, sxtw 2] @ Load the i’th (w0’th) element.

ret

. s e  t i o n

.rodata.cst8,"aM",@progbits,8

.LC1:

.word 0x12345678 @ First element of c array

.word 0x1234 @ Second element of c array.

@ This element intentionally left blank.
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Problem 6: The lookup routine was compiled using gcc at optimization level 3, the highest.
Nevertheless, the code appears more complicated than it need to be. Explain what about the code
is excessively complicated and how it could be simplified.

Because the compiler, for whatever reason, decided to construct the c array using the first two elements stored at
.LC1 and an instruction that wrote the third array element.

Most humans would simply put the entire c array at .LC1 so that the routine would consist of just two instructions,
an adr instruction and an ldr instruction.
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LSU EE 4720 Homework 6 Solution Due: 23 April 2018

Problem 1: Solve 2014 Homework 4 Problem 1.

Problem 2: Appearing on the next page is a MIPS implementation and the execution of some
code on that implementation.

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A4A2A1

M3 M4

fd

we

xw

M2

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2
2'b0

PC

+
15:0

29:0

D

dstdst

 

decode

dest. reg

2'd2

2'd1
2'd0

msb lsb

M5

A3

M1

Int Reg File

=

format
immed

15:0

G

D

C

B

E
F

A

1

← → Spring 2018 ← → Homework 6 Homework Solution hw06 sol.pdf

http://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/2018/hw06_sol.pdf


(a) Wires in the implementation (on the previous page) are labeled in blue. Show the values on
those wires each cycle that they are affected by the executing instructions. The values for label A
are already filled in.

Solution appears below.
A common mistake for signals B, C, and D was to omit the lwc1 instructions.
Signal E is 1 when there is an add.s or similar instruction in ID that (that, not which) will enter A1 in the next

cycle. Because both add.s instructions below are stalled signal E affects the respective instructions in the last cycle
of the stall and so E is 1 in cycles 9 and 18 instead of 4 and 13.

Signal F stalls the pipeline if a lwc1 can’t enter the pipeline due to a structural hazard at WF. This doesn’t happen
for the two lwc1 instructions below and so the signals are 0 in cycles 1 and 10, when the respective instructions are in
ID.

Signal G carries the register number to write back into the integer register file. The only instruction below that
actually writes an integer register is addi. It writes register 1 and so G is 1 in cycle 22, which is when addi is in ME.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lwc1 f0, 0(r1) IF ID EX ME WF

mul.s f1, f0, f10 IF ID -> M1 M2 M3 M4 M5 M6 WF

add.s f2, f2, f1 IF -> ID -------------> A1 A2 A3 A4 WF

lwc1 f0, 4(r1) IF -------------> ID EX ME WF

mul.s f1, f0, f11 IF ID -> M1 M2 M3 M4 M5 M6 WF

add.s f2, f2, f1 IF -> ID -------------> A1 A2 A3 A4 WF

bne r2, r1 LOOP IF -------------> ID EX ME WB

addi r1, r1, 8 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A 1 1 2 1 # Sample

B 0 2 0 1 2 1

C (Default 0) 1 1 1 1 1 1

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

D 0 1 0 2 1 2

E (Default 0) 1 1

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

F (Default 0) 0 0

G (Default 0) 1

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
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(b) Schedule the code above so that it suffers fewer stalls. Register numbers can be changed but
in the end the correct value must be in register f2. It is okay to add a few instructions before and
after the loop. Each iteration must do the same amount of work as the original code.

Show a pipeline execution diagram for two iterations.

Two solutions appear below. The first reorganizes instructions within an iteration, but stalls six cycles per iteration.
The second solution stalls just three cycles per iteration by executing the add.s instructions in the iteration after the
corresponding mul.s was executed. All of the stalls in the second solution are due to structural hazards. (This is an
example of software pipelining. Software pipelining was not covered in this course, though a related technique, loop
unrolling, was covered.)

# SOLUTION: Easy, but not best solution.

LOOP: # Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

lwc1 f0, 0(r1) IF ID EX ME WF FIRST ITERATION

lwc1 f5, 4(r1) IF ID EX ME WF

mul.s f1, f0, f10 IF ID M1 M2 M3 M4 M5 M6 WF

mul.s f6, f5, f11 IF ID M1 M2 M3 M4 M5 M6 WF

addi r1, r1, 8 IF ID EX ME WB

add.s f2, f2, f1 IF ID -------> A1 A2 A3 A4 WF

bne r1, r2, LOOP IF -------> ID EX ME WB

add.s f2, f2, f6 IF ID ----> A1 A2 A3 A4 WF

LOOP: # Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

lwc1 f0, 0(r1) IF ----> ID EX ME WF SECOND ITERATION

lwc1 f5, 4(r1) IF ID -> EX ME WF

mul.s f1, f0, f10 IF -> ID M1 M2 M3 M4 M5 M6 WF

mul.s f6, f5, f11 IF ID M1 M2 M3 M4 M5 M6 WF

addi r1, r1, 8 IF ID EX ME WB

add.s f2, f2, f1 IF ID -------> A1 A2 A3 A4 WF

bne r1, r2, LOOP IF -------> ID EX ME WB

add.s f2, f2, f6 IF ID ----> A1 A2 A3 A4 WF

LOOP: # Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

lwc1 f0, 0(r1) THIRD ITERATION IF ----> ID EX ME WF

Better solution on next page.
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# SOLUTION: Better solution: avoid more stalls by executing add.s’s in next iteration.

# Prologue Code. Performs first iteration (except for adds).

lwc1 f0, 0(r1)

lwc1 f5, 4(r1)

mul.s f1, f0, f10

mul.s f6, f5, f11

addi r1, r1, 8

addi r2, r2, 8 # Increment because branch now checks r2 after r1 is incremented.

LOOP: # Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

lwc1 f0, 0(r1) IF ID EX ME WF FIRST ITERATION

add.s f2, f2, f1 IF ID A1 A2 A3 A4 WF

lwc1 f5, 4(r1) IF ID EX ME WF

addi r1, r1, 8 IF ID EX ME WB

mul.s f1, f0, f10 IF ID M1 M2 M3 M4 M5 M6 WF

add.s f2, f2, f6 IF ID A1 A2 A3 A4 WF

bne r1, r2, LOOP IF ID EX ME WB

mul.s f6, f5, f11 IF ID M1 M2 M3 M4 M5 M6 WF

LOOP: # Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

lwc1 f0, 0(r1) IF ID -> EX ME WF

add.s f2, f2, f1 IF -> ID A1 A2 A3 A4 WF

lwc1 f5, 4(r1) IF ID ----> EX ME WF

addi r1, r1, 8 IF ----> ID EX ME WB

mul.s f1, f0, f10 IF ID M1 M2 M3 M4 M5 M6 WF

add.s f2, f2, f6 IF ID A1 A2 A3 A4 WF

bne r1, r2, LOOP IF ID EX ME WB

mul.s f6, f5, f11 SECOND ITERATION IF ID M1 M2 M3 M4 M5 M6 WF

LOOP: # Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

lwc1 f0, 0(r1) IF ID -> EX ME WF

# Epilogue Code: Performs add.s’s for last iteration

add.s f2, f2, f1

add.s f2, f2, f6
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Problem 3: Design control logic for the lower M1-stage bypass multiplexor. Note that this is fairly
easy since the mux has two inputs, so it’s only necessary to detect the dependence.

An SVG source for the FP diagram can be found at:
http://www.ece.lsu.edu/ee4720/2018/mpipei-fp-by.svg.

Solution appears below in blue. The control signal is named bft. Its value is computed in ID and used in M1A1.
The logic compares the ft register of the instruction in ID with the fd register of the instruction in A4M6, as well as
checking whether the instruction in A4M6 is going to write a FP register (the we [write enable] bit is set). The logic drawn
with dashed lines checks whether the instruction in ID uses an ft source register (uses the multiply or add pipeline).
Conceptually this should be AND’ed with the output of the register comparison and the we signal, but in the solution its
value is assumed true. That eliminates an OR gate and an input on the AND gate and does not interfere with correct
operation.
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################################################################################
##
## LSU EE 4720 Fall 2017 Homework 1 -- SOLUTION
##
##
 ## Due Monday, 6 December 2017

.data
name:
        .asciiz ""  # Put your name between the quotes.

################################################################################
## Problem 1 -- Split Routine -- SOLUTION

        .text

split:
        ## Register Usage

        #
        # CALL VALUES:
        #  $a0: Number of elements in input array.
        #  $a1: Address of input array. Elements are 4 bytes each.
        #  $a2: Address of output array, elements are 4 byte each.
        #  $a3: Address of output array, elements are 2 byte each.
        #
        # RETURN:
        #  $v0, Number of elements in 4-byte output array.
        #
        # Note:
        #  Can modify $t0-$t9, $a0-$a3

        ## SOLUTION

        sll $t1, $a0, 2
        add $t9, $a1, $t1
        addi $v0, $a2, 0
LOOP:
        beq $a1, $t9, DONE
        lw $t0, 0($a1)
        srl $t1, $t0, 16
        beq $t1, $0, SMALL
        addi $a1, $a1, 4
        sw $t0, 0($a2)
        j LOOP
        addi $a2, $a2, 4

SMALL:
        sh $t0, 0($a3)
        j LOOP
        addi $a3, $a3, 2

DONE:
        sub $v0, $a2, $v0
        jr $ra
        srl $v0, $v0, 2

################################################################################
## Testbench Routine
#
# 

        .data
array_a:
        .word 0x1ae2d15, 0xc87, 0x0, 0x2ae89, 0x11c70, 0x7a36b, 0x5, 0x1e78aa7, 0x1457c01f, 0x12, 0x21623, 0x8c86, 0x5, 0x2139f25, 0x0, 0x1
array_b1:
        .space 32
array_b4:
        .space 64

ans_b1:
        .half 0xc87, 0x0, 0x5, 0x12, 0x8c86, 0x5, 0x0, 0x10
ans_b4:
        .word 0x1ae2d15, 0x2ae89, 0x11c70, 0x7a36b, 0x1e78aa7, 0x1457c01f, 0x21623, 0x2139f25
msg_oor:
        .asciiz "The number of elements in b4 is out of range: %/s4/d.\n"
msg_elt:
        .asciiz "   0x%/t2/8x   0x%/t3/8x  %/t5/s\n"
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msg_b1_head:
        .asciiz "   Should Be    Written    Array B1\n"
msg_b4_head:
        .asciiz "   Should Be    Written    Array B4\n"
text_xxx:
        .asciiz "incorrect"
text_z:
        .asciiz ""

        .text
        .globl __start
__start:
        addi $a0, $0, 16
        la $a1, array_a
        la $a2, array_b4
        la $a3, array_b1
        jal split
        addi $v0, $0, 4720

        addi $s4, $v0, 0
        addi $s1, $0, 16
        sub $s1, $s1, $v0

        sltiu $t0, $s4, 17
        bne $t0, $0, okay_range
        nop

        la $a0, msg_oor
        addi $v0, $0, 11
        syscall
        addi $v0, $0, 10
        syscall

okay_range:
        addi $t0, $0, 0
        la $t0, ans_b1
        la $t1, array_b1
        add $t4, $t0, $s1
        add $t4, $t4, $s1
        la $a0, msg_b1_head
        addi $v0, $0, 11
        syscall
        la $t6, text_z
        la $t7, text_xxx
        la $a0, msg_elt
loop_1:
        lh $t2, 0($t0)
        lh $t3, 0($t1)
        beq $t2, $t3, skip_1
        add $t5, $t6, $0
        add $t5, $t7, $0
        addi $t8, $t8, 1
skip_1:
        syscall
        addi $t0, $t0, 2
        bne $t0, $t4, loop_1
        addi $t1, $t1, 2

        la $a0, msg_b4_head
        addi $v0, $0, 11
        syscall
        addi $t0, $0, 0
        la $t0, ans_b4
        la $t1, array_b4
        sll $t4, $s1, 2
        add $t4, $t4, $t0
        la $t6, text_z
        la $t7, text_xxx
        la $a0, msg_elt
loop_2:
        lw $t2, 0($t0)
        lw $t3, 0($t1)
        beq $t2, $t3, skip_2
        add $t5, $t6, $0
        add $t5, $t7, $0
        addi $t8, $t8, 1
skip_2:
        syscall
        addi $t0, $t0, 4
        bne $t0, $t4, loop_2
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        addi $t1, $t1, 4

        li $v0, 10
        syscall
        nop
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LSU EE 4720 Homework 2 Solution Due: 17 February 2017

Problem 1: The following problems are from the 2016 EE 4720 Final Exam.

(a) The following problem appeared as 2016 EE 4720 Final Exam Problem 2a. (Just 2a, not 2b).
Show the execution of each of the two code fragments below on the illustrated MIPS implementa-
tions. All branches are taken. Don’t forget to check for dependencies.

format
immed
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The solutions appear below. Notice that there is no need for a stall in the first example because r1 can be bypassed
and that in the second example because beq is resolved in ID the target can be fetched while the branch is EX, cycle 2
below. Instruction addresses have been added to the second code fragment for use in the next subproblem’s solution.

# CODE SEQUENCE A -- SOLUTION

# Cycle 0 1 2 3 4 5

add r1, r2, r3 IF ID EX ME WB

sub r4, r1, r5 IF ID EX ME WB

Show execution of the following code sequence.

# CODE SEQUENCE B -- SOLUTION

# Cycle 0 1 2 3 4 5 6

beq r1, r1 TARG IF ID EX ME WB

or r2, r3, r4 IF ID EX ME WB

sub r5, r6, r7

xor r8, r9, r10

TARG:

lw r10, 0(r11) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

1
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(b) For each of the two code sequences above label each used wire on the diagram below with:
the cycle number, the instruction, and if appropriate a register number or immediate value. For

example, the register file input connected to ID.IR bits 25:21 should be labeled 1: add, =2 because
in cycle 1 the add instruction is using that register file input to retrieve register r2. See the
illustration below. Only label wires that are used in the execution of an instruction. For example,

there should not be a label 2: sub, =1 because the value of r1 will be bypassed. Instead, label
the bypass path that is used. Pay particular attention to wires carrying branch information and to
bypass paths. Look through old homeworks and exams to find similar problems.

The solutions appear on the next page. For clarity, some paths are highlighted with the same color as the instruction
that uses the path.
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For Solution for Code Sequence A:
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Solution For Code Sequence B:
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=

format
immed

15:0
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Problem 2: The following problem is from 2016 EE 4720 Final Exam Problem 5a. Suppose that
a new ISAis being designed. Rather than requiring implementations to include control logic to
detect dependencies the ISA will require that dependent instructions be separated by at least six
instructions. As a result, less hardware will be used in the first implementation.

(a) Explain why this is considered the wrong approach for most ISAs.
Short Answer: Because ISA features should be tied as little as possible to implementation features. The separation

requirement in the new ISA is based on a particular implementation, one with five or six stages and that lacks dependency
checking.

Long Answer: An ISA should be designed to enable good implementations over a range of cost and performance
goals. It is reasonable to assume that low hardware cost was a goal of the first implementation and, as stated in the
problem, the ISA’s separation requirement helped achieve that goal. So the separation requirement would be a good idea
if there was only going to be one implementation or if cost constraints and technology wouldn’t
change. However, ISAs are usually designed for a wide product line and a long lifetime. The separation requirement
would become a burden if in the future a higher-performance, higher-cost implementation was needed.

(b) What is the disadvantage of imposing this separation requirement?
Short Answer: It would make a higher-performance implementation that included bypass paths pointless since

the compiler would be forced to separate dependent instructions, possibly by inserting nops, and so the bypass paths
would never be used.

Long Answer: Call the ISA with the separation requirement, ISA S (strict), and one that lacked the separation
requirement but was otherwise identical, ISA N (normal). Consider a low-cost implementation of each ISA. Neither
implementation would include bypass paths but the implementation of ISA N would need to check for dependencies
and stall if any were found, making the cost slightly higher than that of the implementation if ISA S. Now consider a
code fragment compiled for both ISAs in which the version for ISA S requires nops to meet the separation requirement.
(The version for ISA N has fewer instructions.) Now consider their execution on their respective implementations. The
execution times should be the same because for each nop in the ISA S implementation there will be a stall in the ISA N
implementation.

So the performance of the low-cost implementations of the ISAs are about the same, but the cost of the ISA N
version is slightly higher. (Note that the hardware for checking dependencies is of relatively low cost since it operates on
register numbers, 5 bits each in many ISAs. That is in contrast to the cost of the hardware for bypasses, which are 32 or
64 bits wide and include multiplexors.)

Next, consider high-performance implementations. For ISA N we can add bypass paths, as we’ve done in class.
As a result, some instructions that would stall in the low-cost implementation would not stall in the high-performance
implementation, and so code would run faster. In contrast, code for ISA S would still have nop instructions since the
ISA itself imposes the instruction separation requirement. That would make it much harder to design higher performance
implementations.

Therefore, the disadvantage of the instruction separation requirement is that it leads to much higher-cost high-
performance implementations with only a small cost benefit for the low-cost implementation.

Grading Note: Several students incorrectly answered that a disadvantage of the separation requirement is that
it would be tedious and error prone for hand (human) coding, and that it would require that the compiler schedule
instructions rather than having the hardware check for dependencies and stall when necessary.

It is 100% true that hand-coding assembly language with such a requirement would be tedious, especially considering
branch targets. However, an ISA is designed to facilitate efficient implementations, not to improve assembly language
programmers’ productivity. (An assembler can still be helpful by pointing out likely separation issues.) Also, if something
can be done equally well in the compiler and in hardware, it should be done in the compiler because the cost of compiling
is borne beforehand, by the developer. In contrast, the higher cost of the hardware is payed by every customer and the
energy of execution is expended each time the program is run.

4
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LSU EE 4720 Homework 3 Solution Due: 24 February 2017

To help in solving this problem it might be useful to study the solutions to the following problems
which involve hardware implementing branches in the statically scheduled five-stage MIPS imple-
mentation we’ve been working with: Spring 2016 Homework 3 (SPARC-like branch instruction),
Spring 2015 Homework 2 Problem 2 (use reg bits for larger displacement) and Problem 3 (logic for
IF-stage mux), Spring 2015 Homework 3 Problem 2 (implement bgt, but resolve it in EX), Spring
2011 Final Exam Problem 1 (resolve in ME, with bypass).

Problem 1: Modify the implementation below so that it implements the MIPS II bgezall in-
struction, see the subproblems for details on the hardware to be designed. See the MIPS ISA
documentation linked to the course Web page for a description of the bgezall instruction. An
Inkscape SVG version of the illustration below can be found at
http://www.ece.lsu.edu/ee4720/2017/hw03-p1.svg. The illustration also appears on the next
page.
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Solution on next page.
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(a) Design control logic to detect the instruction and connect its output to the br/jump logic

cloud. The control logic should consist of basic gates, not a box like bgezall .
Solution appears above in green. The green logic also computes a taken signal, and it is that which is connected to

the br/jump logic . Note that the ≥ 0 condition is true when the rs value is not negative, which can be inexpensively
and quickly checked by looking at bit 31 of rsv.

(b) Design the control logic to squash the delay slot instruction when bgezall is not taken. The
control logic should squash the delay slot instruction by changing its destination register and
memory operation. Be sure that the control logic squashes the correct instruction, and does so
only when bgezall is not taken. Do not rely on magic clouds [tm].

Solution appears above in red. The squash signal is asserted when there is a bgezall instruction in ID and when
it is not taken. (A common mistake was to ignore whether or not there was a bgezall in ID when generating the
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squash signal.) The squash signal is put in a new pipeline latch where it joins other signals related to the instruction
in IF. In the next cycle the sq signal is used to replace the memory op with a nop memory operation (the name nop is
whatever the no memory operation code is called). The sq signal also selects register zero as an output register. In the

solution the contents of the decode dest reg logic block is shown, which was not necessary in a submitted solution.

(c) Add datapath or make other changes needed to compute the return address. Note that NPC

is already connected to the ALU. Consider inexpensive ways to compute the second operand.
(Adding a 32-bit ID/EX pipeline latch is not considered inexpensive for this problem.)

Solution appears below (and above) in blue. As described in the ISA manual, the return address is PC+8 or NPC+4.

In ID the immediate is replaced with the constant 4. This is done before the fmt imm logic so that a 16-bit mux rather
than a 32-bit mux can be used. Also, the decode dest logic is modified so that 31 is used as a destination when bgezall
is in ID. When bgezall is in EX the ALU will be used to add NPC and the 4.
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LSU EE 4720 Homework 4 Due: 10 March 2017

To help in solving this problem it might be useful to study the solutions to the following prob-
lems: Spring 2014 Homework 3 (ARM A32 instructions, ARM-like scaling instructions). Fall 2010
Homework 3 (shift unit in MIPS).

See the course references page for a link to the ARM v8 ISA, which will be needed to solve the
problems below.

Problem 1: In most RISC ISAs register number 0 is not a true register, its value as a source
is always zero, and it can be harmlessly used as a destination (for example, for use as a nop

instruction).
The ARM A64 instruction set (not to be confused with A32 [arm] or T32 [thumb]) takes a

different approach to the zero register.

(a) What register number is the zero register in A64?

(b) Let z denote the answer to the previous part, meaning that rz can denote the zero register.
In an ISA like MIPS, the general purpose register (GPR) file only needs enough storage for 31
registers, since the register zero location can be hardwired to zeros. But in ARM A64 the GPR file
needs 32 storage locations because register number z is the zero register for some instructions, but
an ordinary register for others. In ARM notation ZR denotes the zero register, in this problem rz

indicates the register number of the zero register, which, depending on the instruction can refer to
the zero register or to an ordinary register.

Show two instructions that can read rz and one that can write rz, for these instructions rz is
an ordinary register (at least for certain operand fields).

Show a one-destination-register, two-source-register instruction for which rz is the zero register
for all operand fields.

There’s another problem on the next page.
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Problem 2: The ARM A64 code below computes the sum of an array of 64-bit integers. The load
instruction uses post-index addressing, the behavior of this instruction is shown in the comments.
(The @ is the comment character.)

LOOP: @ ARM A64

ldr x1, [x2], #8 @ x1 = Mem[x2]; x2 = x2 + 8

cmp x2, x4

add x3, x3, x1

bne LOOP

(a) Appearing below is a pipeline based on our MIPS implementation. Add datapath elements so
that it can execute the ldr with pre-index, post-index, and immediate addressing. Don’t make
changes that will break other instructions. Note that the register file has a write-enable input,
which is necessary because there is no full time register that acts as register zero.

An Inkscape SVG version of the implementation can be found at
https://www.ece.lsu.edu/ee4720/2017/hw04-armskel.svg.
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• Show the bits used to connect to the address inputs of register file.

• Show the second write port on the register file needed for the updated address.

• Use fixed bit positions for the destination registers.

• Use the given decode logic to determine a write enable signal for each dest.

• The changes must work well with pipelining.

• As always, avoid excessively costly solutions.

• Do not add hardware for the branch or compare.
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LSU EE 4720 Homework 5 Solution Due: 20 March 2017

Problem 1: Complete MIPS routine fxitos so that it converts a fixed point integer to a single-
precision floating point value as follows. When fxitos starts register a0 will hold a fixed-point
value i and register a1 will hold the number of bits that are to the right of the binary point, d,
with d ≥ 0. For example, to represent 9.7510 = 1001.112 we would set a0 to 0b100111 and a1 to
2. (Or we could set a0 to 0b100111000 and a1 to 5.) When fxitos returns register f0 should be
set to i/2d represented as a single-precision floating point number.

Solve this problem by using a division instruction for i/2d. (The floating division instruction
can be avoided by performing integer arithmetic on the FP representation, but that’s not required
in this problem.)

Submit the solution on paper. Your class account can be used to work on the solution. The
fxitos routine and a testbench can be found in
/home/faculty/koppel/pub/ee4720/hw/2017/hw05/hw05.s, follow the same instructions as for
Homework 1.

fxitos:

## R e g i s t e r U s a g e

#

# CALL VALUES:

# $a0: Fixed-point integer to convert.

# $a1: Number of bits to the right of the binary point.

#

# RETURN:

# [ ] $f0: The value as a single-precision FP number.

## S O L U T I O N

#

# Let d denote value of $a1, # of digits to the right of binary point.

# Let i denote value of $a0, the fixed point number to convert.

# Need to set $f0 to i / 2^d, where 2^d is 2 to the d’th power.

addi $t0, $0, 1

sllv $t2, $t0, $a1 # Construct value 2^d

mtc1 $a0, $f1 # Move i to a FP register. (But it’s still an int.)

mtc1 $t2, $f2 # Move 2^d to a FP register. (Still an int too.)

cvt.s.w $f11, $f1 # Convert i from an integer to SP FP.

cvt.s.w $f12, $f2 # Convert 2^d from an integer to SP FP.

jr $ra

div.s $f0, $f11, $f12 # Compute i / 2^d.
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Problem 2: Appearing below is the MIPS hardware needed to implement bgezall from the
solution to Homework 3. Recall that with bgezall the delay-slot instruction is annulled if the
branch is not taken. Modify the hardware for new instruction bgezalllsu which executes like
bgezall when the branch target is at or before the branch, but when the target is after the branch
the delay-slot instruction is annulled when the branch is taken and allowed to execute normally if
the branch is not taken. The opcode and rt values are the same as for bgezall. Hint: this can be
done with very little hardware, a gate or two, if that.
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Solution appears above. Whether the branch target is before or after the branch can be determined by looking at the
sign bit of the immediate value, which is bit 15 of ID.IR and is labeled backward in the diagram above. If that bit is
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1 it means the immediate is negative and so the branch target is before the branch (to be 100% precise, it means that the
branch target is before the delay slot instruction). Branch bgezalllsu is taken if rsv is not positive, that condition is
provided at the output of the NOT gate and labeled >=0 above. Based on the description of bgezalllsu given in the
problem statement, the delay-slot instruction should be annulled (squashed) if the XOR of these two conditions is true.

Note that in the solution to Homework 3 Problem 1 the NOT gate used to determine the branch-taken condition
is shown there as a bubble at an input to the TAKEN AND gate. Here it is shown as a free-standing NOT gate so that
its value can be used for the XOR. The TAKEN signal itself could have been used instead of the NOT gate output, but
that would have resulted in a slightly longer critical path. Since a synthesis program could easily optimize the logic the
variation to use is the one that’s easier for humans to understand.

Problem 3: Suppose that an analysis of the execution of benchmark programs on our pipelined
MIPS implementation shows that over 75% of bypassed values can be represented with 12 bits or
fewer. A low-cost implementation takes advantage of this fact by using 12-bit bypass paths.

(a) The control logic below is intended for bypass paths that can bypass a full 32-bit value. Modify
the control logic shown so that it works for 12-bit bypass paths. In your modified hardware add a
stall signal to be used when values are too large to be bypassed.

• Indicate which parts of the added logic, if any, may lengthen the critical path.

• As always, avoid costly or slow hardware.

Attention perfectionists: An Inkscape SVG version of the implementation below can be found at
http://www.ece.lsu.edu/ee4720/2017/mpipei3c.svg.

Solution starts on next page.
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Solution appears above. Logic has been added at the output of the ALU (in the EX stage, shown in green) that
checks whether the value is too big for the 12-bit bypass paths. It does so by checking whether bits 31 through 11 are
either all 0 (a small positive value) or all 1 (a small negative value). (The reason that bits 31:11 rather than 31:12 are
checked is to make sure that the sign bit of the 12-bit bypassable portion matches the parts that we won’t bypass.) If the
value at the output of the ALU is too big to bypass then the output of the NOR gate is 1, that signal is put in the abig
(ALU output is big) pipeline latch.

Added control logic, shown in blue, checks this abig signal. If ByME is 1 that means the instruction in ID will
need to use the ByME bypass path in the next cycle (when it is in EX). The upper blue AND gate checks whether the
value in EX is too large to bypass, if so the stall signal is 1. If the instruction in ID will need to use the ByWB path and
the abig bit in the ME stage is 1 we will also need to stall.

This logic only works for dependencies to the rt register (of the instruction in ID), and only when the producing
instruction (the instruction in EX or ME while the consuming instruction is in ID) uses the ALU (not the memory port)
to produce a value. See the examples below.

It would be a simple matter—simple enough for a midterm exam problem—to modify the logic to handle a dependency
to the rs register of the instruction in ID, such as Example II below. On the other hand, bypassing for a lw is hopeless
due to our usual critical path assumptions.

4

← → Spring 2017 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/ee4720/2017/hw05_sol.pdf


The logic generating the abig signal might be stretching the critical path since it doesn’t get started until the
ALU produces a value. If we really need such a signal we might ask the ALU guys whether they can design an ALU that
produces an abig-like signal without threatening the critical path, perhaps taking advantage of carry-lookahead logic,
for example.

# Example I

# Cycle 0 1 2 3 4 5 # Control logic works for this case.

add r1, r2, r3 IF ID EX ME WB

sub r4, r5, r1 IF ID EX ME WB # Logic active in cyc 2, bypass in cyc 3.

# Example II

# Cycle 0 1 2 3 4 5 # Control logic NOT shown for this case.

add r1, r2, r3 IF ID EX ME WB

sub r4, r1, r5 IF ID EX ME WB

# Example III

# Cycle 0 1 2 3 4 5 6 # Control logic works for this case.

add r1, r2, r3 IF ID EX ME WB

sub r4, r5, r6 IF ID EX ME WB

xor r7, r8, r1 IF ID EX ME WB # Logic active in cyc 3, bypass in cyc 4.

# Example IV

# Cycle 0 1 2 3 4 5 6 # Control logic doesn’t account for this case.

lw r1, 0(r2) IF ID EX ME WB

sub r4, r5, r6 IF ID EX ME WB

xor r7, r8, r1 IF ID EX ME WB

(b) Why would it be far more challenging for a compiler to optimize for these 12-bit paths than for
ordinary full-width bypass paths?

The compiler would need to know whether it was possible to use a bypass path for some pair of dependent instructions,
which means the compiler would need to know whether the register value would fit in 12 bits. In most cases the compiler
will not be able to tell the size of a value in a register because that can depend on input data that can vary from run to
run or it might depend on other pieces of code that the compiler does not have access to. There are a few situations in
which the compiler could figure it out. For example:

andi r1, r2, 0xff # Value in r1 must be between 0-255.

addi r3, r1, 3 # Value in r3 must be between 3-258.

sub r4, r5, r3 # Can use 12-bit bypass here for r3.

In the example above the values in r1 and r3 can easily fit in 12 bits (since the r1 value was masked down to 8
bits). Therefore the compiler can assume a bypass can be used from the addi to the sub and so it will not was time
finding instructions to put between them.

The compiler could also use profiling to determine at least a range of values for registers. The compiler doesn’t need
to be 100% sure that register values are small, since the hardware will stall if the values are too large.

The problem statement mentioned that 75% of bypassed values fit within 12 bits, and we might expect that a
profiling analysis to come to the same conclusion. However that doesn’t really help us because that doesn’t mean that
75% of dependent instruction pairs pass values that fit within 12 bits.
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LSU EE 4720 Homework 6 Solution Due: 5 April 2017

Attention Perfectionists: An Inkscape SVG version of the illustration used in the final exam
and this assignment can be found at: https://www.ece.lsu.edu/ee4720/2017/mpipei_fp.svg.

Problem 1: Answer Spring 2016 Final Exam Problem 2b and 2c, which ask about the execution
of FP MIPS code. The solution to these problems are available. Make a decent attempt to solve
these problems on your own, without looking at the solution. Only peek at the solution for hints
and use the solution to check your work.

Problem 2: Appearing below are two MIPS code fragments and the MIPS implementation from
the final exam. The fragments execute on the illustrated implementation with the addition of the
datapath needed for the store instructions that was provided in Final Exam Problem 2c. The
fragments are labeled Degree 1 and Degree 2, these refer to an optimization technique called loop
unrolling, which has been applied to the Degree 2 loop.
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(a) Show a pipeline execution diagram of each on the illustrated code fragments. Show enough
iterations to compute the CPI. Note that the second loop should have fewer stalls than the first.

Solution appears below. Note that the state of the pipeline at the start of the second iteration, in cycle 9, is the
same as the state of the pipeline at the start of the third iteration, in cycle 18. In both cases the addi is in ID, the bne
is in EX, and the swc1 is in ME. Therefore we can use the second iteration to compute CPI. (It just so happens that we
could also the first iteration, but we didn’t prove that we could with the argument above.)

# Degree 1 -- SOLUTION

LOOP: # First Iteration

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 29 20

lwc1 f0, 0(r1) IF ID EX ME WF

add.s f0, f0, f1 IF ID -> A1 A2 A3 A4 WF

swc1 f0, 0(r1) IF -> ID -------> EX ME WB

bne r1, r3 LOOP IF -------> ID EX ME WB

addi r1, r1, 4 IF ID EX ME WB

LOOP: # Second Iteration

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 29 20

lwc1 f0, 0(r1) IF ID EX ME WF

add.s f0, f0, f1 IF ID -> A1 A2 A3 A4 WF

swc1 f0, 0(r1) IF -> ID -------> EX ME WB

bne r1, r3 LOOP IF -------> ID EX ME

addi r1, r1, 4 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 29 20 21

LOOP: # Third Iteration

lwc1 f0, 0(r1) IF ID EX ME..

# Degree 2 -- SOLUTION

LOOP: # First Iteration

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 29 20

lwc1 f0, 0(r1) IF ID EX ME WF

lwc1 f1, 4(r1) IF ID EX ME WF

add.s f0, f0, f9 IF ID A1 A2 A3 A4 WF

add.s f1, f1, f9 IF ID A1 A2 A3 A4 WF

swc1 f0, 0(r1) IF ID ----> EX ME WB

swc1 f1, 4(r1) IF ----> ID EX ME WB

bne r1, r3 LOOP IF ID EX ME WB

addi r1, r1, 8 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 29 20

LOOP: # Second Iteration

lwc1 f0, 0(r1) IF ID EX ME WF

lwc1 f1, 4(r1) IF ID EX ME WF

add.s f0, f0, f9 IF ID A1 A2 A3 A4 WF

(b) Compute the execution efficiency of both loops in CPI. Remember that the number of cycles
should be determined by looking at the same point in execution, usually IF of the first instruction,
in two different iterations. Put another way, just because the custom car you will order after
graduation will take two months to arrive, doesn’t mean that the factory makes just one car every
two months.

The Degree 1 loop has a CPI of 18−9
5 = 1.8 CPI based on the iteration start times of cycle 9 and cycle 18. The

Degree 2 loop has a CPI of 10−0
8 = 1.25 CPI, under the assumption that all iterations will execute in the same way as

the first.
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(c) Assume that both loops operate on N -element arrays (and that N is even). The Degree-1 loop
operates on just one element per iteration, while the Degree-2 loop operates on two elements per
iteration.

Devise a performance measure that can be used to compare the two loops based on the work
that they do. The improvement of Degree-2 or Degree-1 should be higher with this work-based
performance measure than the improvement computed using CPI.

A reasonable measure would be cycles per element or CPE. The Degree 1 loop computes one element of the array
per iteration, and so it computes 18−9

1 = 9 CPE. The Degree 2 loop computes two elements per iteration, and so it
computes at 10−0

2 = 5 CPE, almost twice as fast.
Based on CPI the Degree 2 loop is 1.8

1.25 = 1.44 times better than the Degree 1 loop. (Remember that lower CPI
is better.) But based on CPE the Degree 2 loop is 9

5 = 1.8 times better.
Note that CPI is appropriate for comparing two implementations that run the same program, but it’s not useful for

comparing two different programs.

(d) Besides eliminating stalls, what makes Degree 2 faster than Degree 1 even when doing the
same amount of work?

There are fewer instructions per element. For example, an addi is executed for each array element in Degree 1,
but it is executed for every two array elements in Degree 2.
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LSU EE 4720 Homework 7 Solution Due: 19 April 2017

Attention Perfectionists: An Inkscape SVG version of the illustration of the superscalar MIPS
implementation used in the final exam problems and their solution for this assignment can be found
at http://www.ece.lsu.edu/ee4720/2016/fe-ss.svg and
http://www.ece.lsu.edu/ee4720/2016/fe-p1abc-sol.svg.

Problem 1: Answer Spring 2016 Final Exam Problem 1 a, b, and c, in which a single memory
port is connected to the ME stage of a two-way superscalar MIPS implementation. The solution
to this problem is available. Make a decent attempt to solve this problem on your own, without
looking at the solution. Only peek at the solution for hints and use the solution to check your work.

See posted final exam solution at http://www.ece.lsu.edu/ee4720/2016/fe_sol.pdf.

Problem 2: Answer Spring 2016 “Final Exam Problem” 1e, which asks for modifications to a
2-way supescalar MIPS implementation that avoids stalls for certain pairs of load instructions.
Note: Problem 1d was given on the final exam. Problem 1e, which did not appear on the final, is
an expanded version of Problem 1d.

See posted final exam solution at http://www.ece.lsu.edu/ee4720/2016/fe_sol.pdf.
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LSU EE 4720 Homework 8 Solution Due: 26 April 2017

Problem 1: Answer Spring 2016 Final Exam Problem 3, which asks about the performance of
various branch predictors.

The solution to this problem is available. Make a decent attempt to solve this problem on
your own, without looking at the solution. Only peek at the solution for hints and use the solution
to check your work. Credit will only be given if there is some evidence of an attempt to solve the
problem.

Problem 2: Compute the amount of storage needed for each predictor described at the beginning
of Spring 2016 Final Exam Problem 3 (the same question used in the problem above) accounting
for the following additional details: Each BHT stores a six-bit tag and a 16-bit displacement (in
addition to whatever other data is needed).

Be sure to show the size of each table (BHT, PHT) that each predictor (bimodal, local, global)
uses. Show the size in bits.
Bimodal Predictor:

Short Answer: BHT, 214(2 + 6 + 16) b.
Long Answer: The BHT, as stated in the problem, has 214 entries. Each entry stores a 2-bit counter, a 6-bit tag,

and a 16-bit displacement. The total size of an entry is therefore 24 bits, and the total storage used for the BHT is
24 b × 214. Note that bimodal predictors do not have a PHT.

Local Predictor:
Short Answer: BHT, 214(10 + 6 + 16) b; PHT, 2102 b.
Long Answer: The BHT contents is the same as the BHT used by the bimodal predictor except that the 2-

bit counter is replaced by a 10-outcome local history (which is encoded in 10 bits). The size of a BHT entry is thus
10 + 6 + 16 = 32 b = 4B and the total storage is 4 × 210 B. Since the local history length is 10 outcomes the PHT
(pattern history table) has 210 entries. Each entry is a 2-bit counter, for a total size of 2 × 210 = 2048 b.

Global Predictor:
Short Answer. BHT, 214(6 + 16) b; PHT, 2102 b.
Long Answer: The BHT contents is the same as the contents of the BHT in the bimodal predictor except that

there is no 2-bit counter. The total size of an entry is therefore 6 + 16 = 22 b and there are 214 entries for a total size
of 214(6 + 16) b = 360448 b = 45056B = 44 kiB. Because the global history size, 10 outcomes, is the same as
the history size in the local predictor the PHT contents the same as the PHT in the local predictor, 2 × 210 b.

Problem 3: In a bimodal predictor the size of the tag and displacement is much larger than the
2-bit counter used to actually make the prediction. Consider a design that uses two tables, a BHT
and a Branch Target Buffer (BTB). The BHT stores only the 2-bit counter, the BTB stores the tag
and displacement. However, the tag and displacement are only written to the BTB if the branch
will be predicted taken.

Draw a sketch of such a system and indicate the number of entries that should be in each table
so that the amount of storage is the same as the original bimodal predictor.

Let m denote the number of bits in the original BHT address or, put another way, let m denote ceiling log-base-2
of the BHT size. For the exam problem m = 14 for a BHT size of 2m = 210 entries.

For our new predictor let mh denote the number of bits in the BHT address and let mt denote the number of
bits in the BTB address. If mh = mt = m then the two predictors are equivalent. The size of the new predictor is
2mh × 2 + 2mt(6 + 16) b.

Since the BTB will only be used for taken branches, we can have fewer entries. Assuming half of all branch outcomes
are taken we would need half the number of BTB entries as BHT entries. With this condition we can set mt = mh − 1.
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To properly size the new predictor solve

2m(2 + 6 + 16) = 2mh × 2 + 2mt(6 + 16) b

for mh after substituting mt = mh − 1:

2m(2 + 6 + 16) =2mh × 2 + 2mt(6 + 16)

=2mh × 2 + 2mh−1(6 + 16)

=2 × 2mh−1 × 2 + 2mh−1(6 + 16)

=2mh−1(4 + 6 + 16)

2mh−1 = 2m 2 + 6 + 16

4 + 6 + 16

Taking the log base 2 of both sizes:

mh − 1 = m + lg
2 + 6 + 16

4 + 6 + 16

mh = m + lg
2 + 6 + 16

4 + 6 + 16
+ 1

Substituting m = 14 gives us mh = 14.88 and mt = 13.88. If mt is rounded up to 14 and if we limit the
amount of storage to no more than the original bimodal predictor then we could not set mh = mt + 1 without running
out of storage. So, lets set mt = 13 and choose mh to use of the remaining storage, mh = 16.

An ordinary bimodal predictor appears below on the left, the bimodal predictor with the BTB appears below to the
right. Notice that the bits indexing (connecting to the address input) of the BTB and BHT are different, and are based
on mt = 13 and mh = 16 chosen above. For the BTB bits 14:2 of the address are used, a total of 13 bits. (The two
low bits are omitted because the address of an instruction must be a multiple of 4 and so those two bits will always be
zero.) Also notice that when the branch is resolved the new 2-bit counter value is checked to see whether the branch is
taken. The BTB is only written if the branch is taken.
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LSU EE 4720 Homework 1 Solution Due: 12 February 2016

Problem 1: Answer each MIPS code question below. Try to answer these by hand (without
running code).

(a) Show the values assigned to registers t1 through t8 (the lines with the tail comment Val:) in
the code below. Refer to the MIPS review notes and MIPS documentation for details.

Solution appears below (to the right of SOLUTION, of course).

.data
myarray:

.byte 0x10, 0x11, 0x12, 0x13

.byte 0x14, 0x15, 0x16, 0x17

.byte 0x18, 0x19, 0x1a, 0x1b

.byte 0x1c, 0x1d, 0x1e, 0x1f

.text
la $s0, myarray # Load $s0 with the address of the first value above.

# Show value retrieved by each load below.

lbu $t1, 0($s0) # Val: SOLUTION: 0x10

lbu $t2, 1($s0) # Val: SOLUTION: 0x11

lbu $t2, 5($s0) # Val: SOLUTION: 0x15

lhu $t3, 0($s0) # Val: SOLUTION: 0x1011

lhu $t4, 2($s0) # Val: SOLUTION: 0x1213

addi $s1, $0, 3

add $s3, $s0, $s1

lbu $t5, 0($s3) # Val: SOLUTION: 0x13

sll $s4, $s1, 1 SOLUTION: # Note: s4 <= 3<<1 = 6

add $s3, $s0, $s4

lhu $t6, 0($s3) # Val: SOLUTION: 0x1617

sll $s4, $s1, 2 SOLUTION: Note: s4 <= 3<<2 = 12

add $s3, $s0, $s4

lhu $t7, 0($s3) # Val: SOLUTION: 0x1c1d

lw $t8, 0($s3) # Val: SOLUTION: 0x1c1d1e1f

(b) The last two instructions in the code above load from the same address. Given the context, one
of those instructions looks wrong. Identify the instruction and explain why it looks wrong. (Both
instructions should execute correctly, but one looks like it’s not what the programmer intended.)

Register s0 holds an address that the programmer decided to call myarray, so lets think of the data starting at
that address as an array. Normally, to access element i of an array that starts at address a, you load data at address a +

i * s, where s is the size of an array element. In the code fragment above, register s0 holds the starting address (a in
the example). From the way the code is written it looks like register s1 is holding the element index (i in the example).
Because the sll in the last group of four instructions is effectively multiplying s1 by 4, it looks like the load should be
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of the s1’th element of an array of elements of size 4. That’s consistent with the lw, which loads a 4-byte element, and
the last lhu looks out of place. The lhu that loads t6 looks fine, because its address was computed from a value of s1
multiplied by 2.

(c) Explain why the following answer to the question above is wrong for the MIPS 32 code above:
“The lw instruction should be a lwu to be consistent with the others.”

There is no lwu, because when loading a 32-bit quantity into a 32-bit register there is no need to distinguish between
a signed and unsigned quantity. In contrast, the lhu and lh load a 16-bit quantity into a 32-bit register, the lhu sets
the high 16 bits to zero, it zero-pads, while lh sets the high 16 bits to the value of the MSB of the loaded value, it
sign extends.
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Problem 2: Note: The following problem was assigned last year and two years ago and its solution
is available. DO NOT look at the solution unless you are lost and can’t get help elsewhere. Even in
that case just glimpse. Appearing below are incorrect executions on the illustrated implementation.
For each one explain why it is wrong and show the correct execution.
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Addr
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IF ID EX WBME
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Addr

Data

Data
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Mem
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dstdst

E

2'b0 format
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(a) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until
the lw reaches WB.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(b) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

There is no need for a stall because the lw writes r1, it does not read r1.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7
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(c) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

A longer stall is needed here because the sw reads r1 and it must wait until add reaches WB.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(d) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

The stall above allows the xor, when it is in ID, to get the value of r1 written by the add; that part is correct.
But, the stall starts in cycle 1 before the xor reaches ID, so how could the control logic know that the xor needed r1,
or for that matter that it was an xor? The solution is to start the stall in cycle 2, when the xor is in ID.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7
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Problem 3: Show the execution of the MIPS code below on the illustrated implementation. The
register file is designed so that if the same register is simultaneously written and read, the value
that will be read will be value being written. (In class we called such a register file internally
bypassed.)

• Check carefully for dependencies.

• Pay attention to when the branch target is fetched and to when wrong-path instructions are
squashed.

• Be sure to stall when necessary.

IR

Addr
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Data
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2'b0 format
immed =

The solution appears below. Note that because MIPS branches are delayed, the lw instruction is allowed to complete
execution even though the branch is taken. The xor, in contrast is on the wrong path and so is squashed after the branch
resolves. Also note the timing of the fetch of the branch target based on this particular implementation: the branch target,
ori, enters IF in the cycle after the branch leaves ME.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

add r1, r2, r3 IF ID EX ME WB

sub r4, r1, r5 IF ID ----> EX ME WB

beq r1, r1, SKIP IF ----> ID EX ME WB

lw r6, 0(r4) IF ID -> EX ME WB

xor r7, r8, r9 IF -> x

SKIP:

ori r9, r10, 11 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
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LSU EE 4720 Homework 2 Solution Due: 26 February 2016

Problem 1: The code fragment below is to execute on the illustrated MIPS implementation.
Unfamiliar instructions can be looked up on the MIPS ISA manual linked to the course references
page. Show the execution of the code fragment below on the illustrated MIPS implementation. All
branches are taken.

• Pay close attention to dependencies, including those for the branch.

• Note that unnecessary stalls are just as incorrect as not stalling when a stall is necessary.
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# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

add r4, r2, r3 IF ID EX ME WB

lw r6, 8(r4) IF ID EX ME WB

sub r1, r6, r5 IF ID -> EX ME WB

bltz r1 TARG IF -> ID ----> EX ME WB

and r8, r7, r10 IF ----> ID EX ME WB

or r11, r12, r13

xor r14, r11, r8

TARG:

sw r1, 0(r2) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

Solution appears above. The lw does not stall because the r4 register value can be bypassed. That’s not possible
for the sub, since there is no bypass for the r6 value it needs because the r6 value isn’t available until the end of cycle
4, too late to bypass. The bltz stalls two cycles, waiting for the value of r1 that it needs to arrive in ID, where it
needs it. The and is in the delay slot and so executes normally. Since the branch resolves in ID (as we can tell by the
connections from ID to the PC mux) the target, sw, will be in IF when the branch is in EX.
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Problem 2: The implementation below (which is the same as the implementation for the previous
problem) lacks hardware needed for the bltz instruction. In this problem design such hardware as
described in the parts below. Note: An Inkscape SVG version of the implementation can be found
at https://www.ece.lsu.edu/ee4720/2016/mpipei3.svg.
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output because we're just
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(a) Add the hardware needed to detect when a bltz is taken. The hardware should have an output
labeled TAKEN, which should be set to logic 1 if there is a taken bltz in ID. Include control logic,
including the logic for detecting bltz.

The solution appears above. The logic in blue is used for detecting a bltz instruction. That instruction has an
opcode of 1, but also requires that the rt field be zero. In the solution above AND gates are used to detect these, rather
than the usual =bltz and =0 boxes. Either would be correct. The branch is taken if the rsv is negative, that can
be detected by looking at the MSB. That’s shown in green (the solution to the part below is also shown). The rightmost
AND gate detects the taken condition for this branch.

(b) The solution to the previous problem (not the previous part to this problem) should have
included a stall due to the branch instruction. Add a bypass path to the hardware designed above
so that the branch from the previous problem can execute without stalling.

Logic also shown above in green. In particular the green mux and the connection to the output of the ALU. We can
get away with using the ALU output in this case because we only need examine one bit. If we needed to look at all 32
bits there would not be enough time left in the clock cycle.

An important thing to remember is that this is one of the few cases where we can get away with using the ALU
output. See Problem 3a.
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(c) Design control logic for the bypass path.

Logic shown in purple.

Problem 3: The code below is similar to the code from the first problem, the only difference is in
the branch instruction. In this problem explain some bad news and good news about that branch.

add r4, r2, r3

lw r6, 8(r4)

sub r1, r6, r5

beq r0, r1 TARG

and r8, r7, r10

or r11, r12, r13

xor r14, r11, r8

TARG:

sw r1, 0(r2)

(a) The bad news is that adding bypass paths for a beq would not be a good idea, even though
adding bypass paths for the bltz was a good idea. Explain why.

Testing the condition for a bltz instruction is simple: just check if the MSB of the rs value is 1. That’s a good
thing because the bypass path added in the previous problem was from the output of the ALU, and so was available at
the end of the cycle. In contrast, the beq must compare two registers, which requires about 7 layers of logic. (An XNOR
to test equality of each bit pair and a 32-input AND gate to check that all XNOR output are 1. The 32-input AND gate
might be realized with five layers of two-input and gates.)

As pointed out in class, the ALU output will not be available until close to the end of the clock period, and so there
is no time for testing equality.

Grading Note: Many answered that the difficulty was in the bypass paths since two values had
to be bypassed. Though that’s true it ignores two things. First, for bltz all we need is the MSB,
so the difference between the two cases is more like a factor of 64 than a factor of 2 in bypass path
cost. It also ignores the more significant problem of testing equality, which stretches the critical
path. Nevertheless, full credit was given for the “two values” answer.

(b) The good news is that the program above can easily avoid the stalls by just changing the branch
instruction. Explain how. (Of course, it should go without saying that the changed program must
do the same thing as the original one.)

Change the branch to a beq r6, r5 TARG, thus avoiding the need for a bypass. The sub can not be removed
because the sw uses the value of r1.
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LSU EE 4720 Homework 3 Solution Due: 28 March 2016

Problem 1: Illustrated below is our MIPS implementation with some control logic shown. Modify
the implementation so that it can execute the SPARC v8 instructions as described below. In your
solution ignore register windows, assume that SPARC uses an ordinary 32-register general-purpose
register file.

Details of the SPARC ISA (which includes later versions) can be found in
http://www.ece.lsu.edu/ee4720/doc/JPS1-R1.0.4-Common-pub.pdf. An Inkscape SVG ver-
sion of the illustration below can be found at
http://www.ece.lsu.edu/ee4720/2016/mpipei3b.svg.

Solution on next page.
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(a) Modify the implementation for format 3 arithmetic instructions. Use add as an example. Show
changes in the bits used: to index the register file, to format the immediate, and to generate the
writeback register number, dst.

Solution appears in blue on the previous page. The bits at the input to the register file have been changed, and
notice also that the pipeline latches at the register file outputs were renamed, for example, from rsv to rs1v. Since all
SPARC integer instructions that write a value, use the rd field for that value. For that reason the dst mux input for rt
has been removed. Also note that the immediate unit uses fewer bits. (If the sethi instruction were implemented then
the number of bits might be expanded.)

(b) Modify the implementation for branch instructions. Use BPcc as an example. Be sure to make
changes for computing the branch target.

Show changes in the hardware to generate the target address. Remove the unneeded MIPS
branch comparison hardware and add a CC register.

Solution shown in purple. The branch displacement bits were changed at the input to the ID-stage adder. Also, a
CC output was added to the ALU and the value is carried through the pipeline to the ID stage where it’s used to write a
new CC register. (It goes without saying that bypass paths could be added to the branch control logic.) Also notice that
he comparison unit in ID has been removed (shown with a red ex).

(c) Modify the implementation for load and store instructions. Use LDUW and STW as examples.
Show changes in the format immediate unit, and make sure that it can handle both ADD and

loads and stores.
Changes shown in green. Only the STW instruction requires further changes. An instruction like stw r1, [r2+r3]

has three source registers, and so a third read port has been added to the register file. A path for the retrieved value,
rdv, is provided to the Mem Port Din and red ex breaks the old path (from what was rtv).

Problem 2: Section 1.3.1 of the SPARC JPS1 lists features of the ISA.

(a) Indicate which features are typical RISC features and which features are not.
The typical RISC features are those that facilitate pipelined implementations and make it easy to compile code. They

are 32-bit instructions (as opposed to variable-sized instructions), few addressing modes, and triadic register addresses (as
opposed to having arithmetic instructions read memory or forcing an arithmetic instruction to use the same register for
its first source and destination, or something like that).

(b) One feature is “Branch elimination instructions” Provide an example of how such an instruction
can be used to eliminate a branch.

The conditional moves are the branch elimination instructions. They write a register if a condition is true. For
example, movg r1, r2 (move greater than) will write r2 with the value of r1 only if the ICC register Z (zero) and N
(negative) bits are both zero (meaning the last CC instruction result was strictly greater than zero). If the condition is
not true r2 is unchanged.

See page 276 of the SPARC JPS1 for an example.
Note: other ISAs, such as ARM, achieve the same result using predication.
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LSU EE 4720 Homework 4 Solution Due: 13 April 2016

For the solution to the final exam questions used in this assignment visit
http://www.ece.lsu.edu/ee4720/2015/fe_sol.pdf

.

Problem 1: Problem 2b from the 2015 Final Exam asks about our usual FP MIPS pipeline.
An Inkscape SVG version of the FP pipeline can be found at

http://www.ece.lsu.edu/ee4720/2016/mpipei_fp.svg.

(a) Solve Spring 2015 Final Exam problem 2b.
See the posted solution at the link above.

(b) Add bypass paths to the implementation from problem 2b that were omitted but are needed in
the execution of the code sample.

Note: The original assignment asked for bypasses needed so that the code would execute without
a stall. That is obviously impossible since with zero stalls the multiply would have to start before
the add finished.

The solution appears below in blue. Only one bypass connection is needed, for the value of f9 from the lwc1 to
the mul.s. The value of f1 needed by mul.s will be read from the register file during the stall.
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Problem 2: Solve Problem 2c from the 2015 Final Exam, which asks about our usual superscalar
pipeline.

An Inkscape SVG version of the ordinary 2-way superscalar MIPS pipeline used in 2c can be
found at http://www.ece.lsu.edu/ee4720/2016/mpipei3ss.svg.

See the posted solution at the link above.

Problem 3: Solve Problem 1 from the 2015 Final Exam, which asks about a modified version of
our two-way superscalar MIPS implementation.

An Inkscape SVG version of the fused-add 2-way superscalar MIPS pipeline used in 2c can be
found at http://www.ece.lsu.edu/ee4720/2015/fess.svg.

See the posted solution at the link above. Perhaps you are wondering why I didn’t just put the link right here.
Because the link is to the entire exam solution, and so the same link would be repeated three times which on balance
might be a tiny bit more irritating than having to find the link near the top of this page.
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LSU EE 4720 Homework 5 Solution Due: 22 April 2016

Problem 1: Solve Spring 2015 Final Exam Problem 3, which asks about the performance of several
branch predictors. See older final exam solutions for more information on how to solve these kinds
of problems.

See the final exam solution at http://www.ece.lsu.edu/ee4720/2015/fe_sol.pdf.

Problem 2: Show major elements of the hardware for each predictor used in Spring 2015 Final
Exam Problem 3a. In particular:

• Show the BHT, PHT, and GHR (in those predictors that use them).

• Show the connection from the PC to the appropriate table.

• Show the number of bits in each connection.

• Show the logic generating a “predict taken” signal.

You do not need to show the logic to update the predictor or to generate the target address.
Solution appears below. The prediction is made using the MSB of the 2-bit counter, it it’s 1 predict taken. Note

that the size of the BHT here is ridiculously large, realistically the number of BHT entries would be on the order of 214.
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LSU EE 4720 Homework 1 Solution Due: 20 February 2015

Problem 1: Answer each MIPS code question below. Try to answer these by hand (without
running code).

(a) Where indicated, show the changed register in the following simple code fragments:

# r1 = 10, r2 = 20, r3 = 30, etc.

#

add r1, r2, r3

#

# Changed register, new value: SOLUTION: r1 from 10 to 50.

# r1 = 10, r2 = 20, etc.

#

add r1, r1, r2

#

# Changed register, new value: SOLUTION: r1 from 10 to 30.

(b) Show the values assigned to registers s1 through s6 in the code below. Correctly answering
this question requires an understanding of MIPS big-endian byte ordering and of the differences
between lw, lbu, and lb. Refer to the MIPS review notes and MIPS documentation for details.

.data

values: .word 0x11121314

.word 0xaabbccdd

.word 0x99887766

.word 0x41424344

.text

la $s0, values # Load $s0 with the address of the first value above.

lw $s1, 0($s0) SOLUTION: 0x11121314

lw $s2, 4($s0) SOLUTION: 0xaabbccdd

sh $s2, 0($s0) # Note: this is a store *half*.

lbu $s3, 0($s0) SOLUTION: 0xcc

lbu $s4, 3($s0) SOLUTION: 0x14

lb $s5, 4($s0) SOLUTION: 0xffffffaa

lb $s6, 7($s0) SOLUTION: 0xffffffdd
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Problem 2: Note: The following problem was assigned last year and its solution is available. DO
NOT look at the solution unless you are lost and can’t get help elsewhere. Even in that case just
glimpse. Appearing below are incorrect executions on the illustrated implementation. For each one
explain why it is wrong and show the correct execution.

format
immed
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Addr
25:21

20:16

IF ID EX WBME
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rtv

IMM

NPC
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Addr

Data

Data
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Data
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Mem
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(a) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until
the lw reaches WB.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(b) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

There is no need for a stall because the lw writes r1, it does not read r1.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

2
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(c) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

A longer stall is needed here because the sw reads r1 and it must wait until add reaches WB.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(d) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

The stall above allows the xor, when it is in ID, to get the value of r1 written by the add; that part is correct.
But, the stall starts in cycle 1 before the xor reaches ID, so how could the control logic know that the xor needed r1,
or for that matter that it was an xor? The solution is to start the stall in cycle 2, when the xor is in ID.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7
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Problem 3: Show the execution of the MIPS code below on the illustrated implementation. The
register file is designed so that if the same register is simultaneously written and read, the value
that will be read will be value being written. (In class we called such a register file internally
bypassed.)

• Check carefully for dependencies.

• Pay attention to which registers are sources and which are destinations, especially for the sw
instruction.

• Be sure to stall when necessary.

format
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IR
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Solution appears below. Since there are no bypass paths the lw must stall in ID until add reaches WB. (If the
register file were not internally bypassed the add would have to stall in ID one more cycle than it does below.) The sub
stalls for r4 produced by lw, and sh stalls for r5 produced by sub.

Common Mistakes:
One common mistake is forgetting that store instructions, such as sw and sh, do not write registers. That’s why

sub does not need to wait for r1.
Another common mistake is assuming that a standard set of bypass paths is available. The implementation in this

problem does not have bypass paths which is why the code below suffers from so many stalls.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

add r1, r2, r3 IF ID EX ME WB

lw r4, 0(r1) IF ID ----> EX ME WB

sw r1, 0(r1) IF ----> ID EX ME WB

sub r5, r4, r1 IF ID -> EX ME WB

sh r5, 4(r1) IF -> ID ----> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
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Problem 4: The code below is the same as the code used in the previous problem, but the MIPS
implementation is different.

(a) Show the execution of the MIPS code below on the illustrated implementation.
Solution appears below.

(b) On the diagram label multiplexor data inputs connecting to bypass paths that are used in the
execution of this code. The label should include the cycle number, the register, and the instruction

consuming the value. For example, the label 3:r1:lw might be placed next to one of the data
inputs on the ALU’s upper mux.

Solution appears below in blue. Notice that in this case there are no stalls.

format
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dstdst

3:r1:lw

4:r1:sw

5:r4:sub

6:r5:sh

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8

add r1, r2, r3 IF ID EX ME WB

lw r4, 0(r1) IF ID EX ME WB

sw r1, 0(r1) IF ID EX ME WB

sub r5, r4, r1 IF ID EX ME WB

sh r5, 4(r1) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8
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LSU EE 4720 Homework 2 Solution Due: 27 February 2015

For those preparing electronic submission of a solution (E-mail) and who would like a vector-
format version of the MIPS implementation can find it in Encapsulated Postscript at
http://www.ece.lsu.edu/ee4720/2015/mpipei3.eps and for those who would like to edit the
image can find it in Inkscape SVG at http://www.ece.lsu.edu/ee4720/2015/mpipei3.svg.

Problem 1: The following problem appeared on the Spring 2014 Final Exam as Problem 7c. Sup-
pose the 16-bit offset in MIPS lw instructions was not large enough. Consider two alternatives.
In alternative 1 the offset in the existing lw instruction is the immediate value times 4. So, for
example, to encode instruction lw r1, 32(r2) the immediate would be 8. In alternative 2 the
behavior of the existing lw is not changed but there is a new load lws r1, 32(r2), in which the
immediate is multiplied by 4. Note that alternative 2 requires a new opcode. Which instruction
should be added to a future version of MIPS, alternative 1 or alternative 2? Explain.

Alternative 2, lws, should be chosen so that existing software continues to run correctly.

Problem 2: The following problem appeared on the Spring 2014 Final Exam as Problem 5. The
displacement in MIPS branches is 16 bits. Consider a new MIPS branch instruction, bfeq rsn,

rtn (branch far), where rsn and rtn are 2-bit fields that refer to registers 4-7. As with beq, branch
bfeq is taken if the contents of registers rsn and rtn are equal. With six extra bits bfeq can
branch 64 times as far.

(a) Show an encoding for this instruction which requires as few changes to existing hardware as
possible. Explain how your choice of encoding minimizes changes.

The encoding for bfeq is shown below. The 22-bit displacement is is3,it3,Immed (in Verilog notation).

Encoding for bfeq:

Opcode

31 26

is3

25 23

rs2

22 21

it3

20 18

rt2

17 16

Immed

15 0
In the encoding above the rs and rt register fields each have been shortened from five to two bits. (The original

format I encoding is shown below.) Since the fields have been shortened but not moved the four remaining bits can be
connected directly to the register file. (See the solution to the next part.)

MIPS I:

Opcode

31 26

rs

25 21

rt

20 16

Immed

15 0
With the encoding above we need two 3-bit multiplexors at the register file address inputs (see the next subproblem).

The encoding below, which would receive partial credit, would require two 5-bit multiplexors at the register file address
inputs and so would be more costly. This inferior encoding is certainly more organized with rs2 and rt2 next to each
other and with the immediate occupying 22 contiguous bits. However the multiplexors at the register file inputs would
need to be five bits instead of three bits. Notice that it does not make a difference whether or not the immediate bits are
contiguous, as they are below, or split, as they are in the solution above.

Inferior bfeq:

Opcode

31 26

rs2

25 24

rt2

23 22

imm22

21 0
Grading Note: Despite the hint about cost, almost no one used the preferred solution, the one

with the immediate field split.
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(b) Modify the pipeline below to implement the new instruction. Use as little hardware as possible.
Changes appear below. At the register file address inputs, shown in blue, the high three bits of each register number

is determined by a multiplexor. If a bfeq is present the upper inputs are used, making the upper three bits of each register
number 0012, otherwise the upper bits come from the instruction. The lower two bits are taken from the instruction
regardless of whether bfeq is present. If a bfeq is present the displacement includes the extra six bits, these changes
are shown in green.

Grading Note: Many solutions did show logic selecting a larger displacement size, but that
larger displacement was sent to the EX stage as an immediate rather than to the adder feeding the
IF-stage multiplexor. We are proud of our resolve-branch-in-ID pipeline, so of course points must
be deducted when this feature is ignored. Better to have points deducted on a homework than on a
test.

format
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Six extra bits of branch displacement.

Replace high 3 bits of reg num with 0012

msb

lsb

msb lsb

Problem 3 on next page.
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Problem 3: Show the control logic for the IF-stage multiplexor in the MIPS implementation
below.

• The control logic should work for beq, bne, bgtz, bgez, and j. Assume that any other
instruction is not a control transfer.

• Show exactly which IR bits are needed by the control logic that detects bgez (Hint, hint.)
and other instructions.

• The control logic should check the condition to determine if the branch is taken.

• Pay attention to cost.

Solution appears below in blue. The input numbers on the IF-stage mux were chosen so that the input for a taken
branch (shown as t-br) is 012, the input for a jump is 102, and the input for the incremented PC (inc) is 002.

The logic detecting a j is connected directly to the most-significant bit of the multiplexor select input. The logic
detecting each of the four kinds of branches (which obviously is not a complete list) connects to an AND gate which detects
whether the respective condition is true.

The full opcode for the bgez instruction is in the opcode and rt fields. (The rt field for the bgez plays the
same role as the func field for the type R instructions.) For the jump and the other branches listed it is sufficient to
only look at the opcode field.

A lower-cost solution would use just one comparison unit with a mux at the lower input selecting either rtv or the
constant 0. That would make the critical path in ID a bit longer.
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LSU EE 4720 Homework 3 Solution Due: 11 March 2015

Problem 1: For the following question refer to the Intel 64 and IA- 32 Architectures Software
Developer’s Manual linked to the course references page. Intel 64 is an example of a CISC ISA, but
not a good example because it evolved from an ISA designed for a 16-bit address space. Over the
years the size of the general purpose registers increased from 16 bits to 64 bits and the number of
general-purpose registers increased from 8 to 16.

(a) Show the 64-bit names of the general purpose registers provided by Intel 64. (See Chapter 3 of
the manual mentioned above.)

The 64-bit names are: RAX, RBX, RCX, RDX, RSI, RDI, RBP, RSP, R8-R15.

(b) A MIPS assembly language instruction uses the same name for a register regardless of how many
bits of the register we use. For example, sb r1, 0(r2) uses 8 bits of r1 and sw r1, 0(r2) uses
all 32 bits, but in both instructions we refer to r1. Not so in IA-32/Intel 64, in which the name
of the register indicates how many bits to use. Show the names for RAX for the different sizes and
positions in the register.

Parts of RAX are known as EAX (bits 0 to 31), AX (bits 0 to 15), AL (bits 0 to 7), and AH (bits 8 to 15).

Problem 2: Diagrams of the MIPS implementation for this problem can be found in EPS format at
http://www.ece.lsu.edu/ee4720/2015/hw02-p3-if-mux-sol.eps and in Inkscape SVG (which
can easily be edited) at http://www.ece.lsu.edu/ee4720/2015/hw02-p3-if-mux-sol.svg.

As has been pointed out in class, MIPS lacks a bgt rs, rt, TARG (branch greater than
comparing two registers) instruction because the ISA was designed for a five-stage implementation
in which the branch is resolved in ID. To resolve bgt in ID one would have to compare two
register values starting about half-way through the cycle, something that might slow down the
clock frequency.

In this problem suppose there was a bgt instruction in MIPS. We would like the implemen-
tation to have the same clock frequency as our bgt-less implementation. One way of doing that is
by resolving bgt in EX (but still resolving the other branches in ID as they are now). If we resolve
in EX we can expect a one-cycle branch penalty, as can be seen in the PED below.

# Cycle 0 1 2 3 4 5 6 7

bgt r1, r2, TARG IF ID EX ME WB

add r3, r4, r5 IF ID EX ME WB

xor r6, r7, r8 IF IDx

...

TARG:

lw r9, 0(r10) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

Note that xor is squashed in cycle 3, which is the behavior we want for a taken bgt (see the
second subproblem below). If bgt were not taken then no instruction would be squashed.

(a) Modify the implementation on the next page (taken from the Homework 2 solution) so that
bgt is resolved in EX. Note: The original assignment had a very big typo in the previous sentence:
giving ID instead of EX as the stage to resolve in.

• Pay attention to cost. Assume that a magnitude comparison (e.g., greater than) is relatively
costly.

• Show the control logic for bgt.
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• Do not “break” existing instructions.

Solution appears below. The bgt branch is taken if the rs register contents is greater than the rt register contents.
Since we are resolving the branch in EX we can use the ALU to detect whether this condition is true. When a bgt is in
ID the control logic, shown in dark yellow, chooses a greater-than operation for the ALU. A greater-than operation sets
the ALU output to 1 if the upper input is strictly larger than the lower input, and to 0 otherwise. (It is like the less than
operation that must be used for the slt instruction.) An AND gate added to the EX stage, shown in blue checks whether
a bgt is in EX and if the condition is true (notice that the logic only needs to look at the LSB of the ALU output).

The adder computing the branch target can now get its inputs from either ID or EX, controlled by the is BGT ,

these changes are shown in purple. The reason for using is BGT (from EX!) and not the taken bgt signal (the output

of the AND gate) is timing. is BGT is available at the beginning of EX, giving the adder plenty of time. The bgt taken
signal is available near the end of EX (since it depends on the ALU output), so it would be too late to start computing
the target address.

Because the same adder is used for ID- and EX-stage branches no changes need to be made to the IF-stage mux.
However, we do need to add a condition for selecting input 012, that’s shown with the green OR gate which merges the
ID-stage or EX-stage condition. (Fortunately for us, MIPS disallows two consecutive branches. Otherwise, a branch in
ID would have to stall if there was a taken bgt in EX.)

An alternative solution is to compute the target address in ID and pass it to EX, that is discussed further below.
Grading Notes.

In some solutions the is BGT logic is in EX, with its input connected to a new ID/EX.IR pipeline latch. Adding
a 32-bit pipeline latch is more expensive than adding just one bit. Of course, one only really needs to send the opcode
field, but if a solution does not explicitly state that it, is at risk of having points deducted for waste.

(b) If bgt is taken an instruction will have to be squashed. (Because bgt has just one delay slot,
just like all the other branches.) Add logic so that a one-bit signal sq (squash) is delivered to ID

when the instruction in ID needs to be squashed due to a taken bgt.
The logic for the squash signal is shown in red. It is the bgt taken signal sent to the new IF/ID.SQ pipeline latch.
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Control
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0:0
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Detect taken bgt
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Compute target address

using imm and NPC from

 EX if bgt taken.

Send taken bgt signal 

to IF/ID so that it arrives

at ID in the next

cycle, labeled SQ.

Control logic

emits an ALU

gt op for bgt.

t-br-id

Avoid wait for condition.
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In an alternative design, the target computed in ID is passed to EX, where it is used for taken bgt instructions.
That design appears below. This alternative design is more costly because the 32 bits of new pipeline latch and 32 bits
of mux input are more costly than the 30 + 16 bits of mux input for the shared adder used in the first solution.
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Control logic

emits an ALU
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OR gates needed to logic can

generate 11, in addition

to 01 and 10.
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LSU EE 4720 Homework 4 Solution Due: 1 April 2015

An EPS version of the MIPS FP implementation used in some of the problems below can be found
at http://www.ece.lsu.edu/ee4720/2015/mpipei_fp.eps and an easy-to-edit Inkscape SVG ver-
sion can be found at http://www.ece.lsu.edu/ee4720/2015/mpipei_fp.svg.

Problem 1: Solve 2014 Midterm Exam Problem 2, which asks for a stall-in-ME version of our
floating-point pipeline. A solution to this problem is available but use it only if you are stuck,
and after you are finished to check your answer. If you got it wrong, then solve the problem again
without looking at the solution.

See the posted final exam solution.

Problem 2: Solve 2014 Final Exam Problem 1, which asks for an execution diagram of code
running on the solution to the 2014 Midterm Problem 2.

See the posted final exam solution.

There’s another problem on the next page.
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Problem 3: In the FP implementation on the next page (which is the same as the one used in
class) an add.s instruction can stall due to an earlier mul.s, see the example below.

# Execution of code on the illustrated implementation.

# Cycle 0 1 2 3 4 5 6 7 8 9

mul.s f0, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

add.s f6, f7, f8 IF ID A1 A2 A3 A4 WF

add.s f3, f4, f5 IF ID -> A1 A2 A3 A4 WF

and r6, r7, r8 IF -> ID EX ME WB

To avoid the stall consider the fpa-4/6 design in which an add.s instruction that would stall
taking the usual route instead enters the FP pipeline at the M1 unit. Assume that the M1 unit’s
control signal (not shown and not part of the problem) will command it to pass the values at its
inputs to its outputs unchanged when it is carrying add.s operands. Then at the appropriate time
it crosses over to A1 and continues through the remaining adder stages. An add.s not facing a WF

structural hazard stall would go from ID to A1, as in the usual design. See the execution below.

# Desired execution on the fpa-4/6 implementation.

# Cycle 0 1 2 3 4 5 6 7 8 9 10

mul.s f0, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

add.s f6, f7, f8 IF ID A1 A2 A3 A4 WF # Uses 4-stage (normal) path.

add.s f3, f4, f5 IF ID M1 M2 A1 A2 A3 A4 WF # Uses 6-stage (M1 M2..) path.

and r6, r7, r8 IF ID EX ME WB

(a) Modify the pipeline to implement fpa-4/6.

• Show the datapath for the operands crossing from the multiply to the add unit.

• Show the control logic. The control logic should only send add.s into M1 if it would stall
taking the usual route.

• The control logic should include the we, fd, and xw signals, and signals for any multiplexors
that you add.

• As always, pay attention to cost and critical path.

Solution shown on the next page. The datapath changes appear in blue. Note that the values sent to A1 are taken
from the output of the pipeline latches, which are available in the beginning of the clock cycle.

Grading Note: A common mistake was to connect the outputs of M2 to the multiplexors added
before A1. That’s wrong because the data would arrive one cycle early and because it assumes that
M2 has a fast path for unmodified data.

The signal indicating that an add should pass through M1 and M2 is labeled lpa, for long-path add. Signal lpa
is generated by the same logic that detected the add.s WF structural hazard condition, but now the connection to the
Stall ID signal is broken (with the red ex).

The lpa signal travels with the add.s. In M3 it is used to select the multiplier value as inputs to A1. In M3 lpa

also changes the xw signal to 1, indicating that the result will come from the adder. Also notice that in ID the we signal
is set if the lpa is needed or if the instruction is a multiply.

(b) In the code fragment above the add.s f3 goes from ID to M1. If it had gone from ID to M2 it
would have still avoided the WF hazard and it also would have finished one cycle earlier. Consider
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an fpa-4/5/6 design in which an add.s can start at A1, M2, or M1, using the first one that avoids a
stall. Provide a code example that would finish sooner on an fpa-4/5/6 design than on an fpa-4/6
design. Hint: A correct answer can add just one more instruction to the code fragment above.

Solution appears below. There is a dependency between the sub.s and the add.s that uses the long path. If the
add.s f3 when from M1 to A1 the sub.s would stall one cycle less.

# Cycle 0 1 2 3 4 5 6 7 8 9 10

mul.s f0, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

add.s f6, f7, f8 IF ID A1 A2 A3 A4 WF # Uses 4-stage (normal) path.

add.s f3, f4, f5 IF ID M1 M2 A1 A2 A3 A4 WF # Uses 6-stage (M1 M2..) path.

sub.s f9, f3, f10 IF ID -------------> A1 A2 A3 A4 WF

(c) Is the fpa-4/5/6 design better than the fpa-4/6 design? Justify your answer using reasonable
cost estimates and made-up properties of typical user programs. Either yes or no is correct, credit
will be given for the justification.

The fpa-4/5/6 design would cost more because the multiplexors at the adder inputs would need to have one more
input each. Multiplexors would also have to be added for the fd signal, among other complications. The cost could only
be justified if instructions reading the result of add instructions frequently stalled due to data dependencies.

3

← → Spring 2015 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4720/2015/hw04_sol.pdf


FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16
M6

we

A4A3A2A1

M3 M4 M5

fd

we

xw

M2

M

1

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

29:0

15:0

D
0 1

dstdst

 

decode

dest. reg

2'd2

2'd1 2'd0

msb lsb

lpa

lp
a

2'd1

lpa

What was add WF hazard stall signal,

now indicates add should take long path.

lp
a
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LSU EE 4720 Homework 5 Solution Due: 22 April 2015

An EPS version of the MIPS superscalar implementation used in one of the problems below can
be found at http://www.ece.lsu.edu/ee4720/2015/mpipei3ss.eps and an easy-to-edit Inkscape
SVG version can be found at http://www.ece.lsu.edu/ee4720/2015/mpipei3ss.svg.

Problem 1: Solve 2014 Final Exam Problem 2, which asks for control logic in a 2-way superscalar
processor.

See posted exam solution.

Problem 2: Solve 2014 Final Exam Problem 3, in which branch predictors are analyzed. Note:
Check earlier final exams for solutions to similar problems.

See posted exam solution.
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LSU EE 4720 Homework 6 Solution Due: 29 April 2015

Problem 1: Solve 2014 Final Exam Problem 4, the cache problem.
See the posted final exam solution.
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LSU EE 4720 Homework 1 Solution Due: 10 February 2014

Problem 1: The MIPS code below executes on the illustrated implementation. The loop iterates
for many cycles. The register file bypasses data from the write ports to the read port in the same
cycle.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D  

dstdst

E
2'b0 format

immed =

lw r1, -6(r3)

lw r5, -2(r3)

LOOP:

add r5, r5, r1

lw r1, 2(r3)

bne r3, r4, LOOP

addi r3, r3, 4

jr r31

sw r5, 0(r6)

Solution on next page.
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(a) Show the execution of the code above on the illustrated implementation up to and including the
first instruction of the third iteration (that is, the third time that the add instructions is fetched).

• Carefully check the code for dependencies.

• Be sure to stall when necessary.

• Pay careful attention to the timing of the fetch of the branch target.

Solution appears below.

lw r1, -6(r3) IF ID EX ME WB

lw r5, -2(r3) IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF ID ----> EX ME WB

lw r1, 2(r3) IF ----> ID EX ME WB

bne r3, r4, LOOP IF ID EX ME WB

addi r3, r3, 4 IF ID EX ME WB

jr r31 IF IDx

sw r5, 0(r6) IFx

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF ID EX ME WB

lw r1, 2(r3) IF ID EX ME WB

bne r3, r4, LOOP IF ID EX ME WB

addi r3, r3, 4 IF ID EX ME WB

jr r31 IF IDx

sw r5, 0(r6) IFx

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF ID ..

(b) Compute the CPI for a large number of iterations.

Recall that we define an iteration to start when the first instruction is in IF. In the execution above the first
iteration starts in cycle 2 and the second iteration starts in cycle 10, and the third starts in cycle 16.

Notice that the first and second iterations are different: in the first there is a stall, in the second there isn’t a stall.
The first iteration takes 10− 2 = 8 cycles and the second takes 16− 10 = 6 cycles.

To compute the CPI for a large number of iterations we need a repeating pattern. The stalls in the first iteration
are caused by instructions before the loop, they won’t affect subsequent iterations. Even so, how can we be sure that the
third and subsequent iterations will be like the second? By looking at the state of the pipeline when the first instruction
in the loop is fetched. For the first iteration the state is add in IF, lw r5 in ID and lw r1 in EX. In the second
iteration we have add in IF, addi in ME and bneq in WB. The third iteration starts exactly the same way as the second.
Therefore the third will look like the second, and by induction all future iterations. So we can use 6 cycles as the iteration
time.

The CPI is then 6 cyc
4 insn = 1.5 CPI.
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Problem 2: Appearing below are incorrect executions on the illustrated implementation. For
each one explain why it is wrong and show the correct execution.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D  

dstdst

E
2'b0 format

immed =

(a) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until
the lw reaches WB.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(b) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

There is no need for a stall because the lw writes r1, it does not read r1.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(c) Explain error and show correct execution.
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LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

A longer stall is needed here because the sw reads r1 and it must wait until add reaches WB.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(d) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

The stall above allows the xor, when it is in ID, to get the value of r1 written by the add; that part is correct.
But, the stall starts in cycle 1 before the xor reaches ID, so how could the control logic know that the xor needed r1,
or for that matter that it was an xor? The solution is to start the stall in cycle 2, when the xor is in ID.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7
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LSU LSU EE 4720 Homework 3 Solution Due: 7 March 2014

For this assignment read the ARM Architecture Reference Manual linked to
http://www.ece.lsu.edu/ee4720/reference.html. This assignment asks about the ARM A32
instruction set.

Problem 1: Show the encoding of the ARM A32 instruction that is most similar to MIPS instruc-
tion add r1, r2, r3.

# Arm Add

add r1, r2, r3 # Registers

add Rd, Rn, Rm # Register field symbols.

The encoding appears below. The cond field is set to 11102 because the instruction should execute unconditionally.
The fmt field (name made up) set to zero to indicate a data processing instruction. The opcode and bit position 4
fields are set based on the description of the add instruction. The S is set to 0 because we don’t want to write condition
code registers (since the MIPS add doesn’t either). The instruction should not shift, so we set type and imm5 to zero.
The Rn, Rd, and Rm fields values are based on the register numbers in the example.

cond

11102

31 28

fmt

0

27 25

opcode

01002

24 21

S

0

20

Rn

2

19 16

Rd

1

15 12

imm5

0

11 7

type

0

6 5

0

4

Rm

3

3 0

Problem 2: ARM instructions can shift one of its source operands, something MIPS cannot. With
this feature the code below can be executed with a single ARM add instruction. Show the encoding
of such an ARM A32 add instruction.

sll r1, r2, 12

add r1, r4, r1

The assembly language for the ARM A32 equivalent is:

# Arm assembler

add r1, r4, r2, LSL #12

The encoding of the ARM instruction appears below. Notice that it is the same as the ordinary add, but with a
shift specified by putting a non-zero value in the imm5 field.

cond

11102

31 28

fmt

0

27 25

opcode

01002

24 21

S

0

20

Rn

4

19 16

Rd

1

15 12

imm5

12

11 7

type

0

6 5

0

4

Rm

2

3 0

Problem 3: So, the ARM add instructions can shift one of its operands, something that MIPS
would need two instructions to do. Since we have been working with MIPS for so long it would
be natural for us to get protective of MIPS and defensive or jealous when hearing about wonderful
features of other ISAs that MIPS doesn’t have. To relieve these negative emotions lets add operand
shifting to MIPS with a new addsc instruction. The addsc instruction will use MIPS’ sa field to
specify a shift amount. So instead of, for example, the following two instructions:

sll r1, r2, 12
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add r1, r4, r1

We could use just

addsc r1, r4, r2, 12

where the “12” indicates that the value in r2 should be shifted by 12 before the addition.
Modify our five-stage MIPS implementation so that it can implement this instruction. (See

below for diagrams.)

• The addsc should execute without a stall.

• Don’t break existing instructions.

• Don’t increase the critical path by more than a tiny amount.

• Keep an eye on cost.

Assume that both the ALU and shift unit take most of the clock period. This means if the ALU
and shifter are in the same stage and output of the shifter is connected to the ALU, the critical
path will be doubled. (Of course, doubling the critical path would be disastrous for performance.)

There are several ways to solve this, one possibility includes adding a sixth stage, another
possibility uses a plain adder (not a full ALU) in the EX stage.

Add hardware to the implementation below. Source files for the diagram are at:
http://www.ece.lsu.edu/ee4720/2013/mpipei3.pdf,
http://www.ece.lsu.edu/ee4720/2013/mpipei3.eps,
http://www.ece.lsu.edu/ee4720/2013/mpipei3.svg. The svg file can be edited using Inkscape.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

To see how a shift unit can be added to MIPS see Fall 2010 Homework 3.
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One big choice is between adding a stage or adding an adder. If a stage is added then additional pipeline latches are
needed, so the decision should be based on the cost of the latches versus the cost of the adder. An additional factor is the
number of bypass paths needed. In the solution below the decision was made to add and adder, but in two different ways.

In the first version rsv is added to the EX/ME pipeline latch so that rsv will be available in the ME stage.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
0 1

dstdst

Left

Shift
amt

10:5

+

rsv

This latch

can be

eliminated

by using

ALU.

In the second version (below) the ALU is used to bring rsv to the ME stage. In this second version, when an addsc
instruction is in the EX stage the ALU will perform a Pass A operation in which the upper ALU input is passed to the
output unchanged. Also, a multiplexor is saved by using the ME-stage adder to pass results of non-scaled add instructions,
this is done by setting the Left Shift unit to output a zero when a non-scaled add instruction is in EX.

format
immed

IR

Addr
25:21

20:16

IF ID
EX

WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
0 1

dstdst

Left

Shift
amt

10:5

+

a

b

x

For scaled

add ALU performs

operation

x=a.

For instructions

other than scaled

add Left Shift output

is zero.
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LSU EE 4720 Homework 4 Solution Due: 24 March 2014

Problem 1: The following code fragments execute incorrectly on the following pipeline. For each
fragment describe the problem and correct the problem.

format
immed

IR

Addr
25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC
Int Reg File

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16
M6

we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2

M

1

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

(a) Describe problem and fix problem.

lwc1 f2, 0(r1) IF ID EX ME WF

add.s f1, f2, f3 IF ID A1 A2 A3 A4 WF

There is a dependence between the lwc1 and the add.s through f2 and so the add.s should have stalled.
Correct execution appears below for a pipeline in which bypass paths exist from WF into A1 and M1.

# SOLUTION 0 1 2 3 4 5 6 7 8 9

lwc1 f2, 0(r1) IF ID EX ME WF

add.s f1, f2, f3 IF ID -> A1 A2 A3 A4 WF
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(b) Describe problem and fix problem.

# Cycle 0 1 2 3 4 5 6

add.s f1, f2, f3 IF ID A1 A2 A3 A4 WF

addi r1, r1, 4 IF ID EX ME WB

lwc1 f2, 0(r1) IF ID EX ME WF

There are two instructions in WF in cycle 6, which is impossible on this pipeline. The solution is to stall lwc1 by
one cycle, shown below.

# SOLUTION 0 1 2 3 4 5 6

add.s f1, f2, f3 IF ID A1 A2 A3 A4 WF

addi r1, r1, 4 IF ID EX ME WB

lwc1 f2, 0(r1) IF ID -> EX ME WF

Note that if the addi and the lwc1 changed places there would be no reason to stall. However the problem wasn’t
a stall, the problem was that the hardware should have stalled and didn’t, presumably resulting in an incorrect value in
either f2 or f1. So swapping the two instruction doesn’t fix the problem it just works around (avoids) it.

(c) Describe problem and fix problem.

add.d f1, f2, f3 IF ID A1 A2 A3 A4 WF

The instruction above is a double-precision add (notice the .d at the end). In MIPS-I and other 32-bit RISC ISAs
double precision instructions can only use even-numbered registers as operands. (Each 64-bit operand is obtained from
two registers, the even-numbered register and the next register, for example, f10 and f11.

Lets fix this under the assumption that the programmer meant to use a double-precision add but used the wrong
registers. In that case make the odd registers even:

add.d f10, f2, f4 IF ID A1 A2 A3 A4 WF

2

← → Spring 2014 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4720/2014/hw04_sol.pdf


Problem 2: The code fragment below contains a MIPS floating-point comparison instruction and
branch. The pipeline illustrated below does not have a comparison unit, in this problem we will
add one. The comparison unit to be used has two stages, named C1 and C2. The output of C2 is
one bit, indicating if the comparison was true.

format
immed

IR

Addr
25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC
Int Reg File

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16
M6

we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2

M

1

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

c.gt.d f2, f4

bc1t TARG

add.d f2, f2, f10

...

TARG: xor r1, r2, r3

(a) Add the comparison unit to the pipeline above. Also add a new register FCC (floating point
condition code) that is written by the comparison instruction and is used by the control logic to
determine if a floating-point branch is taken.

The FCC register should have a data and write-enable input, show the control logic generating
the write-enable signal. Show a cloud labeled “branch control logic” and connect it to appropriate
datapath components.
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Solution appears below in green. (The solution to part c is in blue.)
The comparison units were added to the two stages before WF. The write enable signal enters the pipeline in M4,

using a dedicated latch segment named fw. The fw signal is set by logic in the ID stage detecting instructions that write
the FCC register, including c. (The c instruction cannot use the we signal used by other FP instructions because that is
meant for the FP register file.)

The new FCC register is shown in the ID stage, with its output connected to a new branch control logic cloud. The
output of that cloud connects to the PC mux.

Notice that there is no stall logic for the c instruction. That was not asked for in this problem, and it would not be
needed if only five-stage instructions could write FCC.

format
immed

IR

Addr
25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw

C2C1

writes fcc

FCC

we
D

D In

fw fw fw

Branch

control

logic
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(b) Show the execution of the code sample above on your modified hardware, but without any
bypass paths for the added hardware.

Solution appears below. Note that the bc1t instruction must wait in ID until the c instruction reaches WF.

# SOLUTION 0 1 2 3 4 5 6 7 8 9 10

c.gt.d f2, f4 IF ID C1 C2 WF

bc1t TARG IF ID ----> EX ME WB

add.d f2, f2, f10 IF ----> ID A1 A2 A3 A4 WF

...

TARG: xor r1, r2, r3 IF ID EX ME WB

(c) Add whatever bypass paths are needed so that the code executes with as few stalls as possible
but without having a major impact on clock frequency. Assume that C2 produces a result in about
80% of the clock period.

The added bypass path are in sky blue on the diagram above. (The path goes from the output of C2 to the
branch-control-logic cloud.) With this bypass path one fewer stall is needed. That execution is shown below.

# SOLUTION 0 1 2 3 4 5 6 7 8 9

c.gt.d f2, f4 IF ID C1 C2 WF

bc1t TARG IF ID -> EX ME WB

add.d f2, f2, f10 IF -> ID A1 A2 A3 A4 WF

...

TARG: xor r1, r2, r3 IF ID EX ME WB

Source files for the diagram are at:
http://www.ece.lsu.edu/ee4720/2014/mpipeifp.eps,
http://www.ece.lsu.edu/ee4720/2014/mpipeifp.svg.
The svg file can be edited using Inkscape.
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LSU LSU EE 4720 Homework 5 Solution Due: 21 April 2014

Problem 1: Solve Spring 2013 Final Exam Problem 2, the problem is to design control logic to
detect stalls in a 2-way superscalar system, and to add bypass paths for a special case.

See the posted exam solution at http://www.ece.lsu.edu/ee4720/2013/fe_sol.pdf.

Problem 2: Solve Spring 2013 Final Exam Problem 3, asking an assortment of branch predictor
problems. See past final exams for additional problems of this type.

See the posted exam solution at http://www.ece.lsu.edu/ee4720/2013/fe_sol.pdf.
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LSU EE 4720 Homework 1 Solution Due: 6 February 2013

Problem 1: The MIPS code below executes on the illustrated implementation. The loop iterates
for many cycles. The register file bypasses data from the write ports to the read port in the same
cycle.

format

immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+4

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

=
=0
<0

E

Z

N

NPC

LOOP:

lw r2, 0(r4)

slt r1, r2, r7

bne r1, r0 LOOP

addi r4, r4, 4

sw r4, 0(r6)

jr r31

nop

(a) Show the execution of the code above on the illustrated implementation up to and including
the first instruction of the second iteration.

• Carefully check the code for dependencies.

• Be sure to stall when necessary.

• Pay careful attention to the timing of the fetch of the branch target.

Solution appears below. Notice that there is a dependence between the slt and the bne (sometimes people forget
that branches can have dependencies too).

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r2, 0(r4) IF ID EX ME WB

slt r1, r2, r7 IF ID ----> EX ME WB

bne r1, r0 LOOP IF ----> ID ----> EX ME WB

addi r4, r4, 1 IF ----> ID EX ME WB

sw r4, 0(r6) IF IDx

jr r31 IFx

nop

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r2, 0(r4) IF ID EX ME WB

1
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(b) Compute the CPI for a large number of iterations.
Recall that we define an iteration to start when the first instruction is in IF. In the execution above the first

iteration starts in cycle 0 and the second iteration starts in cycle 10, and so an iteration takes 10 cycles. There are four
instructions in an iteration, so the CPI is 10

4 = 2.5 CPI.

