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Problem 1: [30 pts] Appearing on the facing page is the MIPS implementation that includes the addsc

from Homework 3.

(a) The first four code fragments below will execute as shown with the illustrated control logic (from the
Homework 3 solution), but the logic won’t generate the stall for the last fragment.

Add control logic to the implementation so that all of the code fragments execute as shown. That is, add
logic to generate the stall signal for the last fragment without changing whether the others stall.

lw R5, 8(r2) IF ID EX ME WB # Correctly stalls with existing logic.

addsc r3, r4, R5, 7 IF ID -> EX ME WB

lw R4, 8(r2) IF ID EX ME WB # Correct with existing logic.

addsc r3, R4, r5, 7 IF ID EX ME WB

xori R4, r2, 8 IF ID EX ME WB # Correct with existing logic.

and r6, R4, r5 IF ID EX ME WB

lw R5, 8(r2) IF ID EX ME WB # Correctly stalls with existing logic.

xor r6, r4, R5 IF ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6

lw R4, 8(r2) IF ID EX ME WB # Should stall but doesn’t with existing logic.

xor r6, R4, r5 IF ID -> EX ME WB

(b) Notice that in the first two fragments below the addsc shift amount is zero, and so those instructions
just add. In the first fragment addsc executes in ME due to the load dependence, but in the second fragment
it executes in EX so it can avoid stalling the or. Note: The material about doADDSC described below was not
in the original exam.

Modify the control logic so that an addsc with a zero shift executes as shown below. Do so by relabeling
the isADDSC pipeline latches to doADDSC. Set this signal to 1 only if there is an addsc in ID that needs to
execute in ME. The logic should not break correct behavior for other cases, such as the ones above.

# Cycle 0 1 2 3 4 5 6 7 Fragment b1 - addsc adds in ME.

lw R2, 8(r9) IF ID EX ME WB

addsc r1, R2, r3, 0 IF ID EX ME WB

or r5, r10, r6 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 Fragment b2 - addsc adds in EX

andi R2, r9, 8 IF ID EX ME WB

addsc R1, R2, r3, 0 IF ID EX ME WB

or r5, R1, R6 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 Fragment b3 - addsc adds in ME.

lw R6, 8(r9) IF ID EX ME WB

addsc R1, r2, r3, 4 IF ID EX ME WB

or r5, R1, R6 IF ID -> EX ME WB
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format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

10:6

For scaled
add ALU performs
operation
x=a.

Left
Shift

amt

+

a

b
x

B
C

A

isADDSC

='rs 25:21

isLoad

isADDSC isADDSC

isLoad

='

Stall

rt 20:16

Dependence: addsc ; insn src

Dependence: load ; insn rt rt Souce
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Problem 2: [30 pts] In the MIPS implementation below pay attention to bypass paths and how the branch
is resolved.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=
30 2

2'b0

PC

+
15:0

25:0

29:26
29:0

15:0

D
 

dstdst

msb lsb

msb

lsb
targ

To
 b
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tro

l lo
g
ic.

Show the execution of this code on the implementation above. Don’t forget to check for dependencies!

add r1, r2, r3

sub r4, r1, r5

and r6, r7, r4

sw r1, 0(r6)

Show the execution of this code on the implementation above. Don’t forget to check for dependencies!

addi r1, r1, 1

sw r1, 0(r2)

sw r1, 4(r2)
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Show the execution of this code on the implementation above. Don’t forget to check for dependencies!

lw r1, 0(r2)

lw r4, 4(r2)

sw r1, 0(r3)

sw r4, 4(r3)

Show the execution of the code below with the branch taken on the implementation above. Don’t
forget to check for dependencies! Pay attention to branch behavior.

add r1, r2, r3

beq r1, r4, TARG

sw r1, 0(r8)

and r5, r1, r6

ori r5, r5, 0x6

sw r5, 4(r8)

TARG:

lw r1, 8(r8)

Show how the inputs to the = box in EX can be changed to eliminate stall(s) in the example above,

and stalls for other kinds of dependenices. Do not add hardware, just change the inputs.
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Problem 3: [40 pts] Answer each question below.

(a) In the routine below r4 holds an integer, call its value x, and f1 holds a single-precision float, call its
value y. Complete the routine so that register f9 holds x× y in single-precision floating point.

Complete the routine so that f9 is written with the product of the values of r4 and f1. The solution only
requires a few instructions, don’t try to fill the entire page.

add r4, r5, r5

add.s f1, f2, f3

# At this point r4 holds an integer and f1 holds a single-precision float.
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(b) The three MIPS code fragments below each do the same thing, and infinite loops are not the problem.

loop: # Fragment A

sw $t4, 0($t5)

bne $t5, $t3, loop

addi $t5, $t5, 4

loop: # Fragment B

sw $t4, 0($t5)

sw $t4, 4($t5)

bne $t5, $t3, loop

addi $t5, $t5, 8

loop: # Fragment C

sb $t4, 0($t5)

sb $t4, 1($t5)

sb $t4, 2($t5)

sb $t4, 3($t5)

bne $t5, $t3, loop

addi $t5, $t5, 4

Which code fragment is the fastest, © Fragment A, © Fragment B, or © Fragment C?

Which code fragment is the slowest, © Fragment A, © Fragment B, or © Fragment C?

Explain choice of fastest and slowest fragment, and include a good definition of fast.

Assume that the contents of t5 and t3 refer to a range of valid memory addresses. Which fragment(s) put

a restriction on the value of t5? Explain. Assume that t3 is always chosen to avoid an infinite loop.
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(c) When designing a RISC ISA what is the most important criterion when considering possible instructions
based on the material presented in class?

Most important factor when deciding whether an instruction should be added to a RISC ISA.

Give an example of an instruction unsuitable for RISC and explain how the criterion makes it unsuitable.

(d) CISC ISAs have powerful instructions, such as add 4(r1), (r2), ((r3)) or a call instruction that
automatically saves registers.

What is the benefit of powerful instructions, especially in the days when memory was made by people sewing
wires around little metal rings.
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(e) Intel has updated IA-32 (a.k.a. x86) since the 1980s, and later added a 64-bit variant, Intel-64. Recall
that nobody actually likes IA-32.

So why did Intel’s customers continue to buy implementations of IA-32 and Intel 64 rather than switching
to a better-designed ISA? (Note that Apple is an exception to the rule that computer makers don’t switch
ISAs.)

(f) MIPS uses the func field as an opcode extension field.

Why is an opcode extension field needed?

Why didn’t they just make the opcode longer when designing MIPS?
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Problem 1: [18 pts] Appearing below is a changed version of the MIPS implementation appearing in
Homework 3 and the 2020 midterm exam.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

A B C

rt is src

=' ME By

rt By

WB By

Stall

type R

=' ='

='

ME By

rt By

rs 25:21

rt 20:16

D

1
0

1
0 1

0

1
0

1
0

1
0

In the table show the select signal values expected for the execution shown below. Use X for select signals
that don’t matter (that can be either 0 or 1). Don’t forget to check for dependencies

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

ori r7, r1, 9 IF ID EX ME WB

sub r8, r9, r7 IF ID EX ME WB

sw r7, 5(r6) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

A

B

# Cycle 0 1 2 3 4 5 6 7

C

D

# Cycle 0 1 2 3 4 5 6 7

2 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Spring 2024 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4720/2024/mt.pdf


Problem 2: [17 pts] Appearing below is the implementation from the previous problem. It is not identical
to the Homework 3 implementation. See the last page of this exam for the Homework 3 Problem 3 solution.

Design the control logic for the A, B, C, and D select signals.