2
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Problem 2: The code fragment below is the same as the one used in the last problem, but the
implementation is different (most would say better).

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

LOOP:

lw r2, 0(r4)

slt r1, r2, r7

bne r1, r0 LOOP

addi r4, r4, 4

sw r4, 0(r6)

jr r31

nop

(a) Show the execution of the code on this new implementation.

• There will still be stalls due to dependencies, though fewer than before.

Solution appears below. Notice that fewer stalls are eliminated than one might have hoped because the load value is
available later in the pipeline and because there are no bypasses for the branch.

# SOLUTION

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r2, 0(r4) IF ID EX ME WB

slt r1, r2, r7 IF ID -> EX ME WB

bne r1, r0 LOOP IF -> ID ----> EX ME WB

addi r4, r4, 1 IF ----> ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r2, 0(r4) IF ID EX ME WB

(b) Compute the CPI for a large number of iterations.
The iteration time is now 7 cycles, and so the CPI is 7

4 = 1.75 CPI.
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Problem 3: Consider once again the code fragment from the previous two problems, and the
implementation from the previous problem. In this problem consider a MIPS implementation that
executes a blt instruction, an instruction that is not part of MIPS. With such an instruction the
code fragment from the previous problems can be shortened, and one would hope that the code
would take less time to run. In this problem rather than hope we’ll figure it out.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2'b0

+
15:0

25:0

29:26

29:0

15:0

D
0 1

<

(a) Add the additional datapath (non-control) hardware needed to execute blt. Hint: Just add
one unit and a few wires.

Solution appears above in green, where in the ID stage a less-than comparison unit was added above the equality
unit.

(b) Show the execution of the code on the illustrated implementation up until the second fetch of
lw.

Solution appears below. It looks like we saved two cycles by eliminating the slt and the stall it suffered.

# SOLUTION

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r2, 0(r4) IF ID EX ME WB

blt r2, r7 LOOP IF ID ----> EX ME WB

addi r4, r4, 4 IF ----> ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r2, 0(r4) IF ID EX ME WB

sw r4, 0(r6)

jr r31

nop

(c) As we discussed in class, doing a magnitude comparison in ID might stretch the critical path,
forcing a reduction in clock frequency. Suppose the clock frequency without blt is 1 GHz. At
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what clock frequency will the blt implementation, the one in this problem, be just as fast as the
implementation from the prior problem on their respective code fragments?

• Be sure to pick a sensible meaning of just as fast. Do not define just-as-fast in terms of CPI.

Most would agree that the important measure of computer performance is how long it takes to finish your program.
We have two implementations, the original bypassed MIPS, and the blt version. Lets call the code fragments used in
this assignment our programs. The first program in this assignment is for the original MIPS, the program with blt is
for the blt version of MIPS. What’s important to us is how long it takes to run these programs on their respective
implementations.

Lets assume that in a run of either program the loop iterates 1000 times. The original MIPS implementation takes 7
cycles per iteration, for a total of 7000 cycles, and that corresponds to a time of toriginal = 7000 cycles

φorig
= 7000 cycles

1 GHz =

7 µs, where φorig = 1 GHz is the clock frequency of the original implementation.
In the blt version of MIPS an iteration takes only 5 cycles and so execution takes 5000 cycles. Execution time is

tblt = 5000 cycles
φblt

, where φblt is the clock frequency of the blt version. For this problem we need to find a value of φblt

that will make the execution time of the blt version 7 µs. That is we need to solve 5000 cycles
φblt

= 7 µs, for φblt, which
is φblt = 714 MHz.

This means that if the hardware needed to implement blt slows down the clock frequency, but the clock frequency
is still > 714 MHz the blt implementation will be faster.

Note that one cannot just look at something like CPI, since that would ignore the fact that the two different programs
execute a different number of instructions.

(d) Explain why the code fragments in these problems might exaggerate the benefit of the blt

instruction.
The code fragment was short, could use a blt, and the blt reduced execution by two cycles rather than the one

cycle it would for other cases. If we look at other code samples we will probably find that a blt is usable less frequently
than every five instructions, in part because not every branch is based on a magnitude comparison (see the example below).

That means the actual reduction in the number of cycles will not be as great as 7 to 5. Suppose the number of clock
cycles drops from 100 trillion to 98 trillion. In that case, we can tolerate a much smaller drop in clock frequency and still
get better performance.

Grading Notes: Many answered that the benefit is exaggerated because the clock frequency would be lower. That
is the right answer to a different question. This question asked about the code fragments in these problems. The
lower clock frequency would affect any code.

LOOP:

lw r2, 0(r4)

beq r2, r7 LOOP # blt won’t help here.

addi r4, r4, 4

sw r4, 0(r6)

jr r31

nop
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LSU EE 4720 Homework 2 Due: 15 February 2013

Note: For help with this and similar assignments see the Statically Scheduled MIPS study guide
linked to http://www.ece.lsu.edu/ee4720/guides.html.

Problem 1: Solve Spring 2012 Midterm Exam Problem 1. Part a is the usual draw-a-pipeline-
execution-diagram-and-find-the-CPI problem, but it’s on an implementation with some bypass
paths removed. For part b you need to design control logic to generate stalls for the missing
bypasses.

Problem 2: Solve Spring 2012 Midterm Exam Problem 2. In that problem the memory stage is
split in two.

1
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LSU EE 4720 Homework 3 Solution Due: 21 February 2013

Problem 1: As described in class, SPARC v7 integer branch instructions use a 22-bit immediate
field for the displacement. Branches are typically used in loops and if/else constructs, and so the
±2097152 instruction range might be more than is needed. So did the computer engineers at Sun
Microsystems (now part of Oracle). Look up the v7 integer branch instruction in the SPARC
Joint Programming Specification (JPS1), linked to the course references page (look for JPS1).
You’ll find SPARC v7 integer branch under Instruction Definitions in the Deprecated Instructions
section. Then look up the replacement integer branch instructions (not in the deprecated section).

(a) Sketch (or cut-and-paste, take a picture with your cell phone, etc.) the format of the three
instructions (one old, two new).

The formats appear below. The dhi and dlo in the last format refer to the 16-bit displacement, split across two
fields.

Bicc:

Op

00

31 30

a

29

cond

28 25

op2

010

24 22

disp22

21 0

BPcc:

Op

00

31 30

a

29

cond

28 25

op2

001

24 22

cc1

21

cc0

20

p

19

disp22

18 0

BPr:

Op

00

31 30

a

29

0

28

rcond

27 25

op2

011

24 22

dhi

2120

p

19

rs1

18 14

dlo

13 0

(b) Describe how BPr is different than the original v7 integer branch instruction, and point out two
benefits.

The BPr instruction can test the value of a register (the one specified by the rs1 field), avoiding the need for an
instruction like subcc to set the condition code register. It also provides, in field p, a hint to the hardware on whether
the branch will be taken. The hardware may choose to ignore the hint (relying on its own branch predictor). If the
hardware uses the hint and it is wrong performance will be slightly lower than if the hint were right.

Grading Note: Many incorrectly answered that with BPcc and Bicc the condition setting instruction would
have to immediately precede the branch. That’s not true, the condition setting instruction, such as subcc, can be placed
far away from the branch.

(c) Describe how BPcc is different than the original v7 integer branch instruction. This instruction
shares one benefit with BPr, but it has lost 2 bits of displacement in order to accommodate 64-bit
register values. (The other third lost bit has nothing to do with 64-bit register values). Explain.

The shared benefit is the prediction hint, using a bit in the p field. The two “lost” bits are for the cc1 and cc0

fields. These specify which condition code register to use. There are two integer condition code registers, icc and xcc.
The icc is set based on the low 32 bits of a result (and so ignore the upper 32 bits), while the xcc is set based on
the full 64 bits. The icc register is need for code compiled for SPARC v7, which used 32-bit registers. An arithmetic
operation might overflow a 32-bit register, and SPARC v7 code would expect that overflow. If run on v9, the operation
would not cause an overflow. The overflow (V) bit on the xcc register would not be set, but the V bit on the icc
would be set. So, when developing a 64-bit version of the SPARC ISA, Sun engineers added those cc1 and cc0 bits to
maintain compatibility. (They could have used just one bit, but two bits were used so that BPcc would be similar to the
floating-point version, FBPfcc, which does need two bits because their are 4 FP condition code registers.)

1
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Problem 2: For the following assignment familiarize yourself with the VAX ISA by looking in
the VAX-11 Architecture Reference Manual (linked to the course references page). In particular,
see Section 2.6 for a summary of the instruction format, and Chapter 3 for details on the operand
specifiers used in the instruction formats. For examples, look at some past homework assignments
in this course: http://www.ece.lsu.edu/ee4720/2010f/hw04_sol.pdf,
http://www.ece.lsu.edu/ee4720/2007f/hw03_sol.pdf, and
http://www.ece.lsu.edu/ee4720/2002/hw02_sol.pdf.

The VAX format is simple, it consists of a one- or two-byte opcode followed by some number
of operand specifiers and any additional fields they may use. The operand specifiers are 8 bits,
and are followed by a possible extension and immediates. (See Section 2.6 and Chapter 3 of the
VAX-11 Architecture Reference Manual.)

(a) The VAX operand specifier is 8 bits, it includes a 4-bit mode field, and for literal addressing, a
6-bit literal field. (A literal in VAX is a small immediate.) Explain how it’s possible to fit a 4-bit
mode field and a 6-bit literal field into 8 bits.

The two least-significant bits of the mode field is used for part of the literal. Therefore literal mode actually uses
four mode values, 0 through 3.

(b) Find the best VAX replacement for each of the two MIPS instructions below and show their
encoding. The two VAX instructions will be different.

The VAX instructions appear right after the corresponding MIPS instruction, followed by the VAX instruction coding.
For the first MIPS instruction a 3-operand VAX add was used. But for the second, a VAX increment (INCL) instruction
was used, which requires only a single operand, the register number. The INCL instruction is one byte shorter than an
ADDL2 which needs a one-byte specifier for the immediate value, 1.

addi r1, r2, 1 # MIPS

ADDL3 r2, S^#1, r1 # VAX (destination register is last)

Opcode

0xc1

7 0

mode

5

7 4

reg

2

3 0

mode

0

76

lit

1

5 0

mode

5

7 4

reg

1

3 0

addi r1, r1, 1 # MIPS

INCL r1 # VAX

Opcode

0xd6

7 0

mode

5

7 4

reg

1

3 0
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(c) Find a VAX instruction to replace the following sequence of MIPS instructions, and show its
encoding.

lw r1, 0(r2)

lui r3, 0x2abb

ori r3, r3, 0xccdd

add r1, r1, r3

sw r1, 0x100(r2)

Solution appears below. Note that the load performed by the first MIPS lw instruction uses VAX register deferred
mode, rather than displacement mode, since the displacement is zero. The VAX encoding shown below on several lines,
with one line for the opcode and one line for each operand.

# SOLUTION

ADDL3 (r2), I^#0x2abbccdd, W^0x100(r2) # Destination is last.

Opcode

0xc1

7 0

mode

6

7 4

reg

2

3 0

mode

8

7 4

reg

15

3 0

immediate

0x2abbccdd

31 0

mode

12

7 4

reg

2

3 0

displacement

0x100

15 0

(d) Compare the size of the VAX instruction from the problem above to the size of the MIPS
instructions.

There are five MIPS instructions, for a total size of 20 bytes. The single VAX instruction is 10 bytes, half the size.

3
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LSU EE 4720 Homework 4 Solution Due: 8 March 2013

Problem 1: Recall that the MIPS-I mult instruction reads two integer registers and writes the
product into registers hi and lo. To use the product the values of lo and hi (if needed) have to
be moved to integer registers, done using a move from instruction such as mflo. In this problem
these instructions will be added to the implementation below.

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst dst dstdest. reg

NPC

=

30 2
2'b0

+
15:0

25:0

29:26

29:0

15:0

D
0 1

hi

lo

Y1 Y2

63:32

31:0

Solution to Problem 1(d)

Solution to Problem 1 (a) and (b)

Y3

Solution to Problem 2(a)

31:0

Pipeline latch

is optional.

format

immed ihl

Consider an integer multiply unit that consists of two stages, Y1 and Y2. The inputs to Y1 are
the 32-bit multiplier and multiplicand, and the output of Y2 is the 64-bit product. Unit Y1 has
three 32-bit outputs named s0, s1, and s2; unit Y2 has 3 32-bit inputs of the same name. As one
would guess, the data from the s0 output of Y1 should be sent to the s0 input to Y2, likewise for
s1 and s2.

As with other functional units, such as the ALU, inputs to Y1 and Y2 must be stable near the
beginning of the clock cycle and the outputs must be stable near the end of the clock cycle. There
is enough time to put a multiplexer before the inputs, or after the outputs (but not both).

Solve the two parts below together. That is, the hardware for part (a) might take advantage
of the hardware for part (b) and vice versa.

(a) Add the datapath hardware needed to implement the mtlo, mthi, mflo, and mfhi instructions.
Both the ALU and the integer multiply unit have an operation to pass either input to its output
unchanged. That is, let x denote the ALU output and let a and b its inputs. In addition to
operations like x = a+ b and x = a&b, the ALU can also perform a pass-a operation, that is, x = a
and a pass-b operation, x = b. The integer multiply unit also has pass-a and pass-b operations.

• Put the hi and lo registers in the ID stage.

1
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• Do not write the hi and lo registers earlier than the ME stage.

• As always, cost is a criteria.

• Bypass paths will be added in the parts below.

Solution appears in blue above. The mflo and mfhi instructions, using a new ID-stage multiplexor, route the hi
or lo value to the existing (though renamed) ID/EX.ihl pipeline latch, where it can easily take a path through the
ALU (using a pass b operation) and continue on to write back the integer register file.

The mtlo and mthi use the ordinary multiply unit inputs (see the next problem), but the multiply unit uses a
pass a (since the register is in the rs field). The multiply unit would need to have two versions of pass a, once to pass
to the lower 32 bits of its output, and one to pass to the upper 32 bits. The control logic would also have to enable the
appropriate register (lo or hi).

(b) Add the datapath hardware needed to implement the mult instruction. That is, put the Y1 and
Y2 units in the appropriate stages, and connect them to the appropriate pipeline latch registers
(adding new ones where necessary).

• Don’t add new bypass paths, but take advantage of what is available.

Solution appears in blue, where Y1 is placed in EX and Y2 in ME. Notice that the multiply unit takes advantage of
the multiplexors at the ALU’s inputs. Also notice that the writeback occurs in the WB stage, but that the outputs connect
directly to the hi and lo registers.

Because the output of the multiply unit is written to a fixed register pair the data can arrive at those registers, hi
and lo, close to the end of the cycle. This is different to the writeback of the integer (general-purpose) register file, where
one of 31 registers might be written and bypassing might also be performed and so more time is needed. For that reason,
it might be possible to write back hi and lo in the ME stage, and such an answer did not loose points.

(c) Show the execution of the code below on your hardware so far. That is, your hardware should
not have any new bypass paths, but existing bypass paths in the implementation can be used.

Solution appears below. Notice that there is a dependence between sub and mult, but that it can be handled by
the bypass paths shared with the ALU and so the mult instruction does not stall. There is also a dependence between
the mult and the mflo. Since there are no bypass paths for that, the mflo must stall two cycles.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9

sub r2, r6, r7 IF ID EX ME WB

mult r1, r2 IF ID Y1 Y2 WB

mflo r3 IF ID ----> EX ME WB

add r4, r3, r5 IF ----> ID EX ME WB
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(d) Add bypass paths so that the code below (which is the same as in the previous part) can execute
without a stall. Assume that an additional multiplexer delay is tolerable.

A bypass path has been added from WB to ME, the appears in green in the diagram. Notice that this bypass path
leads to another bypass path, and so the add instruction receives the correct value of r4.

Grading Note: Some solutions had a bypass from WB to EX. Such a bypass would be from
the mult instruction to the add, which are not directly dependent. To be completely correct such
solutions would have to explain how the control logic can detect such a bypassing opportunity.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9

sub r2, r6, r7 IF ID EX ME WB

mult r1, r2 IF ID Y1 Y2 WB

mflo r3 IF ID EX ME WB

add r4, r3, r5 IF ID EX ME WB

Problem 2: Continue to consider the implementation of the MIPS-I mult instruction. If MIPS
designers thought that an integer multiply unit could be built with two stages they might not have
used special registers, hi and lo, for the product.

(a) Show how the pipeline would look if the multiply unit had three stages, Y1, Y2, and Y3. There
is no need to add bypass paths for this part.

Solution appears in orange where a Y3 stage has been added in WB and a fifth pipeline latch has been added.
Because the multiply unit writes a fixed register (as opposed to the register file) the timing constraints for the writes are
less severe and so the added pipeline latch might not be necessary. If would be necessary if the physical distance between
the multiplier output and the ID stage were large.

(b) Explain why there is much less of a need for the hi and lo registers with a two-stage multiply
unit (the first problem) than with a three-stage unit (this problem).

One reason for having special hi and lo registers is to avoid the structural hazard during writeback. Consider the
example below for the three-stage multiply unit, in which WY indicates the stage in which mult writes back. Both the
mult and add instruction writeback in cycle 5. But because mult is writing back into its special registers there is no
conflict. If mult wrote to the general-purpose registers there would have to be two write ports on the GPR file, which
would be more costly than having the two special registers.

With a two-stage multiply unit, the multiply instruction can write back at the same time as other instructions, so
there would not be a need for a second write port. There is still the problem of the multiply writing back 64 bits. The
expensive solution is to widen the write port to 64 bits (and perhaps write a pair of registers, as is done for floating point).
Another possibility is to have just one special register, for the high 32 bits.

# SOLUTION: Code execution for the three-stage multiply unit.

# Cycle 0 1 2 3 4 5

mult r1, r2 IF ID EX ME Y3 WY

add r4, r5, r6 IF ID EX ME WB
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LSU EE 4720 Homework 5 Solution Due: 27 March 2013

Problem 1: In the following execution of MIPS code the lw instruction raises a TLB miss excep-
tion and the handler is called. A TLB miss is not an error, it indicates that the TLB needs to be
updated, which is what the handler will do.

Execution is shown up to the first instruction of the handler. Alert students will recognize that
there is something wrong in the execution below: it shows the execution of a deferred exception for
an instruction, the lw, that should raise a precise exception.

# Cycle 0 1 2 3 4 5 6 7 8 9

sh r1, 0(r3) IF ID EX ME WB

lw r1, 0(r2) IF ID EX M*x

addi r2, r2, 4 IF ID EX ME WB

sw r7, 0(r8) IF ID EX ME WB

and r4, r1, r6 IF ID EX ME WB

or r10, r11, r12

HANDLER:

# Cycle 0 1 2 3 4 5 6 7 8 9

sw r31,0x100(r0) IF ID EX ME WB

... # Additional handler code here.

eret

(a) Show the execution of the eret instruction and the instructions that execute after the eret.
Assume that eret reaches IF in cycle number 100. The execution should be for a deferred exception,
even though memory instruction exceptions should be—must be—precise. A correct solution to
this part will result in incorrect execution of the code.

Solution appears below. Note that the cycle after 100 is 101, but is written as 1 to save space.
In a deferred exception the handler starts several instructions after the faulting instruction. In the example above

the addi, sw, and and execute before the handler starts. The return point would then be after the and instruction,
that is what is shown below.

Also, notice that eret does not have a delay slot.
The solution below assumes that there is a connection from the register file (actually coprocessor set 0, which

contains the exception return address) to the IF-stage multiplexor. That would enable the first user instruction to reach
IF when eret is in EX.

# Cycle 0 1 2 3 4 5 6 7 8 9 ... 100 1 2 3 4 5 6 7 8

sh r1, 0(r3) IF ID EX ME WB

lw r1, 0(r2) IF ID EX M*x

addi r2, r2, 4 IF ID EX ME WB

sw r7, 0(r8) IF ID EX ME WB

and r4, r1, r6 IF ID EX ME WB

or r10, r11, r12 IF ID EX ME WB SOLUTION

HANDLER:

# Cycle 0 1 2 3 4 5 6 7 8 9 ... 100 1 2 3 4 5 6 7 8
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sw r31,0x100(r0) IF ID EX ME WB

... # Additional handler code here.

eret IF ID EX ME WB SOLUTION

xor IFx

# Cycle 0 1 2 3 4 5 6 7 8 9 ... 100 1 2 3 4 5 6 7 8

(b) Suppose the execution above is for a computer on Mars, meaning that there is no fast or cheap
way of replacing the hardware, and there is no way to turn on precise exceptions for the lw. Happily,
it is possible to re-write the handler. Explain what the handler would have to do so that the code
above executes correctly. The handler will know the address of the faulting instruction. Optional:
explain why the sw r7 is nothing to worry about, at least in the execution above.

Because the lw did not make it to writeback, r1 and r4 will have incorrect values when the handler starts. Re-write
the handler so that it puts the correct values in r1 and r4 and then returns to the or instruction (as it might for a
deferred exception).

The handler will update the TLB, as the original handler did. But then it will load the word from memory that the
lw would have loaded, using address r2-4, and put it in r1. and then recompute r4. The sw r7 would only be a
problem if it wrote the same address as the lw, making it impossible to retrieve the prior word at that address. However,
if the addresses were the same the sw r7 would also raise an exception, so they must be different. After this, execution
can return to the or and continue as though nothing happened.

(c) Show the execution of the code above, but this time for a system in which lw raises a precise
exception. Start at cycle 0 with the sh instruction, and have the lw raising once again a TLB miss
exception. The execution should be in two parts, first from the sh up to the first instruction of the
handler, then jump ahead to cycle 100 with eret in IF and continue with whatever instructions
remain.

Solution appears below. Since the exception is precise the faulting instruction *lw) and those that follow it are
squashed and all instructions before the faulting instruction finishes normally. The handler has the option of re-executing
the faulting instruction or skipping it. For a TLB miss the usual practice is to re-execute it.

SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 ... 100 1 2 3 4 5 6 7 8

sh r1, 0(r3) IF ID EX ME WB

lw r1, 0(r2) IF ID EX M*x IF ID EX ME WB

addi r2, r2, 4 IF ID EXx IF ID EX ME WB

sw r7, 0(r8) IF IDx IF ID EX ME WB

and r4, r1, r6 IFx IF ID EX ME WB

or r10, r11, r12 IF ID EX ME WB

HANDLER:

# Cycle 0 1 2 3 4 5 6 7 8 9 ... 100 1 2 3 4 5 6 7 8

sw r31,0x100(r0) IF ID EX ME WB

... # Additional handler code here.

eret IF ID EX ME WB

xor IFx

# Cycle 0 1 2 3 4 5 6 7 8 9 ... 100 1 2 3 4 5 6 7 8

Problem 2: Solve Spring 2012 Final Exam Problem 2, which asks for the execution of MIPS
floating-point instructions on our FP implementation.
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See the posted final exam solution.

Problem 3: Solve Spring 2012 Final Exam Problem 1 (yes, this is out of order). In this problem
parts of the FP multiply unit are used to implement the MIPS integer mul instruction. Note that
the mul writes integer registers, unlike mult which writes the hi and lo registers. In other words,
do not use hi and lo registers in your solution.

See the posted final exam solution.
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LSU EE 4720 Homework 6 Solution Due: 12 April 2013

SVG and EPS versions of the superscalar processor illustration are available at
http://www.ece.lsu.edu/ee4720/2013/mpipei3ss.svg and
http://www.ece.lsu.edu/ee4720/2013/mpipei3ss.eps, respectively. Inkscape can be used to
edit the SVG version.

Problem1: The two-way superscalar implementation below has two memory ports in the ME stage,
and so it can sustain an execution of 2 IPC on code containing only load and store instructions.
Since for many types of programs loads and stores are rarely so dense and because memory ports
are costly, it is better to make a 2-way processor with just one memory port in the ME stage.

Modify the implementation below so that it has just one memory port in the ME stage. It
should still be possible to execute arbitrary MIPS programs, albeit more slowly.

Solution on next page.
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Solution appears below, original design above. One of the memory ports was removed, and multiplexors were used
to provide paths from either slot to the Addr and D In inputs to the memory ports, these are shown in blue. These are
placed in the EX stage (rather than ME) under the assumption that the memory port takes the most time and so anything
added between its connections and the pipeline latches would lower the clock frequency. Also note that the output of the
memory port connects to the multiplexor for each slot.
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Problem 2: The datapath hardware for resolving branches in the 2-way superscalar MIPS imple-
mentation below is incomplete: it does not show branch target computation for the instruction in
Slot 1 (it is shown for Slot 0). (The hardware for determining branch conditions is also not shown,
but that’s not part of this problem.) The IF-stage memory port can retrieve any 4-byte aligned
address. (That is, it does not have the stricter 8-byte alignment that is assumed by default for
2-way superscalar processors presented in class.)
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(a) Add hardware so that the correct branch target is computed for branches in either slot. The
following signals are available: br_slot_0, which is 1 if the instruction in Slot 0 (ir0) is a branch;
br_slot_1, which is 1 if the instruction in Slot 1 is a branch. Assume that there will never be a
branch in both Slot 0 and Slot 1.

Design the hardware for low cost. Hint: Adder carry-in inputs can come in handy. The goal
of this part is to generate the correct target address, the next part concerns what is done with it.

Solution appears above in blue and green. Multiplexors have been placed before both adder inputs, and the
br slot 1 signal is used as a control input. One mux provides the corresponding displacement value. The other
provides either pc or npc. For the branch in slot 0 we need to compute pc + immed0 + 4, so the upper input to the
mux is pc and the carry in bit is set to 1. (Note that the new ID.pc latch holds the address of the instruction in slot
0.) For the branch in slot 1 we need to compute pc 1 + immed1 + 4, where pc 1 is the address of the instruction
in slot 1, but pc 1 is not available anywhere. However, npc is pc 0+8 = pc 1 + 4. So for a branch in slot 1 we
compute npc + immed1 (in part by setting the carry in to 0).

(b) Add datapath so that the branch target address can be delivered to the PC at the correct time,
whether the branch is in Slot 0 or Slot 1. (Earlier in the semester branch delay slots were given as
an example of an ISA feature that worked well for the first implementations but that would become
a burden in future ones. Welcome to the future.)

No datapath needs to be added. The question should have asked for control logic to identify instructions to squash.
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LSU EE 4720 Homework 7 Solution Due: 24 April 2013

Problem 1: Solve Spring 2012 Final Exam Problem 3, in which pipeline execution diagrams are
requested for some superscalar systems.

See the Spring 2012 Final Exam solution at http://www.ece.lsu.edu/ee4720/2012/fe_sol.pdf.

Problem 2: Solve Spring 2012 Final Exam Problem 6 (d) and (e). (Just those two.) These
questions concern the techniques of widening (superscalar designs) and deepening (more pipeline
stages) our implementation to exploit more instruction-level parallelism.

See the Spring 2012 Final Exam solution at http://www.ece.lsu.edu/ee4720/2012/fe_sol.pdf.

Problem 3: Solve Spring 2012 Final Exam Problem 4, which asks for performance information
about some branch predictors.

See the Spring 2012 Final Exam solution at http://www.ece.lsu.edu/ee4720/2012/fe_sol.pdf.
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LSU EE 4720 Homework 1 Solution Due: 17 February 2012

Problem 1: To save space in a program an array is designed to hold four-bit unsigned integers
instead of the usual 32-bit integers (it is known in advance that their values are ∈ [0, 15]). Because
this 4-bit data size is less than the smallest MIPS integer size, 8-bits, even a load byte instruction
will fetch two array elements. Code to read such an array and a test routine appear on the next
page, along with a stub for code to write the array. The routine compact_array_read is used
to read an element of this array and compact_array_write is the start (mostly comments) of a
routine to write an element.

(a) Add comments to compact_array_read appropriate for an experienced programmer. The com-
ments should describe how instructions achieve the goal of reading from the array. The comments
should not explain what the instruction itself does, something an experienced program already
knows. See the test code for examples of good comments. Note: The code in the original assign-
ment had a bug: lb should have been lbu.

See comments below.

(b) Complete the routine compact_array_write, so that it writes data into the array. See the
comments for details.

Solution appears below.

###############################################################################

##

## Test Code

##

.data

a: # Array of values to test. Each byte hold two 4-bit elements.

.byte 0x12, 0x34, 0x56

msg: # Message format string (similar to printf).

.asciiz "Value of array element a[%/s0/d] is 0x%/s3/x\n"

.text

.globl __start

__start:

addi $s2, $0, 4 # Last index in array a.

addi $s0, $0, 0 # Initialize loop index.

LOOP:

la $a0, a # First argument, address of array.

jal compact_array_read

addi $a1, $s0, 0 # Second argument, index of element to read.

la $a0, msg # Format string for test routine’s msg.

addi $s3, $v0, 0 # Move return value (array element) ...

addi $v0, $0, 11 # ... out of $v0 and replace with 11 ...

syscall # ... which is the printf syscall code.

bne $s0, $s2 LOOP

addi $s0, $s0, 1 # Good Comment: Advance index to next

# element of test array.

# Bad Comment: Add 1 to contents of $s0.

li $v0, 10 # Syscall code for exit.

syscall
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###############################################################################

##

## compact_array_read

##

compact_array_read:

## Register Usage

#

# CALL VALUES

# $a0: Address of first element of array.

# $a1: Index of element to read.

#

# RETURN VALUE

# $v0: Array element that has been read.

#

# Element size: 4 bits.

# Element format: unsigned integer.

## SOLUTION

srl $t0, $a1, 1 # Scale array index to byte offset.

add $t1, $a0, $t0 # Compute address of element.

andi $t3, $a1, 1 # Determine if loading upper or lower 4 bits.

bne $t3, $0 SKIP

lb $t2, 0($t1) # Load a pair of elements.

jr $ra # Return for upper-4-bits case.

srl $v0, $t2, 4 # Move upper 4 bits into position.

SKIP: jr $ra # Return for lower-4-bits case

andi $v0, $t2, 0xf # Just want lower bits, so mask off rest.
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###############################################################################

#

# compact_array_write

#

compact_array_write:

## Register Usage

#

# CALL VALUES

# $a0: Address of first element of array.

# $a1: Index of element to write.

# $a2: Value to write.

#

# RETURN VALUE

# None.

#

# Element size: 4 bits.

# Element format: unsigned integer.

srl $t0, $a1, 1

add $t1, $a0, $t0

andi $t3, $a1, 1

lb $t2, 0($t1)

bne $t3, $0 SKIPw

andi $a2, $a2, 0xf # Make sure that write value is 4 bits.

# Even element, put $a2 value in bits 7-4.

#

andi $t2, $t2, 0xf # Write zeros in bits 31-4 (keep only 3-0)

j FINISH

sll $a2, $a2, 4 # Put write value in correct position.

SKIPw:

# Odd element, put $a2 in bits 3-0.

#

andi $t2, $t2, 0xf0 # Write zeros everywhere except bits 7-4.

FINISH:

or $t2, $t2, $a2 # Combine write value with value already present.

jr $ra

sb $t2, 0($t1)
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Problem 2: The MIPS code below executes on the illustrated implementation. The loop iterates
for many cycles. The register file bypasses data from the write ports to the read port in the same
cycle.

format
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LOOP: # 1st Iter 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

srl r4, r3, 2 IF ID EX ME WB

sw r4, 0(r3) IF ID ----> EX ME WB

bne r4, r2 LOOP IF ----> ID EX ME WB

addi r3, r3, 4 IF ID EX ME WB

nop IF ID EXx

nop IF IDx

# Second Iteration 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

srl r4, r3, 2 IF ID EX ME WB

sw r4, 0(r3) IF ID ----> EX ME WB

bne r4, r2 LOOP IF ----> ID EX ME WB

addi r3, r3, 4 IF ID EX ME WB

# Third Iteration 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

srl r4, r3, 2 IF

(a) Show a pipeline execution diagram for the code above on the illustrated implementation for
enough iterations to determine CPI.

Solution appears above. The implementation lacks bypass paths, forcing the store to stall two cycles, waiting for
the result of the srl. Also notice that in this implementation the branch resolves in ME and so the branch target is not
fetched until the branch is in WB. Grading Note: In most submissions the branch target was fetched one
cycle too early.

The second iteration starts at cycle 8, the third at cycle 16. The state of the pipeline is identical in cycles 8 and 16
(addi in ME and bne in WB), and so the third iteration will execute identically to the second. The time for the second
iteration is 16 − 8 = 8 cycles, so the third and subsequent iterations will be 8 cycles. The CPI is then 8

4 = 2CPI.
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LSU EE 4720 Homework 1 Solution Due: 2 March 2011

Problem 1: The MIPS code below executes on the illustrated implementation. The loop iterates
for many cycles.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem
Port

Addr

DataOut

Addr

DataIn

Mem
Port

DataOut
rtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

=

30 2
2'b0

+
15:0

25:0

29:26

29:0

0 1

15:0

c4:r2
c6:r1

c8:r3

c11:r2 Impractical Bypass!

# SOLUTION

lw r2, 0(r5) IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r1, 0(r2) IF ID -> EX ME WB FIRST ITERATION

lw r3, 0(r1) IF -> ID -> EX ME WB

sw r3, 4(r2) IF -> ID -> EX ME WB

bne r3, r0 LOOP IF -> ID EX ME WB

addi r2, r3, 0 IF ID EX ME WB

# Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r1, 0(r2) SECOND ITERATION IF ID EX ME WB

lw r3, 0(r1) IF ID -> EX ME WB

sw r3, 4(r2) IF -> ID -> EX ME WB

bne r3, r0 LOOP IF -> ID EX ME

addi r2, r3, 0 IF ID EX

# Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r1, 0(r2) THIRD ITERATION IF ID

(a) Show a pipeline execution diagram for enough iterations to determine the CPI. Compute the
CPI for a large number of iterations.

Pipeline diagram appears above. Note that execution is shown to the start of the third iteration. That was necessary
to insure that a repeating pattern has been established, meaning that the state of the pipeline was the same in consecutive
iterations. The first iteration starts at cycle 1 (by definition with the fetch of the first instruction of the loop), the pipeline
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has the first instruction in IF and a non-loop instruction in ID. The second iteration starts in cycle 9, there the ID stage
has a different instruction than in the first iteration. The third iteration starts in cycle 16, the stage contents here are
the same as the start of the second iteration, addi in ID, bne in EX, and sw in ME. Therefore whatever happens in the
second iteration will happen in the third iteration, and all following iterations (so long as the loop branch is taken).

The second iteration takes 16 − 9 = 7 cycles, so the CPI is 7
5 = 1.4 .

(b) Show when each bypass path is used. Do so by drawing an arrow to a multiplexor input and
labeling it with the cycles in which it was used and the register. For example, something like

C10/r9 −→ to show that the input is used in cycle 10 carrying a value for r9.
The labels are shown in the diagram above in blue.

Problem 2: Continue to consider the pipeline and code from the previous problem. The store
instruction and the branch could both benefit from a new bypass connection.

(a) Show a new bypass connection for the store.
The store needs the value of the preceding load. That’s available too late for the bypass connection in the EX stage.

A new bypass has been added to the ME stage, that is shown in green.

(b) Indicate the impact of the new store bypass connection on critical path length.
The memory port is assumed to be on the critical path, however it would be reasonable to assume that it’s the

address input and data output that are critical. If so, the added multiplexor would not increase critical path.

(c) Show a new bypass connection needed by the branch.
Bypass needed from ME to the comparison unit in ID. Though it is impractical, it’s shown in red.

(d) Indicate the impact of the new branch bypass connection on critical path length.
The output of the memory port will not be available until the very end of the cycle, so this bypass would certainly

lengthen the critical path and so should not be added.

(e) Suppose that the cost of the two bypass connections were equal and that both had no critical
path impact. If only one could be added to an implementation which would you add? Base your
answer not on the example code above, but on what you consider to be typical programs.

The branch bypass. Branches occur frequently and its reasonable that it would use a value loaded by a nearby
instruction. The store bypass, since it’s only useful when the bypassed value is from an immediately preceding load, would
only be useful for programs that are copying data from one area of memory to another, and there are ways of separating
such load/store pairs.
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LSU EE 4720 Homework 1 Solution Due: 15 September 2010

Problem 1: Diagnose or fix the MIPS-I problems below.

(a) Explain why the code fragment below will not complete execution. Fix the problem, assuming
that the load addresses are correct. (Problems such as this occur when operating on data prepared
on a different system.)

lw r1, 0(r2)

lw r3, 6(r2)

MIPS loads and stores must be to aligned addresses, meaning that the address must be a multiple of the data size.
In this case the data size is 4 (because the instructions are lw). Because they both use the same base register, r2, at
most one of the load addresses can be a multiple of 4.

The code below fixes the problem by using lb instead of lw and sliding the bytes into the respective destination
registers. A faster solution is possible: based on the two least-significant bits of r2 and branch to one of four routines.
(For example, if the two-least significant bits were zero then lw r1, 0(r2) would work and two lhu could be used
for 6(r2).)

# Solution

addi r4, r2, 4

LOOP:

sll r1, r1, 8

lbu r11, 0(r2)

or r1, r1, r11

sll r3, r3, 8

lbu r13, 6(r2)

or r3, r3, r13

bne r2, r4 LOOP

addi r2, r2, 1

(b) The code below will execute, but it looks like there might be a bug. Explain.

jal subroutine

add r31, r0, r0

The jal instruction writes the return address in register r31, but the instruction in the delay slot, which is executed
immediately after the jal, overwrites r31. If the programmer didn’t care about the return address then a j instruction
would be used, so the code above probably has a bug.

(c) The two fragments below are almost but not quite MIPS-I. Re-write them using MIPS instruc-
tions so they accomplish what the programmer likely intended.

# Fragment 1

lw r1, 0(r2+r3)

# Fragment 2

bgti r1, 101 target

nop

1
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# Solution - Fragment 1

#

# MIPS does not have a load that uses two source registers.

add r1, r2, r3

lw r1, 0(r1)

# Solution - Fragment 2

#

# MIPS branches cannot perform magnitude comparisons (gt between two

# registers) nor can they compare to an immediate (the 101).

slti r2, r1, 102

bne r1, r0 target

nop
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(d) The code fragments below are correct, but not as efficient as they could be. Re-write them
using fewer instructions (and without changing what they do).

# Fragment 1

addi r1, r0, 0xaabb

sll r1, r1, 16

ori r1, r1, 0xccdd

# Fragment 2

add r1, r0, r0

addi r1, r1, 123

# Fragment 1 - Solution

#

# Hel-llow, lui is in the instruction set for a reason!

lui r1, 0xaabb

ori r1, r1, 0xccdd

# Fragment 2 - Solution

#

# Too much exposure to accumulator-style ISAs can ingrain bad habits.

# In particular a register does not need to be cleared before it is

# written.

addi r1, r0, 123
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LSU EE 4720 Homework 2 Solution Due: 17 September 2010

Problem1: Consider the execution of the code fragments below on the illustrated implementation.

format

immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+4

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

=
=0
<0

E

Z

N

NPC

• A value written to the register file can be read from the register file in the same cycle. (For
example, if instruction A writes r1 in cycle x (meaning A is in WB in cycle x) and instruction
B is in ID in cycle x, then instruction B can read the value of r1 that A wrote.)

• As one should expect, the illustrated implementation will execute the code correctly, as
defined by MIPS-I, stalling and squashing as necessary.

# SOLUTION Execution on the resolve-in-ME (illustrated) pipeline

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r3, 0(r1) IF ID EX ME WB FIRST ITERATION

add r4, r4, r3 IF ID ----> EX ME WB

bne r1, r2 LOOP IF ----> ID EX ME WB

addi r1, r1, 4 IF ID EX ME WB

xor r7, r8, r3 IF IDx

sw r4, 16(r5) IFx

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r3, 0(r1) SECOND ITERATION IF ID EX ME WB

add r4, r4, r3 IF ID ----> EX ME WB

bne r1, r2 LOOP IF ----> ID EX ME WB

addi r1, r1, 4 IF ID EX ME WB

xor r7, r8, r3 IF IDx

sw r4, 16(r5) IFx

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r3, 0(r1) THIRD ITERATION IF ...

(a) Show a pipeline execution diagram for this code running for at least two iterations.
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Solution appears above.
Grading Note: A common mistake this semester was counting the squashed instructions, xor

and sw, in the formula for the CPI. The CPI is a measure of performance, so it does not make
sense to count instructions that were not supposed to be executed.

• Carefully check the code for dependencies, including dependencies across iterations.

• Base timing on the illustrated implementation, pay particular attention to how the branch
executes.

(b) Find the CPI for a large number of iterations.
The iteration start times of the first three iterations (based on the IF of the first instruction) are 0, 8, and 16. The

first iteration and the second iteration each take 8 cycles. The states of the pipeline at the start of the second and third
iterations are identical (lw in ID, addi in ME, etc.) and therefore the third iteration will take the same amount of time
as the second. Therefore we can safely say that there are 8 cycles per iteration. Since there are four instructions in the

loop the CPI is 8
4 = 2 .

(c) How much faster would the code run on an implementation similar to the one above, except
that it resolved the branch in EX instead of ME? Explain using the pipeline execution diagram above,
or using a new one. An answer similar to the following would get no credit because “should run
faster” doesn’t say much: A resolution of a branch in EX occurs sooner than ME so the code above
should run faster.. Be specific, and base your answer on a pipeline diagram.

With the branch resolved in EX rather than ME the target would be fetched while the branch is in ME rather than
WB, that’s one cycle earlier. Sounds good so far. But let’s not be hasty, let’s do a pipeline diagram, that’s shown below.

The diagram shows that the second iteration starts one cycle earlier than before, but there is also a stall in the lw
because of the dependence with the addi. Because of that stall the execution is no faster. The first iteration takes just
7 cycles, but the second takes 8, and so will subsequent iterations. So it’s no faster.

# SOLUTION - Execution on the resolve-in-EX pipeline.

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r3, 0(r1) IF ID EX ME WB FIRST ITERATION

add r4, r4, r3 IF ID ----> EX ME WB

bne r1, r2 LOOP IF ----> ID EX ME WB

addi r1, r1, 4 IF ID EX ME WB

xor r7, r8, r3 IFx

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r3, 0(r1) SECOND ITERATION IF ID -> EX ME WB

add r4, r4, r3 IF -> ID ----> EX ME WB

bne r1, r2 LOOP IF ----> ID EX ME WB

addi r1, r1, 4 IF ID EX ME WB

xor r7, r8, r3 IFx

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r3, 0(r1) THIRD ITERATION IF ...
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Problem 2: Apologies in advance to those tired of the previous problem. Consider the execution
of the code below on the implementation from the last problem. The code is only slightly modified.

(a) Show a pipeline execution diagram for this code, and compute the CPI for a large number of
iterations. It should be faster.

LOOP:

add r4, r4, r3

lw r3, 0(r1)

bne r1, r2 LOOP

addi r1, r1, 4

add r4, r4, r3

sw r4, 16(r5)

The code has been scheduled to avoid dependence stalls, the execution appears below.

# SOLUTION Execution on the resolve in ME (illustrated) pipeline

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r4, r4, r3 IF ID EX ME WB

lw r3, 0(r1) IF ID EX ME WB

bne r1, r2 LOOP IF ID EX ME WB

addi r1, r1, 4 IF ID EX ME WB

add r4, r4, r3 IF IDx

sw r4, 16(r5) IFx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r4, r4, r3 IF ID EX ME WB

lw r3, 0(r1) IF ID EX ME WB

bne r1, r2 LOOP IF ID EX ME WB

addi r1, r1, 4 IF ID EX ME WB

add r4, r4, r3 IF IDx

sw r4, 16(r5) IFx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r4, r4, r3 IF ...

(b) How much faster would the code above run on the implementation that resolves branches in EX

(from the previous problem)?
An iteration takes 6 cycles on the resolve-in-ME version (shown above); for a CPI of 6

4 . On the resolve-in-EX version
the second iteration would start in cycle 5, on cycle earlier, and would not suffer stalls (unlike it’s problem 1 counterpart).
So it would run with a CPI of 5

4 . The question asked how much faster. A correct answer might be 5
4 versus 6

4 . (Any
reasonable comparison would be just as correct.)

(c) Suppose that due to critical path issues, the resolve-in-EX implementation had a slower clock
frequency. Let φME be the clock frequency of the resolve-in-ME implementation (the one illustrated),
and φEX be the clock frequency of the resolve-in-EX implementation. Find φEX in terms of φME such
that both implementations execute the code fragment above in the same amount of time. That is,
find a clock frequency at which the benefit of a smaller branch penalty is neutralized by the lower
clock frequency on the code fragment above.

Let cEX denote the number of cycles per iteration of the resolve-in-EX version and define cME similarly. The
execution time per iteration for the two systems are cEX

φEX
and cME

φME
. Equate the two quantities, cEX

φEX
= cME

φME
, and solve

for φEX:

φEX = φME

cEX

cME
= φME

5

6
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Grading Note: Too many students apparently did not give their answers some does-this-make-
sense scrutiny. We know that the resolve-in-EX system is faster. Therefore we should expect that
it can run at a lower clock frequency and still equal the performance of the resolve-in-ME system.
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LSU EE 4720 Homework 3 Solution Due: 22 September 2010

Problem 1: Note: Problems like this one have been assigned before. Please solve this problem
without looking for a solution elsewhere. If you get stuck ask for hints. Copying a solution will
leave you unprepared for exams, and will waste your (or your parents’) hard-earned tuition dollars.
A shift unit is to be added to the EX stage of the implementation below. The shift unit has a
32-bit data input, VIN, a 5-bit shift amount input, AMT, a 1-bit input SIN, and a 1-bit control input
DIR. There is a 32-bit data output, VOUT. The DIR input determines whether the shift is left (1) or
right (0). If the shift is right then the value at input SIN is shifted in to the vacated bit positions.
The meaning of the other inputs is self-explanatory. For a description of MIPS-I instructions see
the MIPS32 Volume 2 linked to the course references page.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

VIN

VOUT
SIN

AMT

DIR

s

a

mx
d

10:6

4:0

is Shift

0:0

2:2

1:1

31:31
shf

Part c only

Part a only

Parts a, b,

and c

(a) Connect the shift unit data inputs so that it can be used for the MIPS sll, sllv, srl, srlv,
sra, and srav instructions. Assume that the ALU has plenty of slack (it is not close to carrying
the critical path). (Control inputs are in the next part.)

• Be sure your design does not unnecessarily inflate cost or lower performance.

• In your diagrams be sure to use the bit ranges used, for example, 27:21, when connecting a
wire to an input with fewer bits than the wire.

Solution appears above in blue and purple. The blue material applies to all parts.
The shift input and amount are taken from the ALU input mux outputs, this enables bypassing into the shift unit.
The shift output is muxed with the ALU output before the pipeline latch, so a new EX/ME latch is not needed.
Grading Note: There was no deduction for the following minor issue: Not using the bypassed

values for shifter inputs (that would make stalls necessary in some cases).

(b) Show the logic for control inputs DIR and SIN and any multiplexors that you added.
Solution appears above in green. The control logic is simple due to the careful choice of function field values for the

different shifts.
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The box is Shift has an output of 1 if any of the shifts are present. If the implementation is of MIPS I then for

the is Shift we can nor-together bits 31:26 (the opcode, to check for format R) and bits 5:3 (the function field, to test
for a shift instruction). If MIPS IV is being implemented then this won’t work because the output would be 1 for movt
and movn instructions.

The shifts have been conveniently encoded so that if IR bit 0:0 is 1 then the shift is arithmetic, otherwise it is
logical, that simplifies the SIN logic. Similarly bit 1:1 is 1 if the direction is right (but the problem was made up by a
left-handed person, so an inverter is needed). A 1 in bit 2:2 indicates the shift amount comes from a register.

The s and a control signals are shown using their own pipeline latch bits, but it would be better to get their values
from IMM, as is already done for the sa field value.

Grading Note: There was no deduction for the following minor issue: Computing the control
signals in EX (doing that could lengthen critical path).

(c) Repeat the design of the datapath but assuming that the ALU is on the critical path and that
we don’t want to lower the clock frequency.

Solution appears in red. For part c, the ALU would once again be connected directly to the EX/ME.ALU latch. A
new EX/ME.shf latch has been added to carry the shift value to ME where it enters a new mux. It is important that
the output of this new mux NOT connect to the ME to EX bypass path (since the ALU is critical, as stated above) and
that it not connect to the memory port Addr input (because the memory port is always assumed to be critical).
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LSU EE 4720 Homework 4 Solution Due: 4 September 2010

Questions in this assignment are about VAX, an ISA that was mentioned in class but for which
no details were given. Use the VAX-11 Architecture Reference Manual (Cover, 1982; text, 1980),
which is linked to the course references page, as a reference for this assignment. (The VAX MACRO
and Instruction Set Reference Manual can be used as a secondary reference; you may also use any
other resources that you can find.) Chapter and section numbers in this assignment refer to the
VAX-11 manual, not to the VAX MACRO manual.

Problem 1: Compare the design goals for VAX as described in Section 1.1 to the design goals for
SPARC as described in the SPARC Architecture Manual V8 Section 1.1 (also linked to the course
references page).

(a) List the design goals for each architecture that are considered defining elements of the respective
ISA family (CISC and RISC). Explain whether the design goals in VAX and SPARC are mutually
exclusive (meaning you can’t easily do both).

The solution below is based on the EE 4720 ISA Families Overview notes. One VAX goals that is consistent with
defining elements of CISC ISAs is “High bit efficiency,” which implies variable instruction size. Another “Systematic,
elegant instruction set . . . ” can be interpreted to mean a large variety of immediate sizes and addressing modes, which
is a CISC characteristic. (Of course, with no context “systematic, elegant” can mean anything.) If instead one interprets
the “systematic, elegant” goal only to mean that there are few special-purpose registers and data types, then the goal is
consistent with both CISC and RISC.

The SPARC goal of being “Easily pipelined” matches a goal and characteristic of RISC ISAs.
Mutual exclusivity will be discussed for family-consistent goals (the ones mentioned above): High bit efficiency, which

implies variable instruction size, is not consistent with easy pipelining because instruction fetch of one instruction would
depend upon the decoding of the prior instruction, making it cumbersome to do both (fetch and decode) at the same time.

(b) List a feature or design goal for each ISA that is unrelated to the features of the respective ISA
family. Briefly explain why it is unrelated.

For VAX: Extensibility, because that only indicates that new instructions can be added, it says nothing about
what those instructions might be.

For SPARC: Register Windows, because that would be just as useful on a CISC ISA.

Problem 2: Answer the following questions about VAX and RISC instruction formats.

(a) MIPS has three instruction formats for the integer instructions, SPARC has from three to five
(depending on how you count). The VAX ISA seems to have a simpler format, according to Section
2.6 (it takes just half a page to describe). Even if the VAX format is conceptually simpler (and
many would dispute that), why is it more complex in a way that is important to implementers.
Hint: This is an easy question.

A VAX instruction can have zero to six operands, and each operand can be a variety of sizes. In a RISC ISA given
a format, one knows exactly which bits a particular piece of information (say, a register number) will occupy. That’s
why the address inputs of the register file in our MIPS implementation can connect directly to the instruction register, no
decode logic is needed. In VAX to find, say, a register number for the third operand one must look at the opcode, and the
first two operands just to determine where to look. For this one needs decode logic and a shifter or multiplexor to extract
the bits that are needed.

(b) In class each operand of a typical CISC instruction had a type and info field to describe its
addressing mode. What are the corresponding VAX field names?

The type field is part of the operand specifier in VAX, and info field is part of the operand specifier field
and the specifier extension field.
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Grading Note: Many answered access type and data type for this question. Those refer to the
two general pieces of information that an operand specifier conveys, they do not refer to specific
fields in the instruction.

(c) Some RISC instructions have something like a type field, though not capable of specifying the
wide range of operand types as the VAX type fields (see the previous problem). Find two examples
of MIPS instructions that have an equivalent of a type field. Identify the field and explain what
operand types it specifies. Hint: Consider instructions that deal with floating-point numbers.

The format for floating-point operate instructions, such as add.d, has a fmt field which indicates whether the
operand is single- or double-precision.

(d) Both MIPS and SPARC have an opcode field that appears in every instruction format and some
kind of an opcode extension field that appears in some of the formats. Name the opcode extension
fields in MIPS and SPARC. What is the closest equivalent to an opcode extension field in VAX?

The opcode extension in MIPS is called func, the opcode extension in SPARC is called op2 in format 2 and op3
in format 3. The closest VAX equivalent is the second byte of a two-byte opcode.

Problem 3: Find the VAX addressing modes requested in the problems below. The term address-
ing mode can refer to registers, immediates, as well as memory addresses.

(a) Find the VAX addressing modes corresponding to the addressing mode used by the indicated
operands in each instruction below.

Name the mode, and show how the operand would be encoded in the instruction (there is no
need to show the entire instruction).

# SOLUTION

addi r1, r2, 3 # Both source operands.

#

# r2: Register mode.

# 7 6 5 4 3 2 1 0 <- Bit positions

# ! 5 ! 2 ! <- Field values.

#

# 3: Literal Mode

# 7 6 5 4 3 2 1 0 <- Bit positions

# ! 0 ! 3 ! <- Field values.

lw r1, 0(r2) # Source operand. Note that the displacement is zero.

#

# 0(r2): Register Deferred

# 7 6 5 4 3 2 1 0 <- Bit positions

# ! 6 ! 2 ! <- Field values.

lw r3, 4(r4) # Source operand

#

# 4(r2): Displacement Mode, with a byte displacement

# First Byte Second Byte

# 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 <- Bit positions

# ! 10 ! 2 ! ! 4 ! <- Field values.

ld [l1+l2], l3 # SPARC insn, source operand

# No equivalent VAX addressing mode. (Sorry)
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(b) Find the VAX addressing mode that can be used in place of the three instructions below. Name
the mode, and show how it is encoded.

sll r1, r2, 2

add r3, r1, r4

lw r5, 0(r3)

# Solution

# Indexed addressing: VAX assembler: (r4)[r2]

#

# 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 <- Bit positions

# ! 6 ! 4 ! ! 4 ! 2 ! <- Field values.

#

# Note: The amount by which r2 is multiplied is determined by the

# instruction that uses the operand. For example for ADDB3 (add byte

# with two source operands) the value of r2 is multiplied by 1, for

# ADDL3 the value is multiplied by 4 (a VAX longword).

3
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LSU EE 4720 Homework 6 Solution Due: 20 October 2010

Links in this assignment are clickable in Adobe Reader. For the questions below refer to the gcc
4.1.2 manual, available via http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/.

Problem 1: Read the introductory text to the optimization options page, 3.10, in the GCC 4.1.2
manual, and familiarize yourself with your Web browser’s search function so that you can search
the rest of the page. Answer the following questions.

(a) When optimizing gcc tries to fill branch delay slots. What option can be used to tell gcc not
to fill delay slots, without affecting other optimizations? What option can be used to control how
much effort gcc makes to fill delay slots?

The option for not filling delay slots is -fno-delayed-branch. At least two options can be used for effort.
They are --param max-delay-slot-insn-search=N and --param max-delay-slot-live-search=N,
where N is a number of instructions, a higher number means more effort. These options indicate how many instructions
to look at in a search to fill a branch delay slot.

(b) A reason given in class for scheduling code was to avoid stalls due to a lack of bypass paths.
What reason is given in the description of the -fschedule-insn option?

The documentation attributes stalls to slow floating point instructions (which most of them are) and for memory
instructions. The assumption is that bypass paths that would be frequently used are already there. (That is, there are
no “missing” bypass paths to schedule around, or more precisely the missing bypass paths are used so infrequently they
are not worth mentioning.)

Problem 2: The POWER and PowerPC ISAs have alot in common, but each has instructions the
other lacks. Show the gcc command line switch to compile for both, start looking in section 3.17,
Hardware Models and Configurations.

To compile for both use two switches, each eliminating instructions limited to one of the ISAs: -mcpu=common
one could also use the pair of switches: -mno-power -mno-powerpc.

Problem 3: Read the following blog post about the use of profiling in the build of the Firefox
Web browser:
http://blog.mozilla.com/tglek/2010/04/12/squeezing-every-last-bit-of-performance-out-of-the-linux-toolchain/.
The post compares the results of profiling optimizations provided by gcc to those obtained using
other tools for optimization.

(a) As described in the blog post, what was the training data used for profiling?
The training data was just the “Quit” command. That is, Firefox was started and then exited. One might expect

they would profile Firefox rendering some Ajaxy Web page, but they didn’t.

(b) Suppose that a Web page with a 5000-row table performs just as sluggishly with the profile-
optimized gcc build described in the blog post (firefox.static.pgo) as the ordinary Firefox build
(firefox.stock). Provide a possible reason for this, and a solution.

The default startup code either did not have table, or did not have a table elaborate enough to guide optimization.
The solution would be to profile on the 5000-row table.

Problem 4: SPEC recently ended a call for possible programs for their next CPU suite, cpuv6.
Read the page describing the call: http://www.spec.org/cpuv6/.

(a) There is a section entitled “Criteria SPEC considers important for the next CPU benchmark
suite.” Evaluate the suitability of the pi.c program used in class based on each of these criteria.

The pi program would not be suitable. Here is how the pi program meets each of the criteria:

1
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A good benchmark candidate is:

• Used by real users

:-( Criterion not met: No “real” user because no one uses that program to compute π.

• Compute bound, or can have its compute bound portion excerpted

:-) Criterion met: The program is compute bound.

• Portable or can be ported to multiple hardware architectures and operating systems with reasonable effort

:-) Criterion met: Written in standard C, easy to port.

• Represents the state of the art for the given field

:-( Criterion not met: Much better ways to compute π.

• Derived from a representative application

:-( Criterion not met: Nope.

• Capable of solving problems of varying sizes. SPEC CPU2006 used 3 workloads, in various capacities, for its
benchmarks.

:-) Criterion met: Can vary the number of iterations.

• Reasonably predictable as to its code path. For example, minor differences in floating point accuracy across
platforms should not cause the program/application to do wildly different work on those platforms.

:-( Criterion not met: Not sure, but given the answers above not worth it to find out.

2
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LSU EE 4720 Homework 1 Solution Due: 3 March 2010

Problem 1: Re-write each code fragment below so that it uses fewer instructions (but still does
the same thing). Note: In the original assignment the branch instruction was blt r1, r0 TARG.

# Fragment 1

lw r1, 0(r2)

addi r2, r2, 4

lw r3, 0(r2)

addi r2, r2, 4

#

# SOLUTION

lw r1, 0(r2)

lw r3, 4(r2)

addi r2, r2, 8

# Fragment 2

sub r1, r2, r3

bne r1, r0 TARG

add r1, r5, r6

#

# SOLUTION

bne r2, r3 TARG

add r1, r5, r6

# Fragment 3

ori r1, r0, 0x1234

sll r1, r1, 16

ori r1, r1, 0x5678

#

# SOLUTION

lui r1, 0x1234

ori r1, r1, 0x5678
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Problem 2: The MIPS code below runs on the illustrated implementation. Assume that the
number of iterations is very large.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

LOOP:

lw r3, 0(r1)

addi r2, r2, 1

beq r3, r4 LOOP

lw r1, 4(r1)

(a) Show a pipeline execution diagram with enough iterations to determine the CPI.
Diagram shown below. To determine the CPI we need a repeating pattern of iterations. An iteration begins when

the first instruction of the loop is in IF, the first, second, and third iterations begin in cycle 0, 5, and 11, respectively.
At the beginning of the first iteration only lw r3 is in the pipeline, at the beginning of the second iteration lw r3

is in IF, lw r1 is in ID, etc. (look at the stages directly above the IF in cycle 5). So the pipeline state is different at
the beginning of the first and second iterations. At the beginning of the third iteration, in cycle 11, the pipeline contents
(state) is the same as the beginning of the second. Therefore we expect the pattern to repeat and so can determine the
CPI using the second iteration.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r3, 0(r1) IF ID EX ME WB

addi r2, r2, 1 IF ID EX ME WB

beq r3, r4 LOOP IF ID -> EX ME WB

lw r1, 4(r1) IF -> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r3, 0(r1) IF ID -> EX ME WB

addi r2, r2, 1 IF -> ID EX ME WB

beq r3, r4 LOOP IF ID -> EX ME WB

lw r1, 4(r1) IF -> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r3, 0(r1) IF ID -> EX ME WB

2
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(b) Determine the CPI.
The number of cycles is 11 − 5 = 6 (the difference between the start times of the second and third iterations), so

the CPI is 6
4 CPI. .

(c) Schedule (re-arrange) the code to remove as many stalls as possible.
There are two solutions below. The first removes one of the two stalls, the second code fragment removes both stalls.

The first code fragment loads exactly the same items as the original code, but the second one loads an extra 0(r1),
which can possibly result in loading an illegal memory address. Either solution would get full credit.

LOOP: # Solution 1, still has 1 stall.

lw r3, 0(r1)

lw r1, 4(r1)

beq r3, r4 LOOP

addi r2, r2, 1

# Solution 2, no stalls, but risks bad addr on last iter.

lw r3, 0(r1)

bne r3, r4 DONE

nop

LOOP:

lw r1, 4(r1) IF ID EX ME WB

addi r2, r2, 1 IF ID EX ME WB

beq r3, r4 LOOP IF ID EX ME WB

lw r3, 0(r1) IF ID EX ME WB

DONE:

3
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Problem 3: The MIPS implementation from the previous problem has three multiplexors in the
EX stage.

(a) Write a program that executes without stalls and which uses the eight ALU multiplexer inputs
in order (perhaps starting at cycle 3) in consecutive cycles. That is, in cycle 3 the top input of the
upper ALU mux would be used, (bypass from memory), in cycle 4 the second one would be used
(NPC), in cycle 5 rsv, in cycle 6 bypass from WB, in cycle 7 we switch to the lower ALU mux with
the bypass from ME input, in cycle 8 rtv, etc.

Solution shown below. Note that the jal instruction writes register r31.

# Bypass Upper-Mux-- Lower-Mux--

# Bypass ME NP RS WB ME RT IM WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

add r1, r2, r3 IF ID EX ME WB

add r4, r1, r5 IF ID EX ME WB

jal IF ID EX ME WB

add r6, r7, r4 IF ID EX ME WB

add r1, r31, r8 IF ID EX ME WB

add r10, r11, r1 IF ID EX ME WB

add r12, r13, r14 IF ID EX ME WB

addi r15, r16, 123 IF ID EX ME WB

add r17, r18, r12 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

# Bypass ME NP RS WB ME RT IM WB

# Bypass Upper-Mux-- Lower-Mux--

(b) Explain why it would be impossible to use the EX-stage rtv mux inputs in order in consecutive
cycles.

The middle rtv mux input is the bypass from the memory stage. For that input to be used the immediately preceding
instruction would have to write a register, which stores don’t do. Therefore it is impossible. If they didn’t have to be in
order (but still consecutive) then it would be easy, see the code below.

# Code using all the RTV inputs in consecutive cycles but not in order.

# Bypass RT ME WB <- Mux inputs, in order.

# Bypass ME WB RT <- Mux inputs, but not in order.

# Cycle 0 1 2 3 4 5 6 7

add r1, r3, r4 IF ID EX ME WB

sw r1, 0(r2) IF ID EX ME WB

sw r1, 4(r2) IF ID EX ME WB

sw r1, 8(r2) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

4
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LSU EE 4720 Homework 2 Solution Due: 17 March 2010

Problem1: The SPARC jmpl (jump and link) instruction adds the contents of two source registers
or a register and an immediate, and jumps to that address. It also puts the address of the instruction
in the destination register (usually to be used to compute a return address). For more information,
find the description of jmpl in the SPARC V8 ISA description from the references linked to the
course home page.

In this problem a similar instruction (or instructions) will be added to MIPS. Like the SPARC
jmpl, the MIPS variant can jump to a target determined by the sum of two registers or a register
and an immediate, while the address of the instruction is saved in the destination register. (Note
that the saved address is different than the address saved by MIPS’ jalr and jal instructions. Be
sure to save the address indicated by the SPARC definition.)

(a) Show how the MIPS version of these instruction(s) can be encoded. Show a format for the
instruction, using the descriptions in the MIPS32 Architecture Volume II (linked to the references
page) as an example. The format should show which instruction fields indicate each part of the
instruction.

Two instructions are needed, jmpl for the two-source-register form and jmpli for the source-register-plus-
immediate form. Assembly syntax:

jmpl rd, rs, rt

Description:

pc_cpy <- PC

PC <- rs + rt

rd <- pc_cpy

jmpli rt, rs, immed

Description:

pc_cpy <- PC

PC <- rt + sign_extend(immed)

rt <- pc_cpy

1
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(b) Show datapath changes (that is, omit control) to the implementation below needed to implement
this (these) instruction(s). The changes must fit in naturally with what is present and should not
risk lowering clock frequency. Do not forget about any changes needed to save a return address.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0
PC

PC

Solution appears above. The changes needed for the target address appear in green, the changes needed to save
the return address appear in blue. The target address is computed by the ALU, it is sent to the IF-stage PC mux from
the ME stage to preserve clock frequency. If the output of the ALU connected directly to the IF-stage PC mux the clock
frequency might have to be lowered because the ALU output would not be ready until the end of the cycle (based on the
pre-change clock frequency).

The SPARC jmpl instruction saves the address of the instruction itself, new pipeline latches were added to carry
that. Note that this is probably wasteful, since there are already latches to carry NPC needed by the existing jal and
jalr instructions. The alternative would be to subtract four from the NPC value.

To save some hardware, the PC value joins the rtv in EX, making use of a new ME-stage mux.

(c) As discussed in class, a SPARC-style jmpl on something like our 5-stage pipeline would have to
be resolved in EX. However, a higher-cost implementation might resolve a jmpl in ID if no addition
were necessary.

Identify which of the following cases is the least trouble to detect (shown with SPARC assem-
bler), and explain why it is the least trouble:

jmpl %g1, %g0, %o7 ! g0 is the zero register.

jmpl %g1, 0, %o7 ! The immediate is zero.

jmpl %g1, %g2, %o7 ! Contents of g2 is zero.

Trouble in this context is time and hardware cost. Both hardware cost and time are determined by how many bits
need to be checked for a zero value. Another factor for time is when during a clock cycle the check can start.

For the first case we need to check for the zero register in the rt field. That entails checking five bits, and these
bits are available at the beginning of the clock cycle.

For the second case we need to check whether the immediate is zero. That means checking 16 bits, also starting at
the start of the clock cycle.

For the last case we need to check 32 bits (the rt value at the output of the register file), and those bits are not
available until near the end of the clock cycle.

2
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Therefore the first case is the best (least trouble), and the last case is worst, by far.

Problem 2: Without looking at the solution, do Fall (November) 2007 Midterm exam Problem 1.
Use the Statically Scheduled MIPS study guide, http://www.ece.lsu.edu/ee4720/guides/ssched.pdf,
for tips on how to solve this interesting, understanding-building, and fun-to-solve (if one is prepared
and not under intense time pressure) problem. Only use the solution if you must. Warning: The
test problems will be chosen under the assumption that students really solved this problem.

3
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LSU EE 4720 Homework 3 Solution Due: 19 April 2010

Problem 1: The code below executes on the illustrated MIPS implementation. Assume that any
reasonable bypasses needed for the FP operands are available, even though they are not shown in
the illustration. A bypass is reasonable if it does not have a significant impact on clock frequency
and if it does not use circuitry that can predict the future.

format

immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M

1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2
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# SOLUTION

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ldc1 f0, 0(r1) IF ID EX ME WF

mul.d f2, f0, f4 IF ID -> M1 M2 M3 M4 M5 M6 WF

add.d f6, f6, f2 IF -> ID -------------> A1 A2 A3 A4 WF

bne r1, r2, LOOP IF -------------> ID EX ME WB

addi r1, r1, 8 IF ID EX ME WB

# Second Iteration Below

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ldc1 f0, 0(r1) IF ID EX ME WF

mul.d f2, f0, f4 IF ID -> M1 M2 M3 M4 M5 M6 WF

add.d f6, f6, f2 IF -> ID -------------> A1 A2

bne r1, r2, LOOP IF -------------> ID EX

addi r1, r1, 8 IF ID

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

# Third Iteration Below

ldc1 f0, 0(r1) IF

(a) Show a pipeline execution diagram covering enough iterations to compute the CPI. Don’t forget
to check code for dependencies.

Solution appears above. The state of the pipeline is the same at the start of the second and third iteration (cycles
11 and 22) and so the second iteration can be used to compute CPI. . ..

(b) Compute the CPI.
. . . which is 22−11

5 .

(c) Remember, that some bypass paths are assumed present though not illustrated. Add the needed
paths to the implementation and show when they are used.

The bypass paths are from WF to the M1 and A1 inputs, they appear in blue. They are used by the ldc1 bypassing
to the mul.d and mul.d bypassing to the add.d.

2
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Problem 2: Precise exceptions are necessary for integer instructions, but only Nice To Have for
floating-point instructions. Suppose exception conditions, such as overflow, were detected in A4

and M6 in the pipeline from the previous problem.

# Pipeline diagram for solution.

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12

mul.d f2, f0, f4 IF ID M1 M2 M3 M4 M5 M6 WF

add.d f6, f6, f2 IF ID -------------> A1 A2 A3 A4 WF

and r3, r3, r5 IF -------------> ID EX ME WB

addi r1, r1, 8 IF ID EX ME WB

(a) For the code fragment above, would a mul.d exception detected in M6 be precise? Explain
in terms of architecturally visible storage (register and memory values) when the handler starts.
(Note that in general exceptions detected in M6 would not be precise, but the question is only asking
about the fragment above.)

Yes, because when the multiply is in M6 none of the following instructions has written a register, so they could
be squashed. Registers f6, r3, and r1 will reflect execution up to the mul.d instruction, a requirement of precise
exceptions.

(b) For the code fragment above, would a add.d exception detected in A4 be precise? Explain in
terms of architecturally visible storage when the handler starts.

No, because it would be too late to prevent the and instruction from writing r3.

3
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Problem 3: The MIPS implementation below has a fully pipelined FP add unit. Replace the FP
add unit with one that has an initiation interval of 2 and a total computation time of 4 cycles.
Note that the time to compute a floating point sum is the same on the original and replacement
adder.

format

immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode

dest. reg

ID

fd

we

fd

we

A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M

1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

0:0

The new adder has two stages, A1 and A2, each has two inputs (like their fully pipelined
counterparts), and each has two outputs. In the first cycle of computation the source operands are
placed at the inputs to A1, in the second cycle of computation the values at the outputs of A1 at
the end of the first cycle are placed at the inputs to A1. In the third cycle the values at the outputs
of A1 at the end of the second cycle are placed at the inputs A2, and in the fourth cycle the inputs
to A2 are the values at the outputs of A2 at the end of the third cycle. The sum is available from
the upper output of A2 at the end of the fourth cycle.

(a) Replace the FP adder datapath with the one described above.
Solution appears above in blue. Multiplexors at the adder FU inputs select the proper values to process. Note that

some cost is saved by having fewer pipeline latches for intermediate data but that is partly offset by the need for the
multiplexors.

(b) Modify the control logic for the new adder. Be sure to account for the structural hazard when
there are two consecutive FP add instructions.

4

← → Spring 2010 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4720/2010/hw03_sol.pdf


Solution appears above in green. Assuming the multiply is still fully pipelined the pipeline latches carrying xw, we,
and fd are still needed and so can’t be removed. (If the multiply also had an initiation interval of two then half the
number of pipeline latches would be needed.) The control logic for detecting the WF structural hazard does not need to
change since operations take the same number of cycles to reach WF. It is only necessary to add control logic to detect
the structural hazard, and that is done by examining the we bit in the M3 stage, to see if that stage is occupied, and the
LSB of xw, to determine if M3 is occupied by an add operation.

5
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LSU EE 4720 Homework 4 Solution Due: 28 April 2010

Problem 1: A deeply pipelined MIPS implementation is constructed from our familiar five-stage pipeline
by splitting IF, ID, and ME each into two stages, but leaving EX and WB as one stage. The total number of
stages will be eight, call them F1, F2, D1, D2, EX, Y1, Y2, and WB. In this system branches are resolved at the
end of D2 (rather than at the end of ID). Assume that all reasonable bypass paths are present.

(a) Provide a pipeline execution diagram of the code below for both the 5-stage and this new implementation,
for enough iterations to compute the IPCs.

Solution appears below. Note that for the 8-stage system the second iteration, starting in cycle 9, starts with the processor
in the same state as the third iteration, starting in cycle 18, and so the second iteration can be used to compute IPC. The

execution rate is 5
18−9 = 5

9 insn/cycle for the eight-stage system. By a similar argument the rate for the five-stage system is

5
12−6 = 5

6 insn/cycle .

# Solution

# Eight-Stage Pipeline

#

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

addi r2, r2, 4 F1 F2 D1 D2 EX Y1 Y2 WB

lw r1, 0(r2) F1 F2 D1 D2 EX Y1 Y2 WB

add r3, r3, r1 F1 F2 D1 D2 ----> EX Y1 Y2 WB

bne r5, r4 LOOP F1 F2 D1 ----> D2 EX Y1 Y2 WB

addi r5, r5, 1 F1 F2 ----> D1 D2 EX Y1 Y2 WB

F1 ----> F2x

F1x

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

addi r2, r2, 4 F1 F2 D1 D2 EX Y1 Y2 WB

lw r1, 0(r2) F1 F2 D1 D2 EX Y1 Y2 WB

add r3, r3, r1 F1 F2 D1 D2 ----> EX Y1 Y2..

bne r5, r4 LOOP F1 F2 D1 ----> D2 EX Y1..

addi r5, r5, 1 F1 F2 ----> D1 D2 EX..

F1 ----> F2x

F1x

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

addi r2, r2, 4 F1 F2..

# Five-Stage Pipeline

#

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

addi r2, r2, 4 IF ID EX ME WB

lw r1, 0(r2) IF ID EX ME WB

add r3, r3, r1 IF ID -> EX ME WB

bne r5, r4 LOOP IF -> ID EX ME WB

addi r5, r5, 1 IF ID EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

addi r2, r2, 4 IF ID EX ME WB

lw r1, 0(r2) IF ID EX ME WB

add r3, r3, r1 IF ID -> EX ME WB

bne r5, r4 LOOP IF -> ID EX ME WB

addi r5, r5, 1 IF ID EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

addi r2, r2, 4 IF ID EX ME WB
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(b) Suppose the 5-stage MIPS runs at 1GHz. Choose a clock frequency for the 8-stage system for which the
time to execute the code above is the same as for the 5-stage MIPS.

First, express the execution rates for the two systems above in instructions per second. Let φ5 and φ8 denote the clock
frequencies of the 5-stage and 8-stage systems. The execution rate in instructions per second is the CPI times the clock frequency:

CPI × φ = φ
IPC . Solving 1.8φ8 = 1.2φ5 for φ8 yields φ8 = 1.8

1.2φ5 = 1.5GHz .

(c) Consider two ways to make a 7-stage system from the 8-stage system. In method ID, the two ID stages
(D1 and D2) are merged back into one (or if you prefer, the ID stage was never split in the first place). In
method ME, the two ME stages (Y1 and Y2) are merged back into one (or were never split).

Which method is better, and why? Assume that the eight-stage system runs at 1.8GHz. Consider both
the likely impact on clock frequency (remembering that you are at least senior-level computer engineering
students) and the benefit for code execution (don’t just consider the code above, argue for what might be
typical code).

As mentioned in class a number of times, it is the memory stage which would take the most time. Here are sample stage timings
with memory taking the most: IF, 1 ns; ID, 0.4 ns; EX, 0.56 ns; ME, 1 ns; and WB, 0.2 ns. For the 5-stage system memory
determines the clock frequency. On the 8-stage system, assuming the memory stages timings are split, clock is determined by the EX
stage.

Based only on clock frequency it would be better to merge the D1 and D2 stages, since that would not impact clock frequency
(the original ID could handle 1.8GHz). In contrast, if the memory stages were merged the clock would be back to 1GHz and so
there would be no performance gain.

Splitting stages can introduce stalls or squashes. Because memory was split, the 8-stage system suffers two stall cycles on a
load/use pair. Because IF and ID were split there are two squashes after each taken branch.

Merging Y1 and Y2 would eliminate one stall cycle for each load/use pair. However, scheduling can eliminate many such stalls.
Merging D1 and D2 would eliminate one squash on every taken branch. Since many taken branches can’t be avoided and occur about
1 out of every 12 instructions in integer code, it would be better to merge the D1 and D2 based on code considerations.

In summary, based on both clock frequency impact and stall/squash benefit, it would be better to merge the D1 and D2 stages.

Problem 2: Itanium is a VLIW ISA designed for general-purpose use. Being a VLIW ISA (as defined
in class) its features were chosen to simplify superscalar implementations. The questions below are about
such features, read the Intel Itanium Architecture Software Developer’s Manual Volume 1, Section 3 for
details and concentrate on Sections 3.3 and 3.4. The manual is linked to the course references page,
http://www.ece.lsu.edu/ee4720/reference.html. Use this copy to be sure that section and table num-
bering used here match.

(a) Section 3.3 mentions four types of functional unit, and where an instruction using a particular unit can
be placed in a bundle (see Table 3-9 and 3-10).

Suppose an Itanium implementation fetches one bundle per cycle. Indicate the maximum number of
execution units of each type needed. (That is, there would be no advantage of having more than this number.)
Assume that the units all have latency 1 or else are fully pipelined.

The table below shows the types of execution units that can be used by each slot, as well as the maximum number of units
of each type that any bundle can need. The table was constructed by examining table 3-10, and noting that the L-unit/X-unit
instructions really use an I or B unit.

The bottom of the table shows the maximum number of times a unit will appear in a bundle. There would be no benefit in
having more than that number. For example, there would be no point in having three M-units (assuming fully pipelined) because an
instruction in slot 2 would never use it.

Execution Unit

Slot 0: M B

Slot 1: M B I F

Slot 2: B I F*

Max: 2 3 2 1 <- Maximum useful number of units.

(b) For this problem suppose the implementation had the minimum number of units of each type, one. Sketch
the pipeline execute stages, and show connections to each of the FU inputs. There should be three sets of
source operands flowing down the pipeline. Some (or all) of the execute units should have multiplexors at
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their inputs to select operands from one of the three instructions in a bundle. Show the multiplexors, and
based on the slot restrictions show the minimum number of inputs.

Solution shown below. The ID stage provides register values for instructions in each slot (RS1v, etc). Note that if there were
no restrictions on which instruction could appear in each slot then each mux would have three inputs. Also note that bypass paths
are not shown.

(c) Notice in Table 3-10 that there is no template with a stop right after Slot 0 and right after Slot 1. Provide
a possible reason for this.

With at most one internal stop a bundle can be issued in at most two pieces. With two internal stops the hardware would have
to allow three pieces, one for each slot, to move separately. The added hardware cost would not be worth the small benefit in code
size.

Suppose there was a template with two such stops (as described above), call this ISA Itanium-stop-stop.
Why might code compiled for Itanium-stop-stop be smaller than code compiled for Itanium?

Because the compiler (or human) would no longer need to insert nops (as a last resort) to comply with the one-internal-stop
restriction.

Consider Itanium and Itanium-stop-stop implementations that fetch one bundle per cycle (same as in
the prior problems). Explain why Itanium-stop-stop might be no faster than Itanium.

Bundle placement and execution (assuming five stages) are shown for code for the regular Itanium and Itanium stop-stop. The
last instruction, or, executes at the same time on both systems, so stop-stop has no execution time advantage. (If the hardware
complexity results in a lower clock frequency then it would have performance disadvantage.)

// Itanium Scheduling

// Bundle 1 - Template 03 0 1 2 3 4 5 6 7

nop // Slot 0 IF ID EX ME WB

add r1 = r2, r3 ;; // Slot 1 IF ID EX ME WB

sub r4 = r1, r5 ;; // Slot 2 IF ID -> EX ME WB

// Bundle 2 - Template 02

nop // Slot 0 IF -> ID EX ME WB

xor r6 = r4, r7 ;; // Slot 1 IF -> ID EX ME WB

or r8 = r6, r9 // Slot 2 IF -> ID -> EX ME WB

// Itanium Stop-Stop

// Bundle 1 - Template 03 0 1 2 3 4 5 6 7

// Bundle 1 - Template SS-1

add r1 = r2, r3 ;; IF ID EX ME WB

3

← → Spring 2010 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4720/2010/hw04_sol.pdf


sub r4 = r1, r5 ;; IF ID -> EX ME WB

xor r6 = r4, r7 ;; IF ID ----> EX ME WB

// Bundle 2 - Template SS-2

or r8 = r6, r9 IF ----> ID EX ME WB
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LSU EE 4720 Homework 5 Solution Due: 5 May 2010

Problem 1: Do Spring 2009 final exam Problem 2.
See the posted solution at http://www.ece.lsu.edu/ee4720/2009/fe_sol.pdf.

Problem 2: Do Spring 2009 final exam Problem 3, the branch predictor problem.
See the posted solution at http://www.ece.lsu.edu/ee4720/2009/fe_sol.pdf.

Problem 3: Do Spring 2009 final exam Problem 5.
See the posted solution at http://www.ece.lsu.edu/ee4720/2009/fe_sol.pdf.
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LSU EE 4720 Homework 1 Solution Due: 27 February 2009

Problem 1: Answer each question.

(a) Explain why the code below won’t finish running.

LOOP:

lw r1, 0(r2)

xor r3, r3, r1

bne r2, r4 LOOP

addi r2, r2, 2

The lw effective address must be a multiple of four (the address alignment restriction) but it can’t always be in the
code fragment above since r2 is incremented by 2 each iteration. The code won’t finish because the lw will raise some
kind of address misalignment exception at either the first or second iteration.

(b) Shorten the code below.

lui r1, 0x1234

ori r1, r1, 0x5678

lw r1,0(r1)

# Solution

lui r1, 0x1234

lw r1,0x5678(r1)

(c) Shorten the code below.

xor r1, r2, r3

beq r1, r0 TARG

addi r1, r4, 1

In the code above r1 will be zero only if r2 is equal to r3, so there is no need for the xor. Note: In the original
assignment the last instruction did not modify r1, so one could not safely remove the xor.

# Solution.

beq r2, r3 TARG

addi r1, r4, 1
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Problem 2: Consider the execution code below on the illustrated implementation.

LOOP:

lw r2, 0(r4)

slt r1, r2, r3

beq r1, r0 LOOP

addi r4, r4, 4

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

0 1

15:0

(a) Determine the execution rate in IPC (instructions per cycle) assuming a large number of itera-
tions. Use a pipeline execution diagram to justify your answer. (No credit without one.)

LOOP:

# Solution

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

lw r2, 0(r4) IF ID EX ME WB

slt r1, r2, r3 IF ID -> EX ME WB

beq r1, r0 LOOP IF -> ID ----> EX ME WB

addi r4, r4, 4 IF ----> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

lw r2, 0(r4) IF ID EX ME WB

slt r1, r2, r3 IF ID -> EX ME WB

beq r1, r0 LOOP IF -> ID ----> EX ME WB

addi r4, r4, 4 IF ----> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

lw r2, 0(r4) IF ID EX ME WB

...

The code suffers two stalls, the first because the slt needs the lw value and the second (a two-cycle stall) because
the beq needs the slt value. Iterations start (first instruction of the loop is in IF) in cycles 0, 7, and 14. Since the
pipeline is in the same state in cycles 7 and 14 (lw in IF, addi in ID, and beq in EX) we can expect the iteration that
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starts at 14 to be identical to the one that starts at 7. The time for these iterations is 14 − 7 = 7 cycles, and so the
execution rate is 4

7 IPC(or if you prefer, the instruction initiation interval is 7
4 CPI).

(b) If the previous part was solved correctly there should be a stall due to the branch. Add a bypass
path to avoid the branch stall.

The added bypass path appears below in blue. This bypass path eliminates the stall but would likely lower the clock
frequency. (See the next problem.)

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

0 1

15:0

LOOP:

# Solution - Execution with the bypass.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

lw r2, 0(r4) IF ID EX ME WB

slt r1, r2, r3 IF ID -> EX ME WB

beq r1, r0 LOOP IF -> ID EX ME WB

addi r4, r4, 4 IF ID EX ME WB

(c) Why might the added bypass path impact clock frequency?
The slt at the ALU output would be ready late in the cycle, and these signals would still have to pass through the

ID-stage comparison unit, then some control logic, the IF-stage mux, finally reaching the PC input. Since it’s reasonable
that the critical path passed through the ALU without this bypass, adding the bypass would increase the critical path and
therefore reduce clock frequency. (A solution that bypassed from ME to ID would not impact clock frequency [unless it
were taken from the memory port output] but it would only reduce the number of stall cycles from 2 to 1.)

(d) Suppose the clock frequency of the original pipeline were 1GHz, and call the clock frequency of
the added-bypass implementation φ. For what value of φ will the run time of the code fragment be
the same on the original and added-bypass implementations (assuming a large number of iterations).

Without the bypass the code executes at 4
71 GHz IPS (instruction per second). With the bypass the code will

execute at a rate of 4
5 IPCor 4

5φ IPS. Solving 4
71 GHz = 4

5φ yields φ = 5
7 GHz.
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(e) Suppose a blt (branch less than) instruction was available that could compare two registers
(not just a register to zero). Re-write the code above for this instruction and add bypasses that are
no worse than the added-bypass bypass. How would the performance of this blt implementation
on the re-written code fragment compare to the added-bypass implementation on the original code
fragment? Assume both systems have the same clock frequency.

The bypass needed for this part would be from ME to ID, since one value to compare arrives at through memory
port. The execution rate of the original code on the bypassed pipeline is 5 cycles per loop iteration. The code with blt
still suffers one stall and so executes at 4 cycles per iteration (see diagram below). The net result is improved performance.

Note that the speedup (performance ratio) is 5
4 = 1.25 while the improvement in IPC is only 4/5

3/4 = 1.0667.

# Solution: Code using blt

LOOP:

lw r2, 0(r4) IF ID EX ME WB

blt r2, r3 LOOP IF ID -> EX ME WB

addi r4, r4, 4 IF -> ID EX ME WB
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LSU EE 4720 Homework 2 Solution Due: 2 March 2009

Problem 1: Solve Fall 2008 EE 4720 midterm exam Problem 1. Solutions have not yet been
posted but were given in class in the Fall 2008 semester. Do not look at any solution you might
come across. (Solutions will be posted after the homework is collected.) Hints: This sort of problem
looks alot harder than it actually is. For a solved problem of this type see the solution to Problem
1 in the Spring 2008 midterm exam. Also look at the Fall 2008 Homework 2 for more on the shift
unit.

See the posted exam solution.
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LSU EE 4720 Homework 3 Solution Due: 25 March 2009

Problem 1: Consider three ISAs: IA-32 (or 64), IBM POWER6, and Sun SPARC.

(a) Choose the highest-performing system, based on SPECint2006, for each ISA. Print or provide
a link to the test disclosure for each one.

The highest performing IA-32 (loosely defined) implementation is the Xeon X5570 at 3.33 GHz achieving a peak
score of 36.3: http://spec.org/cpu2006/results/res2009q1/cpu2006-20090316-06691.html

The highest performing POWER implementation is the POWER6 at 4.2 GHz achieving a peak score of 19.2:
http://spec.org/cpu2006/results/res2008q3/cpu2006-20080623-04639.html

The highest performing SPARC implementation is the SPARCVII at 2.52 GHz achieving a peak score of 12.6:
http://spec.org/cpu2006/results/res2008q4/cpu2006-20081023-05678.html

(b) Find examples of benchmarks (if any) which favor each ISA based on the test disclosures you
found.

There are two ways to answer this question: is a benchmark faster on one system than on the other two, or does a
benchmark help one system’s score more than the other two.

The Xeon X5570 system runs each of the benchmarks faster than the other two systems and so in the first sense all
benchmarks favor the X5570 system (and so no benchmarks favor the POWER6 or SPARCVII systems).

For the second sense consider the perlbench benchmark. On the SPARCVII system perlbench’s peak ratio, 14.3, is
above the overall peak score of 12.6 and so perlbench is helping the SPARCVII. On the other systems the perlbench peak
score is below the overall peak score and so perlbench favors the SPARCVII system. (That’s not true when looking at
base scores.) Another benchmark favoring SPARCVII is xalancbmk.

The mcf benchmark favors the POWER6 system, where mcf’s peak score is 50% higher than the overall peak score.
On the other systems mcf’s peak score is above the overall peak score, but by less than 50%.

The X5570 is favored by libquantum with a peak score over 8.5 times higher than the overall peak. The other systems
trounce the reference system on libquantum too, but for them the peak scores are 4.4 times higher (for POWER6) and
2.5 times higher (SPARCVII).

Problem 2: Why might a company publish peak SPECcpu scores but not base? Why is it against
the rules?

One reason to publish peak but not base is because peak is much higher than base, the difference indicates that it
takes great skill or care to achieve the peak score performance, an effort that many users won’t or can’t make.

It is against the rules because some users might be mislead into believing that they can achieve the same performance
with normal program development effort.

Problem 3: Solve the Fall 2008 Final Exam Problems 1 and 2.
See the posted final exam solution.
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LSU EE 4720 Homework 4 Solution Due: 20 April 2009

Problem 1: Solve Fall 2008 Final Exam Problem 4 and the additional questions below.

(a) For part (a) provide pipeline execution diagrams for the three systems (5-stage scalar, n-way
superscalar, and 5n-stage superpipelined) running code of your choosing. Refer to these diagrams
when answering part (a).

Solution shown below. In the superscalar solution n instructions reside in a stage at one time. in the superpipelined
system each stage is split into n stages and the clock frequency is increased by a factor of n.

# Scalar System

#

# Cycle 1 2 3 4 5 6 ... n n+1 ...

1: add r1, r2, r3 IF ID EX ME WB

2: or r9, r2, r3 IF ID EX ME WB

...

n: sub r4, r5, r6 IF ID EX ME WB

n+1: xor r6, r7, r8 IF ID EX ME WB

...

# n-way Superscalar

#

#Cycle 1 2 3 4 5 6 ... n n+1 ...

1: add r1, r2, r3 IF ID EX ME WB

2: or r9, r2, r3 IF ID EX ME WB

...

n: sub r4, r5, r6 IF ID EX ME WB

n+1: xor r6, r7, r8 IF ID EX ME WB

...

# Superspipelined

#

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13

1: add r1, r2, r3 IF1 IF2 .. IFn ID1 ID2 .. IDn EX1 EX2 .. EXn ..

2: or r9, r2, r3 IF1 IF2 .. IFn ID1 ID2 .. IDn EX1 EX2 .. EXn ..

...

n: sub r4, r5, r6 IF1 IF2 .. IFn ID1 ID2 .. IDn EX1 ..

n+1: xor r6, r7, r8 IF1 IF2 .. IFn ID1 ID2 .. IDn ..

...

Problem 2: Consider the three systems from Problem 4 in the final exam. The problem focused
on potential (favorable) execution time, which can be achieved when there are few stalls, here we’ll
be more realistic.

(a) Which system will suffer more stalls on typical code? Explain.
The dependence in the code below will not stall the scalar system, will always stall the superpipelined system (since

sub needs a value in EX1 at the latest, but the add doesn’t have it ready until ME1, n − 1 cycles too late), and will
sometimes stall the superscalar system. The non-stall superscalar case is shown below, note that the add is the last
instruction of a group so the sub starts one cycle later. Therefore the superpipelined system suffers the most stalls .
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n: add r1, r2, r3 IF ID EX ME WB

n+1: sub r4, r1, r5 IF ID EX ME WB

(b) Invent a quantitative measure of implementation (not program) stall potential and apply it to
the three systems. The answer should include a formula for each system (giving the stall potential);
the superscalar and superpiplined formulas should be in terms of n. Hint: think about the average
or minimum distance between two dependent instructions needed to avoid a stall. The formulas
should be consistent with your answer to the first part.

Call the measure the average stall distance. Let a ∈ {0, . . . , A − 1} be the set of possible instruction
locations (the address divided by 4 in MIPS) and let s(a) denote the minimum number of instructions between an add

instruction at a and a dependent sub instruction (so that sub would be at location a+1+ s(a)). For the scalar MIPS
system s(a) = 0 for all a (there are no possible stalls between an add and a subtract). For the superscalar system

s(a) =

{
0, if amodn = n − 1;
1, otherwise.

,

and for the superpipelined system s(a) = n.

Define the average stall distance to be 1
A

∑A−1
a=0 s(a). The average stall distance for the scalar system is 0,

for the superscalar system it is n−1
n and for the superpipelined system it is n.
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LSU EE 4720 Homework 5 Solution Due: 24 April 2009

Problem 1: Solve Fall 2008 Final Exam Problem 3.
See exam solution,

Problem 2: Continue to consider the systems and code from Problem 3.

(a) What is the warmup time of the local predictor on branch B2?
It will take 10 B2 executions to bring the entire local history into the BHT. There are 7 distinct outcome patterns,

each will take at most two outcomes to warm up. The total warmup time is 10 + 2 × 7 = 24.

(b) What is the warmup time of the global predictor on branch B2?
When predicting B2 the contents of the GHR will look something like XXtXXXnXXX, where n and t are possible

B2 outcomes and X are B1 outcomes. Only two B2 outcomes can fit. It will take two executions of B2 to bring the 2 B2
outcomes into the GHR. There are three local history patterns (TT never occurs), it will take 6 executions to warm them

up (though NN won’t be followed by accurate predictions). The total warmup time is then approximately 10 + 2 × 6 .
The table below shows the local outcome patterns sorted and broken at two outcomes to emphasize predictability.

NT and TN are predictable since they are consistently followed by N, while NN it followed by N or T in equal proportions.

12 3456 7

NN NNTN NT

NN NTNN TN

NN TNNN NT

NN TNNT NN

NT NNNN TN

NT NNTN NN

TN NNNT NN

TN NTNN NN

Problem 3: Continuing still with Problem 3, suppose the number of iterations of the B1 loop
could be 1, 2, or 3, the probability of each number of iterations is 1

3 and the number of iterations
is independent of everything. The patterns of B1 for an iteration of BIGLOOP can thus be N or T N

or T T N.

(a) What is the accuracy of the bimodal predictor on B1. An exact solution is preferred but an
approximate solution is acceptable. Hint: Model the effect of the change of one BIGLOOP iteration
on the counter using a Markov chain, something you may have learned about in other courses.

Let pi denote the probability that the BHT entry for B1 is i at the top of BIGLOOP.
Consider the change in the counter (the BHT entry) between BIGLOOP and B2. If B1 executes a 1-iteration loop,

N, the counter will be decremented by 1, a 2-iteration loop will leave it unchanged (because the counter can never be 3),
and a 3-iteration loop, TTN, will change it from 0 to 1, or from 1 to 2, but leave it unchanged at 2.

Based on these counter changes probability of a counter transition from 0 to 1, 1 to 0, 1 to 2, and 2 to 1 are all 1
3 .

The rate of transitions from 0 to 1 is 1
3p0 and the rate of transitions from 1 to 0 is 1

3p1. The two must balance and so
1
3p0 = 1

3p1 and therefore p0 = p1. Similarly, p1 = p2. Since p0 + p1 + p2 = 1, p0 = p1 = p2 = 1
3 .

When the counter is zero the number of correct predictions for the 1-iteration loop is 1, for the 2-iteration loop there
is 1 correct prediction, and zero correct predictions for the 3-iteration loop. The total accuracy for this case is 2

6 .
Similarly, when the counter is 1 the numbers of correct predictions are 1, 0, and 1, and when the counter is 2

the numbers of correct predictions are 0, 1, and 2. Since the probability of each counter value is identical, the overall

prediction accuracy is 2+2+3
18 = 7

18 .
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(b) How will B1’s behavior impact the accuracy of the local predictor on branch B2? Show an
example of execution that would result in a B2 misprediction and compute the probability of that
particular execution.

Some of B1’s local history patterns will match those of B2, however the subsequent outcomes may not match and
so B1 will pollute B2’s PHT entries.

Consider, for example, B2 pattern nnntnntnnn. That could be reproduced with an execution in which B1 patterns
are n n n tn n tn n n. B2’s next outcome would be a t but B1 in this case might have an n.

This particular sequence includes 9 B1 loops, and there is only one way for B1 to do this. The probability is
(

1
3

)9
,

which is pretty unlikely and is not enough to cause a misprediction of the PHT entry is already warmed up. See the next
problem.

(c) Optional: Find the exact prediction accuracy of B2 on the local predictor with B1’s new behavior.
This may be very difficult so don’t spend too much time on it.

For B1 to induce a misprediction in B2 it must mimic a B2 pattern twice before between encounters of the real B2
pattern. It is possible for B1 to produce two patterns between one of B2’s because it can produce two outcomes (the ttn
pattern isn’t useful) in a BIGLOOP iteration where B1 always just inserts 1. The remainder of the solution is left as an
exercise to the reader.

2

← → Spring 2009 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/ee4720/2009/hw05_sol.pdf


59 Fall 2008 Solutions

926

← → Fall 2008 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4720/2008f/hw01_sol.pdf


LSU EE 4720 Homework 1 Solution Due: 29 September 2008

To answer the first question below see the MIPS32 Architecture manual linked to the course
references page.

Problem 1: The MIPS I bgtz and bltz instructions compare a register to zero, but can’t compare
two registers (unless the second one is the zero register). Consider an extension of MIPS I that
allowed branch greater than and branch less than instructions to compare two registers, call the
new instructions bgt and blt. Explain why the existing bgtz opcode could be used for bgt but
why the bltz opcode could not be used for blt. Hint: See bltzal.

The opcode for bgtz is 0x07 and the value that the ISA specifies for the rt field is 0. Assuming that no
other instruction uses opcode 0x07, the rt field could be used for the second comparison register. (This would not be
incompatible with its current use because in its current use it is comparing the rs register to 0 so it wouldn’t matter if
rt held a register number.)

In the bltz instruction the rt field is being used as an extension of the opcode field and so it cannot be used for
a register number. A new blt instruction would need its own opcode.

1
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Problem 2: A C function and a part of a MIPS equivalent are shown below. The C function looks
at the attributes of a car and decides what to pack in a promotional giveaway to the car buyer.
The assembler code corresponds to the C function up until the last line (checking for a sun roof).

#define FE_SPORTY 0x1

#define FE_OFF_ROAD 0x2

#define FE_EFFICIENT 0x4

#define FE_SUN_ROOF 0x10000

#define FE_MANUAL_TRANSMISSION 0x20000

enum Giveaways { G_Food, G_Hiking_Boots, G_Sunblock, G_Driving_Gloves };

void prepare_promotion_package(Car_Object *car) {

int car_features = car->features;

if ( car_features & FE_OFF_ROAD ) pack(car, 1200, G_Hiking_Boots);

if ( car_features & FE_SUN_ROOF ) pack(car, 200, G_Sunblock);

}

# MIPS-I Equivalent of C code.

#

# $a0: Address of car object.

# Notes: Procedure call arguments placed in $a0, $a1, ...

# Assume that pack does not change $a0-$a3 or $s0-$s7

lw $s0, 16($a0) # Load the features bit vector of car object.

andi $t0, $s0, 2

beq $t0, $0 SKIP1

addi $a1, $0, 1200

jal pack

addi $a2, $0, 1

SKIP1:

# PART b SOLUTION STARTS HERE

2
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(a) The MIPS code above omits the last line of C code (checking for a sun roof); complete it using
MIPS I instructions. (Do this on paper, there is no need to run it.) Hint: A clever solution uses five
instructions a straightforward solution uses six instructions. If you have more than ten instructions
ask for help.

The solution appears below.
This would be an insultingly trivial problem were it not for the fact that an andi instruction can’t be used to mask

off the FE SUN ROOF bit because the constant, 0x10000, is too large for the immediate field.
The solution uses an sll (shift left logical) instruction instead of an andi instruction to move the sun roof bit to

the most significant bit position, making it into a sign bit. Replacing beq with bgez achieves the desired functionality.

# MIPS-I Equivalent of C code.

#

# $a0: Address of car object.

# Notes: Procedure call arguments placed in $a0, $a1, ...

# Assume that pack does not change $a0-$a3 or $s0-$s7

lw $s0, 16($a0) # Load the features bit vector of car object.

andi $t0, $s0, 2 # Extract OFF_ROAD bit from vector.

beq $t0, $0 SKIP1 # If OFF_ROAD bit not set, skip ahead.

addi $a1, $0, 1200 # Arg 1: Promotional item weight

jal pack # Insert promotional item in Car_Object

addi $a2, $0, 1 # Arg 2: Promotional item model number.

SKIP1:

# PART b SOLUTION STARTS HERE

# SOLUTION BELOW

#

sll $t0, $s0, 15 # Make SUN_ROOF bit the sign bit.

bgez $t0 SKIP2 # If SUN_ROOF not set (t0 >=0) skip ahead.

addi $a1, $0, 200 # Arg 1: Promotional item weight.

jal pack # Insert promotional item in Car_Object

addi $a2, $0, 2 # Arg 2: Promotional item model number.

SKIP2:

(b) Add comments to the assembler code above. Write the comments for an experienced MIPS
and C programmer, that is, the comments should describe what an instruction is doing in terms of
what the C code is trying to do. The comments should not just describe how instructions change
register values.

For example, a bad comment for the lw instruction would be: Compute address 16 + $a0, retrieve
word starting at that address and write into $s0. This is a bad comment because an experienced MIPS
programmer already knows what an lw instruction does. The comment for lw in the code (Load
the features. . .) is good because it tells the reader what the $s0 value is in terms of what the code is
supposed to do.

The comments have been added to the solution code above.
Grading Notes: Many solutions included something like the following comment for the jal pack routine: “Save

the return address and call the pack routine.” Points were deducted for such comments because an experienced MIPS
programmer, and even beginners, already know what jal does. Comments like that increase the amount of time it takes
someone to read (and write) the code.
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Problem 3: Consider the code from the previous problem. Invent a new branch instruction that
can be used for the kind of branching used in the code: testing if a single bit in a register value is
1.

(a) Show the encoding for the new branch instruction. The new instruction must fit as naturally
as possible with other instructions.

Call the new instruction bbit, branch if bit set. The rs register has the value to test and the rt field holds the
bit number in the rs value to test. The immed field holds the displacement which is used like the displacement in any
other branch.

In the example assembler below the branch is taken if bit position 16 in register s0 is 1. (This instruction could
have been used in the first problem).

bbit $s0, 16, SKIP2

The encoding appears below:

MIPS I:

Opcode

31 26

RS

Source reg.

25 21

RT

Bit position.

20 16

Immed

Displacement

15 0

(b) Compare the implementation cost and performance of the new instruction to the existing MIPS-
I bltz and to a hypothetical blt instruction. (With each instruction doing its own thing, not as
part of functionally equivalent alternatives.)

Cost of bbit: A 32 × 1 bit multiplexer could be used to extract the desired bit position. The logic for that mux
would implement the expression

b0p4 p3 p2 p1 p0 + b1p4 p3 p2 p1 p0 + b2p4 p3 p2 p1p0 · · · + b31p4p3p2p1p0

where bi is the bit at position i in the rs register value, and pj , 0 ≤ j < 5 is the bit at position j in the binary
representation of rt (the field value, not the register value).

Cost of blt: A magnitude comparison unit is needed, the complexity of which is similar to an adder (or subtractor).
Since it must be made fast, the cost would be comparable to the adder in the ALU. A ripple adder (or subtractor) is
one of the least expensive designs, that requires about five gates per bit (counting an exclusive or as one gate). The
higher-speed design would cost more.

The bbit logic could use a single six-input gate per bit (a term in the expression above), but to be conserva-
tive one might count it as five two-input gates. This cost is comparable to that of a binary full subtractor and so is
certainly lower than the cost of the lookahead subtractor needed by blt to perform the comparison in ID. Therefore
the cost of the hardware needed for bbit is less than the hardware needed for blt .

The bit test logic is two levels though it has a large fan in. The number of logic levels for the comparison depends
on cost but is certainly greater than two levels. Therefore the bbit logic is probably faster than blt .

The bltz instruction only needs to test the sign bit, so the hardware cost of bltz is lower than bbit and blt

and the logic for bltz is much faster than bbit and blt .

Problem 4: Solve Fall 2007 Homework 2 without looking at the solution. Then look at the
solution and give yourself a grade on a scale of [0, 1]. Warning: test questions are based on the
assumption that homework problems were completed, so make a full effort to solve it without first
consulting the solution.
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LSU EE 4720 Homework 2 Solution Due: 15 October 2008

Problem 1: The hardware needed to implement shift instructions, such as sll, is not shown in the
implementation below. (The ALU in the implementation below does not perform shift operations.)
Add a separate shift unit to the implementation to implement the MIPS sll and sllv instructions.
The shift unit has a shift amount input and an input for the value to be shifted.

• Show exactly where the shift-amount bits come from (including bit positions).

• Add bypass paths so that the code below can execute without a stall.

• The primary goal is to not slow the clock frequency, the secondary goal is to minimize added
cost. This might affect where multiplexers are placed.

sll r1, r2, 3

add r3, r1, r4

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

0 1

15:0

Left
Shift

10:6

5:0 sh

The added hardware for the shift appears in blue and the needed bypass path appears in green.
The shifter would stall for any close dependencies on the shift amount, but such dependencies do not appear in the

sample code.
A low-cost solution would have the ALU and shifter outputs go to a EX-stage mux, this would eliminate the need

for any added logic beyond the EX stage. But since performance was the primary goal and the ALU output was likely on
the critical path such a mux could not be added. Instead, the mux is placed in the ME stage.

The new ME-to-EX bypass path adds cost. If performance were not the primary goal that added bypass could be
avoided by moving the existing bypass connection to the mux output. But that would add to the critical path in precisely
the same way the EX-stage mux discussed above would.

Common Mistakes:
Many solutions had an unnecessary “format sa” block.
Many solutions passed an sa value through the ID/EX pipeline latch even though the sa bits were part of the IMM

value.
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Some solutions passed the shifted value through the ME/WB latch even though such latch bits could be avoided by
using an ME-stage mux.

Problem 2: To answer this question see the SPARC Joint Programming Specification, a descrip-
tion of the SPARC V9 ISA, linked to the course references page. The SPARC V9 ISA is naturally
big endian. Since many programs must read data using little-endian byte order, for example when
reading a binary data file that was produced on a little-endian system, the programs need some
way to get the data into big-endian order. If loading little-endian data were only a small part of
what a program did then it could get by with some combination of ordinary instructions to convert
the data to big-endian format. For programs spending substantial time reading little-endian data
even a 9-instruction sequence may take too long.

The first instruction below is an ordinary load in SPARC V9, a 64-bit ISA (in which addresses
and registers are 64 bits). The second instruction, ldxle, is made up; it’s a load that assumes data
is in little-endian byte order. The last instructions is a real SPARC instruction for loading little
endian data.

! All load instructions below load 8 bytes into a register.

! Registers are 64 bits.

ldx [%l1], %l2 ! Ordinary load. For big-endian data.

ldxle [%l1], %l2 ! Not a real SPARC insn. For little-endian data.

ldxa [%l1] 0x88, %l2 ! SPARC’s load for little-endian data.

(a) The ldxa instruction is an example of an alternate load instruction. The alternate load instruc-
tions are intended for three kinds of access. Briefly describe the three kinds and indicate which one
is used above. What symbolic name does JPS1 give for 0x88 above?

Note: To answer this question one must read through material dealing with topics not yet
covered, for example, the concept of multiple address spaces. It is only necessary that the concept
of multiple address spaces is vaguely understood. The kind of access done by the ldxa should be
clearly understood.

The symbolic name for 0x88 is ASI PRIMARY LITTLE.
The three kinds of access are:
Accesses to an alternate address space. The ASI acts like extra bits to put on the end of an address. For

example, suppose a ldxa specified an ASI of 0x12 and an address of 0x00000000abcd0124. The full address would
be 0x1200000000abcd0124. There are many uses of such ASIs, one is to allow OS code to access its own memory
space and the memory space of a process it needs to work with.

Access to special machine registers. The ASI indicates which set of machine registers, and the address
specifies a particular register. The machine registers are used to control hardware, for example, the memory system or a
video card.

Variations on a normal memory access. This includes little-endian byte ordering, and also includes things
like fault-free loads, and new data sizes (such as byte loads to a floating point register). In this use the ASI acts like an
extension of the opcode field.

Grading Note: This was much harder than intended.

(b) Show the encoding for the three instructions above. The ldx and ldxa are real instructions, so
it’s just a matter of looking things up. For the ldxle make up an appropriate encoding.
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The encodings appear below. There are two possible ways to encode the ldx: with an immediate (shown below) or
with rs2 set to g0. The only difference between ldx and ldxle is the opcode. An unused opcode was found for ldxle
using the opcode map, in particular table E-4.
op

3

31 30

rd

18 (%l2)

29 25

op3

0x0b

24 19

rs1

17 (%l1)

18 14

i

1

13 13

simm13

0

12 0
ldx [%l1], %l2

op

3

31 30

rd

18 (%l2)

29 25

op3

0x2b

24 19

rs1

17 (%l1)

18 14

i

1

13 13

simm13

0

12 0
ldxle [%l1], %l2

op

3

31 30

rd

18 (%l2)

29 25

op3

0x1b

24 19

rs1

17 (%l1)

18 14

i

0

13 13

imm asi

0x88

12 5

rs2

0 (%g0)

4 0
ldxa [%l1] 0x88, %l2
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LSU EE 4720 Homework 3 Solution Due: 29 October 2008

Problem 1: Two MIPS implementations appear below, the first is the one presented in class, it
will be called the mux-in-EX implementation. The second, the mux-in-ID implementation, has the
ALU input multiplexers in the ID stage, to better balance critical paths. The clock frequency of
the mux-in-EX implementation is 1 GHz and the clock frequency of the mux-in-ID implementation
is 1.1 GHz.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

0 1

15:0

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst
Decode
dest. reg

a
l
u
1

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

0 1

15:0

alu1

alu2

dst

NPC

(a) With this change some of the ALU multiplexer inputs are unnecessary. Show which inputs are
unnecessary and explain why.

The WB bypass multiplexer inputs are unnecessary because the register file can already bypass from the data in
port (which connects to WB) to the data out port.

Problem continued on next page.
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(b) The code below computes the sum of the low 12 bits of elements in an integer array. Compute
the performance, in array elements per second, of this code for both the mux-in-EX system and
the mux-in-ID system. Assume that the array size is large and that the number of array elements
is even.

Note that the code computes two array elements per loop iteration. The solution strategy is to determine the number
of cycles per iteration, then use the clock frequency to compute the performance in array elements per second.

The pipeline diagrams appear below. Execution is shown until a repeating pattern is encountered (by examining the
pipeline state present at the first instruction in an iteration). For the mux-in-EX system there are no stalls, the mux-in-ID
system has several stalls.

The code for the mux-in-EX system enjoys smooth, stall-free execution and so takes 8 cycles per iteration, 4 cycles

per array element, and computes at a rate of 1.0×109

1
2×(8−0)

= 250 × 106 array elements per second.

The code for the mux-in-ID system suffers dependence stalls. From the pipeline execution diagram below one can

see that it takes 23 − 11 = 12 cycles per iteration or 6 cycles per element. It computes at a rate of 1.1×109

1
2×(23−11)

=

183.3 × 106 elements per second. The benefit of the higher clock frequency has been undermined by the stalls for this
code.

# Performance on mux-in-EX system

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw $t0, 0($a0) IF ID EX ME WB

lw $t5, 4($a0) IF ID EX ME WB

andi $t2, $t0, 0xfff IF ID EX ME WB

add $v0, $v0, $t2 IF ID EX ME WB

andi $t7, $t5, 0xfff IF ID EX ME WB

add $v0, $v0, $t7 IF ID EX ME WB

bne $a0, $t1 LOOP IF ID EX ME WB

addi $a0, $a0, 8 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw $t0, 0($a0) IF ID EX ME WB

# Performance on mux-in-ID system

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw $t0, 0($a0) IF ID EX ME WB

lw $t5, 4($a0) IF ID EX ME WB

andi $t2, $t0, 0xfff IF ID -> EX ME WB

add $v0, $v0, $t2 IF -> ID -> EX ME WB

andi $t7, $t5, 0xfff IF -> ID EX ME WB

add $v0, $v0, $t7 IF ID -> EX ME WB

bne $a0, $t1 LOOP IF -> ID EX ME WB

addi $a0, $a0, 8 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

lw $t0, 0($a0) IF ID -> EX ME WB

lw $t5, 4($a0) IF -> ID EX ME WB

andi $t2, $t0, 0xfff IF ID -> EX ME WB

add $v0, $v0, $t2 IF -> ID -> EX ME WB

andi $t7, $t5, 0xfff IF -> ID EX ME WB

add $v0, $v0, $t7 IF ID -> EX ME WB

bne $a0, $t1 LOOP IF -> ID EX ME WB

addi $a0, $a0, 8 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

lw $t0, 0($a0) IF ID -> EX..
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(c) If, after double-checking your work, the performance of the mux-in-ID system is faster than the
old mux-in-EX system inform the professor that there is a mistake in this problem. Otherwise,
schedule (re-arrange instructions) the code above so that it performs faster (while still performing
the same computation) on the mux-in-ID system.

The solution appears below. The instructions can easily be rearranged to avoid the stalls. Now the system computes
at a rate of 275 million array elements per second, outperforming the mux-in-EX system.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

lw $t0, 0($a0) IF ID EX ME WB

lw $t5, 4($a0) IF ID EX ME WB

addi $a0, $a0, 8 IF ID EX ME WB

andi $t2, $t0, 0xfff IF ID EX ME WB

andi $t7, $t5, 0xfff IF ID EX ME WB

add $v0, $v0, $t2 IF ID EX ME WB

bne $a0, $t1 LOOP IF ID EX ME WB

add $v0, $v0, $t7 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

lw $t0, 0($a0) IF ID EX ME WB

Problem 2: You are in an alternate universe where you work for MIPS at a time when its first
implementation (mux-in-EX) has been very successful and is in the hands of customers of all types.
You are deciding on whether to make mux-in-ID the second implementation to be marketed.

(a) What role do compiler writers have in the success of mux-in-ID? Explain.
They must be able to write optimizers that can successfully schedule the code to avoid the “new” stalls. A compiler

writer of average skill should be able to schedule away the stalls in the sample code above. Other situations are more
difficult.

(b) If mux-in-ID is faster than mux-in-EX using the old compilers, do compilers still need to be
re-written? Explain.

Yes. The old code might be faster because fewer than 10% of instructions use a source register produced by the
immediately preceding instruction. Suppose that number were 5%. Then re-writing the compiler could reduce or eliminate
stalls due to these instructions, yielding further performance gains.
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LSU EE 4720 Homework 1 Solution Due: 20 February 2008

Problem 1: Solve Fall 2007 Homework 2 without looking at the solution. Then look at the
solution and give yourself a grade on a scale of [0, 1]. Warning: test questions are based on the
assumption that homework problems were completed, so make a full effort to solve it without first
consulting the solution.
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Problem 2: The MIPS IV movn instruction is an example of a predicated instruction (predication
will be covered later in the semester, but that material is not needed to solve this problem).

(a) Show how the movn instruction could be added to the implementation below inexpensively, but
without impact on critical path. Take into account the new logic’s impact on dependency testing
(see the code sample below). Show all added control logic.

Changes for the movn instruction are shown in blue bold below. The logic shown in green was put in for the solution
but would have appeared on the unsolved diagram if control logic were shown. That is, the green logic would be there
with or without the movn.

The movn implementation below works as follows. The output of =movn box in ID is 1 if a movn instruction

is present. In EX the ALU passes the rs value unchanged while the added =0 unit tests whether the rt value is
zero. The and gate checks whether a movn instruction is in EX and whether the move should be cancelled, if so the
mux substitutes a 0 for the destination register (suppressing the writeback), otherwise the dst register number is passed
through unchanged. Note that the control logic for detecting bypasses examines the output of the mux.

This implementation will execute the code below without a stall.
In a lower-cost implementation (not illustrated) a comparison unit in the ID stage, already needed for branches,

would be used. The code below would stall on such an implementation unless bypasses were added from EX.

format
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control
logic for
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blue.

Pre-existing (but omitted from original illustration)
control logic shown in green.

(b) Show how the code below would execute on your implementation.

# Solution

# Cycle 0 1 2 3 4 5 6

add r1, r2, r3 IF ID EX ME WB

movn r4, r5, r1 IF ID EX ME WB

xor r6, r4, r7 IF ID EX ME WB

(c) Suggest methods to eliminate any stalls encountered.
There are no stalls.
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LSU EE 4720 Homework 2 Solution Due: 29 February 2008
For the answers to these questions look at the ARM Architecture Reference Manual linked to

the course references page, http://www.ece.lsu.edu/ee4720/reference.html.

Problem 1: The register fields in ARM instructions are four bits and so only 16 integer registers
are accessible. The ISA manual describes ARM as having 32 integer registers, however many of
them are only accessible in particular modes.

An advantage of fewer registers is that extra bits are available in the instruction encoding, for
example, ARM three-register instruction formats would have three more bits available than the
MIPS type R format. Where in the ARM formats do you think these bits went? In your answer
give the instruction field and its purpose. There should be no equivalent in MIPS.

Every instruction format uses a cond (condition field), there is no counterpart to this in MIPS. The condition field
is used to predicate instructions, that is, control whether or not an instruction has any effect.

(See section A3-1, which conveniently lists the instruction coding for many instructions.)

Problem2: In MIPS an arbitrary 32-bit constant can be loaded into a register using a lui followed
by an ori. In ARM the immediate field for data-processing (integer) instructions is only 8 bits.

(a) Show ARM code to put an arbitrary 32-bit constant into a register without using a load
instruction. Use as few instructions as possible. Hint: take advantage of ARMS shift and rotate
capabilities.

A move followed by three or’s with shifts can do the trick.

# Solution:

# Note: The arbitrary constant is 0x12345678

mov r1, # 0x78, 0

orr r1, r1, # 0x56, 12

orr r1, r1, # 0x34, 8

orr r1, r1, # 0x12, 4

(b) Show how ARM can put an arbitrary constant into a register with one load instruction, whereas
in MIPS two would be required. The MIPS code is shown below. Do not assume the address of
the constant is already in a register, that would make this problem insultingly easy! Hint: Use one
of ARM’s special purpose registers.

.text

lui r1, 0x1111

lw r1, 0x2220(r1)

# ... a few more instructions ..

jr $ra

nop

.data

my_32_bit_constant: # Address: 0x11112220

.word 0x12345678

Solution shown below. As in the MIPS example the constant is stored in memory near the code. MIPS code requires
two instructions, one to load the high 16 bits of the address, the second to load the data (using the load offset for the low
16 bits of the address). In ARM the program counter is one of the data processing (general purpose in MIPS) registers,
r15. This makes something like a lui unnecessary in ARM because the program counter can serve as the load’s base
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register. The code below is in pseudo assembly language, the assembler would convert -8 + my 32 bit constant

- HERE into the correct offset.

# Solution

HERE:

ldr r1, [r15 - 8 + my_32_bit_constant - HERE ]

Problem 3: In ARM the program counter is register r15, and so as far as instruction encoding
goes, is treated as a general-purpose register.

(a) Why would really keeping the program counter in the integer register file add to the cost of an
implementation?

Because to maintain an execution rate of one instruction per cycle one would need an additional read port and an
additional write port on the register file to accommodate the program counter.

(b) How does the ISA manual hint that blue parts of the implementation below is what they had
in mind? (Register r15 is not stored in the register file, it will always be bypassed from the real
PC.) (Note: The ARM implementation is far from complete and parts may not work.)

Because instructions that use their source operands in the EX stage (ordinary arithmetic and logical instructions and
address operands for loads and stores) get not the value of PC, but PC+8, which is what you’d get in the diagram below.
According to the ARM ISA stores of PC might result in PC+12 being written, which is consistent with the memory stage
being three stages ahead of IF.
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LSU EE 4720 Homework 3 Solution Due: 9 April 2008
For answers to these questions consult the SPECcpu2006 Run and Reporting Rules (which can

be found at spec.org).

Problem 1: One way testers can stretch the rules is by using compiler optimizations that give
good performance when they work correctly but are too error prone for non-experimental use.

(a) Why would it be a bad idea for SPEC to limit allowable compiler optimizations to those that
are already known to be safe? (Say, dead-code elimination based on a SPEC-provided analysis
technique.)

(In the question “known to be safe” is not the same as “safe.” A tester might have good reason to believe that an
optimization is safe but such an optimization is not known by SPEC to be safe and so, based on the question above [but
not in real life], could not be used.)

Limiting allowable optimizations to a short, conservative list would discourage development of new compiler opti-
mization techniques. Compiler optimization is a perfectly legitimate way of achieving performance goals (and is in fact
preferred over elaborate hardware techniques).

(b) Rather than dictate allowable optimizations the rules instead explain that if it’s good enough
for your customers it’s good enough for SPEC, though not in those words. Find the section in the
run and reporting rules where this rule is given.

Section 1.3.2.

(c) For at least three bullet items in the section (from the last part) explain what sort of unscrupu-
lous action the bullet item is supposed to prevent.

• be specified using customer-recognizable names

The compiler is available and the company would sell it to any customer than can provide its name, but the name
is kept secret from the customer.

• be generally available within certain time frames

The compiler is never made available.

• provide documentation

The compiler can’t be used because it is undocumented.

• provide an option for customer support

The compiler can’t be used because there is no support if a customer can’t figure out how to use it.

• be of production quality

The optimizations are too buggy for reasonable use.

• provide a suitable environment for programming

The optimizations can only be used for very narrow purposes (the particular benchmarks).

Problem 2: When preparing a run of the SPEC benchmark the tester provides, among other
things, libraries (such as the C standard library that contains routines such as strlen, malloc,
printf). It is in the testers interest to make sure these library routines run as fast as possible and
is free to do so within the SPEC rules.

Section 2.1.2 stipulates that one can’t use flags that substitute library routines for routines
defined in the benchmark.

In addition to base and peak, imagine a third metric called swap, in which the rule in Section
2.1.2 didn’t apply. Testers could abuse the swap metric by substituting routines that merely return
the correct value (since input data is known in advance), but for this question suppose testers
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comply with the spirit of the SPEC rules and substitute routines which provide higher performance
for any input data.

(a) Comparing the peak scores to the base scores shows the additional performance that can be
obtained by a suitably motivated and resourced expert. Explain what might be learned by compar-
ing swap scores to base and peak scores. (That is, where might the higher performance be coming
from.)

If the benchmarks were well-written the swap result might show performance obtainable by structuring the compu-
tation for the implementation. For example, the code might be re-written so that it could use packed-operand (sometimes
called multimedia) instructions, something a compiler couldn’t always do because, for one reason, it doesn’t know if using
lower-precision and saturating arithmetic is okay.

If the benchmarks are not well written the swap result might show how poorly written they were. (That is, the
re-writing would benefit many systems, not just the one it was re-written for.)

(b) Provide an argument that the swap metric is a good test of a system that complements base
and peak.

The compiler is not smart enough to use some special instructions, such as packed-operand instructions, in many
programs and so neither base nor peak would show the true potential of the system.

(c) Provide an argument that swap doesn’t really tell you anything about the system (CPU, memory,
compiler and other build items).

The swapped routines might improve the performance of any system and so the swap result would just show how
many skilled programmers the tester was able to use to prepare the test.

Problem 3: For exceptions the handler needs to know the address of the faulting instruction both
so that it can examine the instruction and so that it knows where to return to in case the instruction
needs to be re-executed or skipped. For answers to this question consult the ARM and MIPS32
(Volume 3) ISA manuals on the course references page.

A programmer-friendly ISA would provide the handler with the address of the faulting instruc-
tion, however in both MIPS32 and ARM may provide an address near the faulting instruction.

(a) In which registers do MIPS and ARM A32 write the approximate faulting instruction address?
(For MIPS give the register number as well as its name.)

MIPS writes the address to register c14 (co-processor 0 register 14), named EPC. ARM writes the address to r14.

(b) The address that MIPS provides may be that of the faulting instruction, or it may not be.
When is this done, and what is the other address?

If the faulting instruction is in the delay slot of a CTI (control-transfer instruction) then register c14 is written
with the branch address. The handler will be able to determine which instruction raised the exception, but it will return
to the CTI, executing it a second time.

(c) ARM A32 also does not provide consistent addresses. What addresses does it provide? Give a
credible reason for the differences in addresses.

Let PC denote the address of the faulting instruction if a load or store raised the exception r14 is written with
PC+8, for most other instructions it writes PC+4.

One reason for this inconsistency is that the implementation is expected to branch to the handler as soon as the
exception is discovered, and for loads or stores the discovery might be one cycle later. The implementation does not
bother sending an instruction PC down the pipeline so the exception mechanism uses the current PC value.

Note that ARM implementations would have to write these addresses whether or not the reasoning above is correct.
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LSU EE 4720 Homework 2 Solution Due: 1 October 2007
For lecture material relevant to this assignment see

http://www.ece.lsu.edu/ee4720/2007f/lsli06.pdf. For some background and a list of similar
problems see the statically scheduled study guide,
http://www.ece.lsu.edu/ee4720/guides/ssched.pdf. Please make an effort to solve this prob-
lem based on an understanding of the material, use the solution to similar problems (if any) only
for hints. Feel free to ask questions using the forums, E-mail, or in person. Exam problems will
be based on the assumption that students completed (really completed) homework assignments, so
don’t short-change yourself !

Problem 1: Consider the following MIPS code and implementation:

# Cycle 0 1 2

lw r2, 0(r10) IF ID EX

LOOP:

lw r1, 0(r2) IF ID

add r3, r1, r4

sw r3, 4(r2)

bne r3, r5 LOOP

addi r2, r2, 8

# Cycle 0 1 2

A: 2

B: 2

C:

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

A

xa1
xa2
xdi

B

C

(a) Complete the pipeline execution diagram of the execution of the code above on the implementa-
tion illustrated for at least the first two iterations. (See the next part for instructions on the “A:”,
etc.)
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Solution appears after part b, below. Note that the branch stalls due to a dependency on the add instruction which
produces one of the branch source registers, r3.

(b) After the addi instruction three labels are shown, A:, B:, and C:; similar labels are shown, in
blue and circled, in the implementation. On the pipeline execution diagram show the values on the
wires (which are multiplexor inputs) that those labels point to only in cycles in which those signals
are used. The values are already shown for cycles 0, 1, and 2. Signals A and B are used in cycle 2
(but not 0 or 1), signal C is not used in cycles 0-2.

Note that the multiplexor inputs are numbered from the top starting at zero.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lw r2, 0(r10) IF ID EX ME WB

LOOP:

# First Iteration XX

lw r1, 0(r2) IF ID -> EX ME WB

add r3, r1, r4 IF -> ID -> EX ME WB

sw r3, 4(r2) IF -> ID EX ME WB

bne r3, r5 LOOP IF ID -> EX ME WB

addi r2, r2, 8 IF -> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A: 2 3 3 2 2 0 3 2 ...

B: 2 2 1 2 2 2 1 2 ...

C: 1 1 ...

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

# Second Iteration XX

lw r1, 0(r2) IF ID EX ME WB

add r3, r1, r4 IF ID -> EX ME WB

sw r3, 4(r2) IF -> ID EX ME WB

bne r3, r5 LOOP IF ID -> EX ME WB

addi r2, r2, 8 IF -> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

# Third Iteration XX

lw r1, 0(r2) IF ID EX ME WB

(c) Find the CPI of this loop on the illustrated implementation for a large number of iterations.

In the first iteration the load in the loop body stalls because of a dependency with a load outside the loop, obviously
that won’t happen on subsequent iterations and so the first iteration is not representative. The second iteration starts
at cycle 9 (when the first instruction is fetched), the third iteration starts in cycle 16, and so the second iteration takes
16 − 9 = 7 cycles. Both of these iterations start with the pipeline in an identical state: the addi is in ID, the bne is
in EX, etc. Therefore the third iteration will take exactly the same amount of time as iteration 2, as will all subsequent

iterations. Therefore the CPI for a large number of iterations is 16−9
5 = 1.4 .

(d) Add bypass connection(s) so that the loop above executes as quickly as possible. Show the CPI
with those connections.

The stalls in cycles 5 and 12 can’t be eliminated by bypasses because the data arrives at the end of cycle 5 and 12,
but it would be needed at the beginning of cycle 5 and 12 to avoid the stall.

The stall at cycles 8 and 15 can be eliminated because the data is available at the end of cycles 6 and 13, and the
branch needs it in the middle of cycles 7 and 14. The added bypasses, shown in green, eliminate the stall.
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(e) Even with bypass connections the loop above, regrettably, executes with stalls (or at least it
should!). Schedule (re-arrange) the code so that it executes without stalls. The scheduled loop
should still load and store one value per iteration. Minor changes to the code can be made, such
as changing register numbers and immediate values.

The code below executes without a stall with the bypasses added above.

# Scheduled Code

lw r2, 0(r10)

lw r1, 0(r2)

LOOP:

# Cycle 0 1 2 3 4 5 6 7 8

addi r2, r2, 8 IF ID EX ME WB

add r3, r1, r4 IF ID EX ME WB

sw r3, -4(r2) IF ID EX ME WB

bne r3, r5 LOOP IF ID EX ME WB

lw r1, 0(r2) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8
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LSU EE 4720 Homework 3 Solution Due: 15 October 2007

The problems below ask about VAX instructions, which were not yet covered in class. For information
on these instructions see the VAX Macro and Instruction Set manual linked to the EE 4720 references page.

Problem 1: The VAX locc instruction finds the first occurrence of a character in a string (see example
below). The first operand specifies the character to find (A in the example), the second operand specifies
the length of the string (in register r2), and the third operand specifies the address of the first character of
the string (register r3 below).

# Find first occurrence of 65 (ASCII A) in memory starting at

# address r3 and continuing for the next r2 characters.

locc #65, r2, (r3)

(a) Show how the sample instruction above is encoded. Include the name of each field and its value for the
example above, not for the general case. In the original assignment the third argument was shown as r3,
not (r3) which is correct.

Solution appears below. Note that immediate mode PC-addressing is used to specify the constant 65. In PC addressing the
register field of the operand specifier is set to 15 (the VAX PC is register 15), this changes the meaning of some of the modes. For
general addressing (the register field is not 15) mode 8 is autoincrement mode, for PC addressing mode 8 is immediate mode.

SOLUTION:

Instruction: locc #65, r2, (r3)

Syntax: locc char.rb, len.rw, addr.ab

Sections: opcode immediate_mode_op register_mode_op register_deferred_op

opcode -> 8 bits: 0x3a

immediate_mode_op -> operand_specifier immediate

operand_specifier -> mode(=immediate) reg(=PC) -> (4 bits) 0x8 (4 bits) 0xf

immediate -> (8 bits) 0x41

register_mode_op -> operand_specifier -> mode(=register) reg(=2) -> 0x5 0x2

register_deferred_op -> operand_specifier

-> mode(=register deferred) reg_num(=3) -> 0x6 0x3

Instruction Encoding:

-opcode- -- 1st operand ---- -- 2nd op - -- 3rd op -

locc imm PC* 65 reg r2 reg-d r3

mode mode mode

0x3a 0x8 0xf 0x41 0x5 0x2 0x6 0x3 <- Encoded value.

7 0 7 4 3 0 7 0 7 4 3 0 7 4 3 0 <- Bit position.
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(b) Provide an example of locc in which the encoded second and third operands each require more space
than the example above. At least one of these operands should use a memory addressing mode that is not
available in MIPS. Show the instruction in assembler and show its encoding.

The second operand now uses byte displacement deferred (shown as bdd below), and the third operand uses absolute addressing.

.data

STR_ADDR: # Assume address is 0x1234

.asciiz "My string."

.text

locc #65, @B^8(r2), @#STR_ADDR

opcode -- 1st operand ---- -- 2nd op ------- -- 3rd op --------------

locc imm 65 bdd r2 8 abs 32-bit

mode mode mode constant

0x3a 0x8 0xf 0x41 0xb 0x2 0x8 0x9 0xf 0x1234

7 0 7 4 3 0 7 0 7 4 3 07 0 7 4 3 0 31 0
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For the problems below consider a MIPS implementation similar to the one illustrated below and a DF-
equivalent VAX implementation. Like the MIPS implementation, the DF-equivalent VAX implementation
can read two registers per cycle, write one register per cycle, perform one ALU operation per cycle, and one
memory operation per cycle (not including fetch). The DF-equivalent VAX implementation may or may not
be pipelined and regardless does not suffer any kind of penalty for the complexity and size of its control
logic. Assume that the DF-equivalent VAX takes one cycle to fetch an instruction and one cycle to decode
an instruction, regardless of the instruction’s size or complexity.

Unlike MIPS the DF-equivalent VAX may be able to simultaneously use its ALU and memory port for
the same instruction (in the illustrated MIPS implementation they would be for two different instructions).
The 2-read, 1-write register restriction only applies to registers defined by the ISA. As with MIPS pipeline
latches, the DF-equivalent VAX can read or write as many temporary registers per cycle that it needs.

When showing the execution of an instruction on the DF-equivalent VAX use something like a pipeline
diagram and explain what’s going on when things aren’t clear. For example, here is how an add instruction
might execute:

# Note: Destination is rightmost register (r3)

Cycle 0 1 2 3 4 5 6

add 123(r1), (r2)+, r3 IF ID EX ME ME EX WB

EX WB

sub IF ID EX

Cycle 2: EX: 123 + r1

Cycle 3: ME load (123+r1)

Cycle 4: ME: load (r2)

Cycle 4: EX: r2 + 4

Cycle 5: EX: add (123+r1) + (r2)

Cycle 5: WB: wb r2+4 to r2

Cycle 6: WB: WB sum to r3.

In the example above the add instruction can be said to have taken four cycles since that’s how long
the sub might have had to wait to execute (to avoid overlap).

Use the following MIPS implementation for comparison:
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Problem 2: The MIPS jal instruction supports a procedure call by saving a return address in r31, other
activities normally done on a procedure call, such as saving registers to the stack, must be performed using
additional MIPS instructions. In contrast the VAX calls instruction not only saves a return address but
also saves registers in the stack and performs other common activities.

MIPS and VAX examples are shown below in which the VAX code uses a calls instruction and the
MIPS code performs a roughly equivalent operation. In particular, in both code samples three registers must
be saved on the stack. (The calls instruction performs additional actions, but for this problem assume it
does only what the MIPS code shows.)

(a) Show how the calls instruction would execute in the DF-equivalent VAX implementation. Note that
the calls instruction reads the word at the beginning of the called routine to determine which registers to
save.

Solution appears below. An xor is shown following the calls to show how long the calls would take.

(b) Is the DF-equivalent VAX implementation substantially faster on this instruction, about the same, or
slower?

One cycle slower, because it has to check the mask to determine which registers to save.

# VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX

calls $0, myroutine

myroutine:

.data

.word 0x046

xor ...

# MIPS MIPS MIPS MIPS MIPS MIPS MIPS MIPS MIPS MIPS MIPS MIPS MIPS

jal myroutine

SOLUTION:

# Cycle 0 1 2 3 4 5 6 7 8 9

calls $0, myroutine IF ID ME EX ME ME ME

RR RR EX EX EX WB

RR RR

xor IF ID EX ...

Cycle 2: ME Load first word of myroutine, which specifies which regs to save.

Word loaded into special 16-bit $m reg.

Initial value of $m register is 0000 0000 0100 0110

RR Retrieve fp register

Cycle 3: EX Set $r = clz($m) (Count number of leading zeros, $r will be 1)

Compute: $addr = fp + ( $r << 2 ).

RR Retrieve from register file: $rx = $r1

At end of cycle set least-significant "1" bit of $m to 0.

New value of $m: 0000 0000 0100 0100

Cycle 4: ME Store $rx ($r1) at address $addr

EX, RR: Same operation as in cycle 3. (But $r will be 2)

New value of $m: 0000 0000 0100 0000

Cycle 5: ME Store $rx ($r2) at address $addr

EX: Same operation as in cycle 3. (But $r will be 6)

RR: Read r6 and also $sp

New value of $m: 0000 0000 0000 0000

Cycle 6: ME Store $rx ($r6) at address $addr

EX Add $sum = $sp + 0

Cycle 7: WB Write $sum to register $fp
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Problem 3: The VAX locc instruction is another example of an instruction that would not be included
in a RISC ISA because it could not be pipelined in any reasonable way. For this problem assume that
implementations of character location can only read one byte at a time. (A fast implementation might read
a word and check each position for the sought byte, but not in this problem.)

(a) What is the minimum amount of time that the DF-equivalent VAX implementation might take to execute
locc with a length parameter equal to n? Show how the instruction would execute.

The instructions appear below. Two cycles per character are needed because there is one comparison unit but two comparisons
are needed: the character loaded and the character count. The worst-case time to find a character is 4 + 2n cycles.

SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 X

locc #65, r2, (r3) IF ID RR CM ME CM ME CM ... WB

EX CM EX CM EX ...

EX EX ...

Cycle 1: ID: $char = lit. Assume literal addressing for character.

Cycle 2: RR: $len = $rx, assuming register addressing; $addr = $ry

Cycle 3: CM: Check if the $len is non-zero (if so proceed to X).

EX: Decrement $len

Cycle 4: ME: Retrieve byte at $addr.

CM: Check if the $len is non-zero (if so proceed to X).

EX: $len = $len - 1;

Cycle 5: CM: Check if byte equals $char, if so proceed to X.

EX: $addr = $addr + 1

Cycle 6: ME: Retrieve byte at $addr.

CM: Check if the $len is non-zero (if so proceed to X).

EX: $len = $len - 1;

Cycle X: WB: Write condition code with 1 if char found, 0 otherwise.
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(b) The MIPS routine below performs the same operation (except for the r0 and r1 return values). In terms
of n how long does it take to compute locc?

locc:

# Call Values:

# a0: char: Character to find.

# a1: len: Length of string.

# a2: addr: Address of first character of string.

# Return Value:

# v0: 0 if character not found, 1 if found.

# Note: Other locc return values not computed.

j START

add $t1, $a1, $a2 # $t1: Stop address ( last char + 1 )

LOOP:

beq $t0, $a0 FOUND

addi $a2, $a2, 1

START:

bne $a2, $t1, LOOP

lb $t0, 0($a2)

jr $ra

addi $v0, $0, 0

FOUND:

jr $ra

addi $v0, $0, 1

From the diagram below it can be seen that an iteration takes 8 cycles (cycle 6 to 14), and so the routine takes 4 + 8n cycles
to find the character in the worst case (when the character is not in the string).

SOLUTION: Analyze the loop:

LOOP: beq $t0, $a0 FOUND IF ID EX ME WB

addi $a2, $a2, 1 IF ID EX ME WB

START: bne $a2, $t1, LOOP IF ID ----> EX ME WB

lb $t0, 0($a2) IF ----> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LOOP: beq $t0, $a0 FOUND IF ID ----> EX ME WB

addi $a2, $a2, 1 IF ----> ID EX ME WB

START: bne $a2, $t1, LOOP IF ID ----> EX ME WB

lb $t0, 0($a2) IF ----> ID EX ME WB

LOOP: beq $t0, $a0 FOUND IF ...

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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(c) Which implementation has the speed advantage? Explain.
Based on the given code fragments, the VAX. However the MIPS code can be re-written to reduce execution time on the given

implementation. For example, the code below, an unrolled version of the code above, searches at the rate of 10
4 cycles per character.

lb $t0, 0($a2)

lb $t5, 1($a2)

lb $t6, 2($a2)

LOOP: beq $t0, $a0, FOUND IF ID EX ME WB

lb $t7, 3($a2) IF ID EX ME WB

beq $t5, $a0, FOUND IF ID EX ME WB

addi $a2, $a2, 4 IF ID EX ME WB

beq $t6, $a0, FOUND IF ID EX ME WB

lb $t0, 0($a2) IF ID EX ME WB

beq $t7, $a0, FOUND IF ID EX ME WB

lb $t5, 1($a2) IF ID EX ME WB

bne $a2, $t1, LOOP IF ID EX ME WB

lb $t6, 2($a2) IF ID EX ME WB

(d) Can instructions be added to MIPS consistent with RISC principles that would substantially improve its
performance? If not, explain what gives locc an inherent advantage on CISC.

Auto-increment addressing would save one instruction. This problem specifically disallows loading a word. If it were allowed an
instruction could test each byte position for a match.
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LSU EE 4720 Homework 4 Solution Due: 3 December 2007

Problem 1: For answers to this problems consult the SPARC Architecture Manual Version V8, linked to
the course references page.

Suppose a SPARC V8 trap table has been set up at address 0x12340000.

(a) Write a SPARC V8 program that sets the trap base register (TBR) to that address. Assume the processor
is already in privileged mode. Hint: A correct solution consists of two instructions, a three-instruction
program is okay too.

Browsing the SPARC Architecture Manual Version V8 for information on the trap table one should soon come across the wrtbr
(write trap base register) instruction. The instruction is used in the code fragment below.

! SOLUTION

sethi %hi(0x12345000), %l0

wrtbr %l0, 0, %tbr

Call the SPARC V8 instruction that writes the TBR foo. The ISA definition of foo makes it easy to
design the control logic and bypassing hardware on certain implementations.

(b) What about the definition of foo makes the control logic and bypassing hardware design easy on those
certain implementations?

The V8 architecture manual definition of wrtbr states that it is a delayed-write instruction, meaning that if any of the next
three instructions attempt to read the TBR the result is undefined. (See the third paragraph on page 134 of the posted version of
the manual.)

A five-stage implementation similar to the one used in class would not need to check for true dependencies with the TBR, nor
would bypass paths be needed, reducing the cost. For example, in the code below the TBR is written and then read (using rdtbr).
According to the definition the code below would be correct regardless of what the first rdtbr writes in g4 (because it is within
3 instructions of the most recent wrtbr). The same is true for the rdtbr that writes g5. Therefore the implementation does
not need to check for a dependency between rdtbr and preceding instructions in the pipeline. The value placed in g6 by the last
rdtbr must be the value written to the TBR by the wrtbr, for this five-stage implementation that requires no special hardware
because the TBR write is complete when the last rdtbr reaches ID.

! Cycle 0 1 2 3 4 5 6

wrtbr %l0, 0, %tbr IF ID EX ME WB

add %g1, %g2, %g3 IF ID EX ME WB

rdtbr %tbr, %g4 IF ID EX ME WB

rdtbr %tbr, %g5 IF ID EX ME WB

rdtbr %tbr, %g6 IF ID EX ME WB
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(c) Why not do the same for, say, the add instruction?
Because it would be difficult to schedule code without slowing execution by adding lots of nop instructions. The first code

sample below shows ordinary MIPS code. With sufficient bypass paths the code should execute without a stall on a scalar 5-stage
statically scheduled implementation. In the second code fragment there must be at least a 3-instruction separation between an
instruction that writes a register and the instruction that reads it. To maintain correctness under that restriction nop’s were added,
slowing down execution.

It’s okay to impose the three-instruction separation restriction on rarely used instructions, such as wrtbr because the impact
on performance will be tiny. Imposing such a restriction on frequently executed instructions would have too large an impact on
execution, not worth the small savings in control and bypass logic.

# MIPS as is: No restriction on placement.

LOOP:

lw r1, 0(r2)

addi r2, r2, 4

and r1, r1, r3

bne r2, r4 LOOP

add r5, r5, r1

# MIPS with 3-insn separation:

LOOP:

lw r1, 0(r2)

addi r2, r2, 4

nop

nop

and r1, r1, r3

nop

nop

bne r2, r4 LOOP

add r5, r5, r1

(d) Describe an implementation in which the control logic for foo would not be so simple despite the “help”
from the ISA definition.

Any implementation in which wrtbr writes the TBR after the fourth following instruction reads it. This can definitely occur
in a 5-way superscalar implementation. In such an implementation logic would be needed to detect the dependency, or else always
assume there is such a dependency and stall the pipeline after every wrtbr instruction.

Problem 2: Solve the EE 4720 Spring 2007 Final Exam problem 1.

Problem 3: Solve the EE 4720 Spring 2007 Final Exam problem 3.

← → Fall 2007 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4720/2007f/hw04_sol.pdf


62 Spring 2007 Solutions

957

← → Spring 2007 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4720/2007/hw01_sol.pdf


LSU EE 4720 Homework 1 Solution Due: 2 March 2007

Problem 1: Without looking at the solution solve Spring 2002 Homework 2 Problem 2 parts a-c. Then,
look at the solution and assign yourself a grade in the range [0,1].

Problem 2: If the value in register r2 is not aligned (a multiple of four) the lw in the MIPS code below
will not complete.

lw r1, 0(r2)

(a) Re-write the code so that r1 is loaded with the word at the address in r2, whether or not it is aligned.
For this part do not use instructions lwl and lwr (see the next part).

Solution shown below.
Grading Note: No one submitted a solution like the one below, that is, one that (correctly) combined

data from just two lw instructions. Most submitted solutions used four lb instructions, some of these used
shift and OR instructions to insert each loaded byte into what would be the full word, one solution followed
each lb by a sb, the sb instructions were relative to an aligned address.

# Solution shown below.

# Comments show register contents for this example:

#

# r2 = 0x1001

# Memory contents:

# Mem[0x1000] = x00, Mem[0x1001] = x11, Mem[0x1002] = x22, .. Mem[0x1007] = x77

# Therefore, want r1 = 0x11223344.

#

andi r4, r2, 3 # Extract "misalignment", m. r4 = 1 (call this m)

sub r5, r2, r4 # Round down to aligned address. r5 = 0x1000

lw r6, 0(r5) # Load first part. r6 = 0x00112233

# This has 4-m = 3 bytes we need.

lw r7, 4(r5) # Load second part. r7 = 0x44556677

# This has other (1) byte we need.

sll r4, r4, 3 # Shift amt for 1st part. r4 = 8*m = 8.

sll r6, r6, r4 # Shift 1st part into place. r6 = 0x11223300

addi r8, r0, 32 # Constant for 2nd shift amt.

sub r8, r8, r4 # Shift amt for 2nd part. r8 = 32 - 8m = 24.

srl r7, r7, r8 # Shift 2nd part into place. r7 = 0x00000044

or r1, r7, r6 # Finally, combine them. Voila! r1 = 0x11223344

(b) Re-write the code, but this time use MIPS instructions lwl and lwr. Hint: These instructions were
not covered in class, try looking them up in the MIPS architecture manual conveniently linked to the
http://www.ece.lsu.edu/ee4720/reference.html page..

The solution is shown below.
Grading Note: About the only wrong solution was my own (the one below is correct), in which the lwr

used the same offset as the lwl. I hope at least some got the answer correct because they carefully read the
lwr description and saw that the effective address for this instruction is of the least significant byte of the
word, not the most significant byte required of lwl, lw, lh, and lhu.

# Solution:

#

lwl r1, 0(r2)

lwr r1, 3(r2)

Problem 3: Consider how the lwl and lwr instructions might be added to the implementation below.
There are two pieces of hardware that with minor modification would be able to merge the sub-words in a
reasonable solution. Alternatively, a new piece of hardware to perform the merge can be added.
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(a) Show how the hardware can be modified.

• If your solution relies on an existing component to perform the merge indicate which component and
why that can be easily modified to do the merge.

• As with other MIPS instructions lwl must spend one cycle in each stage (except when stalling).

An implementation must merge some bytes of the value loaded from memory with the existing register contents.
Here are three reasonable solutions:
Merge in memory port: For an ordinary load instruction the data-in to the memory port in the ME stage has the rt

register value, which is ignored. Since the memory port “automatically” gets the old value and it retrieves the new value, have it
merge the two together. Some of the hardware needed to do that, namely hardware to shift the loaded value into the correct place,
is already there. (More on this later in the semester.) Making whatever changes are necessary to do the merge might not add to the
critical path because most of the hardware is already there.

Merge in the WB stage using new hardware: The new hardware would have as inputs the WB.MD pipeline latch, a
new WB.rtv pipeline latch, the low two bits of WB.alu (for alignment), and control bits. The output would connect to a new input
of the WB mux. Because of the time needed for the merge with this alternative it might not be possible to bypass to EX from WB.

Merge within the register file: A slightly modified memory port shifts the loaded value into the correct position (it already
does that for lb and lh) and the loaded value reaches the register file following the existing data path. A modified register file will
write only those bytes of the register which are to change, the others will remain unchanged. New control logic (perhaps placed in
the WB stage) will examine address bits to see which bytes of the register to write.

Here is a solution that would work but would be too slow:
Merge in the ME stage (not the mem port): New hardware merges the output of the memory port and ME.rtv. (The

hardware would otherwise be the same as the merge-in-the-WB-stage option above.) This would be too slow because memory is
considered to be on the critical path and anything delaying a signal between, say, the memory port out and the pipeline latch would
be lengthening the critical path.

(b) Show how the code below would execute on your solution. Pay attention to dependencies. Feel free to
propose an alternate solution to reduce the number of stalls.

# Execution for merge-in-memory-port solution.

# Cycle 0 1 2 3 4 5 6 7 8 9

add r1, r3, r4 IF ID EX ME WB

lwl r1, 0(r2) IF ID ----> EX ME WB

sub r5, r1, r6 IF ----> ID -> EX ME WB
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Problem 4: Consider these options for handling unaligned loads in the MIPS ISA which might have been
debated while MIPS was being developed.

• Option Lean: All load addresses aligned. No special instructions for unaligned loads (e.g., no lwl or
lwr).

Pro: Simple implementation. Con: Slower handling of unaligned loads.

• Option Real: All load addresses aligned. Special instructions for unaligned loads (e.g., lwl or lwr).

Pro: Quick handling of unaligned loads. Con: Small amount of additional data path complexity.

• Option Nice: Load addresses do not have to be aligned, however warn programmers that loads of
unaligned addresses may take longer in some implementations.

Pro: Simpler and shorter code. Con: Larger amount of additional datapath complexity. Slower code if implementations do take
longer.

(a) For each option provide an advantage and a disadvantage.
See above.

(b) What kind of data would be needed to choose between these options? Consider both software and
hardware data, be reasonably specific.

One needs to weigh the cost against the benefit for a typical implementation. The cost is the engineering effort and chip area
needed for each option, the benefit is how much faster code will run.

For the cost one needs an estimate of how large and how complex the additional hardware would be.
For the benefit one would need to know how often code performs unaligned access. That data could be obtained by finding an

existing ISA that imposes alignment restrictions and then analyzing benchmarks compiled for that ISA to determine how frequently
they perform unaligned accesses. Then estimate the relative performance of the three options.

Evaluating the nice option requires another piece of data: how many programmers would avoid unaligned access because it might
be slower. Gentle reader, I’m sure you would—or if you didn’t you’d have a good reason, but what about the typical programmer?
If programmers made no effort to avoid unaligned accesses then their code would be slower on some implementations. Fortunately,
most machine language is “written” by compilers and compiler writers would likely pay attention to the warning, so for this analysis
assume in nice option unaligned access is avoided as it should be.

Grading Note: Many answers discussed the conditions under which unaligned accesses would be made,
rather than just suggesting measuring how much existing programs made unaligned access. Many solutions
correctly noted that unaligned accesses are needed when data is to be packed tightly (avoiding the padding
needed to meet alignment requirements). Nevertheless its much better to directly measure how often something
is done (when possible) then to estimate how often it would be done. In this case because one would still
have to gauge how often misalignment was actually necessary to save space (this would happen with arrays
of structures of certain members (say, one integer and one character). One also might not account for
unanticipated reasons for unaligned access.

(c) Using made up data pick the best option. Any choice would be correct with the right data.
Made up cost data: Cost of lean option, 0; cost of real option, 10 person-weeks + 1000 gates; cost of nice option, 20 person-weeks

+ 1200 gates.
Best proposed feature (nothing to do with unaligned loads): 5% improvement using 10 person-weeks and 1000 gates.
Made up benchmark data: Over all benchmarks, 20% of instructions are loads. Of these, 0.0001% are unaligned. With lean

option each unaligned load would take about 5 times as many instructions as real option but that would still have negligible impact
on performance, so choose lean.

Different made up benchmark data: Over all benchmarks, 20% of instructions are loads. Of these, 10% are unaligned. Assuming
instruction count is proportional to performance for lean and real Lean, 0.8+0.18+0.02∗10 = 1.18; real, 0.8+0.18+0.02∗2 =
1.02, so the performance improvement of real or lean would 13.6% faster, well over the 5% needed to justify the cost (compared to
the best proposed feature). Assuming no penalty for unaligned access, the nice option would yield about a further 2% improvement,
which would not be worth the cost.

Grading Note: Many solutions provided made-up data describing only a small code fragment. The idea
was to pick the kind of data a CPU manufacturer would use to actually decide which option to pursue, and
so it would have to be based on real benchmarks or something equally convincing.
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LSU EE 4720 Homework 2 Solution Due: 9 March 2007

Problem 1: A manufacturer develops an ISA extension which can dramatically improve the performance
of certain benchmarks. The extension includes new instructions which work well with small integers. In
what the manufacturer calls well-formed C programs the compiler will find all opportunities where the new
instructions can be used and so the dramatic improvement will be realized. On other programs in which the
new instructions could be used the compiler won’t use them because it can’t tell if the resulting machine
code would be correct (perhaps because its not sure if values in registers would be small). In such cases
the compiler will provide a message for the programmer indicating a list of regions in which there was the
possibility of using the instructions. The programmer can then recompile with a special option indicating
which of those regions the new instructions can safely be used in. The resulting code would be sped up.

Suppose this all works out very well for developers. They have no problems indicating which regions
are safe for the new instructions and their resulting executables are fast and run correctly.

The manufacturer would like to run the SPECcpu2006 benchmarks on their new implementation. Most
of the SPECcpu2006 benchmarks are not well formed.

(a) Why couldn’t the compiler options (flags) for the SPEC run (base or peak) indicate the safe regions
under a reasonable interpretation of the rules? In your answer refer to specific parts of the SPECcpu2006
run and reporting rules,
http://www.spec.org/cpu2006/Docs/runrules.html.

The rules state that compiler flags cannot use names. Strictly speaking, the list of regions provided by the compiler is probably
not a list of names but what is being asked of the programmer is similar to what spec rule 2.1.1 forbids: the use of variable or
subroutine names in optimization flags. Flags with variable or subroutine names might be used to tell the compiler to apply a
dangerous optimization only to that code, such flags are probably forbidden because few programmers would make the effort to use
them properly (especially when using the flags inappropriately would lead to incorrect execution). The compiler described in the
problem provides a list of regions and asks the programmer to make the same kind of decision, one that would require familiarity with
both the optimization and with the code. For that reason the safe regions flags could arguably be forbidden under SPEC rules.

(b) Keeping in mind the goals of the SPECcpu benchmarks argue either that the SPECcpu rules should be
changed (perhaps for a future version of the benchmark) or argue that the rules should remain as they are.

Argument for changing the rules:
SPECcpu is supposed to show the performance potential of new systems, including CPU, memory, and compilers. By providing

a short list of regions the programmer is not burdened with scouring the code for special optimization opportunities, and so many
programmers would use it. In fact, many programmers do use it and it would make no sense to forbidding optimization techniques
that are becoming common practice in production environments.

Solve the problems below. Then look at the solutions and assign yourself a grade.

Problem 2: Without looking at the solution solve Spring 2006 Midterm Exam Problem 1.

Problem 3: Without looking at the solution solve Spring 2006 Midterm Exam Problem 2.
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LSU EE 4720 Homework 3 Solution Due: 18 April 2007

Some of the questions below are about the interrupt mechanisms defined for the MIPS32, SPARC V8,
and PowerPC 2 ISAs. MIPS and SPARC interrupt mechanisms were covered in class, PowerPC’s mecha-
nism was not. All are documented in manuals linked to the class references page,
http://www.ece.lsu.edu/ee4720/reference.html. When using these references keep in mind that in-
terrupt terminology differs from ISA to ISA and that you are not expected to understand (at least on first
reading) most of what is in these manuals. Finding the right manuals and the relevant pages in those manuals
is part of this assignment’s learning experience.

Problem 1: Consider a load instruction that raises an exception due to a fixable problem with a memory
address (for example, a TLB miss, whatever that is) on an implementation of MIP32, SPARC V8, and
PowerPC 2.

(a) Where does each ISA say the address of the faulting instruction (the load) should be put? Give the exact
register name, number, or both (if available).

MIPS32: Coprocessor 0 register EPC, register number 14. (If the faulting instruction is not in a delay slot then EPC is set to
the address of the faulting instruction, otherwise the address of previous instruction).

SPARC V8: After advancing to a new register window, the address of the faulting instruction is put in register l1 (also called
r17). The address of the next instruction (which could be a CTI target) is put in register l2 (also called r18).

PowerPC: The address of the load instruction is written to SRR0.

(b) Where does each ISA say to put the memory address that the load attempted to load from?
MIPS32: Coprocessor 0 register BadVAddr, register number 8.
SPARC V8: The memory management unit’s (MMU) fault status register.
PowerPC: Register DAR.

Problem 2: Is PowerPC’s equivalent of a trap table more similar to SPARC’s trap table or to MIPS’?
Explain and describe how specific elements are the same or different. Look at table placement, size, number
of entries, and perhaps other characteristics.

Here is a summary of table characteristics.
MIPS32: The trap “table” is actually spread across several locations, defined by the ISA. At some locations there is a single

handler, at others a set of four of handlers (as MIPS and PowerPC). Normally the cache exception table starts at 0xa0000000 and
the table for other non-reset, non-debug exceptions starts at 0x80000000. The number of entries under normal operations is about
8, the smallest gap between entries is 32 instructions.

SPARC V8: Base address is value stored in TBR (trap base register), written by software during OS startup. Table size: 256
entries, each entry is four instructions.

PowerPC: Table starts at address 0 and spans 4096 characters. There are 15 entries with defined uses. Based on Figure 29 one
might assume handler size is 32 instructions based on the smallest space between defined entries.

Comparison: SPARC has the largest table (256 entries) and one that can be placed anywhere. The benefit of many entries is
that the handler might spend less branching to the appropriate code (because for each entry there is just one place to jump). (This
is probably not that big an advantage since the table would not be used that often.)

PowerPC is similar to SPARC in that all entries are in one table, not spread across the address space as in MIPS. However like
MIPS the location of PowerPC’s table is defined by the ISA. The number of entries is closer to that of MIPS than SPARC. Overall
the PowerPC table seems more similar to MIPS.

Grading Note: If reasonably argued, “closer to SPARC” would also be considered a correct answer.

Problem 3: In class a precise exception was defined as one in which, to the handler it appears that all
instructions before the faulting instruction have completed normally and that the faulting instruction and
those following it have not executed (correctly or otherwise). PowerPC calls certain exceptions precise even
though they violate this rule. What are they and how is this violation justified in the manual?

Data segment exceptions raised by certain load and store instructions. Under some circumstances when the handler starts the
faulting load or store will have written some registers, violating a condition normally associated with precise exceptions. The ISA
“book” points out that what’s important is the ability to re-execute the instruction, and so implementations can have such loads and
stores write registers so long as no information needed to re-execute them is lost.
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Problem 4: Solve Fall 2006 Final Exam Problem 1. Note: At the time this was assigned the solutions were
not available.

See posted solution to exam.

← → Spring 2007 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4720/2007/hw03_sol.pdf


LSU EE 4720 Homework 4 Solution Due: 25 April 2007

Problem 1: Estimate performance of the 8-way superscalar statically scheduled MIPS implementations
described here. All are five stages, as used in class, and always hit the cache, as has been the case in class
so far. Some of the implementations have no fetch group alignment restrictions, which means any eight
contiguous instructions can be fetched. Some impose a fetch group alignment restriction, meaning if a CTI
target is address a IF will fetch eight instructions starting at address a′ = 8×4×b a

8×4c (for those preferring
C: aa = a & ~0x1f ). Instructions in [a′, a) (or from aa to before a) will be squashed before reaching ID.

The implementations include a branch predictor that predicts when a branch is in IF, resolves (checks
the prediction) when a branch is in ID, and if necessary recovers (squashes wrong-path instructions) when a
branch is in EX. A branch is predicted when it is in IF and the prediction is used in the next cycle. Example
1, below, illustrates a correct taken prediction. The correctness of the prediction is checked, resolved, when
the branch is in ID; if incorrect the wrong-path instructions are squashed and the correct path instructions
are fetched in the next cycle (when the branch is in EX). This is illustrated in Example 2 for an incorrect
taken prediction.

Note that due to alignment restrictions (if imposed) and branch placement the number of useful instruc-
tions fetched in a cycle can vary, and that is something to take into account in the subproblems below. The
examples below illustrate when instructions will be fetched and squashed but they do not show how many
will be fetched in every situation.

# Example 1: Branch correctly predicted taken. Target fetched in next cycle.

#

# Cycle 0 1 2 3 4 5 6

beq r1,r2, TARG IF ID EX ME WB

nop IF ID EX ME WB

...

TARG:

add r3, r4, r5 IF ID EX ME WB

# Example 2: Branch wrongly predicted taken.

# Target squashed, correct path (fall through) fetched in cycle after ID.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

beq r1,r2, TARG IF ID EX ME WB

nop IF ID EX ME WB

sub r6, r7, r8 IF ID EX ME WB

TARG:

add r3, r4, r5 IFx

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

All implementations run the same program, which has not been specially compiled for the 8-way machine.
In the program, which has no floating-point instructions, any two data-dependent instructions have at least
seven instructions between them. This avoids some stalls, assume that there are no other stalls in the
superscalar implementation due to data dependencies.

Let ni denote the number of dynamic instructions in the program and let nb denote the number of
dynamic instructions that are branches. For the questions below show answers in terms of these symbols
and also show values for ni = 1010 and nb = 2 × 109. Assume that half of the times a branch is executed it
is taken.

(a) Suppose the 8-way implementation has perfect branch prediction and has no fetch alignment restrictions.
Approximately how long (in cycles) will it take to run the program. State any assumptions. Hint: Because
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of the branches it’s > ni

8 .
First of all, if it weren’t for branches execution would take ni

8 cycles. Performance is lost when a branch is not in the penultimate
slot in a group. For example, suppose a taken branch is the first of eight instructions in ID. Six of those eight would have to be
squashed. Because there is perfect branch prediction none of the instructions in IF are squashed. Only when a taken branch is in
the last slot do instructions in IF get squashed, the seven following the delay-slot instruction. If a taken branch is in position i then

the number of squashed instructions is
{

6 − i i < 7
7 i = 7

, where i = 0 is the first slot.

Since the program has not been specially compiled the branch is equally likely to be in any slot, so the average number of
squashed instructions for a taken branch is 3.5.

The execution time is then
(
ni + nb

2 3.5
)
/8 cycles . For the sample numbers the execution time is 1.69 × 109 cycles .

(b) Repeat the question above for a predictor that always predicts not taken (which essentially means no
predictor).

If a branch outcome is not taken no instructions are squashed. If a branch in ID is taken then seven or eight instructions in IF
must be squashed (seven when the branch is in the last slot). The number of squashed instructions for a branch in slot i is 8+6− i

for 0 ≤ i < 8. The average is 10.5 and so the execution time is
(
ni + nb

2 10.5
)
/8 cycles , for the sample numbers the execution

time is 2.56 × 109 cycles . Note the difference between perfect branch prediction (previous subproblem) and no branch prediction.

(c) Repeat the question above for a predictor with a 95% prediction accuracy. (Yes, that means 95% of the
predictions are correct.)

There are four cases to consider. Predicted not taken, outcome not taken (call that nn), nt, tn, and tt. In case nn nothing is
squashed. Case nt is what was analyzed in part b, the average number of squashes was 10.5. Case tt was analyzed in part a, the
average number of squashes was 3.5.

For this part we need to find the number of squashes when a branch is predicted taken but its not (the tn case). Consider such
a branch when it is in ID and assume the branch is not in slot 7. Because the branch was predicted taken 6 − i instructions in ID
will be squashed. When the branch is resolved not taken all the instructions in IF (which are on the taken path) will be squashed.
The total number of squashed instructions is then 8 + 6 − i for i < 7. It is possible to actually not squash the instructions in ID
in this case, but here we will assume its too difficult. (For one, because the branch is resolved at the end of ID so they’d have to be
squashed in EX in the tt case.)

If the branch is in slot 7 then IF will be fetching the delay slot instruction along with 7 which based on the prediction are to be
squashed. If the hardware is smart enough these can be saved and so that zero instructions are squashed in the tn case if the branch
is in slot 7. The average number across all slots is 9.625 instructions squashed.

Assuming prediction accuracy is the same for taken- and not-taken branches one can find a weighted average over the four cases:

nn case︷ ︸︸ ︷
0 × 0.95

2
+

nt case︷ ︸︸ ︷
10.5 × 0.05

2
+

tn case︷ ︸︸ ︷
9.625 × 0.05

2
+

tt case︷ ︸︸ ︷
3.5 × 0.95

2
= 2.17 cycles.

The execution time is (ni + nb2.17) /8 cycles , for the sample numbers the execution time is 1.52 × 109 cycles . Note that
this calculation uses the total number of branches, not just the taken ones.

(d) Once again, suppose the 8-way implementation has perfect branch prediction but now fetch is restricted to
aligned groups. Approximately how long (in cycles) will it take to run the program. State any assumptions.

Each time a branch is taken 3.5 instructions near the branch will be squashed (see part a). Because fetch isn’t aligned, on
average 3.5 instructions at the target will be squashed, for a total of 7 instructions.

The execution time is
(
ni + nb

2 7
)
/8 cycles , for the sample numbers the execution time is 2.13 × 109 cycles .
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Problem 2: Consider a bimodal branch predictor with a 210-entry branch history table (BHT).

(a) What is the prediction accuracy on the branch below with the indicated behavior assuming no interference.
Assume that the pattern continues to repeat. Provide the accuracy after warmup.
0x1000 beq r1, r2 TARG t t t n t t n n n t t t n t t n n n ...

The counter values, prediction and outcome are shown below. Note that the counter values will repeat. The prediction accuracy
is 4/9 = .444, which is not good at all.

Counter: 0 1 2 3 2 3 3 2 1 0

0x1000 beq r1, r2 TARG t t t n t t n n n t t t n t t n n n ...

Prediction n n t t t t t t n

Prediction wrong: X X X X X

Problem 3: Suppose that for some crazy reason it’s important that the branch at address 0x1000 be
predicted accurately, even if that means suffering additional mispredictions elsewhere. The result of this
crazyness is the code below, in which the branch in HELPER is intended to help the branch at 0x1000.

(a) Choose an address for HELPER so that 0x1000 is helped.
Choose the address so that HELPER and the branch at 0x1000 use the same entry in the BHT. (This isn’t something that’s

ordinarily done.) Since the BHT has 210 entries the address of HELPER must match 0x1000 in the lower 12 bits. One possible
address is 0x2000.

(b) Given a correct choice for the address of HELPER, find the prediction accuracy of the branch at 0x1000.

jal HELPER

nop

0x1000:

beq r1, r2 TARG t t t n t t n n n t t t n t t n n n ...

...

....

HELPER:

beq r1, r2 SKIP

nop

SKIP:

jr r31

nop

The solution is worked out below. The counter is modified twice, before and after the branch (both times using its outcome).
The accuracy is now 6/9 = .667, better but still not that good.

Counter: 01 23 33 32 12 33 32 10 00 01

0x1000 beq r1, r2 TARG t t t n t t n n n t t t n t t n n n ...

Prediction n t t t t t t n n

Prediction wrong: X X X
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LSU EE 4720 Homework 2 Solution Due: 9 October 2006

Problem 1: Section 2.2.2 of the run and reporting rules for SPECcpu2006,
http://www.spec.org/cpu2006/Docs/runrules.html, specifies that the optimization flags and options
used to obtain the base result must be the same for each benchmark (compiled with the same language, say
C). Why must they be the same?

Base scores are supposed to reflect the amount of optimization effort a programmer would make under ordinary circumstances.
In that case the programmer might not find a best set of optimization flags for each program. Even if they did, there is no workable
way to write a rule that would distinguish between compiler switches found with ordinary and extraordinary effort, and so requiring
switches to be the same on all benchmarks is a reasonable substitute.

Problem 2: Section 1.2.3 of the run and reporting rules for SPECcpu2006,
http://www.spec.org/cpu2006/Docs/runrules.html, assumes that the tester is honest. Provide an argu-
ment that many of the run and reporting rules ignore this assumption, or at best are based on the assumption
that the tester is honest but sloppy or unmotivated.

The rules are written to ensure that anyone (with the budget, skills, and time) can reproduce any disclosed result. So the rules
don’t assume the tester is honest, they assume that the tester doesn’t want to be caught lying.

Problem 3: Find the SPECcpu2000 CINT2000 disclosure for the fastest systems using each of the chips
below. All chips implement some form or superset of IA-32 (also known as 80x86). All of the implementations
are superscalar, meaning they can sustain execution of more than one instruction per cycle. In particular, an
n-way superscalar processor can sustain execution of n instructions per cycle on ideal code, on real code the
sustained execution rate is much lower (for reasons to be covered later in the course, such as cache misses).
Some of the implementations are multi-cored. (A core is an entire processor and so a 2-core chip has two
complete processors.)

• Pentium III, 1-core, 2-way

• Pentium 4, 1-core, 3-way

• Pentium Extreme, 2-core, 3-way

• Intel Core 2 Extreme X6800, 2-core, 4-way

• Opteron 256, 1-core, 3-way

• Athlon FX-62, 2-core, 3-way

(a) For each system list the following information:

• The peak (result) ratio (for the suite).

• The clock frequency.

• The gcc peak (result) run time (in seconds).

• The maximum number of instructions the system could have executed during the run of gcc assuming
all cores were used.

• The maximum number of instructions the system could have executed during the run of gcc assuming
one core was used.

• Execution efficiency assuming all cores were used: number of instructions executed divided by max-
imum number of instructions that could have been executed in the same amount of time. Assume
that all systems run the same binary (executable) of gcc and make a guess at how many instructions
would be executed when running the binary for the SPEC inputs.
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• Execution efficiency assuming a single core was used: Same as previous value, except assume only one
core used.

The information is listed in the table below. Those viewing this with Adobe Reader can view the SPECint2000 disclosure by
clicking the names in the Chip column.

The Cores column shows the number of cores on the tested system, the Width column shows the decode width per core (the
n in n-way superscalar), the Peak column shows the SPECint2000 result (peak) ratio, the Clock column shows the clock frequency,
and the gcc time column shows the execution time of the gcc benchmark. Values for the columns mentioned so far are found in the
SPEC disclosure or in this assignment.

The next two columns, both headed Max Insn, show the maximum number of instructions that the respective processor could
have executed in the time need for the run of the gcc benchmark using all cores and one core. Those are found by multiplying the
maximum number of instructions per second for the processor by the benchmark run time for each case; the formulæ are shown below
the column heading.

To find the efficiency one must estimate the number of instructions executed in a run of the benchmark, call that number I . It
can’t be larger than any of the entries under Max Insn, and realistically will be much smaller (due to stalls and squashes). Since
there is no way to tell exactly what I is with what is given here, I will be set to the minimum Max Insn of the single-core cases
(because multiple cores don’t help gcc). That is I = 366 × 109 instructions based on the Core 2 X6800 at 2.933 GHz.

The efficiencies are computed by dividing I by Max Insn. Using this method the efficiency of the Core 2 X6800 is 1, meaning
only that the X6800 is the most efficient, not that it’s perfect.

All Cores One Core
Chip Cores Width Peak Clock gcc time Max Insn Eff Max Insn Eff
(Clickable in PDF) c n φ t cnφt10−9 I

cnφt nφt10−9 I
nφt

Pentium III 1-core 2-way 665 1.400 GHz 154 s 431 .849 431 .849
Pentium 4 1-core 3-way 1863 3.800 GHz 49.2 s 561 .653 561 .653
Pentium Extreme 2-core 3-way 1872 3.733 GHz 50.8 s 1138 .322 569 .643
Core 2 Extreme X6800 2-core 4-way 3119 2.933 GHz 31.2 s 732 .500 366 1.0
Opteron 256 1-core 3-way 2009 3.000 GHz 49.4 s 445 .823 445 .823
Athlon FX-62 2-core 3-way 2061 2.800 GHz 50.9 s 855 .428 428 .856

(b) The execution efficiency computation was based on the assumption that the number of executed instruc-
tions was the same in all systems. Identify two systems for which this was more likely to be true and two
systems where this was less likely to be true.

In all cases gcc was compiled using the same source code and run using the same inputs, as provided by SPEC. What differs is
the compilers (and other build tools) used to test each system, as well as how those compilers were used. The number of instructions
are most likely identical where the compiler and options are most similar.

The Pentium Extreme and Core 2 X6800 systems both use the Intel Compiler 9.1 and MicroQuill SmartHeap Library 8.0. These
are the exact same compiler and heap (malloc and friends) libraries. The compile flags for gcc are: -fast shlW32M-80.lib

PASS1=-Qprof gen PASS2=-Qprof use for the Pentium Extreme and -fast shlW32M.lib PASS1=-Qprof gen

PASS2=-Qprof use for the Core 2 X6800. These are as similar as one could expect, the factor that might nevertheless result in
different instruction counts are how the compiler will respond to the -fast flag. That tells the compiler to emit the fastest code
for the host system, since the two chips are different that might result in different instruction counts.

The number of instructions are less likely identical when the compilers and options are less similar. The Pentium III system
uses older version of the Intel compiler, 5.0, and heap library, 5.0, so the generated code is more likely to differ.

(c) How much does a dual-core implementation improve the performance of gcc?
Not much, based on a comparison of the single-core Pentium 4 and the dual-core Pentium Extreme. The performance is nearly

the same. (The microarchitectures of the two processors’ cores are very similar, so it’s not just that each core of the Pentium Extreme
is half the speed of the single core of the Pentium 4.)
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LSU EE 4720 Homework 3 Solution Due: 20 October 2006

Problem 1: Show the changes to the MIPS implementation below needed to implement the SPARC V8
instructions shown in the sub-problems. (See the SPARC Architecture Manual linked to the course references
page for a description of SPARC instructions.) Do not show control logic changes or additions. For this
problem assume that SPARC has 32 general-purpose registers, just like MIPS. (In reality there are 16n,
n ≥ 4 general-purpose registers organized into windows. An integer instruction sees only 32 of these but
using save and restore instructions a program can replace the values of 16 of them, the feature is intended
for procedure calls and returns. To satisfy curiosity, see the description of register windows in the ISA
manual.)

format
immed

IR

Addr18:14

4:0

IF

ID
EX WBME

rs1v

rs2v

IMM

PC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrdv

ALU

MD

dst dst dst
Decode

dest. regs

PC

30 2
"0"

+
21:0

25:0

29:26

29:0

01

12:0

cc

Branch
control
logic

=

Part (a),
ALU

Addr Data29:25 rdv

Part (b),
store

Part (c), subcc, branch

ccv
ccv

cc
we

cw cw cw

Part (c),
subcc,
branch

Register for CC bits; we is write enable.

For solution can use larger version on next page.

(a) Show the changes for the following instructions. The only changes needed for these are to bit ranges in
the ID stage.

add %g1, %g2, %g3

sub %g4, 5, %g6

Changes shown in blue in the diagram. The instruction bits used for the two existing read ports on the ID-stage register file
changed to 18:14 and 4:0, so that the SPARC rs1 and rs2 registers would be retrieved. The bits in to the ID-stage format-immed
logic changed to 12:0, reflecting the SPARC immediate field.

(b) Show the changes needed for the store instruction below. This will require more than changing bit ranges.

st %g3, [%g1+%g2]

Changes shown in green in the diagram. The store instruction has three source operands so a third read port added to the
register file. In EX, the MUX leading to the ME-stage Data In port now gets its input from rdv (the new register read port value).
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(c) Show the changes needed to implement the instructions below. The alert student will have noticed the
ALU has a new output labeled cc. That output has condition code values taken from the result of the ALU
operation.

• Don’t forget the changes needed for the branch target.

• The changes should work correctly whether or not the branch immediately follows the CC instruction.

• Cross out the comparison unit if it’s no longer needed.

subcc %g1, %g2, %g3

bge TARG

Changes shown in purple in the diagram. The cc instructions write the condition-code register, which is like any other register
and so is placed in the ID stage. The CC value is computed by the cc output of the ALU, and that is carried along the pipeline in
new CC pipeline latches to the WB stage where a new CC register is written. That new register has a write-enable (we) input so
that only cc instructions (such as subcc) will write it. The output of the cc register connects to the branch control logic, a cc value
is bypassed from the EX stage so that a branch immediately after a cc instruction (as in the example above) doesn’t have to stall.

SPARC branch instruction targets are computed as a displacement from PC rather than NPC, so IF/ID latch changed. The
ID-stage branch target adder lower input changed to reflect the position and size of the displacement field in SPARC instructions,
bits 21:0.

Grading Notes: Some submitted solutions have the cc register bits compared to the comp field in the branch instruction.
That won’t work because the comp field does not specify exactly what the cc bits should be. For example, be (branch equal to zero)
just checks if the Z bit is set.

Some submitted solutions show the CC register being written in the instruction’s EX stage. That won’t work because the
instruction may be squashed after EX (and so it would not easily be possible to recover the old cc value). Given what’s been covered
so far it may seem like a squash won’t happen to an instruction that reaches EX, but that will change when we cover exceptions.
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LSU EE 4720 Homework 4 Solution Due: 4 December 2006

Problem 1: The floating point pipeline in the MIPS implementation illustrated below must some-
times stall instructions to avoid the WF structural hazard. The WF structural hazard could be
avoided by requiring all instructions that use WF to go through the same number of stages. Note
that instructions that use WB all pass through five stages, even though some instructions, such as
xor, could write back earlier.

Redesign the illustrated implementation so that the WF structural hazard is eliminated by
having WF instructions (consider add.d, sub.d, mul.d, and lwc1) all pass through the same
number of stages. The functional units themselves shouldn’t change (still six multiply steps and
four add steps) but their positions might change.

(a) Show the possibly relocated functional units and their connections. Don’t forget connections
for the lwc1 instruction.

The add unit steps now share stages with like-numbered multiply unit steps, see the illustration below. After A4
the FP add result is ready but it continues down the pipeline so that it reaches WF two cycles later than usual. There is
no way there can be a WF structural hazard with a add.d and a mul.d because such a mul.d would have to be in ID
in the same cycle as an add.d.

The result of a lwc1 joins the FP pipeline at the A3 stage. As with the add.d, the lwc1 cannot have a structural
hazard with a mul.d or add.d. The add and load results are combined using a mux in the M5 stage. This reduces the
number of pipeline latches used and also simplifies the control logic.

(b) Show any changes to the logic generating the fd, we, and xw signals. Note: The original
assignment did not ask for xw changes.

Because there can be no WF structural hazards all of the structural hazard logic has been eliminated. Because the
fd and we signals now only enter in ID the logic is much simpler. As before, we is set to 1 if any instruction using WF
is present, which for this implementation means an instruction using the FP Add Unit, FP Multiply Unit, or a FP load

instruction. The fd signal is just the output of Decode dest. reg. logic.

The WF three-input mux in the original design has been replaced by two two-input muxen: one in M5 and one in
WF. This simplifies the control logic.

(c) Show bypass paths needed to avoid stalls between any pair of floating point instructions men-
tioned above.

The solution below shows the pre-existing (but not usually shown) bypass path in green, and new bypass paths for
this problem in blue. In the sample execution below bypasses are used in cycle 4 (ldc1 to add.d) and cycle 8 (add.d
to sub.d).

# Sample Execution:

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ldc1 f2, 0(r1) IF ID EX ME _3 _4 _5 _6 WF

add.d f0, f2, f4 IF ID -> A1 A2 A3 A4 _5 _6 WF

sub.d f6, f0, f8 IF -> ID -------> A1 A2 A3 A4 _5 _6 WF
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Problem 2: Consider the changes to avoid structural hazard stalls from the previous problem.
Provide an argument, either for making the changes and or against making the changes. For your
argument use whatever cost and performance estimates can be made from the previous problem.
Add to that the results of fictitious code analysis experiments and alternative ways of using silicon
area to improve performance.

The code analysis experiments might look at the dynamic instruction stream of selected pro-
grams. For these experiments explain what programs were used and what you looked for in the
instruction stream. Make up results to bolster your argument.

For the alternative ways of using silicon area, consider other ways of avoiding the structural
hazard stalls, or other ways of improving performance. This does not have to be very detailed, but
it must be specific. (For example, “use the silicon area for pipeline improvement” is too vague.)

The argument should be about a page and built on a few specific elements, rather than mean-
dering long-winded generalities.

It’s not worth it. Improvement is limited to a handful of programs, while the cost is substantial.
The benefit is only practically realized for a few FP-dense programs. Normally our compilers will schedule (arrange)

FP instructions so that WF structural hazards are avoided. When analyzing SPECcpu2000 FP programs, we found only
one program in which WF structural hazards remained after compiler scheduling. Even so, the resulting stalls caused only
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a 10% increase in execution time and a competent program could have re-cast that region of code to avoid any stalls.
Note: The remarks above about “our compilers” are fictional.

The modified hardware includes three new pipeline latches (M3/M4 to M5/M6) plus their bypass connections.
The added cost might be used to increase the L2 cache size, benefiting all programs. Another option would be to

add a second FP register write port, though that would add to the complexity of the control logic.

Problem 3: In the previous problem structural hazards were avoided by having all WF instructions
pass through the same number of stages. If both WB and WF instructions passed through the
same number of stages then, were it not for stores, it would easily be possible for floating-point
instructions to raise precise exceptions without added stalls (even if exceptions could not be detected
until M6).

(a) For this part, ignore store instructions. Explain why having all instructions pass through the
same number of stages makes it easier to implement precise exceptions (without added stalls, etc.)
for floating point instructions.

Implementing precise exceptions for FP instructions is difficult because FP instructions write back out of order, so
that should it be necessary to squash instructions following a faulting instruction some of those following instructions may
have already written back. If all instructions use the same number of stages then instructions will write back in order and
so it will always be possible to squash instructions following a faulting instruction.

(b) For this part, include store instructions. Explain how store instructions preclude precise excep-
tions for the implementation outlined above, or at least for a simple one.

Consider first an implementation in which the memory port is in M2 (as in the solution to the first problem). After a
store instruction passes through M2 it will have written memory and so it will be too late to squash it, precluding precise
exceptions.

If instead, the memory port is in M6 (the stage before WB) it will be possible to have precise exceptions but
instructions dependent on loads will have to stall. See the example below.

# Alternate solution, ME in stage _6.

#

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ldc1 f2, 0(r1) IF ID EX _2 _3 _4 _5 ME WF

add.d f0, f2, f4 IF ID -------------> A1 A2 A3 A4 _5 _6 WF

sub.d f6, f0, f8 IF -------------> ID -------> A1 A2 A3 A4 _5 _6 WF

(c) For this part, include store instructions. Do something about stores so that the all-instructions-
use-the-same-number-of-stages implementation can provide precise exceptions to floating point in-
structions. It is okay if the modified implementation adds stalls around loads and stores. A good
solution balances cost with performance.

If your solution is costly say so and justify it. If your solution is low cost but lowers performance
say so and show the execution of code samples that encounter stalls.

One solution would be the ME in stage M6 variation shown above. Though the cost of this solution is low its need
for frequent stalls would make performance too low.

Another solution would be to have the memory port provide the overwritten data on a store. That is, when a store
instruction is in ME the Data Out of the memory port will hold the data which the store is about to overwrite. That
data will proceed down the pipeline and ordinarily will just be discarded when the instruction reached WB. Going down
the pipeline with the replaced data will be the effective address (this would require a new set of pipeline latches). If an
instruction raises an exception, these replaced data and effective addresses will be used to write memory, undoing the
effect of the stores.
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LSU EE 4720 Homework 1 Solution Due: 3 March 2006
Several Web links appear below and at least one is long, to avoid the tedium of typing them

view the assignment in Adobe reader and click.

Problem 1: Consider these add instructions in three common ISAs. (Use the ISA manuals linked
to the references page, http://www.ece.lsu.edu/ee4720/reference.html.)

# MIPS64

addu r1, r2, r3

# SPARC V9

add g2, g3, g1

# PA RISC 2

add r1, r2, r3

(a) Show the encoding (binary form) for each instruction. Show the value of as many bits as
possible.

Codings shown below. For PA-RISC the ea, ec, and ed fields are labeled e1, e2, and e3, respectively in the
instruction descriptions. There is no label for the eb field in the instruction description of the add and yes it would make
sense to use e0 instead of e1 but they didn’t for whatever reason.

MIPS64:

opcode

0

31 26

rs

2

25 21

rt

3

20 16

rd

1

15 11

sa

0

10 6

func

0x21

5 0

SPARC V9:

op

2

31 30

rd

1

29 25

op3

0

24 19

rs1

2

18 14

i

0

13 13

asi

0

12 5

rs2

3

4 0

PA-RISC 2:

OPCD

2

0 5

r2

3

6 10

r1

2

11 15

c

0

16 18

f

0

19 19

ea

01

20 21

eb

1

22 22

ec

0

23 23

ed

00

24 25

d

0

26 26

t

1

27 31

(b) Identify the field or fields in the SPARC add instruction which are the closest equivalent to
MIPS’ func field. (A field is a set of bits in an instruction’s binary representation.)

SPARC op3 is closest to MIPS func.

(c) Identify the field or fields in the PA-RISC add instruction which are the closest equivalent to
MIPS’ func field. Hint: Look at similar PA-RISC instructions such as sub and xor.