Take advantage of existing logic, not much more logic is needed. Make sure that C works for the code
fragment in the previous part. Don’t forget that execution is pipelined.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv
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msb lsb

msb

lsb

A B C

rt is src

=' ME By

rt By

WB By

Stall

type R

=' ='
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ME By

rt By

rs 25:21

rt 20:16

D

1
0

1
0 1

0

1
0

1
0

1
0

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3

← → Spring 2024 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4720/2024/mt.pdf


Problem 3: [15 pts] Show the execution of the MIPS code fragments on the implementation.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

Show the execution of the fragment below with the branch taken. Pay close attention to branch
behavior.

beq r1, r1, SKIPA

add r2, r3, r4

sub r5, r6, r7

ori r8, r9, 100

xori r10, r11, 101

SKIPA:

lw r12, 0(r14)

Show the execution of the fragment below. Be sure to check for dependencies.

addi r5, r5, 4

lw r2, 0(r5)

add r1, r2, r3

sub r4, r1, r4
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Problem 4: [15 pts] Appearing below is the implementation of Another RISC ISA (ARI) and incomplete
diagrams for the encoding of its MIPS-like R and I formats.

IR

Addr
13:7

6:0

IF ID EX WBME

rs1v

rs2v

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrs2v

ALU

MD

dst

NPC

=

30 2
2'b0

PC

+
31:25

29:0

16:7

D
 

dstdst

msb lsb

0
31:25

How many registers does ARI have?

What is ARI’s immediate size?

Why is it possible to implement an instruction like lw r1, 4(r2) but not an instruction like sw r1, 4(r2)

on the implementation above?

In the spaces below complete ARI R and ARI I instruction formats consistent with the implemen-
tation. Be sure to show the opcode field and any opcode extensions that are needed.

ARI R:
31 0

add r1, r2, r3

ARI I:
31 0

addi r4, r5, 6
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Problem 5: [20 pts] Answer each question below.

(a) Show the contents of the destination register after each MIPS I instruction below executes.

# Initially r1 = 0x12345678

sll r2, r1, 16

# r2 =

srl r3, r1, 16

# r3 =

or r4, r2, r3

# r4 =

(b) Given the MIPS code below, why might execution never reach the or instruction?

lw $a0, 0($t0)

jal SOME_CONVENTIONAL_STANDARD_LIBRARY_FUNCTION

addi r31, r31, -8

or $s1, $s1, $v0

The or instruction won’t be reached because:

What will happen instead is:
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(c) Register r9 holds the address of the middle of a large memory allocation, and so all the MIPS lb

instructions below execute with no problem. Not so for the lw instructions.

lb r11, 0(r9) # Will execute correctly.

lb r12, 5(r9) # Will execute correctly.

lb r13, 10(r9) # Will execute correctly.

lb r14, 15(r9) # Will execute correctly.

lw r1, 0(r9)

lw r2, 5(r9)

lw r3, 10(r9)

lw r4, 15(r9)

Why won’t the rest of the MIPS code execute to completion?

What are the maximum and minimum number of lw instructions that will execute before an error occurs,
and briefly explain how the maximum and minimum number are determined by the exact value of r9.

(d) Simplify MIPS the code fragment below.

lbu r1, 0(r10)

lbu r2, 1(r10)

sll r1, r1, 8

or r1, r1, r2

sh r1, 2(r10)

# Note: r1 and r2 not used again.

Simplify the code fragment without changing what it does.
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Problem 6: [15 pts] Answer each question below.

(a) In class we described three families of ISAs, CISC, VLIW, and RISC.

How do VLIW ISAs differ from both RISC and CISC ISAs?

(b) Identify the ISA family of the following ISAs:

MIPS: © CISC © VLIW © RISC

Arm A64: © CISC © VLIW © RISC

Itanium: © CISC © VLIW © RISC

Intel 64 /IA-32: © CISC © VLIW © RISC

VAX: © CISC © VLIW © RISC

(c) The statement below is wrong.

CISC ISAs can have large immediate values, but at the cost of having large instructions. That is why
programs in CISC ISAs are large compared to those in RISC ISAs.

What is correct in the statement above?