Fields ea (e1), eb, ec (e2), and ed (e3) are closest to the func field. The “e” is for extension.
(In the instruction descriptions the fields are called e1, etc, but in the instruction formats chapter
they are called ea.)

(d) The encodings of the SPARC and MIPS add instructions have unused fields: non-opcode fields
that must be set to zero. Identify them.

For SPARC the asi field must be set to zero. The i field must also be set but that determines whether the
instruction uses a register or immediate, so it’s not unused. In the MIPS instruction the sa field is unused.
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Problem 2: Read the Overview section of the PA-RISC 2.0 Architecture manual,
http://h21007.www2.hp.com/dspp/files/unprotected/parisc20/PA_1_overview.pdf.
(If that link doesn’t work find the overview section from the course references page,
http://www.ece.lsu.edu/ee4720/reference.html.)

A consequence of the unused fields in MIPS and SPARC add instructions and RISC’s fixed-
width instructions is that the instructions are larger than they need to be.

The PA-RISC overview explains how PA-RISC embodies important RISC characteristics, as
do other RISC ISAs, but also has unique features of its own.

(a) It is because of one of those class of features that the PA-RISC 2.0 add instruction lacks an
unused field. What is PA-RISC’s catchy name for those features?

Pathlength Reduction. Rather than let the c, f, and d fields go to waste, PA RISC uses them to include additional
functionality, conditionally squashing the next instruction. With the additional functionality some programs would need
fewer instructions, hence the term pathlength reduction.

(b) Provide an objection (from the RISC point of view) to the added functionality of PA-RISC’s add
instruction. If possible, find places in the overview that provide or at least hint at counterarguments
to those objections.

Adding functionality complicates the pipeline, increasing engineering time and reducing chip area available for things
like caches. Counterarguments might be found in the second instruction where they argue “reduced” should not be
considered above any other quality.
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Problem 3: Many ISAs today started out as 32-bit ISAs and were extended to 64 bits. Two
examples are SPARC (v8 is 32 bits, v9 is 64 bits) and MIPS (MIPS32 and MIPS64). One important
goal is that code compiled for the 32-bit version should run unchanged on the 64-bit version.
Another important goal is to add as little as possible in the 64-bit version. For example, it would
be easy maintain compatibility by adding a new set of 64-bit integer registers and new 64-bit integer
instructions, but that would inflate the cost of the implementation. Another approach would be to
extend the existing 32-bit integer registers to 64 bits and change the existing instructions so they
now operate on 64-bit quantities, but that would break 32-bit code (consider sll followed by srl).

(a) Does a MIPS32 add instruction, for example, add $s1, $s2, $s3, perform 64-bit arithmetic
when run on a MIPS64 implementation? If not, what instruction should be used to perform 64 bit
integer arithmetic?

No. The daddy instruction does 64-bit integer arithmetic.

(b) Does a SPARC v8 add instruction, for example, add %g2, %g3, %g1, perform 64-bit arithmetic
when run on a v9 implementation? If not, what instruction should be used?

Yes.

Problem 4: Continuing with techniques for extending 32-bit ISAs to 64 bits, consider the problem
of floating-point registers. Both MIPS32 and SPARC v8 have 32 32-bit FP registers that can be
used in pairs to perform 64-bit FP arithmetic. Both 64-bit versions effectively have 32 64-bit FP
registers, but using different approaches.

(a) Describe the different approaches.
MIPS takes the simpler approach: In mode 0 (FR 0) there are 32 32-bit FP registers, as in MIPS32. In mode 1 there

are 32 64-bit FP registers and double-precision instructions can use odd-numbered registers.
In SPARC V9 there are 32 64-bit registers, numbered f0, f2, ..., f62; registers f1, ..., f31 are also defined but these

overlap the even registers. Register numbers above f31 are encoded in double-precision FP instructions by putting the
MSB of the register number in the LSB of the field. That is, a value of 1 in the register field (which would be illegal in
SPARC V8 double precision instruction) actually refers to register f32; a value of 5 refers to f36, etc.

← → Spring 2006 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4720/2006/hw01_sol.pdf


LSU EE 4720 Homework 2 Solution Due: 13 March 2006

Problem 1: The code fragment below runs on the illustrated implementation. Assume the branch is always
taken.

(a) Show a pipeline execution diagram covering execution to the beginning of the third iteration of the loop.
See below.

(b) What is the CPI for a large number of iterations?
Hint: Pay close attention to dependencies and carefully add the stalls to handle them; also pay close

attention to the timing of the branch. Work from the illustrated implementation, do not adapt the solution
from a similar past assignment, that would be like preparing for a 10 km run by driving around the jogging
trail.

An iteration has four instructions. The first iteration takes 10 − 0 = 10 cycles as does the second iteration: 20 − 10 = 10
cycles. Both the second and third iterations start with the pipeline in the same state (lw in IF, add in ME, bneq in WB) and so the

third iteration will be identical as will every subsequent iteration and so the CPI is 10
4 .

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LOOP:

lw $s0, 0($s1) IF ID EX ME WB

addi $s3, $s0, 4 IF ID ----> EX ME WB

bneq $s3, $0 LOOP IF ----> ID ----> EX ME WB

add $s1, $s1, $s2 IF ----> ID EX ME WB

xor $t0, $t1, $t2 IF IDx

or $t3, $t4, $t5 IFx

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

lw $s0, 0($s1) IF ID EX ME WB

addi $s3, $s0, 4 IF ID ----> EX ME WB

bneq $s3, $0 LOOP IF ----> ID ----> EX ME WB

add $s1, $s1, $s2 IF ----> ID EX ME WB

xor $t0, $t1, $t2 IF IDx

or $t3, $t4, $t5 IFx

lw $s0, 0($s1) IF ID ----> ...

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

format
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Problem 2: The code fragment below (the same as the one above) runs on the illustrated implementation
(different than the one above—and better!). Assume the branch is always taken.

(a) Show a pipeline execution diagram covering execution to the beginning of the third iteration of the loop.
See below. Note that there is no bypass for the branch condition.

(b) What is the CPI for a large number of iterations?

An iteration is 14 − 7 = 7 cycles, the CPI is 7
4 .

(c) An A points to a wire on the illustration. On the pipeline execution diagram show the value of that
wire in every cycle that the corresponding stage holds a “live” instruction.

See diagram. The A points to the integer register number to write. Both the value, and for convenience, the register name
are shown. Note that the branch specifies register 0 as a destination, because it does not write any real register.

(d) A B points to a wire on the illustration. On the pipeline execution diagram add a row labeled B, and
on it place an X in a cycle if the value on the wire can be changed without changing the way the program
executes.

Through B the rs register value from the register file goes to the ALU. It is only used if the instruction uses the rs register
value and if that value is not bypassed. A lower-case ex (x) is placed in positions where there is no instruction or if the instruction
does not use the rs register value (bypassed or note). An upper-case ex (X) is placed in positions where the instruction uses a bypassed
rs value (the value from the register file is outdated).

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LOOP:

A: 16 19 0 17 16 19 0 17 16

s0 s3 r0 s1 s0 s3 r0 s1 s0

B: x x x X x x x X x X x x x X...

lw $s0, 0($s1) IF ID EX ME WB

addi $s3, $s0, 4 IF ID -> EX ME WB

bneq $s3, $0 LOOP IF -> ID ----> EX ME WB

add $s1, $s1, $s2 IF ----> ID EX ME WB

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw $s0, 0($s1) IF ID EX ME WB

addi $s3, $s0, 4 IF ID -> EX ME WB

bneq $s3, $0 LOOP IF -> ID ----> EX ME WB

add $s1, $s1, $s2 IF ----> ID EX ME WB

lw $s0, 0($s1) IF ID EX ME WB

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

format
immed

IR

Addr25:21

20:16

IF
ID EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

=

30 2
"0"

+
15:0

25:0

29:26

29:0

01

A

B

← → Spring 2006 ← → Homework 2 Homework Solution hw02 sol.pdf

https://www.ece.lsu.edu/ee4720/2006/hw02_sol.pdf


LSU EE 4720 Homework 3 Solution Due: 20 March 2006

Review Fall 2004 Final Exam Problem 2, which was discussed in class on Monday, 13 March 2006.

Problem 1: Using the solution to Fall 2004 Final Exam problem 2 parts a, b, and d (but not c) as a starting
point, make changes to implement a new two-source register MM instruction add.mmr which operates as
shown in the example below. Hint: The solution requires a register file modification.

add.mmr (r1), (r2), r3 # Mem[r1] = Mem[r2] + r3

Solution shown below. The add.mmr instructions use three register source operands and so a third read port must be added
to the register file, that is shown below in blue. The “new” register value, rdv, is used as the store address for the sum.

The diagram below also shows, in green, the bypass connections used in the solution to Problem 3 (but not the branch condition
bypasses used in Problem 4).

format
immed

IR

Addr25:21

20:16

IF
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mem dst
mem src

(rsv)

mem dst

mem src

AddrData rdv
15:11

rdv

Problem 2: Your boss, a stuck-in-the-twentieth-century RISC true believer who only grudgingly agreed to
include add.mm, add.mr, add.rm, and add.mmr in MMMIPS, flies into an incoherent rage when you suggest
also adding add.mmm to MMMIPS. What pushed your boss over the edge? (That is, why is add.mmm much
harder to add to the implementation in the Fall 2004 exam than add.mmr.) Instruction add.mmm operates as
shown below:

add.mmm (r1), (r2), (r3) # Mem[r1] = Mem[r2] + Mem[r3]

Unlike the other memory-memory instructions, add.mmm must read two source operands from memory. To do that without
stalling the pipeline would require a second memory port in the MS stage, which is expensive. The alternative is having add.mmm
spend two cycles in MS, but that would mean stalling the pipeline which is not something you want to do for reasons other than
dependencies.
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Problem 3: Write a pair of programs intended to show the benefit of MMMIPS. Both programs should
do the same thing, program A should use ordinary MIPS instructions and run on the MIPS pipeline shown
below. Program B should use MMMIPS instructions and run on the implementation shown in the exam
solution. Reasonable bypass connections may be added, including those needed for branches.

(a) Show the programs.
Two pairs of programs are shown below, each program adds 7 to all the elements of an array. Program A-1 has 5 instructions

in a loop body and executes at 1.2 CPI; program B-1 has 3 instructions and executes at 1.67 CPI. Since the programs are different
(albeit accomplishing the same thing) CPI cannot be used to compare them. Instead, performance will be measured in cycles per
element. (Think of it as execution time divided by the number of iterations in the array.) Both programs handle one element per
iteration, A-1 completes an iteration in 6 cycles and B-1 completes an iteration in 5 cycles, so that B-1 is faster despite having a
higher CPI.

(Program A-1 stalls in cycle 5 so that the branch can get r2; program B-1 stalls in 5 so that add.mm can get r2 and again in
cycle 7 so the branch can get r2.)

Programs A-2 and B-2 perform the same function but operate on two elements per iteration (using a technique called loop
unrolling). This eliminates all stalls and so both run at a CPI of 1, however the margin of CPE of B-2 over A-1 is now higher (since
B-2 had more stalls to eliminate).

Both pairs of programs show an advantage for MMMIPS.

(b) Compute the execution time (in cycles) of each program. The comparison should be fair so each program
should be producing the same result.

See above.
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Programs on next page.
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## A-1: Regular MIPS. Loop handles one element per iteration.

#

# Cycles per instruction: 6 / 5 = 1.2

# Cycles per element: 6 / 1 = 6

#

LOOP:

# Cycle 0 1 2 3 4 5 6 7 8 9 10

lw r1,0(r2) IF ID EX ME WB

addi r2, r2, 4 IF ID EX ME WB

addi r1, r1, 7 IF ID EX ME WB

bneq r2, r9, LOOP IF ID -> EX ME WB

sw r1, -4(r2) IF -> ID EX ME WB

# Second iteration below.

lw r1,0(r2) IF ID EX ME WB

addi r2, r2, 4 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10

## B-1: Memory-memory MIPS (MMMIPS). Loop handles one element per iteration.

#

# Assumes bypass from ME to MS to avoid stalls. (Not on exam soln.)

#

# Cycles per instruction: (8-3)/3 = 5/3 = 1.67

# Cycles per element: (8-3)/1 = 5/1 = 5

#

LOOP:

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

add.mm (r2),(r2), 7 IF ID MS EX ME WB

bneq r2, r9, LOOP IF ID MS EX ME WB

addi r2, r2, 4 IF ID MS EX ME WB

# Second iteration below.

add.mm (r2),(r2), 7 IF ID -> MS EX ME WB

bneq r2, r9, LOOP IF -> ID -> MS EX ME WB

addi r2, r2, 4 IF -> ID MS EX ME WB

# Third iteration below.

add.mm (r2),(r2), 7 IF ID -> MS EX ME WB

bneq r2, r9, LOOP IF -> ID -> MS EX ME WB

addi r2, r2, 4 IF -> ID MS EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

More programs on next page.
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## A-2: Regular MIPS. Loop handles two elements per iteration.

#

# Cycles per instruction: 8 / 8 = 1

# Cycles per element: 8 / 2 = 4

#

LOOP: # 8 / 2 = 4

# Cycle 0 1 2 3 4 5 6 7 8 9 10

lw r1,0(r2) IF ID EX ME WB

lw r11,4(r2) IF ID EX ME WB

addi r2, r2, 8 IF ID EX ME WB

add r1, r1, 7 IF ID EX ME WB

add r11, r11, 7 IF ID EX ME WB

sw r1, -8(r2) IF ID EX ME WB

bneq r2, r9, LOOP IF ID EX ME WB

sw r1, -4(r2) IF ID EX ME WB

# Second iteration below.

lw r1,0(r2) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

## B-2: Memory-memory MIPS (MMMIPS). Loop handles two elements per iteration.

#

# Assumes bypass from ME and WB to MS to avoid stalls. (Not on exam soln.)

#

# Cycles per instruction: 5/5 = 1

# Cycles per element: 5/2 = 2.5

#

LOOP: # CPE: 5/2 = 2.5

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

add.mm (r2),(r2), 7 IF ID MS EX ME WB

add.mm (r12),(r12), 7 IF ID MS EX ME WB

addi r2, r2, 8 IF ID MS EX ME WB

bneq r12, r9, LOOP IF ID MS EX ME WB

addi r12, r12, 8 IF ID MS EX ME WB

# Second iteration below.

add.mm (r2),(r2), 7 IF ID MS EX ME WB

add.mm (r12),(r12), 7 IF ID MS EX ME WB

addi r2, r2, 8 IF ID MS EX ME WB

bneq r12, r9, LOOP IF ID MS EX ME WB

addi r12, r12, 8 IF ID MS EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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Problem 4: Show a program that will run slower on the MMMIPS implementation that the ordinary
MIPS implementation. That program, of course, should not use MMMIPS instructions. Reasonable bypass
connections can be added, including those needed for branches. Hint: Branches are important.

The program is a single loop, the key feature being that the branch depends upon the immediately preceding instruction. It is
assumed that the implementations have a bypass from ME to ID. With this the MIPS only needs one stall for the branch to resolve
the condition. MMMIPS needs two stalls because its EX stage is one stage more distant from ID.

## Program on regular MIPS.

#

# Bypass from ME to ID for branches assumed.

#

# Cycles per instruction: 4 / 3 = 1.333

#

#

LOOP:

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

xor r1, r1, r2 IF ID EX ME WB

bneq r1, r3, LOOP IF ID -> EX ME WB

sll r1, r1, 3 IF -> ID EX ME WB

# Second iteration.

xor r1, r1, r2 IF ID EX ME WB

bneq r1, r3, LOOP IF ID -> EX ME WB

sll r1, r1, 3 IF -> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

## Program on MMMIPS.

#

# Bypass from ME to ID for branches assumed.

#

# Cycles per instruction: 5 / 3 = 1.667

#

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

xor r1, r1, r2 IF ID MS EX ME WB

bneq r1, r3, LOOP IF ID ----> MS EX ME WB

sll r1, r1, 3 IF ----> ID MS EX ME WB

# Second iteration.

xor r1, r1, r2 IF ID MS EX ME WB

bneq r1, r3, LOOP IF ID ----> MS EX ME WB

sll r1, r1, 3 IF ----> ID MS EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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LSU EE 4720 Homework 4 Solution Due: 17 April 2006

Problem 1: The code below executes on the illustrated MIPS implementation. The FP pipeline is fully
bypassed but the bypass connections are not shown.

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPCInt Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2M
1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+ 15:0 29:0

0
1

2

(a) Show a pipeline execution diagram. Solution shown below. The stall is for the dependency through register f2.

(b) Determine the CPI for a large number of iterations.
Because the second and third iterations start with the pipeline in the same state, the time for the second iteration can be used

as a basis for computing CPI. The second iteration starts in cycle 3 (first instruction in IF), the third iteration starts in cycle 9, each

iteration is 3 instructions to the CPI is 9−3
3 = 2 .

(c) Add exactly the bypass connections that are needed.
Solution shown in the diagram above. Added bypass connection shown in blue bold.

See next page for solution to first part.
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Solution to Problem 1a

LOOP:

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.d f2, f2, f4 IF ID M1 M2 M3 M4 M5 M6 WF

bneq r1,0 LOOP IF ID EX ME WB

addi r1, r1, -1 IF ID EX ME WB

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.d f2, f2, f4 IF ID -------> M1 M2 M3 M4 M5 M6 WF

bneq r1,0 LOOP IF -------> ID EX ME WB

addi r1, r1, -1 IF ID EX ME WB

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.d f2, f2, f4 IF ...
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Problem 2: Due to a coffee spill the implementation below has a flaw: The inputs to the M2-stage XW
mux have been reversed, the top input should be a 2 but is a 1, and the lower input should be a 1 but is
a 2. There are no other flaws, in particular the control signal for the mux has been designed for a 2 at the
upper input and a 1 at the lower input.

You are stranded alone on an island with this flawed implementation and to get off the island you need
the result computed by the code below. The code was written for a normal MIPS implementation and will
not compute the correct result on the flawed one. Re-write it so that it computes the correct result on the
flawed implementation. (The solution must use the FP arithmetic units, do not simply implement IEEE 754
floating point using integer instructions.)

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPCInt Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2M
1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+ 15:0 29:0

0
1

2

Coffee stain
obscuring

correct inputs.

"2"
"1"

Wrong inputs
used to build

hardware.

Bypass from here.

Solution on next page.
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The problem with the implementation above is that when an add.d is in WF the mux will send the output of the FP multiply
unit, not the FP add unit, to the register file. When a mul.d reaches WF the mux will choose the FP add unit for writeback.

Simply substituting a mul.d for the add.d won’t work because the add unit would have gotten the wrong inputs. This
happens in the example below where in cycle 8 the output of the adder, not the multiplier, is written back. The input values for the
adder are determined by the instruction that was in ID in cycle 3, which is not mul.d.

# Cycle 0 1 2 3 4 5 6 7 8

mul.d f2, f4, f6 IF ID M1 M2 M3 M4 M5 M6 WF

ID A1 A2 A3 A4

To get the correct input to the add functional unit a second mul.d needs to be added. Suppose our goal is to execute add.d
f2, f4, f6. Then start with a mul.d with the desired destination register but using dummy source registers. (See the code
below.) Follow that with a nop and then another mul.d having a dummy destination but the desired source registers; when this
second multiply reaches M1 its source operands will go to both the multiply unit (M1) and the add unit (A1). The first multiply will
write the output of that add unit to the register file and so it will be as though add.d f2, f4, f6 were executed.

# Code below effectively executes add.d f2, f4, f6

# Cycle 0 1 2 3 4 5 6 7 8 9 10

mul.d f2, f30, f30 IF ID M1 M2 M3 M4 M5 M6 WF # Dummy sources.

nop IF ID EX ME WB

mul.d f30, f4, f6 IF ID M1 M2 M3 M4 M5 M6 WF # Dummy destination

To get the original code below running on the faulty computer replace the add.d with a pair of multiplies. The only additional
complication is that a source and destination register match, and that would create a confounding dependence stall if the exact
technique above were used. Instead, the loop is unrolled so that one iteration of the re-written loop does the work of two iterations
in the original loop. The first half-iteration writes f12 instead of f2, the second half-iteration reads f12 instead of f2.

The timing for the first iteration is shown. In the second iteration the first multiply should stall. The code is written assuming
an even number of iterations in the original loop.

# Original code to be executed on the faulty computer.

LOOP:

add.d f2, f2, f4

bneq r1,0 LOOP

addi r1, r1, -1

# Modified code that produces the same result as the code above.

# Dummy registers: F26, F28, F30

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LOOP:

mul.d f12, f2, F30 IF ID M1 M2 M3 M4 M5 M6 WF # Dummy sources, but f2 needed for stall

nop IF ID EX ME WB

mul.d F26, f2, f4 IF ID M1 M2 M3 M4 M5 M6 WF # Dummy dest.

mul.d f2, f12, F30 IF ID -------> M1 M2 M3 M4 M5 M6 WF # Dummy source.

nop IF -------> ID EX ME WB

mul.d F28, f12, f4 IF ID M1 M2 M3 M4 M5 M6 WF # Dummy dest.

beq r1, 0 LOOP IF ID EX ME WB

addi r1, r2, -2 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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LSU EE 4720 Homework 5 Solution Due: 28 April 2006

Note: For some sample problems with predictors see the final exam solutions.

Problem 1: The routine samples in the code below is called many times. Consider the execution of the
code on three systems, each system using one of the branch predictors below.

All predictors use a 214-entry branch history table (BHT). (The global predictor does not need its BHT
for predicting branch direction.) The three predictors are:

• System B: bimodal

• System G: global, history length 10. (Accuracy can be approximated.)

• System L: local, history length 10.

void samples(int& x, int& y, char **string_array )

{

// Loop 5-xor

for( int i = 0; i < 5; i++ )

x = x ^ i;

// Loop 5-len

for( int i = 0; i < 5; i++ )

if( strlen( string_array[i] ) < 20 )

return; // Never executes. <- Important.

// Loop 100-xor

for( int i = 0; i < 100; i++ )

y = y ^ i;

}

(a) Determine the amount of memory (in bits) needed to implement each predictor.

Bimodal: The bimodal predictor just uses the BHT, each entry is two bits. Bimodal predictor size 214 × 2 bits.

Global: The global predictor uses only a pattern history table, the number of entries is 2h, where h is the history length, 10 in

this case; each table entry is 2 bits. Global predictor size 210 × 2 bits.
Local: The local predictor uses both a BHT and PHT. The BHT stores the local history, which is the outcome of the last 10

branches, so each entry is 10 bits. The PHT is indexed using this 10-bit history so there are 210 entries, each entry of this table is 2

bits. Local predictor size 214 × 10 + 210 × 2 bits.

Continued on next page.
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(b) For each loop in samples determine the accuracy of the loop branch (the one that tests the value of i)
after warmup on each system. The accuracy for the global predictor can be approximated, the others must
be determined exactly.

Bimodal: Once warmed up the bimodal predictor will only mispredict the last loop iteration. Loops 5-xor and 5-len are 5

iterations and 100-xor is 100 iterations. Bimodal accuracy on 5-xor and 5-len is 4
5 = 0.8.

Bimodal accuracy on 100-xor is 99
100 = 0.99.

A solution for 5-xor is worked out in detail below. Accuracy is computed over a repeating region, in this case outcome # 5 to
10. At these outcomes the loop has just started and in both cases the counter value is 2.

Loop 5-xor - Bimodal

Outcome # 0 1 2 3 4 5 6 7 8 9 10 : Not part of predictor

Branch Outcomes T T T T N T T T T N T...: N, Not taken; T, Taken

2-bit Counter 0 1 2 3 3 2 3 3 3 3 2 : BHT entry

Prediction N N T T T T T T T T : T if counter > 1

Mispredicted X X X X : X means misprediction

Accuracy: 4 correct predictions / 5 predictions

Local: The local predictor can predict short loops perfectly so long as the number of iterations is not larger than the history

length. That is the case for 5-xor and 5-len. Local predictor accuracy on 5-xor and 5-len is 1.0.

For loop 100-xor the local predictor will mispredict the last iteration. Local predictor accuracy on 100-xor is 0.99.
Global: The global predictor can also predict short loops as long as the outcome of the first loop branch is present when

predicting the last iteration. For loop 5-xor there is no other branch in the loop and so the global history is long enough to distinguish

the last iteration from others. Global predictor accuracy on 5-xor is 1.0.
Loop 5-len includes a call to the strlen routine, and that most certainly has branches. There is also the branch testing

the string length. In the diagram below the 5-len branch outcomes, the if statement branch outcomes, and the strlen branch
outcomes are shown. The global history is a concatenation of these outcomes. When trying to predict outcome 1 the global history
will be TTTTTTTTNN (from the loop in the strlen routine), that’s the same global history when trying to predict outcomes 2, 3,
and 4, so there is no way to distinguish outcome 4 from outcomes 1, 2, and 3. Since most of those are taken the PHT entry will be 2

or 3 and Taken will be predicted every time, the same prediction a bimodal would make. Global predictor accuracy on 5-len is 0.8.

Loop 5-len - global

Outcome # 0 1 2 3 4

FOR branch: T T T T N

IF branch N N N N

strlen branch: TT..TN TT..TN TT..TN TT..TN

(c) Why would solving the problem above be impossible, or at least tedious, if the BHT size were ≈ 23

entries?
If the BHT were that small there would be a reasonable chance that more than one of the branches above would occupy the same

BHT entry, possibly reducing accuracy. Since the code is given in high-level form there is no way to tell what the branch addresses
were. Unless you compiled the code and examined the branch addresses. That would be tedious.

There’s more on the next page.
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Problem 2: The code more, below, runs on four systems. All predictors use a 214-entry branch history
table (BHT). (The global and gshare predictors do not need their BHT for predicting branch direction.)
The predictors are:

• System B: bimodal

• System G: global, history length 10. (Accuracy can be approximated.)

• System X: gshare, history length 10. (Accuracy can be approximated.)

• System L: local, history length 10.

(a) In the code below estimate the prediction accuracy of the following predictors on Branch B and Branch
C (there is no Branch A) after warmup, assuming that more is called many times.

Bimodal: Each branch’s outcome is always the same (they are highly biased) and the BHT is large enough so that it’s unlikely

that any branch shares B or C’s entry. Bimodal predictor accuracy on B and C is 1.0.
Local: The local history for B after warmup will always be “NNNNNNNNNN” and the corresponding PHT entry will have sunk

down to zero (if not already reduced to zero by other biased not taken branches); C’s local history after warmup will always be

“TTTTTTTTTT” and the corresponding PHT entry will be 3. Local predictor accuracy on B and C is 1.0.
Global: The global history used when predicting B consists of the outcomes from the 100-iteration loop above B, that his-

tory will be “TTTTTTTTTN”. The global history used when predicting C consists of the outcomes from the 100-iteration loop
above C; it’s a different but similar loop and so the outcomes will be the same “TTTTTTTTTN”. Since both B and C are
predicted using the same global history they will share a PHT entry, branch B will decrement the entry and branch C will incre-
ment it. Assume that no other branch uses that PHT entry. If the entry starts out at 0 or 1 branch B will be predicted with
100% accuracy and C will be predicted with 0% accuracy. If the entry starts out at 3 branch B will be predicted at 0% accu-
racy and C will be predicted at 100% accuracy. If the entry starts out at 2 both B and C will be predicted at 0% accuracy.

Global predictor accuracy on B and C: 1 and 0 or 1 and 0 or 0 and 0.
gshare: In a global predictor the PHT is indexed using the global history register. A gshare predictor is identical to a global

predictor except that the PHT is indexed using the bitwise exclusive or of the global history and the branch address. As a result
the PHT entries used for predicting branches B and C will be different. (The global histories are still the same but of course the
addresses of B and C are different.) Assuming no other branches share these PHT entries, the prediction accuracy will be 100%.

gshare accuracy on B and C: 1.0.

(b) One of the predictors should have a low prediction accuracy. Why? Avoid a sterile description of the
hardware, instead discuss the concept the predictor is based on and why that’s not working here.

The global predictor has the low prediction accuracy. See the solution to the previous part for the global and gshare predictors.

void more(int& x, int& y, int a, int& b, int& c)

{

for( int i=0; i<100; i++ ) x = x ^ i;

if( a < 10 ) b++; // Branch B, never taken.

for( int i=0; i<100; i++ ) y = y ^ i;

if( a >= 10 ) c++; // Branch C, always taken.

}
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LSU EE 4720 Homework 1 Solution Due: 26 September 2005

Problem 1: Suppose the base and result (peak) SPEC CINT2000 benchmark scores were identical
on company X’s new processor. Make up an advertising slogan based on the fact that they were
identical. A catchy tune is optional.

Performance you don’t have to work for!
Meaning you don’t need to spend hours trying out different compiler optimization options to get the advertised

performance.
Grading Notes: Many answered that “extreme optimizations were not necessary,” which is not correct (or at least

misleading). As used in class “extreme” referred to the effort by the programmer to get the compiler to produce the
fastest code. Many programmers will not make an extreme effort at optimization and so the performance they see might
be along the lines of the base number, which is fine on systems in which it’s the same as peak. In a system with identical
base and peak numbers the compiler may well be doing optimizations that could be described as extreme, however since
the compiler can do them when given only basic optimization flags their benefits are be seen in the base numbers.

Problem 2: According to the CPU performance equation increasing the clock frequency (φ) by a
factor of x without changing instruction count (IC) or cycles per instruction start (CPI) will reduce
execution time by a factor of x. Find two SPEC CINT2000 disclosures (benchmark results) that
provide good evidence for this.

(a) Give the CPU, clock frequency, and the base and result CINT2000 scores.
To show the effect of clock frequency pick two systems which are close to identical in every way except clock

frequency. For example, the 2.16 GHz and 1.87 GHz Fujitsu SPARC64 V chips:
http://www.spec.org/osg/cpu2000/results/res2005q2/cpu2000-20050419-04024.html

http://www.spec.org/osg/cpu2000/results/res2005q1/cpu2000-20050208-03825.html

The 1.87 system scores 1594 peak and 1456 base, the 1.87 GHz system scores 1341 peak and 1254 base.
Other than clock frequency the major differences between the systems are in the L2 cache size (3 MiB v. 4 MiB)

and the number of CPUs the system can handle (2 v. 16, though the systems tested each had one).

(b) Explain why for these disclosures φ is different (obvious) but IC and CPI are probably the same
(requires some thinking). It may not be possible to determine this for certain and it may not be
possible to find a pair for which they are exactly the same, it’s sufficient to find a pair in which
they are arguably close.

The clock frequency is listed in the disclosure and they are different. The IC is probably the same because the same
compiler was used, Fujitsu Parallelnavi 2.3 with Sun Studio 9. The CPI is probably the same because the compiled code is
the same (for reasons just given) and because the code is running on chips of the same microarchitecture (that’s assumed
because of the same processor name).

(c) Based on the assumption of IC and CPI equality, show how closely the CPU performance
equation predicts the performance of one of the systems. Suggest reasons for any difference.

If clock frequency were the only differing factor then based on the 1341 peak performance of the 1.87 GHz chip one
would predict a peak performance of 2.16 GHz

1.87 GHz1341 = 1549 on the 2.16 GHz chip. The performance is actually higher,
a possible reason might be the larger L2 cache.

Problem 3: In section 1.2 of the SPEC CPU 2000 run and reporting rules,
http://www.spec.org/cpu2000/docs/runrules.html, there is a bullet item that states, “The
vendor encourages the implementation for general use.” Explain what that means and why it is
there. Why would it be bad if the “implementation” were not “for general use.”

In the disclosure “implementation” refers to a tool or library used to build (compile, etc) the benchmarks. (It might
also refer to the hardware but most of that section talks about compilers and related tools.) The statement says that
SPEC expects that anything used to build the benchmark should be a product of the company (or offered by others) and
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that the company should make a serious attempt to sell it. It would be bad if the “implementation” were not for general
use because that might mean it was too unreliable for customer use and so the benchmark scores achieved using it are
higher than a typical user, who would avoid unreliable products, could expect to achieve.

Another danger is that a compiler could be too benchmark specific. In an extreme case an assembly language
programmer could hand-code parts of the benchmarks and the compiler would insert that code wherever it recognized the
benchmark. That would only work on those specific programs (even minor modifications to the benchmark would render
such an optimization useless) and would not work on other code.
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LSU EE 4720 Homework 4 Solution Due: 7 November 2005

Problem 1: The code below executes on the implementation illustrated.

(a) Draw a pipeline execution diagram up until the first fetch of the third iteration.

(b) What is the CPI for a large number of iterations?

format
immed

IR

Addr
25:21

20:16

IF
ID EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
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Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

=

30 2
"0"

+
15:0

25:0

29:26

29:0

0 1

# Solution:

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

addi r3, $0, 123 IF ID EX ME WB

LOOP:

lw r1, 0(r2) IF ID EX ME WB

bne r1, r3, LOOP IF ID ----> EX ME WB

lw r2, 4(r1) IF ----> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LOOP:

lw r1, 0(r2) IF ID -> EX ME WB

bne r1, r3, LOOP IF -> ID ----> EX ME WB

lw r2, 4(r1) IF ----> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lw r1, 0(r2) IF ...

In the first iteration lw r1, 0(r2) executes without a stall but in the second iteration it stalls in ID and so the
first iteration cannot be used to compute CPI. The second and third iterations start with the processor in the same state
(the branch in EX and the second load in ID, see cycles 6 and 12), and so the second iteration can be used to compute

the CPI. The CPI is 12−6
3 = 6

3 = 2.

← → Fall 2005 ← → Homework 4 Homework Solution hw04 sol.pdf

http://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/2005f/hw04_sol.pdf


Problem 2: Is there any way to add bypass paths to the implementation above so that the code
executes with fewer stalls:

(a) Suggest bypass paths that might have critical path impact but which probably won’t halve the
clock frequency.

To avoid the branch stall bypass the value from the output of the MEM-stage memory port to the comparator in
ID, shown in blue below. This will probably impact critical path because the memory port is probably using the whole
cycle. It won’t halve the clock frequency because the comparison can be done quickly (certainly less than a cycle because
it ordinarily waits for the register file).

(b) Explain why it is impossible to remove all stalls by adding bypass paths.
A bypass path for the lw r2, 4(r1) to lw r1, 0(r2) dependence would go from the output of the memory

port to the ALU input (shown in red below), each of those devices uses most of its clock cycle and so clock frequency
would be halved. That’s really bad and one should never do it, but it’s not impossible.

A bypass to handle the lw r1, 0(r2) to bne r1, r3, LOOP dependence is impossible because the branch
needs the loaded value one cycle before its available. For example, in the solution the branch needs the loaded value in
cycle 3, but the load instruction has not yet reached MEM.

format
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20:16
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2(a) - some
critical path

impact2(b) large critical path impact
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Problem 3: The beqir instruction from the midterm exam solution compares the contents of the
rs register to the immediate, if the two are equal the branch is taken, the address of the branch
target is in the rt register. In the code example below beqir compares the contents of r3 to the
constant 123, if they are equal the branch is taken with register r1 holding the target address, in
this case to TARG. The delay slot, nop, is also executed.

(a) Show the changes needed to implement this instruction on the implementation above.
Changes shown below in blue. Two changes were made. First, a multiplexer is put before comparison unit in ID to

select either the rt register value (regular branches) and the immediate (beqir). Second, the rt register value is sent to
the PC mux in IF.

(b) Include bypass paths so that the code below executes as fast as possible:

lui r1, hi(TARG)

ori r1, r1, lo(TARG)

beqir r3, 123, r1

nop

# Lots more code.

TARG:

xor r9, r10, r11

The code above has a dependence from ori to beqir. To bypass the value a bypass path was added from EX to
ID, shown in green. This bypass path may stretch the critical path because two multiplexers have been added to the path
at the output of the ALU.

format
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3(a) - basic beqir 3(b) - bypass for faster beqir

← → Fall 2005 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4720/2005f/hw04_sol.pdf


LSU EE 4720 Homework 5 Solution Due: 30 November 2005

Problem 1: The execution of a new MIPS instruction blcz TARG, branch unless loop count register is zero,
will result in a delayed control transfer to TARG unless the contents of a new register, lc, is zero; the target is
computed in the same way as ordinary branch instructions. Execution of blcz will also decrement lc unless
it is already zero. The lc register is loaded by two new instructions mtlc and mtlci. The code below uses
some of the new instructions and the diagram shows a possible implementation.

mtlc 100 # Load lc register for a 101-iteration loop

LOOP:

sw r0, 0(r1)

blcz LOOP # If lc is not zero branch to LOOP, lc = lc - 1.

addiu r1, r1, 4
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(a) Re-write the code above using ordinary MIPS instructions and write it so that the loop uses as few
instructions as possible. Hint: A three-instruction loop body is possible.

The solution is on the next page.
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# Solution

#

# Re-written code and pipeline execution diagram.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

addiu r2,r1,400 IF ID EX ME WB

LOOP:

sw r0, 0(r1) IF ID EX ME WB

bne r1, r2, LOOP IF ID -> EX ME WB

addiu r1, r1, 4 IF -> ID EX ME WB

# Code below is a repeat of the code above.

sw r0, 0(r1) IF ID EX ME WB

bne r1, r2, LOOP IF ID -> EX ME WB

addiu r1, r1, 4 IF -> ID EX ME WB

sw r0, 0(r1) IF ID EX ME WB

bne r1, r2, LOOP IF ID -> EX ME WB

addiu r1, r1, 4 IF -> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

# Original code and pipeline execution diagram.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

mtlc 100 IF ID EX ME WB

LOOP:

sw r0, 0(r1) IF ID EX ME WB

blcz LOOP IF ID EX ME WB

addiu r1, r1, 4 IF ID EX ME WB

# Code below is a repeat of the code above.

sw r0, 0(r1) IF ID EX ME WB

blcz LOOP IF ID EX ME WB

addiu r1, r1, 4 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) Using pipeline execution diagrams determine the speed of the sample program and your program from
the previous part. Only use bypass paths that have been provided.

The original code, which uses blcz, executes without a stall and so it executes at a rate of 0.333 stores per cycle (1 CPI). The
re-written code suffers stalls and so only executes at a rate of 0.24 stores per cycle (1.333 CPI).

Note that the question asked for the speed of the programs, not the CPI. Since the two programs do the same thing what’s
important is which one is faster (lower execution time). Since they both do the same number of stores the speed could be measured by
stores per cycle. CPI is not a good measure because it only indicates how efficiently the code is running. If two identical programs
are running on different processors the lower CPI (higher efficiency) would be faster. But since the programs are different CPI is not
useful in predicting speed.

2
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(c) Unless the control logic is appropriately modified the implementation above may not realize precise excep-
tions for all integer instructions. In fact, the problem could occur in the example program. Explain what the
problem is and show a pipeline execution diagram in which the control logic insures that execution proceeds
so that exceptions will be precise. Hint 1: The exception does not occur in any of the new instructions. Hint
2: One of the two remaining instructions in the example can not raise an exception so it must be the other
one.

# Part of Solution

# Cycle 0 1 2 3 4 5 6 7 8 9

mtlc 100 IF ID EX ME WB

LOOP:

sw r0, 0(r1) IF ID EX M*x

blcz LOOP IF ID --> EX ME WB

addiu r1, r1, 4 IF --> ID EX ME WB

The integer instructions cannot raise precise exceptions with the blcz changes because the lc register is modified in ID, when
preceding instructions can still raise exceptions. If they do the handler will see the wrong value in lc.

In the example above sw raises an exception in cycle 4. For the exception to be precise the handler must see the execution of
only instructions up to sw, which here is only mtlc, and so the handler should see an lc value of 100. If blcz did not stall in cycle 3
lc would have been decremented and so the handler would have seen an lc value of 99, meaning the exception would not have been
precise.

3
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(d) Modify the implementation so that precise exceptions are again possible for all integer instructions (while
retaining the loop count instructions) without sacrificing performance.

The modifications are shown below. Before the modifications lc would be both read and written in ID. To allow for stall-free
precise exceptions modify the implementation so that lc is written in WB, as are the other registers. Those changes are shown in
blue. When an instruction that modifies lc, blcz, mtlc, and mtlci, is in ID the new value of lc, rather than writing lc, is put in the
ID/EX.rtv pipeline latch. When such an instruction is in EX the ALU is set to pass the lower input through unchanged so that when
the instruction reaches WB the new lc value will be in the MEM/WB.ALU latch, that latch is connected to lc’s data input. A write

enable (we) input is also shown, it is based on the output of Writes lc , which is 1 for instructions that modify lc.
Bypass paths for the lc register are shown in purple.
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Grading Notes:
Some solutions tried to repair lc by decrementing its value when an exception is detected. This would fix the problem with

sw but won’t handle cases in which mtlc or mtlci write lc. Also, control logic would have to check if a blcz is in the EX and
possibly ID stages (depending on timing); many solutions did not point this out.

Another common incorrect solution was keeping the lc logic in ID but not modifying lc if a preceding instruction raises an
exception. That won’t work because when an instruction is in ID a doomed preceding instructions might not yet have raised an
exception, sw is an example. One solution was specific in specifying EX-stage hardware to see if the instruction their would raise a
memory-related exception when it reached MEM. That’s not possible without doing major damage to the critical path.
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LSU EE 4720 Homework 1 Solution Due: 11 February 2005

Problem 1: POWER is an IBM ISA developed for engineering workstations, PowerPC is an ISA
developed by IBM, Apple, and Motorola for personal computers and is based on POWER. POWER
and PowerPC have instructions in common but each has instructions the other lacks (and some of
the common instructions behave differently). Therefore a POWER implementation could not run
every PowerPC program and vice versa.

(a) Show the gcc 3.4.3 compiler switches used to compile code for a POWER implementation. Hint:
Google is your friend, look for gcc documentation.

Either of the following switches compiles for a generic POWER implementation -mpower, -mcpu=power. The
compiler can also be told to target a particular implementation, for example, -mcpu=rios2.

(b) Show the gcc 3.4.3 compiler switches used to compile code for a PowerPC implementation.
Either of the following switches compiles for a generic PowerPC implementation -mpowerpc, -mcpu=powerpc. The

compiler can also be told to target a particular implementation, for example, -mcpu=620

(c) Is it possible to use gcc 3.4.3 to compile a program that will run on both? If yes, show the
switches.

Yes, one way is to specify two switches: -mno-power -mnopowerpc, the other uses the single switch -mcpu=common.

Problem 2: From the SPEC Web site, http://www.spec.org, find the fastest result on the
SPECFP2000 (that’s FP, not INT) benchmark for each of the following implementations: IBM
POWER5, Intel Itanium2, Intel Pentium 4, Fujitsu SPARC64 v, and AMD FX-55. (Use the
configurable search form and have it display the processor name.)

(a) The non-IA-32 implementations (POWER5, Itanium2, and SPARC64 V) blow away the IA-32
implementations on one benchmark. Which one? Which company (of those listed above) would
want that benchmark removed?

The Art benchmark runs much faster on non-IA 32 systems: SPARC64 12.3. POWER5, 23.1; Itanium 2, 21.0
Pentium 4, 52.6, Opteron, 78. AMD would most want it removed.

(b) The POWER5 can decode five instructions per clock, the Itanium 2 can decode six instructions
per clock, the Pentium 4 and FX-55 each can decode three (what are essentially) instructions per
clock, and the SPARC64 V can decode four per clock. Based on the SPECFP2000 results used in
the first part, which processor is making best use of these decode opportunities? In other words,
if one processor could decode 1012 instructions during execution of the suite and another could
decode 5 × 1012 instructions during execution of the suite, the first would be more efficient since it
ran the suite using fewer instructions. (See last semester’s Homework 1 for a similar problem.)

To solve this one needs to multiply the instructions-per-second potential of the processor by the run time for the
suite. The instructions-per-second potential is the product of the decode rate given above (say, 5 per second for POWER5)
and the clock frequency. The run times are given in the disclosure and can be added, but a less time consuming method
would be to use the reciprocal of the score. So for the POWER5 the result would be 5×1900 MHz

2796 = 3.40, where 2796
is the SPECfp2000 result. For the Itanium 2, 6×1600

2712 = 3.54; Athlon, 3×2600
2012 = 3.88; Pentium 4, 3×3733

2016 = 5.56;
and SPARC64 V, 4×1870

1973 = 3.79. The POWER5 is the “winner” here because it uses the fewest decode slots to execute
the SPECfp2000 benchmarks. This can be because POWER5 programs have fewer instructions or because the POWER5
implementation wastes the fewest decode slots (or a combination of the two). In this case the POWER5 is both the most
frugal and the fastest. Note that the Athlon and Pentium are almost tied in performance but that the Pentium uses alot
more decode slots to attain that performance.

Problem 3: As pointed out in class a processor’s CPI varies depending on the program being
executed. For the questions below write a program in MIPS assembler (see
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http://www.ece.lsu.edu/ee4720/mips32v2.pdf for a list of instructions), some other assembly
language, or assembly pseudocode, as requested below.

(a) Write a program that might be used to determine the minimum possible CPI. Suppose you
actually used the program to determine the minimum CPI on processor X. How would the CPI
be computed? Show an example using made up numbers based on your program an hypothetical
processor X. Explain why the result would be the minimum CPI (or close to it).

Many processors do not attain their peak CPI because of program characteristics. Two causes are using instructions
that take a long time and having nearby instructions depend on each other, forcing the processor to delay the start of the
later instructions. When writing a program to determine peak cpi avoid long-executing instructions and close dependencies.
The program below uses integer add instructions, which are fast and which lacks dependencies.

LOOP:

add r1, r2, r3

add r4, r5, r6

add r7, r8, r9

# ...

j LOOP

add r28, r29, r30

(b) Write a program that might be used to determine the maximum possible CPIand as with
the previous part, show how CPI is computed. Your answer should include information about
instructions in processor X used in your program. Explain why the result would be the maximum
CPI (or close to it).

Include long-executing instructions that depend on each other.

LOOP:

div.d f0, f2, f4

div.d f0, f0, f4

div.d f0, f0, f4

div.d f0, f0, f4

# ...

j loop

div.d f0, f0, f4
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LSU EE 4720 Homework 2 Solution Due: 9 March 2005

For answers to the questions below refer to the PowerPC description Book I which can be found
on the class references page, http://www.ece.lsu.edu/ee4720/reference.html.

Problem 1: One instruction that MIPS lacks but many RISC ISAs have is an indexed load. Find
the closest equivalent PowerPC instruction to SPARC’s lw [%r2+%r3],%r1.

(a) Show the instruction in PowerPC assembly language.

# Solution:

lwzx r1, r2, r3

Note: Instruction ldx, which loads 64 bits) would also be graded correct, but since SPARC’s lw is a 32-bit unsigned
load (in SPARC V9), PPC’s 32-bit unsigned indexed load, lwzx, is more correct.

(b) Show how the instruction is coded, include the register numbers.

Text:

OPCD

31

0 5

RT

1

6 10

RA

2

11 15

RB

3

16 20

XO

23

21 30

1

31 31

Problem 2: One instruction that MIPS lacks but that a few other RISC ISAs have is autoin-
crement addressing. PowerPC has an instruction that can be used for autoincrement addressing
but is more powerful than the autoincrement addressing described in class. Find the PowerPC
instruction.

(a) Show the assembly language for the PowerPC instruction doing the same thing as the following
autoincrement instruction: lw r1, (r2)+.

# Solution

lwzu r1,4(r2)

The PowerPC instruction above is not 100% equivalent because it uses r2+4 as the effective address whereas a
typical autoincement would use r2 as the effective address. This is not a practical problem because r2 could be initialized
to four less that the first address to be loaded.

(b) Show the coding for the instruction above.

Text:

OPCD

33

0 5

RT

1

6 10

RA

2

11 15

D

4

16 31

(c) The PowerPC instruction is more powerful than an ordinary autoincrement instruction. Show
a code sample using the PowerPC instruction for which an ordinary autoincrement would not be
suitable. Briefly explain why an ordinary autoincrement would not do.

LOOP:

lwzu r1, 16(r2)

cmpdi r1,0

bne LOOP

The loop above loads words separated by 16 bytes. An ordinary autoincrement would require an extra add instruction
(otherwise it would load words separated by 4 bytes (that is, consecutive words).
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Problem 3: PowerPC has a wide variety of load and store instructions. Find the load instruction
that is least suitable for a RISC ISA based upon the criteria discussed in class. Explain why it’s
least suitable.

Instruction lswx is un RISC like because it can load several registers and so an implementation would have to send
the instruction through part of the pipeline several times, unlike conventional RISC instructions. This would make the
pipeline control much more complicated, but not too complicated since PPC is a real ISA with fast implementations.

Problem 4: Some instructions are more difficult to implement than others, one reason is that
the difficult instruction does something very different from normal instructions, requiring at least a
moderate amount of additional hardware. Some difficult-to-implement instructions are listed below.
Explain what the difficulty is (what extra hardware or control complications would be needed).

(a) An indexed store instruction. (An indexed load instruction would not be considered difficult.)
An indexed store would have three source operands, two for the effective address and one for the store value. That

would require three read ports from the register file, it no other instruction has three source register operands then
implementing the indexed store would increase the cost by a significant amount.

(b) Autoincrement (or PowerPC’s version) load instructions. (The autoincrement or PowerPC
version of the store instructions are not difficult.)

An autoincrement load writes two register values, the loaded value and the incremented address. That would require
two register write ports, if no other instruction wrote two or more operands than that would increase the cost by a
significant amount.
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LSU EE 4720 Homework 3 Solution Due: 25 April 2005

Problem 1: Do Problem 1 in the Spring 2004 EE 4720 final exam. Grade yourself using the
solution, the grade should be out of five points. When grading yourself please explain what the
mistakes were and what the correct answer should be, as a helpful grader would. Be polite in your
explanations unless there was no serious attempt to solve the problem. In that case point out how
final exam study time is being undermined by the need to catch up.

Problem 2: In Method 3 the commit register map is used to recover the state the ID register map
was in just after the most recently committed instruction was decoded. In a system in which the
ID register map is checkpointed for predicted CTIs, the commit register map won’t be used very
often.

(a) Describe how a system using Method 3 but without the commit register map could recover the
ID map state before a faulting instruction. The ID map would be recovered using information in
the ROB at and after the faulting instruction.

• Explain, with an example, what steps the processor takes to recover the information.

A ROB entry for an instruction includes, among other things, the architected destination register (call it rd), the
new physical register that rd maps to (and the one the instruction will write), and the incumbent, that is, the physical
register that rd mapped to before the instruction was decoded. When (and if) the instruction commits it is the incumbent
that will be put back on the free list.

When recovery is necessary the incumbents can be used to return the ID map to the state it was before any in-flight
instruction was decoded by writing the incumbents back into the register file starting from the tail of the ROB up to the
faulting or mispredicted instruction.

The example below shows the state of a system with five instructions in flight. The numbers on the left show
the architected destination, physical destination, and incumbent physical destination registers. Suppose the sw raises an
exception. The ID map can be recovered by removing the tail entry from the ROB, and writing the incumbent back into
the register map (using the architected destination as a key). This process is repeated until the faulting instruction is
removed. In the example below ID shows normal activity. Squash recovery starts in cycle 10 and continues in 11 and 12;
SQ shows a tail instruction being removed and the incumbent being written back, this happens for each of the instructions
to be squashed.

If it is only possible to remove instructions from the head then recovery is a bit trickier since only the first incumbent
(for each architected register) should be written to the ID register map. This can be done by keeping track of which
architected registers have been written (using a bit vector) and not writing one twice. Apart from needing a bit vector,
a disadvantage recovering from the head is that recovery can’t start until after the faulting or mispredicted instruction
reaches the head.

dst PR inc Normal Decode Recovery----

r1 11 10 add r1, r2, r3 ID HEAD END

sw 0(r0), r0

r4 16 15 sub r4, r2, r3 ID SQ

r1 4 11 xor r1, r2, r3 ID SQ

r1 7 4 or r1, r2, r3 ID SQ TAIL END

Cycle 0 1 2 3 4 ... 10 11 12

ID Register Map

r1 10 11 4 7 4 11

r4 15 16 15
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(b) Show new connections to the ID register map to implement this. Try to do it without adding
new read and write ports (that is, use existing ports).

Add a mux to the Addr and D In ports currently used to write the new physical register. On input to each mux is the
existing connection to the port, the other is taken from either the head output (this part) or tail output (next problem).

(c) Describe the impact on performance when the technique is used for exceptions.
Since instructions must be squashed one at a time rather than all at once recovery will take longer. However, since

exceptions are rare that won’t have a big impact on performance.

(d) Describe the impact on performance when the technique is used for mispredicted branches.
If there are alot of instructions to squash then this will slow down the recovery process.

Problem 3: Consider the commit mapless system from the previous problem. Suppose it were
possible to sequentially read the ROB from two locations, the head (as is currently done for com-
mitting instructions) and some other place, say at a mispredicted branch.

(a) How might this be used to recover the ID map faster than was done in the previous problem.
As explained in the previous problem, immediately start recovery by removing instructions from the tail (that’s the

other place) rather than waiting for the branch to reach the head.

(b) If this can be made to work for branches then there would be no need for checkpointing the
register map. The impact on performance when using the mechanism for mispredicted branches
depends on the following factors: how fast instructions are fetched, how many cycles it takes to
resolve a branch (determine if the prediction was correct), how long it takes the fetch mechanism to
bring correct-path instruction to ID, and how fast recovery can be done. Show a formula that will
give the number of extra cycles needed to recover from a branch misprediction using this scheme
(compared to checkpointing). For the formula, use the factors listed above and any other that is
relevant.

Note that the amount of time to fetch the first correct-path instruction is a variable, it can be
more than the one cycle shown in most other problems.

When a misprediction occurs two things have to happen: correct path instructions need to be fetched and the ID
register map needs to be recovered. (Other things need to be done, but not for this problem.) The formula should indicate
how much longer ID map recovery takes than getting the correct path instructions.

Let if denote the number of instructions that can be fetched per cycle and let ir denote the number of instructions
that can be squashed per cycle (as described in the previous problem). Let tBR−ID−WB denote the average number of
cycles a branch takes to resolve (move from ID to WB) and let tBR−WB−ID denote the average number of cycles from
when a mispredicted branch reaches writeback until the first correct path instruction is fetched and reaches ID.

When a misprediction occurs the number of instructions that need to be squashed is if × tBR−ID−WB; the ID
map recovery will take if × tBR−ID−WB/ir cycles. The amount of extra waiting time is then

max{0, if × tBR−ID−WB

ir
− tBR−WB−ID} cycles

In an n−way superscalar processor if = n and it would be reasonable to expect ir also to be n. Therefore there
will be a performance penalty if average resolution time is longer than fetch time, which is only sometimes true. If it is
not be too expensive to provide extra ports so that ir > n then the penalty can be reduced further or eliminated.
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LSU EE 4720 Homework 1 Solution Due: 15 September 2004

Problem 1: Select two pairs of disclosures (that’s four total) from the CPU2000 benchmark results posted
at www.spec.org. A pair should be for machines using the same ISA but having different implementations.
Make the implementations as different as possible. Explain why you think the implementations are very
different.

Some ISAs and implementations are listed in lecture set 1, but the solution is not restricted to those.
Feel free to ask if you’re not sure what ISA a processor implements or whether two ISAs are considered the
same or different.

For each disclosure list: the ISA, the implementation, the peak (result) performance, and file name of
the HTML-formatted disclosure.

First pair: ISA IA-32, implementations:
Xeon, Peak 1402, file res2004q3/cpu2000-20040727-03291.pdf and Athlon, Peak 1395, results/res2003q3/cpu2000-20030908-

02502.pdf.
The two implementations are very different because they come from two different companies (and one was not simply licensing

the processor design from another). One obvious evidence of difference is that the two achieve similar performance though having
vastly different clock frequencies.

Second pair: ISA SPARC V9, implementations:
SPARC64 V, Fujitsu, Peak 1345, 1.89 GHz, res2004q2/cpu2000-20040518-03044.pdf and UltraSPARC III Cu, Sun Microsystems,

Peek 722, 1.2 GHz, http://www.spec.org/cpu2000/results/res2003q2/cpu2000-20030326-01999.html
The two are from different companies. Some evidence of their difference is that the performance of the SPARC64 is faster than

what one would expect by scaling clock frequency, so something about the systems other than clock frequency must be different. (The
material has not been covered yet, but the Sun chip is statically scheduled while the Fujitsu chip uses a more advanced dynamically
scheduled organization.)

Problem 2: The processors below have roughly the same SPEC CINT2000 peak (result) scores but are
very different. (The links should be clickable in Acrobat Reader.)

ISA: Power, Implementation: POWER5, Decode: 5-way Superscalar*
Disclosure: http://www.spec.org/osg/cpu2000/results/res2004q3/cpu2000-20040804-03314.pdf

ISA: Itanium (IA-64), Implementation: Itanium 2, Decode: 6-way Superscalar*
Disclosure: http://www.spec.org/osg/cpu2000/results/res2004q1/cpu2000-20040126-02775.pdf

ISA: IA-32, Implementation: Xeon, Decode: 3-way Superscalar*
Disclosure: http://www.spec.org/osg/cpu2000/results/res2004q3/cpu2000-20040727-03291.pdf

ISA: ≈IA-32, Implementation: Athlon, Decode: 3-way Superscalar*
Disclosure: http://www.spec.org/osg/cpu2000/results/res2003q3/cpu2000-20030908-02502.pdf

ISA: SPARC V9, Implementation: SPARC64 V, Decode: 4-way Superscalar*
Disclosure: http://www.spec.org/osg/cpu2000/results/res2004q2/cpu2000-20040518-03044.pdf

(a) The performance of the processors, based on the peak result, are roughly the same. On the same graph
plot the performance in the following ways:

• Using the SPEC peak (result) scores.

• Assume that performance is proportional to clock frequency. Determine the score of a processor by
comparing its clock frequency to that of the SPARC64 and using that to scale the SPARC64 peak
result.

• The table above shows how many instructions a processor can decode per cycle. (Four-way superscalar
means four per cycle, see explanation below.) Determine the performance by comparing the number
of instructions fetched per second to the SPARC64 and use that to scale the SPARC64 peak result.

What conclusions can be drawn from the plotted data?
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*The following information is not needed to solve this assignment. The decode widths shown above are
the maximum number of instructions that can be decoded per cycle. For any real program the number will be
much lower due to a variety of factors, which will be covered later in the semester. One relatively minor factor
is the instruction mix. The POWER5 (implementation), Itanium (ISA), and to a lesser extent the others
limit the kinds of instructions that can be decoded together. More on this later in the semester. The decode
widths for the Xeon and Athlon don’t refer to IA-32 instructions: these processors take IA-32 instructions
and break them into simpler instructions called micro-ops by Intel and (favoring marketing over descriptive
accuracy) macro-ops by AMD. The three instructions per cycle for the Xeon and Athlon are actually three
micro- or macro-ops per cycle.

The “Norm Clk” plot shows performance scaled using clock frequency. The value is s′X = ssparc
φX

φsparc
, where s′X is the

scaled performance of system X and φX is the clock frequency of system X . The “Norm Dcd” plot shows the performance scaled
using decodes per second (not the same as decodes per cycle). The value is s′′X = ssparc

φXdX

φsparcdsparc
, where s′′X is the scaled

performance of system X and dX is the decode width (decodes per cycle) of system X .
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Conclusions:
The obvious conclusion is that clock frequency is a poor indicator of performance since the predictions based on clock frequency

are way off. Taking into account the number of instructions decoded per cycle is a better predictor of performance (than just clock
frequency) but still far from perfect.

Taking into account decode rate, the performance of the Athlon system is underpredicted, whereas the others are overpredicted.
This hints that the Athlon makes the best use of each instruction decode slot. The worst use of slots is made by the Xeon. Note
that there are many other differences, for example, the number of instructions in a program, and the way the IA-32 processors split
instructions, so that one can’t conclude for sure that the Athlon is making the best use of its slots.

(b) The Xeon and Athlon systems in the disclosures above have about the same performance. AMD might
argue that those disclosures don’t show the full potential of the Athlon. Find a system that uses an Athlon
and scores much better, and explain what accounts for the difference.

AMD might argue that the gcc compiler used in the test system does not make the best use of the processor, and so the tested
system does not show the full potential. The AMD system using a ASUS SK8N motherboard uses an identical Athlon FX-51 processor,
but scores a higher 1447. The difference is probably due to the compiler. The higher-scoring system uses an Intel IA-32 compiler,
the lower-scoring system uses gcc which is not known for speed. (What it lacks in speed it makes up for in portability.)

(c) There is a system characteristic that affects the performance of benchmark mcf. What is it?
Cache size. The systems with the larger cache size do much better.

(d) Nominate a disclosure for The Most Desperate Peak Tuning award.
Of the five above I nominate the Primepower 650 for the award, because of the longest list of compiler flags.
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LSU EE 4720 Homework 3 Solution Due: 3 November 2004

Problem 1: Do Problems 1 and 2 From Spring 2004 Homework 3
http://www.ece.lsu.edu/ee4720/2004/hw03.pdf. After completing the problems look at the solution and
assign yourself a grade. The maximum grade should be 10 points, divide the points between problems as
you wish.

Problem 2: A new instruction, copyTreg rt, rs, will read the contents of register rt and rs and will
write the contents of rs to the register number specified by the contents of register rt (not into register rt).
For example,

# Before: $1 = 4, $2 = 0x1234, $4 = 0

copyTreg $1, $2

# After: $1 = 4, $2 = 0x1234, $4 = 0x1234;

# (Register $4 written with contents of register 2.)

Note that this is a variation on Midterm Exam 1 Problem 3, with the destination, rather than the
source, being specified in a register.

(a) Modify the pipeline below to implement this instruction.

(b) Add the bypass connections needed so that the code below executes correctly.

# Before: $1 = 4, $2 = 0x1234, $4 = 0, $5 = 0

addi $1, $0, 5

copyTreg $1, $2

# After: $1 = 5, $2 = 0x1234, $4 = 0, $5 = 0x1234;

Changes shown in red below. The major change is providing a path for the rt value to be used as a destination register, that is
through the added multiplexer. It is connected to the output of the ALU mux so that it can make use of the already existing bypass
connections. When copyTreg is in EX the ALU will be set to add its a input to zero (or otherwise set output x to whatever is
on input a). The ALU might already be using such an operation for the jal and jalr instructions. (The modification solves both
parts (a) and (b) of this problem.)
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Problem 3: In the problem above the register number to write to is in a register. Here consider copyFreg
rt, rs in which, like the test question, the register to copy from is in a register. That is,

# Before: $1 = 2, $2 = 0x1234, $4 = 0

copyFreg $4, $1

# After: $1 = 2, $2 = 0x1234, $4 = 0x1234;

# (Register $4 written with contents of register 2.)

Explain a difficulty in implementing this instruction on the pipeline below without vitiating its sublime
elegance.

The pipeline and ISA have been designed so that register read can start in the ID stage as soon as the instruction arrives (and
in parallel with decoding activities). To implement copyFreg the register file has to be read twice, first using the register number
found in the rs field of the instruction, call the retrieved value rsv, and a second time using rsv as the register number. The two
register reads obviously cannot be done at the same time. There is no way to retrieve the register without either reading the register
file twice in the same cycle (stretching the clock), having the instruction spend two cycles in ID (which would be inelegant, providing
a new kind of stall), or having the instruction read the register file a second time while it is in EX (requiring a third read port or else
introducing new structural hazards as instructions in ID and EX both vie for the same register port).

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

← → Fall 2004 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4720/2004f/hw03_sol.pdf


Problem 4: No, we are not vitiators. Instead consider copyBreg rd in which the source register to read
is specified in the rs register of the preceding instruction, that value is written into the rd register of this
instruction. (Okay, maybe we are vitiators.) For example,

# Before: $1 = 2, $2 = 0x1234, $4 = 0

add $0, $1, $0 # Instruction below uses rs ($1 here) of this insn.

copyBreg $4

# After: $1 = 2, $2 = 0x1234, $4 = 0x1234;

# (Register $4 written with contents of register 2.)

Implement this instruction on the pipeline above (from the previous problem).
Changes shown in red below. The added multiplexer does have a small impact because its control signal needs to be generated

close to the beginning of the cycle. As with the previous problem, by taking the signal at the output of the ALU mux bypassed
values are available. In the code sample above the bypass connections are not needed. The “maybe we are vitiators’ remark is the
comment on the awkwardness of having one instruction use as a source operand the source operand of a preceding instruction. Such
instructions are rare if they exist at all.
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LSU EE 4720 Homework 3 Solution Due: 15 March 2004

Problem 1: The MIPS program below copies a region of memory and runs on the illustrated implementa-
tion. In the sub-problems below use only the bypass connections shown in the illustration.

(a) Show a pipeline execution diagram for the code running on the illustrated implementation for two
iterations.

See below.

(b) Compute the CPI and the rate at which memory is copied in bytes per cycle assuming a large number of
iterations.

Each iteration takes 9 cycles and contains 5 instructions so the CPI is 9
5 = 1.8. Each iteration copies four bytes of data and

so the data copy rate is 4
9 bytes per cycle.

• Don’t forget, when computing the number of cycles per iteration be sure not to count a cycle more,
or less, than once.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

lw $t0, 0($a0) IF ID EX ME WB IF ID EX ME

sw 0($a1), $t0 IF ID ----> EX ME WB IF ID ->

addi $a0, $a0, 4 IF ----> ID EX ME WB IF ->

bne $a0, $a2 LOOP IF ID ----> EX ME WB

addi $a1, $a1, 4 IF ----> ID EX ME WB
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Problem 2: Execution should be inefficient in the problem above.

(a) Add exactly the bypass connections needed so that the program above executes as fast as possible.

• Don’t forget that branch uses ID-stage comparison units.

• Don’t forget the store.

There are two solutions, conservative and aggressive. With the conservative solution the number of stall cycles will be reduced
from two to one (zero would be better) in each case and the critical path length will not be increased (which is good, of course).
In the aggressive solution all stalls will be eliminated but there might be critical-path impact, and so the clock frequency might be
reduced.
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The aggressive solution improves performance on the program above because the number of cycles per iteration is reduced from
9 to 5, while any reduction in clock frequency would not be as drastic. For programs which do not make frequent use of the new
bypasses performance would be lower because there would not be enough of a reduction in stall cycles to compensate for the lower
clock frequency.

Note that one could have an aggressive load-store bypass and a conservative branch condition bypass, and vice versa.
In the illustration below the bypass paths for the conservative solution are shown in green, the bypass paths for the aggressive

solution are shown in red, and the comparison unit (which was present but not shown in the original diagram) appears in blue.
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(b) Show a pipeline execution diagram of the code on the improved implementation.

# Aggressive.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9

lw $t0, 0($a0) IF ID EX ME WB IF ID EX ME ...

sw 0($a1), $t0 IF ID EX ME WB IF ID EX ...

addi $a0, $a0, 4 IF ID EX ME WB IF ID ...

bne $a0, $a2 LOOP IF ID EX ME WB IF ...

addi $a1, $a1, 4 IF ID EX ME WB

# Conservative

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9

lw $t0, 0($a0) IF ID EX ME WB IF ID EX ME ...

sw 0($a1), $t0 IF ID -> EX ME WB IF ID -> ...

addi $a0, $a0, 4 IF -> ID EX ME WB IF -> ...

bne $a0, $a2 LOOP IF ID -> EX ME WB

addi $a1, $a1, 4 IF -> ID EX ME WB

(c) For each bypass path that you’ve added show the cycles in which it will be used by writing the cycle
number near the bypass path. If a bypass path goes to several places (for example, both ALU muxen) put
the cycle number at the place(s) that use the signal.

(d) Re-compute the CPI and the rate at which memory is copied.
With the aggressive solution the CPI is 5

5 = 1 and the copy rate is 4
5 bytes per cycle. With the conservative solution the CPI

is 7
5 = 1.4 and the copy rate is 4

7 bytes per cycle.
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LSU EE 4720 Homework 4 Solution Due: 22 March 2004

Problem 1: Suppose code like the memory copy program below (from Homework 3) appears
frequently enough in the execution of programs so that new instructions should be added to the
ISA to allow improved execution. (It does and they have been.)

Following the points below devise new instruction(s) that can be used to write a new memory
copy loop that would execute more efficiently than is possible with existing MIPS-I instructions. A
goal is to copy at the rate of two bytes per cycle. See the subparts after the bulleted points below.

• The instructions must use the existing MIPS formats.

• An instruction can do more than one thing (as long as it follows the points below). For
example, an instruction that does more than one thing is a post-increment load. To reach
the two bytes / cycle limit one might need to combine a branch with something.

• The instructions cannot use implicit registers. (A register is implicit if it does not appear in
the encoded instruction. For example, register 31 is implicit in the jal instruction.)

• To achieve two bytes per cycle the instructions might need to do something unusual with
operands. Please ask if you’re not sure if something is too unusual.

• As with all other ordinary instructions, the new instructions must advance one stage per
cycle (unless stalled, if so they would sit idle).

• The modified pipeline must still use the same memory port and no new memory ports can
be added.

• Modifications such as bypass paths can be added to speed the instructions.

(a) Show an example of each new instruction and show how it is coded.

(b) Show how the instructions would be implemented on the pipeline.

(c) Write a memory copy program using the new instructions.

(d) Show a pipeline execution diagram for the memory copy code.

(e) A two bytes per cycle solution would require doing something interesting for the branch. Explain
what that is and show a pipeline execution diagram for the memory copy loop finishing a copy
(where the interesting stuff would be done).

Solution starts on next page (not counting this sentence).
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The solution adds two instructions, an indexed-looping (IL) load, and an indexed-incrementing (II) store:

($s0) lw,il $t0, ($a2-$s0)

($s0-) sw,ii ($a3-$s0), $t0

The IL load, a Format R instruction, has two source operands, a base (rs, in the example a2) and an index (rd,
in the example s0), and a destination (rt, in the example t0).

If the index is zero the instruction does nothing (it acts like a nop). If the index is non-zero then it loads the value
at address base - index (in the example a2-s0) into register rt. It also does a delayed control transfer to its own address
(it branches to itself). In the example, the lw,il will jump to itself (with sw,il executing in the delay slot). Note that
the rd register works something like a predicate, which is why it is written using the syntax of predicated instructions
(the (s0) at the start of the instruction).

The indexed-incrementing store is also a Format R instruction, it has three source operands, a base (rs), an index
(rd), and a store value (rt). If the index is zero the instruction does nothing. Otherwise, it stores the rt value at
address rsv - rdv and it writes register rd with rdv - 4. (Unlike most other MIPS instructions, a single register
field (rd) is being used to specify both a source and destination.) Note that the lw,il and sw,ii instructions compute
their effective addresses in the same way but that the sw,ii decrements the index while the lw,il does not change
the index.

The program below uses the new instructions to copy a region of memory. The program starts with the same
register values (a0, a1, and a2) as the original program and does the same thing. Unlike the original program it uses
two instructions before the loop. The first computes the size of the region to copy. The second computes the end of the
region to copy data to. (The end of the region to copy data from is already provided, in a2.) The loop label (LOOP) is
shown for illustrative purposes, but the assembler ignores it because the lw,il always branches to itself.)

# $a0 Start address of region to copy.

# $a1 Address of memory to copy to.

# $a2 Address at end of region to copy. (Don’t copy $a2, do copy $a2-4.)

sub $s0, $a2, $a2 # Size of region to copy.

add $a3, $a1, $s0 # Address at end of region to copy to.

LOOP:

($s0) lw,il $t0, ($a2-$s0) # Load word and branch if $s0 not zero.

($s0-) sw,ii ($a3-$s0), $t0 # Store and decrement $s0.

# Same program, with pipeline execution diagram.

# Cycle 0 1 2 3 4 5 6 7 8 9

sub $s0, $a2, $a2 IF ID EX ME WB

add $a3, $a1, $s0 IF ID EX ME WB

LOOP:

($s0) lw,il $t0, ($a2-$s0) IF ID EX ME WB (1st iteration)

IF ID EX ME WB (2nd iteration)

($s0-) sw,ii ($a3-$s0), $t0 IF ID EX ME WB (1st iteration)

IF ID EX ME WB (2nd iteration)

# Cycle 0 1 2 3 4 5 6 7 8 9

The diagram below shows how the new instructions might be implemented, changes are shown in blue. A third read
port is added to the register file so that the store instruction can read the index, base, and store value simultaneously.
A comparison unit is added to the ID stage to check for the end of loop condition (index zero); note that several bypass
connections are needed. A decrementer (-4) is added to the EX stage (used by sw,ii) and pipeline latch registers are
added to pass the new value of the index down the pipeline.

The cycle numbers, in purple show when the labeled lines will be used for the pipeline execution diagram above.
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The hardware for predication is not shown. That hardware would replace the dst value with a zero and change the
memory operation to a nop. (The memory operation input is also not shown.)
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LSU EE 4720 Homework 5 Solution Due: 21 April 2004

Problem 1: One question when extending an ISA from 32 to 64 bits is what to do about the shift
instructions. Because of the way that the shift instructions are encoded in MIPS two new shifts
(of each type) were added to MIPS-64.

(a) What do you think the MIPS-32 sra instruction should do in MIPS-64? Remember that an
implementation of MIPS-64 must run MIPS-32 code correctly. Please answer this question before
answering the next parts (but feel free to look at the questions). Hint: Any serious answer will get
full credit. A smart-alec answer will get full credit only if it’s particularly witty.

Just shift the lower 32 bits, sign extend using bit position 31. Leave the high 32 bits unchanged. For example:

# My idea for how sra on a 64-bit machine should work.

# Before $r1 = 0x8888 8888 8888 8888

sra $r1, $r1, 1

# After $r1 = 0x8888 8888 C444 4444 (Spaces added for clarity.)

(b) Give two reasons why the MIPS-32 sra (not srav) instruction could not be used for all right
arithmetic shifts needed in a 64-bit program.

It can’t specify a shift of more than 32 bits since the sa field is only five bits. If it sign extended using bit 63 as the
sign it would not work for 32-bit code, if it sign extended on bit 31 it would not be appropriate for 64-bit code.

(c) What are the new MIPS-64 shift right arithmetic instructions? Give the mnemonics.
DSRA and DSRA32.

(d) Why were two (as opposed to one) new shift instructions of each type added to MIPS-64?
Because they use the existing five-bit sa field which can’t specify a full range of shifts.

Problem 2: Do the Problem 2 (a) through (d) from the Fall 2003 EE 4720 final exam (the one
on floating point instructions). (http://www.ece.lsu.edu/ee4720/2003f/fe.pdf) Do not look
at the solution until after you have solved the problem or gave it a good try.

See http://www.ece.lsu.edu/ee4720/2003f/fe_sol.pdf.
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Problem 3: In the diagram below the we pipeline latches carry write enable signals for use in
floating point writeback. If the functional units were arranged differently the we pipeline latches
could be used as a reservation register (for detecting WF structural hazards).
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(a) Redraw the diagram with that arrangement. Hint: Try to use the we signal in the diagram
above for a reservation register. Figure out why that won’t work and come up with a solution.

See the next page.

(b) Suppose the ID stage has boxes uses FP ADD and uses FP MUL to detect which (if any)
floating point functional unit an instruction would use. Design the control logic to generate a stall
signal if there would be a write float structural hazard.

See the next page.

(c) Add the connections necessary for a lwc1 instruction. Include the connections needed to detect
a WF structural hazard (as was done for ADD and MUL in the previous part).

See the next page.
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The multiply and add functional units are rearranged so that they finish “together” rather than start “together.”
In the original arrangement a particular we pipeline latch is always a fixed distance from ID, but their distance from WF

depends upon which instruction they carry. For example, the first we latch is always one cycle from ID, if it is carrying
an add instruction it is four cycles from WF but if it is carrying a mul it is six cycles from WF. In a reservation register a
particular bit position describes an instruction a particular distance from WF and so the we pipeline latches in the original
diagram cannot be used as a reservation register.

In the modified pipeline, below, the we is a fixed distance from WF and so it can, and is, used as a reservation
register. Instructions using the FP add check the second we pipeline latch and if it holds a 1 an ID stall signal is asserted,
otherwise the add (in particular, the we signal, register number (fd), and a control signal for the WF multiplexor) is
inserted into the pipeline. Note that the operands themselves enter whether or not ID is stalled, if stalled then later at WF
the result will be ignored. Similar logic is shown for the lwc1 (and other FP loads) instruction. Note that instructions
using the multiply unit never check the reservation register, that is because they take the longest (we’re ignoring divide)
and so no other instruction can use WF at the same time.

The diagram also shows the control logic for the WF multiplexor.
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LSU EE 4720 Homework 6 Solution Due: 28 April 2004

Problem 1: Read the Microprocessor Report article on the IBM PowerPC 970 (a.k.a. the G5),
used in a popular person computer. The article is available at
http://www.ece.lsu.edu/ee4720/s/mprppc.pdf. If accessing from outside the lsu.edu domain
provide user name ee4720 and the password given in class. Answer the following questions: (Please
read the entire article, additional questions might be asked in a future assignment.)

(a) One might infer from the second paragraph that deeper pipelines are used to inflate clock
frequencies solely for marketing purposes. Why do deeper pipelines allow higher clock frequencies?
Are there reasons other than marketing to do that?

The clock frequency is set to the highest value that will allow logic at the end of the critical path (from one pipeline
latch to another) to stabilize at the correct output (with a suitable margin). To increase the number of stages, logic that
spanned one stage is split into pieces (or redesigned as several pieces), (hopefully) reducing the length of the critical path
and so allowing for a higher clock frequency.

The marketing benefit of a deeper pipeline is the higher clock frequency, because unprepared buyers might have no
other way to estimate performance. Deeper pipelines (with their higher clock frequencies) actually do give higher perfor-
mance (as long as they are not too deep) because instructions are fetched at a faster rate (the higher clock frequency) and
because the number of stalls (in dynamically scheduled systems due to full a ROB because of scheduling constraints on
dependent instructions), while higher, is not high enough to eliminate the benefit of more frequent fetches. Therefore there
is more than just a marketing benefit to higher clock frequencies. (Deepening pipeline depth further will yield diminishing
returns as the pipeline latch overhead becomes a larger fraction of the clock period and as dependent instructions must
be scheduled further apart.)

(b) The article describes the PPC 970 as a 5-way superscalar processor, which is consistent with
the definition used in class. How could overzealous marketing people inflate that number using
features of the microarchitecture? Describe the specific feature. Why would that be overzealous?

The PPC can fetch eight instructions per cycle, so that could be the rationale for calling it an eight-way superscalar
machine. However there are at least two five instruction per cycle bottlenecks and so no program could execute at eight
instructions per cycle. Within the fetch pipeline instructions are formed into five-instruction groups. At most one group
per cycle can be dispatched to the issue queues, that’s one bottleneck. At most one group per cycle can commit, that’s
another bottleneck.

The following two problems are nearly identical to Spring 2003 Homework 6. The main differ-
ence is in the stages that are used. It is okay to peek at the solutions for hints, for best results leave
twelve hours between looking at those solutions (or solutions to similar problems) and completing
this assignment.

Problem 2: Show the execution of the MIPS code fragment below for three iterations on a four-
way dynamically machine using Method 3 (physical register file) with a 256-entry reorder buffer.
Though the machine is four-way, assume that there can be any number of write-backs per cycle. Use
Method 3 as described in the study guide at http://www.ece.lsu.edu/ee4720/guides/ds.pdf

with for the following differences:

• The FP multiply functional unit is three stages (M1, M2, and M3) with an initiation interval
of 1.

• Assume that the branch and branch target are always correctly predicted in IF so that when
the branch is in ID the predicted target is being fetched.

• There are an unlimited number of functional units.
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(a) Show the pipeline execution diagram, indicate where each instruction commits.

(b) Determine the CPI for a large number of iterations. (The method used for statically scheduled
systems will work here but will be very inconvenient. There is a much easier way to determine the
CPI.)

# Solution

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LOOP:

ldc1 f0, 0(t1) IF ID Q RR EA ME WB C

mul f2, f2, f0 IF ID Q RR M1 M2 M3 WB C

bneq t1, t2 LOOP IF ID Q RR B WB C

addi t1, t1, 8 IF ID Q RR EX WB C

ldc1 f0, 0(t1) IF ID Q RR EA ME WB C

mul f2, f2, f0 IF ID Q RR M1 M2 M3 WB C

bneq t1, t2 LOOP IF ID Q RR B WB C

addi t1, t1, 8 IF ID Q RR EX WB C

ldc1 f0, 0(t1) IF ID Q RR EA ME WB C

mul f2, f2, f0 IF ID Q RR M1 M2 M3 WB C

bneq t1, t2 LOOP IF ID Q RR B WB C

addi t1, t1, 8 IF ID Q RR EX WB C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The CPI is 3
4 = 0.75. The hard way of computing the CPI is completing the pipeline execution diagram until

there is a repeating pattern. With a 256-entry reorder buffer that will take a long time. Don’t even try! The easy way
is to find the critical path through the program (not the hardware logic). The critical path must be through loop carried
dependencies, for this loop there are two, carried by t1 and f2. There is a single instruction per iteration that updates
t1 and that has a latency of zero, so the path through t1 can execute at a rate of one iteration per cycle, which is the
same as the fetch rate. The path through f2 is also through a single instruction, the multiply, however that has a latency
of 2 (takes 3 cycles to compute) and so the fastest it can execute is 3 cycles per iteration. The processor will initially fetch
one iteration per cycle and the addi instruction will be able to keep up, while the mul.d will fall behind. Eventually
the reorder buffer will fill, when that happens instructions will only be fetched when new space opens up, which will be
when the multiply instructions commit. Therefore fetch will drop to three cycles per iteration or a CPI of 3

4 .
Note that the load is not on the critical path. It does provide data for the multiply and it is dependent on data from

a previous iteration, t1, but it has its data ready before the multiply needs it. (This is only so because of the assumption
that the load always hits the cache. With cache misses the situation is more complex.)

The Spring 2003 version of this problem did not include the RR stage but the CPI in both cases is the same. Though
not in this case, deepening the pipeline (here with the RR stage) can have an impact on performance, for example, when
there are branch mispredictions.
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Problem 3: The execution of a MIPS program on a one-way dynamically scheduled system is
shown below. The value written into the destination register is shown to the right of each in-
struction. Below the program are tables showing the contents of the ID Map, Commit Map, and
Physical Register File (PRF) at each cycle. The tables show initial values (before the first instruc-
tion is fetched), in the PRF table the right square bracket “]” indicates that the register is free.
(Otherwise the right square bracket shows when the register is freed.)

(a) Show where each instruction commits.

(b) Complete the ID and Commit Map tables.

(c) Complete the PRF table. Show the values and use a “[” to indicate when a register is removed
from the free list and a “]” to indicate when it is put back in the free list. Be sure to place these
in the correct cycle.

Solution shown below. In this solution the RR stage is not used because it was not shown in the original assignment.
(That’s not wrong, it just means that RR can overlap with Q, meaning that an instruction entering the Q stage can read
the physical register file in the same cycle if it’s ready to go.)

# Solution

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (Result)

lw r1, 0(r2) IF ID Q L1 L2 L2 WB C (0x100)

ori r1, r1, 6 IF ID Q EX WB C (0x106)

subi r2, r1, 2 IF ID Q EX WB C (0x104)

xor r1, r3, r3 IF ID Q EX WB C (0)

addi r2, r1, 0x700 IF ID Q EX WB C (0x700)

subi r1, r2, 4 IF ID Q EX WB C (0x6fc)

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ID Map

r1 96 99 98 95 93

r2 92 97 94

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Commit Map

r1 96 99 98 95 93

r2 92 97 94

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Physical Register File

99 112 ] [ 100 ]

98 583 ] [ 106 ]

97 174 ] [ 104 ]

96 309 ]

95 606 ] [ 0 ]

94 058 ] [ 700

93 285 ] [ 6fc

92 1234 ]

91 518 ]

90 207 ]

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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LSU EE 4720 Homework 7 Solution Due: 5 May 2004

The PPC 970 which was the subject of a question in Homework 6 is very similar to the
POWER4 chip, the main differences being that the POWER4 lacks the packed-operand instructions
and POWER4 includes two processors on a single chip.

Answer the following questions about the POWER4 based on information in “POWER4 Sys-
tem Microarchitecture,” by Tendler et al, available via
http://www.ece.lsu.edu/ee4720/doc/power4.pdf. The questions can be answered without read-
ing the entire paper. In particular, there is no need to read past page 17.

Problem 1: Translate the following terms, as used in class, to their nearest equivalent in the
paper.

• Integer Instruction → Fixed-point instruction.

• Instruction Queue → Issue queue.

• Reorder Buffer → Group completion table.

• Physical Register → Rename register.

Problem 2: The pipeline execution diagram below shows MIPS code on the dynamically scheduled
system described in the study guide.

(a) Re-draw the diagram using the stages from POWER4. (Do not translate the instructions into
the POWER assembly language.) Just show one iteration and assume that the four instructions
are formed into one group. Also assume that the branch does not have a delay slot. Use stages F1,
F2, and F3 for the multiply.

See diagram. Note that in POWER4 there is a mandatory one-cycle gap between two dependent instructions. Yuk!

(b) In your diagram identify the fetch and execute pipelines, as defined in class.
See diagram. Instructions enter the fetch pipeline in IF and exit the fetch pipeline in MP where they are put in

(dispatched to) issue queues. They wait in the issue queues until the scheduler chooses them, at which time they enter
the execute pipeline.

# Solution

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

LOOP:

ldc1 f0, 0(t1) IF IC D0 D1 D2 D3 XF GD MP IS RF EA DC FM WB XF CP

mul f2, f2, f0 IF IC D0 D1 D2 D3 XF GD MP IS RF F1 F2 F3 WB XF CP

addi t1, t1, 8 IF IC D0 D1 D2 D3 XF GD MP IS RF EX WB XF CP

bneq t1, t2 LOOP IF IC DB D1 D2 D3 XF GD MP IS RF EX WB XF CP

# Note: DB is an abbreviation for BP and D0 (branch uses both.)

# XF -> Xfer; FM -> Fmt; IS -> ISS

# Fetch Pipeline Stages: IF IC D0 D1 D2 D3 XF GD MP

# Execute Pipeline Stages: IS RF EX,EA,DC,FM,F1-F6 WB XF

Problem 3: The POWER4 uses what is commonly called a hybrid predictor in which each branch
is predicted by two different predictors and a third predictor predicts the prediction to use. One

1
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predictor is something like the bimodal predictor discussed in class and the other is something like
the gshare predictor discussed in class.

(a) Provide a code example in which the bimodal predictor described in class will do better than
the POWER4’s almost equivalent predictor. (Ignore the selector.)

What the PPC paper calls a local predictor is called a bimodal predictor in class, except that the PPC local predictor
uses only a 1-bit entry in the BHT (rather than 2). Consider the loop below:

# Three-iteration loop.

LOOP:

...

bneq r1, r2, LOOP T T N T T N T T N

nop

The predictor used in class would have an accuracy of 66.7%, misspredicting the not-taken executions of the branch.
The local predictor would have an accuracy of 33.3%, because it would only correctly predict the second consecutive taken
branch.

(b) How might the POWER4 designers justify the differences with the bimodal predictor given the
lower performance in the example above?

For a given amount of storage, the PPC local predictor can have twice as many entries. Compared to one using a
two-bit counter, the PPC would make more mispredictions due to using just one bit, but it would make fewer mispredictions
due to collisions and so overall it would perform better (if the bimodal had many mispredictions due to collisions).

(c) Provide a code example in which the gshare predictor described in class outperforms the
POWER4’s almost equivalent predictor. (Ignore the selector.)

One difference between the PPC’s global predictor and gshare is that in PPC the global history register has one bit
for each fetch group (not the same as a dispatch group), whether or not it includes a branch. Fetch groups can be as large
as eight instructions, dispatch groups can be as large as five instructions. When updating the GHR a fetch group without
a CTI is treated like one containing a not-taken branch.

Consider the loop below:

# Five-iteration loop.

LOOP:

# ...

# ... seventeen instructions, none of them are CTIs ...

#

bneq r1, r2, LOOP T T T T N T T T T N T T T T N ...

nop

Each iteration would span at least three groups (at least three, because cache line boundaries might force contigu-
ous instructions to be in separate fetch groups). Assume that the loop can be fetched in exactly three groups. For each
iteration three bits would be shifted into the GHR, one for each group. A possible GHR value used for predicting the loop
branch would be TnnTnnTnnTn, where n is the value inserted for groups not holding a branch (it would actually be a
zero, for not taken). Since the GHR is eleven bits it can see three and part of a fourth iteration. Therefore the predictor
would not be able to tell whether it was in the fourth iteration (where the branch would be taken) or the fifth iteration
(where the branch would not be taken), in both cases the GHR would be nnTnnTnnTnn.

In a conventional gshare predictor the GHR would only include branch outcomes, and so for the code above it could
easily distinguish the fourth and fifth iterations.

(d) How might the POWER4 designers justify the differences with the gshare predictor given the
lower performance in the example above?

The logic to update and recover the GHR might be simpler.

2
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LSU EE 4720 Homework 1 Solution Due: 17 September 2003

Problem 1: Look at the following SPEC CINT2000 disclosures for these Dell and HP Itanium 2 systems:
HP: http://www.spec.org/osg/cpu2000/results/res2003q3/cpu2000-20030711-02389.html
Dell: http://www.spec.org/osg/cpu2000/results/res2003q3/cpu2000-20030701-02367.html. (Note:
Links are clickable within Acrobat reader.)

The CPU performance equation decomposes execution time into three components, clock frequency, φ,
instruction count, IC, and CPI. For each component determine if its value on the two systems is definitely the
same, probably the same, probably different, definitely different. Hint: The answer for the clock frequency
is easy, the others require a little understanding of what IC and CPI are. Briefly justify your answers.

Clock frequency: The same, the clock frequency is given in the disclosures.
Instruction count (IC): definitely different because the benchmarks were compiled with different compilers.
CPI: probably different. The HP system is faster, some of that difference may be due to the compiler and some may be due

to the system (amount of memory, speed of memory bus, etc.). Both system details (such as memory speed) and compiler details
(instruction mix and scheduling) affect CPI and since both are different on the two systems the only way CPI could be identical would
be by coincidence. (If the CPIs’ were identical then the HP systems’s better performance would be due solely to the compiler.)

Problem 2: Though one may normally think of an implementation as a microprocessor chip, the definition
can also include other parts of the system, such as memory and even disk. Why is that important in the
problem above?

Because the two systems used the same implementation, a 1.5 GHz Itanium 2, but other parts of the system, such as memory
and disk, differed and that could lead to different execution times (and CPIs).

Problem 3: Differences in ISA, compiler, and implementation all affect the execution time of programs,
and the impact of these factors can vary from program to program. For example, an implementation with
faster floating point will have a larger impact on programs that do more floating-point computations.

From a look at the SPEC disclosures one can see that the fastest program on one system may not be
the fastest program on another. (Use the int2000 results. From the spec CPU2000 results page find the
configurable query form and request a page sorted by “Result” in descending order. It would be helpful
to include the processor and compiler in the results. If your system is slow omit results before 2002.) For
example, the Dell system from the first problem ran vortex fastest (of all the benchmarks), while the HP
system ran mcf fastest. In this case the difference in fastest benchmark could not be the ISA, but it could be
the compiler or the implementation. Call the speed ranking of benchmarks for a system its character. The
character of the Dell system is vortex, gcc, eon, . . . (benchmarks from fastest to slowest) and the character
of the HP system is mcf, vortex, gcc, . . ..

The differences in character are due in part to the ISA, compiler, and implementation. Using the SPEC
CINT2000 disclosures determine which is most important in determining character. Please do not try to
look at all disclosures, just enough to determine an answer, even if that answer might change if you were to
look at more.

In your answer, state which (ISA, compiler, or implementation) is most important, which disclosures
you looked at, and how you drew that conclusion. This question is easy to answer (once it’s understood).

As best you can explain why a particular factor is most important and why it is least important. You
are not expected to answer this question very well, most of the material has not been covered yet. Don’t take
too much time and do your best with what has been covered and what you already know.

Additional Information:
Here are some ISAs and implementations of processors listed:
IA-32 ISA: (includes variations) implemented by Pentium 4 (and other Pentia) Xeon, Athlon, Opteron.

Power Architecture ISA: Implementated by POWER4, RS64IV. Itanium ISA: Implementated by Itanium 2.
Alpha ISA: Implementated by Alpha 21164, 21264, 21364. SPARC V9 ISA: Implementated by SPARC64V,
UltraSPARC III Cu MIPS ISA: Implementated by R14000

The solution compares the characters of pairs of disclosures, one pair to bring out ISA effects, a pair for compiler effects, and
a pair for implementation effects. When selecting a pair to compare to systems are found which differ on the thing being looked at
(ISA, compiler, or implementation) but are as similar as possible with everything else. Once a pair is found the ranking for the integer
benchmarks in each system is found.
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To show how different the character is, the sum of the absolute difference in ranks of the first five programs for one system to
the other is found. (This is probably easier then it sounds.) For example, when looking at ISA effects, the ranking of the first three
Xeon programs is the same as in the Itanium system. The fourth program for Xeon is ranked 12th for Itanium, so the distance is 8.
The fifth Xeon program is ranked eighth in the Itanium system, for a difference of 3. The sum of differences is 11.

Note: To draw any real conclusions from this analysis one would need to look at more than three pairs of systems, which is too
much work for one homework assignment.

ISA Effects. Compare two systems with different ISAs but otherwise as similar as possible. One system below implements
Itanium 2, the other IA-32. They both use the Intel Intel C/C++ compiler.

Dell PowerEdge 3250, Itanium 2:
http://www.spec.org/osg/cpu2000/results/res2003q3/cpu2000-20030701-02367.html.
Intel Xeon (3.06GHz, 533MHz bus)
http://www.spec.org/osg/cpu2000/results/res2003q3/cpu2000-20030630-02338.html

Program Ranks: (First is fastest.)

Xeon: vortex, gcc, eon, gap, perlbmk, twolf, gzip, crafty, parser, bzip2, vpr, mcf

Itanium: vortex, gcc, eon, mcf, crafty, twolf, bzip2, perlbmk, vpr, gzip, parser, gap

Rank Diffs: 0 0 0 8 3 = 11

The fastest three programs in the two systems (above) are the same, but the order of the other programs is very different.

Compiler affects: Look at two systems with the same implementations (and of course the same ISA), but different compilers.
A possible pair are the two systems used in Problem 2 (the difference in memory and IO are still there, systems with identical hardware
would be better, but even so there would be differences due to the operating system).

Both systems use the same implementation of Itanium, Itanium 2. Differences: compiler, also operating system and hardware
(other than Itanium 2). (In a better comparison the same operating system would be used. However it seems that for most (maybe
all) systems, only one compiler is used for a particular operating system [gcc for Linux, Intel for Windows, etc] ).

Top programs on HP (Unix): mcf, vortex, gcc, eon, twolf

Top programs on Dell: vortex, gcc, eon, mcf, crafty, twolf

Rank Differences: 3 1 1 3 1 = 9

Implementation Effects. Compare two systems with the same ISA but different implementations. Two implementations
from the same manufacturer may be similar, but one can be pretty certain that Intel’s lawyers made sure the AMD Athlon had little
in common with Intel’s Xeon (similar to the Pentium). Therefore, will compare Xeon and Athlon.

AMD Athlon FX-51, 2.2 GHz,
http://www.spec.org/osg/cpu2000/results/res2003q3/cpu2000-20030908-02472.html

Intel Xeon (3.06GHz, 533MHz bus)
http://www.spec.org/osg/cpu2000/results/res2003q3/cpu2000-20030630-02338.html

Common IA-32 ISA (with small variations), Intel C/C++ 7.0 compiler (and libraries). Differences: Implementation. (The
Athlon FX actually implements a 64-bit extension of IA-32, however it’s unlikely that the Intel compiler is emitting any AMD 64-bit
instructions.)

Top programs on Athlon: vortex, eon, twolf, gcc, perlbmk

Top programs on Xeon: vortex, gcc, eon, gap, perlbmk, twolf, gzip

Distance: 0 1 3 2 0 = 6

Using just this data, it would appear that ISA is most important for character, followed by compiler, then implementation. As
stated before, there are way too few data points to draw any real conclusion.
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Problem 4: The two procedures below are compiled with optimization on but with no special optimization
options. Why might the second one run faster? (This is very similar to the classroom example.)
void add_array_first_one(int *a, int *b, int *x)

{

for( i = 0; i < 100; i++ ) a[i] = b[i] + *x;

}

void add_array_second_one(int *a, int *b, int *x)

{

int xval = *x;

for( i = 0; i < 100; i++ ) a[i] = b[i] + xval;

}

First program has to de-reference x (load value from memory) each iteration while the second program can load the value into
a register before entering the loop, then just use the value in the register.
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LSU EE 4720 Homework 3 Solution Due: 31 October 2003

Problem 1: Unlike MIPS, PA-RISC 2.0 has a post-increment load and a load using scaled-index
addressing. The code fragments below are from the solution to Problem 2 in the midterm exam the
fragments show several MIPS instructions under “Combine” and a new instruction under “Into.”
For each “Into” instruction show the closest equivalent PA-RISC instructions and show the coding
of the PA-RISC instruction. (See the references page for information on PA-RISC 2.0)

(The term offset used in the PA-RISC manual is equivalent to the term effective address used
in class, and is not to be confused with offset as used in this class. Assume that the s field and cc

fields in the PA-RISC format are zero.)
Show all the fields in the format, including their names and their values.

Combine:

lbu $t1, 0($t0)

addi $t0, $t0, 1

Into:

lbu.ai $t1, 0($t0)+ # Post increment load.

; Solution:

ldb,ma 1(%r2),%r1

; %r1 is the equivalent of $t1 above.

; %r2 is the equivalent of $t0 above.

PA-RISC Completer Descriptions:

m: Modify base register (r2 in example, modify it by adding displacement, 1).

a: After. (Add the displacement after computing the address.)

PA-RISC Format 5 Field Descriptions

opcode: Opcode.

rb: Register holding address base. (Address in this case.)

im5: Increment amount. One, to match the MIPS addi instruction.

s: * Space register number. The space registers allow 32-bit programs

to address more than 4 GiB of memory by holding

the high 64 bits of a 96-bit address. Not used in 64-bit code, in

which case the s field is just used for two more bits of displacement.

a: After. If 0, add displ. after load, if 1, add displ. before load.

l: Always 1 for format 5 (displacement).

cc: * Cache control hint. (0, no hint; 2, spatial locality; 1,3, reserved).

ext4: Memory operation. 0 indicates load byte unsigned.

m: Modify base register. If 1, write modified address to same register.

t: Register in which to write loaded value.

* You don’t need to understand the description of this field.

opcode

3

31 26

rb

2

25 21

im5

1

20 16

s

0

15 14

a

0

13 13

1

1

12 12

cc

0

11 10

ext4

0

9 6

m

1

5 5

t

1

4 0

1
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Combine:

sll $t1, $t1, 2

add $t3, $a1, $t1

lw $t4, 0($t3)

Into:

lw.si $t4, ($a1,$t1) # Scaled index addressing.

; Solution

ldw.s %r1(%r2), %r4

; %r1 is index register (equivalent to $t1 above, before the shift).

; %r2 is the base register (equivalent to $a1 above).

; %r4 is the destination (equivalent to $t4 above).

; Effective address (offset in HP terminology) is: ( %r1 * 4 ) + %r2

PA-RISC Completer Descriptions:

s: Scale index. Multiply the contents of the index register (r1

here) by the data size, (in this case multiply by 4).

PA-RISC Format 4 Field Descriptions

opcode: Opcode.

rb: Register holding address base. (Address in this case.)

rx: Register holding index.

s: * Space register number. The space registers allow 32-bit programs

to address more than 4 GiB of memory by holding

the high 64 bits of a 96-bit address. Not used in 64-bit code, in

which case the s field is just used for two more bits of displacement.

u: Scale. If 1, shift index by "data size". Shift by 2 for 4-bytes, etc.

l: Always 0 for format 4 (indexed addressing).

cc: * Cache control hint. (0, no hint; 2, spatial locality; 1,3, reserved).

ext4: Memory operation. 2 indicates load word (32 bits) unsigned.

m: Modify base register. If 1, write modified address to same register.

t: Register in which to write loaded value.

* You don’t need to understand the description of this field.

opcode

3

31 26

rb

3

25 21

rx

1

20 16

s

0

15 14

u

1

13 13

0

0

12 12

cc

0

11 10

ext4

2

9 6

m

0

5 5

t

4

4 0

2
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Problem 2: The code fragment below runs on the implementation illustrated below.

(a) Show a pipeline execution diagram for the code fragment on the implementation up to the
second fetch of the sub instruction; assume the branch will be taken.

(b) Show the value of the labeled wires (A, B, and C) at each cycle in which a value can be
determined.

For maximum pedagogical benefit please pay close attention to the following:

• As always, look for dependencies.

• Pay attention to the RAW hazard between sub and sw and the RAW hazard between andi

and bne.

• Make sure that add is fetched in the right time in the second iteration.

• Base timing on the implementation diagram, not on rules inferred from past solutions.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC

CA

mux
alub

control

B

30 2
"0"

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

add r1, r2, r3 IF ID EX ME WB

sub r3, r1, r4 IF ID EX ME WB

sw r3, 0(r5) IF ID ----> EX ME WB

andi r6, r3, 0x7 IF ----> ID EX ME WB

bne r6, $0, LOOP IF ID ----> EX ME WB

addi r2, r2, 0x8 IF ----> ID EX ME WB

xor IF IDx (Added to show

xor IFx wrong-path insn.)

LOOP: # Copy of code above.

add r1, r2, r3 IF ID EX ME WB

sub r3, r1, r4 IF ID EX ME WB ...

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A ? L1 L2 0 0 0 7 -5 -5 -5 8 ? # ? can’t tell;

B ? ? t t ib ib i i ib ib i i # t=1, i=2, b=bubble

C ? ? 1 3 0b 0b 0 6 0b 0b 0 2 # L1=0x0820, L2=0x1822

3
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Problem 3: Consider the implementation from the previous problem, repeated below. For the jr

instruction the ALU sets its output to whatever is at its top input. Note: This was omitted from
the original problem.

(a) There is a subtle reason why the implementation cannot execute a jr instruction. What is it?
Modify the hardware to correct the problem.

The PC holds bits 31:2 of the address, but the register value sent through the ALU to the PC will be the entire
address. If nothing special is done then the jump will be to the address times four. The solution is to have the ALU
perform a two bit right shift.

(b) There is a reason why it cannot execute a jalr instruction. What is it? Modify the hardware
to correct the problem.

The ex mem alu pipeline latch is on the path used to put the jump target in the PC and to put the return address
in the register file. Therefore, the jalr instruction can’t do both. A solution would be to add a path from EX to the
PC multiplexor for the jump address. Changes shown in red bold.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC

CA

mux
alub

control

B

30 2
"0"

31:2

4
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LSU EE 4720 Homework 4 Solution Due: 14 November 2003

Problem 1: Design the control logic for the store value multiplexor (the one that writes pipeline
latch ex_mem_rtv). The control logic must be in the ID stage. Hint: This is a fairly easy problem.

Changes for solution shown in red. Notice that the control logic doesn’t check whether the instruction is a store. If
it’s not a store the store value multiplexor is not used and so it doesn’t matter how it’s set.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

15:0

=’ =’

0 mem

1 rtv

2 wb

20:16

lsb

msb

mux

1
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Problem 2: One problem with a post-increment load is storing the incremented base register
value into a register file with one write port. Suppose a post-increment, register-indirect load were
added to MIPS and implemented in the pipeline on the next page. This post-increment load does
not use an offset, instead the effective address is just the contents of the rs register.

One option for storing the incremented base register value is to stall the following instruction
and write back the value when the bubble reaches WB. We would like to avoid stalls if we have
to, so for this problem design hardware that will use the WB stage of the instruction before [sic]
or after the post-increment load if one of those instructions does not perform a writeback. For
example:

bneq $s0, $s1, SKIP (Not taken)

lw $t1, ($t2)+

j TARG

add $s3, $s1, $s2

lw $t1, ($t2)+

sub $s4, $s5, $s6

The first post-increment load could writeback when either the bneq or the j were in the WB
stage since neither performs writeback. The second post-increment load would have to insert a
stall.

(a) Show the hardware needed to implement the post-increment load in this way.

• Remember that this load does not have an offset.

• Use a =PIL box to identify post-increment loads (input is opcode, output is 1 if it is a

post-increment load, 0 otherwise).

• A stall signal is available in each stage; if the signal is asserted the instruction in that and
preceding stages will stall and a nop instruction will move into the next stage (for each cycle
hold is asserted).

• Show any new paths added for the incremented value, perhaps to the register file write port
(which still has one write port).

• Add any new paths needed to get the correct register number to the register file write port.

• Ignore bypassing of the incremented address to other instructions.

• Show the added control logic, which does not have to be in the ID stage. (In fact it would
be difficult to put all of control logic for this instruction in the ID stage.)

• Last but not least, a design goal is low cost, so add as little hardware as necessary to
implement the instruction.

(b) If you’re like most people, you didn’t worry about precise exceptions when solving the previous
part. Explain how the need for precise exceptions can complicate the design.

If the post-increment raises an exception in Mem then it might be too late to prevent writing back the incremented
address if it’s using the previous instruction. Another case is the post-increment load writing back using the next instruc-
tion. If the next instruction raises an exception one would have to make sure that despite being squashed it still wrote
back the incremented address.

2
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Changes shown in red. In this solution the ALU computes the incremented address, a multiplexor is added so the
unincremented address can be sent to the memory’s address input. An alternative solution would have an adder dedicated
to incrementing the address; with such an adder one would not need the multiplexor at the memory address input.

The control logic, in EX, generates three signals, next, prev, and stall EX. Signals next and prev are put in
pipeline latches, stall EX goes to control logic (not shown) to stall EX, ID, and IF. The prev signal sets the pipeline
to write back the incremented address in the WB of next previous instruction (which is in the next stage), this is done by
having the incremented address and the rs field skip ahead one stage. The next signal has the rs field and incremented
address hold back one cycle by routing them through an extra set of registers, ALU, rs, and n in the MEM stage.

For lower cost, the ALU register added to the Mem stage can be eliminated. Instead, one could use an enable signal
to hold the value in the Mem/WB.ALU latch.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX
WBMEM

IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

rtv

dst dst
Decode
dest. reg

NPC

15:0

IR

ALU

MD

dst

Addr

Data
In

Mem
Port

Data
Out

rsv

rs rs

ALU

rs

nn

p

25:21

=0 =0

prev

next

stall
EX

=PIL pil pil

0

1
1

0

1

00

1

1

0

To control

3
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Problem 3: Answer these questions about interrupts in the PowerPC, as described in the PowerPC
Programming Environments Manual, linked to
http://www.ece.lsu.edu/ee4720/reference.html.

(a) Listed below are the three types of interrupts using the terminology presented in class. What
are the equivalent terms used for the PowerPC.

• Hardware Interrupt

Asynchronous Exception

• Exception

Synchronous Exception

• Trap

Trap?

(b) In which register is the return address saved?
It is saved in SSR0 (save/restore register 0).

4
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LSU EE 4720 Homework 1 SolutionDue: 10 February 2003
At the time this was assigned computer accounts and solution templates were not ready.

If they become available they can be used for the solution, either way a paper submission
is acceptable.

Problem 1: When compiling code to be distributed widely one should be conservative
when selecting the target ISA but less caution needs to be taken with the target imple-
mentation. Explain what “conservative” and less caution mean here, and explain why
conservatism and in one case less caution in the other can be taken.

Conservative means choosing an ISA variation that most users’ computers implement (rather than the
variation that would give best performance). Less caution means selecting an implementation that fewer
people have but that would give better performance.

Conservatism is necessary for ISA selection because a computer won’t run software for an incompatible
ISA. On the other hand, a computer will run software compiled for a different implementation, though not as
fast as if compiled for the same implementation.

Problem 2: Based on the SPECINT2000 results for the fastest Pentium and the fastest
Alpha, which programs would a shameless and unfair Alpha advocate choose if the number
of programs in the suite were being reduced to five. Justify your answer.

At the time this solution was written, the fastest Pentium ran at 1130 SPECint2000’s and the fastest
Alpha ran at 928 SPECint2000’s.

The advocate would choose the five programs which performed best compared to the Pentium. They
are from best to worst (of 5) mcf, vpr, bzip2, twolf, crafty. The last, crafty, is faster on the Pentium so the
advocate might want just four programs. The table below shows the benchmark run times and the ratio of run
times (Pentium divided by Alpha), sorted by ratio.

Benchm. Pentium Alpha Ratio

mcf 231 123 1.88

vpr 210 159 1.32

bzip2 174 150 1.16

twolf 326 292 1.12

crafty 84.8 98.4 0.86

gcc 88.7 112 0.79

vortex 113 145 0.78

parser 170 256 0.66

eon 82.5 132 0.63

perlbmk 130 208 0.63

gzip 111 240 0.46

gap 75.2 164 0.46
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Problem 3: The Pentium 4 can execute at a maximum rate of three instructions (actually,
microops, but pretend they’re instructions) per cycle (IPC), the Alpha 21264 can execute
at most 4 IPC and the Itanium 2 can execute at most 6 IPC. Assume that the number of
instructions for perlbmk, one of the SPECINT2000 programs, is the same for the Alpha,
Itanium 2, and Pentium 4 (pretending micro-ops are instructions, if you happen to know
what micro-ops are).

(a) Based upon the SPECINT2000 results (not base) for the perlbmk benchmark, which
processor comes closest to executing instructions at its maximum rate? (“Its”, not “the”.)

The first thing to figure out is just what is meant by “closest to . . . its maximum rate?” Another way
of stating the question is: which wastes the fewest instructions?

Lets suppose that each processor was executing at its maximum rate. The total number of instruc-
tions executed would be the IPC × φ × t, where φ is the clock frequency and t is the execution time.
According to the SPEC disclosure the Pentium 4 runs at 3066MHz and takes 130 seconds to execute
perlbmk and so it could execute at most 1.195740 trillion (1012) instructions. Similarly, the Alpha could
execute 1250MHz × 4 inst/cycle × 208 s = 1.04 trillion instructions and the Itanium2 could execute
900MHz × 6 inst/cycle × 251 s = 1.3554 trillion instructions. Since we are assuming they all execute
the same number of instructions, the Alpha, which could execute the fewest instructions, comes closest to its
potential.

(b) Are these numbers consistent with the expected tradeoffs for increasing clock frequency
(mentioned in class) and for increasing the number of instructions that can be started per
cycle?

Assume that the technology is fixed. (The transistors are not getting faster.) To increase the clock
frequency we need to break instructions up into more steps, and that means fewer opportunities for overlap.
That means there will be more times when one cannot find an instruction to execute (because the source
operands that it needs are not yet ready). So with a higher clock frequency we would expect execution to be
further from its maximum. This is true for the Pentium compared to the Alpha, but does not hold for the
Itanium2.

A processor that can handle more instructions per cycle will have a more difficult time overlapping them,
so one would expect it also to execute further from its maximum. This holds for the Itanium2 compared to the
Alpha and Pentium 4, but does not hold for the Alpha compared to the Pentium 4.

Problem Discussion:
The analysis is based on the assumption that the same number of instructions are executed on each

system, a bad assumption to make. (Sorry, I don’t have the numbers.) There is also an important difference
between the processors’ ability to overlap instructions. The Pentium 4 and Alpha 21264 are dynamically
scheduled, which means they have greater freedom in overlapping instructions. (Instructions do not have to
start in program order on these processors, while they do on the statically scheduled Itanium2.) Using a
technique called predication, the Itanium2 can avoid branches, an advantage the others don’t have. The Itanium
(VLIW) ISA has several other features designed to provide performance on modern implementations, features
the older Alpha (RISC) and ancient IA-32 (maybe CISC) ISAs lack.
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Problem 4: Complete the lookup routine below so that it counts the number of times an
integer appears in an array of 32-bit integers. Register $a0 holds the address of the first
array element, $a1 holds the number of elements in the array, and $a2 holds the integer
to look for. The return value should be written into $v0.

lookup:

# Call Arguments

#

# $a0: Address of first element of array. Array holds 32-bit integers.

# $a1: Number of elements in array.

# $a2: Element to count.

#

# Return Value

#

# $v0: Number of times $a2 appears in the array starting at $a0

# [ ] Fill as many delay slots as possible.

# [ ] Avoid using too many instructions.

# [ ] Avoid obviously unnecessary instructions.

# A correct solution uses 11 instructions, including 6 in

# the loop body. A different number of instructions can be used.

# Solution Starts Here

addi $v0, $0, 0

sll $t0, $a1, 2

add $t1, $t0, $a0

LOOP:

beq $a0, $t1, DONE

lw $s0,0($a0)

bne $s0,$a2 LOOP

addi $a0, $a0, 4

j LOOP

addi $v0, $v0, 1

DONE:

# Use the two lines to return, fill the delay slot if possible.

jr $ra

nop
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LSU EE 4720 Homework 2 Solution Due: 7 March 2003

Design a stack ISA with the following characteristics:

• Memory has a 64-bit address space and consists of 8-bit characters.

• The stack consists of 64-bit registers.

• The ISA uses 2’s complement signed integers.

• Only add other data types as necessary.

The stack ISA must realize these goals:

• Small program size.

• Low energy consumption. (For here, assume energy consumption is proportional to dynamic
instruction count.)

• Relatively simple implementation. Instructions should be no more complex than RISC in-
structions.

Design the instruction set based on the sample programs in the problems below and the
following:

Arithmetic and Logical Instructions

They should read their source operands from the top of stack (top one or two items) and push
their result on the top of stack. Arithmetic instructions cannot read memory and they cannot read
beyond the top two stack elements. (That is, you can’t add an element five registers down to one
ten registers down. Instead use rearrangement instructions before the add.) Specify whether the
arithmetic and logical instructions pop their source operands. One can have both versions of an
instruction. For example, add might pop its two source operands off the stack while addkeep might
leave the two operands:

# Stack: 26 3 2003

add

# Stack: 29 2003

addkeep

# Stack: 2032 29 2003

Remember that arithmetic and logical instructions cannot rearrange the stack and cannot
access memory.

Immediates

Decide how immediates will be handled. There can be immediate versions of arithmetic in-
structions or one can have push immediate instructions. See the example below. Keep in mind
that the register size is 64 bits.
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# Stack: 123

addi 3 # An immediate add.

# Stack: 126

pushi 3

# Stack: 3 126

add

# Stack: 129

Load and Store Instructions
Memory is read only by load instructions which push the loaded item on the stack. Memory is

written only by store instructions which get the data to store from the top of the stack. Determine
which addressing modes are needed for loads and stores, and design instructions with those modes.

Stack Rearrangement Instructions
The stack rearrangement instructions change the order of items on the stack. Consider adding

the following: exch, swaps the top two stack elements. roll n j, remove the top j stack elements
and insert them starting after what was the nth stack element. (See the example.) Other stack
rearrangement instructions are possible.

# stack 11 22 33 44 55 66

exch

# stack 22 11 33 44 55 66

roll 5 2

# stack 33 44 55 22 11 66

Control Transfer Instructions
Your ISA must have instructions to perform conditional branches, unconditional jumps, indi-

rect jumps, and procedure calls. It must be possible to jump or make a procedure call to anywhere
in the address space. (The only thing special the instruction used for a procedure call has to do
is save a return address.) The branch instructions can (but do not have to) use a condition code
register. No other registers can be used (other than those in the stack). Don’t forget about the
target address.

Problem 1: As specified below, describe your ISA and the design decisions used. (Don’t com-
pletely solve this part until you have solved the other problems.)

(a) For each instruction used to solve the problems below or requested above, show the assembler
syntax and the instruction’s coding. The coding should show the opcode, immediate, and any
other fields that are present. Don’t forget the design goals. Also don’t forget about control transfer
targets.

There is no need to list a complete set of instructions, but for coding purposes assume their
existence. (There must be a way of coding a complete set of instructions that realize the goals of
this stack ISA.)

The solution to this part appears after the last problem.

(b) Determine the size of the stack. Specify instruction coding and implementation issues used to
determine the size.

Stack size was set to 32 elements. The solution to Problem 3 used six stack elements (at most), if fewer were
available additional instructions would be needed to move items from and to memory. Too many stack elements, say
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thousands, would be difficult to implement and a nightmare to program (or would go unused). Additional variations of
the index and roll instructions would be needed to handle thousands of registers since one byte could not reference
them all. A stack size of 32 was chosen to match the number of general purpose registers in RISC ISAs.

(c) Explain your decision on whether there are immediate versions of arithmetic instructions. (The
alternative is instructions like pushi.)

A design goal was to include one-byte immediate arithmetic and other instructions. To do this only a few instructions
could use immediates. This was limited to only a few arithmetic and logical instructions, the others could only get operands
from the stack.

(d) Explain your selection of memory addressing modes. Also, pick an addressing mode that you
did not use and explain why not.

The variable instruction size made it easy to include direct addressing (instruction holds entire memory address).
Displacement addressing was included because it is so commonly used but the offset was limited to one byte to save
opcodes. (RISC ISAs need larger offsets since they lack a direct addressing mode and so the offset is used as the second
half of an address, the first being loaded into a register with an instruction like lui.) Indirect addressing was included to
keep code size down. (That is, a load.o.word 0 loads the same address as loadr.sw but it uses two bytes instead
of one.)

Memory indirect, and postincrement addressing would have helped in reducing code size, they were not included
since instructions could not exceed RISC-like complexity.

(e) Explain how other design decisions you have made help realize the goals of small program size,
low energy, or simple implementation.

The five-bit-opcode, three-bit-operand format allowed many instructions to be coded in one byte, reducing program
size. The use of a single 3-bit immediate field for many instructions simplifies implementation.

(f) Describe any design decision you made that involved a tradeoff between code size, energy, or
implementation simplicity. (Pick any pair.) The original question asked only about code size and
energy. If you didn’t make such a decision make one up.

The ISA described above does not involve energy and code size tradeoffs, so here’s a made-up decision. In ISA A
every instruction has a one-byte opcode and any immediates must start in the second byte of an instruction. In ISA B
there is a five-bit opcode and a three-bit immediate. With the exception of a push the three-bit immediate is the only
kind of immediate an instruction can use (unlike the ISA described elsewhere in this homework). The push uses as many
bytes as it needs for the immediate. Suppose 20% of dynamic instructions in ISA A could use the 3-bit immediate (if it
were available), 10% require a one-byte immediate, and the remainder don’t use immediates. The dynamic instruction
count for ISA B would be 10% longer because of the added push instructions. On the other hand while those extra 10%
instructions are two bytes each, the 20% of instructions that use a 3-bit immediate are 1 byte in ISA B but are two bytes
in ISA A. Assuming the dynamic count is a reasonable predictor of the static code size, ISA B has smaller code size.

Problem 2: Re-write the following MIPS code in your stack ISA.

lui $a0, %hi(array) # High 16 bits of symbol array.

ori $a0, $a0, %lo(array) # Low 16 bits of symbol array.

jal lookup # The name of a routine.

nop

# Push handle large immediates no need to use two instructions.

push.v array

jl lookup

Problem 3: Re-write the solution to Homework 1 in your stack ISA, use the template below. (Use
your own solution or the one posted.)
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lookup:

# Call Arguments (TOS is the top of the stack.)

#

# TOS: Return address

# TOS + 1: ADDR of first element of array. Array holds 64-bit integers.

# TOS + 2: Number of elements in array.

# TOS + 3: TARGET, element to count.

#

# Return Value

#

# TOS: Number of times TARGET appears in the array starting at ADDR.

# Solution Here

#

# [ ] Don’t forget the return.

# Solution

# ra ptr size target

push.0

# count ra ptr size target

rolls 2 5

# ptr size target count ra

rollu.3

# size target ptr count ra

sll.3

index.2

# ptr sizex8 target ptr count ra

add

# end target ptr count ra

rolld.3

# ptr end target count ra

cmpk.eq

b.1 DONE

LOOP:

# ptr end target count ra

index.0

loadr.sw

# data ptr end target count ra

index.3

# target data ptr end target count ra

cmp.eq

# target=data ptr end target count ra

rolld.5

# count target=data ptr end target ra

add

# count ptr end target ra

rollu.4
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# ptr end target count ra

addpower.3

cmpk.eq

b.1 LOOP

# ptr end target count ra

pop pop pop

# count ra

rollu.2

# ra count

j
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Comments on Solutions
Most solutions to this assignment included substantially correct programs, however several

common mistakes or less-than-optimal choices were made in the stack ISAs. The following are
common mistakes:

Lack of one-byte instructions. Since program size is a goal frequently used instructions should
take one byte, whenever possible. Some solutions omitted any one-byte instructions, increasing
code size.

Lack of immediate arithmetic instructions. A design goal was to reduce program size, including
the ones in the assignment. If there are no immediate arithmetic or logical instructions then
whenever an immediate is needed a push instruction must also be included, adding to program
size. A justification given in some solutions for omitting immediate arithmetic instructions is a
reduction in complexity or instruction count. Though these would be reduced, it would be at the
expense of code size and energy, two other design goals.

Lack of one-byte immediates. Many solutions had ISAs with a single immediate size, some-
times very large. Since the goal is small program size and since many instructions can use small
immediates, there should be some instructions using one-byte immediates. Other instructions could
use larger immediates. (There is no reason why there should be a single immediate size.)

Lack of a 64-bit immediate. Since the register size is 64-bits there should be an instruction
that can load a 64-bit constant, for example, pushi 0xfedcba9876543210.

Inclusion of lui-like instructions. Many solutions included instructions similar to MIPS load-
upper immediate. Such instructions make sense in RISC ISAs because with their fixed instruction
size there is no way to load a 32-bit constant (or whatever the instruction size is) or larger with one
instruction. An lui paired with an or or some other instruction can load a 32-bit constant. With
variable size instructions one can simply have a pushi (or other instruction) that uses a 64-bit
immediate, there is no need for anything like lui.

Inclusion of delayed branches. Delayed branches make sense only in certain pipelined imple-
mentations. (Such as those discussed in class so far.) On other implementations delayed branches
add to complexity without adding much to performance. (This was mentioned in class several
times.) For that reason, delayed branches should have been omitted or their inclusion should have
been justified.
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Solution to Problem 1a
A feature of stack ISAs and a design goal in this problem is small program size. Small pro-

gram size is realized by choosing instructions that minimize static instruction count and by coding
instructions so they are as small as practical.

Instruction Choice

The choice of instructions was based on those needed for the solution to the last problem in
this assignment (for example, add and branch instructions). Other commonly needed instructions
were added (for example, xor and store).

Though powerful instructions (for example, those that perform multiple operations such as shift
and add) would help reduce the static instruction count they were not added because the problem
restricted the ISA to instructions that are no more complex than typical RISC instructions.

Data Types

The ISA uses 64-bit signed and unsigned integers. The memory is byte-addressed and items
are in big-endian byte order.

Instruction Coding Overview

To minimize program size the coding was chosen so that as many instructions as possible were
only one byte. The Problem 3 solution had several arithmetic and other instructions that used
immediate operands. To squeeze them down to one byte the coding was based on a five-bit opcode
and a three-bit extension field. The extension field holds an immediate or other constant data, or
can be used for an extension of the opcode field (as is the function field in MIPS).

Instructions that use the extension field for anything other than an opcode (such as an immedi-
ate) are called Type 1, the rest are called Type 2. Let i1 denote the number of Type-1 instructions.
Clearly i1 ≤ 32 and the number of possible Type-2 instructions is 8(32 − i1).

The maximum number of Type 1 instructions is small and so only those instructions which
occurred frequently and needed a small (or other) immediate were given Type 1 codings. The other
instructions either did not use immediates or had immediates in following bytes.

The size of the extension field was a tradeoff between the number of possible Type 1 instructions
and the usefulness of the immediate. (That is, with a 1-bit immediate there could be as many as
128 Type 1 instructions but there would be few cases where the 1-bit immediate would be useful.)

An example of a Type 1 instruction is add.i:

add.4 # Add 4 to the element at the top of stack.

# Coding of add.4

Field Name: | opcode | ext |

Field Value: | 0 | 100 |

Bit Number: 7 6 5 4 3 2 1 0

The extension field can hold data other than an immediate. The subtype of an instruction
specifies what kind of data the immediate field holds. An add.i is subtype i. The table below
shows the subtypes, the subtypes are explained in detail further below. In the table EX refers to
the entire extension field (all 3 bits), EX10 refers to bits 1 and 0 and EX2 refers to bit 2.

1i Use EX as immediate. Whether it’s sign extended depends on the instruction.

1v Immediate in following bytes. EX gives immediate size and padding.

1s Size and padding of data item loaded or stored from memory.

1c Comparison. EX specifies type of comparison.

1t How jump target is determined.

1b Branch condition and size of displacement.
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1o Use EX for additional opcode bits. (Type 2 instruction.)

The assembly language syntax for Type 1 instructions consists of the mnemonic (such as
add) followed by a dot and the extension field value, if known, otherwise the subtype name. For
example, add.3 means add the immediate 3 to the TOS while add.i refers to a Type 1i add
instruction without specifying what the immediate is (as one does when describing the syntax).

Instructions

A complete list of instructions appears below, starting with Type 1 instructions.

Opcode 1 push.i Push immediate on TOS.

Opcode 2 push.v IMM Push immediate on TOS.
Instruction push.i pushes value in extension field, i, on the stack. Instruction push.v pushes

IMM on the stack. IMM is computed using the next 0 to 8 bytes based on the EXT field value as
specified in the table below:

Type 1v -- Immediate follows first byte of instruction.

EX: Sz: Description

0: 2: IMM is one byte, no sign extension.

1: 3: IMM is two bytes, no sign extension.

2: 5: IMM is four bytes, no sign extension.

3: 9: IMM is eight bytes.

4: 2: IMM is one byte, sign extend.

5: 3: IMM is two bytes, sign extend.

6: 5: IMM is four bytes, sign extend.

7: 1: For push, use 0 as value; for others use TOS + 1.

EX is value of extension field.

Sz is total instruction size.

Execution Examples:

# 111 222 333 444 555 666

push.7 # Type 1i

# 7 111 222 333 444 555 666

push 0x11 # Type 1v, EX = 0 (one byte immediate, don’t sign extend)

# 0x1 7 111 222 333 444 555 666

push -10 # Type 1v, EX = 4 (one byte immediate, sign extend)

# -10 0x1 7 111 222 333 444 555 666

push 0x123 # Type 1v, EX = 1 (two byte immediate, don’t sign extend)

# 0x123 -10 0x1 7 111 222 333 444 555 666

push 0x123456789 # Type 1v, EX = 3 (Eight byte immediate. )

# 0x123456789 0x123 -10 0x1 7 111 222 333 444 555 666

Coding Examples:

push.7 # Type 1i

# Coding of instruction above.

First Byte

| opcode | ext |

| 00001 | 111 |

76543 210
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push 0x123 # Type 1v, EX = 1 (two byte immediate, don’t sign extend)

# Coding of instruction above.

First Byte Second and Third Byte

| opcode | ext | | IMM |

| 00010 | 001 | | 0x123 |

00000 000 1111100000000000

76543 210 5432109876543210

Opcode 3 rollu.i Roll up by 1, width i.
Pop the TOS and insert it so that it becomes the i’th element.

Example:

# 111 222 333 444 555 666

rollu.3

# 222 333 111 444 555 666

Coding Example:

rollu.3 # Type 1i

# Coding of instruction above.

First Byte

| opcode | ext |

| 00011 | 011 |

76543 210

Opcode 4 rolld.i Roll down by 1, width i.
Remove the i’th element and push it on the TOS.

Opcode 5 index.i Push a copy of element i (the (i + 1)’th element).

Example:

# 111 222 333 444 555 666

index.0

# 111 111 222 333 444 555 666

index.4

# 444 111 111 222 333 444 555 666

Coding Example:

index.4 # Type 1i

# Coding of instruction above.

First Byte

| opcode | ext |

| 00101 | 100 |

76543 210

Opcode 0 add.i Remove the TOS add it to i push the result.

Opcode 6 add.v IMM Remove the TOS add it to IMM push the result.
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See the Type 1v table above for sizes and padding of IMM.

Coding Examples

add.0 # Type 1i

# Coding of instruction above.

First Byte

| opcode | ext |

| 00000 | 000 |

76543 210

add.v 0x12345678 # Type 1v

# Coding of instruction above.

First Byte Following four bytes.

| opcode | ext | | IMM |

| 00110 | 011 | | 0x12345678 |

00000 000 33222222222211111111110000000000

76543 210 10987654321098765432109876543210

Opcode 7 addpower.i Remove the TOS add 2i to it and push the result.

Opcode 8 sub.i Remove the TOS subtract i from it and push the result.
A sub.v is not included because it would not be used often enough to justify a Type-1 coding.

Opcode 9 sll.i Shift left logical.

Opcode 10 srl.i Shift right logical.

Opcode 11 sra.i Shift right arithmetic.
Remove the TOS, perform the shift by i + 1 bits and push the result. The assembly language

syntax shows the shift amount while the EX field will be coded with the shift amount plus 1. For
example, sll.1 shifts left by one bit and the EX field holds a zero. There is a shift instruction
for shifts beyond 9 bits.

Opcode 12 b.b DISP Branch if TOS non-zero b=1 or if TOS zero (b=0).

A displacement is found in the following 2ex10 bytes, the next instruction is the PC plus the
displacement.

Examples:

b.1 TARGET # Branch if TOS non-zero. TARGET is 20 bytes ahead.

# Coding of instruction above.

First Byte Second Byte

| opcode | ext | | DISP |

| 01100 | 100 | | 10100 |

00000 000 00000000

76543 210 76543210

b.0 TARGET2 # Branch if TOS zero. TARGET2 is 0x1234 bytes ahead

# Coding of instruction above.

First Byte Second and Third Byte

| opcode | ext | | DISP |
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| 01100 | 101 | | 0x1234 |

00000 000 1111100000000000

76543 210 5432109876543210

Opcode 13 j.t DISPorTARGET Jump.

Opcode 14 jal.t DISPorTARGET Jump and link.
In both instructions the extension field specifies how to find target address, see the table below.

The jal.t instructions push a return address on the stack.

Type 1t -- Jump Targets

EX: As: Sz: Description

0: ds: 2 : Displacement target, DISPorTARGET is one byte signed.

1: ds: 3 : Displacement target, DISPorTARGET is two bytes signed.

2: ds: 5 : Displacement target, DISPorTARGET is four bytes signed.

3: ds: 9 : Displacement target, DISPorTARGET is eight bytes signed.

4: in: 1 : Target is register indirect, address on TOS.

5: ix: 1 : Target is indexed, sum of top two stack elements.

6: 1 : Illegal, reserved for future extension.

7: di: 9 : Direct target, DISPorTARGET is eight bytes unsigned.

EX is value of extension field.

As is assembly language characters for corresponding value.

Sz is the total instruction size, including the first byte.

Opcode 15 cmp.c Compare.

Opcode 16 cmpk.c Compare and keep.

Opcode 17 cmpz.c Compare with zero.

Opcode 18 cmpzk.c Compare with zero and keep.
Instructions cmp.c and cmpk.c compare the top two elements using the comparison specified

by c (see the table below). Instruction cmp.c removes the top two elements cmpk.c does not.
Instructions cmpz.c and cmpkz.c are similar except that they compare the TOP element to zero.
All instructions push the result of the comparison (zero or one) on the stack.

Type 1c -- Conditions. a is TOS, b is 0 or TOS+1

EX: As: Description

0: eq: a = b

1: ne: a != b

2: lt: a<b

3: le: a<=b

4: gt: a>b

5: ge: a>=b

6: ov: overflow

7: ca: carry

Note: All instructions are 1 byte.

Opcode 19 loadd.s IMM64 Load direct.

Opcode 20 stored.s IMM64 Store direct.

← → Spring 2003 ← → Homework 2 Homework Solution hw02 sol.pdf

https://www.ece.lsu.edu/ee4720/2003/hw02_sol.pdf


Load or store from memory using address IMM64 (the immediate found in the following 8
bytes). The size and padding of the element to load is specified by s. (See the table below.)

Opcode 21 loado.s OFF8 Load offset.

Opcode 22 storeo.s OFF8 Store offset.
Load or store using the TOS + OFF8 as the address. The size and padding of the element to

load is specified by s. (See the table below.)

Opcode 23 loadr.s Load register-indirect.

Opcode 24 storer.s Store register-indirect.
Load or store using the TOS as the address. The size and padding of the element to load is

specified by s. (See the table below.)

Type 1s -- Memory access size and padding.

EX: As:

0: ub: One byte, unsigned.

1: uq: Two bytes (quarter word), unsigned.

2: uh: Four bytes (half word), unsigned.

3: uw: Eight bytes (word).

4: sb: One byte, signed. Illegal for stores.

5: sq: Two bytes, signed. Illegal for stores.

6: sh: Four bytes, signed. Illegal for stores.

7: : Illegal, reserved for future expansion.

Sizes: 9 bytes: loadd.s and stored.s

2 bytes: loado.s and storeo.s

1 byte : loadr.s and storer.s

Examples:

# Stack: 0x1234 111 222

index.i

# Stack: 0x1234 0x1234 111 222

loadr.uw

# Stack 543210 0x1234 111 222 # 543210 is contents at memory 0x1234.

rollu.2

# Stack 0x1234 543210 111 222

loado.uw 0x10

# Stack 540000 543210 111 222 # 540000 is contents at memory 0x1244.

Coding Examples:

loadr.uw

# Coding of instruction above.

First Byte

| opcode | ext |

| 10111 | 011 |

00000 000

76543 210

loado.uw 0x10

# Coding of instruction above.
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First Byte Second Byte

| opcode | ext | | OFF |

| 10011 | 100 | | 0x10 |

00000 000 00000000

76543 210 76543210

Type 2 Instructions

There are 24 Type 1 instructions, leaving space for 8(32 − 24) = 64 Type 2 instructions.
The Type 2 instructions use the extension field as part of the opcode. Some Type 2 instructions

have immediates, and some do not.

Opcode 30, Ext 0 pop Pop the stack.

Coding Example:

pop

# Coding of instruction above.

First Byte

| opcode | ext |

| 11110 | 000 |

00000 000

76543 210

Opcode 30, Ext 1 rolls SHIFT3 SIZE5 Roll small amount.

Opcode 30, Ext 2 roll SHIFT8 SIZE8 Roll.
Rearrange the stack. Instruction rolls is two bytes but cannot perform all rolls (on a 32-

element stack) whereas roll can perform any roll. A size exceeding 32 or a shift exceeding ±32 is
illegal.

Note that the two immediates used by rolls fit in one byte.

Coding Examples:

rolls 2 19

# Coding of instruction above.

First Byte Second Byte

| opcode | ext | | SHIFT3 SIZE5 |

| 11110 | 001 | | 010 10011 |

00000 000 000 00000

76543 210 765 43210

Opcode 30, Ext 3 index DEPTH8 Push a copy of the stack entry at DEPTH8.

Opcode 30, Ext 4 sllv Shift left logical variable.

Opcode 30, Ext 5 srlv Shift left logical variable.

Opcode 30, Ext 6 srav Shift left logical variable.
The TOS is shift by the amount specified in the low six bits of TOS+1. TOS+1 is removed.

Opcode 30, Ext 7 shift PAD1 DIR1 AMT6 Shift. (Combined shift left, right.)
If PAD1 is 1 shift is arithmetic. If DIR1 is 1 shift is left otherwise it is right. AMT6 is the

number of bits to shift. Note that the immediates fit in oe byte.

Opcode 29, Ext x sub, mul, div Arithmetic operations.
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Opcode 29, Ext x and, or, xor Logical operations.
The indicated operation is performed on TOS and TOS+1.

Opcode 31, Ext x illegal Reserved for future second-byte opcode exten-
sion.
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LSU EE 4720 Homework 3 Solution Due: 19 March 2003

Problem 1: Consider the code below.

# Cycle 0 1

add $t1, $t2, $t3 IF ID

sub $t4, $t5, $t1

lw $t6, 4($t1)

sw 0($t4), $t6

(a) Show a pipeline execution diagram for the code running on the following illustration.
Note that the add is fetched in cycle zero.

• Take great care in determining the number of stall cycles.

# Solution

#

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

add $t1, $t2, $t3 IF ID EX ME WB

sub $t4, $t5, $t1 IF ID ----> EX ME WB

lw $t6, 4($t1) IF ----> ID EX ME WB

sw 0($t4), $t6 IF ID ----> EX ME WB

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC

← → Spring 2003 ← → Homework 3 Homework Solution hw03 sol.pdf

http://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/2003/hw03_sol.pdf


Problem 2: The code below is the same as in the previous problem.

# Cycle 0 1

add $t1, $t2, $t3 IF ID

sub $t4, $t5, $t1

lw $t6, 4($t1)

sw 0($t4), $t6

(a) Show a pipeline execution diagram (PED) of the code running on the system below.

# Cycle 0 1 2 3 4 5 6 7 8 9

add $t1, $t2, $t3 IF ID EX (ME) (WB)

sub $t4, $t5, $t1 IF ID EX ME WB

lw $t6, 4($t1) IF ID EX ME WB

sw 0($t4), $t6 IF ID ------> EX ME WB

(b) In the PED circle each stage that sends a bypassed value. In the diagram label each
bypass path with the cycle in which it is used. To avoid ambiguity, label the end of the
path (at the mux input).

In the PED parenthesis are used instead of circles.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

3

4
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The problem below is tricky. If necessary use Spring 2001 Homework 2 problem 3 for
practice.

Problem 3: The program below has an infinite loop and runs on the bypassed implemen-
tation below.

# Initially $t0 = LOOP (address of jalr)

LOOP:

jalr $t0

addi $t0, $ra, -4

bne $t0, $0 LOOP

addi $t0, $t0, -4

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

(a) Show a pipeline execution diagram for this program up to a point at which a pattern
starts repeating. Beware, the loop is tricky! Read the fine print below for hints.

Note that jalr reads and writes a register. The jalr instruction should be fetched twice per repeating pattern. The addi instruction should be fetched three times per

repeating pattern.

← → Spring 2003 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4720/2003/hw03_sol.pdf


# Code in dynamic order. (Same four static instructions repeated.)

#

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

jalr $t0 IF ID EX(ME)WB

addi $t0, $ra, -4 IF ID EX ME WB

bne $t0, $0 LOOP IFx

addi $t0, $t0, -4

jalr $t0 IF ID -> EX(ME)WB

addi $t0, $ra, -4 IF -> ID EX ME WB

bne $t0, $0 LOOP IFx

addi $t0, $t0, -4

jalr $t0

addi $t0, $ra, -4 IF ID EX ME WB

bne $t0, $0 LOOP IF ID ----> EX ME WB

addi $t0, $t0, -4 IF ----> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

jalr $t0 IF ID ----> EX(ME)WB

addi $t0, $ra, -4 IF ----> ID EX ME WB

bne $t0, $0 LOOP IFx

addi $t0, $t0, -4

jalr $t0 IF ID -> EX(ME)WB

addi $t0, $ra, -4 IF -> ID EX ME WB

bne $t0, $0 LOOP IFx

addi $t0, $t0, -4

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

(b) In the PED circle each stage that sends a bypassed value. In the diagram label each
bypass path with the cycle in which it is used. To avoid ambiguity, label the end of the
path (at the mux input).

(c) Determine the CPI for a large number of iterations.
Iteration types:
First: A: Starts at cycle 0, no other loop instruction in pipeline.
Second: B: Starts at cycle 3, pipeline contents: jalr in ME, first addi in EX.
Third: C: Starts at cycle 7 with addi, pipeline contents: jalr in ME, addi in EX.
Fourth: D: Starts at cycle 12, pipeline contents: bne in EX, second addi in ID.
Fifth: B: Starts at cycle 17, pipeline contents: jalr in ME, first addi in EX.
Because state of pipeline at the beginning of second and fifth iterations are identical and because t0 has

the same values at those iterations, the pattern BCD will repeat. (The entire loop: ABCDBCDBCD...) The
number of cycles in this three-iteration set is 17 − 3 = 14 and the number of instructions is 7 and so the CPI
is 14

7 = 2.
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Problem 4: SPARC V9 has multiple floating-point condition code (FCC) registers. See
the references pages for more information on SPARC V8 and V9.

(a) Write a program that uses multiple FCC’s in a way that reduces program size. As an
example, the SPARC program below uses a single FCC. (To solve this problem first find
instructions that set and use the multiple FCC registers in the SPARC V9 Architecture
Manual. Then write a program that needs the result of one comparison (say, a < b)
several times while also using the result of another (say, c > d). A program not using
multiple condition code registers should have to do the comparison multiple times whereas
the program you write does each comparison once.)

The solution appears below. Note that it is possible to re-cast the code so that on a system with one
FCC only one of each comparison is done. The point is to demonstrate use of the registers.

# Solution

#

fcmpd %fcc0, %f0, %f2

fcmpd %fcc1, %f4, %f6

fbg %fcc0, SKIP1

nop

faddd %f10, %f10, %f14

SKIP1:

fbg %fcc1, SKIP2

nop

fdivd %f10, %f10, %f12

SKIP2:

fbg %fcc0, SKIP3

nop

faddd %f10, %f10, %f16

SKIP3:

(b) SPARC V9 is the successor to SPARC V8, which has only one FCC register. (SPARC
V9 implementations can run SPARC V8 code.) Did the addition of multiple FCC’s require
the addition of new instructions or the extension of existing instructions? Answer the
question by citing the old and new instructions and details of their coding.

Yes and no.
Yes, the SPARC V9 floating-point compare instructions (fcmpd, etc) are extensions of SPARC V9 in-

structions. (They have the same opcodes, the only difference is that the V9 version uses two bits of the rd field
(bits 29-25) to specify the condition code register.)

No, the SPARC V9 floating-point branch instructions that can specify an FCC are different than the
SPARC V8 branch instructions. (They have a different opcode.)

(c) Do you think the designers of SPARC V8 planned for multiple FCC’s in a future version
of the ISA?

Probably not, otherwise the V8 branch instructions would have bits reserved for a condition code register
number (with instructions to set them to zero). It would take two bits away from the offset, but a 20-bit offset
can still span over a million instructions, enough for a vast majority of branches.
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LSU EE 4720 Homework 4 Solution Due: 31 March 2003

Problem 1: The two code fragments below call trap number 7. How do the respective handlers
determine that trap 7 was called?
! SPARC V8

ta %g0,7

# MIPS

teq $0, $0, 7

In SPARC V8 each trap number has its own handler routine, the first four instructions of which are in the trap table.
Since a particular handler routine is only called for a particular exception number, there is no need for the handler to
determine which exception occurred. That is, if the trap 7 handler is running trap 7 must have occurred.

In MIPS the only way for the hander routine to get the trap number is to load the trap instruction itself and look at
the field holding the code, bits 15:6. The handler can get the address of the instruction from the EPC register.

Problem 2: There is a difference between the software emulation of unimplemented SPARC V8
instructions triggered by an illegal opcode exception, such as faddq, and Alpha’s use of PALcode
for certain instructions. (See the respective ISA manuals on the references Web page. For SPARC,
see Appendix G, it should not be difficult to find the PALcode information for Alpha.)

(a) What is similar about the two?
In both cases a single instruction in a program can trigger something like a subroutine that has privileged access to

machine state.

(b) What is the difference between the kinds of instructions emulated using the two techniques?
Why would it not make sense to use PALcode for quad-precision arithmetic instructions?

PALCode instructions are intended for functions that are too complex for a single RISC instruction and which vary
from machine to machine (because the way the function is coded depends upon the underlying hardware). Among other
things, PALCode instructions are used the way trap instructions are used in other ISAs, to perform system calls.

A PALCode instruction has a particular opcode, and an immediate operand specifying which PAL routine to execute.
The PALCode instructions are used something like trap instructions, in which a trap code is specified in the instruction
and operands are placed in fixed registers.

An illegal opcode exception can be raised by any instruction that the implementation does not recognize. If such an
instruction is defined in the ISA the handler could emulate it, putting the correct result in the destination register. Illegal
opcodes exceptions can be used to emulate instructions that would require alot of hardware and are expected to be rarely
used in the implementation.

It would not make sense to emulate quad precision instructions with PALCode because they would not look like
other arithmetic instructions and so would be awkward to use. In particular, source operands would have to be placed in
fixed registers, say f0 and f2 and destinations would be written to another fixed register, say f4. PALCode instructions
are always intended for software emulation, and so in an implementation that had quad precision hardware the PALCode
would be called anyway. (It could use the new instruction to do the arithmetic, but it would not be quick as just having
a quad precision instruction.)

Quad precision instructions emulated using illegal instruction exceptions look like normal instructions, for example,
the source operands can come from any register (perhaps the register number must be a multiple of 4). If an implementation
does have quad-precision hardware, the instructions execute normally.
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Problem 3: In both SPARC and MIPS each trap table entry contains the first few instructions of
the respective trap handler. On some ISAs a vector table is used instead, each vector table entry
holds the address of the respective handler.

Why would the use of a vector table (rather than a trap table) be difficult for the MIPS
implementation below?
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IR

Addr
25:21
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IR

IF ID EX WBMEM

IR IR
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Data

Data
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Mem
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Data
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Data
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Data
Outrtv
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MD

dst dst dst
Decode
dest. reg

NPC

When an exception occurs the processor must branch to the handler routine. With a trap table the address of
the handler routine can be determined by combining the trap base register (SPARC) or a fixed address (MIPS) with the
exception code, this requires little or no hardware. If a vector table were used the address of the trap handler would
have to be read from memory. First, the address of the vector table entry (holding the handler address) would need to
be computed, that can also be done easily. Next the vector table entry must be read from memory. That would require
the use of the memory stage which would complicate things because (1) the memory stage is not being used to execute
an ordinary instruction (complicating control), (2) a new path must be added for sending the vector table address to the
memory address input, and (3) a path must be added from the memory output port to the PC input. All of this can be
done of course, but at best it might save only a few cycles from a rarely occurring event.
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Problem 4: One way of implementing a vector table interrupt system on the MIPS implemen-
tation above would be by injecting hardware-generated instructions into the pipeline to initiate
the handler. These instructions would be existing ISA instructions or new instructions similar to
existing instructions.

What sort of instructions would be injected and how would they be generated? Show changes
needed to the hardware, including the injection of instructions. In the hardware diagram the
instructions can be generated by a magic cloud [tm] but the cloud must have all the inputs for
information it needs.

Include a program and pipeline execution diagram to show how your scheme works.

• Assume an exception code is available in the MEM stage.

• Include a vector base register, (VBR), which holds the address of the first table entry.

The solution is on the next page.
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The solution appears below. Two new registers, VBR (vector table base register) and Exc Code (exception code)
are shown. The inputs to these registers are omitted for clarity. Register VBR is loaded by a system instruction (not
shown or discussed further) while Exc Code is loaded by the hardware when an instruction raising an exception passes
through the MEM stage. The hardware injects three instructions, lui, lw, and jsysr. Instruction jsysr is new, it
jumps to the address in its operand register and switches the processor to system mode. It does not have a delay slot.
The code uses register k0 which ordinary code must not use.

Normally the top input of the multiplexor is used. When an exception occurs the other inputs are used in sequence,
injecting the three instructions. The immediate portion of the lui and lw instructions are inserted by the hardware,
based on the contents of the VBR and Exc. Code registers.

A pipeline execution diagram is shown below. Notice that the injected instructions do not use IF.
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# Solution, Continued

# Cycle 0 1 2 3 4

# Part of program

ant $s0, $s1, $s2 IF ID*EX ME WB

or $t0, $t1, $t2 IF ID EXx

xori $t3, $t3, 1 IF IDx

andi $s3, $s3, 7 IFx

# Injected by hardware. Assumed exception code is 1.

lui $k0, 0x1234 ID EX ME WB

lw $k0, 0x5404 ID EX ME WB

jsysr $k0 ID EX ME WB

# Handler

lui $k0 $0x9000 IF ID

sw 0($k0), $r1 IF

...
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LSU EE 4720 Homework 5 Solution Due: 4 April 2003

Problem 1: [Easy] Complete pipeline execution diagrams for the following code fragments running
on the fully bypassed MIPS implementations with floating point units as described below.

# Solution

# One ADD unit, latency 3, initiation interval 1.

add.d f0, f2, f4 IF ID A1 A2 A3 A4 WF

sub.d f6, f0, f8 IF ID -------> A1 A2 A3 A4 WF

add.d f8, f10, f12 IF -------> ID A1 A2 A3 A4 WF

# One ADD unit, latency 3, initiation interval 2.

add.d f0, f2, f4 IF ID A1 A1 A2 A2 WF

sub.d f6, f0, f8 IF ID -------> A1 A1 A2 A2 WF

add.d f8, f10, f12 IF -------> ID -> A1 A1 A2 A2 WF

# Two ADD units (A and B), latency 3, initiation interval 4.

add.d f0, f2, f4 IF ID A A A A WF

sub.d f6, f0, f8 IF ID -------> A A A A WF

add.d f8, f10, f12 IF -------> ID B B B B WF

Problem 2: [Easy] Choose the latency and initiation interval for the add and multiply functional
units so that the second instruction stalls to avoid a structural hazard. Show a pipeline execution
diagram with this execution. (The easy way to solve it is to do the PED first, then figure out the
latency and initiation interval.)

mul.d f0, f2, f4

add.d f6, f8, f10

Both functional units have an initiation interval of 1. The multiply unit has a latency of 3 and the add unit has a
latency of 2, so if it were not for the stall they would encounter a structural hazard (the two instructions trying to write
their results at the same time).

# Solution

mul.d f0, f2, f4 IF ID M1 M2 M3 M4 WF

add.d f6, f8, f10 IF ID -> A1 A2 A3 WF

Problem 3: The two PEDs below show execution of MIPS code that produces wrong answers.
For each explain why and show a PED of correct execution.

# PED showing a DESIGN FLAW. (The code runs incorrectly.)

# Cycle 0 1 2 3 4 5 6 7

add.s f1, f10, f11 IF ID A1 A2 A3 A4 WF

sub.d f2, f0, f4 IF ID A1 A2 A3 A4 WF

# PED showing a DESIGN FLAW. (The code runs incorrectly.)

# Cycle 0 1 2 3 4 5 6 7 8

mul.d f0, f2, f4 IF ID M1 M2 M3 M4 M5 M6 WF

sub.s f1, f10, f11 IF ID A1 A2 A3 A4 WF

In both cases the problem is due to the fact that double-precision instructions (sub.d and mul.d here) actually
read and write registers in pairs. The sub.d, for example, reads f0 and f1 as the first operand (32 bits from each
register), f4 and f5 as the second operand, and write the result in registers f2 and f3.
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The first code fragment does not run correctly because the sub.d read f1 in cycle 1, that is before it is written
by the proceeding instruction, in cycle 6. (Note that using instructions this way is unusual, but they still must execute
correctly.)

In the second code fragment the mul.d overwrites, in cycle 8, the result written by sub.s in cycle 7.

# Solution. (Runs correctly assuming a very complete set of bypass paths.)

add.s f1, f10, f11 IF ID A1 A2 A3 A4 WF

sub.d f2, f0, f4 IF ID -------> A1 A2 A3 A4 WF

# Solution. (Runs correctly.)

mul.d f0, f2, f4 IF ID M1 M2 M3 M4 M5 M6 WF

sub.s f1, f10, f11 IF ID ----> A1 A2 A3 A4 WF
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Problem 4: As directed to below, design the logic for the floating-point register file in the MIPS
implementation illustrated below. The FP portion shows only part of add functional unit. Assume
that is the only functional unit.

• Describe how the FP register file works. For reference, here is a description of the integer
register file: The integer register file has two read ports and a write port. Each read port
has a five-bit address input and a 32-bit data output. The write port has a five-bit address
input and a 32-bit data input. Reads from zero retrieve 0, writes to zero have no effect.

• The following signals are available: is dbl ; if 1 the instruction uses double-precision

operands, otherwise single-precision. FP dst : if 1 the instruction writes the floating-point

register file, otherwise it does not (possibly because it’s not a floating-point instruction).

• Show all connections to the FP register file. Show the number of bits or the bit range for
each connection.

• The WF stage provides two signals, FPU (the value to write back) and fd, something gen-
erated in ID (as part of the solution). Additional signals can be sent down the pipeline.

• Keep In Mind: The hardware should work for both single and double operands. (That’s
what makes the problem interesting. If you’re confused first solve it assuming only double
operands, then attempt the full problem.)

• Make sure the fragments from the previous problem would run correctly.

Solution shown below. It is assumed that the functional units have 64-bit inputs. If they perform 32-bit operations
then they operate on the high bits, bits 63:32.

The register file stores 16 64-bit numbers, each 64-bit number is two registers, say f0 and f1. Notice that the
address inputs use just four bits, omitting the LSB of the register number. The outputs of the register file are 64 bits, a
multiplexor selects the full 64 bits if the register number is even (LSB 0) or it moves the low 32 bits to the high 32 bits if
the register number is odd.

The register file uses a write-enable (WE) signal to control register writes. This was not needed in the integer
register file because register zero could be used if nothing was to be written. There are actually two write enable signals,
for the high 32 bits (63:32) and for the low bits (31:0). If a double operand is written then both write enables are asserted.
If a single is written and the register is even WE high is asserted, otherwise WE low is asserted. The write enable signals
are computed in ID and sent down the pipeline to be used in the WF stage.
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LSU EE 4720 Homework 6 Solution Due: 25 April 2003

Problem 1: Show the execution of the MIPS code fragment below for three iterations on a four-
way dynamically machine using method 3 (physical register file) with a 256-entry reorder buffer.
Though the machine is four-way, assume that there can be any number of write-backs per cycle.

• Assume that the branch and branch target are correctly predicted in IF so that when the
branch is in ID the predicted target is being fetched.

• The FP multiply functional unit is three stages (M1, M2, and M3) with an initiation interval
of 1.

• There are an unlimited number of functional units.

(a) Show the pipeline execution diagram, indicate where each instruction commits.

(b) Determine the CPI for a large number of iterations. (The method used for statically scheduled
systems will work here but will be very inconvenient. There is a much easier way to determine the
CPI.)

# Solution

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LOOP:

ldc1 f0, 0(t1) IF ID Q L1 L2 WC

mul f2, f2, f0 IF ID Q M1 M2 M3 WC

bneq t1, t2 LOOP IF ID Q B WB C

addi t1, t1, 8 IF ID Q EX WB C

ldc1 f0, 0(t1) IF ID Q L1 L2 WB C

mul f2, f2, f0 IF ID Q M1 M2 M3 WC

bneq t1, t2 LOOP IF ID Q B WB C

addi t1, t1, 8 IF ID Q EX WB C

ldc1 f0, 0(t1) IF ID Q L1 L2 WB C

mul f2, f2, f0 IF ID Q M1 M2 M3 WC

bneq t1, t2 LOOP IF ID Q B WB C

addi t1, t1, 8 IF ID Q EX WB C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The CPI is 3
4 = 0.75. The hard way of computing the CPI is completing the pipeline execution diagram until there

is a repeating pattern. With a 256-entry reorder buffer that will take a long time. (The ROB size was not given in the
original problem.) The easy way is to find the critical path. The critical path must be through loop carried dependencies,
for this loop there are two, t1 and f2. There is a single instruction per iteration that updates t1 and that has a latency
of zero, so the path through t1 can execute at a rate of one iteration per cycle, which is the same as the fetch rate.
The path through f2 is also through a single instruction, the multiply, however that has a latency of 2 (takes 3 cycles
to compute) and so the fastest it can execute is 3 cycles per iteration. The processor will initially fetch one iteration per
cycle and the addi instruction will be able to keep up, while the mul.d will fall behind. Eventually the reorder buffer
will fill, when that happens instructions will only be fetched when new space opens up, which will be when the multiply
instructions commit. Therefore fetch will drop to three cycles per iteration or a CPI of 3

4 .
Note that the load is not on the critical path. It does provide data for the multiply and it is dependent on data from

a previous iteration, t1, but it has its data ready before the multiply needs it. (This is only so because of the assumption
that the load always hits the cache. With cache misses the situation is more complex.)

← → Spring 2003 ← → Homework 6 Homework Solution hw06 sol.pdf

http://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/2003/hw06_sol.pdf


Problem 2: The execution of a MIPS program on a one-way dynamically scheduled system is
shown below. The value written into the destination register is shown to the right of each in-
struction. Below the program are tables showing the contents of the ID Map, Commit Map, and
Physical Register File (PRF) at each cycle. The tables show initial values (before the first instruc-
tion is fetched), in the PRF table the right square bracket “]” indicates that the register is free.
(Otherwise the right square bracket shows when the register is freed.)

(a) Show where each instruction commits.

(b) Complete the ID and Commit Map tables.

(c) Complete the PRF table. Show the values and use a “[” to indicate when a register is removed
from the free list and a “]” to indicate when it is put back in the free list. Be sure to place these
in the correct cycle.

# Solution

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (Result)

lw r1, 0(r2) IF ID Q L1 L2 L2 WC (0x100)

ori r1, r1, 6 IF ID Q EX WC (0x106)

subi r2, r1, 2 IF ID Q EX WC (0x104)

xor r1, r3, r3 IF ID Q EX WB C (0)

addi r2, r1, 0x700 IF ID Q EX WB C (0x700)

subi r1, r2, 4 IF ID Q EX WB C (0x6fc)

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ID Map

r1 96 99 98 95 93

r2 92 97 94

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Commit Map

r1 96 99 98 95 93

r2 92 97 94

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Physical Register File

99 112 ] [ 100]

98 583 ] [ 106 ]

97 174 ] [ 104 ]

96 309 ]

95 606 ] [ 0 ]

94 058 ] [ 700

93 285 ] [ 6fc

92 1234 ]

91 518 ]

90 207 ]

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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EE 4720 Homework 1 Solution Due: 18 September 2002
At the time this was assigned computer accounts and solution templates were not ready. If they

become available they can be used for the solution, either way a paper submission is acceptable.

Problem 1: Write a MIPS assembly language program that copies and converts an array of
integers to an array of doubles. Use the template below.

################################################################################

## cpy_w_to_dbl

## Register Usage

#

# $a0: Procedure input: Address of start of integer array (to read).

# $a1: Procedure input: Length of integer array.

# $a2: Procedure input: Address of start of double array (to write).

.globl cpy_w_to_dbl

cpy_w_to_dbl:

# Your code can modify $a0-$a2 and $t registers.

# A correct solution uses 8 instructions (not including jr, nop),

# a different number of instructions are okay.

# Points will be deducted for obviously unnecessary instructions.

#

# Solution starts here.

sll $a1, $a1, 2

add $a1, $a1, $a0

LOOP:

lwc1 $f0, 0($a0)

cvt.d.w $f0, $f0

sdc1 $f0, 0($a2)

addi $a0, $a0, 4

bne $a0, $a1, LOOP

addi $a2, $a2, 8

jr $ra

nop

Problem 2: What do the Sun compiler -xarch and -xchip options as used below do, and what
are the equivalent gcc 2.95 (GNU C compiler) switches.

cc myprog.c -o myprog -xarch=v8 -xchip=super

See http://gcc.gnu.org/onlinedocs/ for gcc and http://docs.sun.com for the Sun Forte
C 6 / Sun Workshop 6 cc compiler.

Option -xarch=v8 specifies that the compiler should emit v8 instructions. The closest equivalent gcc switch is
-mcpu=v8. The -xchip=super option tells the compiler to select and arrange instructions for a supersparc chip.
The equivalent gcc option is -mtune=supersparc.
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Problem 3: In Sun’s CINT2000 SPEC Benchmark disclosure for the Sun Blade 1000 Model 900
Cu they specify a -xregs=syst compiler flag for several of the benchmarks compiled under the
peak rules. Hint: Use a search engine to find this rare flag. Guess what many of the search hits
are to?

(a) What does this flag do?
It tells the compiler that it can use registers normally reserved for the system.

(b) How does it improve performance? Hint: It affects one of the few low-level optimizations covered
in class up to this point.

It eases the register assignment problem. That is, because more registers are available for compiler use the compiler
can leave more values in registers rather than writing and reading them from memory.

(c) How often could this option be used in the real world?
The Sun documentation explains that the option cannot be used when system libraries are used, which almost every

program uses. So the option could not be used very often.

Problem 4: Benchmark suites are suites because a single program might run well on a processor
that runs most other code poorly.

At http://www.spec.org find the fastest processors using the “result” numbers from the
SPEC CINT2000 benchmarks in the following categories: The fastest two Pentium 4s, the fastest
Athlon, and the fastest Alpha. (Figure out how to get a result-sorted list of machines that shows
processor type.)

The solutions below are based on: Intel D850EMV2 motherboard (2.8 GHz, Pentium 4 processor)
(http://www.spec.org/osg/cpu2000/results/res2002q3/cpu2000-20020827-01581.html),
Intel D850EMV2 motherboard (2.67 GHz, Pentium 4 processor)
(http://www.spec.org/osg/cpu2000/results/res2002q3/cpu2000-20020827-01583.html),
HP AlphaServer ES45 68/1250
(http://www.spec.org/osg/cpu2000/results/res2002q3/cpu2000-20020801-01512.html),
and the Epox 8KHA+ Motherboard, AMD Athlon (TM) XP 2600+
(http://www.spec.org/osg/cpu2000/results/res2002q3/cpu2000-20020812-01551.html).
(Note, the links won’t work forever.)

(a) What programs might an unfair Intel advocate want removed from the suite?
The Alpha outperforms the Pentium on the vpr and mcf benchmarks, so the unfair Intel advocate would want those

removed. The Athlon outperforms the Pentium on crafty and eon, so the unfair person would want those removed too.
For the parts below consider the relative performance of the programs in the suite. (Put the

bar graphs for two different systems side by side and note the difference in shape.)

(b) Why might one expect the top two Pentia to be very similar? Are they in fact very similar?
It appears from the name that they only differ in clock frequency. (This could be verified from the Processors’

datasheets.) The internal design of the two processors are the same and so they would share the same strengths and
weaknesses running programs. However, though the clock frequencies of the processor cores are different, other parts of
the system, for example, the memory bus, are the same and so the performance of the faster chip will not be 2.8

2.67 faster
on every benchmark.

(c) Why might one expect the Athlon to be more similar to the Pentium than to the Alpha? Does
it?

The Pentium and Athlon have similar ISAs, while the Pentium and Alpha have very different ISAs. If the instruction
set was the only thing that determined performance then the Pentium and Athlon would be identical. If the instruction
set had no impact on performance the Pentium would differ from the Athlon as much as it does from Alpha. The reality
is between the two, the instruction set has some (perhaps relatively small) impact on performance.

The Athlon does appear more similar to the Pentium than the Alpha.
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EE 4720 Homework 2 Solution Due: 9 October 2002

ISA manuals are needed for some problems below. Links to the ISA manuals can be found on the new
references Web page: http://www.ece.lsu.edu/ee4720/reference.html

Problem 1: Consider the following SPARC instructions:

sub %g3, %g2, %g1 ! g1 = g3 - g2;

and %g1, 0xf, %g1 ! g1 = g1 & 0xf

Wouldn’t it be nice to have a sub.and instruction that would do both:

sub.and %g3, %g2, 0xf, %g1 ! g1 = ( g3 - g2 ) & 0xf

(a) Could the SPARC V9 ISA easily be extended to support such double-op instructions? If yes, explain
how they would be coded.

Discussion: In the problem “easily be extended” means extending the ISA without adding entirely new instruction formats. The
instructions above take two register source operands and an immediate source operand. Ordinary two-source register, one destination
register instructions are coded using Format 3 with the i (immediate) bit set to zero. That format has an unused field, asi, which
can be used for the immediate in the double-op instructions. The asi field is only eight bits, but that’s enough for the immediates
in the examples above.

Solution: Yes. Code the double-op instructions using SPARC Format 3 (i=0) and placing the immediate value in the asi field.

(b) Estimate how useful double-op instructions would be, using the data below. Usefulness here is con-
veniently defined as the dynamic instruction count. Consider a large class of double-op instructions that
operate on two source registers and an immediate. For example, add.add, sll.add, and and.or. The data
below does not provide important statistics needed to estimate the usefulness. Describe what statistics are
needed and make up numbers. The made up numbers can be totally arbitrary (as long as they are possible).

The data below show instruction category and immediate sizes running the gcc compiler (cc1). Assume
that this is a representative program and so the results apply to others. The data show the total number
of instructions, and the breakdown by category, including ALU instructions that use an immediate, ALU
instructions that use two source registers, etc. Following that histograms of the immediate sizes are shown
for four instruction categories. This is very similar to the data shown in class. The percentage at each size
and a cumulative percentage are shown. For example, 11.12% of ALU immediate instructions use two bits
and 55.40% use two bits or fewer.

Quantifying usefulness means determining how many pairs of dynamic instructions can be combined into a double-op instruction.
They can be combined if the first of the pair writes a register that is only used by the second of the pair (otherwise the first instruction
could not be eliminated) and if the immediate will fit in the asi field (see the solution to the previous part).

The data below can be used to determine how many immediates would fit in the asi field, which is eight bits. The “ALU
Immediate Size Distribution” table indicates that 95.13% of ALU instruction immediates are eight bits or less, which is good for the
double-op instructions.

Using the data below one can only get a rough estimate of how many combinable pairs there are. One of each pair will be a
two-source register ALU instruction, which represents 15.3% of all instructions. Assuming that each of these can be one of a pair
(a bad assumption, but perhaps the best we can do with the data other than guessing) and assuming that 95.13% of the immediate
instructions have small enough immediates yields 14.6% of the dynamic instructions. Assuming instruction count is proportional to
execution time, the double-op instructions will reduce execution time from 1.0 to .854.
[drop] % echo /opt/local/lib/gcc-lib/sparc-sun-solaris2.6/2.95.2/cc1 \

els.i -O3 -quiet isize

Analyzed 156423240 instructions:

48483403 ( 31.0%) ALU Immediate

23886739 ( 15.3%) ALU Two Source Register

6353567 ( 4.1%) sethi

34039161 ( 21.8%) Loads and Stores

30331049 ( 19.4%) Branches

13329321 ( 8.5%) Other
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ALU Immediate Size Distribution

Bits Pct Cum

0 25.96% 25.96% *******************

1 18.32% 44.28% *************

2 11.12% 55.40% ********

3 15.59% 70.99% ***********

4 3.16% 74.15% ***

5 6.10% 80.25% *****

6 7.31% 87.56% ******

7 6.81% 94.37% *****

8 0.76% 95.13% *

9 2.13% 97.26% **

10 2.64% 99.90% **

11 0.01% 99.91% *

12 0.08% 99.99% *

13 0.01% 100.00% *

SETHI Immediate Size Distribution

Bits Pct Cum

0 0.00% 0.00% *

1 0.00% 0.00% *

2 0.02% 0.02% *

3 0.72% 0.74% *

4 0.43% 1.17% *

5 0.09% 1.26% *

6 0.66% 1.93% *

7 2.00% 3.93% **

8 4.53% 8.45% ****

9 3.14% 11.60% ***

10 5.86% 17.46% *****

11 5.54% 23.00% ****

12 72.67% 95.67% ***************************************************

13 0.09% 95.76% *

14 0.13% 95.89% *

15 0.10% 95.99% *

16 0.01% 96.00% *

17 0.00% 96.01% *

18 0.49% 96.50% *

19 3.14% 99.63% ***

20 0.02% 99.66% *

21 0.33% 99.99% *

22 0.01% 100.00% *

Memory Offset Distribution

Bits Pct Cum

0 4.93% 4.93% ****

1 0.11% 5.04% *

2 2.51% 7.55% **

3 15.95% 23.50% ************

4 24.41% 47.91% ******************

5 10.36% 58.27% ********

6 4.90% 63.17% ****
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7 6.89% 70.06% *****

8 5.79% 75.85% *****

9 4.98% 80.82% ****

10 16.09% 96.92% ************

11 2.38% 99.30% **

12 0.70% 100.00% *

13 0.00% 100.00%

Branch Displacement Distribution

Bits Pct Cum

0 0.00% 0.00%

1 0.00% 0.00% *

2 13.06% 13.06% **********

3 22.20% 35.26% ****************

4 16.58% 51.84% ************

5 18.94% 70.79% **************

6 15.69% 86.48% ***********

7 6.74% 93.22% *****

8 3.47% 96.69% ***

9 1.63% 98.31% **

10 0.71% 99.02% *

11 0.27% 99.29% *

12 0.41% 99.69% *

13 0.01% 99.71% *

14 0.00% 99.71%

15 0.00% 99.71% *

16 0.21% 99.91% *

17 0.01% 99.92% *

18 0.08% 100.00% *

19 0.00% 100.00%

20 0.00% 100.00%

21 0.00% 100.00%

22 0.00% 100.00%

Problem 2: It’s time to go instruction hunting!

(a) The Alpha does not have a general set of double-op instructions but it does have one that can replace
the two SPARC V9 instructions below. What is it? Replace the two instructions below with the Alpha
instruction. (For full credit [another 0.5 point, maybe] take into account that SPARC V9 and not SPARC
V8 was specified.)

sll %g2, 2, %g1 ! g1 = g2 << 2;

add %g3, %g1, %g1 ! g1 = g3 + g1

S4ADDQ r1, r2, r3

(b) SPARC V9 does not have a full set of predicated instructions, but it does have a predicated instruction
that can replace the code fragment below. What is it?

subcc %g1, 0, %g0 ! Set integer condition codes.

be SKIP ! Branch if result equal to zero.

nop

add %g3, 0, %g4 ! g4 = g3 + 0

SKIP:

movrnz %g1, %g3, %g4
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Problem 3: Complete Spring 2002 Homework 2 Problems 2 and 3.
(At http://www.ece.lsu.edu/ee4720/2002/hw02.pdf.) (The Verilog part is optional.) This is a very
important type of problem, similar problems will be appearing all semester. You must solve the problem,
that is, scratch your head, figure it out, and work it through. If you’re stuck, feel free to ask for help. When
you’re done look at a solution and assign yourself a grade. Grade on a scale of 0 to 1 (real, not integer!)

Not solving it or solving it with too many glances at the solution will leave you ill-prepared for the
test. Yes, you can solve it the night before the test (if you have time), but that won’t help you understand
everything presented in class between now and then. You have been warned.
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LSU EE 4720 Homework 4 Solution Due: 27 November 2002

Problem 1: Consider the solution to Spring 2002 Homework 4, shown on the next page. (The solution was
updated 19 November 2002, the PED is shown in dynamic order instead of the nearly-impossible-to-read
static order.)

(a) Show the contents of the reorder buffer in cycle 12. For each entry show the values of the fields from
the illustration below, for the PC show the instruction (ldc1, mul.d, etc.). (The fields are ST, dst, dstPR,
and incumb.) If a field value cannot be determined from the solution leave it blank, that will include fields
related to registers $2 and $3.

Note: A solution not showing instructions 1-4 would also be correct.

Solution

"PC" ST dst dstPR incumb

1 sdc1 0($1), f0

2 addi $1, $1, 8 C $1 95 98

3 bne $2, $0 LOOP C

4 sub $2, $1, $3 C

5 ldc1 f0, 0($1) C f0 94 96

6 mul.d f0, f0, f2 f0 93 94

7 sdc1 0($1), f0

8 addi $1, $1, 8 C $1 92 95

9 bne $2, $0 LOOP C

10 sub $2, $1, $3 C

11 ldc1 f0, 0($1) C f0 91 93

12 mul.d f0, f0, f2 f0 90 91

13 sdc1 0($1), f0

14 addi $1, $1, 8 C $1 89 92

15 bne $2, $0 LOOP

16 sub $2, $1, $3 C

17 ldc1 f0, 0($1) f0

18 mul.d f0, f0, f2 f0

(b) For the solution to the part above, number each instruction. (1, 2, 3, etc.) Show the contents of the
instruction queue at cycle 12 identifying each instruction by these numbers.

The instruction queue holds instructions waiting to execute, at cycle 12 only the 18th instruction above, multiply is waiting.

Solution

18 mul.d f0, f0, f2 f0

(c) On the illustration there are three wires labeled with big lower-case letters, a, b, and c, and corresponding
rows in a table in the middle of the next page. Based on the solution to last semester’s problem, show what
values are on those wires in each cycle that they are used. Omit cycles where a value cannot be determined.
Note that the illustration is for a one-way (non-superscalar) processor but the program runs on a four-way
system. That means each wire can hold up to four values in one cycle. Hint: The solution for at least one
of the letters already appears. Just label the row(s) in the appropriate table with the letter. At least one of
the letters does not appear, so that will have to be written in.

Row b is the same as the commit map (with the two commit map rows merged into one.)
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LOOP: # Instructions shown in dynamic order. (Instructions repeated.)

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ldc1 f0, 0($1) IF ID Q L1 L2 WC

mul.d f0, f0, f2 IF ID Q M1 M2 M3 M4 M5 M6 WC

sdc1 0($1), f0 IF ID Q L1 L2 WC

addi $1, $1, 8 IF ID Q EX WB C

bne $2, $0 LOOP IF ID Q B WB C

sub $2, $1, $3 IF ID Q EX WB C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ldc1 f0, 0($1) IF ID Q L1 L2 WB C

mul.d f0, f0, f2 IF ID Q M1 M2 M3 M4 M5 M6 WC

sdc1 0($1), f0 IF ID Q L1 L2 WC

addi $1, $1, 8 IF ID Q EX WB C

bne $2, $0 LOOP IF ID Q B WB C

sub $2, $1, $3 IF ID Q EX WB C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ldc1 f0, 0($1) IF ID Q L1 L2 WB C

mul.d f0, f0, f2 IF ID Q M1 M2 M3 M4 M5 M6 WC

sdc1 0($1), f0 IF ID Q L1 L2 WC

addi $1, $1, 8 IF ID Q EX WB C

bne $2, $0 LOOP IF ID Q B WB C

sub $2, $1, $3 IF ID Q EX WB C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ldc1 f0, 0($1) IF ID Q L1 L2 WB

mul.d f0, f0, f2 IF ID Q M1 M2 M3 M4 M5

...

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ID Map

f0 99 97,96 94,93 91,90

$1 98 95 92 89

# In cycle one first 97 is assigned to f0, then 96 (replacing 97). The

# same sort of replacement occurs in cycles 4 and 7.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

# FALL 2002 SOLUTION HERE

a 95 97 92 94 89 91 93 90

a (continued) 96

b 97 96 95 94 93 92 91 90 89

c 99,97,98 96,95,94 93,92,91 ...

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Commit Map

f0 99 97 96 94 93 91 90

$1 98 95 92 89

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Physical Register File

99 1.0 ]

98 0x1000 ]

97 [ 10 ]

96 [ 11 ]

95 [ 0x1008 ]

94 [ 20 ]

93 [ 2.2 ]

92 [ 0x1010 ]

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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LSU EE 4720 Homework 5 Solution Due: 3 December 2002

To answer the questions below you need to use the PSE dataset viewer program. PSE (pro-
nounced see) runs on Solaris and Linux; you can use the computer accounts distributed in class to
run it, a Linux distribution may also be provided for running it on other systems.

Procedures for setting up the class account and using PSE are at
http://www.ece.lsu.edu/ee4720/proc.html; preliminary documentation for PSE is at
http://www.ece.lsu.edu/ee4720/pse.pdf.

Problem 1: Near the beginning of the semester the performance of a program to compute π was
evaluated with and without optimization. It’s back, down below.

Follow instructions referred to above to view the execution of the optimized and unoptimized
versions of the pi program running on a simulated 4-way dynamically scheduled superscalar machine
with a 48-instruction reorder buffer. The datasets to use are pi_opt.ds and pi_noopt.ds.

(a) Based on the pipeline execution diagram compute the CPI of the main loop for a large number
of iterations in the optimized version. Do not use the IPC displayed by PSE, instead base it on the
PED. In your answer describe how the CPI was determined.

To find the precise CPI first find a repeating pattern. Fortunately, once the branch predictor warms up and the
ROB fills each iteration is identical so a unit of the repeating pattern is one iteration long. One such iteration (not the
first) starts at cycle (time) 339, the next starts at 345, for a time of 6 cycles. There are 9 instructions (including the
nop), so the CPI is 6

9 = 2
3 .

(b) Consider first the optimized version of the program. Would it run faster with a larger reorder
buffer? Would it run faster on an 8-way superscalar machine? How else might the processor be
modified to improve performance? Explain each answer.

An important feature to notice is that, except for nop, instructions wait many cycles before executing. All of the
waiting instructions are waiting for operands and so execution time is limited by the critical path through the code. (No
instruction in the loop waits for a functional unit, there are enough for this loop.)

Grid 20 insn X 5 cyc

Rank: 4/7   Pos. 1/7
0.76 IPC over 38 cycles.
State: Execute

First Instruction:.LLM7  main+11  pi.c:11
fdivd  %f12, %f6, %f2

Time 266  Tag 234  PC 0x00010804
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With a larger ROB there will be more instructions in flight, but all these “new” instructions will do is wait. Similarly,
an 8-way machine will fetch instructions twice as fast and provide additional functional units, but that won’t change the
critical path. All an 8-way processor will do for this loop is fill the ROB more quickly.

The problem can be more precisely solved by constructing a dataflow graph (DFG) and finding the critical path.
The dataflow graph for this loop appears below:
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Instruction Address
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The loop critical path is two floating point adds, taking three cycles each. Actually two paths are tied for the
critical path award: one path is 0x10810 →0x10824 and the other is 0x10808 →0x10814. Since the add instructions
wait only for operands, performance can be improved if the floating-point adder takes fewer cycles (say, two), based on
what was covered in the class. A more exotic solution would be to have a floating-point functional unit that can perform
three-source-operand instructions and a processor that could recognize pairs of instructions that could be replaced by
three-source-operand instructions. (The question asked about processor modifications, not compiler or ISA modifications,
so one could not just re-compile the pi program for a three-source ISA.) Real processors don’t do this yet, but research
is being conducted in the area.
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(c) Now consider the un-optimized version. Would it run faster with a larger reorder buffer? Should
a computer designer pay attention to the performance of un-optimized code? Explain each answer.

Grid 20 insn X 5 cyc

Rank: 4/14   Pos. 1/14
0.82 IPC over 49 cycles.
State: Cache Done

First Instruction:.LLM5+13  main+34  pi.c:11
std  %f2, [ %fp + -24 ]

Time 583  Tag 641  PC 0x00010860

As can be seen from the PED, most instructions in the loop do not wait for dependencies, that is, they execute as
soon as they are decoded, renamed, and scheduled. Some of these instructions had to wait for space in the reorder buffer,
and so if the reorder buffer were larger they would be executed sooner. If some of these previously-waiting-but-now-
executing-sooner-than-before instructions are on the critical path then execution speed would improve. (In the optimized
case the nop would be executed earlier with a larger ROB but, of course, it’s not on the critical path.) One way to find
the critical path is to draw and analyze a dataflow graph, but an easier way is by inspection of the PED: instructions
that complete just before they commit may be on the critical path. In this case the faddd at 0x10844; preceded by
a fdivd, a ldd at 0x838 which is dependent on the std at 0x898. That store has its data ready two cycles before
the load is ready to load it; the ROB was full between the store and the load, delaying the execution of the load and so
increasing the ROB size will shorten this critical path.

A complete analysis shows again that there are two critical paths, this time eight cycles. (Two adds on one, an add
and a sub on the other; both paths have two loads and a store. A store/load bypass takes one cycle, for a total of eight
cycles.)

Since the critical paths are eight cycles and the loop spans 37 instructions the maximum IPC is 4.625. Therefore,
increasing the decode width from 4- to 8-way superscalar will improve performance if the ROB has also been enlarged.
(Because of the difficulty of the analysis the problem did not ask if there would be performance gain in an 8-way system.)

Computer engineers should not pay attention to unoptimized code. Most programs that are run are optimized code.
(Homework assignments in beginning computer classes are an exception.) Improving the performance of un-optimized code
would only help programmers debugging programs (since when debugging one usually doesn’t optimize) and yes, students
working on homework. If engineers’ time and silicon area are limited, its better to use them to speed the kind of code
most people run.
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(d) The simulated processors use a gshare branch predictor. Use pi_opt.ds to answer this question.
How many bits is the global history register? Entries in the PHT are initialized to 1 and the GHR is
initialized to zero. The PHT is updated when the branches resolve (in the cycle after they execute).
Explain your answer.

Grid 100 insn X 25 cyc

Rank: 4/7   Pos. 1/7
0.36 IPC over 296 cycles.
State: Pre-ready

First Instruction:
sethi  %hi(0x52000), %l0

Time 1  Tag 0  PC 0x00010078

The global history register is four bits. The easiest way to find the answer is to examine execution at the start of
the program, when the state of the GHR and PHT are known. Luckily, the program starts with five consecutive branch
mispredictions, all for the same static instruction, 0x10820 fbl (floating-point branch less than). Each time this branch
is mispredicted not taken but is in fact taken. The PHT entries are initialized to 1 and so a particular PHT entry can
only contribute to one misprediction. Therefore five PHT entries are being used. Since only one static branch is executed
through these five mispredictions, the GHR contents must be four bits. Here is the GHR contents used to predict the
branch the first six times: 02, 12, 112, 1112, 11112, 11112 · · ·. The fifth and sixth contents are identical, and so the
branch is correctly predicted the sixth time.

(e) Would execution be any different if the PHT were updated when the instructions commit?
Explain.

Yes. Execution is different because the PHT table is being updated after the prediction is made. For example,
consider the branch that commits in cycle 253, with tag 197. The PHT would be updated at the end of cycle 253, however
by that time the branch has already been predicted for the next iteration (tag 241). Had the PHT been updated at commit
time the branch with tag 241 would be predicted using the old PHT value and would have been predicted not taken. Note
that branches are predicted before decode and the one-cycle delay in fetching the branch target (at cycle 254) is due to
another misprediction by the instruction fetch mechanism, something not covered in the class.
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#include <stdio.h>

int

main(int argv, char **argc)

{

double i;

double sum = 0; // Line 7

for(i=1; i<5000;) // Line 9

{

sum = sum + 4.0 / i; i += 2; // Line 11

sum = sum - 4.0 / i; i += 2; // Line 12

}

printf("After %d iterations sum = %.8f\n", (int)(i-1)/2, sum); // Line 15

return 0;

}
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LSU EE 4720 Homework 6 Solution Due: Not Collected

To answer the questions below you need to use the PSE dataset viewer program. PSE (pro-
nounced see) runs on Solaris and Linux; you can use the computer accounts distributed in class to
run it, a Linux distribution may also be provided for running it on other systems.

Procedures for setting up the class account and using PSE are at
http://www.ece.lsu.edu/ee4720/proc.html; preliminary documentation for PSE is at
http://www.ece.lsu.edu/ee4720/pse.pdf.

Problem 1: The code in http://www.ece.lsu.edu/ee4720/2002f/hw6.pdf includes two rou-
tines to perform a linear search, lookup_array and lookup_ll. Routine lookup_array(aws,foo)

searches aws for element foo. The list itself is an ordinary C array, structure aws (array with size)
includes the array and its size. Routine lookup_ll(head,foo) searches for foo in the linked list
starting at head.

The code calls the search routines under realistic conditions: Before the linked list is allocated
dynamic storage is fragmented and before the searches are performed the level-1 cache is flushed.
See the code for more details.

The code was executed on a simulated 4-way superscalar dynamically scheduled machine with
a 64-entry reorder buffer and a two-level cache. The simulation was recorded in hw6.ds; view this
dataset file using PSE to answer the questions below.

The code initializes the lists with identical data and then calls the search routines looking for
the same value. Answer the following questions about the execution of the two lookup routines.
When browsing the dataset be aware that the time spent in the lookup routines is dwarfed by the
time needed for setting everything up and so only the last few segments need to be examined.

(a) Would increasing the ROB size improve the performance of the linked list routine, lookup_ll?
Explain.

← → Fall 2002 ← → Homework 6 Homework Solution hw06 sol.pdf

http://www.ece.lsu.edu/ee4720/
http://www.ece.lsu.edu/ee4720/proc.html
http://www.ece.lsu.edu/ee4720/pse.pdf
http://www.ece.lsu.edu/ee4720/2002f/hw6.pdf
https://www.ece.lsu.edu/ee4720/2002f/hw06_sol.pdf


No. The speed of the linked list routine depends upon how often the load hits the level-one cache. In the first PED
below there are many misses, in the second there are many hits.

Without resorting to a dataflow graph one can conclude that a larger ROB won’t help by noting that in the first
case the only instruction that executes early (execution is shown in yellow), inc, does not provide a value needed by the
instructions blocking the head of the reorder buffer. So, with a larger ROB inc would be fetched earlier but that would
do nothing for the instructions blocking the head.

In the second case the ROB does not fill, and so a larger ROB will make no difference.
Using a dataflow graph (or just eyeballing the seven instructions) one finds that the critical path for an iteration of

this loop is one instruction long, 0x1083c ld[o0+4,o0]. (If the critical path were measured in instructions rather
than cycles then inc would also be a critical path, but it only takes one cycle. The other instructions are not on the
critical path because they do not produce a value that is needed in the next cycle. Note that if branches weren’t predicted
they would be on the critical path.) If the load hits the level 1 cache then the critical path is just two cycles long (one
cycle for the address, here address computation is on the critical path unlike the unoptimized π routine from Homework
5), if the load misses it is much longer, 23 cycles.

With a critical path of 23 cycles per iteration and seven instructions per iteration, the processor is already executing
the loop as fast as it can. The ROB just fills with mostly waiting instructions. A larger ROB won’t help.

When there are lots of hits, near the end of the loop, the critical path is just two cycles per iteration. As noted
earlier, the ROB is less than half full, so increasing its size won’t help. This wasn’t asked, but since we’re here we might
as will determine if this code is executing as fast as it can. The ideal CPI for this code is 2

7 ≈ 0.286, which is attainable
on a 4-way superscalar processor. The code is actually executing at 3

7 ≈ 0.429, the problem is fetch inefficiency. That
is, because the three instructions starting at address 0x10848 lie on two aligned groups it takes three cycles to fetch the
7-cycle loop.

Grid 20 insn X 5 cyc

Rank: 1/122   Pos. 120/122
0.14 IPC over 219 cycles.
State: L1 Miss

First Instruction:.LLM10  lookup_ll+3  hw6.c:74
ld  [ %o0 ], %g2

Time 238,182  Tag 425,274  PC 0x00010830

Grid 20 insn X 5 cyc

Rank: 46/122   Pos. 121/122
2.31 IPC over 292 cycles.
State: Commit

First Instruction:.LLM10+2  lookup_ll+5  hw6.c:74
bne,a   0x10848 {lookup_ll+9}

Time 241,199  Tag 427,936  PC 0x00010838
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(b) Would increasing the ROB size improve the performance of the array routine, lookup_array?
Explain.

Yes, because the instructions allowed in with a larger reorder buffer would be able to execute. As can be seen from
the PED below, there are many instructions that execute (shown in yellow) right after the pre-ready state. When the
ROB fills there are instructions that could execute but aren’t being fetched because of the full ROB, and so a larger ROB
would help these. Unlike the linked list routine, the load that misses the cache is not on the critical path, so a load miss
does not leave the processor with little to do.

Grid 20 insn X 5 cyc

Rank: 116/122   Pos. 119/122
2.17 IPC over 96 cycles.
State: Commit

First Instruction:.LLM4+3  lookup_array+10  hw6.c:56
be  0x1081c {lookup_array+17}

Time 236,216  Tag 421,656  PC 0x00010800

(c) As can be seen viewing the PED plots (for example, the one below), the array routine follows a
regular pattern while the linked list code starts off slowly but as it nears completion it runs much
faster. Why does the linked list code speed up like that?

Grid 100 insn X 25 cyc

Rank: 46/122   Pos. 121/122
1.82 IPC over 880 cycles.
State: L1 Miss

First Instruction:.LLM10  lookup_ll+3  hw6.c:74
ld  [ %o0 ], %g2

Time 240,376  Tag 426,471  PC 0x00010830

A line can hold multiple linked list elements. An L1 miss brings in the linked list element which is currently needed
but also brings in others that will be needed later. As the search proceeds more and more of the elements will be found
in the cache.
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(d) How could one determine the line size from the PED plots? Be specific and use numbers from
the dataset. (The line size can be found two other ways, if you come upon them by all means use
them to check your answer that is based on the PED plot.)

The array routine accesses memory consecutively and each element is four bytes. It is accessed by the load instruction
at 0x107f8. Looking at the PED above it is easy to find load misses. Since the array is not in the level-one cache when
the routine starts every access to a new line must miss. To find the line size count the number of loads between misses.
There are 16, and so the line size must be 64 bytes.

(e) Before people stopped replacing $2,500 computers every six months computer engineers would
loose sleep worrying about The Memory Wall, the growing gap in performance between processors
and memory (e.g., the number of instructions that could have been executed while waiting for
memory). What is it about the array routine that lets it sail over the memory wall while the linked
list routine is stopped dead? The answer should take into account certain load instructions and the
critical path. Discuss how the performance of the routines change as the L1 miss time gets longer
and longer.

The reason the linked list suffers is because the load for the second element can’t start until the load for the first
element finishes. In contrast, since an array is laid out sequentially in memory, there is no need to load the first element
to find out where the second is located. The array code enjoys two advantages here. First, a miss to a single line will
bring several array elements, second, it is possible to overlap misses to two lines (if the ROB is large enough, which it
isn’t). Therefore, even if the gap between memory and processor speed continues to widen, the performance of the array
code won’t suffer much as long as the ROB is made larger and the memory can handle multiple overlapping misses.

(Linked lists do have their advantages, but should not be used where an array would suffice.)
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LSU EE 4720 Homework 1 Solution Due: 15 February 2002
At the time this was assigned computer accounts and solution templates were not available. If

they become available they can be used for the solution, either way a paper submission is acceptable.

Problem 1: The value computed by the program below approaches π. Re-write the program in
MIPS assembler. The code should execute quickly. Assume that all integer instructions take one
cycle, floating-point divides take ten cycles, floating-point compares take one cycle, and all other
floating-point instructions, including conversion, take four cycles. Note: As originally assigned only
the time for divides and adds was given. Make changes to the code to improve speed (possibly using
an integer for i or even using both an integer and double). Do not use a different technique for
computing π.
int

main(int argv, char **argc)

{

double i;

double sum = 0;

for(i=1; i<50000000;)

{

sum = sum + 4.0 / i; i += 2;

sum = sum - 4.0 / i; i += 2;

}

printf("After %d iterations sum = %.8f\n", (int)(i-1)/2, sum);

return 0;

}

The code appears on the next page. But first, here are some reminders based on submitted solutions:
Double-precision values must be placed in an even-numbered fp register.
When speed is a goal delay slots should be filled!
Immediates are limited to 16 bits.
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# Solution to problem 1.

.data
ITERATIONS:

.double 50000000.0

MSG:

.asciiz "After %/f0/.0f iterations sum = %/f2/.8f\n";

.text

.globl __start
__start:

addi $t1, $0, 1

mtc1 $t1, $f0

cvt.d.w $f0, $f0 # f0 -> i

add.d $f12, $f0, $f0 # f12 <- 2 (constant)

add.d $f14, $f12, $f12 # f14 <- 4 (constant)

la $t2, ITERATIONS

ldc1 $f16, 0($t2) # f16 -> number of iterations.

sub.d $f2, $f0, $f0 # f2 -> sum <- 0 initialize

LOOP:

div.d $f4, $f14, $f0 # 4.0 / i

add.d $f0, $f0, $f12 # i+=2

add.d $f2, $f2, $f4 # sum += 4.0/i

div.d $f4, $f14, $f0 # 4.0 / i

add.d $f0, $f0, $f12 # i+=2

c.lt.d $f0, $f16

bc1t LOOP

sub.d $f2, $f2, $f4 # sum -= 4.0/i

div.d $f16, $f16, $f12

addi $v0, $0, 11

la $a0, MSG

syscall

addi $v0, $0, 10

syscall
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Problem 2: The program below is used to generate a password based on the outcome of several
rolls of a twenty-sided die. The program was compiled using the Sun Workshop Compiler 5.0
targeting SPARC V7 (-xarch=v7) and SPARC V9 (-xarch=v8plus, code which can run on a V9
processor with a 32-bit OS), the output of the compiler is shown for the for loop.

Use the V8 architecture manual to look up V7 instructions, available at
https://www.ece.lsu.edu/ee4720/samv8.pdf; the V9 architecture manual is available at
https://www.ece.lsu.edu/ee4720/samv9.pdf.

Here are a few useful facts about SPARC:
Register names for SPARC are: %g0-%g7 (global), %l0-%l7 (local), %i0-%i7 (input), %o0-%o7

(output), and %f0-%f31 (floating point). Registers %fp (frame pointer) and %sp are aliases for %i6
and %o6, respectively. Register %g0 is a zero register.

Local variables (the only kind used in the code fragment shown) are stored in memory at some
offset from the stack pointer (in %sp). For example, ldd [%sp+96],%f0 loads a local variable into
register %f0.

All V7 and V8 integer registers are 32 bits. V9 registers are 64 bits but with the v8plus option
only the 32 lower bits are used.

Unlike MIPS and DLX, the last register in an assembly language instruction is the destination.
For example, add %g1, %g2, %g3, puts the sum of g1 and g2 in register g3.

Like MIPS, SPARC branches are delayed. Unlike MIPS, some delayed branches are annulled,
indicated with a “,a” in the mnemonic. In an annulled branch the instruction in the delay slot is
executed if and only if the branch is taken.

(a) For each compilation, identify which registers are used for which program variables.

See comments in the code on the following pages.

(b) For each instruction used in the V9 version of the code but not in the V7 version, explain what
it does and how it improves execution over the V7 version.

udivx: performs 64-bit unsigned integer division. It’s probably faster than the divide routine called in the V7 code.
mulx: performs 64-bit multiplications, used for finding the remainder. It’s probably faster than the remainder

routine called in the V7 code.
Because the V9 uses divx and mulx it makes no procedure calls in the loop and so there is no need to save and

restore the floating-point registers.
fbul,a,pt and fbge,a,pt: branches with prediction hints. Can speed execution if predictions correct and

heeded by hardware.
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! SOLUTION.

!

! Register Variable

! f0: bits_per_letter

! f30: bits

! {i1,i2}: seed (seed is 64 bits so two 32-bit registers used).

! i0: pw_ptr

!

! Note: fp registers are caller-saved (and caller-restored).

!

! Also see comments.

!

! Compiled with -xarch=v7

!

! 32 ! for( ; bits >= bits_per_letter; bits -= bits_per_letter )

/* 0x010c 32 */ ldd [%sp+96],%f0 ! Load f0 from stack.

.L900000118:

/* 0x0110 32 */ fcmped %f30,%f0 ! Compare bits, bits_per_letter

/* 0x0114 */ nop

/* 0x0118 */ fbul .L77000009 ! Branch if less than

/* 0x011c */ or %g0,0,%o2

.L900000116:

! 33 ! {

! 34 ! *pw_ptr++ = ’a’ + seed % 26;

/* 0x0120 34 */ or %g0,%i2,%o1 ! Move seed to {o0,o1}

/* 0x0124 */ or %g0,%i1,%o0 ! for procedure call.

/* 0x0128 */ or %g0,26,%o3 ! Move 26 to o3 for call.

/* 0x012c */ call __urem64 ! params = %o0 %o1 %o2 %o3 ! Re-

sult = %o0

/* 0x0130 */ std %f30,[%sp+104] ! Caller save.

/* 0x0134 */ add %o1,97,%g2 ! {seed%26} + ’a’

/* 0x0138 */ stb %g2,[%i0] ! *pw_ptr={’a’+seed%26}

! 35 ! seed = seed / 26;

/* 0x013c 35 */ or %g0,%i1,%o0 ! Move seed to {o0,o1}

/* 0x0140 */ or %g0,0,%o2 ! and 26 to {o2,o3}

/* 0x0144 */ or %g0,26,%o3 ! for procedure call.

/* 0x0148 */ call __udiv64 ! params = %o0 %o1 %o2 %o3 ! Re-

sult = %o0

/* 0x014c */ or %g0,%i2,%o1

/* 0x0150 */ ldd [%sp+96],%f0 ! Caller restore

/* 0x0154 34 */ add %i0,1,%i0 ! pw_ptr++

/* 0x0158 35 */ or %g0,%o0,%i1 ! seed = {seed/26}

/* 0x015c */ ldd [%sp+104],%f30 ! Caller restore

/* 0x0160 */ fsubd %f30,%f0,%f30 ! bits -= bits_per_letter

/* 0x0164 */ fcmped %f30,%f0

/* 0x0168 */ or %g0,%o1,%i2 ! seed = {seed/26}

/* 0x016c */ fbge .L900000116

/* 0x0170 */ or %g0,0,%o2

.L77000009:

! 36 ! }
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! SOLUTION.

!

! Register Variable

! f4: bits_per_letter

! f8: bits

! o0,g2: seed

! i0: pw_ptr

!

! Note: fp registers are still caller-saved (and caller-restored)

! but since there are no calls in the loop there is no need

! to save and restore fp regs. (The V7 code used calls for

! 64-bit integer division and remainder, V9 has 64-bit

! divide and multiply instructions it can use instead.)

!

! Also see comments.

!

! Compiled With -xarch=v8plus

!

! 32 ! for( ; bits >= bits_per_letter; bits -= bits_per_letter )

/* 0x00e8 32 */ fcmped %fcc0,%f8,%f4

.L900000117:

/* 0x00ec 32 */ fbul,a,pt %fcc0,.L900000115

/* 0x00f0 */ stb %g0,[%i0]

! 33 ! {

! 34 ! *pw_ptr++ = ’a’ + seed % 26;

/* 0x00f4 34 */ udivx %o0,26,%g2 ! %g2 = seed / 26

.L900000114:

/* 0x00f8 34 */ mulx %g2,26,%g3 ! g3 = 26 ( seed / 26 )

/* 0x00fc */ sub %o0,%g3,%g3 ! g3 = seed % 26

! 35 ! seed = seed / 26;

/* 0x0100 35 */ or %g0,%g2,%o0 ! o0 = seed / 26

/* 0x0104 */ fsubd %f8,%f4,%f8 ! bits -= bits_per_letter

/* 0x0108 34 */ add %g3,97,%g3 ! ’a’ + seed % 26

/* 0x010c */ stb %g3,[%i0] ! *pw_ptr = ’a’

/* 0x0110 */ add %i0,1,%i0 ! pw_ptr++

/* 0x0114 35 */ fcmped %fcc1,%f8,%f4

/* 0x0118 */ fbge,a,pt %fcc1,.L900000114

/* 0x011c */ udivx %o0,26,%g2 ! g2 = seed / 26

.L77000009:

! 36 ! }
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EE 4720 Homework 2 Solution Due: 6 March 2002

Problem 1: Two VAX instructions appear below. VAX documentation can be found via
http://www.ece.lsu.edu/ee4720/doc/vax.pdf. Don’t print it, it’s 544 pages. Take advantage
of the extensive bookmarking of the manual to find things quickly. Chapter 5 describes the ad-
dressing modes and assembler syntax, Chapter 8 summarizes the VAX ISA, and Chapter 9 lists the
instructions. For the instructions look up ext and add then find the mnemonics used below. Pay
attention to operand order.

(a) Translate the VAX code below to MIPS (without changing what it does, of course). Ignore
overflows and the setting of condition codes.

extzv #10, #5, r1, r2

addl2 @0x12034060(r3), (r4)+ # Don’t overlook the "@" and "+".

The solution appears below. Common mistakes are noted in the comments (the code shown is correct).

srl $2, $1, 10

andi $2, $2, 31

lui $10, 0x1203

add $10, $10, $3

lw $10, 0x4060($10)

lw $10, 0($10) # The @ is for indirect, so load again!

lw $11, 0($4)

add $10, $10, $11

sw $10, 0($4)

addi $4, $4, 4 # Increment r4 by the size of the data item.

(b) (Extra Credit) Show how the instructions above are coded.
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Problem 2: A pipelined MIPS implementation and some MIPS code appear below. The results
computed by the MIPS instructions are shown in the comments.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

=
=0

>0
<0

E
Z
N
P

NPC

A B C D

E
# Solution. (Goes a bit past the sec- ond fetch of the first instruction.)

LOOP:

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

addi $1, $2, 4 IF ID EX ME WB IF ID EX ME WB

sub $3, $0, $3 IF ID EX ME WB IF ID EX ME WB

and $1, $1, $6 IF ID -> EX ME WB IF ID -> EX

or $4, $1, $5 IF -> ID ----> EX ME WB IF -> ID

bne $4, $3, LO IF ----> ID ----> EX ME WB IF

sw $4, 7($8) IF ----> ID EX ME WB

add $10, $11, IF IDx

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

#

# A 0x1004 0x100c 0x1010 0x1014 0x1000

# A 0x1008 0x1010 0x1014 0x1018 0x1004

# A 0x100c 0x1010 0x1014 0x101c 0x1008

# B 0x1004 0x100c 0x1010 0x1014 0x1000

# B 0x1008 0x1010 0x1014 0x1018 0x1004

# B 0x100c 0x1010 0x1014 0x101c 0x1008

# C 24 30 ?? 20 ?? ?? 70 ?? ?? 1000

# C 808

# D 24 30 ?? 20 ?? ?? 70 ?? ?? 1000

# D 808

# E 4 ?? ?? ?? ?? ?? ?? -5 -5 -5 7 ?? (Decimal)

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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(a) Draw a pipeline execution diagram showing the execution of the code on the implementation.
Base your pipeline execution diagram on the illustrated pipeline, do not depend solely on memorized
execution timing rules, since they depend on details of the hardware which vary from problem to
problem. Show execution until the second fetch of the first instruction.

Diagram shown above.

(b) Determine the CPI for a large number of iterations.
CPI = 13

6 = 2.16667.

(c) Certain wires in the implementation diagram are labeled with letters. (The circled letters with
arrows.) Beneath the pipeline execution diagram show the value on those wires at near the end
of each cycle. (Write sideways if necessary.) Do not show values if the corresponding stage holds
a bubble or a squashed instruction. Only show immediate values if the corresponding instruction
uses one. Hint: Three instructions above use an immediate.

Diagram shown above. The immediate holds the branch displacement, which is the number of instructions to skip.
Many solutions incorrectly showed the branch target (0x1000) in the E row (the immediate value). Some solutions
omitted the effective address computed by the sw instruction (808 in the C and D rows).

(d) This is a special bonus question that did not appear in the original assignment! For those
students who have taken EE 3755 in Fall 2001, identify the Verilog code in
http://www.ece.lsu.edu/ee4720/v/mipspipe.html corresponding to each labeled wire.

// Verilog lines shown below (without much context).

// A:

id_ex_npc <= if_id_npc;

// B: The line with the B comment.

always @( id_ex_alu_a_src or id_ex_rs_val or id_ex_sa or id_ex_npc )

case( id_ex_alu_a_src )

SRC_rs: alu_a = id_ex_rs_val;

SRC_np: alu_a = id_ex_npc; // B

SRC_sa: alu_a = {27’d0, id_ex_sa};

default: ‘UNEXPECTED(alu_a,id_ex_alu_a_src);

endcase

// C: The line with the C comment.

always @( posedge clk ) begin

ex_me_npc <= id_ex_npc;

ex_me_pc <= id_ex_pc;

ex_me_alu <= alu_out; // C

ex_me_rt_val <= id_ex_rt_val;

// D: The line with the D comment

always @( posedge clk ) begin

me_wb_npc <= ex_me_npc;

me_wb_pc <= ex_me_pc;

me_wb_dst <= next_me_wb_exc øø reset ? 5’d0 : ex_me_dst;

me_wb_from_mem <= ex_me_size != 0;

me_wb_alu <= ex_me_alu; // D
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me_wb_md <= data_in_2;

me_wb_exc <= ex_me_exc ? ex_me_exc : next_me_wb_exc;

me_wb_occ <= ~reset & ex_me_occ;

tb_me_wb_din <= tb_ex_me_din;

end

// E: The case statement and the assignment.

// E

case( immed_fmt )

IMM_s: next_id_ex_imm = { immed[15] ? 16’hffff : 16’h0, immed };

IMM_l: next_id_ex_imm = { immed, 16’h0 };

IMM_u: next_id_ex_imm = { 16’h0, immed };

IMM_j: next_id_ex_imm = { if_id_npc[31:28], ii, 2’b0 };

IMM_b: next_id_ex_imm = { immed[15] ? 14’h3fff : 14’h0, immed, 2’b0 };

default: ‘UNEXPECTED(next_id_ex_imm,immed_fmt);

endcase

// Further below

id_ex_imm <= next_id_ex_imm; // E
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Problem 3: Add exactly the bypass paths needed so that the code in the previous problem will
run on the implementation below (the same as the one above) with the minimum number of stalls.
Indicate the cycles in which the bypass paths will be used and the values bypassed on them.

Solution shown below, added bypass paths are in red bold. A pipeline execution diagram is also shown.
Almost all submitted solutions included the bypass path from the MEM stage to the upper ALU mux. Very few

properly included the bypass path for the branch conditions. (Some incorrectly showed the bypass path into the ALU,
which is used here to compute the branch target.) No submitted solution included a bypass path for the store value.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

=
=0
<0

E
Z
N

NPC

4

6

5

6

# Solution. (Goes a bit past the sec- ond fetch of the first instruction.)

LOOP:

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

addi $1, $2, 4 IF ID EX ME WB IF ID EX ME WB

sub $3, $0, $3 IF ID EX ME WB IF ID EX ME

and $1, $1, $6 IF ID EX ME WB IF ID EX

or $4, $1, $5 IF ID EX ME WB IF ID

bne $4, $3, LO IF ID EX ME WB IF

sw $4, 7($8) IF ID EX ME WB

add $10, $11, IF IDx

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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EE 4720 Homework 3 Solution Due: 20 March 2002

Problem 1: The exception mechanism used in the MIPS 32 ISA differs in some ways from the
SPARC V8 mechanism covered in class. See Chapter 7 in
http://www.ece.lsu.edu/ee4720/sam.pdf for the SPARC V8 exception information and
http://www.ece.lsu.edu/ee4720/mips32v3.pdf for a description of the MIPS mechanism. The
MIPS description is a bit dense, so start early and ask for help if needed.

(a) Describe how the methods used to determine which exception was raised differ in SPARC V8
and MIPS 32. Use an illegal (reserved) instruction error as an example. Shorter answers will get
more credit so concentrate on explaining how the processor identifies the exception (was it an illegal
instruction, an arithmetic overflow, etc) and avoid irrelevant details. For example, details on how
the processor switches to system mode is irrelevant.

The way the question should be answered:
The difference is that in SPARC a particular exception causes a particular handler to run, so that if the illegal

instruction handler is run it must mean that an illegal instruction exception occurred. In MIPS the handler must read a
cause register to find out which exception occurred.

Additional Information:
In both ISAs a number is associated with each kind of exception, in SPARC it is called the trap type, and in MIPS

it is referred to as an exception type; it will be called an exception code here. The question is asking how the methods
used by the handler to determine the exception code differ. In both cases the hardware generates an exception code.

In SPARC V8 the exception code is used to form a trap table entry address; a control transfer is made to this
address. At this address is the first four instructions of the handler (first eight in V9). The handler for the illegal
instruction exception “knows” an illegal instruction exception occurred because that’s the only exception that would cause
it to run. (The trap type or an illegal instruction exception is 16.)

MIPS 32 also has an exception table but it has far fewer entries. To determine which exception type caused it to
run the MIPS handlers read a cause register which contains the exception type.

(b) Where do the two ISAs store the address of the faulting instruction? Both ISAs have delayed
branches, so why does SPARC store two return addresses while MIPS gets away with one?

(SPARC registers are organized like a stack, on a procedure call a save instruction “pushes” a
fresh set of registers on the stack, and a restore instruction “pops” the registers, returning to the
previous set. The set of visible registers is called a window. This mechanism reduces the need to
save and restore registers in memory. This piece of information is needed for the previous problem.)

In SPARC V8 an exception will cause the current window pointer to advance, saving the interrupted code’s registers
and providing a fresh set of registers to the handler. The PC and NPC of the faulting instruction will be stored in registers
l1 and l2. In MIPS 32 only the PC is saved, it is saved in a special EPC register. If the faulting instruction is in a branch
delay slot the PC of the branch is saved, otherwise the PC of the faulting instruction is saved.

Suppose the instruction in a branch delay slot of a taken branch raises an exception and is to be re-executed. In
MIPS 32 control returns to the branch before the instruction so both the branch and the faulting instruction re-execute.
(Since the instruction before the faulting instruction re-executes this is not a precise exception by the definition given in
class. Since the branch does not modify registers [other than PC] or memory it can be used in the same way a precise
exception is used, and so in MIPS 32 such exceptions are called precise.) Control is returned to the branch using something
like an ordinary jump instruction, except that the processor switches back to user mode. Jumping directly to the faulting
instruction would be a challenge because after the faulting instruction is executed the branch target needs to be executed.
MIPS has no way to do these kinds of jumps and so there is no need to store NPC.

SPARC on the other hand can return directly to an instruction in the delay slot. It does so using two consecutive
control transfer instructions, something forbidden in MIPS. A jmpl instruction jumps to the saved PC, a rett (return
from trap) instruction jumps to the NPC.
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To summarize, SPARC saves two addresses because it needs both of them to restart an instruction in a branch delay
slot. MIPS stores only one because it never returns from exceptions to a branch in a delay slot, instead it re-executes the
branch.

Problem 2: The pipeline execution diagram below is for code running on a MIPS implementation
developed just for this homework problem! Note that the program itself is missing. The dog deleted
it. The M_ and A_ refer to parts of the multiply and add functional units with segment numbers
omitted for this problem. A WBx indicates that an instruction does not write back to avoid a WAW
hazard.

IF ID M_ M_ M_ M_ M_ M_ WB

IF ID ----> M_ M_ M_ M_ M_ M_ WB

IF ----> ID ----> A_ A_ WB

IF ----> ID M_ M_ M_ M_ M_ M_ WBx

IF ID A_ A_ WB

IF ID A_ A_ WB

(a) Write a program consistent with the diagram. Pay attention to dependencies.

# Solution

mul.d f0, f2, f4 IF ID M1 M1 M1 M2 M2 M2 WB

mul.d f6, f8, f10 IF ID ----> M1 M1 M1 M2 M2 M2 WB

add.d f12, f0, f14 IF ----> ID ----> A1 A2 WB

mul.d f16, f18, f20 IF ----> ID M1 M1 M1 M1 M1 M1 WBx

add.d f16, f22, f24 IF ID A1 A2 WB

add.d f26, f28, f30 IF ID A1 A2 WB

(b) Identify the latency and initiation interval of the functional units. Fill in the segment numbers.
Multiply: latency, 5; initiation interval, 3. Add: latency, 1; initiation interval, 1.
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Problem 3: In the MIPS implementation below (also shown in class) branches are resolved in
the ID stage. Resolution of a branch direction (determining whether it was taken) must wait for
register values to be retrieved and, for some branches, compared to each other. Suppose this takes
too long.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

(a) Show the modifications needed to do the equality comparison in the EX stage. The modified
hardware must use as little additional hardware as possible and, to maximize performance, should
only do an EX-stage equality comparison when necessary. Don’t forget about branch target address
handling. Hint: The modifications are easy.

The ID-stage adder that computes branch displacements is also connected to a new ID/EX latch, the output of
this new latch is connected to the PC multiplexor. The ALU in the EX stage does the register comparison for the branch.
Note that the only added hardware is the latch and the new paths. (A diagram may be added to this solution at some
point.)

(b) Write a code fragment that runs differently on the two implementations and show pipeline
execution diagrams for the code on the two implementations.

# Solution

# Execution on original system.

#

# Cycle 0 1 2 3 4 5 6

beq $2, $3 TARG IF ID EX ME WB

add $4, $5, $6 IF ID EX ME WB

#...

TARG:

xor $6, $7 IF ID

# Execution on modified system.

#

# Cycle 0 1 2 3 4 5 6

beq $2, $3 TARG IF ID EX ME WB

add $4, $5, $6 IF ID EX ME WB

sub $7, $8, $9 IFx
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#...

TARG:

xor $6, $7 IF ID

(c) The table below lists SPARC instructions and indicates how frequently they were used when
running TEX to prepare this homework assignment. (Many rows were omitted to save space, so the
“%exec” column will not add to 100%.) Suppose that the instruction percentages are identical for
MIPS (which means totally ignoring the cc instructions). Assume that SPARC be and be,a are
equivalent to MIPS beq, SPARC bne and bne,a are equivalent to MIPS bne, and that the other
branch instructions (they begin with a b), are equivalent to branch instructions that compare to
zero (bgez, etc.).

Suppose the clock frequency of the original design is 1.0000 GHz. Based on the data below and
making any necessary assumptions, for what clock frequency would the new design run a program
in the same amount of time as the old one? What column would you add (what additional data
do you need) to the table to make your answer more precise?

Assume that floating-point instructions are insignificant and that there are no stalls due to
memory access.
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opcode #exec %exec

subcc 4659360 12.6187%

lduw 4521722 12.2459%

add 4159629 11.2653%

or 3110542 8.4241%

sethi 3066797 8.3056%

stw 1848293 5.0056%

sll 1402122 3.7973%

be 1393475 3.7739%

jmpl 1140223 3.0880%

call 1088068 2.9467%

ldub 1064918 2.8841%

bne 936493 2.5362%

stb 687981 1.8632%

srl 609402 1.6504%

save 526477 1.4258%

restore 526474 1.4258%

bne,a 453545 1.2283%

nop 433253 1.1734%

bge 429978 1.1645%

ldsb 429497 1.1632%

orcc 382947 1.0371%

and 370967 1.0047%

be,a 360057 0.9751%

sub 354847 0.9610%

ba 321970 0.8720%

bl 297715 0.8063%

andcc 270465 0.7325%

bgu 235304 0.6373%

bl,a 216074 0.5852%

sra 204610 0.5541%

ble 198154 0.5366%

xor 185137 0.5014%

bcs 182153 0.4933%

addcc 155156 0.4202%

bleu 142755 0.3866%

bg 117582 0.3184%

mulscc 88681 0.2402%

In the new design there will be a bubble added for taken branches that compare two registers. Assume the original
system has a CPI of 1 and that half the branches are taken. The percentage of branches that add a bubble is found by
adding the percentages for be, bne, bne,a, and be,a: and dividing by two: 8.5135%

2 = 4.25675%. The new CPI
will then be 1.0425675. To find the clock frequency of the new system for which it will run as fast as the old system solve:
1.0
φold

= 1.0425675
φnew

for φnew to get φnew = 1.0425675 GHz, where φold = 1 GHz.
To make the answer more precise two things are needed, the CPI on the original system and the fraction of times a

branch is taken.
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EE 4720 Homework 4 Solution Due: 22 April 2002
To solve Problem 3 and the next assignment a paper has to be read. Do not leave the reading

to the last minute, however try attempting the first problem below before reading the paper.

Problem 1: The pipeline below was derived from the five-stage statically scheduled MIPS imple-
mentation by splitting each stage (except writeback) into two stages. Each pair of stages (say IF1

and IF2) does the same thing as the original stage (say IF), but because it is broken in to two
stages it takes two rather than one clock cycle. The diagram shows only a few details. Bypass
connections into the ALU are available from all stages from MEM1 to WB.

IF1 IF2 ID1 ID2 EX1 EX2
MEM

1
MEM

2
WB

PC

The advantage of this pipeline is that the clock frequency can be doubled. (Actually not quite
times two.) Perfect execution is shown in the diagram below:

add $1, $2, $3 IF1 IF2 ID1 ID2 EX1 EX2 ME1 ME2 WB

sub $4, $5, $6 IF1 IF2 ID1 ID2 EX1 EX2 ME1 ME2 WB

and $7, $8, $9 IF1 IF2 ID1 ID2 EX1 EX2 ME1 ME2 WB

(a) Suppose the old five-stage system ran at a clock frequency of 1 GHz and the new system runs
at 2 GHz. How does the execution time compare on the new system when execution is perfect?

It’s half! That is, performance scaled with clock frequency.

(b) Show a pipeline execution diagram of the code below on the new pipeline. Note dependencies
through registers $10 and $11.

add $10, $2, $3 IF1 IF2 ID1 ID2 EX1 EX2 ME1 ME2 WB

sub $4, $10, $6 IF1 IF2 ID1 ID2 --> EX1 EX2 ME1 ME2 WB

and $11, $8, $9 IF1 IF2 ID1 --> ID2 EX1 EX2 ME1 ME2 WB

or $20, $21, $22 IF1 IF2 --> ID1 ID2 EX1 EX2 ME1 ME2 WB

xor $7, $11, $0 IF1 --> IF2 ID1 ID2 EX1 EX2 ME1 ME2 WB

(c) In the previous part there should be a stall on the new pipeline that does not occur on the
original pipeline. (It’s not too late to change your answer!) How does that affect the usefulness of
splitting pipeline stages?

Assuming not all adjacent instructions are truely dependent, splitting is still useful, but performance does not scale
with clock frequency. (It never does.)

(d) (Optional, complete before reading paper.) To get that I’m-so-clever feeling answer the following:
Suppose there is no way a 32-bit add can be completed in less than two cycles. Is there any way
to perform addition so that results can be bypassed to an immediately following instruction, as
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in the example above, but without stalling? The technique must work when adding any two 32-
bit numbers. Hint: The adder would have to be redesigned. (A question in the next homework
assignment revisits the issue.)

Split the ALU in to sixteen-bit parts and bypass the low and high parts separately.
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Problem 2: Note: The following problem is similar to one given in the Fall 2001 semester, see
http://www.ece.lsu.edu/ee4720/2001f/hw03.pdf (the problem) and
http://www.ece.lsu.edu/ee4720/2001f/hw03_sol.pdf (the solution). For best results do not
look at the solutions until you’re really stuck. This problem below uses MIPS instead of DLX and is
for Method 3 instead of Method 1. The code below executes on a dynamically scheduled four-way
superscalar MIPS implementation using Method 3, physical register numbers.

• Loads and stores use the load/store unit, which consists of segments L1 and L2.

• The floating-point multiply unit is fully pipelined and consists of six segments, M1 to M6.

• The usual number of instructions (for a 4-way superscalar machine) can be fetched, decoded,
and committed per cycle.

• An unlimited number of instructions can complete (but not commit) per cycle. (Not realistic,
but it makes the solution easier.)

• There are an unlimited number of reservation stations, reorder buffer entries, and physical
registers.

• The target of a branch is fetched in the cycle after the branch is in ID, whether or not the
branch condition is available. (We’ll cover that later.)

(a) Show a pipeline execution diagram for the code below until the beginning of the fourth iteration.
Show where instructions commit.

See diagram below.

(b) What is the CPI for a large number of iterations? Hint: There should be less than six cycles
per iteration.

The CPI is 3
6 = 0.5.

(c) Show the entries in the ID and commit register maps for registers f0 and $1 for each cycle in
the first two iterations. If several values are assigned in the same cycle show each one separated by
commas.

(d) Show the values in the physical register file for f0 and $1 for the first two iterations. Use a “]”
to show when a physical register is removed from the free list and use a “[” to show when it is put
back in the free list.

See pipeline execution diagram on the next page.
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! Solution

LOOP: ! Instructions shown in dynamic order. (Instructions repeated.)

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ldc1 f0, 0($1) IF ID Q L1 L2 WC

mul.d f0, f0, f2 IF ID Q M1 M2 M3 M4 M5 M6 WC

sdc1 0($1), f0 IF ID Q L1 L2 WC

addi $1, $1, 8 IF ID Q EX WB C

bne $2, $0 LOOP IF ID Q B WB C

sub $2, $1, $3 IF ID Q EX WB C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ldc1 f0, 0($1) IF ID Q L1 L2 WB C

mul.d f0, f0, f2 IF ID Q M1 M2 M3 M4 M5 M6 WC

sdc1 0($1), f0 IF ID Q L1 L2 WC

addi $1, $1, 8 IF ID Q EX WB C

bne $2, $0 LOOP IF ID Q B WB C

sub $2, $1, $3 IF ID Q EX WB C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ldc1 f0, 0($1) IF ID Q L1 L2 WB C

mul.d f0, f0, f2 IF ID Q M1 M2 M3 M4 M5 M6 WC

sdc1 0($1), f0 IF ID Q L1 L2 WC

addi $1, $1, 8 IF ID Q EX WB C

bne $2, $0 LOOP IF ID Q B WB C

sub $2, $1, $3 IF ID Q EX WB C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ldc1 f0, 0($1) IF ID Q L1 L2 WB

mul.d f0, f0, f2 IF ID Q M1 M2 M3 M4 M5

...

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ID Map

f0 99 97,96 94,93 91,90

$1 98 95 92 89

# In cycle one first 97 is assigned to f0, then 96 (replacing 97). The

# same sort of replacement occurs in cycles 4 and 7.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Commit Map

f0 99 97 96 94 93 91 90

$1 98 95 92 89

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Physical Register File

99 1.0 ]

98 0x1000 ]

97 [ 10 ]

96 [ 11 ]

95 [ 0x1008 ]

94 [ 20 ]

93 [ 2.2 ]

92 [ 0x1010 ]

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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The following is an introduction to the next few problems.
As mentioned several times in class many of the performance-enhancing microarchitectural

features that came in to wide use in the closing decades of the twentieth century (I love the way
that sounds!) are much easier to apply to RISC ISAs than CISC ISAs. Bound by golden handcuffs
to the CISCish IA-32 ISA, Intel was forced to get RISC-level performance from IA-32. (Not just
Intel, DEC [now Compaq, perhaps soon HP] faced the problem with the VAX ISA and IBM with
360.) The solution chosen by Intel (and also DEC) was to translate individual IA-32 instructions
in to one or more µops (micro-operations). Each µop is something like a RISC instruction and so
the parts of the hardware beyond the IA-32 to µop translation can employ the same techniques
used to implement RISC ISAs.

The paper at http://www.intel.com/technology/itj/q12001/articles/art_2.htm
and http://www.ece.lsu.edu/ee4720/s/hinton_p4.pdf (password needed off campus, will be
given in class) describes the Pentium 4 implementation of IA-32, including µops (which are typeset
using “u” instead of the Greek letter “µ”, except occasionally in figures). This paper was not
written for a senior-level computer architecture class four weeks from the end of the semester and
so it will include material which we have not yet covered (caches and TLBs) and some material not
covered at all. Some stuff in the paper is not explained (how they do branch prediction or what
the Pentium 4 pipeline segments in Figure 3 mean), some of this can be figured out other things
have to be found out elsewhere (but not for this assignment).

Read the paper and answer the question below. The next homework assignment will include
additional questions on the paper. For this initial reading skip or lightly read material on the L2
cache, L1 data cache, and the ITLB. Questions on the cache material might be asked in a later
assignment.

Problem 3: What does the paper call the following actions and components (that is, translate
from the terminology used in class to the terminology used in the paper):

Commit – Retire
ID Register Map – Frontend RAT
Commit Register Map – Retirement RAT
Physical Register File – Physical Register File
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EE 4720 Homework 5 Solution Due: 26 April 2002

The following questions are based on the paper at
http://www.intel.com/technology/itj/q12001/articles/art_2.htm

and http://www.ece.lsu.edu/ee4720/s/hinton_p4.pdf (password needed off campus, will be
given in class). See Homework 4 (http://www.ece.lsu.edu/ee4720/2002/hw04.pdf) for an in-
troduction to the paper.

Problem 1: What is the maximum sustainable IPC of the IA-32 (in µop per cycle)? Put another
way, the Pentium 4 is an n-way superscalar processor, what is n?

Maximum is 3 µPC (µop per cycle), limited by the 3-µop decode limit and also the 3-µop retire limit.

Problem 2: The Pentium 4 can decode no more than one IA-32 instruction per cycle. How then
can it execute more than one IA-32 instruction per cycle (at least for small code fragments prepared
by a friendly programmer)?

Decoded instructions are stored in the trace cache. A trace cache line might contain µops spanning more than one
IA-32 instruction. Though it took at least two cycles to decode them, once stored in the trace cache they can be used
multiple times, each time multiple IA-32 instructions are issued in one cycle.

Problem 3: One problem with superscalar systems noted in class is the wasted instructions fol-
lowing the delay slot of a taken branch near the beginning of a fetch group. How does the Pentium
4 avoid this?

By placing instructions in a trace cache line in dynamic order, so that the target of a branch is right after the branch,
there is no need to separately fetch it.

Problem 4: The fast (2×) integer ALUs have three stages, an initiation interval of 1 fast cycle (1
2

processor cycle), and a latency of zero fast cycles. Why is this surprising (not the one half part)?
How does it do it?

It’s surprising because normally something with three stages would have a latency of two. It works because each
stage can bypass partial results (the low and high half of the result) which are enough for the dependent instruction.

Problem 5: In describing store-to-load forwarding the paper describes a special case for which
data could be forwarded (bypassed) but is not because it would be too costly. Using MIPS code
(or IA-32 if you prefer) provide an example of this special case.

sb $2, 1($3)

sb $4, 2($3)

lw $5, 0($3)

Problem 6: In Figure 8 the performance of a 1 GHz Pentium III is compared to a 1.5 GHz Pentium
4. Why is it reasonable for the Pentium 4 to be compared at a higher clock frequency?

Because the Pentium 4’s shorter stages enable a higher clock frequency. When implemented on the same process
technology, the Pentium 4 would have the higher clock frequency.
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EE 4720 Homework 1 Solution Due: 10 October 2001

Problem 1: In DLX the three instructions below, though they do very different things, are of the
same type (format).

bnez r2, SKIP

lw r1, 1(r2)

addi r1, r2, #1

SKIP:

Because of their similarity their implementations in the diagram below shares a lot of hardware.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

(a) Show how these DLX instructions are coded.
DLX:
bnez r2, SKIP

opcode

?

0 5

rs1→r2

2

6 10

rd

0

11 15

simm16

2

16 31

lw r1, 1(r2)

opcode

?

0 5

rs1→r2

2

6 10

rd→r1

1

11 15

simm16

1

16 31

addi r1, r2, #1

opcode

1

0 5

rs1→r2

2

6 10

rd→r1

1

11 15

simm16

1

16 31
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(b) Find corresponding instructions in the SPARC V9 ISA. (See the SPARC Architecture Manual
V9, http://www.ece.lsu.edu/ee4720/samv9.pdf) (The DLX branch instruction will have to be
replaced by two instructions, one to set the condition code registers.)

! In this solution the DLX branch is replaced by a single instruction.

brnz %g1, SKIP

ldsw [%g2+1],%g1

add %g2, 1, %g1

! In this solution the DLX branch is replaced by two instructions.

addcc %g1, 0, %g0

bne SKIP

ldsw [%g2+1],%g1

add %g2, 1, %g1

(c) Show the coding of the SPARC V9 branch, load, and add immediate instructions (but not the
condition code setting instruction).

brnz g1, SKIP

op

0

31 30

a

0

29 29

0

0

28 28

rcond

5

27 25

op2

3

24 22

dh

0

21 20

p

0

19 19

rs1

2

18 14

displo

2

13 0

bne SKIP

op

0

31 30

a

0

29 29

cond

9

28 25

op2

2

24 22

disp22

2

21 0

ldsw [g2+1],g1

op

3

31 30

rd

1

29 25

op3

8

24 19

rs1

2

18 14

i

1

13 13

simm13

1

12 0

add g2, 1, g1

op

2

31 30

rd

1

29 25

op3

0

24 19

rs1

2

18 14

i

1

13 13

simm13

1

12 0

(d) Do these codings allow the same degree of hardware sharing?
Because the DLX codings are identical an implementation could use the same datapath for computing the immediate

add, load effective address, and branch target. The SPARC V9 add and lduw codings are identical and so hardware
can be shared but the placement of the displacement is different for the branch instruction (either one) and so additional
hardware would be needed to select the immediate (or displacement) bits corresponding to the instruction.
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Problem 2: Write a DLX assembly language program that determines the length of the longest
run of consecutive elements in an array of words. For example, in array {1, 7, 7, 1, 5, 5, 5, 7, 7} the
longest run is three: the three 5’s (the four 7’s are not consecutive). The comments below show
how registers are initialized and where to place the longest run length.

! r10 Beginning of array (of words).

! r11 Number of elements.

! r1 At finish, should contain length of the longest run.

! r10 Beginning of array

! r11 Number of elements

! r1 At finish, should contain length of longest run.

! r1 Longest run encountered.

! r2 Size of this run so far.

! r3 Last element.

add r1, r0, r0

add r2, r0, r0

lw r5, 0(r10)

addi r3, r5, #1

LOOP:

beqz r11, DONE

lw r5, 0(r10)

addi r10, r10, #4

subi r11, r11, #1

seq r6, r5, r3

beqz r6, NEW_RUN

add r2, r2, #1

j LOOP

NEW_RUN:

add r7, r2, r0

addi r2, r0, #1

sgt r6, r7, r1

add r3, r5, r0

beqz r6, LOOP

add r1, r7, r0

j LOOP

Problem 3: Small integers can be stored in a packed array to reduce the amount of storage
required; the array can be unpacked into an ordinary array when the data is needed. Write a DLX
assembly language program to unpack an array containing n b-bit integers stored as follows. The
low b bits (bits 0 to b − 1) of the first word of the packed array contain the first integer, bits b to
2b − 1 contain the next, and so on. When the end of the word is reached integers continue on the
second word, etc. Size b is not necessarily a factor of n and so an integer might span two words.

The diagram below shows how the first 6 integers i0, i1, . . . , i5 are stored for b = 12 bits and
n ≥ 6.
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i2

low part

31 24

i1

23 12

i0

11 0

i5

low part

31 28

i4

27 16

i3

15 4

i2

high part

3 0

Write DLX assembly language code to unpack such an array into an array of signed words.
The packed array consists of n b-bit signed numbers, with b ∈ [1, 32]. Initial values of registers are
given below.

! Initial values

! r10: Address of start of packed array.

! r11: Number of elements (n).

! r12: Size of each element, in bits (b).

! r14: Address of start of unpacked array.

! Initial values

! r10: Address of start of packed array.

! r11: Number of elements (n).

! r12: Size of each element, in bits (b).

! r14: Address of start of unpacked array.

! r1: Current word.

! r2: Mask

! r3: Unpacked item

! r4: Bits remaining in current word.

! r8, r9: Miscellaneous

! r5: 32 - size of each element.

add r4, r0, r0

add r8, r12, r0

addi r5, r0, 32

sub r5, r5, r12

addi r2, r0, #1

sll r2, r2, r12

subi r2, r2, #1

LOAD_MAYBE:

bnez r4, LOWPART

lw r1, 0(r10)

addi r10, r10, #4

addi r4, r0, #32

LOWPART:

and r3, r1, r2

srl r1, r1, r12

sub r4, r4, r12

slt r9, r4, r0
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bnez r9, SPAN

j STORE

SPAN:

lw r1, 0(r10)

addi r10, r10, #4

add r8, r12, r4

sll r9, r1, r8

or r3, r3, r9

and r3, r3, r2

addi r4, r4, #32

! Fall through to store

STORE:

sll r3, r3, r5

sra r3, r3, r5 ! Sign extend

sw 0(r14), r3

addi r14, r14, #4

subi r11, r11, #1

bnez r11, LOAD_MAYBE

DONE:
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EE 4720 Homework 2 Solution Due: 5 November 2001

Problem 1: Answer the following questions about the MIPS Technologies 4Km processor core.
The processor is documented in
http://www.mips.com/declassified/Declassified_2000/MD00016-2B-4K-SUM-01.15.pdf.

(a) For each stage in the statically scheduled DLX implementation show where the same work is
done in the 4Km pipeline. Note that work done in one DLX stage might be performed in more
than one 4Km pipeline stage.

IF: I
ID: E
EX: Part of the ALU operation done in E, part in M. Address calculations for load and stores done in E.
MEM: Memory load and store done in M stage. Alignment done in A stage.
WB: W.

(b) The 4Km documentation uses the term stall differently than used in class. How do their usages
differ? What term does the documentation use that is close to stall as used in class? (See section
2.8.1)

By stall the 4Km documentation means take more than one cycle to complete a computation, as do the floating-point
units in DLX. Unlike the use in class, it does not mean that instructions following (more recently fetched than) the stalled
instruction are stopped. The documentation uses the term slip for what is meant by stall in class.

(c) A MIPS implementation needs to do all of the following:

(1) arithmetic and logical operations for ordinary instructions
(2) compute the target of a branch
(3) compute the effective address of a load or store

In the first pipelined DLX implementation all of these were performed by the ALU. MIPS has
a branch instruction in which a branch is taken if two registers are equal (beq) or not equal (bne).
So it must also

(4) determine if two values are equal

How many of these are shared? If they are not shared, why not? (The documentation does
not state exactly what hardware is present, answer the question by looking at how instructions
execute.)

The ALU, effective address computation, and part of a branch target computation (I-AC2) may be shared. All of
these are done in the second half of E (the ALU is also used in the first half of M). An instruction needs to do at most
one of these things. (e.g., load or store instructions, which compute effective addresses, do not need to compute branch
targets or need to use the ALU for other arithmetic or logical operations.) Therefore these [(1), (2), and (3)] can be
shared.

According to 2.1.2 an instruction address is determined in E, and so the condition must be evaluated in E. Register
values are not available until the second half of E so the register comparison to determine the branch condition must also
be evaluated in the second half of E, the same time as branch target address computation (assuming that’s what I-AC2
does). Therefore separate hardware is needed for the branch condition.
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Problem 2: The program below runs on the DLX implementation shown below. The hardware
makes no special provisions for the tricky technique used. The coding for a nop (actually add r0,

r0, r0) is all zeros.
Why isn’t this an infinite loop? (For those who know why it matters, assume there is no

cache.)
The sw instruction replaces the j instruction with a nop.
Why will the code run for at least two iterations?
Because in the first iteration the sw instruction reaches MEM after the j is already fetched. If a write to the

MEM-stage memory port is seen by the IF-stage memory port then the loop will perform only two iterations.

sign
ext.

IR

Addr
6:10

11:15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Data

NPC

Decode
Rd

RD RD RD

Bx
0

1
2

LOOP:

lw r1, 0(r2)

addi r2, r2, #4

add r3, r3, r1

sw 0x100(r0), r0

LINE: LINE = 0x100

j LOOP
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Problem 3: Show a pipeline execution diagram for the code below running on a 4-way statically
scheduled superscalar processor. All needed bypass paths are available, including one for the branch
condition. Determine the CPI for a large number of iterations.

and r2, r2, r8

LOOP: ! LOOP = 0x1008

lw r1, 0(r2)

add r3, r3, r1

addi r2, r2, #4

sub r4, r2, r5

bneq r4, LOOP

Based on the PED below the CPI is 7
5 = 1.4. The pipeline execution diagram is for the second (or later) iteration.

and r2, r2, r8

LOOP: ! LOOP = 0x1008

! Cycle 0 1 2 3 4 5 6 7

lw r1, 0(r2) IF ID EX ME WB IF

add r3, r3, r1 IF ID ----> EX ME WB IF

addi r2, r2, #4 IF ----> ID EX ME WB

sub r4, r2, r5 IF ----> ID -> EX ME

bneq r4, LOOP IF ----> ID ----> EX

Problem 4: The code from the problem above can be improved (stalls can be removed) to a small
extent by scheduling, but that would still leave some stalls. This might see like a good candidate
for loop unrolling.

(a) Show why it would take alot of unrolling to eliminate all stalls. (You don’t have to show the
unrolled code, since it would be long.)

Because of the 1-cycle load latency the consuming add instruction would have to be placed seven instructions away.
Two of those can be an addi and sub, the rest would be lw, so the loop would be unrolled six times. This is shown
below. The code has been slightly re-structured To facilitate unrolling positions of the sub and addi have been switched,
with a compensating instruction added before the loop. To avoid added dependencies six running sums are computed, at
the end of the loop these are added together.

and r2, r2, r8

subi r5, r5, #24 ! Compensate for switching position of sub and addi below.

nop

LOOP: ! LOOP = 0x1010

lw r1, 0(r2) IF ID EX ME WB

lw r11, 4(r2) IF ID EX ME WB

lw r12, 8(r2) IF ID EX ME WB

lw r13, 12(r2) IF ID EX ME WB

lw r14, 16(r2) IF ID EX ME WB

lw r15, 20(r2) IF ID EX ME WB

sub r4, r2, r5 IF ID EX ME WB

addi r2, r2, #24 IF ID EX ME WB

add r3, r3, r1 IF ID EX ME WB

add r21, r21, r11 IF ID EX ME WB

add r22, r22, r12 IF ID EX ME WB

add r23, r23, r13 IF ID EX ME WB

add r24, r24, r14 IF ID EX ME WB

add r25, r25, r15 IF ID EX ME WB

bneq r4, LOOP IF ID EX ME WB
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! Note: Could add differently to avoid stalls.

add r3, r3, r21 IF IDx

add r3, r3, r22 IFx

add r3, r3, r23 IFx

add r3, r3, r24 IFx

add r3, r3, r25 IFx

(b) Use software pipelining and scheduling to remove the stalls. (Hint: to software pipeline switch
the lw and add instructions, and make any other necessary changes.) What is the CPI for a large
number of iterations of the modified code?

The loop below runs with a CPI of 3
5 = 0.6. The add and lw were switched and prolog and epilog code, instructions

before and after the loop to compensate, was added. Software pipelining was also used for the branch condition: the sub
and addi were reversed.

and r2, r2, r8

add r1, r0, r0

subi r5, r5, #4

LOOP: ! LOOP = 0x1010

! Cycle 0 1 2 3 4

add r3, r3, r1 IF ID EX ME WB

IF ID

lw r1, 0(r2) IF ID EX ME WB

IF ID

sub r4, r2, r5 IF ID EX ME WB

IF ID

addi r2, r2, #4 IF ID EX ME WB

IF ID

bneq r4, LOOP IF ID EX ME

add r3, r3, r1 IF IDx

(c) Would loop unrolling provide further gains?
It always does. As always, unrolling would reduce the proportion of loop index instructions (those computing the

address of the load and the branch condition). Unrolling might place the branch in the last position in a group, reducing
fetch waste. Because there are fewer iterations, it will reduce the number of instructions squashed due to the taken branch.
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EE 4720 Homework 3 Solution Due: 14 November 2001

Problem 1: The code below executes on a dynamically scheduled four-way superscalar DLX
implementation that uses reorder buffer entry numbers to name destination registers.

• Loads and stores use the load/store unit, which consists of segments L1 and L2.

• The floating-point multiply unit is fully pipelined and consists of six segments.

• The usual number of instructions (for a 4-way superscalar machine) can be fetched, decoded,
and committed per cycle.

• An unlimited number of instructions can complete per cycle. (This makes the solution
easier.)

• There are an unlimited number of reservation stations and reorder buffer entries.

• The target of a branch is fetched in the cycle after the branch is in ID, whether or not the
branch condition is available. (We’ll cover that later.)

(a) Show a pipeline execution diagram for the code below until the beginning of the fourth iteration.
Show where instructions commit.

See diagram below.

(b) What is the CPI for a large number of iterations? Hint: There should be less than six cycles
per iteration.

The CPI is 3
6 = 0.5.

(c) Show the entries in the register map for registers f0 and r1 for each cycle. (Make up reorder
buffer entry numbers.)

See pipeline execution diagram on the next page.
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! Solution

LOOP:

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ld f0, 0(r1) IF ID L1 L2 WC

IF ID L1 L2 WB C

IF ID L1 L2 WB C

IF ID L1 L2 WB

muld f0, f0, f2 IF ID RS RS M1 M2 M3 M4 M5 M6 WC

IF ID RS RS M1 M2 M3 M4 M5 M6 WC

IF ID RS RS M1 M2 M3 M4 M5 M6 WC

IF ID RS RS M1 M2 M3 M4 M5 M6 WB

sw 0(r1), f0 IF ID L1 L2 WC

IF ID L1 L2 WC

IF ID L1 L2 WC

addi r1, r1, #8 IF ID EX WB C

IF ID EX WB C

IF ID EX WB C

sub r2, r1, r3 IF ID EX WB C

IF ID EX WB C

IF ID EX WB C

bnez r2, LOOP IF ID RS B WB C

IF ID RS B WB C

IF ID RS B WB C

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ID Map

f0 1.0* #7,8 #13,14 #19,20 #25,26 #32,#33 #38,39

r1 0x1000* #10 0x1008 #22 0x1018 #34 0x1028

r1 #16 0x1010 #28 0x1020 #40

! Note: Because of space restrictions r1 is shown on two lines. The

! first character of an entry is the cycle number for the entry. For

! example, 0x1008 is written in to the map at cycle 3 and #16 at cycle 4.

Commit Map

f0 1.0* 10.0 11 20 22 30 33

r1 0x1000* 0x1008 0x1010 0x1018

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

* Initial Values

f0: 1.0

r1: 0x1000

f2: 1.1

Mem[0x1000] = 10.0

Mem[0x1008] = 20.0

Mem[0x1010] = 30.0
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(d) The first two instructions of the code below are different than the code above, the other instruc-
tions are identical. It runs on a system identical to the one above except that there are only 1000
reorder buffer entries. (That’s actually a lot, but it’s not unlimited.) What is the CPI for a large
number of iterations? Is the CPI really lower in the period before reorder buffers are used up? If
you can, solve the problem without drawing a complete pipeline execution diagram.

LOOP: ! LOOP = 0x1000

ld f4, 0(r1)

muld f0, f0, f4

sw 0(r1), f0

addi r1, r1, #8

sub r2, r1, r3

bnez r2, LOOP

The CPI is 6
6 = 1. Though iterations start every three cycles before the reorder buffer fills, the state of the system

is different at each start (in particular, the number of instructions waiting in the reorder buffer increases), and so one
cannot base CPI on an iteration time of three cycles. The number of cycles per iteration is limited by the time needed to
multiply, which is six.

ld f0, 0(r1)

muld f0, f0, f2 M1 M2 M3 M4 M5 M6 WC

M1 M2 M3 M4 M5 M6 WC

M1 M2 M3 M4 M5 M6 WC

sw 0(r1), f0

addi r1, r1, #8

sub r2, r1, r3

bnez r2, LOOP
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Problem 2: When the MIPS program below starts register $t0 holds the address of a string, the
program converts the string to upper case.

(For MIPS documentation see http://www.ece.lsu.edu/ee4720/mips32v1.pdf and
http://www.ece.lsu.edu/ee4720/mips32v2.pdf. Here are the relevant differences with DLX:
branches and jumps are delayed (1 cycle). Some branch instructions compare two registers. Register
$0 works like DLX r0.)

LOOP:

lbu $t1, 0($t0)

addi $t0, $t0, 1

beq $t1, $0, DONE

slti $t2, $t1, 97 # < ’a’

bne $t2, $0 LOOP

slti $t2, $t1, 123 # ’z’ + 1

beq $t2, $0, LOOP

addi $t1, $t1, -32

j LOOP

sb $t1,-1($t0)

DONE:

Convert the program to IA-64 assembly language using predicated instructions. (You’re not
expected to know it at this point.) IA-64 is described in the IA-64 Application Developer’s Archi-
tecture Guide, available at http://www.ece.lsu.edu/ee4720/ia-64.pdf.

For this problem one can ignore alot of IA-64’s features. Here is what you will need to know:
IA-64 has 64 1-bit predicate registers, p0 to p63, which are written by cmp (compare) and other
instructions. Predicates can be specified for most instructions, including cmp itself. See 11.2.2 for
a description of how to use IA-64 predicates.

To solve the problem look at the following sections: 9.3, 9.3.1, and 9.3.2 (a brief description
of where to place stops); 11.2.2 (predicate description and some more information on stops); and
Chapter 7 (for instruction descriptions). The following instructions will be needed: cmp (compare,
look at the normal [none] type) br (branch), load, store, and add.

• Use general-purpose registers r0-r31 and predicate registers p1-p63 in your solution. (There
are 128 general-purpose registers, but those above r31 must be allocated.)

• Minimize the number of instructions per iteration assuming about half the characters are
lower case.

• Use predicates to eliminate some branches.

• Make use of post-increment loads or stores.

• Pay attention to data type sizes.

• Show stops but do not show bundle boundaries.

Solution on next page.
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// Solution

LOOP:

ld1 r1 = [r2];;

cmp.eq p3,p4 = r0,r1

cmp.le p1,p2 = 97,r1;; // p1 = r1 >= 97; p2 = !p1 = r1 < 97

(p1) cmp.ge p1,p2 = 122,r1;; // p1 = r1 <= 122; p2 = r1 > 122

(p1) add r1 = -32, r1;;

(p4) st1 [r2],1 = r1

(p4) br LOOP;;

br DONE
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EE 4720 Homework 4 Solution Due: 28 November 2001

Problem 1: Solve Problems 3 and 4 from Fall 2000 Homework 5, available via
http://www.ece.lsu.edu/ee4720/2000f/hw05.pdf. Using the solutions at
http://www.ece.lsu.edu/ee4720/2000f/hw05_sol.pdf assign yourself a grade in the range [0, 1]. Either:
indicate the grade you assigned yourself or write “Did not solve.” A solution can be provided along with a
grade. It will be corrected but your grade will be used. If you opt not to solve it you will receive full credit
but will be hurting your ability to solve future problems.

For the following questions read Kenneth C. Yeager, “The Mips R10000 Superscalar Microprocessr,”
IEEE Micro, April 1996, pp. 28-40. A restricted-access copy can be found at
http://www.ece.lsu.edu/ee4720/s/yeager96.pdf. Access is allowed from within the lsu.edu domain or
by using the userid “ee4720” and the correct password. Though not needed for this assignment, information
on the MIPS64 4 ISA (implemented by R10000) can be found in
http://www.ece.lsu.edu/ee4720/mips64v1.pdf and http://www.ece.lsu.edu/ee4720/mips64v2.pdf.

Skip over the material on the memory system (under heading “Memory Hierarchy”) and the system
interface. Material related to memory will be covered later in the semester.

Problem 2: The paper uses the four terms below, for each show the corresponding, or most similar, term
used in class.

• Graduate−→Commit

• Active List−→Reorder Buffer

• Tag−→Reorder Buffer Entry Number

• Logical Register−→Architecturally visible register number.

Problem 3: For the superscalar processors described in class taken branches resulted in higher than ideal
CPI; the higher the fetch/decode width (the n in n-way superscalar) the worse the problem was. Why is
this problem not as severe in the R10000? (Branch prediction is not the answer.)

Because a group of fetched instructions does not have to be 16-byte aligned (that is, the address of the first instructions need
not be a multiple of 16).

Problem 4: The MIPS R10000 does not have anything like a commit register map or a commit free list.
(The register map and free list at the bottom of the figure from the class notes on the next page.) How
were those used with exceptions in the Method-3 dynamically scheduled processor described in class? How
does the R10000 deal with exceptions given their absence? Do not describe the entire exception process, just
those pieces of hardware and steps needed to do what was done with the commit free list and register map.

In the implementation described in class, when the faulting instruction reaches the head of the reorder buffer the reorder buffer
is flushed and the commit register map and free list are copied to the ID register map and free list, respectively.

In the R10000 the active list holds previous physical register assigned to the destination. When the faulting instruction reaches
the head of the active list, rather than flushing the active list, the hardware uses the elements in the active list to repair the register
map. For each active list element starting with the one holding the faulting instruction, the register map element corresponding to
the destination register is written with the previous physical register. This processes reverses the changes to the register map made
by the faulting instructions and those that followed it.
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Problem 5: Figure 5, reproduced below, shows the information that will be placed in the active list and
floating-point queue for an instruction being decoded. Various field names are shown along the bottom of the
figure. The instruction format fields are shown at the top. Fields fR, fS, fT are source registers (not every
instruction uses three); field fD is the destination register, FLTX is the opcode, and MADD is an extension
of the of the opcode field (as func is in DLX). (The figure appears to be using field values rather than
names for the first and last fields. MADD is the name of an instruction, multiply-add, and FLTX may be an
abbreviation for floating-point extended, though the architecture manual calls the field value COP1X. They
probably should have used opcode instead of FLTX and function instead of MADD.)

Write the field names from the bottom of Figure 5 next to the corresponding fields in the figure, from
the class notes, below. Though Figure 5 shows a floating-point instruction assume that integer instructions
are handled the same way. Some fields have no analog in the figure below, these can be omitted; Tag is not
a field that can be omitted.

Field names shown in blue
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EE 4720 Homework 5 Solution Due: 5 December 2001

Problem 1: An ISA has a character size of c = 9 bits (one more than most other ISA’s!) and a
30-bit address space (A). An implementation has a bus width of w = 72 bits and has no cache.
Show how 220 × 36 memory devices can be connected to implement the entire address space for
this implementation. Show only the connections needed for loads. Show the alignment network as
a box. Label inputs and outputs and be sure to specify which address bits are being used. The
solution will require many memory devices so use ellipses (· · ·) between the first and last of a large
group of items.

See the figure below. The 128-input multiplexor is a bit large for a real system. When one of that many inputs need
to be selected a bus would be used, and perhaps several levels of selection.

CPU

Addr

Data

220 x 36

 Addr
Out

 Addr
22:3 Out

22:3

220 x 36

72
Align

Size
2:0 29:2330

72

220 x 36

 Addr
Out

 Addr
22:3 Out

22:3

220 x 36

36

36

36

36

Problem 2: The program below computes the sum of an array of doubles and also computes the
sum of the characters in the array. The system uses a direct-mapped cache consisting of 1024 lines
with a line size of 256 bits.

void p3(double *dstart, double *dend)

{

double dsum = 0.0;

int csum = 0;

double *d = dstart; // sizeof(double) = 8 characters

unsigned char *c = (unsigned char *) dstart; // A character is 8 bits.

unsigned char *cend = (unsigned char *) dend;

int dlength = dend - d;

int clength = cend - c;

while( d < dend ) dsum += *d++;

if( ! LAST_PART ) flush_the_cache(); // Removes all data from the cache.

while( c < cend ) csum += *c++;

}
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When the procedure is called none of the data in the array is cached. When answering the
questions below consider only memory accesses needed for the array (double or character). Assume
that the number of iterations is some convenient number, except zero of course.

Note: Though they both access the same amount of data the number of iterations of the two
loops are different. The first while loop is equivalent to: for(i=0; i<dlength; i++) dsum = dsum

+ dstart[i];

(a) What is the hit ratio for the first while loop? Assuming the cache is flushed (emptied) between
the two while loops, what is the hit ratio for the second while loop?

Line size is 256 bits, which is 256
8 = 32 characters or 32

8 = 4 doubles. The first loop sequentially loads doubles;
the first access to a double on a line will miss, the next three will hit, and so on. The hit ratio for the first loop is thus
3
4 = .75. The second loop sequentially loads characters, the first access to a character on a line will miss, the subsequent
31 will hit, followed by 1 miss, etc. The hit ratio is thus 31

32 = .96875.

(b) Consider a single-issue (one-way) statically scheduled system in which the pipeline stalls on a
cache miss. The cache miss delay is 1000 cycles. Roughly how does the time needed to execute the
two loops compare? Assume that when there’s a cache hit the time needed for one iteration is the
same for both loops.

The first loop iterates dlength times, and so it will encounter 1
4dlength misses. The total time waiting for

misses will be 10001
4dlength cycles.

The second loop iterates clength times, and so it will encounter 1
32clength misses. The total time waiting for

misses will be 1000 1
32clength cycles.

Though there is no way to determine how large dlength and clength are from the code above there relative
sizes can be determined: clength = 8dlength, because a double is eight characters.

Substituting, the second loop spends 1000 1
328dlength cycles waiting for misses, the same as the first loop.

Assuming the time needed to execute instructions is small compared to the time spent waiting for misses, the two
loops take about the same amount of time.

(c) Consider a single-issue (one-way) dynamically scheduled system with perfect branch and branch
target prediction, a non-blocking cache, and a reorder buffer that can hold sixteen iterations of the
while loops. The miss delay is still 1000 cycles however assume that for cache misses there is an
initiation interval of one cycle so that the data for misses at t = 0 and t = 1 will arrive at t = 1000
and t = 1001, respectively. Now how do the two loops compare?

Sixteen iterations of the first loop covers four lines. When the ROB fills the cache will be working on four misses,
the system will stall for a bit less than 1000 cycles, the sixteen iterations will finish and the ROB will fill with the next 16
iterations. The total time spent waiting for misses here is about 1000 1

16dlength cycles, about one quarter the time in
the statically scheduled system.

When the second loop encounters a miss the ROB will fill with the next 15 iterations, all of which access the line
that has missed. As a result the cache will be working on only one miss at a time. The total time spent waiting for misses
is therefore unchanged and so the first loop is about four times faster than the second.

(d) Suppose the cache is not flushed before the second while loop executes. What is the smallest
value of dlength (dee, not cee) for which the hit ratio of the second loop is less than 1.0?

Since both loops access the same data, the second loop can potentially have a 100% hit ratio. The hit ratio of the
second loop is less than 100% when a later iteration of the first loop replaces data brought in by an earlier iteration.

The cache capacity is 1024 × 32 = 210+5 = 215 characters. The corresponding number of doubles is 1
8215 =

2−3215 = 212. If dlength = 212 + 1 the last iteration of the first loop would replace the line in the cache loaded
on the first iteration. As a result, the first iteration of the second loop would miss. (Were dlength = 212 the second
loop would not miss.)

Problem 3: The SPARC V9 program below adds an array of integers.
(See http://www.ece.lsu.edu/ee4720/samv9.pdf for a description of SPARC V9.) Except for
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prefetch these instructions (or similar ones) have been covered before. The prefetch instruction
is used to avoid the type of cache misses suffered by the program in the previous problem. It is like
a nop in that it does not modify registers or memory, however like a load instruction, it moves data
into the cache. As used below it will fetch data that will be needed ten iterations later. The data
will be moved in to the cache (if not already present) but not in to a register. Ten iterations later
the ldx instruction will move the data in to register %l2. Unlike loads, prefetch instructions never
raise an exception. If the address is invalid or there is another problem the prefetch instruction
does nothing, so there is no danger in prefetching, say, past the end of an array.

Unlike for a load that misses the cache, a statically scheduled processor would not stall on a
prefetch miss. (There’d be no point in that!)

! Reminder: In SPARC assembler the destination register is on the right side.

LOOP:

ldx [%l1], %l2 ! Load extended word (64 bits, same size as reg)

prefetch [80+%l1], 1 ! Prefetch from address 40+%l1, type 1

add %l1, 8, %l1

subcc %l4, %l1, %g0 ! %g0 = %l4 - %l1. (%g0 is zero register.) Set cc.

bpg LOOP,pt ! Branch if condition code >0, predict taken

add %l3, %l2, %l3 ! Branch delay slot.

(a) In the code above the prefetch distance is ten iterations. What is the problem with the distance
being too large or too small?

If the distance is too low the data will arrive after it’s needed. (The goal is to get it before it’s needed.) There will
be a miss, but the miss delay will not be as long because the data is on its way. If the distance is too large the prefetched
data may be replaced before its accessed. The data would arrive in the cache and would have to wait a long time before
being accessed. In that time the data can be replaced because of a miss with the same index (but a different tag).

(b) Suppose SPARC V9 did not have a prefetch instruction. Explain how ldxa could be used as
a prefetch. Show a replacement for prefetch in the program above.

The ldxa and similar instructions include an address space identifier (ASI) which specifies
which address space to load or store from. The ASI can be specified with an immediate or the
%asi register. See the architecture manual. Normal loads and stores use the ASI_PRIMARY address
space. ldxa lets you specify a different one. A load from a particular address in two different address
spaces may load from two different memory locations or may load the same memory location in
different ways. For example, an ordinary load of an address, ldx [%l1], %l2, would load an
integer using big-endian ordering. But a load to the same address using the ASI_PRIMARY_LITTLE,
ldxa [%l1] ASI_PRIMARY_LITTLE, %l2 loads an integer using little-endian ordering. Table 12 in
the architecture manual lists some of the address spaces.

Hint: Think about the destination register and the ASI.
One of the alternate address spaces allows a load from the primary address space without risking faults. To prefetch

use one of those loads and put the data in the zero register, g0.

ldxa [80+%l1], ASI_PRIMARY_NOFAULT, %g0
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EE 4720 Homework 1 Solution Due: 7 February 2001

Problem 1: Write a DLX program to reverse a C-style string, as described below. The address of
the start of the string is in r1. The string consists of a sequence of characters and is terminated by
a zero (NULL). The string length is not stored anywhere, it can only be determined by looking for
the NULL. Put the reversed string in memory starting at the address in r2. Be sure to terminate
the reversed string.
! r1 holds address of first character of original string.

! r2 holds address of first character of reversed string.

! Strings end with a zero (NULL) character.

add r3, r1, r0 ! Copy of r1

SIZE_LOOP:

lb r4, 0(r3)

addi r3, r3, #1

bnez r4, SIZE_LOOP

subi r3, r3, #1 ! Change r3 to address of null.

REV_LOOP:

sub r6, r3, r1

beqz r6, EXIT

subi r3, r3, #1

lb r4, 0(r3)

sb 0(r2), r4

addi r2, r2, #1

j REV_LOOP

EXIT:

sb 0(r2), 0
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Problem 2: The DLX program below copies a block of memory starting at address r1 to the
address r3, the block is of length r2 bytes. The problem is it won’t always work. Explain why not
and fix the problem without unnecessarily increasing the number of loop iterations. (The program
will be slower, except for special cases.) Be sure to modify the program, not a specification of what
the program is supposed to do.
! r1 Start address of data to copy.

! r2 Number of bytes to copy.

! r3 Start address of place to copy data to.

LOOP:

slti r4, r2, #4

bnez r4, LOOP2

lw r5, 0(r1)

sw 0(r3), r5

addi r1, r1, #4

addi r3, r3, #4

subi r2, r2, #4

j LOOP

LOOP2:

beqz r2, EXIT

lb r5, 0(r1)

sb 0(r3), r5

addi r1, r1, #1

addi r3, r3, #1

subi r2, r2, #1

j LOOP2

EXIT:

It won’t work if either the source or target addresses is unaligned and at least one word copy is attempted.

! r1 Start address of data to copy.

! r2 Number of bytes to copy.

! r3 Start address of place to copy data to.

andi r4, r1, #3

andi r5, r3, #3

subi r6, r4, r5

bnez r6, LOOP2 ! Word alignment of source and destination are different.

slti r7, r2, r4

bnez r7, LOOP2 ! Data ends before next aligned address.

j LOOPBENTER

LOOPB: ! Copy until both addresses are word-aligned..

lb r5, 0(r1)

sb 0(r3), r5

addi r1, r1, #1

addi r3, r3, #1

subi r2, r2, #1
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LOOPBENTER:

andi r4, r3, #3 ! r4 is zero if r3 is word-aligned.

bnez r4, LOOPB

LOOP:

slti r4, r2, #4

bnez r4, LOOP2

lw r5, 0(r1)

sw 0(r3), r5

addi r1, r1, #4

addi r3, r3, #4

subi r2, r2, #4

j LOOP

LOOP2:

beqz r2, EXIT

lb r5, 0(r1)

sb 0(r3), r5

addi r1, r1, #1

addi r3, r3, #1

subi r2, r2, #1

j LOOP2

EXIT:
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Problem 3: Implement the following procedure in DLX assembly language. The procedure is
given two ways, both do the same thing, look at either one. The return address is stored in r31.
The C short int data type here is two bytes (as it is on many real systems). The registers used
for the procedure arguments are specified by the C variable names.
void sum_arrays(short int *s_r1, float *f_r2, double *d_r3, int size_r4)

{

while( size_r4-- ) *d_r3++ = *s_r1++ + *f_r2++;

}

void sum_arrays(short int *s_r1, float *f_r2, double *d_r3, int size_r4)

{

int i;

for(i=0; i<size_r4; i++) d_r3[i] = s_r1[i] + f_r2[i];

}

j TEST

LOOP:

lh r6, 0(r1)

addi r1, r1, #2

movi2fp f6, r6

cvti2d f6, f6

lf f8, 0(r2)

addi r2, r2, #4

cvtf2d f8, f8

addd f10, f6, f8

sd 0(r3), f10

addi r3, r3, #8

subi r4, r4, #1

TEST:

bnez r4, LOOP

Problem 4: The code below contains two sets of add instructions, one in DLX assembler, the
other in Compaq (née DEC) Alpha assembler. The first instruction in each group adds two integer
registers, the second instruction in each group adds an integer to an immediate, the last adds
two floating point registers. Information on the Alpha architecture can be found in the Alpha
Architecture Handbook, http://www.ee.lsu.edu/ee4720/alphav4.pdf. It’s 371 pages, don’t
print the whole thing.

! DLX Assembly Code

add r1, r2, r3 ! r1 = r2 + r3

addi r4, r5, #6

addf f0, f1, f2

! Alpha Assembly Code (Destination is last operand.)

addq r2, r3, r1 ! r1 = r2 + r3

addq r5, #6, r4

addt f1, f2, f0

Though the DLX and Alpha instructions are similar they are not identical.

• How do the data types and immediates differ between the corresponding DLX and Alpha
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instructions?

The DLX integers are 32 bits, the Alpha integers are 64 bits, a size DLX does not have. The DLX floating-point
data type used is IEEE 754 single (32 bits), the Alpha floating-point values are IEEE 754 double (64 bits), a type DLX
does have. The DLX immediate size is 16 bits, the Alpha immediate size is 8 bits.

• Show the coding for the DLX and Alpha instructions above. Show the contents of as many
fields as possible. For DLX, the addi opcode is 1. The add func field is 0 and the addf func
field is 1d16. For the Alpha fields, see the Alpha Architecture Manual and use the following
information: The Trapping mode should be imprecise and the Rounding mode should be
Normal. (Trapping [raising an exception] will be covered later in the semester.)

DLX:
add r1, r2, r3

opcode

0

0 5

rs1→r2

2

6 10

rs2→r3

3

11 15

rd→r1

1

16 20

func→add

0

21 31

addi r4, r5, #6

opcode

1

0 5

rs1→r5

5

6 10

rd→r4

4

11 15

simm16→6

6

16 31

addf f0, f1, f2

opcode

0

0 5

rs1→f1

1

6 10

rs2→f2

2

11 15

rd→f0

0

16 20

func→addf

0x1d

21 31

Alpha:

addq r2, r3, r1

opcode

0x10

31 26

Ra→r2

2

25 21

Rb→r3

3

20 16

SBZ

0

15 13

I

0

12 12

func

0x20

11 5

Rc→r1

1

4 0

addq r5, #6, r4

opcode

0x10

31 26

Ra→r5

5

25 21

LIT→6

6

20 13

I

1

12 12

func

0x20

11 5

Rc→r4

4

4 0

addt f1, f2, f0

opcode

0x16

31 26

Fa→f1

1

25 21

Fb→f2

2

20 16

func

0xA0

15 5

Fc→f0

0

4 0

• How do the approaches used to specify the immediate version of an integer instruction differ?

In DLX immediate variants of integer instructions use a different instruction format. In Alpha the same format is
used, the immediate variant is indicated by setting an immediate bit, 12.

• How is the approach used to code floating-point instructions different in Alpha than DLX?
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In DLX floating-point and three-register integer instructions share the same format. In Alpha they use a different
format.
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EE 4720 Homework 2 Solution Due: 21 February 2001

Problem 1: Translate the following C program to DLX assembly, use the minimum number
of comparison instructions. Pay attention to data type sizes. The line labels are provided for
convenience, please use them in the assembly language version.

extern int r1, r2, r3, r10, r11;

extern int *r20, *r21;

/* For DLX: sizeof(int) = sizeof(int*) = 4 */

/* For IA-64: sizeof(int) = sizeof(int*) = 8 */

if( r1 < 3 )

{

LINE1:

if( r2 == r3 )

{

LINE11: r10 = *r20++;

}

else

{

LINE10: r10 = 4720;

}

LINE1E:

r11 = r11 + r10;

}

else

{

LINE0:

r21 = r21 + 7;

if( r2 == r3 )

{

LINE01: r10 = *r21++;

}

else

{

LINE00: r10 = 7700;

}

}

DONE:

!! DLX

slti r8, r1, #3

seq r9, r2, r3

beqz r8, LINE0

beqz r9, LINE10

LINE11:

lw r10, 0(r20)

addi r20, r20, #4

j LINE1E

LINE10:
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addi r10, r0, #4720

LINE1E

add r11, r11, r10

j DONE

LINE0:

addi r21, r21, #28

beqz r9, LINE00

LINE01:

lw r10, 0(r21)

addi r21, r21, #4

j DONE

LINE00:

addi r10, r0, #4720

DONE:
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Problem 2: Translate the C program from the previous problem into IA-64 assembly using pred-
icated instructions. (You’re not expected to know it at this point.) IA-64 is described in the IA-64
Application Developer’s Architecture Guide, available at
http://developer.intel.com/design/ia64/downloads/adag.pdf.

For this problem one can ignore alot of IA-64’s features. Here is what you will need to know:
IA-64 has 64 1-bit predicate registers, p0 to p63, which are written by cmp (compare) and other
instructions. Predicates can be specified for most instructions, including cmp. See 11.2.2 for a
description of how to use IA-64 predicates.

To solve the problem look at the following sections: 11.2.2 (predicate description) and Chapter
7 (for instruction descriptions). The following instructions will be needed: cmp (compare, look at
the normal [none] and unc comparison types), ld1, ld2,. . . (loads), and add.

To save time, ignore instruction stops (;;) and consider only normal loads. (Post-increment
like loads are considered normal here.)

• Use general-purpose registers r0-r31 and predicate registers p1-p63 in your solution. (There
are 128 general-purpose registers, but those above r31 must be allocated.)

• Do not use branches (or any other CTI).

• Ignore stops. (These will be covered later.)

• Use the minimum number of cmp instructions. (Three is possible.)

• Do not assign a value to a register unless it’s needed.

• Make use of post-increment loads.

• Pay attention to data type sizes.

!! IA-64

cmp.gt p1,p2 = 3,r1

(p1) cmp.eq.unc p3,p4 = r2,r3

(p2) cmp.eq.unc p5,p6 = r2,r3

(p3) ld8 r10 = [r20],4

(p4) adds r10 = 4720,r0

(p1) add r11 = r11,r10

(p2) add r21 = 56,r21

(p5) ld8 r10 = [r21],4

(p6) adds r10 = 7700,r0

← → Spring 2001 ← → Homework 2 Homework Solution hw02 sol.pdf

http://developer.intel.com/design/ia64/downloads/adag.pdf
https://www.ece.lsu.edu/ee4720/2001/hw02_sol.pdf


Problem 3: Show a pipeline execution diagram of the code below on each implementation. (There
should be a total of two diagrams.) The branch is always taken, show the diagram until the second
execution of the first instruction reaches WB. If a bypass path is not shown, it’s not there.
LOOP:

addi r2, r2, #4

lw r1, 0(r2)

add r3, r3, r1

slt r4, r2, r5

beqz r4, LOOP

xor r5, r4, r1

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

! Solution

LOOP:

! Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

addi r2, r2, #4 IF ID EX ME WB IF ID

lw r1, 0(r2) IF ID ----> EX ME WB IF

add r3, r3, r1 IF ----> ID ----> EX ME WB

slt r4, r2, r5 IF ----> ID EX ME WB

beqz r4, LOOP IF ID ----> EX ME WB

xor r5, r4, r1 IF ----> IDx
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sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

RD RD RD
Decode

RD

! Solution

LOOP:

! Cycle: 0 1 2 3 4 5 6 7 8 9 10 11

addi r2, r2, #4 IF ID EX ME WB IF ID EX

lw r1, 0(r2) IF ID EX ME WB IF ID

add r3, r3, r1 IF ID -> EX ME WB

slt r4, r2, r5 IF -> ID EX ME WB

beqz r4, LOOP IF ID ----> EX ME WB

xor r5, r4, r1 IF ---->x
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Problem 4: For each implementation from the problem above, determine the CPI for a large
number of iterations.

First implementation, average instruction execution time is 14−0
5 CPI = 2.8 CPI. Second implementation,

average instruction execution time is 9−0
5 CPI = 1.8 CPI.

Problem 5: For the second pipeline execution diagram above, show the location(s) of the latest
value of r1 and r2 at the beginning of each cycle on the diagram below. For r1 box the appropriate
cycle numbers and draw an arrow to the locations. For r2 circle the cycle numbers and draw an
arrow to the locations. In the diagram below this has been completed for cycles zero and two,
assuming addi is in IF at cycle zero. The arrows should only point to register values that are valid
at the indicated cycles. Note: A valid value can be in more than one location at once.

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

RD RD RD
Decode

RD

0,

2,
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EE 4720 Homework 3 Solution Due: 12 March 2001

Problem 1: Consider three variations on the Chapter-3 DLX implementation. In implementation
I the FP Add unit has an initiation interval of 2 and a latency of 3. In implementation II there are
two FP Add units, each unit has an initiation interval of 4 and a latency of 3. In implementation
III the FP Add unit has an initiation interval of 1 and a latency of 3. Other features of the
implementations are identical. All implementations are fully bypassed.

Write two programs. Program A should run slower on implementation I than on implementa-
tions II and III. Program B should run the same speed on implementations I and II and faster on
implementation III. For this problem base program speed on the time from the fetch of the first
instruction to the WB of the last instruction.

Show pipeline execution diagrams for each program on each implementation. The programs
need be no longer than four instructions each.

! Solution

! Program A

! I

addd f0, f2, f4 IF ID A1 A1 A2 A2 WB

addd f6, f8, f10 IF ID -> A1 A1 A2 A2 WB

! II

addd f0, f2, f4 IF ID A A A A WB

addd f6, f8, f10 IF ID B B B B WB

! III

addd f0, f2, f4 IF ID A1 A2 A3 A4 WB

addd f6, f8, f10 IF ID A1 A2 A3 A4 WB

! Program B
! I

addd f0, f2, f4 IF ID A1 A1 A2 A2 WB

addd f6, f8, f10 IF ID -> A1 A1 A2 A2 WB

addd f12, f14, f16 IF -> ID -> A1 A1 A2 A2 WB

! II

addd f0, f2, f4 IF ID A A A A WB

addd f6, f8, f10 IF ID B B B B WB

addd f12, f14, f16 IF ID ----> A A A A WB

! III

addd f0, f2, f4 IF ID A1 A2 A3 A4 WB

addd f6, f8, f10 IF ID A1 A2 A3 A4 WB

addd f12, f14, f16 IF ID A1 A2 A3 A4 WB
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Problem 2: Modify the pipeline below so that it can execute jr instructions and add PC mux
control logic.

• Modify the pipeline so that it can execute jr instructions. (See Spring 1999 Homework 3,
http://www.ee.lsu.edu/ee4720/1999/hw03_sol.pdf.)

• Include control logic for the multiplexor that connects to PC. The control logic should
correctly handle branch and jump instructions. Interrupts should be ignored. To recognize
instructions use boxes such as = bnez , the outputs will be 1 if the instruction matches.

• Show the logic for a squash signal for use in EX to squash the fall-through instruction on a
taken branch. (The fall through instruction could have been squashed in IF or ID, but for
this problem it will be squashed in EX.)

Changes shown in red.
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Problem 3: How would the hardware designed above have to be modified if DLX had two-slot
(yes, two slots!) delayed branches? Jumps still have no delay slots. Ignore interrupts, they will be
considered in the next problem.

Problem 4: In an ISA without delayed branches it would be sufficient for the hardware to save
the PC when an exception occurs. Why would this not be sufficient on a system with delayed
branches. Provide an example illustrating what might go wrong.

One could not properly resume execution if the faulting instruction were in a branch delay slot. To resume execution
properly the exception handler needs the PC of the faulting instruction and the PC of the next instruction to execute. In
most cases the next instruction to execute is at PC+4 (assuming four-character instructions) but if the faulting instruction
were in the delay slot of a taken branch the next instruction to execute would be the branch target.

Suppose that lw raises an exception in the example below. If the handler only saves the address of lw, 0x1004,
then when execution resumes the branch will not be taken. By saving 0x1004 and the address of the next instruction,
0x2000, the handler can restore execution so that the branch will be taken.

0x1000: beqz r0, TARGET

0x1004: lw r2, 0(r3)

0x1008: add r3, r3, r4

TARGET:

0x2000: or r5, r6, r7

Problem 5: The Hewlett Packard Precision Architecture RISC 2.0 (PA-RISC 2.0) uses an in-
struction address offset queue rather than a plain-old program counter. See the PA-RISC 2.0 Ar-
chitecture [Manual], http://devresource.hp.com/devresource/Docs/Refs/PA2_0/acd-1.html.
Ignore the material on [address] space IDs and privilege levels. Concentrate on the material in
Chapter 4 and 5 and use the index.

PA-RISC 2.0 has delayed branches. Explain how the use of an instruction address offset queue
rather than a PC helps with the difficulty alluded to in the previous problem.

The address of the executing instruction and the next instruction can be saved and restored as a unit.

Problem 6: Explain the relationship between the terms interrupt, hw interrupt, exception, and
trap provided in class and the terms interruption, fault, interrupt, trap, and check defined for
PA-RISC 2.0. Explain the relationships, do not simply provide definitions.

A PA-RISC interruption is analogous to the term interrupt used in class.
A PA-RISC fault is a category of exception, as used in class. A PA-RISC trap is another category of exception, as

used in class. That is, some of what are called exceptions in class are called faults in PA-RISC, and other exceptions are
called traps. (Traps are usually due to programmer error or bad input, while faults indicate that the OS has to take some
routine action to keep the program running.) Note that the meaning of the term trap used in class is completely different
from a PA-RISC trap.

A PA-RISC interrupt is analogous to the term hardware interrupt used in class.
A PA-RISC check is a specific type of hardware interrupt, no special term was used in class.

Problem 7: Name a difference between the trap table used in Sun SPARC V8 (presented in class
and described in the SPARC Architecture Manual V8, http://www.ee.lsu.edu/ee4720/sam.pdf)
and the interruption vector table used in PA-RISC 2.0.

The Sun SPARC table holds four instructions, the PA-RISC table holds eight instructions, otherwise they are very
similar.
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EE 4720 Homework 4 Solution Due: 9 April 2001

Problem 1: Complete a pipeline execution diagram for the following code running on a two-way
statically scheduled superscalar processor. Show execution until the second fetch of the first add.
The processor fetches instructions in aligned groups and is fully bypassed. The branch will be
taken. There is no branch prediction hardware.

What is the CPI for a large number of iterations?

! Solution

LOOP: ! LOOP = 0x1004

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11

add r1, r2, r3 IF ID EX ME WB IF ID

add r4, r5, r6 IF ID EX ME WB

add r9, r4, r7 IF ID -> EX ME WB

lw r10, 0(r4) IF -> ID EX ME WB

add r11, r11, r10 IF -> ID ----> EX ME WB

or r12, r11, r13 IF ----> ID EX ME WB

xor r15, r16, r17 IF ----> ID EX ME WB

bnez r10, LOOP IF ID EX ME WB

The CPI for a large number of iterations is 9
8 .

Problem 2: Schedule the code from the problem above so that it executes efficiently. The solution
can contain added nop instructions. Do not try to unroll the loop. A correct solution contains two
stalls plus the branch delay.

Now what is the CPI for a large number of iterations?

! Solution

nop ! nop inserted to align first and last loop instructions.

LOOP: ! LOOP = 0x1008

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11

add r4, r5, r6 IF ID EX ME WB IF ID EX

add r1, r2, r3 IF ID EX ME WB IF ID EX

add r9, r4, r7 IF ID EX ME WB IF ID

lw r10, 0(r4) IF ID EX ME WB IF ID

add r11, r11, r10 IF ID -> EX ME WB

xor r15, r16, r17 IF ID -> EX ME WB

or r12, r11, r13 IF -> ID EX ME WB

bnez r10, LOOP IF -> ID EX ME WB

The CPI for a large number of iterations is 6
8 = 0.75.

1
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Problem 3: Show the execution of the code from Problem 1 on a two-way superscalar dynamically
scheduled machine using Method 1. The number of reservation stations, functional units, and
reorder buffer entries is unlimited. Do not show reservation station numbers or reorder buffer entry
numbers in the diagram. Do show where instructions commit. Assume that the machine has perfect
branch and branch target prediction and so a branch target will be fetched when the branch is in
ID. Complete the diagram to the point where all instructions in the first iteration commit, showing
what happens to instructions in the second iteration up to that point.

Now what is the CPI for a large number of iterations?

! Solution

LOOP: ! LOOP = 0x1004

! Cycle 0 1 2 3 4 5 6 7 8 9 10

add r1, r2, r3 IF ID EX WC IF ID EX WB C IF

add r4, r5, r6 IF ID EX WC IF ID EX WB C

add r9, r4, r7 IF ID RS EX WC

IF ID EX WB C

lw r10, 0(r4) IF ID L1 L2 WC

IF ID L1 L2

add r11, r11, r10 IF ID RS EX WC

IF ID RS

or r12, r11, r13 IF ID RS EX WC

IF ID RS

xor r15, r16, r17 IF ID EX WB C

IF ID EX

bnez r10, LOOP IF ID B WB C

IF ID

Because the iterations starting at cycles 5 and 10 start the same way (with corresponding previous instructions
being in the same stages of execution) following iterations will take the same number of cycles and so the second (or any
following) iteration (starting at cycle 5) can be used to compute the CPI. The CPI is 5

8 .

More problems on the next page.

2
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Problem 4: Convert the code below to VLIW DLX as described in the notes. The maximum
lookahead value is 15, use that for bundles that do not modify any registers. Set the lookahead
values and serial bits for maximum performance. (The lookahead values will mostly be small.) How
would a modification of the end-of-loop test improve performance on a VLIW implementation?

j TEST

LOOP:

lw r1, 0(r10)

lw r2, 4(r10)

lw r3, 8(r10)

lw r4, 12(r10)

andi r1, r1, #15

andi r2, r2, #15

andi r3, r3, #15

andi r4, r4, #15

sw 0(r10), r1

sw 4(r10), r2

sw 8(r10), r3

sw 12(r10), r4

addi r10, r10, #16

TEST:

slt r11, r10, r12

bnez r11, LOOP

! Solution

{ s 15

j TEST

nop

nop }

LOOP:

{ p 0

lw r1, 0(r10)

lw r2, 4(r10)

lw r3, 8(r10)

}

{ p 0

lw r4, 12(r10)

andi r1, r1, #15

andi r2, r2, #15

}

{ p 0

andi r3, r3, #15

andi r4, r4, #15

sw 0(r10), r1

}

{ p 15

sw 4(r10), r2

sw 8(r10), r3

sw 12(r10), r4

}

3
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{ p 0

addi r10, r10, #16

nop

nop

}

TEST:

{ s 15

slt r11, r10, r12

bnez r11, LOOP

nop

}

! Assuming that r11 not referenced on fall-through path.

4
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Problem 5: Insert the minimum number of IA-64-style stops in the DLX code below. Do not
convert the instructions themselves to IA-64, just insert the stops.

The material on stops was covered in class and will be in the notes. A primary reference is
Appendix A of the IA-64 Application Developer’s Architecture Guide, available at
http://developer.intel.com/design/ia64/downloads/adag.pdf. Appendix A describes how
stops affect the execution of code.

j TEST

LOOP:

lw r1, 0(r10)

lw r2, 4(r10)

lw r3, 8(r10)

lw r4, 12(r10)

andi r1, r1, #15

andi r2, r2, #15

andi r3, r3, #15

andi r4, r4, #15

sw 0(r10), r1

sw 4(r10), r2

sw 8(r10), r3

sw 12(r10), r4

addi r10, r10, #16

TEST:

slt r11, r10, r12

bnez r11, LOOP

! Solution

j TEST

LOOP:

lw r1, 0(r10)

lw r2, 4(r10)

lw r3, 8(r10)

lw r4, 12(r10) ;;

andi r1, r1, #15

andi r2, r2, #15

andi r3, r3, #15

andi r4, r4, #15 ;;

sw 0(r10), r1

sw 4(r10), r2

sw 8(r10), r3

sw 12(r10), r4

addi r10, r10, #16 ;;

TEST:

slt r11, r10, r12 ;;

bnez r11, LOOP

5
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EE 4720 Homework 1 Solution Due: 1 September 2000

Problem 1: Find the SPECint2000 results for the API UP2000 750 MHz processor, it can be
found at the http://www.spec.org web site. This processor has a SPECint2000 rating of 456.
Find another processor with a slower rating but for which individual benchmarks are faster. (Look
for different CPU families.) How many of the benchmarks are faster on the slower processor?

Problem 2: Write a DLX assembly language program to convert a string of characters to lower
case. The string is NULL-terminated (the character following the end of the string is a zero). Register
r1 contains the address of the start of the string. Any register can be modified. The code for an
upper-case A is 65 and the code for a lower-case a is 97. Modify the string, do not create a new
one.

! ** Solution **

!

! Register r1 contains address of first character of string.

LOOP:

lbu r2, 0(r1)

beqz r2, DONE

slti r3, r2, #65

bneq r3, CONTINUE

sgti r3, r2, #90

bneq r3, CONTINUE

addi r3, r3, #32

sb 0(r1), r3

CONTINUE:

addi r1, r1, #1

j LOOP

DONE:
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Problem 3: Write a DLX assembly language program that loads an element of a two-dimensional
array to a register.

Register r1 holds address of the start of the array, register r2 holds the row of the element
to retrieve, and register r3 holds the column of the element to retrieve. Put the retrieved element
in f0. The array dimensions are 256 rows × 1024 columns. Each element of the array is a double
precision floating point number.

Elements are arranged in memory in the following order:

a0,0 a0,1 a0,2 · · · a1,0 a1,1 a1,2 · · · a2,0 · · ·

where ai,j is the element at row i, column j.

! ** Solution **

!

! r1: address of the start of the array.

! r2: row of element to retrieve.

! r3: column of element to retrieve.

! Put element in f0.

! Array dimensions are 256 rows x 1024 columns

! Each element of the array is a double precision floating point number.

! Elements are arranged in memory in the following order

a_{0,0} a_{0,1} a_{0,2} ... a_{1,0} a_{1,1} a_{1,2} ... a_{2,0} ...

where a_{i,j} is the element at row i and column j.

slli r4, r2, #10

or r4, r4, r3

slli r4, r4, #3

add r4, r4, r1

ld f0, 0(r4)
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EE 4720 Homework 2 Solution Due: 22 September 2000

Problem 1: Compare the coding of the DLX instructions:

add r1, r2, r3

addi r4, r5, #6

to the corresponding Sun SPARC V8 instructions:

add %g3, %g2, %g1 ! g1 = g2 + g3

add %g5, 6, %g4 ! g4 = g5 + 6

The definition of the SPARC V8 architecture is available via
http://www.ee.lsu.edu/ee4720/sam.pdf or http://www.sparc.com/standards/V8.pdf. Hint:
The information needed to solve the problem is in Appendix B.

How are the approaches used to code immediate variants of the add instructions different in
the two ISAs?

In DLX the immediate variant of the add uses a different format than the two-source-register version (Type I vs.
Type R). In SPARC V8 the immediate and two register adds use the same instruction type and used the same opcode,
they are distinguished by a single-bit i field in the instruction word.

Problem 2: DLX does not have indexed addressing nor does it have autoincrement addressing.
Suppose one wanted to include those addressing modes in an extended version of DLX, call it
DLX-BAM (better addressing modes). The addressing modes would be used in load and store
instructions. Show how they would best be coded, where the fewer changes to the coding structure
the better. (For example, adding a fourth instruction type [say Type-A], would be a big change
and so would be bad.) Sample mnemonics for these instructions appear below:

! Indexed addressing.

lw r1, (r2+r3) ! r1 = MEM[ r2 + r3 ];

sw (r2+r3), r4 ! MEM[ r2 + r3 ] + r4;

! Autoincrement addressing.

lb r1, 3(+r2) ! r1 = MEM[ r2 + 3 ]; r2 = r2 + 1;

lw r4, 8(+r5) ! r4 = MEM[ r5 + 8 ]; r5 = r5 + 4;

sw 4(+r7), r8 ! MEM[ r7 + 4 ] = r8; r7 = r7 + 4;

The indexed load has two source operands and a destination, so it is natural to code it as a type R instruction. The
indexed store has three source operands, but like the displacement store, one of the operands can be placed in the rd
position, and so the indexed store can also be coded as a type R instruction.

A poor solution would be to code using a modified type I format, call that type Im. The new register number would
be placed in the immed field. This solution is poor because it adds a new type (when type R is perfectly suitable.

1
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Problem 3: Write a C program that does the same thing as the DLX program below.

! r2: Start of table of indices, used to retrieve elements

! from the character table.

! r4: Start of table of characters.

! r6: Location to copy characters to.

! r8: Address of end of index table.

LOOP:

lw r1, 0(r2)

add r3, r1, r4

lb r5, 0(r3)

sb 0(r6), r5

addi r2, r2, #4

addi r6, r6, #1

slt r7, r2, r8

bneq r7, LOOP

Solution template available via: http://www.ee.lsu.edu/ee4720/2000f/hw02.c
There are two solutions below, a compact one, and one that’s easier to understand.

void

untangle(int *r2, char *r4, char *r6, int *r8)

{

do { *r6++ = r4[*r2++]; } while ( r2 < r8 );

}

void

untangle_easy(int *r2, char *r4, char *r6, int *r8)

{

do {

int table_index = *r2;

char c = r4[table_index];

*r6 = c;

/* Because r2 is declared int* the line below adds 4 (sizeof(int) = 4

on Solaris 2.6) to r2. */

r2 = r2 + 1;

/* Because r6 is declared char* the line below adds 1 (sizeof(char) = 1

probably by definition) to r6. */

r6 = r6 + 1;

} while ( r2 < r8 );

}

2
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Problem 4: Re-code the DLX program above using DLX-BAM, taking advantage of the new
instructions.

LOOP:

lw r1, 0(+r2)

lb r5, (r1+r4)

sb 0(+r6), r5

slt r7, r2, r8

bneq r7, LOOP

3
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EE 4720 Homework 3 Solution Due: 2 October 2000

Problem 1: What changes would have to be made to the pipeline below to add the DLX-BAM indexed
addressing instructions (from homework 2). Hint: The load is easy and inexpensive, the store requires a
substantial change. Add the changes to the diagram below, but omit the control logic. Do explain how the
control logic would have to be changed.

! Indexed addressing.

lw r1, (r2+r3) ! r1 = MEM[ r2 + r3 ];

sw (r2+r3), r4 ! MEM[ r2 + r3 ] + r4;

No datapath changes are needed to implement the indexed load. The control logic must recognize the new instruction type and
use the A and B inputs to the ALU rather than the A and IMM that are used for ordinary loads.

The changes needed to implement the indexed store are shown in red bold below. A third read port is added to the register file
in ID and a multiplexor is added to route either the ID/EX.B or the new ID/EX.C latch to the memory data in in the MEM stage.
Control logic changes are similar to the indexed load, with the addition of control for the new multiplexor.
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Problem 2: For maximum pedagogical benefit solve the problem above before attempting this one. The
integer pipeline of the Sun Microsystems microSPARC-IIep implementation of the SPARC V8 ISA is similar
to the Chapter-3 implementation of DLX that is being covered in class.

What are the stage names and abbreviations used in the microSPARC-IIep? Hint: This is really easy
once you’ve found the right page.

SPARC V8 includes indexed addressing, for example:
ld [%o3+%o0], %o2 ! Load word: %o2 = MEM[ %o3 + %o0 ]

st %o0, [%o1+%g1] ! Store word: MEM[ %o1 + %g1 ] = %o0

(Register %o0 is a real register, not a special zero register.) What are the differences between the micro-
SPARC-IIep integer pipeline and the Chapter-3 DLX pipeline that allow it to execute an indexed store? Be
sure to answer the question directly, do not copy or paraphrase irrelevant material. A shorter answer is
preferred.

Information on the microSPARC-IIep can be found via
http://www.sun.com/microelectronics/manuals/microSPARC-IIep/802-7100-01.pdf

or http://www.ee.lsu.edu/ee4720/microsparc-IIep.pdf. Those who enjoy a challenge can study the
diagram on page 10, however the material to answer the question can be found early in Chapter 3. The

1
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manual uses many terms which have not yet been covered in class, the question can still be answered once
the right page is found. The manual is 256 pages so don’t print the whole thing.

The register file has a third read port, used for store data. The store data is read in the E stage, rather than in D, as it would
in the DLX implementation.

Problem 3: The following pipeline execution diagram shows the execution of a program on the DLX
implementation shown below. The implementation uses forwarding (bypassing) to avoid some data hazards
and stalls to avoid others; connections needed to implement the jalr instruction are not shown. A value
can be read from the register file in the same cycle it is written. Instructions are squashed (nulled) in this
problem by replacing them with or r0,r0,r0. All instructions stall in the ID stage.

Add the datapath connections needed so the jalr executes as shown.
Instruction addresses are shown below, to the left of the instructions.

! Initially, r1=0x100, r2=0x200, r3=0x300, r4 = 0x68

! The lw will read 0xaaa0.

! Cycle 0 1 2 3 4 5 6 7 8 9 10

0x40 sub r0, r0, r0 WB

0x44 sub r0, r0, r0 ME WB

0x48 sub r0, r0, r0 EX ME WB

0x4c sub r0, r0, r0 ID EX ME WB

START: ! START = 0x50

0x50 add r2, r2, r3 IF ID EX ME WB

0x54 lw r2,4(r2) IF ID EX ME WB

0x58 sw 8(r2), r1 IF ID -> EX WE WB

0x5c jalr r4 IF -> ID EX ME WB

0x60 xor r4, r1, r2 IFx

0x64 subi r2, r1, #0x10

0x68 andi r2, r2, #0x20 IF ID EX ME WB

0x6c slti r3, r3, #0x30 IF ID EX ME

Changes for jalr are show below in red bold. For the jalr instruction the ALU will pass through the top input unchanged.
As an alternative, EX/MEM.NPC and MEM/WB.NPC registers could be included, with the output of MEM/WB.NPC going into the
same multiplexor as MEM/WB.ALU and MEM/WB.MD. This would require two more registers, but those NPC registers might be
needed for exception processing.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Data

NPC

The table on the next page shows the contents of pipeline registers and changes to architecturally visible
registers r1-r31 over time. The first two columns are completed; fill in the rest of the table. Use a “?”
for the value of the “immediate field” of a type R instruction and for the output of the memory when no
memory read is performed. Show pipeline register values even if they’re not used. The row labeled “Reg.
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Chng.” shows a new register value that is available at the beginning of the cycle. If r0 is written leave the
entry blank.

Hint: For hints and confirmation see Spring 1999 HW 3, Fall 1999 HW 2, and Spring 2000 HW 2,
linked to http://www.ee.lsu.edu/ee4720/prev.html, for similar problems. It’s important that the problem
is solved by inspection of the diagram, not by inferring mindless, unworthy-of-an-engineer rules from past
solutions. Mindless rules are hard to remember and are useless in new situations.

Completed table appears below. The numbers in the table are in hexadecimal. An “x” after an instruction name indicates it
has been squashed.

Cycle 0 1 2 3 4 5 6 7 8 9

PC 50 54 58 5c 5c 60 68 6c

IF/ID.IR sub add lw sw sw jalr xor andi slti

Reg. Chng. r0 ←0 r0 ←0 r0 ←0 r0 ←0 r2 ←500 r2 ←aaa0 r0 ←0 r0 ←0 r31 ←60 r0 ←0

ID/EX.IR sub sub add lw swx sw jalr xorx andi slti

ID/EX.A 0 0 200 200 200 500 68 0 aaa0 300

ID/EX.B 0 0 300 200 100 100 ? 0 aaa0 300

ID/EX.IMM ? ? ? 4 8 8 ? ? 20 30

EX/MEM.IR sub sub sub add lw swx sw jalr xorx andi

EX/MEM.ALU 0 0 0 500 504 300 aaa8 60 0 20

EX/MEM.B 0 0 0 300 200 100 100 ? 0 aaa0

MEM/WB.IR sub sub sub sub add lw swx sw jalr xorx

MEM/WB.ALU 0 0 0 0 500 504 300 aaa8 60 0

MEM/WB.MD ? ? ? ? ? aaa0 ? ? ? ?
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Problem 4: Draw a pipeline execution diagram showing the execution of the familiar code below until the
second fetch of lw (the beginning of the second iteration). Hint: There are RAW hazards associated with the
loads, stores, and the branch. What is the CPI for a large number of iterations?

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

LOOP:

lw r1, 0(r2)

add r3, r1, r4

lb r5, 0(r3)

sb 0(r6), r5

addi r2, r2, #4

addi r6, r6, #1

slt r7, r2, r8

bneq r7, LOOP

xor r10, r11, r12

The pipeline execution diagram appears below. The CPI is 14
8 = 1.75CPI.

! Solution.

LOOP:

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

lw r1, 0(r2) IF ID EX ME WB IF ID EX ME

add r3, r1, r4 IF ID -> EX ME WB IF ID ->

lb r5, 0(r3) IF -> ID EX ME WB IF ->

sb 0(r6), r5 IF ID ----> EX ME WB

addi r2, r2, #4 IF ----> ID EX ME WB

addi r6, r6, #1 IF ID EX ME WB

slt r7, r2, r8 IF ID EX ME WB

bneq r7, LOOP IF ID ----> EX ME WB

xor r10, r11, r12 IF ----> x

Problem 5: Rearrange (schedule) the instructions in the program from the previous problem to minimize
the number of stalls. Now what is the CPI for a large number of iterations? Hint: The offsets in the load
and store instructions can be changed, even to negative numbers.

The pipeline execution diagram appears below. The CPI is 9
8 = 1.25CPI.

LOOP:

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11

lw r1, 0(r2) IF ID EX ME WB IF ID EX

addi r2, r2, #4 IF ID EX ME WB IF ID

add r3, r1, r4 IF ID EX ME WB IF

lb r5, 0(r3) IF ID EX ME WB

slt r7, r2, r8 IF ID EX ME WB

addi r6, r6, #1 IF ID EX ME WB

sb -1(r6), r5 IF ID EX ME WB

bneq r7, LOOP IF ID EX ME WB

xor r10, r11, r12 IF
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EE 4720 Homework 4 Solution Due: 3 November 2000

Problem 1: Show a pipeline execution diagram for the execution of the DLX program below on
a single-issue statically scheduled (plain old chapter 3) fully bypassed implementation in which
the add functional unit is two stages (A1, A2) with an initiation interval of 2 (latency 3) and the
multiply unit is six stages (M1 through M6) with an initiation interval of 1 (latency 5). (This problem
is very similar to Spring 2000 homework 3 problem 1. Check the solution to that assignment only
if completely lost.)

! Solution

addd f0, f2, f4 IF ID A1 A1 A2 A2 WB

addd f6, f0, f8 IF ID -------> A1 A1 A2 A2 WB

addd f10, f12, f14 IF -------> ID -> A1 A1 A2 A2 WB

multd f16, f18, f20 IF -> ID M1 M2 M3 M4 M5 M6 WB

Problem 2: Show a pipeline execution diagram for the execution of the DLX program below on
a single-issue statically scheduled fully bypassed implementation in which there are two add units,
both consisting of one stage with an initiation interval of 4 (latency 3, unpipelined). Use symbol A
for one adder and B for the other. The program below is slightly different than the one above.

! Solution

addd f0, f2, f4 IF ID A A A A WB

addd f6, f0, f8 IF ID -------> A A A A WB

addd f10, f12, f14 IF -------> ID B B B B WB

addd f16, f18, f20 IF ID ----> A A A A WB

Problem 3: Show a pipeline execution diagram for the execution of the DLX program below on
a two-way superscalar statically scheduled fully bypassed implementation in which there are two
add units, both consisting of one stage with an initiation interval of 4 (latency 3, unpipelined). Use
symbol A for one adder and B for the other.

! Solution

LINE1: ! LINE1 = 0x1000

addd f0, f2, f4 IF ID A A A A WB

addd f6, f0, f8 IF ID ----------> A A A A WB

addd f10, f12, f14 IF ----------> ID B B B B WB

addd f16, f18, f20 IF ----------> ID -------> A A A A WB

1
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Problem 4: Show a pipeline execution diagram for the DLX code below executing on a processor
with the following characteristics:

• Statically scheduled two-way superscalar.

• Unlimited number of functional units.

• Six stage fully pipelined multiply.

• Can handle an unlimited number of write backs per cycle. (Unrealistic, but reduces adidactic
tedium.)

• Fully bypassed, including the branch condition.

The diagram should start at the first iteration and end after 30 cycles or until a repeating pat-
tern is encountered, whichever is sooner. Note that there is a floating-point loop-carried dependency
(f2). What is the CPI for a large number of iterations?

LOOP: ! LOOP = 0x1004

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ld f0, 0(r1) IF ID EX ME WB IF ID EX ME WB IF ID EX ME WB IF ID EX ME WB

muld f2, f0, f2 IF ID -> M1 M2 M3 M4 M5 M6 WB

IF ID -> M1 M2 M3 M4 M5 M6 WB

IF ID -> M1 M2 M3 M4 M5 M6 WB

addi r1, r1, #8 IF ID EX ME WB IF ID EX ME WB IF ID EX ME WB

sub r2, r1, r3 IF -> ID EX ME WB IF -> ID EX ME WB IF -> ID EX ME WB

bneq r2, LOOP IF -> ID -> EX ME WB

IF -> ID -> EX ME WB

IF -> ID -> EX ME WB

xor r10, r11, r12 IF ->x

and r13, r14, r15 IF ->x

Problem 5: Unroll and schedule the loop from the problem above for maximum efficiency. Unroll
the loop four times; the number of iterations will always be a multiple of four. Use software pipelin-
ing and take advantage of associativity to overlap the multiply latency. (In software pipelining a
computation is spread over several iterations.) Code may be added before the LOOP label.

nop

LOOP: ! LOOP = 0x1008

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ld f0, 0(r1) IF ID EX ME WB IF ID EX ME WB

ld f10, 8(r1) IF ID EX ME WB IF ID EX ME WB

ld f12, 12(r1) IF ID EX ME WB IF ID EX ME WB

ld f14, 16(r1) IF ID EX ME WB IF ID EX ME WB

addi r1, r1, #32 IF ID EX ME WB IF ID EX ME WB

muld f0, f0, f24 IF ID M1 M2 M3 M4 M5 M6 WB

IF ID M1 M2 M3 M4 M5 M6 WB

sub r2, r1, r3 IF ID EX ME WB

muld f24, f20, f22 IF ID M1 M2 M3 M4 M5 M6 WB

muld f20, f0, f10 IF ID M1 M2 M3 M4 M5 M6 WB

muld f22, f12, f14 IF ID M1 M2 M3 M4 M5 M6 WB

bneq r2, LOOP IF ID EX ME WB

xor IF IDx

IFx
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EE 4720 Homework 5 Solution Due: 17 November 2000

Problem 1: The familiar loop below executes on a dynamically scheduled machine using a reorder
buffer to name destination registers. The machine has the following characteristics:

• Two-way superscalar. An unlimited number of write-backs per cycle.

• A 16-entry reorder buffer.

• A six-stage fully pipelined floating point multiply unit.

• Perfect branch target prediction. (Branch target in IF when branch is in ID.)

Show a pipeline execution diagram up to the fetch of the third iteration.
Explain why the first two iterations cannot be used to determine the CPI for a large number

of iterations in this case. Estimate the CPI for a large number of iterations (a pipeline execution
diagram is not necessary).

LOOP: ! LOOP = 0x1000

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11

ld f0, 0(r1) IF ID L1 L2 WB IF ...

IF ID L1 L2 WB

muld f2, f0, f2 IF ID RS M1 M2 M3 M4 M5 M6 WB

IF ID RS M1 M2 M3 M4 M5 M6 WB

IF ...

addi r1, r1, #8 IF ID EX WB

IF ID EX WB

sub r2, r1, r3 IF ID RS EX WB

IF ID RS EX WB

bneq r2, LOOP IF ID RS B WB

IF ID RS B WB

xor r10, r11, r12 IF x IF x

and r13, r14, r15

or r16, r17, r18

sgt r19, r20, r21

For clarity the first iteration is shown in black, the second in blue, and the third (just IF’s) in orange. The first
two iterations can’t be used to determine CPI because they start differently, for example, in the first f2 is available, but
at the beginning of the second (cycle 3) the value for f2 is not yet ready.

The CPI for a large number of iterations would be limited by the multiply unit. The hardware can fetch and decode
at a rate of 3 cycles per iteration, but the multiply latency is 6. Because there is a loop-carried dependency on the
multiplier input the multiplies have to be done one after another, and so execution is limited to 6 cycles per iteration
(after the reorder buffer fills). Since there are five instructions in an iteration the CPI is limited to 6

5 .
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Problem 2: Unroll the loop in the problem above twice. (In the last homework it was unrolled
four times.) Again exploiting the associativity of multiplication, rearrange the multiplies to improve
the performance, but this time without using software pipelining. Why is software pipelining not
necessary here?

! Solution

LOOP: ! LOOP = 0x1000

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

ld f0, 0(r1) IF ID L1 L2 WB IF ID L1 L2 WB

IF ID L1 L2 WB IF ...

ld f10, 8(r1) IF ID RS L1 L2 WB IF ID RS L1 L2 WB

IF ID RS L1 L2 WB

muld f4, f0, f10 IF ID RS M1 M2 M3 M4 M5 M6 WB

IF ID RS M1 M2 M3 M4 M5 M6 WB

IF ID RS M1 M2 M3 M4 M5 M6 WB

muld f2, f4, f2 IF ID RS M1 M2 M3 M4 M5 M6 WB

IF ID RS M1 M2 M3 M4 M5 M6 WB

IF ID RS M1

addi r1, r1, #16 IF ID EX WB IF ID EX WB IF ID EX WB

sub r2, r1, r3 IF ID RS EX WB IF ID RS EX WB

IF ID RS EX WB

bneq r2, LOOP IF ID B WB IF ID B WB IF ID B WB

xor r10, r11, r12 IF x IF x IF x

and r13, r14, r15

or r16, r17, r18

sgt r19, r20, r21

For clarity the first iteration is shown in black, the second in blue, the third in orange, and the fourth (just an IF)
in purple. (A pipeline diagram was not required for the solution, but is given here to help describe the solution.)

An important feature of the solution is the way the multiplies are done. The code above is limited to execute at
a rate of six cycles per iteration because of the loop-carried dependency in the second multiply. (But this does twice as
much work as the original code.) In the poor solution below the code is half as fast, limited to twelve cycles per iteration
because the loop-carried dependency is a source in the first multiply and a destination in the second:

! WARNING: POOR Solution below!

LOOP: ! LOOP = 0x1000

ld f0, 0(r1)

ld f10, 8(r1)

muld f2, f0, f2

muld f2, f10, f2

addi r1, r1, #16

sub r2, r1, r3

bneq r2, LOOP

xor r10, r11, r12

and r13, r14, r15

or r16, r17, r18

sgt r19, r20, r21

! WARNING: POOR Solution above!

Refer to the good solution for the following discussion.
Software pipelining is not needed because dynamic scheduling allows instructions after the second multiply to start

execution even before the second multiply starts. On a statically scheduled machine instructions after the second multiply
would have to wait. Software pipelining can be used to reduce the wait by moving the second multiply to the next iteration.
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Problem 3: The code below executes on a system using a one-level branch predictor with a
16-entry BHT. Which entries will the branches use?

The BHT entry numbers are shown in the leftmost column below. The entry numbers are bits 2:5 in the instruction
address, shown in the second column.

If the number of iterations is large, the prediction accuracy will be high. If a certain number of
additional nops are inserted before SKIP1 the prediction accuracy will drop. How many and why?

By inserting nop instructions the BHT entry used by the second and third branches will change. Prediction accuracy
will fall if the first and second branch use the same entry since their outcomes are always different from each other. Each
inserted nop increases the BHT entry number by one, 13 nop’s would put the second branch in entry 1, the same as the
first.

! Note: r2 is not modified inside the loop.

BHT En Addr LOOP: ! LOOP = 0x1000

0x1000: subi r1, r1, #1

1 0x1004: bneq r2, SKIP1

0x1008: add r10, r10, r11

0x100c: nop

SKIP1:

4 0x1010: beqz r2, SKIP2

0x1014: add r12, r12, r13

SKIP2

6 0x1018: bneq r1, LOOP

3

← → Fall 2000 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/ee4720/2000f/hw05_sol.pdf


Problem 4: Determine the prediction accuracy of a one-level branch predictor on each branch in
the code below. The predictor uses a 1024-entry BHT. There is a .5 probability that a loaded value
will be zero.

Because random numbers are loaded, the first branch (following LOOP) and the branch following SKIP2 can’t be
predicted, so the accuracy will be about 50%.

The second branch (following SKIP1) follows the pattern N T N T .... Depending on how the BHT entry is
initialized, the prediction accuracy will be 50% or 0%.

The third branch (following SKIP3) follows the pattern N T T T N T T T .... The prediction accuracy will
be 75% (the not taken is predicted taken after warm up).

The last branch (following SKIP4) is taken for all but the last iteration, the prediction accuracy will be 100% for
branches predicted after the first two iterations of the loop.

LOOP:

addi r2, r2, #4

lw r1, 0(r2)

bneq r1, SKIP1

add r10, r10, r11

SKIP1:

andi r3, r2, #4

bneq r3, SKIP2

add r11, r11, r12

SKIP2:

beqz r1, SKIP3

add r12, r12, r11

SKIP3:

andi r4, r2, #12

bneq r4, SKIP4

add r13, r13, r11

SKIP4:

sub r5, r2, r6

bneq r5, LOOP

4

← → Fall 2000 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/ee4720/2000f/hw05_sol.pdf


Problem 5: How many BHT entries will the branches in the code above use in the middle of
its execution (explained below) in a two-level gselect predictor that uses 10 bits of global branch
history and 6 instruction address bits? The loop iterates many times, the middle of its execution
starts after many iterations.

The global history has the following repeating pattern:
rNrNT rTrTT rNrTT rTrTT rNrNT rTrTT rNrTT rTrTT ..., where r is random and can be either T or
N. Each group corresponds to an iteration. The global history register contains ten outcomes. The global history when
predicting the first branch in the loop might see rNrNT rTrTT, the global history for the second branch might see NrNT
rTrTT r, and so on.

Ignoring the r’s, each branch can see four possible global history patterns (since there are four sets of branch
outcomes in an iteration such as rNrNT and they occur in the same order each time). Taking the global history into
account, there are 16 variation on each pattern (since each pattern contains 4 r’s). Therefore each branch can see 64
different patterns. There will be a different BHT entry for each branch and each pattern (since there are no collisions)
and so the total number of BHT entries is 16 × 4 × 5 = 320.

How many bits of global branch history are needed so that the branch following SKIP3 is
predicted very accurately?

The branch following SKIP3 follows the pattern N T T T N T T T .... To distinguish the not taken case
from the others the branch predictor might look at the three previous outcomes of the SKIP3 branch. If they are all
taken it would predict not taken. That would require a global history length of 15. However, it’s possible to use a shorter
global history: look at the two previous outcomes of the SKIP3 and the SKIP1 branch. If the two last SKIP3 branches
are TT and the two last SKIP1 branches are TN, predict not taken. (Don’t forget that the global history contains all
branches in this loop, but the other branches here are just noise.) So the minimum global history size is just 10 outcomes.

5
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EE 4720 Homework 1 Solution Due: 9 February 2000

Problem 1: Using the SPARC Architecture Manual (SAM) V8 answer the questions below. The
SPARC Architecture Manual is distributed with the source for the microSPARC IIep in directory
.../models/sparc_v8/docs/pdf of the distribution which can be downloaded from
http://www.sun.com/microelectronics/communitysource/sparcv8/.
Alternate instructions will be given in class.

The SAM is 295 pages, so don’t print it all out. It is not necessary that you understand
everything in the SAM to answer these questions. See Appendix B to answer the last question.

• What size integers does the ISA support?

8, 16, 32, and 64 bits.

• What size floating-point numbers does the ISA support?

32, 64, and 128 bits.

• How many floating-point registers does the ISA support, how large are they, and how are
the different-sized FP numbers placed in them?

Thirty-two 32-bit registers which can be used as 16 64-bit registers or 8 128-bit registers.

• What is the binary coding of the following SPARC v8 instruction:

ldsh [%r8 + 2], %r9 ! Load signed half, r9 = Mem[r8 + 2]

op

’b11

31 30

rd

9

29 25

op3

’b001010

24 19

rs1

8

18 14

i

1

13 13

simm13

2

12 0

Problem 2: Find the static and dynamic instruction count for the DLX program below. (DLX is
described in Chapter 2 of the text and summarized in the last two pages. Comments, preceded by
a !, describe what the instructions do.) The program adds up a table of numbers.

lhi r2, #0x1234 ! Load high: r2 = 0x12340000

ori r2, r2, #0x5678 ! r2 = r2 0x5678

addi r4, r0, #10 ! r4 = r0 + 10, r0 always = 0

sub r3, r3, r3 ! r3 = 0. There are lots of ways to do this!

LOOP:

lw r1, 0(r2) ! r1 = Mem[r2+0]

add r3, r3, r1 ! r3 = r3 + r1

addi r2, r2, #4 ! r2 = r2 + 4

subi r4, r4, #1 ! r4 = r4 - 1

bneq r4, LOOP ! if r4 != 0 goto LOOP

Static: 9 instructions.
Dynamic: 4 + 10× 5 = 54.
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Problem 3: DLX does not allow arithmetic instructions to access memory. Suppose they could
and suppose all the addressing modes in Figure 2.5 of the text were available. Re-write the program
to use as few instructions as possible (but still perform the same function).

Solution:

lhi r2, #0x1234 ! Load high: r2 = 0x12340000

ori r2, r2, #0x5678 ! r2 = r2 0x5678

addi r4, r0, #10 ! r4 = r0 + 10, r0 always = 0

sub r3, r3, r3 ! r3 = 0. There are lots of ways to do this!

LOOP:

add r3, r3, (r2)+

subi r4, r4, #1 ! r4 = r4 - 1

bneq r4, LOOP ! if r4 != 0 goto LOOP

Problem 4: Find the static and dynamic instruction count of the program written for the question
above.

Static: 7, dynamic: 4 + 3× 10 = 34.

Problem 5: What factors (relating to CPI and φ) would one have to take into account to compare
the execution time using the dynamic instruction count of the original program and the re-written
program?

With the new add instruction the dynamic instruction count drops from 54 to 34. If the clock frequency and CPI
of the two systems are the same execution time is 54−34

54 × 100% ≈ 37% lower on the new system.
The CPI of the add instruction that accesses memory would likely be higher than the instructions it replaces and so

the performance improvement may not be as low as the new, lower dynamic instruction count suggests.
It’s also possible that to accommodate the new add instruction the clock frequency (φ) had to be lowered, another

reason why the lower dynamic count is optimistic.
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EE 4720 Homework 3 Solution Due: 15 March 2000

Problem 1: Show a pipeline execution diagram for the following DLX code fragment on a statically
scheduled implementation in which the add functional unit has a latency of 3 (four stages) and an
initiation interval of 2 (not the usual 1) and the multiply unit has a latency of 5 (six stages) and
has an initiation interval of 3 (not the usual 1).

! Solution

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

addf f0, f1, f2 IF ID A1 A1 A2 A2 WB

addf f3, f0, f4 IF ID -------> A1 A1 A2 A2 WB

addf f5, f0, f7 IF -------> ID -> A1 A1 A2 A2 WB

gtf f0, f8 IF -> ID -> A1 A1 A2 A2 WB

multf f9, f0, f10 IF -> ID M1 M1 M1 M2 M2 M2 WB

Problem 2: The following DLX code fragment executes on a statically scheduled implementation
in which the add functional unit has a latency of 3 (four stages) and an initiation interval of 1 (the
usual 1) and the multiply unit has a latency of 5 (six stages) and has an initiation interval of 1 (the
usual 1).

The implementation uses ID-stage branch target calculation. As is true for the pipelines used
in class, the branch condition is not bypassed.

Instructions stall in ID to avoid structural hazards.
There are bypass paths from the WB stage to the inputs of the floating-point functional units.

(a) Show a pipeline execution diagram for the code.

LOOP: ! Solution

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

multd f0, f0, f2 IF ID M0 M1 M2 M3 M4 M5 WB IF ID

ld f4, 0(r1) IF ID EX ME WB IF

addd f2, f2, f4 IF ID -> A0 A1 A2 A3 WB

addi r1, r1, #8 IF -> ID ----> EX ME WB

sub r2, r1, r3 IF ----> ID EX ME WB

bneq r2, LOOP IF ID ----> EX ME

xor r10,r11,r12 IF ----> x

(b) What is the CPI for a large number of iterations of the loop?
The first iteration takes 12 cycles. The state of the pipeline at the beginning of the second iteration (cycle 12) is

different then the state at the beginning of the first (cycle 0) because the branch instruction from the first iteration is still
present. That branch instruction finishes at the end of cycle 14 and will not change the way the second iteration executes,
and so the second iteration will also take 12 cycles. Therefore the CPI for a large number of iterations is 12

6 = 2 cycles
per instruction.

1

← → Spring 2000 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4720/2000/hw03_sol.pdf


(c) If the multiply functional unit latency were long enough the second iteration would take longer
than the first iteration. (An iteration starts when the first instruction is in IF.) What is the
smallest such latency?

The multiply uses values produced in a previous iteration (that is, it has a loop-carried dependency). If those
values aren’t ready execution will stall. In the example below the execution of multiply in the second iteration is stalled
for one cycle (at cycle 15) because the result from the previous iteration is not ready. In this example the multiply unit
has a latency of 13 cycles, is the latency were 12 cycles there would be no stall, and so the smallest latency that will
increase the duration of the second iteration is 13 cycles.

! Part of Solution

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

multd f0, f0, f2 IF ID M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10M11WB

IF ID -> M0 M1

ld f4, 0(r1) IF ID EX ME WB

addd f2, f2, f4 IF ID -> A0 A1 A2 A3 WB

addi r1, r1, #8 IF -> ID EX ME WB

sub r2, r1, r3 IF ID -> EX ME WB

bneq r2, LOOP IF -> ID ----> EX ME -> WB

xor r10,r11,r12 IF ----> x

Problem 3: Schedule—but don’t unroll—the code from the problem above to avoid as many stalls
as possible. Show a pipeline execution diagram of the scheduled code. Hint: you can change the
offset of the load double instruction.

LOOP: ! Solution

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

addi r1, r1, #8 IF ID EX ME WB IF ID -> EX ME WB IF ID -> EX ME WB

sub r2, r1, r3 IF ID EX ME WB IF -> ID EX ME WB

ld f4, -8(r1) IF ID EX ME WB IF ID EX ME WB

multd f0, f0, f2 IF ID M0 M1 M2 M3 M4 M5 WB

IF ID M0 M1 M2 M3 M4 M5 WB

addd f2, f2, f4 IF ID A0 A1 A2 A3 WB IF ID A0 A1 A2 A3 WB

bneq r2, LOOP IF ID EX ME WB IF ID EX ME WB

xor r10,r11,r12 IFx IFx
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Problem 4: Unroll the loop below so that two iterations of the original loop form one unrolled
loop. Schedule the code so that it executes as efficiently as possible. Assume there will be an even
number of iterations and that every register not used in the original code is available and so can be
used in the unrolled loop. The loop runs on the implementation described in the second problem.

LOOP:

ld f0, 0(r1)

multd f0, f0, f2

addd f0, f0, f4

sd 8(r1), f0

addi r1, r1, #16

sub r2, r1, r3

bneq r2, LOOP

Two solutions are provided below. In the first the loop is unrolled without software pipelining. That is, the work
done by one iteration of the unrolled loop is exactly the work done by two iterations of the original loop. This solution
has several stall cycles, as can be seen in the pipeline execution diagram.

The second solution also uses software pipelining. A single iteration of this loop does the work of four half-iterations
of the original loop. Instructions addd f6, f5, f4 and sd 8(r1), f6 are part of one half-iteration, addd f16,

f15, f4 and sd 8(r1), f16 are part of another half-iteration, ld f0, 32(r1) and multd f5, f0, f2 are
part of a third half-iteration, and ld f10, 32(r1) and multd f15, f10, f2 are part of a fourth half-iteration.
This solution suffers no stalls, it only looses a cycle due to the branch penalty. In class, software pipelining was covered
in the context of IA-64 register rotation, but as shown below it can also be used with conventional ISAs.

! Solution 1: Unrolled, but no software pipelining.

LOOP:

ld f0, 0(r1) IF ID EX ME WB

ld f10, 16(r1) IF ID EX ME WB

multd f0, f0, f2 IF ID M0 M1 M2 M3 M4 M5 WB

multd f10, f10, f2 IF ID M0 M1 M2 M3 M4 M5 WB

addi r1, r1, #32 IF ID EX ME WB

sub r2, r1, r3 IF ID EX ME WB

addd f0, f0, f4 IF ID ----> A0 A1 A2 A3 WB

addd f10, f10, f4 IF ----> ID A0 A1 A2 A3 WB

sd 8(r1), f0 IF ID -------> EX ME WB

sd 24(r1), f10 IF -------> ID EX ME WB

bneq r2, LOOP IF ID EX ME
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! Solution 2:

! Unrolled loop with software pipelining. No stalls.

! Prologue

ld f0, 0(r1)

multd f8, f0, f2

ld f0, 16(r1)

multd f18, f0, f2

subi r13, r3, #32 ! In loop position of addi and sub swapped.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LOOP:

addd f6, f8, f4 IF ID A0 A1 A2 A3 WB IF ID A0 A1 A2 A3

ld f0, 32(r1) IF ID EX ME WB IF ID EX ME WB

addd f16, f18, f4 IF ID A0 A1 A2 A3 WB IF ID A0 A1

ld f10, 48(r1) IF ID EX ME WB IF ID EX

multd f8, f0, f2 IF ID M0 M1 M2 M3 M4 M5 WB IF ID

sub r2, r1, r13 IF ID EX ME WB IF

sd 8(r1), f6 IF ID EX ME WB

sd 24(r1), f16 IF ID EX ME WB

multd f18, f10, f2 IF ID M0 M1 M2 M3 M4 M5 WB

addi r1, r1, #32 IF ID EX ME WB

bneq r2, LOOP IF ID

! Epilogue

addd f0, f8, f4

sd 8(r1), f0

addd f0, f18, f4

sd 24(r1), f0
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EE 4720 Homework 4 Solution Due: 17 April 2000

Problem 1: The diagram below shows the execution of code on a dynamically scheduled machine
that uses physical register numbers to name destination operands. Show the state of the ID register
map, the commit register map, their free lists, and the physical register file for each cycle of the
execution below. In the register maps and file show only values related to registers f0 and f3.
Initially, f0=0, f1=10, f2=20, etc. Initially, register f0 is assigned to physical register 12 and f3

is assigned to physical register 15 (ignore the other architected registers). Initially, both free lists
contain physical register numbers {7, 8, 9, 10, 11}.

Note: As originally assigned the initial free lists did not contain register 11 and the pipeline
execution diagram showed reservation station (RS) segments. Both were mistakes and have been
corrected.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

multf f0, f1, f2 IF ID Q M0 M1 M2 M3 M4 M5 WC

addf f3, f0, f2 IF ID Q A0 A1 WC

subf f0, f4, f5 IF ID Q A0 A1 WB C

addf f3, f0, f5 IF ID Q A0 A1 WB C

addf f0, f2, f1 IF ID Q A0 A1 WB C

The solution appears below. Blank entries in the tables below indicate that the value has not changed. The free
lists (shown in braces, or curly brackets) are for the cycle in which the opening brace appears. For example, in cycle 3 the
ID free list is 10,11 and the completion free list is 7,8,9,10,11 (because there was no change since cycle 0). The
row in which a free list appears is not significant, there is only one ID free list and one completion free list.

1
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! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

multf f0, f1, f2 IF ID Q M0 M1 M2 M3 M4 M5 WC

addf f3, f0, f2 IF ID Q A0 A1 WC

subf f0, f4, f5 IF ID Q A0 A1 WB C

addf f3, f0, f5 IF ID Q A0 A1 WB C

addf f0, f2, f1 IF ID Q A0 A1 WB C

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

! ID Register Map

! f0 12 7 9 11

! f3 15 8 10

! ID Free List

! {7,8,9,10,11} {} {12} {12,15}

! {8,9,10,11} {12,15,7}

! {9,10,11} {12,15,7,8}

! {10,11} {12,15,7,8,9}

! {11}

! Commit Register Map

! f0 12 7 9 11

! f3 15 8 10

! Commit Free List

! {7,8,9,10,11} {8,9,10,11,12}

! {9,10,11,12,15}

! {10,11,12,15,7}

! {11,12,15,7,8}

! {12,15,7,8,9}

!

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

!

! Physical Register File

! 7 200

! 8 220

! 9 -10

! 10 40

! 11 30

! 12 0

! 13

! 14

! 15 30

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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Problem 2: Repeat the problem above assuming that there is an exception in stage A1 of the
execution of addf f3, f0, f5, as shown below: The solution can start at the cycle in which the
tables will differ from the solution above.

The solution appears below. The exception is not handled until the instruction reaches completion, at cycle 17. (So
the solution below is identical to the one above up to cycle 17.) At cycle 17 the controller recovers from the exception by
copying the completion map and completion free list to the ID map and free list. The diagram below shows this recovery
being done in one cycle, but real system might take longer. Because the add encountered an exception the value it writes
into the register file may not be valid, that is indicated by question marks.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

multf f0, f1, f2 IF ID Q M0 M1 M2 M3 M4 M5 WC

addf f3, f0, f2 IF ID Q A0 A1 WC

subf f0, f4, f5 IF ID Q A0 A1 WB C

addf f3, f0, f5 IF ID Q A0*A1*WB Cx

addf f0, f2, f1 IF ID Q A0 A1 WB

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

! ID Register Map

! f0 12 7 9 11 9

! f3 15 8 10 8

! ID Free List

! {7,8,9,10,11} {} {12} {12,15}

! {8,9,10,11} {12,15,7}

! {9,10,11} {10,11,12,15,7}

! {10,11}

! {11}

! Commit Register Map

! f0 12 7 9

! f3 15 8

! C Free List

! {7,8,9,10,11} {8,9,10,11,12}

! {9,10,11,12,15}

! {10,11,12,15,7}

!

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

!

! Physical Register File

! 7 200

! 8 220

! 9 -10

! 10 ?40?

! 11 30

! 12 0

! 13

! 14

! 15 30

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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Problem 3: The diagram below, of a dynamically scheduled processor, omits hardware that checks
whether the register map should be updated in the WB stage. (The hardware was described in
class.) Add the hardware to the diagram (at the same level of detail as other parts of the diagram).

Solution diagram not yet available.
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Problem 4: Draw a pipeline execution diagram for the DLX code below running on a dynamically
scheduled 4-way superscalar implementation with the following characteristics:

• Dynamically scheduled using a reorder buffer to name registers (method 1).

• One load/store functional unit with stages L1 and L2.

• No dynamic (hardware) branch prediction, all branches are predicted not taken. Branch
predictor uses the B functional unit and must wait for its operand like any other instruction.

• Four integer execution units.

Find the IPC for an execution of a large number of iterations. Show the execution for 14 cycles
or until there is enough information to compute the IPC, which ever is shorter.

! Note: runs for many iterations.

add r3, r0, r0

LOOP:! LOOP = 0x1000

lw r1, 4(r2)

add r3, r3, r1

lw r2, 8(r2)

bneq r2, LOOP

xor r0, r0, r0

The pipeline execution diagram is shown below. The misprediction is detected in cycle 7 and the correct path
is fetched in cycle 8. The xor and following instructions get squashed (or flushed from the reorder buffer). Since the
iteration that starts at cycle 8 will take the same number of cycles as the one that starts at cycle 1 the IPC is 4

7 ≈ 0.571.

! Solution

! Cycle 0 1 2 3 4 5 6 7 8

add r3, r0, r0 IF ID EX WC

LOOP: ! LOOP = 0x1000

lw r1, 4(r2) IF ID L1 L2 WC IF ...

add r3, r3, r1 IF ID RS RS EX WC IF ...

lw r2, 8(r2) IF ID RS L1 L2 WC IF ...

bneq r2, LOOP IF ID RS RS RS B WC

IF ...

xor r0, r0, r0 IF ID EX WB x
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Problem 5: Repeat the problem above when the branch is statically predicted as taken and the
branch target is computed in the ID stage.

The pipeline execution diagram is shown below. Since the branch target is computed in ID the target instruction
is fetched two cycles after the branch. (With a branch target buffer it would be fetched one cycle after the branch is
fetched.) The hardware is able to fetch and decode instructions in this loop at the rate of 2 IPC, but the completion rate
is lower due to dependencies between the loads. The second load must wait one cycle for the first load to move out of
L1, as it does in cycle 3. The first load must wait for the second load from the previous iteration to enter WB, as it does
in cycle 5. Because instructions are being fetched faster than they are begin committed some resource (such as reorder
buffer slots or reservation stations) will be used up. When that happens (not shown below) instructions will stall in ID
and fetch will drop to a rate of 4

3
instructions per cycle. This is much faster than 4

7
from the previous problem but still

less than the 4 IPC that the processor is capable of.

! Solution

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

add r3, r0, r0 IF ID EX WC

LOOP: ! LOOP = 0x1000

lw r1, 4(r2) IF ID L1 L2 WC

IF ID RS L1 L2 WC

IF ID RS RS L1 L2 WC

IF ID RS RS RS L1 L2 WC

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

add r3, r3, r1 IF ID RS RS EX WC

IF ID RS RS RS EX WC

IF ID RS RS RS RS EX WC

IF ID RS RS RS RS RS EX WC

lw r2, 8(r2) IF ID RS L1 L2 WC

IF ID RS RS L1 L2 WC

IF ID RS RS RS L1 L2 WC

IF ID RS RS RS RS L1 L2 WC

bneq r2, LOOP IF ID RS RS RS B WC

IF ID RS RS RS RS B WC

IF ID RS RS RS RS RS B WC

IF ID RS RS RS RS RS RS B WC

xor r0, r0, r0 IF x IF x IF x IF x

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

6
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Problem 6: Repeat the superscalar problem when the branch is statically predicted taken and in
which the address of LOOP it 0x1004.

! Note: runs for many iterations.

add r3, r0, r0

LOOP:! LOOP = 0x1004

lw r1, 4(r2)

add r3, r3, r1

lw r2, 8(r2)

bneq r2, LOOP

xor r0, r0, r0

The pipeline execution diagram is shown below. Because of alignment the instructions for one iteration are fetched
in two groups. (In the previous example the four instructions in an iteration neatly fit on one group.) This adds an extra
cycle, so instructions are fetched at a rate of 4

3
IPC, which is the same rate at which they are executed. So, even though

instructions are fetched at a lower rate execution occurs at the same rate because of dependencies.

! Solution

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

add r3, r0, r0 IF ID EX WC

LOOP: ! LOOP = 0x1004

lw r1, 4(r2) IF ID L1 L2 WC

IF ID L1 L2 WC

IF ID L1 L2 WC

IF ID L1 L2 WC

add r3, r3, r1 IF ID RS RS EX WC

IF ID RS RS EX WC

IF ID RS RS EX WC

IF ID RS RS EX WC

lw r2, 8(r2) IF ID RS L1 L2 WC

IF ID RS L1 L2 WC

IF ID RS L1 L2 WC

IF ID RS L1 L2 WC

bneq r2, LOOP IF ID RS RS B WC

IF ID RS RS B WC

IF ID RS RS B WC

IF ID RS RS B WC

xor r0, r0, r0 IF IDx IF IDx IF IDx IF IDx IF IDx IF IDx

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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EE 4720 Homework 5 Solution Due: 24 April 2000

Problem 1: The code below is run on three machines each using a slightly different one-level branch
predictor. Each machine’s branch predictor uses a 1024-entry BHT. The first machine uses 2-bit saturating
counters (as described in class), the second machine uses the 2-bit prediction scheme illustrated in Figure
4.13 of the text, and the third uses a 3-bit saturating counter. (The scheme illustrated in Figure 4.13 uses
two bits, but it’s not a saturating counter.) Find the prediction accuracy for each scheme on each branch
instruction for a large number of iterations.

! r1 is initially set to a large value.

LOOP1:

subi r1, r1, #1

beqz r1, EXIT

andi r2, r1, #6

bneq r2, SKIP1

add r3, r3, #1

SKIP1:

andi r2, r1, #2

bneq r2, SKIP2

add r3, r3, #1

SKIP2:

j LOOP1

EXIT:

Solution on next page.
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The branch outcomes are shown below, the horizontal position indicates the order in which the branches are executed (the
distance between them is not drawn to scale). Beneath the branch outcomes are the values of the branch counter (or state) for the
prediction scheme indicated. An x appears beneath a branch outcome if it was mispredicted. If the prediction accuracy for a branch
and scheme depends on how the counter is initialized then counter values and outcomes are shown for several possible initializations.
The prediction scheme illustrated in Figure 4.13 is called 2-bit state; the states are numbered 0 through 3, with 0 being the state
illustrated in the lower right, 1 lower left, 2 upper right, and 3 upper left. At least enough outcomes are shown to reveal a repeating
sequence.

LOOP1:

subi r1, r1, #1

beqz r1, EXIT N N N N N N N N N

! 2-bit counter 3 x 2 x 1 0 0 0 0 0 0 0 ... 100%

! 2-bit state 3 x 2 x 0 0 0 0 0 0 0 0 ... 100%

! 3-bit counter 7 x 6 x 5 x 4 x 3 2 1 0 0 0 ... 100%

andi r2, r1, #6

bneq r2, SKIP1 N N T T T T T T N N T T T

! 2-bit counter 3 x 2 x 1 x 2 3 3 3 3 3 x 2 x 1 x 2 3 3 ... 5/8 = 62.5%

! 2-bit state 3 x 2 x 0 x 1 x 3 3 3 3 3 x 2 x 0 x 1 x 3 3 ... 4/8 = 50%

! 3-bit counter 7 x 6 x 5 6 7 7 7 7 7 x 6 x 5 6 7 7 ... 6/8 = 75%

add r3, r3, #1

SKIP1:

andi r2, r1, #2

bneq r2, SKIP2 N N T T N N T T N

! 2-bit counter 3 x 2 x 1 x 2 3 x 2 x 1 x 2 3 ... 1/4 = 25%

! 2-bit counter 0 0 0 x 1 x 2 x 1 0 x 1 x 2 ... 1/4 = 25%

! 2-bit state 3 x 2 x 0 x 1 x 3 x 2 x 0 x 1 x 3 ... 0/4 = 0%

! 2-bit state 0 0 0 x 1 x 3 x 2 x 0 x 1 x 3 ... 0/4 = 0%

! 3-bit counter 7 x 6 x 5 6 7 ... 2/4 = 50%

! 3-bit counter 5 x 4 x 3 x 4 5 ... 1/4 = 25%

! 3-bit counter 4 x 3 2 x 3 x 4 ... 1/4 = 25%

! 3-bit counter 0 0 0 x 1 x 2 1 0 x 1 x 2 ... 2/4 = 50%

add r3, r3, #1

SKIP2:

j LOOP1

EXIT:

2

← → Spring 2000 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/ee4720/2000/hw05_sol.pdf


Problem 2: What is the largest BHT size (number of entries) for which there will be collisions between at
least two branches in the code above?

For there to be a collision the BHT address must be the same for at least two branches. If the BHT had just one entry it
would use zero address bits and so all branches would have the same BHT address. But the problem asked for the maximum table
size. The address of each instruction (using a made-up value of LOOP1) is shown below next to the instruction. The low-order bits
of branch instruction addresses (skipping alignment) are shown to the left. If the BHT used three address bits then these would be
the addresses and there would be no collisions. If two bits were used (the two least significant bits) the three address would still be
different. If one address bit were used then the first two branches would be indistinguishable, there’d be collisions. So the answer is
two entries.

Note that the BHT address is constructed using the address (PC) of the branch instruction, not the branch target address.

! r1 is initially set to a large value.

LOOP1: 0x1000

0x1000: subi r1, r1, #1

001 0x1004: beqz r1, EXIT

0x1008: andi r2, r1, #6

011 0x100c: bneq r2, SKIP1

0x1010: add r3, r3, #1

SKIP1:

0x1014: andi r2, r1, #2

110 0x1018: bneq r2, SKIP2

0x101c: add r3, r3, #1

SKIP2:

0x1020: j LOOP1

EXIT:

Problem 3: The program below runs on a system using a gselect branch predictor with a 14-bit branch
history and a 222-entry BHT.

Show the value of the global branch history just before executing each branch after a large number of
iterations. (The branch can be taken or not taken.) Also show the address used to index (lookup the value
in) the BHT.

Determine the prediction accuracy of each branch assuming no collisions in the BHT.

! r2 is initially set to a large value.

add r1, r0, r0

LOOP1: ! LOOP1 = 0x1000

addi r1, r1, #2

LOOP2: ! LOOP2 = 0x1080

subi r1, r1, #1

bneq r1, LOOP2

A: ... ! Nonbranch instructions.

addi r1, r1, #3

LOOP3: LOOP3 = 0x1100

subi r1, r1, #1

bneq r1, LOOP3

B: ... ! Nonbranch instructions.

subi r2, r2, #1

LINE: ! LINE = 0x1180

bneq r2, LOOP1
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The branch outcomes are shown in the diagram below. Each branch outcome appears twice, once in the line labeled “Global
history,” and once in the line holding the corresponding branch. The global branch history at a particular cycle consists of the last
14 branch outcomes.

! r2 is initially set to a large value.

LOOP1: ! LOOP1 = 0x1000

! Cycle: a b x y z

! Global history: T N T T N T T N T T N T T N T T N T T N T T N T

addi r1, r1, #2

LOOP2: ! LOOP2 = 0x1080

subi r1, r1, #1

bneq r1, LOOP2 T N T N T N T N

A: ...

addi r1, r1, #3

LOOP3: LOOP3 = 0x1100

subi r1, r1, #1

bneq r1, LOOP3 T T N T T N T T N T T N

B: ...

subi r2, r2, #1

LINE: ! LINE = 0x1180

bneq r2, LOOP1 T T T T

For the first branch the global history at cycle x (see diagram above) is NTTNTTNTTNTTNT. The address of the first branch
is 0x1084. The BHT address is constructed by concatenating the branch history with 22− 14 = 8 bits of the branch address:
001000012 : 011011011011012, where 001000012 is the 8 low bits of 0x1084 skipping alignment and 011011011011012 is
the binary representation of the branch history (obtained by changing “N”s to 0 and “T”s to 1), and “:” is a concatenation operator.

For the second branch the global history at cycle y is TNTTNTTNTTNTTN and the BHT address is
010000012 : 101101101101102.

For the third branch the global history at cycle z is TNTTNTTNTTNTTN and the BHT address is
011000002 : 101101101101102.

Because the outcome is always the same (before the outer loop is exited) the last branch will be predicted with 100% accuracy.
Consider the first branch at positions a and b. Position a is at the first iteration of LOOP2 and position b is at the second

(last) iteration. As can be seen the global history is the same whenever execution is at the first iteration of LOOP2 (except for the
first few iterations of the outer loop). The same holds for the second iteration.

At position a the last two outcomes in the global history are NT, at position b the last two outcomes are TT, and so different
BHT entries will be used. At the first iteration the branch is always taken so that BHT entry will saturate at 3, at the second iteration
the branch is never taken so that entry will saturate at 0; both branches will be predicted perfectly (after warmup). Here the global
branch history holds 14 outcomes, if it held only one outcome the same BHT entry would be used for both iterations and prediction
accuracy would suffer.

A similar argument holds for the second branch. Therefore the branch prediction accuracy will approach 100% for a large
number of iterations.

Problem 4: Suppose the problem above ran on a gshare branch predictor with a 10-bit branch history and
a 210-entry BHT. Determine addresses for LOOP1, LOOP2, LOOP3, and LINE for which there would be
collisions in the BHT after a large number of iterations. (Please retain program order.)

The global history at positions y and z are the same. Therefore if the index part of the address of the second and third branches
were the same the same BHT entry would be used. Keep LOOP3 at 0x1100 (and the second branch at 0x1104) and change LINE to
110416 + 210+2 = 210416.

4

← → Spring 2000 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/ee4720/2000/hw05_sol.pdf


77 Fall 1999 Solutions

1193

← → Fall 1999 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4720/1999f/hw01_sol.pdf


EE 4720 Homework 1 Due: 10 September 1999

Problem 1: What are the static and dynamic instruction counts of the two DLX programs below?
(DLX is described in Chapter 2 of the text and summarized in the last two pages. Comments,
preceded by a !, describe what the instructions do.) Be sure to use the value for r2 specified in
the comments. Both programs find the population (number of 1’s) in the binary representation
of the value in r2. (For example, the population of 1210 = 11002 is 2, 710 = 01112 is 3, and
d06f00d16 = 21855847710 = 11010000011011110000000011012 is 12.)

! Program 1.

! r2 = 0xd06f00d

add r1, r0, r0 ! r1 = 0. Initialize total.

LOOP:

andi r3, r2, #1 ! r3 = r2 & 0x1. Put least-significant bit in r3.

add r1, r1, r3 ! r1 = r1 + r3. Add to total.

srli r2, r2, #1 ! r2 = r2 >> 1. Shift right logical. Shift off LSB.

bneq r2, LOOP ! Branch if r2 not zero. Loop if more.

! Program 2.

! r2 = 0xd06f00d

! r4 = Base of table. Entry i is number of 1’s in binary i.

add r1, r0, r0 ! r1 = 0. Initialize total.

LOOP:

andi r3, r2, # 0xff ! r3 = r2 & 0xff. Put 8 least significant bits in r3.

add r5, r4, r3 ! r5 = r4 + r3. Add to base of population table.

lbu r6, 0(r5) ! r6 = Mem[0+r5] Load byte unsigned, Load population of r3

add r1, r1, r6 ! r1 = r1 + r6. Add to the total.

srli r2, r2, #8 ! r2 = r2 >> 8. Shift right logical. Shift off 8 bits.

bneq r2, LOOP ! Loop if r2 not zero.

Program 1: static count, 5 instructions. Using data above program iterates 28 times. With four instructions per
iteration dynamic count is 1 + 4× 28 = 113 instructions.

Program 2: static count, 7 instructions. Using data above program iterates four times, with six instruction per
iteration dynamic count is 1 + 6× 4 = 25 instructions.

Problem 2: Suppose the programs above are run on machines that execute one instruction at
a time without overlap (unlike most of the examples shown in class) and with no gaps between.
Suppose the CPI for all instructions is 1 cycle and the clock frequency is 625 MHz (period is 1.6 ns).
How long would it take each program to run? Suppose the CPI for the lbu instruction was 3 cycles.
How long would program 2 take?

If all instructions have a CPI of 1, program 1 would take 113 inst × 1 CPI × 1.6 ns/cycle = 180.8 ns and
program 2 would take only 40 ns.

With a CPI of three for lbu, program 2 would take

((1 + 4× 5) inst× 1 CPI + 4 inst× 3 CPI)× 1.6 ns/cycle = 52.8 ns,

still faster than one. (Program 1 is not affected by the change in CPI for lbu.)

1
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Problem 3: What changes would have to be made to program 2 if the lbu instruction (load byte
unsigned) were changed to lhu (load half unsigned)?

The lbu instruction loads one byte, the lhu instruction loads two bytes. Assume the change was made because the
table contains two-byte, rather than one-byte, entries. Then to find the ith index one would look at address r4+ 2× i
rather than r4 + i. In the program i is the contents of r3, so we would have to multiply that by 2. The modified
program appears below.

! Modified Program 2.

! r2 = 0xd06f00d

! r4 = Base of table. Entry i is number of 1’s in binary i.

add r1, r0, r0 ! r1 = 0. Initialize total.

LOOP:

andi r3, r2, # 0xff ! r3 = r2 & 0xff. Put 8 least significant bits in r3.

add r3, r3, r3 ! Multiply r3 by 2. (Using an add for speed.)

add r5, r4, r3 ! r5 = r4 + r3. Add to base of population table.

lhu r6, 0(r5) ! r6 = Mem[0+r5] Load byte unsigned, Load population of r3

add r1, r1, r6 ! r1 = r1 + r6. Add to the total.

srli r2, r2, #8 ! r2 = r2 >> 8. Shift right logical. Shift off 8 bits.

bneq r2, LOOP ! Loop if r2 not zero.

Problem 4: The Easy ISA as described in class has only five instructions with no straightforward
way of adding new ones. A non-straightforward way of adding instructions is to take advantage of
the fact that the coding does not use all possible combination of bits. In particular, it is possible
to specify an immediate as the destination of an arithmetic instruction even though the ISA has
no corresponding instruction. For example, consider:

add

000

0 2

Imm.

01

3 4

3

3

5 24

Reg.

00

25 26

r1

1

27 33

Imm.

01

34 35

12

0xc

36 55

This could be interpreted as instruction add 3, r1, 12, however there is no such instruction in
the Easy ISA. (If there was, what would it do?)

Explain how this “hole” can be used to code additional instructions. Use this coding to add
and, or, sll (shift left logical), and srl (shift right logical) instructions. The new instructions
should use the same addressing modes as the existing arithmetic instructions.

If the addressing mode for the destination is immediate, interpret the immediate value as an extended opcode and
interpret the next three operand fields as destination, source 1, and source 2. Codings for the logical instructions: and,
0; or, 1; sll, 2; and slr, 3.
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Problem 5: Recall that an issue (it’s not okay to say problem anymore) with the Easy ISA is that
there is no CTI (control-transfer instruction: branch, jump, call, return, etc.) that will branch to
an address held in a register. Only self-modifying code can do that. Write such code. The code
should branch to an address held in register r100. The solution may use the instructions added
above. Addresses in Easy ISA do not have to be aligned. Assume the most significant bit of the
address is always zero. Hint: This assumption and the lack of alignment restrictions makes things
alot easier.

The branch instruction contains its target address in bits 15 through 78. Those bits will have to be overwritten
with the target address held in r100. Call the address of the branch instruction BLINE. All Easy ISA instructions write
64-bit words starting at any address. Suppose r0 held a zero. Instruction add [BLINE+r0], r10, 0 would write
the contents of r10 to the first 64 bits of the branch instruction. If r1 holds a 1 then add [BLINE+r1], r10, 0

would write the contents of r10 to bits 8 through 71 of the branch instruction. If r2 held a 2 then add [BLINE+r2],

r10, 0 would modify bits 16 through 79 which is almost what we need. Since there is no way to exactly write bits 15
through 78, the target address will have to be prepared. In this case preparation merely consists of shifting it one position
to the left. Because the MSB of addresses are always zero there is no need to modify bit 15 and nothing need be done
with the MSB bit of r100. The solution appears below:

add r3, 0, 2 ! Put constant 2 in r3.

! Shift the address by 1, store in branch, starting at byte 2.

sll [r3+BLINE], r100, 1

add r1, 0, 1 ! Set branch condition.

BLINE:

b r1, r101, DONTCARE ! DONTCARE is changed by the time it executes.

3
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EE 4720 Homework 2 Solution Due: 4 October 1999

Problem 1: Suppose the coding of DLX instructions were changed so the destination appeared
before the source operands, as shown in the codings below:

New Type R:

Opcode

0

0 5

rd

6 10

rs1

11 15

rs2

16 20

func

21 31

New Type I:

Opcode

0 5

rd

6 10

rs1

11 15

Immediate

16 31

Type J: (no change)

Opcode

0 5

Offset

6 31

Show the changes needed to the pipeline below to implement this new ISA. The changes should
only effect the ID and WB stages. If there are differences in the control inputs to multiplexors or
other units, explain what those differences are.

Make sure your design executes store instructions correctly.

Changes shown in red.

sign
ext.

IR

Addr

6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

16..20
6..10

=Store
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Problem 2: The program below executes on the DLX implementation shown below. The imple-
mentation uses forwarding (bypassing) to avoid some data hazards and stalls to avoid others. All
forwarding paths are shown. (If a needed forwarding path is not there, sorry, you’ll have to stall.)
A value can be read from the register file in the same cycle it is written. The destination field in
the beqz is zero. Instructions are nulled (squashed) in this problem by replacing them with slt

r0,r0,r0. All instructions stall in the ID stage.

! Initially, r1=0x101, r2=0x202, r3=0x303

! MEM[0x103] = 0xfe

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

START: ! START = 0x50

lb r1, 2(r1)

addi r1, r1, #3

or r1, r1, r2

beqz r2, SKIP !(taken)

add r3, r1, r2

sub r0, r0, r0

sub r0, r0, r0

SKIP:

xor r3, r1, r3

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

The table below shows the contents of pipeline registers and changes to architecturally visible
registers r1-r31 over time. Cycle zero is the time that lb is in instruction fetch. The first two
columns are completed; fill in the rest of the table. Use a “?” for the value of the “immediate field”
of a type R instruction and for the output of the memory when no memory read is performed.
Show pipeline register values even if they’re not used. Assume that the ALU performs the branch
target computation even though it was already computed in ID. The row labeled “Reg. Chng.”
shows a new register value that is available at the beginning of the cycle. If no register value is
written leave the entry blank.

Hints: See Spring 1999 HW 3 for a similar problem. One feature of the solution would not be
present if lb were replaced by a addi. Another feature may not be present if lb were replaced by
lw.
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Completed table appears below.

Cycle 0 1 2 3 4 5 6 7 8 9 10

PC 0x50 0x54 0x58 0x58 0x5c 0x60 0x6c 0x70 0x74 0x78 0x7c

IF/ID.IR sub lb addi addi or beqz add xor sub sub sub

Reg. Chng. r0←0 r0←0 r0←0 r0←0 r0←0 r1←-2 r0←0 r1←1 r1←203 r0←0 r0←0

ID/EX.IR sub sub lb slt addi or beqz slt xor sub sub

ID/EX.A 0 0 0x101 0 0x101 -2 0x202 0 0x203 0 0

ID/EX.B 0 0 0x101 0 0x101 0x202 ? 0 0x303 0 0

ID/EX.IMM ? ? 2 ? 3 ? 3 ? ? ? ?

EX/MEM.IR sub sub sub lb slt addi or beqz slt xor sub

EX/MEM.ALU 0 0 0 0x103 0 1 0x203 0x6c/4 0 0x100 0

EX/MEM.B 0 0 0 0x101 0 0x101 0x202 0 0 0 0

MEM/WB.IR sub sub sub sub lb slt addi or beqz slt xor

MEM/WB.ALU 0 0 0 0 0x103 0 1 0x203 0x6c/4 0 0x100

MEM/WB.MD ? ? 0 0 -2 ? ? ? ? ? ?

To help solve the problem, find a pipeline execution diagram for the code (shown below). Cycle numbers in diagram
and table match.

! Initially, r1=0x101, r2=0x202, r3=0x303

! MEM[0x103] = 0xfe

sub r0, r0, r0

sub r0, r0, r0

! Cycle 0 1 2 3 4 5 6 7 8 9 10

START: ! START = 0x50

lb r1, 2(r1) IF ID EX MEM WB

addi r1, r1, #3 IF ID --> EX MEM WB

or r1, r1, r2 IF --> ID EX MEM WB

beqz r2, SKIP !(taken) IF ID EX MEM WB

add r3, r1, r2 IFx

sub r0, r0, r0

sub r0, r0, r0

SKIP:

xor r3, r1, r3 IF ID EX MEM WB

sub r0, r0, r0 IF ID EX MEM

sub r0, r0, r0 IF ID EX

sub r0, r0, r0 IF ID
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Problem 3: Consider the program:

LOOP:

lw r1, 0(r2)

add r3, r1, r3

addi r2, r2, #4

bneq r1, LOOP

or r4, r5, r6

For each implementation below provide a pipeline execution diagram showing execution up to
the third fetch of lw and determine the CPI for a large number of iterations.

Not Bypassed:
sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Solution:

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

LOOP:

lw r1, 0(r2) IF ID EX MEM WB IF ID EX MEM WB IF

add r3, r1, r3 IF ID -----> EX MEM WB IF ID -----> EX MEM WB

addi r2, r2, #4 IF -----> ID EX MEM WB IF -----> ID EX MEM WB

bneq r1, LOOP IF ID EX MEM WB IF ID EX MEM WB

or r4, r5, r6 IFx IFx

Each iteration takes the same amount of time, 7 cycles, and contains 4 instructions, for a CPI of 7
4 CPI =

1.75 CPI.

4
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Bypassed:
sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Solution:

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

LOOP:

lw r1, 0(r2) IF ID EX MEM WB IF ID EX MEM WB IF

add r3, r1, r3 IF ID --> EX MEM WB IF ID --> EX MEM WB

addi r2, r2, #4 IF --> ID EX MEM WB IF --> ID EX MEM

bneq r1, LOOP IF ID EX MEM WB IF ID EX

or r4, r5, r6 IFx IFx

Each iteration takes the same amount of time, 6 cycles, and contains 4 instructions, for a CPI of 6
4 CPI = 1.5 CPI.

Problem 4: Schedule (rearrange) the instructions in the program used in the previous problem
to improve execution speed. (Do not change what the program does!). Show pipeline execution
diagrams and determine CPI for the two implementations.

Solution:

! Not bypassed.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

LOOP:

lw r1, 0(r2) IF ID EX MEM WB IF ID EX MEM WB IF

addi r2, r2, #4 IF ID EX MEM WB IF ID EX MEM WB

add r3, r1, r3 IF ID -> EX MEM WB IF ID -> EX MEM

bneq r1, LOOP IF -> ID EX MEM WB IF -> ID EX

or r4, r5, r6 IFx IFx

Each iteration takes the same amount of time, 6 cycles, and contains 4 instructions, for a CPI of 6
4

CPI = 1.5 CPI.
Solution:

! Bypassed Implementation

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

LOOP:

lw r1, 0(r2) IF ID EX MEM WB IF ID EX MEM WB IF

addi r2, r2, #4 IF ID EX MEM WB IF ID EX MEM WB

add r3, r1, r3 IF ID EX MEM WB IF ID EX MEM

bneq r1, LOOP IF ID EX MEM WB IF ID EX

or r4, r5, r6 IFx IFx

Each iteration takes the same amount of time, 5 cycles, and contains 4 instructions, for a CPI of 5
4 CPI =

1.25 CPI.
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Problem 5: Show the changes needed to implement the predicated instructions presented in class.
(Set 4, page 25, as of this writing.) Describe the instruction format and show any datapath and
control changes to the implementation below.

The solution described below adds predicated type-R instructions.
First, an instruction coding needs to be found. The coding should fit naturally into the DLX ISA such that

implementations would be changed as little as possible. Since this is an addition to DLX, existing DLX instructions must
not be changed.

Predicated versions of type-R instructions will be added. The predicated instructions have new opcodes, the new
opcodes will not be listed. (As with other type-R instructions, the opcode is in the Func field.)

Unless the format is changed, there is no room to specify the predicate register. Rather than changing the format,
the interpretation of the fields will be changed. The destination filed (〈rd〉) will specify the predicate and 〈rs1〉 will
specify the first source operand (as usual) and the destination (they will always be the same). For example, instruction
(r1) add r2, r2, r3 is coded:
Type R:

Opcode

0

0 5

rs1

2

6 10

rs2

3

11 15

rd

1

16 20

func

add.pn

21 31
where opcode add.pn indicates a predicated add which writes its result of the predicate is non-zero. (If the Func

field contained an ordinary add the instruction would be add r1, r2, r3.)
Here are some not-so-good alternative codings: Add a third source operand field, increasing the instruction size to 40

bits (maybe use the 3 left over bits for more opcode space). If all instructions are 40 bits, then old code won’t work and so
this is really a new ISA, not an extension of an existing one. If only predicated instructions are 40 bits, then implementation
will be a challenge. First (this will be covered later in the semester) it’s alot harder to build a memory system that returns
any five consecutive bytes. It’s much easier to fetch a power-of-two bytes at an aligned address. Another problem is that
before the PC is incremented one has to find the instruction size, in the implementations considered size is determined in
the cycle after its needed. If the PC were incremented in the beginning of the fetch cycle we could determine whether the
previous instruction (in ID) was predicated, but the IF critical path length would be long in that case.

Now that the coding is determined, the pipeline must be modified to implement it. Predicated instructions need
three register values, that can’t be avoided so a third read port must be added to the register file (see the illustration
below). (Some real ISAs have special predicate registers, so additional general purpose register file ports are not needed.)

Predicated instructions have the destination register in a different place (bits 6 to 10) than other type-R instructions
(16 to 20). The decode logic must recognize predicated instructions and place the correct destination register in the
ID/EX.RD pipeline latch. (See illustration.)

An instruction is called predicated because its result isn’t written back if the predicate is false. This will be
implemented by replacing the destination register with a 0 in the EX stage. An =0 checks the predicate to see if it’s
zero. The predicate may come from the register file or be bypassed from MEM or WB. In ordinary predicated instructions
the predicate is false if the predicate register is zero. In inverted predicate instructions ((!r1) add r2, r2, r3)

the predicate is false if the predicate register is non-zero. An exclusive or gate is used to invert the output of =0 for

inverted instructions. (The output of =Pred 0 is true if an inverted predicated instruction is present.)
If the predicate were tested in ID then it would not be possible to use the result of an immediately preceding

instruction.
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Changes are shown in red:

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B
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NPC

ALU
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+4
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B
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MD

= Type R

11..15

16..20

31

0

= Link CTI

= Type I
ALU

RD RD

= Non-link
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= Load

=Store

RD

00

01

10
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00
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11

MSB

LSB

(Not Connected)

Addr Data
16..20 C

0

= Pred
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6..10
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P
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EE 4720 Homework 3 Solution Due: 15 October 1999

Problem 1: Consider the following method of implementing precise exceptions in DLX. An
Exception Handler Address (EHA) register holds the address of the exception handler and an
Exception Return Address (ERA) register holds the address of the faulting instruction. A new
instruction (not in book) set.eha 〈rs1〉 places the contents of register 〈rs1〉 in EHA. After an
exception occurs the address of the faulting instruction should be put in ERA and control should
jump to the address stored in EHA. When an rfe (return from exception) instruction is executed
control should jump back to the address stored in ERA.

Each stage has a squash signal that effectively replaces any instruction present with a nop.
(See the illustration below.) Each stage also has an EXC signal which, in the middle of the cycle,
is true if an exception is discovered in that stage. EXC will not be asserted if the stage contains an
already squashed instruction. Registers EHA and ERA will be written with data at their in inputs if
en is asserted using the same master /slave timing as the other registers and latches.

The diagram below shows a DLX implementation with the new squash signals (IF.SQ, etc.),
exception signals (in every stage except WB), and the two new registers. The hardware shown can
implement set.eha but does not implement exceptions or rfe. Add the hardware needed to do
these. In particular:

• After an exception occurs control should jump to the address in EHA.

• Exceptions must be precise and handled in program order.

• rfe must return control to the faulting instruction.

• If the multiplexor in IF needs additional inputs, use the Taken signal to create the new
multiplexor control signal. Taken is asserted only when the ID-stage adder produces the
target address.

• Do not implement instructions that transfer ERA to and from an integer register.

• Assume that exception handlers will never encounter exceptions. (They do in real life, so
the handler would need a way to save registers before any exceptions occur.)

• Do not test or set processor status bits for privileged state.

1
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Decode

sign
ext.

IR

Addr
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16..20
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11..15
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IF.SQ ID.SQ EX.SQ MEM.SQ

EXC

EXC

EXC

Control

Taken

0

1

EXC

=set.eha

ERA
in

en

out

EHA
in

en

out
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Based on your design, show a pipeline execution diagram for the code below in which the lw

instruction raises a page fault exception in MEM and ant raises an illegal instruction exception
in ID. Show the execution through the first two lines of the handler. Also show execution of the
return from the handler and the second call of the handler for the ant instruction.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lhi r20, hi(HANDLER) IF ID EX MEM WB

or r20, r20, lo(HANDLER) IF ID EX MEM WB

set.eha r20 IF ID EX MEM WB

add r1, r2, r3 IF ID EX MEM WB

lw r4, 0(r5) IF ID EX *MEM*WB

ant r6, r7, r8 IF *ID* EXx

sub r9, r10, r11 IFx

and r12, r13, r15

or r15, r16, r17

HANDLER:

sw 1000(r0), r1 IF ID EX MEM WB

sw 1004(r0), r2 IF ID EX MEM WB

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3
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! First lines duplicated

lhi r20, hi(HANDLER)

or r20, r20, lo(HANDLER)

set.eha r20

!Cycle 100 101 102 103 104 105 106 107

add r1, r2, r3

lw r4, 0(r5) IF ID EX MEM WB

ant r6, r7, r8 IF *ID* EXx

sub r9, r10, r11 IFx

and r12, r13, r15

or r15, r16, r17

...

! Return address still in ERA.

lw r1, 1000(r0) IF ID EX MEM WB

rfe IF ID EX MEM WB

LINEX:

add r1, r2, r3 IFx

sub r4, r5, r6

xor r7, r8, r9

4
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In all the problems below all register values are available when the code starts executing. The
datapath is fully pipelined so execution of floating point operations can start in the cycle after
results are produced, just as the integer instructions do. Unless they are provided, use the following
latency and initiation intervals: add unit: latency 3, initiation interval 1; multiply unit: latency 5,
initiation interval 1; divide unit: latency 19, initiation interval 20.

Problem 2: Show a pipeline execution diagram for the code below. The branch is not taken.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

multd f0, f2, f4 IF ID M0 M1x

beqz r1, SKIP IF ID EX ME WB

multd f0, f2, f6 IF ID M0 M1 M2 M3 M4 M5 WB

multd f0, f0, f8 IF ID -------------> M0 M1 M2 M3 M4 M5 WB

add r1, r1, r2 IF -------------> ID EX ME WB

Problem 3: Show a pipeline execution diagram for the code below. The add functional unit has
a latency of 3 and an initiation interval of 2. Hint: This problem tests knowledge of initiation
intervals, use of functional units by different instructions, and usage of registers by single- and
double-precision instructions.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

LOOP:

gtd f12, f14 IF ID A1 A1 A2 A2 WB

addd f0, f2, f4 IF ID -> A1 A1 A2 A2 WB

addd f6, f8, f10 IF -> ID -> A1 A1 A2 A2 WB

addf f16, f7, f18 IF -> ID -------> A1 A1 A2 A2 WB

Problem 4: Show a pipeline execution diagram for the code below starting from the first iteration
until the CPI for a large number of iterations can be determined. What is that CPI?

The branch condition is bypassed to the ID stage so the branch does not have to stall for r1.
(See 1998 HW 3.)

!Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LOOP:

subi r1, r1, #1 IF ID EX ME WB IF ID EX ME WB

IF ID EX ME WB

multd f0, f0, f2 IF ID M0 M1 M2 M3 M4 M5 WB

IF ID ----> M0 M1 M2 M3 M4 M5 WB

IF ID ----> M0

bneq r1, LOOP IF ID EX ME WB

IF ----> ID EX ME WB

IF ID EX ME

and r2, r3, r4 IFx IFx IFx

CPI is 6
3

= 0.5.

5
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EE 4720 Homework 1 Due: 5 February 1999

The code fragment below, in C source and assembler forms, is referred to in the problems below.

for(i=0; i<1000; i++) if( s[i].type == 0 )

suma += s[i].score; else sumb+=s[i].score;

! r3 initialized to address of first element.

add r1, r0, r0 ! i=0

LOOP:

slti r2, r1, #1000 ! r2 = 1 if r1 < 1000, otherwise r2 = 0.

beqz r2, DONE

lw r4, 0(r3)

ld f0, 16(r3)

bneq r4, SUMB ! Taken half the time.

addd f2, f2, f0

j NEXT

SUMB:

addd f4, f4, f0

NEXT:

addi r3, r3, #64 ! Size of element is 64 bytes.

addi r1, r1, #1 ! Increment loop index.

j LOOP

DONE:

Problem 1: Determine the static and dynamic instruction count for the DLX program above.
The branch that tests r4 will be taken half the time.

The dynamic count for each instruction is shown in the first column:

! r3 initialized to address of first element.

1 add r1, r0, r0 ! i=0

LOOP:

1001 slti r2, r1, #1000 ! r2 = 1 if r1 < 1000, otherwise r2 = 0.

1001 beqz r2, DONE

1000 lw r4, 0(r3)

f 1000 ld f0, 16(r3)

1000 bneq r4, SUMB ! Taken half the time.

f 500 addd f2, f2, f0

500 j NEXT

SUMB:

f 500 addd f4, f4, f0

NEXT:

1000 addi r3, r3, #64 ! Size of element is 64 bytes.

1000 addi r1, r1, #1 ! Increment loop index.

1000 j LOOP

DONE:

Static: 12 instructions. Dynamic: 9,503 instructions (totaling dynamic counts above).
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Problem 2: Suppose the program runs for 1 millisecond on a system with a 10 MHz clock. As-
suming no cache misses (an assumption that will be made for most of these problems), what is the
average CPI?

Answer: CPI = 1 ms10 MHz/9503 inst = 10000 cycles/9503 inst = 1.0523 CPI.

Problem 3: Divide the instructions into two classes: floating-point and others. (The floating-
point instructions include the addd and ld instructions.) Suppose on implementation A the CPI of
floating-point instructions, CPIfp, is twice the CPI of the other instructions, CPIother. If implemen-
tation A uses a 10 MHz clock and runs the program in 1 millisecond (like the previous problem),
what would the CPIs be? Implementation B is the same as implementation A except floating-point
instructions have an average CPI that is 3 times the other instructions. Estimate how long it will
take to run the program on implementation B using a 10 MHz clock.

Let tA denote the execution time on implementation A (which can be expressed in cycles or seconds).

tA = CPIfpICfp + CPIotherICother

= 2CPIotherICfp + CPIotherICother

Solving for CPIother:

CPIother =
tA

2ICfp + ICother
=

10000 cycles

2× 2000 + 7503
= 0.8692 CPI

Then CPIfp = 2CPIother = 1.7387 CPI. Let tB denote the execution time estimate for implementation B. Then

tB = CPIother(3ICfp + ICother) = 0.8693(3 × 2000 + 7503)

= 11738.7 cycles = 1.17387 ms

Problem 4: Suppose that an implementation executed instructions one after another with no
overlapping and no gaps between instructions. If each instruction took five cycles to execute and
the clock frequency was 10 MHz, how long would program execution take?

It would take 5× 9503 = 47515 cycles = 4.7515 ms.
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Problem 5: Suppose, somehow, a load double and load word instruction using scaled addressing
were added to DLX. The assembler syntax is similar to the one in table 2.5 of the text, except a
displacement is included at the end. For example, the execution of ld f0, 10(r20)[r30]40 will
load f0 (and f1) with the contents of memory at address 10 + r20 + r30 * 40. Rewrite the
program above using the new instruction.

! r3 initialized to address of first element.

add r1, r0, r0 ! i=0

LOOP:

slti r2, r1, #1000 ! r2 = 1 if r1 < 1000, otherwise r2 = 0.

beqz r2, DONE

lw r4, 0(r3)[r1]64

ld f0, 16(r3)[r1]64

bneq r4, SUMB ! Taken half the time.

addd f2, f2, f0

j NEXT

SUMB:

addd f4, f4, f0

NEXT:

! Note that r3 is no longer changed.

addi r1, r1, #1 ! Increment loop index.

j LOOP

DONE:
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EE 4720 Homework 2 Due: 19 February 1999

The SPARC assembly language program below is used in the problems that follow. SPARC
register names are %g0-%g7, %i0-%i7, %l0-%l7, and %o0-%o7; and %g0 is a zero register (like r0 in
DLX). The destination for arithmetic, logical, and load instructions is the rightmost register (add
%l1,%l2,%l3 means %l3=%l1+%l2). SPARC uses a condition code register and special condition-
code-setting instructions for branches. Branches include a delay slot.

LOOP:

ld [%l1], %l2 ! Load l2 = MEM[ l1 ]

addcc %l2, %g0, %g0 ! g0 = g0 + l2. Sets cond. codes. Note: g0 is zero reg.

be DONE ! Branch if result zero.

nop ! Fill delay slot with nop.

add %l6, %l2, %l6 ! l6 = l6 + l2

andcc %l3, 1, %g0 ! g0 = 1 & l3. Sets cond. codes. Note: g0 is zero reg.

be SKIP1

nop

add %l4, 1, %l4

SKIP1:

subcc %l3, 1000, %g0

bpos SKIP2 ! Branch if >= 0;

nop

add %l4, %l3, %l4

SKIP2:

andcc %l3, 1, %g0

be SKIP3

nop

add %l4, %l4, %l4

SKIP3:

add %l1, 4, %l1

ba LOOP ! Branch always. (Jump.)

nop

DONE:

Problem 1: An execution of the code above on a SPARC implementation takes 1000 cycles. The
dynamic instruction count is ICall of which ICnop instructions are nop’s. Consider two ways of
computing CPI:

CPIA =
t

ICall
and CPIB =

t

ICall − ICnop
,

where t is the execution time in cycles. Which is better? Justify your answer; an argument for
either formula can be correct.

CPIA is better because it measures how efficiently a processor executes instructions, including nop instructions
which are part of the code.

1
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Problem 2: SPARC branches have a one-instruction delay slot, in the code above they are filled
with nop’s. Re-write the code filling as many slots with useful instructions as possible, reducing
the number of instructions in the program.

Solution:

ld [%l1], %l2 ! Load l2 = MEM[ l1 ]

LOOP:

addcc %l2, %g0, %g0 ! g0 = g0 + l2. Sets cond. codes. Note: g0 is zero reg.

be DONE ! Branch if result zero.

andcc %l3, 1, %g0 ! g0 = 1 & l3. Sets cond. codes. Note: g0 is zero reg.

add %l6, %l2, %l6 ! l6 = l6 + l2

be SKIP1

subcc %l3, 1000, %g0

add %l4, 1, %l4

SKIP1:

bpos SKIP2 ! Branch if >= 0;

andcc %l3, 1, %g0

add %l4, %l3, %l4

SKIP2:

be SKIP3

add %l1, 4, %l1

add %l4, %l4, %l4

SKIP3:

ba LOOP ! Branch always. (Jump.)

ld [%l1], %l2 ! Load l2 = MEM[ l1 ]

DONE:

Problem 3: Re-write the program in DLX, taking advantage of DLX’s use of general purpose
registers for specifying branch conditions.

Solution:

LOOP:

lw r2, 0(r1)

beqz r2, DONE

add r6, r2, r6

andi r10, r3, #1

beqz r10, SKIP1

addi r4, r4, #1

SKIP1:

sgei r11, r3, #1000

bneq r11, SKIP2

add r4, r3, r4

SKIP2:

beqz r10, SKIP3 ! r10 computed before SKIP1.

add r4, r4, r4

SKIP3:

addi r1, r1, #4

beqz r0, LOOP

DONE:

2
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Problem 4: The program below executes on the DLX implementation shown below. The com-
ments show the results of the xori, or, and lw instructions.

! Initially, r1=11, r2=22, r3=33, etc.

addi r0, r0, #0

addi r0, r0, #0

addi r0, r0, #0

addi r0, r0, #0

addi r0, r0, #0

START: ! START = 0x50

xori r1, r9, #7 !99 ⊕ 7 = 100

or r2, r3, r4 !33 or 44 = 45

lw r5, 9(r6) !Mem[9+66]=42

sw 10(r7), r8

addi r0, r0, #0

addi r0, r0, #0

addi r0, r0, #0

addi r0, r0, #0

addi r0, r0, #0

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

The table below shows the contents of pipeline registers and changes to architecturally visible
registers r1-r31 over time. Cycle zero is the time that xori is in instruction fetch. The first two
columns are completed, continue filling the table up until the sw instruction finishes writeback.
Ignore values which are not used and which depend on the func field of type-R instructions. Values
which are not used and don’t depend on the func field should be shown. The output of the data
memory is zero when a store or no memory operation is performed. The row labeled “Reg. Chng.”
shows a new register value that is available at the beginning of the cycle. If no register value is
written leave the entry blank.

Cycle 0 1 2 3 4 5 6 7 8 9 10

PC 0x50 0x54 0x58 0x5c 0x60 0x64 0x68 0x6c 0x70 · · ·
IF/ID.IR addi xori or lw sw addi · · ·
Reg. Chng. r0← 0 r0← 0 r0← 0 r0← 0 r0← 0 r1← 100r2← 45 r5← 42 X r0← 0 · · ·
ID/EX.IR addi addi xori or lw sw addi · · ·
ID/EX.A 0 0 99 33 66 77 0 · · ·
ID/EX.B 0 0 11 44 55 88 0 · · ·
ID/EX.IMM 0 0 7 X 9 10 0 · · ·
EX/MEM.IR addi addi addi xori or lw sw addi · · ·
EX/MEM.ALU 0 0 0 100 45 75 87 0 · · ·
EX/MEM.B 0 0 0 11 44 55 88 0 · · ·
MEM/WB.IR addi addi addi addi xori or lw sw addi · · ·
MEM/WB.ALU 0 0 0 0 100 45 75 87 0 · · ·
MEM/WB.MD 0 0 0 0 0 0 42 0 0 · · ·

3
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EE 4720 Homework 3 Due: 8 March 1999

In all problems below assume there are no cache misses and that all register values are available at
the beginning of execution.

Problem 1: The pipeline shown below cannot execute the jal or jalr instructions. Identify and
fix the problem. (Hint: Think about a difference between jal and beqz besides the fact that jal is
unconditional.)

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

The problem: The jal and jalr instructions are supposed to save the return address (NPC) in r31 but in the
pipeline above there is no path that NPC can take to the writeback stage. (The path through the ALU could be used if
it wasn’t already being used to compute the target address.)

The solution: provide EX/MEM.NPC and MEM/WB.NPC pipeline latches and connect them so that the return
address can move to the writeback stage without having to go through the ALU. Connect the output of MEM/WB.NPC to
the multiplexor leading to the register file. (MEM/WB.ALU and MEM/WB.MD are already connected to this multiplexor.)

1
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Problem 2: The program below executes on the DLX implementation shown below. The com-
ments show the results of some instructions. The implementation uses forwarding (bypassing) to
avoid some data hazards and stalls to avoid others. The forwarding paths are shown. A value can
be read from the register file in the same cycle it is written. The destination field in the bneq is
zero. Instructions are nulled (squashed) in this problem by replacing them with or r0,r0,r0.

! Initially, r1=0x11, r2=0x22, r3=0x33, etc.

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

START: ! START = 0x50

addi r1, r2, #1

add r2, r1, r6

xor r2, r1, r2

bneq r1, START

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

sub r0, r0, r0

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

The table below shows the contents of pipeline registers and changes to architecturally visible
registers r1-r31 over time. Cycle zero is the time that addi is in instruction fetch. The first two
columns are completed; fill up the rest of the table. Ignore values which are not used and which
depend on the func field of type-R instructions. Values which are not used and don’t depend on the
func field should be shown. Don’t forget the IMM values for bneq. The row labeled “Reg. Chng.”
shows a new register value that is available at the beginning of the cycle. If no register value is
written leave the entry blank.

Cycle 0 1 2 3 4 5 6 7 8 9 10

PC 0x50 0x54 0x58 0x5c 0x60 0x50 0x54 0x58 0x5c 0x60 0x50

IF/ID.IR sub addi add xor bneq sub addi add xor bneq sub

Reg. Chng. r0←0x0 r0←0x0 r0←0x0 r0←0x0 r1←0x23 r2←0x89 r2←0xaa x r0←0x0 r1←0xab r2←0x111

ID/EX.IR sub sub addi add xor bneq or addi add xor bneq

ID/EX.A 0x0 0x0 0x22 0x11 0x11 0x23 0x0 0xaa 0x23 0x23 0xab

ID/EX.B 0x0 0x0 0x11 0x66 0x22 0x0 0x0 0x23 0x66 ab 0x0

ID/EX.IMM 0x0 0x0 0x1 ? ? -0x10 0x0 0x1 ? ? 0x14

EX/MEM.IR sub sub sub addi add xor bneq or addi add xor

EX/MEM.ALU 0x0 0x0 0x0 0x23 0x89 0xaa ? 0x0 0xab 0x111 0x1ba

EX/MEM.B 0x0 0x0 0x0 0x11 0x66 0x22 0x0 0x0 0x23 0x66 0xaa

MEM/WB.IR sub sub sub sub addi add xor bneq or addi add

MEM/WB.ALU 0x0 0x0 0x0 0x0 0x23 0x89 0xaa ? 0x0 0xab 0x111

MEM/WB.MD 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

2
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Problem 3: The program below executes on the implementation also shown below.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

add r1, r2, r3

and r4, r1, r5

sw 0(r4), r1

lw r1, 8(r4)

xori r5, r1, #1

beqz r5, TARGET

sub r5, r5, r5

...

TARGET:

or r10, r5, r1

The implementation includes only the forwarding paths that are shown in the figure. A new
register value can be read in the same cycle it is written. Show a pipeline execution diagram for
an execution of the code in which the branch is taken.

Solution:

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

add r1, r2, r3 IF ID EX MEM WB

and r4, r1, r5 IF ID EX MEM WB

sw 0(r4), r1 IF ID --> EX MEM WB

lw r1, 8(r4) IF --> ID EX MEM WB

xori r5, r1, #1 IF ID --> EX MEM WB

beqz r5, TARGET IF --> ID -----> EX MEM WB

sub r5, r5, r5 IF -----> x

...

TARGET:

or r10, r5, r1 IF ID EX MEM WB

3
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Problem 4: Add exactly those forwarding paths (but no others) that are needed in the DLX
implementation used in the problem above so that the code above executes as quickly as possible.
Show a pipeline execution diagram of the code (repeated below) on the modified implementation.

add r1, r2, r3

and r4, r1, r5

sw 0(r4), r1

lw r1, 8(r4)

xori r5, r1, #1

beqz r5, TARGET

sub r5, r5, r5

...

TARGET:

or r10, r5, r1

The execution in the previous problem suffers three stalls, starting at cycles 4, 7, and 9.
Without the stall at cycle 4 there would be no way for the data (the new value of r1) to reach the EX/MEM.B pipeline

latch when sw is at the MEM stage. This can be fixed with a bypass connection from the output of the writeback-stage
multiplexor to a new multiplexor placed at the inputs to the EX/MEM.B pipeline latch.

The stall at cycle 7 cannot be avoided since the data is first available at the end of cycle 7 but would be needed at
the beginning of cycle 7 (if the stall were removed).

The stall at cycle 9 provides time for the new value of r5 to reach WB where it meets beqz at cycle 10. One
or both stall cycles can be eliminated by inserting bypass paths. To eliminate one stall cycle insert a bypass path from
EX/MEM.ALU to the input of the =0 box in ID. To eliminate both stall cycles (while possibly lengthening the critical
path) insert a bypass path from the ALU output (before the EX/MEM pipeline latch) to the =0 box.

The pipeline execution diagram below uses the conservative approach for the =0 bypass, from EX/MEM.ALU:

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

add r1, r2, r3 IF ID EX MEM WB

and r4, r1, r5 IF ID EX MEM WB

sw 0(r4), r1 IF ID EX MEM WB

lw r1, 8(r4) IF ID EX MEM WB

xori r5, r1, #1 IF ID --> EX MEM WB

beqz r5, TARGET IF --> ID --> EX MEM WB

sub r5, r5, r5 IF --> x

...

TARGET:

or r10, r5, r1 IF ID EX MEM WB

4
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Problem 5: The code below executes on the DLX implementation shown below which also includes
the following floating-point hardware:

• As described in Section 3.7 of the text and in class, there is a four-stage FP add unit, a
seven-stage multiply unit, and a 25-cycle FP divide unit (not used in the code below). The
FP add unit also performs FP comparisons, such as eqf.

• The floating-point branch instructions, bfpt and bfpf, are executed in the ID stage just as
the integer branches, beqz and bneq. The FP condition code register (also not shown) is
updated in the WB cycle but the value to be written is forwarded to the controller at the
beginning of WB.

• All stalls are in the ID stage. Floating-point instructions skip the MEM stage.

• Floating-point values are forwarded from the WB stage to the inputs of the FP execution
units. A value written to a FP register can be read in the same cycle.

(a) Show a pipeline execution diagram for two iterations of the code below in which bfpt is taken
in the first iteration but not taken in the second. (Note: the loop is infinite.)

(b) Determine the CPI of an execution of the code for a large number of iterations in which bfpt

is always taken.

(c) Determine the CPI of an execution of the code for a large number of iterations in which bfpt

is never taken.

(d) Determine the CPI of an execution of the code for a large number of iterations in which bfpt

is taken 50% of the time.
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LOOP:

addi r1, r1, #8

lf f0, 0(r1)

addf f1, f1, f0

eqf f0, f2

bfpt LOOP

multf f1, f1, f3

beqz r0, LOOP

xor r2, r1, r3

5
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Solution: (The label for the memory (MEM) stage has been shortened to ME. Three iterations (rather than two) are shown; they are needed to solve part (c).)
LOOP:

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

addi r1, r1, #8 IF ID EX ME WB IF ID EX ME WB IF ID EX ME WB IF ...

lf f0, 0(r1) IF ID EX ME WB IF ID EX ME WB IF ID EX ME WB

addf f1, f1, f0 IF ID -> A0 A1 A2 A3 WB IF ID -> A0 A1 A2 A3 WB IF ID ----> A0 A1 A2 A3 WB

eqf f0, f2 IF -> ID A0 A1 A2 A3 WB IF -> ID A0 A1 A2 A3 WB IF ----> ID A0 A1 A2 A3 WB

bfpt LOOP IF ID ----------> EX ME WB IF ID ----------> EX ME WB IF ID ----------> EX ME WB ...

multf f1, f1, f3 IF ----------> x IF ----------> ID M0 M1 M2 M3 M4 M5 M6 WB IF ----------> ID M0 M1 ...

beqz r0, LOOP IF ID EX ME WB IF ID EX ...

xor r2, r1, r3 IF x IF x

Part (b): If bfpt is taken the iteration consists of 5 instructions. If the branch is always taken each iteration will execute as the first above, and so there will
be 11 cycles per iteration. The CPI is 11/5 = 2.2 CPI.

Part (c): If bfpt is not taken the iteration consists of 7 instructions. In the second iteration above the branch is not taken and so multf is executed, producing
a new value of f1. That new value is needed in the third iteration, stalling addf an extra cycle (the stall occurs in cycles 28 and 29). The second iteration takes 13
cycles (from cycle 11 to 24) but due to the extra cycle the third iteration takes 14 cycles (from cycle 24 to 38). Because iteration 3 and 4 start the same way (as can
be determined by examining the state of execution [a vertical strip] at cycles 24 and 38) they should take the same number of cycles as should following iterations as
long as the branch is not taken. (Note that iteration 2 at cycle 11 starts differently.) Therefore the CPI is 14/7 = 2 CPI.

Part (d): An iteration where bfpt is taken that follows an iteration where it isn’t would take 12 cycles (such a pair is not shown in the diagram above). An
iteration where bfpt is not taken that follows an iteration where it is would take 13 cycles; for example, the second iteration above. For a large number of iterations
the CPI would be (12 + 13)/(5 + 7) = 2.083 CPI.
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EE 4720 Homework 4 & 5 Solution Due: 23 April 1999

In all problems below assume there are no cache misses and that all register values are available at the beginning of execution.

Problem 1: Show a pipeline execution diagram for the first 41 cycles of the code below on a dynamically scheduled implementation of DLX in
which:

• There is one floating point multiply unit with a latency of 5 and an initiation interval of 2.

• There is a load/store functional unit with a latency of 1. The segments are labeled L1 and L2.

• The FP add functional unit has a latency of 3 and an initiation interval of 1.

• The integer functional unit has a latency of 0 and an initiation interval of 1.

• The functional units have reservation stations with the following numbers: integer, 6-9; fp add, 0-1; fp multiply, 2-3; load/store, 4-5.

• There is no reorder buffer.

• The branch delay is one. (There are no branch delay slots.)

• Ignore load/store ordering.

Initially all reservation stations are available.
LOOP:

addi r1, r1, #8

sub r2, r1, r3

lf f0, 0(r1)

multf f1, f0, f0

multf f2, f0, f1

sf 4(r1), f1

bneq r2, LOOP ! Assume always taken.

xor r4, r5, r6

1
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LOOP:

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

addi r1, r1, #8 IF ID 6:EX 6:WB IF ID 6:EX 6:WB IF ID

sub r2, r1, r3 IF ID 7:EX 7:WB IF ID 7:EX 7:EX 7:WB IF

lf f0, 0(r1) IF ID 4:L1 4:L2 4:WB IF ID 5:RS 5:L1 5:L2 5:WB

multf f1, f0, f0 IF ID 2:RS 2:M1 2:M1 2:M2 2:M2 2:M3 2:M3 2:WB

IF ID 2:RS 2:RS 2:M1 2:M1 2:M2 2:M2 2:M3 2:M3 2:WB

multf f2, f0, f1 IF ID 3:RS 3:RS 3:RS 3:RS 3:RS 3:RS 3:M1 3:M1 3:M2 3:M2 3:M3 3:M3 3:WB

IF ID -----------------------> 3:RS 3:RS 3:M1 3:M1

sf 4(r1), f1 IF ID 4:RS 4:RS 4:RS 4:RS 4:RS 4:L1 4:L2 4:WB

IF -----------------------> ID 4:RS 4:L1 4:L2

bneq r2, LOOP IF ID IF ID

xor r4, r5, r6 IF x IF x

LOOP:

Cycle 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

addi r1, r1, #8 IF ID 6:EX 6:WB IF ID 6:EX 6:WB

sub r2, r1, r3 IF ID 7:EX 7:WB IF ID 7:EX 7:EX 7:WB

lf f0, 0(r1) IF ID 4:L1 4:L2 4:L2 4:WB IF ID 5:RS 5:L1 5:L2 5:WB

multf f1, f0,f0 2:M3 WB IF ID 2:RS 2:RS 2:M1 2:M1 2:M2 2:M2 2:M3 2:M3 2:WB

IF ID 2:RS 2:RS 2:M1 2:M1 2:M2 2:M2 2:M3 2:M3

multf f2, f0,f1 3:RS 3:M1 3:M1 3:M2 3:M2 3:M3 3:M3 3:WB

IF ID ---> 3:RS 3:RS 3:RS 3:RS 3:RS 3:RS 3:M1 3:M1 3:M2 3:M2 3:M3 3:M3 3:WB

IF ID -----------------------> 3:RS 3:RS

sf 4(r1), f1 4:RS 4:L1 4:L2 4:WB IF ---> ID 4:RS 4:RS 4:RS 4:RS 4:RS 4:L1 4:L2 4:WB

IF -----------------------> ID 4:L1

bneq r2, LOOP ID IF ID IF ID

xor r4, r5, r6 IF x IF x IF

Note: In cycle 12 the load waits an extra cycle because L1 is being used by the store. (As a general rule, the instruction waiting longer should start first. When contending for
the CDB, the functional unit with the longer latency gets priority.)

2
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Problem 2: Determine the CPI for a large number of iterations of the loop above (or give a good reason why it would be very difficult to determine
the CPI).

Consider the state of the machine when fetching the first instruction of the loop, addi. It is the same at cycle 8 and 30 (for example, in both cases the first multiply from the
previous iteration started the second multiply stage, the sf and second multf are sitting in reservation stations, and the number of free reservation stations at each functional unit
is the same in both cycles). There are 7 instructions per iteration, so the CPI is (30− 8)/(2× 7) = 1.571 CPI.

Problem 3: What are the minimum number of reservation stations of each type needed so that the code above executes at maximum speed? What
is the CPI at maximum speed? (This part was not in the problem as originally assigned:) The CDB can handle any number of writebacks per cycle
and there are an unlimited number of functional units.

The problem as originally assigned was more tedious than intended. To solve it one would need to find a repeating pattern of iterations. Because
of contention for the CDB, the repeating pattern does not occur in the first few iterations and so one would have to tediously construct the diagram
for many iterations.

To solve this problem construct a pipeline execution diagram assuming an unlimited number of reservation stations. The diagram should continue until every instruction in the
first iteration completes. (This loop does not have inter-iteration dependencies, but if it did [e.g., if the second multiply were multf f2, f1, f2] the diagram would continue
until every instruction in the second iteration finished.) From the diagram find the maximum number of reservation stations used. For the code above the diagram should be continued
until cycle 18 (a few extra cycles are shown):

LOOP:

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

addi r1, r1, #8 IF ID EX WB IF ID EX WB IF ID EX WB

sub r2, r1, r3 IF ID EX WB IF ID EX WB IF ID EX WB

lf f0, 0(r1) IF ID L1 L2 WB IF ID L1 L2 WB IF ID L1 L2 WB

multf f1, f0, f0 IF ID RS M1 M1 M2 M2 M3 M3 WB

IF ID RS M1 M1 M2 M2 M3 M3 WB

IF ID RS M1

multf f2, f0, f1 IF ID RS RS RS RS RS RS M1 M1 M2 M2 M3 M3 WB

IF ID RS RS RS RS RS RS M1 M1 M2

IF ID RS

sf 4(r1), f1 IF ID RS RS RS RS RS L1 L2 WB

IF ID RS RS RS RS RS L1 L2 WB

IF ID

bneq r2, LOOP IF ID IF ID IF

xor r4, r5, r6 IF x IF x

Two integer RS are needed (cycle 3), zero FP add RS are needed, three FP multiply units are needed (cycle 14),

3
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Problem 4: The code below executes on a machine similar to the type described in the first problem except that it uses a reorder buffer. Draw a
pipeline execution diagram for the code below, be sure to show when each instruction commits. Remember that instructions stall in the functional
unit if they are not granted access to the CDB.
LOOP:

lf f0, 0(r1)

multf f1, f0, f0

multf f2, f0, f1

addf f3, f3, f0

lf f4, 8(r1)

sf 4(r1), f1

multf f1, f4, f4

multf f2, f4, f1

addi r1, r1, #16

sub r3, r4, r5

xor r6, r7, r8

or r9, r10, r11

Since a re-order buffer is being used instruction results will be identified by their reorder buffer entry number rather than their reservation station number. For that reason
reservation stations are only held until execution initiation. For example, the first multf only needs a RS in cycle 3.

LOOP:

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

lf f0, 0(r1) IF ID L1 L2 WC

multf f1, f0, f0 IF ID 2:RS M1 M1 M2 M2 M3 M3 WC

multf f2, f0, f1 IF ID 3:RS 3:RS 3:RS 3:RS 3:RS 3:RS M1 M1 M2 M2 M3 M3 WC

addf f3, f3, f0 IF ID A1 A2 A3 A4 WB C

lf f4, 8(r1) IF ID L1 L2 WB C

sf 4(r1), f1 IF ID 4:RS 4:RS 4:RS L1 L2 WB C

multf f1, f4, f4 IF ID M1 M1 M2 M2 M3 M3 WB C

multf f2, f4, f1 IF ID 3:RS 3:RS 3:RS 3:RS 3:RS M1 M1 M2 M2 M3 M3 WB C

addi r1, r1, #16 IF ID EX WB C

sub r3, r4, r5 IF ID EX ---> WB C

xor r6, r7, r8 IF ID 7:RS EX ---> WB C

or r9, r10, r11 IF ID 6:RS 6:RS EX ---> WB C

Problem 5: Consider the code execution from the problem above. Suppose there is an exception in the L2 segment executing the second lf. At
what cycle would the trap instruction be inserted? What might go wrong if a reorder buffer had not been used?

The trap will be inserted when lf reaches the head of the reorder buffer, at cycle 18. If a reorder buffer were not used and the preceding multiply raised an exception, the trap
handler for lf might run before the one for multf.

4
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Problem 6: Show the execution of the code below on a dynamically scheduled 4-way superscalar machine using a reorder buffer. Instruction fetch
is aligned. There is one of each floating-point functional unit, with latencies and initiation intervals given in the first problem. There are four integer
execution units. The reservation station numbers are as given in the first problem.
LOOP: = 0x1008

lf f0, 0(r1)

multf f1, f0, f0

multf f2, f0, f1

addf f3, f3, f0

lf f4, 8(r1)

sf 4(r1), f1

multf f1, f4, f4

multf f2, f4, f1

addi r1, r1, #16

sub r3, r4, r5

xor r6, r7, r8

or r9, r10, r1

LOOP: = 0x1008 = 1 0000 0000 1000

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

lf f0, 0(r1) IF ID L1 L2 WC

multf f1, f0, f0 IF ID 2:RS 2:RS M1 M1 M2 M2 M3 M3 WC

multf f2, f0, f1 IF ID 3:RS 3:RS 3:RS 3:RS 3:RS 3:RS 3:RS M1 M1 M2 M2 M3 M3 WC

addf f3, f3, f0 IF ID 0:RS A1 A2 A3 A4 WB C

lf f4, 8(r1) IF ID L1 L2 WB C

sf 4(r1), f1 IF ID 4:RS 4:RS 4:RS 4:RS 4:RS 4:RS 4:RS L1 L2 WB C

multf f1, f4, f4 IF ID 2:RS 2:RS M1 M1 M2 M2 M3 M3 WB C

multf f2, f4, f1 IF ID --------> 2:RS 2:RS 2:RS 2:RS 2:RS 2:RS M1 M1 M2 M2 M3 M3 WC

addi r1, r1, #16 IF ID EX WB C

sub r3, r4, r5 IF ID EX WB C

xor r6, r7, r8 IF --------> ID EX WB C

or r9, r10, r11 IF --------> ID EX WB C

In the diagram above, WC indicates that writeback and commit occur in the same cycle. Note that since instructions are fetched in aligned blocks of four, only two useful
instructions are fetched in cycle 0.

5
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Problem 7: (Modified 12 November 1999) Rewrite the code below for the VLIW DLX ISA presented in class. Instructions can be rearranged and
register numbers changed. In order of priority, try to minimize the number of bundles, minimize the use of the serial bit, and maximize the value of
the lookahead field. When determining the lookahead assume that any register can be used following the last bundle in your code.
LOOP:

lf f0, 0(r1)

multf f1, f0, f0

multf f2, f0, f1

addf f3, f3, f0

lf f4, 8(r1)

sf 4(r1), f1

multf f1, f4, f4

multf f2, f4, f1

addi r1, r1, #16

sub r3, r4, r5

xor r6, r7, r8

or r9, r10, r11

Solution:

LOOP:

{ P 0

lf f0, 0(r1)

lf f4, 8(r1)

sub r3, r4, r5

}

{ P 0

multf f1, f0, f0

multf f11, f4, f4

addf f3, f3, f0

}

{ P 1

sf 4(r1), f1

multf f12, f0, f1

multf f2, f4, f11

}

{ P 0

addi r1, r1, #16

xor r6, r7, r8

or r9, r10, r11

}

6
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EE 4720 Computer Architecture - HW 1 Solution
(Spring 1998)

Problem 1

Temporal Locality

Instruction fetches for instructions within loop. (Since they are fetched multiple times.)

The store of the incremented histogram element, since the same address was used to load the element.

SW   0(r10), rll   ! hist[e] = r11

Spatial Locality

Accesses to the array elements. (Since they are done sequentially.) For example:

LH   r10, 0(r10)   ! r10 = array[ i*JSIZE + j ]

Possibly Neither Temporal Nor Spatial Locality

Accesses to the hist array, since the pattern of access depends on the value of elements of array, which are not
known in advance.

LW   r11, 0(r10)   ! r11 = hist[ e ];

Problem 2

The static count is simply the number of instructions, 24. The dynamic count is 3275 instructions, the table
below shows the dynamic count of each instruction. The labels (e.g., NEXTI:) are included for clarity.

Dynamic Instruction

1 ADDI r10, r0, #20

1 MOVI2FP f0, r10

1 ADDI r1, r0, #0

NEXTI:

11 SGEI r10, r1, #10

11 BNEZ r10, DONEI

10 ADDI r2, r0, #0

NEXTJ:

210 SGEI r10, r2, #20

210 BNEZ r10, DONEJ

200 MOVI2PF f1, r1

200 MULT f1, f1, f0

200 MOVFP2I r10, f1

200 ADD r10, r10, r2
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200 SLLI r10, r10, #1

200 ADD r10, r10, r4

200 LH r10, 0(r10)

200 SLLI r10, r10, #2

200 ADD r10, r10, r3

200 LW r11, 0(r10)

200 ADDI r11, rll, #1

200 SW 0(r10), rll

200 ADDI r2, r2, #1

200 J NEXTJ

DONEJ:

10 ADDI r1, r1, #1

10 J NEXTI

DONEI:

Problem 3

The scaled addressing mode makes accessing both arrays much easier. Element array[i*JSIZE+j] is still
loaded into a register, but the histogram element is incremented in a memory-memory add instruction.

        ADDI r1, r0, #0    ! i=0

NEXTI:

        SGEI r10, r1, #10  ! if i >= ISIZE ...

        BNEZ r10, DONEI    ! ... exit loop.

        ADDI r2, r0, #0    ! j=0

NEXTJ:

        SGEI r10, r2, #20  ! if j >= JSIZE ...

        BNEZ r10, DONEJ    ! ... exit loop

        MULTI r10, r1, JSIZE      !  r10 = i * JSIZE

        ADD   r10, r10, r2        !  r10 = i * JSIZE + j

        LH    r10, 0(r4)[r10]     !  d = 2; r10 = array[r10]

        ADDI O(r3)[r10],0(r3)[r10],#1  ! d=4; hist[r10] = hist[r10]+1;

        ADDI r2, r2, #1    ! r2 = j+1

        J NEXTJ

DONEJ:

        ADDI r1, r1, #1    ! r1 = i+1

        J NEXTI

DONEI:

The new static count is 14, the dynamic count is 1674, the table below lists count by instruction.

1 ADDI r1, r0, #0

NEXTI:

11 SGEI r10, r1, #10

11 BNEZ r10, DONEI

11 ADDI r2, r0, #0

NEXTJ:

210 SGEI r10, r2, #20

210 BNEZ r10, DONEJ

200 MULTI r10, r1, JSIZE

200 ADD r10, r10, r2
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200 LH r10, 0(r4)[r10]

200 ADDI O(r3)[r10],0(r3)[r10],#1

200 ADDI r2, r2, #1

200 J NEXTJ

DONEJ:

10 ADDI r1, r1, #1

10 J NEXTI

DONEI:

Problem 4

Clock frequency for fixed CPI

Need to solve: ICnew CPInew / fnew = ICold CPIold / fold for fnew. Solving yields, fnew = 1 GHz ICnew / ICold =
511 MHz

So, even though an implementation using complex addressing modes might have a slower clock, it can still run
faster. Note that the assumption that the CPI is the same is unrealistic, since it would take much longer to
execute, for example, an instruction that had three memory operands.

CPI for fixed clock frequency.

Need to solve: ICnew CPInew / fnew = ICold CPIold / fold for CPInew. The resulting instruction execution time is
CPInew = CPIold ICold / ICnew = 0.489 CPI.

So, even though CPI will suffer in an ISA using elaborate addressing, it is still possible to gain performance.

Problem 5

Unoptimized Assembler

Some notes on Sparc assembler:

Register names are: %i0,%i1,...,%i7, %l0,%l1,...,%l7, %o0,%o1,...,%o7, %g0,%g1,...,%g7. The
letters are for input, local, output, and general. Register %i6 is also called %fp, frame pointer, and points to
the current stack frame. Register %g0, like r0 in DLX, is always zero.
Operands are backwards (compared to DLX), so add %l0,%l1,%l2 means %l2 = %l1 + %l0.
Sparc branches are delayed, in the unoptimized code below the delay slots are filled with nops.
In the code below global variable values have to be loaded into registers before use (unlike the DLX code
in the assignment). This is a two-step process: first the address of the variable must be loaded, then the
memory at that address is loaded. This is done for array and histo. (Variables i, j, and e are loaded
differently since they are local to the procedure and so are stored on the stack.)
In unoptimized code, any change in a variable is immediately written back to memory, and memory is read
whenever a variable is used, even if it was written in the preceding instruction. This makes the program
easier to debug.
Instruction mov %r1,%r2 is a synthetic instruction, the assembler emits code for a or %g0,%r1,%r2

The output of the Sun compiler is shown below. The compiler helpfully shows the source lines corresponding to
the assembler instructions, and also breaks code into basic blocks which is convenient for finding the dynamic
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instruction count. (A basic block is a group of instructions that can only be entered from the first instructions
[can't branch into the middle] and can only be exited from the last instruction [only the last instruction can be a
CTI]. All instructions in a basic block are executed the same number of times.)

Static count: 55 (yes, nops count, they take space). Dynamic count, 6938 (yes, nops count, they at least take fetch
and decode space). The count is detailed below, by basic block, followed by an annotated assembly language
listing.

Block
Number

Static
Count

Dynamic Count
(Per instr)

Dynamic Count
(Total)

1 6 1 6
2 6 10 60
3 34 200 6800
4 7 10 70
5 2 1 2

! File hw1.c:

!    2  extern short int *array;

!    3  extern int *hist;

!    4  

!    5  #define ISIZE 10

!    6  #define JSIZE 20

!    7  

!    8  void histo()

!    9  {

!   10    int i,j;

!   11  

!   12    for(i=0; i<ISIZE; i++)

        mov     0,%l0

        st      %l0,[%fp-4]   ! Store reg. l0 into frame pointer - 4 =  &i.

        ld      [%fp-4],%l0   ! Load the 0 just written. 

        cmp     %l0,10        ! Compare i to 10, set condition bits.

        bge     .L19          ! Branch if i greater than 10.

        nop                   ! Sparc has a branch delay slot, wasted here.

        ! block 2

.L20:

.L17:

!   13      for(j=0; j<JSIZE; j++)

        mov     0,%l0

        st      %l0,[%fp-8]   ! Store reg l0 info frame pointer - 8 = &j...

        ld      [%fp-8],%l0   ! ...and load it back in.

        cmp     %l0,20        ! Compare to 20

        bge     .L23          ! Branch if not smaller.

        nop                   

        ! block 3

.L24:

.L21:

!   14        {

!   15          int e= array[ i * JSIZE + j ];

        sethi   %hi(array),%l0        ! Load hi bits of array pointer addr.

        or      %l0,%lo(array),%l0    ! Load rest of array pointer address.

        ld      [%l0+0],%l3           ! Load address of first element.
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        ld      [%fp-4],%l0           ! Load i into l0

        sll     %l0,2,%l2             ! l2 = i * 4 

        sll     %l0,4,%l1             ! l1 = i * 16

        add     %l2,%l1,%l0           ! l0 = i * 20 = i * JSIZE;

        ld      [%fp-8],%l1           ! l1 = j

        add     %l0,%l1,%l0           ! l0 = j + i * JSIZE

        sll     %l0,1,%l1             ! l1 = l0 * 2 = l0 * sizeof(short int)

        add     %l3,%l1,%l0           ! l0 = &array[ j + i * JSIZE ]

        ldsh    [%l0+0],%l0           ! l0 = array[ j + i * JSIZE ] = e

        sll     %l0,16,%l0            ! l0 = l0 << 16  (Part 1 of sign ext.)

        sra     %l0,16,%l0            ! l0 = l0 >> 16  (Part 2 of sign ext.)

        st      %l0,[%fp-12]          ! e = l0

!   16          hist[ e ]++;

        sethi   %hi(hist),%l0         ! Load hi bits of addr of hist pointer

        or      %l0,%lo(hist),%l0     ! Load lo bits of addr of hist pointer

        ld      [%l0+0],%l2           ! Load hist pointer, &hist[0]

        ld      [%fp-12],%l0          ! Load e 

        sll     %l0,2,%l1             ! l1 = e * sizeof(int)

        add     %l2,%l1,%l0           ! l0 = &hist[e]

        st      %l0,[%fp-16]          ! Write &hist[e] into stack

        ld      [%fp-16],%l0          ! Read &hist[e] from stack.

        ld      [%l0+0],%l0           ! l0 = hist[e]

        add     %l0,1,%l1             ! l1 = hist[e] + 1

        ld      [%fp-16],%l0          ! Read &hist[e] from stack.

        st      %l1,[%l0+0]           ! Store hist[e]+1

!   17        }

        ld      [%fp-8],%l0           ! l0 = j

        add     %l0,1,%l0             ! l0 = l0 + 1

        st      %l0,[%fp-8]           ! Store new value of j.

        ld      [%fp-8],%l0           ! And load it again.

        cmp     %l0,20                ! Compare to twenty

        bl      .L21                  ! If less, continue.

        nop

        ! block 4

.L25:

.L23:

        ld      [%fp-4],%l0           ! l0 = i.

        add     %l0,1,%l0             ! l0 = l0 + 1

        st      %l0,[%fp-4]           ! i = l0, store new value of i.

        ld      [%fp-4],%l0           ! Load again. 

        cmp     %l0,10                ! Compare to ten..

        bl      .L17                  ! ...if less continue.

        nop

        ! block 5

.L26:

.L19:

.L15:

        jmp     %i7+8                 ! Return

        restore

Optimized (for speed) Assembler

Notes on optimized code

Better use of registers is made. There is less saving and loading variable values.
Instructions are rearranged, sometimes to make more efficient use of the pipeline. (Do arithmetic several
instructions before the result is needed.)
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The block labels below are instructor annotations. (The block labels in the unoptimized code were
generated by the compiler.)
The "volatile" comment was placed by the compiler. That indicates a variable is being loaded even though
it could have been left in a register because it's possible that the value changed in memory while the code
was executing. Were array and hist declared static, no other procedure would "know" there names, and
the compiler would not have to load there values multiple times.

Static count, 26, dynamic count 2476. Alot fewer!

Block
Number

Static
Count

Dynamic Count
(Per Instr)

Dynamic Count
(Total)

1 5 1 5
2 2 10 20
3 12 200 2400
4 5 10 50
5 2 1 1

! FILE hw1.c

!    2       !extern short int *array;

!    3       !extern int *hist;

!    5       !#define ISIZE 10

!    6       !#define JSIZE 20

!    8       !void histo()

!    9       !{

!   10       !  int i,j;

!   12       !  for(i=0; i<ISIZE; i++)

! Block 1

/* 000000   12 */ or %g0,0,%g4

/* 0x0004      */ or %g0,0,%o5

!   13       !    for(j=0; j<JSIZE; j++)

/* 0x0008   13 */ or %g0,0,%g1       ! j = 0;

/* 0x000c      */ sethi %hi(hist),%g3

/* 0x0010      */ sethi %hi(array),%g2

! Block 2

                       .L900000109:

!   14       !      {

!   15       ! int e= array[ i * JSIZE + j ];

!   16       ! hist[ e ]++;

/* 0x0014   16 */ sll %o5,1,%o4

                       .L77000005:

        ! o3 = &array[0]

/* 0x0018      */ ld [%g2+%lo(array)],%o3 ! volatile

! Block 3

                       .L900000110:

        ! o3 = array[ i * JSIZE + j ] = e

/* 0x001c      */ ldsh [%o3+%o4],%o3 ! volatile

!   17       !      }
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/* 0x0020   17 */ add %g1,1,%g1  ! j = j + 1

/* 0x0024      */ add %o4,2,%o4  ! 

! Below, o2 = &hist

/* 0x0028   16 */ ld [%g3+%lo(hist)],%o2 ! volatile

/* 0x002c   17 */ cmp %g1,20     ! Compare j to 20.

/* 0x0030   16 */ sll %o3,2,%o3  ! e * sizeof(int)

/* 0x0034      */ add %o2,%o3,%o1 ! o1 = &hist[e]

! Below, o1 = hist[e];

/* 0x0038      */ ld [%o1],%o1 ! volatile 

/* 0x003c      */ add %o1,1,%o1  ! o1 = hist[e] + 1

! Below, save: hist[e] = hist[e] + 1

/* 0x0040      */ st %o1,[%o3+%o2] ! volatile

! Referring to cmp above, branch if j < 20.

/* 0x0044   17 */ bl,a .L900000110  ! Branch less than.

! Instruction below is skipped if branch

! not taken.  o3 = &array[0];

/* 0x0048      */ ld [%g2+%lo(array)],%o3 ! volatile

! Block 4

                       .L77000007:

/* 0x004c      */ add %g4,1,%g4   ! i = i + 1

! Below, instead of multiplying i * JSIZE,

! just add JSIZE (20) each iteration.

/* 0x0050      */ add %o5,20,%o5  

/* 0x0054      */ cmp %g4,10     ! Compare i to ISIZE 

/* 0x0058      */ bl .L900000109  ! If less, continue

! Instruction below executed even if

! branch above is taken.

/* 0x005c      */ or %g0,0,%g1    ! j = 0

! Block 5

                       .L77000010:

/* 0x0060      */ retl

/* 0x0064      */ nop

/* 0x0068    0 */ .type histo,2

/* 0x0068      */ .size histo,(.-histo)

 

David M. Koppelman - koppel@ee.lsu.edu Modified 20 Feb 1998 12:09 (18:09 UTC)

← → Spring 1998 ← → Homework 1 Homework Sol Code hw01 sol.html

http://www.ee.lsu.edu/
http://www.ee.lsu.edu/ee4720/index.html
http://www.ee.lsu.edu/koppel/
mailto:koppel@ee.lsu.edu
https://www.ece.lsu.edu/ee4720/1998/hw01_sol.html


EE 4720 Computer Architecture - HW 2 Solution (Spring 1998)

Problem 1

Execution is shown below, the diagram is wide so you'll have to scroll or maximize your browser window. Tree killers should remember that
many browsers have a landscape option in their print command. Two instructions, i1 and i2, are included after the branch. They never execute
but they are fetched.
Note that the execution of a single instruction uses just one line, and MEM is abbreviated to ME. Abandoned instruction are shown in gray.

!Cycle  0  1  2  3  4  5  6  7 8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

add    IF ID EX ME WB

add       IF ID EX ME WB

Loop: 

lw           IF ID ----> EX ME WB                         IF ID EX ME WB                         IF ID EX ME WB   

add             IF ----> ID ----> EX ME WB                   IF ID ----> EX ME WB                   IF ID ----> EX ME WB

slt                      IF ----> ID ----> EX ME WB             IF ----> ID ----> EX ME WB             IF ----> ID ----> EX ME WB

addi                              IF ----> ID EX ME WB                   IF ----> ID EX ME WB                   IF ----> ID EX ME WB

bneq                                       IF ID -> EX ME WB                      IF ID -> EX ME WB                      IF ID -> EX ME WB

i1                                            IF -> ID EX ME WB                      IF -> ID EX ME WB                      IF -> ID EX ME WB 

i2                                                  IF ID EX ME WB                         IF ID EX ME WB                         IF ID EX ME 

Problem 2

First, certain values need to be assumed since they weren't provided in the problem, the values are in the table below.
Location Assumed Value Comment
LOOP 0x2000 Address of lw instruction.
r3 2 Branch condition register before being set.
r4 50 Sum limit.
r10 0x1000 Part of array address.
r11 0x10 Another part of array address.
Mem[0x1010] 10 First element.

The code fragment is shown below along with the register values that change in the first iteration:

        !! r4 holds a limit

        !! r5 holds the first array element address

        add     r2, r0, r0    ! r2 = 0

        add     r5, r10, rll  ! r5 = 0x1010

LOOP:

        lw      r6, 0(r5)     ! r6 = 10

        add     r2, r2, r6    ! r2 = 10

        slt     r3, r2, r4    ! r3 = 1

        addi    r5, r5, #4    ! r5 = 0x1014

        bneq    r3, LOOP

The code above doesn't show the state of the pipeline when addi is in the MEM stage, for example, r3 still contains the old value, not the value
specified by the slt instruction. The register values are:

Location Value Comment
r2 10 This register current.
r3 2 The "current" value in WB stage.
r4 50 Never changes.
r5 0x1010 The "current" value in the MEM stage.
r6 10 This register current.
The pipeline latches:
Latch Contents Comment
IF.PC 0x2014 Address of instruction i1
IF/ID.NPC 0x2014 Address of instruction i1
IF/ID.IR bneq r3, LOOP

ID/EX.** ?? Because of stall, EX contains no "real" instruction.
EX/MEM.ALU OUT 0x1014 addi sum bound for r5
EX/MEM.B ??
MEM/WB.ALU OUT 1 slt condition bound for r3

Problem 3

The CPI can easily be found if each iteration of the loop executes the same way, as happens here after the first iteration. (Assuming no cache
misses.) To find the CPI find the number of cycles separating two corresponding points in consecutive iterations. A convenient corresponding
point for the code above is the cycle when lw is in the IF stage. This occurs at cycles 2, 17, and 30. Since iteration one is different than the
others, and since it is clear that future iterations will look like iterations 2 and 3, the corresponding points in iterations 2 and 3 will be used. The
number of cycles is 30-17=13, the number of instructions is 5, so the CPI is 2.6.
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EE 4720 Computer Architecture - HW 3 Solution
(Spring 1998)

Problem 1,  EE 4720 HW 3 Solution Top   Next

The pipeline execution diagram appears below. With bypass paths many of the stalls present in
the hw 2 execution are not present here, but two remain. The add following lw must stall one
cycle, and the bneq also stalls one cycle. The bneq instruction stalls, in the ID stage, because
when it first arrives, at cycle 8, the value it needs to make a decision (prodcued by the slt
instruction) is in the MEM stage. At cycle 9 the needed value (r3) arrives and so the ID stage
of bneq can complete. At the end of bneq's ID stage the target address is clocked into PC, and
so at cycle 10 the target, lw, starts IF. The total delay for the branch here is two cycles.
The execution of a single instruction uses just one line, and MEM is abbreviated to ME.
Abandoned instruction are shown in gray.

Cycle  0  1  2  3  4  5  6  7   8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 

add    IF ID EX ME WB

add       IF ID EX ME WB

Loop: 

lw           IF ID EX ME WB          IF ID EX ME WB

add             IF ID -> EX ME WB IF ID -> EX ME WB

slt                IF -> ID EX ME WB    IF -> ID EX ME WB

addi                     IF ID EX ME WB  IF ID EX ME WB

bneq                        IF ID -> EX ME WB     IF ID -> EX ME WB

i1                             IF -> ID EX ME WB       IF -> ID EX ME WB 

The CPI is based on corresponding points in consecutive iterations, here when the first
instruction (lw) is in IF, the occurs at cycle 2 and cycle 10. The average instruction execution
time (CPI) is thus (10-2)/5 =1.6 CPI.

Problem 2,  EE 4720 HW 3 Solution Top   Previous   Next

As illustrated in the assignment, the branch condition is read from the register file and so
branches must stall until the value they need is written or in the WB stage (assuming
simultaneous read and write). As was done for arithmetic and logical instructions, bypass paths
can be added to the ID stage. For the code fragment in problem 1, bypass paths from MEM to
ID would be needed. A path from EX to ID would help when the register is written by an
instruction immediately preceding the branch (although it might lengthen critical paths):

slt  r3, r1, r2

bneq r3, TARGET

With the forwarding paths the branch could determine if r3 were zero in cycle 8, avoiding the
stall.

Problem 3,  EE 4720 HW 3 Solution Top   Previous  

The key here is to re-write the code to avoid the stalls. The stall after lw can be avoided by
placing some instruction between lw and the add that uses the fetched result, one possibility is
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the addi:

        add     r2, r0, r0    ! Clear sum register.

        add     r5, r10, rll  ! Set r5 to first element.

LOOP:

        lw      r6, 0(r5)

        addi    r5, r5, #4

        add     r2, r2, r6

        slt     r3, r2, r4

        bneq    r3, LOOP

The next problem is, what to put in the branch delay slot. There seems to be no way to fill it by
just rearranging the instructions or filling it with addi, which would eliminate one bubble, but
open another:

        add     r2, r0, r0    ! Clear sum register.

        add     r5, r10, rll  ! Set r5 to first element.

LOOP:

        lw      r6, 0(r5)

        add     r2, r2, r6

        slt     r3, r2, r4

        bneqd   r3, LOOP

        addi    r5, r5, #4    ! In delay slot, part of loop.

(bneqd is the delayed branch mnemonic.) If just rearranging instructions won't work, then
adding some might:

        add     r2, r0, r0    ! Clear sum register.

        add     r5, r10, rll  ! Set r5 to first element.

        lw      r6, 0(r5)     ! Added instruction.

LOOP:

        addi    r5, r5, #4

        add     r2, r2, r6

        slt     r3, r2, r4

        bneqd   r3, LOOP

        lw      r6, 0(r5)     ! In delay slot, part of loop.

In the code above, lw has been duplicated. The first lw initializes r6, the second one executes
at the end of the loop. The code above executes bubble free, with a CPI of 1. The pipeline
execution diagram appears below:

Cycle  0  1  2  3  4  5  6  7   8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 

add    IF ID EX ME WB

add       IF ID EX ME WB

lw           IF ID EX ME WB

Loop: 

addi            IF ID EX ME WB IF ID EX ME WB

add                IF ID EX ME WB IF ID EX ME WB

slt                   IF ID EX ME WB IF ID EX ME WB

bneqd                    IF ID EX ME WB IF ID EX ME WB

lw                          IF ID EX ME WB IF ID EX ME WB

A repeating iteration starts on cycle 3 and ends before cycle 8, for a total of 5 cycles.
Containing 5 instructions, the CPI is 1.0.
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EE 4720 Computer Architecture - HW 4 Solution (Spring
1998)

Problem 1,  EE 4720 HW 4 Solution Top   Next

The most informative notation would indicate both the hardware the instruction were in and how far
along execution it was. (The existing notation shows only how far along execution an instruction is,
which unambiguously indicates the hardware only when the initiation interval is one). In one possible
solution the location is indicated with a 3-part label. The first part shows the functional unit using a
capital letter (A for add, etc.). The second part shows which part of the functional unit the instruction is
in, in parenthesis. The third part shows the execution step. For example, A(2)2 shows an instruction in the
second adder segment, which is also the second step of execution. (When the initiation interval is one the
execution unit part and step will always be the same.) As another example, D(1)20 shows an instruction in
the one-and-only divide unit part, in the twentieth step of execution.
The notation is used in the pipeline execution below, which runs on the implementation described in
problem 2.

div f11, f4, f5 IF ID D(1)1 D(1)2 D(1)3 D(1)4 D(1)5 D(1)6 D(1)7 D(1)8 D(1)9

mul f0, f1, f2     IF ID    M(1)1 M(1)2 M(2)3 M(2)4 MEM   WB

mul f3, f6, f7        IF    ID    ----> M(1)1 M(1)2 M(2)3 M(2)4 MEM   WB

sub f8, f9, f10             IF    ----> ID    A(1)1 A(2)2 A(3)3 -->   MEM   WB

Problem 2,  EE 4720 HW 4 Solution Top   Previous   Next

The problem did not specify how WAW hazards were to be resolved. They could be resolved by stalling
the second multiply so it writes after the divide or by cancelling the divide when the multiply is either in
ID or WB. (The divide can be canceled because no instruction reads the value it produces.) The second
approach will be used since it does not stall following instructions. The execution diagram appears below,
using the notation from part 1

Time           0   1  2     3     4     5     6     7     8     9     10    11    12

div f3, f4, f5 IF  ID D(1)1 D(1)2 D(1)3 D(1)4 D(1)5 D(1)6 D(1)7 D(1)8 x

mul f0, f1, f2     IF ID    M(1)1 M(1)2 M(2)3 M(2)4 MEM   WB

mul f3, f6, f7        IF    ID    ----> M(1)1 M(1)2 M(2)3 M(2)4 MEM   WB

sub f8, f9, f10             IF    ----> ID    A(1)1 A(2)2 A(3)3 -->   MEM   WB

mul f11, f0, f12                        IF    ID    M(1)1 M(1)2 M(2)3 M(2)3 MEM   WB

The execution above has two stalls, one in cycle 4 due to the multiply-unit structural hazard, the other in
cycle 9 due to the memory stage structural hazard.

Problem 3,  EE 4720 HW 4 Solution Top   Previous   Next

As with the previous problem, WAW hazards will be handled by cancelling the first instruction writing a
register when the second instruction writing that register is in the WB stage.

Time           0   1  2     3     4     5     6     7     8     9     10    11  12

div f3, f4, f5 IF  ID D(1)1 D(1)2 D(1)3 D(1)4 D(1)5 D(1)6 D(1)7 D(1)8 x

mul f0, f1, f2     IF ID    M(1)1 M(1)2 M(2)3 M(2)4 MEM   WB

mul f3, f6, f7        IF    ID    ----> M(1)1 M(1)2 M(2)3 M(2)4 MEM   WB

sub f8, f9, f10             IF    ----> ID    ----> A(1)1 A(2)2 A(3)3 MEM   WB

mul f11, f0, f12                        IF    ----> ID    M(1)1 M(1)2 M(2)3 M(2)3 MEM   WB

Notice that the ID-stage stall delays the third multiply by one cycle.

Problem 4,  EE 4720 HW 4 Solution Top   Previous   Next

In the execution below, the integer unit uses reservation stations 3 and 4. Branch instructions are shown
stopping after ID since they don't do anything useful after that and so reservation stations are not shown.
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(If the branch had to wait for |r1| it would sit in a reservation station which would be shown.) The
execution is shown until cycle 25, two cycles after the second multiply writeback.

Time     0    1  2      3    4    5    6    7    8    9    10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25

addi     IF   ID 3:EX 3:WB

LOOP:

ld            IF   ID 4:EX 4:ME 4:WB   IF   ID 4:EX 4:ME 4:WB   IF   ID 4:EX 4:ME 4:WB   IF   ID 4:EX 4:ME 4:WB                       IF

subi               IF   ID 3:EX ---> 3:WB   IF   ID 3:EX ---> 3:WB   IF   ID 3:EX ---> 3:WB   IF   ID 3:EX ---> 3:WB   

mul                     IF   ID 1:M1 1:M2 1:M3 1:M4 1:M5 1:M6 1:M7 1:M8 1:M9 1:WB

                                                 IF   ID 2:RS 2:RS 2:RS 2:RS 2:M1 2:M2 2:M3 2:M4 2:M5 2:M6 2:M7 2:M8 2:M9 2:WB

                                                                          IF   ID 1:RS 1:RS 1:RS 1:RS 1:RS 1:RS 1:RS 1:RS 1:M1 1:M2 1:M3

                                                                                                   IF   ID ------------------> 2:RS 2:RS

bneq                         IF   ID                  IF   ID                  IF   ID                  IF ------------------>   ID

I1                                IF                       IF                       IF                                           IF

Before reservation stations run out, each iteration of the loop above takes five cycles, after they run out
nine cycles per iteration will be needed. The reservation stations allow the "integer" part of the loop to get
several cycles ahead of the floating point part.

Problem 5,  EE 4720 HW 4 Solution Top   Previous  

In the solution to the previous problem, in cycle 9 the multiply instruction is in ID for the second time. It
can move into the execute stage only if the result from the previous iteration is ready. Since the first
multiply is in ID in cycle 4, the multiply unit would have to produce a result in 5 (or fewer) cycles to
avoid delaying the second multiply. If the execution of the multiply is delayed by any amount, all
reservation stations will eventually be used up. A multiply unit that produces a result in 5 cycles has a
latency of 4.
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EE 4720 Computer Architecture - HW 5 Solution
(Spring 1998)

Problem 1,  EE 4720 HW 5 Solution Top   Next

The execution is shown below. The first iteration takes five cycles (5-0), the second iteration
takes 7 (12-5). The second iteration takes two cycles longer because of the first branch's one-
cycle delay and the true dependency between the subi and bneq instructions.

Cycle             0  1  2  3  4  5  6  7  8  9  10 11 12  

LOOP:

 lw   r1, 0(r2)   IF ID EX ME WB IF ID EX ME WB       IF

 addi r2, r2, #4  IF ID EX ME WB IF ID EX ME WB       IF

 beqz r1, TARG    IF ID ----> EX ME WB

 IF ID ----> EX ME WB

      IF 

 sub  r4, r4, r1  IF ID ----> EX ME WB

 IF ID ----X

      IF

 j    LOOP           IF ----> ID EX ME WB

    IF ----X IF x

TARG:

 subi r5, r5, #1     IF ----> ID x  IF ----X IF ID EX ME WB

 bnez r5, LOOP       IF ----> ID x  IF ----X IF ID -> EX ME WB

 and  r4, r4, r6     IF ----> ID x  IF ----X IF ID -> x

 or   r4, r4, r7              IF x         IF -> x

 sw   0(r8), r4               IF x         IF -> x

 addi r8, r8, #4              IF x         IF -> x

 jr   r31                     IF x         IF -> x

Problem 2,  EE 4720 HW 5 Solution Top   Previous   Next

The loop in the program above is quite inefficient. There are many bubbles, and many
instructions are cancelled because of the branch delay following the taken branches. When
branching from an instruction other than the last in an aligned group (bneq and beqz are the
third, j is the first) instructions following the CTI (branch or jump) are cancelled. Finally,
when branching to TARG, which is not the first instruction in an aligned group, instructions
before TARG are cancelled. Clearly, this loop makes poor use of our 4-way superscalar
machine. How poor?
An iteration of the loop takes 5 cycles when the branch is not taken, and takes 7 cycles when
taken. Either way, the loop has 5 instructions. These numbers can be used to compute the CPI
of the execution of a large number of iterations because they do not depend on what happened
in the previous iterations. There can be inter-iteration hazards when long latency functional
units are used because the result of an operation started in one iteration might be needed in the
next, or the functional unit itself might be needed. These problems do not occur here.
The first branch in the loop is taken if the value read from memory is zero. According to the
problem statement 30% of those words are zero. The CPI is found by taking a weighted
average as shown:

CPI = 0.3 ttakenICtaken + 0.7 tnot takenICnot taken
CPI = 0.3 7/5 + 0.7 5/5
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CPI = 1.12
Keep in mind that the ideal CPI for a 4-way machine is 0.25.

Problem 3,  EE 4720 HW 5 Solution Top   Previous   Next

Branch Delay Slots

Branch delay slots would have very little effectiveness for the code above. Branch delay slots
might seem like a promising enhancement for superscalar machines because a branch can have
a large delay: 7 instructions if the branch is the first instruction in an aligned group. With a 7-
delay-slot branch these bubbles would be avoided. Branch delay slots are only useful if they
can be filled with something other than nop's, in the code above (without major re-writing) the
only candidate for a branch delay slot is the addi instruction. If the loop is unrolled there might
be more opportunities for filling delay slots.

Dynamic Scheduling

Dynamic scheduling would have very little effectiveness for the code above, though it would
be more useful on other code. Dynamic scheduling helps avoid stalls due to name
dependencies and allows instructions to start out of order. In the code above the stalls are due
to true dependencies (between lw and addi, for example), and control dependencies. Without
branch prediction and speculative execution there would be no benefit.

Branch Target Buffer

A branch target buffer would be moderately effective for the code above, but its execution
would still be well below the maximum issue rate. As stated above, the branch execution is
slowed due to branches. A branch target buffer would help by eliminating the branch delay slot
caused by the beqz, bnez, and j instructions, the overall effectiveness would depend on the
branch prediction accuracy. The bneq branch would probably be correctly predicted because it
is only not taken on the last iteration. The behavior of the beqz branch depends on the
characteristics of the values read. If the zeros are bunched (0,0,0,0,0,1,3,2) then prediction
should work well, if they're randomly interspersed the predictor won't work.

Predicated Execution

Predicated execution would have limited effectiveness Predicated execution can be used to
eliminate one or two branches from the loop, thus eliminating wasted issue slots from taken
branches. The loop with one branch removed might look like:

lw r1,0(r2)      IF ID EX ME WB

addi r2,r2,#4  IF ID EX ME WB

set_c r1  IF ID ----> EX ME WB

sub_pn r4,r4,r1  IF ID ----> EX ME WB

bneq r1,LOOP     IF ----> ID EX ME WB

subi_pz r5,r5,#1    IF ----> ID EX ME WB

bneq r5,LOOP     IF ----> ID EX ME WB

The predicate bit is set by the set_c instruction, here that value is being bypassed to the WB
stage so there is no additional stall for sub_pn. The branch delay due to the removed branch is
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no longer present.

Loop Unrolling

Loop unrolling can be very effective on the code above. Loop unrolling is effective when
several iterations can be overlapped. One problem with loop unrolling is that the number of
iterations may not be the multiple of the degree of unrolling. For example, the code above was
unrolled 4 times, but the number of iterations may not be a multiple of 4. The problem is
easiest to fix if the number of iterations is known at compile time: the compiler would end the
loop at the largest multiple smaller than the number of iterations, and fix-up code following
the unrolled loop would perform the remaining few iterations. In the loop below, not only is
the number of iterations not known at compile time (presumably), the number of iterations
may not be known until the loop finishes its last iteration. (The number of iterations depends
on the data fetched.) That's still no problem as long as the it's okay to make unneeded memory
accesses.
In the unrolling below the branch in the middle of the loop is eliminated. The sub r4, r4, r1
can be performed whether or not the branch is taken, and seqi and add instructions are used to
decrement r5 for four elements at once. The unrolled loop has only a single branch, iteration
continues if r5 is positive. When r5 will be zero or negative the loop exits and fix-up code
(not shown) re-loads words and adjusts r4. (It's possible that too many elements were
subtracted.)
In the unrolled loop values are fetched one iteration ahead of time, so when it finishes at least
four extra values will have been fetched.
Using sle r30, r5, r25 the branch condition can be determined one cycle earlier than if a
sle r30, r5, r0 instruction were used after sub r5, r5, r25.
There are no stalls to avoid RAW hazards, the only wasted issue slots (bubbles) are due to the
branch. An iteration of the unrolled loop takes 6 cycles, for a CPI of 6/19=0.316. The CPI is
not useful for comparing with the original loop since the instruction counts are different. A
better metric would be cycles per element (an iteration in the original loop). The original loop
took a weighted average of 0.7 5 + 0.3 7 = 5.6 cycles per element. The unrolled loop processes
four elements per iteration, so it takes 6/4=1.5 cycles per element.

 lw   r11, 0(r2)

 lw   r12, 4(r2)

 lw   r13, 8(r2)

 lw   r14, 12(r2)

 

ULOOP:  Assume ULOOP aligned.

 seqi r21, r11, #0  ! Check if elements are zero.

 seqi r22, r12, #0  ! =1 if element is zero, 0 otherwise.

 seqi r23, r13, #0  !

 seqi r24, r14, #0  !

 add  r15, r11, r12 ! Sum of element values.

 add  r16, r13, r14

 add  r25, r21, r22 ! Count of zero elements.

 add  r26, r23, r24

 add  r15, r15, r16 ! Sum of element values.

 add  r25, r25, r26 ! Count of zero elements.

 lw   r11, 16(r2)   ! For next iteration, if needed.

 lw   r12, 20(r2)   ! For next iteration, if needed.

 sle  r30, r5, r25  ! Branch condition.

 sub  r5,  r5, r25  ! Update r5.

 lw   r13, 24(r2)   ! For next iteration, if needed.
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 lw   r14, 28(r2)   ! For next iteration, if needed.

 addi r2, r2, #16

 sub  r4, r4, r15   ! Maybe over-subtracting. Fix-up code should fix.

 bneq r30, ULOOP

 ! Fix-up code starts. (not shown)

 ! Need to re-load last four words and adjust r4 and r5

 ! Fix up code ends.

 and  r4, r4, r6

 or   r4, r4, r7

 sw   0(r8), r4

 addi r8, r8, #4

 jr   r31

 

Problem 4,  EE 4720 HW 5 Solution Top   Previous  

Instructions can be rearranged so that all conditionally executed instructions are in the first
bundle. There is a dependency between the second addi and and and slt, so they must be
placed in separate bundles. There are no other instructions to put in the second and third
bundles, so they are padded with nops.

bx   r1, !r1, !r1

add  r2, r3, r4

add  r2, r3, r5

addi r7, r7, #1

sub  r6, r6, r2

addi r8, r2, #12

nop

nop

slt  r1, r8, r9

and  r10, r8, rll

nop

nop

 

David M. Koppelman - koppel@ee.lsu.edu Modified 30 Apr 1998 10:18 (15:18 UTC)

← → Spring 1998 ← → Homework 5 Homework Sol Code hw05 sol.html

http://www.ee.lsu.edu/ee4720
http://www.ee.lsu.edu/ee4720/1998/hw05.pdf
http://www.ee.lsu.edu/
http://www.ee.lsu.edu/ee4720/index.html
http://www.ee.lsu.edu/koppel/
mailto:koppel@ee.lsu.edu
https://www.ece.lsu.edu/ee4720/1998/hw05_sol.html


EE 4720 Computer Architecture - HW 6 Solution
(Spring 1998)

Problem 1,  EE 4720 HW 6 Solution Top   Next

In the execution below, the branch outcome is not available when the branch instruction
reaches ID, at cycle 4, and so it waits in a reservation station. The system predicts the branch
as taken and so fetching starts at the branch target in cycle 5. (If the system had an IF-stage
branch target buffer it would have been possible to fetch the target at cycle 4, eliminating a
cycle of delay.) Instructions at the target are executed speculatively, that is they don't do
anything that can't be undone. The branch condition is finally available at cycle 11, the
speculatively executed instructions are deleted from the reorder buffer and fetching starts at
the target in cycle 12.

sub   r4, r5, r6                                                                 IF   ID 3:EX 3:WB

Cycle             0   1    2    3    4    5    6    7    8    9    10   11   12  13   14   15   16

multf f4, f5, f6  IF  ID 1:M1 1:M2 1:M3 1:M4 1:M5 1:M6 1:M7 1:WB

addf  f0, f1, f2      IF   ID 6:A1 6:A2 6:A3 6:A4 6:WB

eqf   f0, f3               IF   ID 7:RS 7:RS 7:RS 7:A1 7:A2 7:A3 7:A4 7:WB

bfpt  TARG                      IF   ID 2:RS 2:RS 2:RS 2:RS 2:RS 2:RS 2:BR 2:WB

add   r1, r2, r3                     IF   x                                  IF  ID 2:EX 2:WB 

sub   r4, r5, r6                                                                 IF   ID 3:EX 3:WB

...

TARG:

 and  r1, r2, r3                          IF   ID 3:EX 3:WB

 or   r4, r5, r6                               IF   ID 4:EX 4:WB 4:WB

 ...

Execution notes: With dynamic execution load and store instructions use their own functional
units, so other instructions do not pass through the MEM stage. The stage labeled WB is actually a
write to the common data bus which will write into any waiting reservation stations or
functional units (as would happen in cycle 7 when addf completes) and also into the reorder
buffer. The data is written to the register file when the instruction is retired from the reorder
buffer.
The reorder buffer contents are shown by cycle below. An entry for a cycle includes
instructions that are inserted during that cycle and instructions that will be removed at the end
of the cycle. The reorder buffer fills until cycle 9 as instructions wait for multf to complete,
after that instructions up to the branch retire one-by-one. (To be retired [as opposed to being
deleted] from the reorder buffer an instruction must be the least-recent entry [the bottom entry
as illustrated below] and must have completed execution [indicated by a ]). The branch
condition is resolved in cycle 11, since the branch was mispredicted the speculatively executed
and and or instructions are removed from the reorder buffer and fetching is restarted at the add
instruction. The pipeline and reorder buffer might contain instructions before multf and after
sub and or, these are omitted for clarity and to save time.

Cycle
Reorder
Buffer
Contents

0
(Empty*)

1
multf

2
addf
multf

3
eqf
addf
multf

4,5
bfpt
eqf
addf
multf

6
and
bfpt
eqf
addf
multf

7
or
and
bfpt
eqf
addf
multf

8
or
and
bfpt
eqf
addf
multf

9
or
and
bfpt
eqf
addf
multf
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Cycle
Reorder
Buffer
Contents

10
or
and
bfpt
eqf
addf

11
or
and
bfpt
eqf

12
bfpt

13
add

14
sub
add

15
sub
add

15
sub

16
(Empty*)

*Empty of any instructions included above.
 Completed execution.

Problem 2,  EE 4720 HW 6 Solution Top   Previous   Next

The branch behavior here is very easy to determine: the branch will not be taken in the first 16
iterations then taken in the next 16 iterations, after which the cycle repeats.

 add r1, r0, r0

LOOP:

 andi r2, r1, #0x10

 beqz r2, CONTINUE

 addi r3, r3, #1

CONTINUE:

 addi r1, r1, #1

 j LOOP

To determine the branch prediction accuracy the value of the branch history counter at each
iteration is needed. The counter value is initially 0, it's incremented in the first 16 iterations
though it saturates at 7. During the second 16 iterations the counter is decremented, reaching
zero by the beginning of iteration 23, and remaining at zero through iteration 31. Note that
these are the values of the counter before the branch executes, which of course is used for
prediction. As with the branch outcome, the branch history counter value also repeats. The
table below shows the counter values, prediction, outcome, and number of correct predictions
by iteration. At the beginning of iteration 32 the BHT counter is zero, since the branch
behavior repeats every 32 cycles the prediction behavior will also repeat. The branch
prediction accuracy is the number of correct predictions divided by the number of predictions,
24/32 = 0.75.

Iteration Count Value Prediction Outcome Num. Correct
0-4 0-4 NT T 0
5-7 5-7 T T 3
8-15 7 T T 8
16-18 7-5 T NT 0
19-23 4-0 NT NT 5
24-31 0 NT NT 8

Problem 3,  EE 4720 HW 6 Solution Top   Previous   Next

The solution is shown in the figure below, with additions in red. Not shown are details of the
stack implementation, clocking inputs for the BHT, hardware to support context switches,
prediction and target address hardware.
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The key to solving the problem is choosing the correct address for the branch history table
(BHT) because the branch predictor matches a particular history (counter value) with a
particular address. Normally, the BHT is addressed with the branch instruction's address, so
that each branch instruction has its own history (ignoring collisions). In the problem a branch
predictor is to be designed that also takes into account the calling procedure. Therefore, the
BHT address must be constructed using something that could identify the calling procedure;
that something is the return address that is saved in r31 by the jal and jalr instructions. (The
return address is available in the IF/ID.NPC register when the call instruction is in ID.)
In the solution above, part of the most-recent calling address is available at the ToS (top of
stack) output of the Call Stack box. That is combined with the branch instruction address to
construct a BHT address. Because DLX instructions are aligned, bits 0 and 1 from both
addresses are omitted (since they would always be zero, and if included would leave 75% of
the BHT unused). Four bits (2:5) are taken from the calling procedure address and eight bits
from the branch instruction (2:9), for a total of 12 bits. Only four calling-address bits are
included because the number of different places that a procedure can be called from would be
much smaller than the number of branch instructions in the program. As with an ordinary BHT
and especially with a correlating predictor there will be collisions in the BHT, that is, multiple
branch instructions will use the same entry. This is acceptable because it doesn't happen too
often and the consequences of a collision is only misprediction, not incorrect execution. Note
that multiple branch instructions with identical address bits 2:9 would not collide in the BHT if
the calling address bits 2:5 were all different.
The box labeled Caller Stack stores bits 2:5 of the addresses of assumed procedure call
instructions. Whenever a jal or jalr instruction is in ID, the instruction address is pushed on
the stack, it will appear at the ToS (top of stack) output in the next cycle. When a jr r31
instruction, the assumed procedure return, is in ID the stack is popped. (That is, the most
recently pushed address is removed and the next-most-recent one is moved to the top-of-stack
position.) If the stack is empty the empty line is asserted, which might trigger a trap. (The
operating system might fill the stack with data that had overflowed when too many items were
pushed.)

← → Spring 1998 ← → Homework 6 Homework Sol Code hw06 sol.html

https://www.ece.lsu.edu/ee4720/1998/hw06_sol.html


As with all chapter-3 DLX implementations, there is no actual reason to predict branches since
the branch condition is available early. The chapter-3 DLX implementation was used above for
simplicity.

Problem 4,  EE 4720 HW 6 Solution Top   Previous  

The connections and address locations are shown below.
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EE 4720 Homework 1 Solution Assigned: Spring 1997

Problem 1: (2 pts) Just plug the run times into these equations

AM =
1

n

nX
i=1

ti HM =

 
1

n

nX
i=1

1

ti

!
�1

GM = n

vuut nY
i=1

ti

to obtain 42.6, 13.8, and 27.7 for the arithmetic, harmonic, and geometric mean (respectively) of
the program run times on the base machine and 18.6, 4.8, 11.7 for the arithmetic, harmonic, and
geometric mean (respectively) of the program run times on the test machine.

Problem 2: (3 pts) The key phrase in the problem is, \each type of program is of equal impor-
tance." This means that, say, if machine A runs the compilers, A1, A2, and A3, 10% faster, and
machine B runs the databases 10% faster, both would have the same TigerMark rating (assuming
they ran the other programs as fast as the base machine). A common, and incorrect, solution was
taking the geometric mean of the speedups of each program. That is, 
tA1(Base)

tA1(Test)
�

tA2(Base)

tA2(Test)
�

tA3(Base)

tA3(Test)
�

tB1(Base)

tB1(Test)
�

tB2(Base)

tB2(Test)
�

tC1(Base)

tC1(Test)
�

tC2(Base)

tC2(Test)
�

tC3(Base)

tC3(Test)
�

tC4(Base)

tC4(Test)

!1=9
:

Because the number of programs of each type is di�erent a 10% change in each program of one
type will have a di�erent impact than a 10% change in each program of another type, which is not
acceptable in this case.

In one correct solution, the average speedup of programs of each type is computed, yielding
three speedups. These three speedups are averaged to get the TigerMark. Symbolically,

TM(Test) =
1

3

 
1

3

�
tA1(Base)

tA1(Test)
+

tA2(Base)

tA2(Test)
+

tA3(Base)

tA3(Test)

�
+

1

2

�
tB1(Base)

tB1(Test)
+

tB2(Base)

tB2(Test)

�
+

1

4

�
tC1(Base)

tC1(Test)
+

tC2(Base)

tC2(Test)
+

tC3(Base)

tC3(Test)
+

tC4(Base)

tC4(Test)

�!
:

Problem 3: Another possible bene�t is code density. That is, it's quite likely that the space
needed for the single new instruction is less than the �ve instructions it replaces, so less space is
needed to store the program.

One drawback is that the bene�t does not justify the cost. The new instruction may only
be rarely used while the hardware cost might be substantial.

Another drawback is that it might be di�cult to quickly execute the new instruction
on future implementations. The instruction might do 100% of what the programmer wants and
10% more. The 10% more might preclude a faster future implementation. A sequence of simpler
instructions might do exactly what the programmer wants and could be executed quickly.

Wrong answers:
(Bene�t) Lower instruction count means lower execution time. This is wrong because it

implies that fewer instructions will always lead to improved performance. (In this case it does.)
(Drawback) Lower instruction execution rate (MIPs). This is wrong because lower or

higher MIPs does not mean lower or higher performance in general, and in this case.

1
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(Drawback) Higher CPI. This is wrong because lower or higher CPI does not mean lower
or higher performance in general, and in this case. Note that MIPs = 106=CPI.

Problem 4: (3 pts) For implementation A and compiler I, average instruction execution time is
2:625CPI = 2:625�s (either answer is acceptable). Total execution time is 21:0ms. For imple-
mentation A and compiler II, average instruction execution time is 2:595CPI = 2:595�s. Total
execution time is 21:8ms. In these cases compiler II had the lower CPI (good) but the higher
execution time (bad), and so CPI is not a good predictor.

For implementation B and compiler I, average instruction execution time is 2:625CPI =
2:625�s (either answer is acceptable). Total execution time is 21:0ms. For implementation B and
compiler II, average instruction execution time is 2:405CPI = 2:405�s. Total execution time is
20:2ms. In these cases compiler II had the lower CPI and the lower execution time. CPI does agree
with execution time here.

Wrong answer explained: CPI = (2 + 2+ 3)=3 = (3 + 1 + 3)=3 = 7=3 is wrong because it
gives equal weight to all instruction categories. Average instruction execution time (CPI) is based
on the mix of instructions actually executed, so frequently executed instructions should be counted
more than infrequent ones.

2
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EE 4720 Computer Architecture - HW 3 Solution
Problem 1

Conventional implementation. If r10=0, skip every other instruction:

 beqz r10,A

 add r3,r2,r1

A:

 addi r4,r5,#12

 beqz r10,B

 addi r4,r6,#13

B:

 addi r5,r4,#14

 beqz r10,C

 addi r5,r7,#15

C:

 addi r8,r5,#16

 beqz r10,D

 addi r8,r2,#17

D:

 addi r9,r8,#18

(Note that a good programmer would implement the code fragment above differently.)

Notice that all branches use the some register. That makes it easy to replace all branches with a single PM:

 pm R10, 0xFF, 0xAA

 add r3,r2,r1

 addi r4,r5,#12

 addi r4,r6,#13

 addi r5,r4,#14

 addi r5,r7,#15

 addi r8,r5,#16

 addi r8,r2,#17

 addi r9,r8,#18

Problem 2

Consider execution of the first four instructions of the conventional code fragment when r10=0. The add
instruction, which started execution under the predict-not-taken assumption, is abandoned. The addi instruction
starts three cycles after the IF for the add. The process repeats with the second beqz instruction.

        0  1   2   3   4   5   6   7

 beqz  IF  ID  EX  MEM WB

 add    IF  ID  __

A:

 addi        IF  ID  EX  MEM WB

 beqz    IF  ID  EX  MEM WB

The time between the beqz instructions is five cycles, the number of instructions executed is 2. This sequence
repeats four times in the entire code fragment, and the sequence takes another four cycles to complete (for the
pipeline to drain. So:

IC = 2 × 4 = 8.
t / cycles = 2 × 5 + 4 = 24.
CPI = 24 / 8 = 3
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With the PM instruction there are no stalls, so the total execution time is 9 + 4 = 13 cycles. When r10=0, four
instructions are nulled, so IC = 5. Then

CPI = 13 / 5 = 2.6

The execution time is almost twice as good (which is what counts), and the CPI is slightly better.

Problem 3
The solution below is incomplete: it will not work properly with control-transfer instructions, nor will it work if
the pipeline stalls. (The complete solution might give away a future homework assignment.)

As shown in red below, add an eight-bit shift register to the EX stage. When a PM instruction is in EX, the
appropriate 8-bit execution mask (from the immediate portion of the ID/EX latch) is loaded into the shift register.

At every cycle, the least significant bit of the shift register is checked. If it's zero, the instruction in the EX stage
is nulled by replacing it with a NOP. (This works because instructions do not change "state" until the MEM and
WB stages.) At the end of the cycle the shift register is shifted right (removing the least significant bit) with a 1
shifted into the left side.

Problem 4

If loads were allowed, then operation of the shift register would be complicated by stall cycles (but this would
not be too great a problem). Allowing branches would make programming tricky since instructions at the branch
target would be affected by the execution mask. The PM description did not describe what would happen if a PM
were encountered within 8 instructions of another PM. One possibility is that the mask in the second PM could
overwrite the first, assuming the second PM was not nullified itself.

Things would be simplest if only arithmetic (including logical and compare) instructions were allowed after a
PM. So a reasonable restriction is that the PM works as described above until a non-arithmetic instruction is
encountered, in which case the remainder of the mask is set to ones (i.e., the PM instruction is cancelled) or
reloaded with a new mask if the non-arithmetic instruction is another PM.
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EE 4720 Computer Architecture - HW 4 Solution
Problem 1

In the timing diagrams below the active PM mask bit is indicated for each cycle. In the solution to homework 3,
instructions are nullified (replaced with NOPs) in the EX stage; the segments used by nullified instructions are
surrounded by X's. Note that the mask bit is checked in the EX stage and that because of pipeline stalls, mask
bits become misaligned with instructions. For example, in the execution below, because the SUB instruction
stalls it "misses" its zero.

With R4 = 0:

Time:0   1   2   3   4   5   6   7   8   9   10

Mask:  0   1  0   1  1   1  1   1

PM   IF  ID  EX  MEM WB

ADD  IF  ID  XEX XMX XWX

LW      IF  ID  EX  MEM WB

SUB  IF  ID      EX  MEM WB

Below, the SUB instruction executes normally (albeit with a stall) because the NOP was inserted in the EX stage
while SUB was stalled in ID.

With R4 = 1

Time:0   1   2   3   4   5   6   7   8   9   10

Mask:  1   0  1   1  1   1  1   1

PM   IF  ID  EX  MEM WB

ADD  IF  ID  EX  MEM WB

LW      IF  ID  XEX XMX XWX

SUB  IF  ID      EX  MEM WB

Note that, if the controller doesn't know that LW will be nullified, it will have to stall SUB to avoid the possible
RAW hazard. (The stall is unnecessary in this case.)

For R4 = 1, R5 = 0, Mask = 00010011

Time: 0   1   2   3   4   5   6   7   8   9   10

Mask:           1   1   0   0   1   0   0   0

PM    IF  ID  EX  MEM WB      

ADD   IF  ID  EX  MEM WB  IF  ID  XEX XMX XWX

BEQZ       IF  ID  EX  MEM WB  IF  ID  XEX XMX XWX

SUB   IF  ID       IF  ID  XEX XMX XWX

For R4 = 1, R5 = 1, Mask = 00010011

Time: 0   1   2   3   4   5   6   7   8   9   10

Mask:           1   1   0   0   1   0   0   0

PM    IF  ID  EX  MEM WB      

ADD   IF  ID  EX  MEM WB  

BEQZ       IF  ID  EX  MEM WB 

SUB   IF  ID  XEX XMX XWX

For R4 = 0, R5 = 1 or R5 = 0, Mask = 11111100

Time: 0   1   2   3   4   5   6   7   8   9   10

Mask:           0   0   1   1   1   1   1   1

PM    IF  ID  EX  MEM WB      

ADD   IF  ID  XEX XMX XWX
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BEQZ       IF  ID  XEX XMX XWX

SUB   IF  ID  EX  MEM WB      

Problem 2
Use a shift register in which all all bits are available, not just the bit at the end of the register. And these bits
together, call the result DONE. DONE indicates that the current and next seven instructions will execute.
Generate a second signal, PM_ILL, by detecting an LW or CTI instruction opcode in the EX stage. Then
PM_VIOL is the and of PM_ILL and NOT DONE. The exception can easily be made precise since it is detected
while the the faulting instruction is in the EX stage, and so the following instructions can easily be abandoned
since they are only in the IF and ID segments.

These changes are shown below; blue indicates changes for homework 3 and red indicates changes for this
problem. Note the exaggerated inversion bubble at the shift register shift input.

Problem 3

For loads and branches to be properly nullified, the
shift register must not be clocked when bubbles are
passing though the EX stage. The simplest solution
is to assume that the controller can provide a
"bubble bit" in the EX stage; when such a bit is 1
the shift register is not clocked.

If a bubble bit is not already provided, it can be
synthesized by checking for the two stall
conditions: a load instruction with a RAW hazard,
and a taken branch or any other CTI. A bubble shift
register is set to the number of stall cycles, one bit
for a load, and three for a taken branch. The
register is either loaded, as described above, or

instruction reading registers in the ID stage. If the
register written by the load is the same as either of
the registers read by the instructions in ID, then
one bit in the bubble register is set. Instructions
using one and two source registers need to be
distinguished.

CTIs can be detected in the EX stage. If instruction
in EX is a jump, jump/link, or a taken branch, three
bits in the bubble shift register are set.

These changes are shown below; blue indicates
changed for homework 3 and red indicates changes
for this problem. The solution below assumes that
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shifted. If the bit out is one, then the PM shift
register is not shifted.

The load stall is detected by checking for a load
instruction in the EX stage and any

NOPs are inserted into the IR in place of the stalled
instructions. What if that assumption is not correct?
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EE 4720 Computer Architecture - HW 6 Solution

Problem 1

An illustritive program and its execution is shown for each entry in the table. The "Lat" row shows the cycles
counted in the latency. Note that the floating-point units use their own memory and writeback stages, called MF
and WF, respectively.

Program for Figure 4.2 Entry 1

 addd f0, f2, f4

 addd f6, f0, f2

Timing:

Time 0   1   2   3   4   5   6   7   8   9   10  11

Lat              1   2   3

addd IF  ID  A1  A2  A3  A4  MF  WF

addd     IF  ID              A1  A2  A3  A4  MF  WF

Program for Figure 4.2 Entry 2

 addd f0, f2, f4

 sd 0(r1), f0

Timing:

Time 0   1   2   3   4   5   6   7   8   9   10  11

Lat                  1   2   

addd IF  ID  A1  A2  A3  A4  MF  WF

sd       IF  ID  EX          MEM WB

Note that store stalls in the EX stage.

Program for Figure 4.2 Entry 3

 ld   f2, 0(r1)

 addd f0, f2, f4

Timing:

Time 0   1   2   3   4   5   6   7   8   9   10  11

Lat              1

ld   IF  ID  EX  MEM WB

addd     IF  ID      A1  A2  A3  A4  MF  WF

Program for Figure 4.2 Entry 4

 ld   f2, 0(r1)

 addd f0, f2, f4

Timing:

Time 0   1   2   3   4   5   6   7   8   9   10  11

Lat              
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ld   IF  ID  EX  MEM WB

sd       IF  ID  EX  MEM WB

Problem 2

Note: solution based on simplified R4000 issue rules, so timing will not match a real R4000.

Time 0   1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16  17  18

ld   IF  IS  RF  EX  DF  DS  TC  WB

neg      IF  IS  RF          U   S   DF  DS  TC  WB

add          IF  IS          RF      U   S+A A+R R+S DF  DS  TC  WB

cgt              IF          IS      RF      U   A   R   DF  DS  TC  WB

add                          IF      IS      RF  U   S+A A+R R+S DF  DS  TC  WB
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EE 4720 Computer Architecture - HW 7 Solution

Problem 1

The solution below is partly repeated. The first table shows the entire solution. (You might need to maximize your browser window.) The second table, for convenience,
shows the solution starting at cycle 11.

Some points:

The implementation has no bypass paths, so newly computed operands are not available until the end of the WB cycle.
Only one FU at a time can write the common data bus (CDB). The second muld is forced to wait a cycle.
The branch target, ld, is not fetched until after the branch leaves ID.

Time 0    1    2    3    4    5    6    7    8    9    10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27

muld IF   ID   5:A1 5:A2 5:A5 5:A4 5:WB

addd      IF   ID   3:RS 3:RS 3:RS 3:RS 3:A1 3:A2 3:A3 3:A4 3:WB

muld           IF   ID   6:RS 6:RS 6:RS 6:M1 6:M2 6:M3 6:M4 6:WB 6:WB

subd                IF   ID   4:RS 4:RS 4:RS 4:A1 4:A2 4:A3 4:A4 4:WB 4:WB

loop:

ld                       IF   ID   2:EX 2:MI 2:WI                                                                       IF   ID

subd                          IF   ID                            3:RS 3:RS 3:A1 3:A2 3:A3 3:A4 3:WB

ld                                 IF                            ID   1:EX 1:MI 1:WB

subd                                                             IF   ID   4:RS 4:RS                4:A1 4:A2 4:A3 4:A4 4:WB

ld                                                                    IF   ID   2:EX 2:MI 2:WB

subd                                                                       IF   ID                  3:RS                     3:A1 3:A2 3:A3 3

subi                                                                            IF                  ID   1:EX 1:MI 1:WB

addi                                                                                                IF   ID   2:EX 2:MI 2:WB

bnez                                                                                                     IF   ID        1:EX 1:MI 1:WB

Time 11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28

muld 

addd 3:WB

muld 6:WB 6:WB

subd 4:A4 4:WB 4:WB

loop:

ld                                                               IF   ID

subd      3:RS 3:RS 3:A1 3:A2 3:A3 3:A4 3:WB

ld        ID   1:EX 1:MI 1:WB

subd      IF   ID   4:RS 4:RS                4:A1 4:A2 4:A3 4:A4 4:WB

ld             IF   ID   2:EX 2:MI 2:WB

subd                IF   ID                  3:RS                     3:A1 3:A2 3:A3 3:A4 3:WB

subi                     IF                  ID   1:EX 1:MI 1:WB

addi                                         IF   ID   2:EX 2:MI 2:WB

bnez                                              IF   ID        1:EX 1:MI 1:WB

Problem 2

The modifications to the pipeline are shown below. This solution works in most situations. (See end of description.)

The BHT has a separate read and write port (so that one entry can be read while another is updated). The BHT address is the concatenation of h-m PC bits and m bits from
the shift register. The BHT entry and the BHT entry address are clocked into the IF/ID latch.

The prediction is made in the ID stage simply by looking at the most significant bit of the BHT entry. An updated BHT entry is generated by adding or subtracting 1, based
on the branch outcome. (In any real branch prediction scheme we would not know the outcome until several cycles later.) Using the address in the IF/ID latch, the updated
entry is written to the BHT (at the end of ID) using the address from the latch. (It's important to write the entry to the same address it was read from, of course.)

The shift register is updated at the end of ID. The register shifts only if the "enable" line is asserted.

The solution below would have received full credit, but it does have a problem: If there are two consecutive branches, the shift register value used for the second branch
will not be correct. How could this problem be fixed? Also, how would the design be changed if the "taken" signal were available only after ID?
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EE 4720 Computer Architecture - HW 8 Solution

Problem 1

The original program with line numbers added:

1: add r1, r2, r3

2: sub r6, r7, r8

3: lw  r10, 0(r20)

4: add r11, r10, r12

5: sub r14, r1, r9

6: add r1, r14, r15

7: sub r16, r17, r18

8: add r19, r21, r22

9: sw  0(r20), r6

The instructions are rearranged and placed in groups of 3 for 3VDLX. The first three instructions can be, and are,
grouped together because they don't use any values they produce. The next three, on lines 4, 5, and 6, cannot be
grouped together because the value produced on line 5 is needed on line 6. The inefficient solution is to keep the
instructions in the same order and use nops to avoid hazards, starting with the load latency:

add r1, r2, r3;    sub r6, r7, r8;     lw  r10, 0(r20)

nop;               nop;                nop

add r11, r10, r12; sub r14, r1, r9;    nop

add r1, r14, r15;  sub r16, r17, r18;  add r19, r21, r22

sw  0(r20), r6     nop;                nop

The first set of nops is needed because of the load instruction. The nop in the third 3VDLX instruction is needed
because of the true dependency between lines 5 and 6 in the original program. The nops in the last 3VDLX
instruction would be needed if we had no further instructions (which is unlikely when the last instruction is not a
CTI, but that's where the problem ends).

The instructions can be rearranged for efficient execution. The instructions at lines 5, 7 and 8 can be placed in
the second 3VDLX instruction. The remaining can be placed in the third 3VDLX instruction yielding:

add r1, r2, r3;    sub r6, r7, r8;    lw  r10, 0(r20)

sub r16, r17, r18; add r19, r21, r22; sub r14, r1, r9

add r11, r10, r12; add r1, r14, r15;  sw  0(r20), r6

Since the VLIW instructions execute as a unit, there is no need to distinguish between the separate parts of a
pipeline stage, as is done for superscalar.

add  sub  lw   IF  ID  EX  MEM WB

sub  add  sub      IF  ID  EX  MEM WB 

add  add  sw           IF  ID  EX  MEM WB 

Problem 2

Each pipeline stage has room for three instructions, superscripts are used to distinguish the parts. To save space,
M is used for the MEM stage.

The first three instructions can start executing without delay. Of the next three, only the one on line 5 can start,
the add on line 4 must wait for the load and the add on line 6 must wait for the sub on line 5. With two
instructions in ID the last group of three instructions are stalled at time 3.
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Time  0   1   2   3   4   5   6   7

add   IF
1
 ID

1
 EX

1
 M

1
  WB

1
                

sub   IF
2
 ID

2
 EX

2
 M

2
  WB

2
                

lw    IF
3
 ID

3
 EX

3
 M

3
  WB

3
                

add       IF
1
 ID

1
     EX

1
 M

1
  WB

1
        

sub       IF
2
 ID

2
 EX

2
 M

2
  WB

2
        

add       IF
3
 ID

3
     EX

3
 M

3
  WB

3
    

sub           IF
1
     ID

1
 EX

1
 M

1
  WB

1

add           IF
2
     ID

2
 EX

2
 M

2
  WB

2

sw            IF
3
     ID

3
 EX

3
 M

3
  WB

3

Problem 3

Reservation stations, as described in class, add an extra cycle of latency because of the complexity of using the
CDB (in the WB "stage"). The reservation station numbers associated with the functional units are:

Int   1  2

L/S   3  4

Int   5  6

L/S   7  8

Int   9 10

L/S  11 12

where Int refers to an integer execution unit and L/S refers to a load/store unit. Note that reservation stations are
dedicated to functional units. If ready instructions were waiting in reservation stations 1 and 2, only one could
start in a cycle, even if the other two integer execution units were free.

The pipeline notation is the same used in class, for example, 5:EX3 indicates that execution unit 3 is executing
an instruction from reservation station 5.

Load and store instructions need an ALU to compute addresses, in this solution a load/store unit has its own
ALU, that stage is indicated by AD.

Execution is given below:

Time  0   1       2       3       4       5       6     7

add   IF
1
 ID

1
   1:EX

1
   1:WB

1
                                    

sub   IF
2
 ID

2
   5:EX

2
   5:WB

2
                                    

lw    IF
3
 ID

3
  11:AD

3
  11:M

3
   11:WB

3
                            

add       IF
1
     ID

1
   2:RS    2:RS    2:EX

1
   2:WB

1
            

sub       IF
2
     ID

2
   6:RS    6:EX

2
   6:WB

2
                    

add       IF
3
     ID

3
   9:RS    9:RS    9:RS    9:EX

3
  9:WB

3
     

sub               IF
1
     ID

1
   1:EX

1
   1:WB

1
                    

add               IF
2
     ID

2
   5:EX

2
   5:WB

2
                    

sw                IF
3
     ID

3
  12:AD

3
  12:M

3
   12:WB

3
            

Problem 4

Memory devices, which have 16-bit entries, are paired to provide the 32-bit words needed. Since 4-byte words
are being fetched, use address bits 2..19 to index (as the address for) the memory devices. Bits 20..22 of the
address can be used to select the memory pair with the correct data. The solution should include a diagram.

← → Spring 1997 ← → Homework 8 Homework Sol Code hw08 sol.html

https://www.ece.lsu.edu/ee4720/1997/hw08_sol.html


  

David M. Koppelman - koppel@ee.lsu.edu Modified 2 May 1997 18:34 (23:34 UTC)

← → Spring 1997 ← → Homework 8 Homework Sol Code hw08 sol.html

http://www.ee.lsu.edu/
http://www.ee.lsu.edu/koppel/ee4720/index.html
http://www.ee.lsu.edu/koppel/ee4720/prev.html
http://www.ee.lsu.edu/koppel/
mailto:koppel@ee.lsu.edu
https://www.ece.lsu.edu/ee4720/1997/hw08_sol.html

	Spring 2025
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf
	hw07.pdf

	Spring 2024
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf

	Spring 2023
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf
	hw07.pdf

	Spring 2022
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf
	hw07.pdf
	hw08.pdf

	Spring 2021
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf
	hw07.pdf
	hw08.pdf

	Spring 2020
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf

	Spring 2019
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf
	hw07.pdf
	hw08.pdf
	hw09.pdf

	Spring 2018
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf
	hw07.pdf

	Spring 2017
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf
	hw07.pdf
	hw08.pdf

	Spring 2016
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf

	Spring 2015
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf

	Spring 2014
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf

	Spring 2013
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf
	hw07.pdf

	Spring 2012
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf

	Spring 2011
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf

	Fall 2010
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf
	hw07.pdf
	hw08.pdf

	Spring 2010
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf

	Spring 2009
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf

	Fall 2008
	hw01.pdf
	hw02.pdf
	hw03.pdf

	Spring 2008
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf

	Fall 2007
	hw02.pdf
	hw03.pdf
	hw04.pdf

	Spring 2007
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf

	Fall 2006
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf

	Spring 2006
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf

	Fall 2005
	hw01.pdf
	hw04.pdf
	hw05.pdf

	Spring 2005
	hw01.pdf
	hw02.pdf
	hw03.pdf

	Fall 2004
	hw01.pdf
	hw03.pdf

	Spring 2004
	hw01.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf
	hw07.pdf

	Fall 2003
	hw01.pdf
	hw03.pdf
	hw04.pdf

	Spring 2003
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf

	Fall 2002
	hw01.pdf
	hw02.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf

	Spring 2002
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf

	Fall 2001
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf

	Spring 2001
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf

	Fall 2000
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf

	Spring 2000
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf

	Fall 1999
	hw01.pdf
	hw02.pdf
	hw03.pdf

	Spring 1999
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf

	Spring 1998
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf

	Spring 1997
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf
	hw07.pdf
	hw08.pdf

	Spring 2025 Solutions
	hw01 sol.pdf
	hw01-sol.s.html
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf
	hw06 sol.pdf
	hw07 sol.pdf

	Spring 2024 Solutions
	hw01-sol-simple.s.html
	hw01-sol.s.html
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf

	Spring 2023 Solutions
	hw01-sol-easy.s.html
	hw01-sol-fast.s.html
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf
	hw06 sol.pdf
	hw07 sol.pdf

	Spring 2022 Solutions
	hw01 sol.pdf
	hw01-sol.s.html
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf
	hw06 sol.pdf
	hw07 sol.pdf
	hw08 sol.pdf

	Spring 2021 Solutions
	hw01 sol.pdf
	hw01-sol.s.html
	hw02 sol.pdf
	hw02-sol-easy.s.html
	hw02-sol.s.html
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf

	Spring 2020 Solutions
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf
	hw06 sol.pdf

	Spring 2019 Solutions
	hw01-sol.s.html
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf
	hw08 sol.pdf

	Spring 2018 Solutions
	hw01-sol.s.html
	hw02 sol.pdf
	hw03 sol.pdf
	hw05 sol.pdf
	hw06 sol.pdf

	Spring 2017 Solutions
	hw01-sol.s.html
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf
	hw06 sol.pdf
	hw07 sol.pdf
	hw08 sol.pdf

	Spring 2016 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf

	Spring 2015 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf
	hw06 sol.pdf

	Spring 2014 Solutions
	hw01 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf

	Spring 2013 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf
	hw06 sol.pdf
	hw07 sol.pdf

	Spring 2012 Solutions
	hw01 sol.pdf

	Spring 2011 Solutions
	hw01 sol.pdf

	Fall 2010 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf
	hw06 sol.pdf

	Spring 2010 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf

	Spring 2009 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf

	Fall 2008 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw03 sol.pdf

	Spring 2008 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw03 sol.pdf

	Fall 2007 Solutions
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf

	Spring 2007 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf

	Fall 2006 Solutions
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf

	Spring 2006 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf

	Fall 2005 Solutions
	hw01 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf

	Spring 2005 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw03 sol.pdf

	Fall 2004 Solutions
	hw01 sol.pdf
	hw03 sol.pdf

	Spring 2004 Solutions
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf
	hw06 sol.pdf
	hw07 sol.pdf

	Fall 2003 Solutions
	hw01 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf

	Spring 2003 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf
	hw06 sol.pdf

	Fall 2002 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf
	hw06 sol.pdf

	Spring 2002 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf

	Fall 2001 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf

	Spring 2001 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf

	Fall 2000 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf

	Spring 2000 Solutions
	hw01 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf

	Fall 1999 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw03 sol.pdf

	Spring 1999 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw03 sol.pdf
	hw04 sol.pdf

	Spring 1998 Solutions
	hw01 sol.html
	hw02 sol.html
	hw03 sol.html
	hw04 sol.html
	hw05 sol.html
	hw06 sol.html

	Spring 1997 Solutions
	hw01 sol.pdf
	hw03 sol.html
	hw04 sol.html
	hw06 sol.html
	hw07 sol.html
	hw08 sol.html