What is wrong in the statement above?
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Appearing below is part of the solution to Homework 3 Problem 3. It may be helpful in solving Problem 2 in
this exam.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
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A B C

rt is src

=' ME By

rt By

WB By

Stall

type R

=' ='

='

ME By

rt By

0
1

0
1

0
1

rs 25:21

rt 20:16

E

E

rs By

Solution: 
check for an 
rs 
dependence
with either of 
the two 
preceeding 

1
0

1
0
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Problem 1: (20 pts) Appearing below are MIPS implementations and code fragments. Show execution (a
pipeline execution diagram) of the code on the accompanying implementations.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=
30 2

2'b0

PC

15:0

D

dstdst

Eformat
immed

=0
Z

N
31:31

Show execution of the code below on the implementation above. Check for dependencies.

add r6, r7, r8

lw r9, 0(r6)

add r1, r2, r9

sub r4, r1, r5

sw r4, 0(r5)
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IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=
30 2

2'b0

PC
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D

dstdst

Eformat
immed

=0
Z

N
31:31

Show execution of the code below on the implementation above until the second fetch of lw. Show
when and where instructions are squashed (with an x). The branch must be taken. Pay close
attention to branch behavior. Check for dependencies.

LOOP:

lw r3, 0(r4)

addi r4, r4, 4

bne r1, r2, LOOP

addi r1, r1, r3

sw r3, 0(r9)

sw r4, 4(r9)

sw r2, 8(r9)
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FP Reg File
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fsv
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20:16 M6

we
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M3 M4
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we

uses FP mul

uses FP add

FP load

Stall
ID

0
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xw
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we

xw xw

we
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IR

Addr25:21

20:16

IF ID EX WBME
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ALUAddr
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Addr D In
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dest. reg

2'd2

2'd1
2'd0

msb lsb

M5

A3

M1

Int Reg File

=

format
immed

15:0

Complete the execution of the code below for the implementation above. Check for dependencies,
don’t overlook the first two mul.s instructions.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 ...

mul.s f1, f2, f3 IF ID M1 M2 M3 M4 M5 M6 WF

mul.s f4, f5, f6 IF ID M1 M2 M3 M4 M5 M6 WF

add.s f8, f15, f16

add.s f7, f4, f9

lwc1 f11, 0(r1)

add.s f10, f11, f1

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12...
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This page left mostly blank to provide room for the pipeline execution diagram.
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Problem 2: (15 pts) Answer the following questions on superscalar MIPS implementations.

(a) The superscalar MIPS implementation below has only four bypass paths, one per ALU multiplexor. The
paths have labels, slot 0 and slot 1 (showing where they originate).

Immed

IF ID EX WBME

A
d

d
r

D
 I
n

+8

Mem
Port

Addr

Addr

Mem
Port

md
0

dst0Dest. reg

Addr
25:21

20:16

rsv0

rtv0Addr

Data

Data

+

15:0

31:2

15:0

alu0

rtv0

 

rtv1

Addr
25:21

20:16

rsv1

rtv1Addr

Data

Data

A
d

d
r

D
 I
n

dst1

imm0

imm1

64

15:0

alu1  
Addr

Mem
Port

md
1

dst0

dst1

Register File

ir0

ir1

PC

npc

2'b0

Dest. reg
Data
Out

dst0

dst1

alu1

alu0

Data
Out

Data
Out

Immed

D
In

D
In

Magic Cloud

slo
t 0

slo
t 1

slo
t 1

sl
o
t 

1

sl
o
t 

0

slot 1

Complete the code fragment below (by adding registers) so that it uses all four bypass paths in cycle 4.

# Cycle 0 1 2 3 4 5 6

add IF ID EX ME WB

sub IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

or IF ID EX ME WB

xor IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

and IF ID EX ME WB

slt IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6
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(b) Show the execution of the code below on the following 4-way superscalar MIPS implementation. As we
have been doing this semester, instruction fetches are not aligned (the address can be any multiple of 4).

Immed

IF ID EX WBME

A
d

d
r

D
 I
n

+16

Mem
Port

Addr

Addr
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Port

md
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dst0Dest. reg

Addr
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rsv0
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15:0

alu3  
Addr

Mem
Port

md
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dst0

dst3

Register File

ir0

ir3

PC
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Dest. reg
Data
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dst0

dst3
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alu0

Data
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Data
Out

Immed

D
In

D
In

Magic
Cloud

Show execution on this 4-way superscalar MIPS implementation, with the branch taken. Show
all squashes with an x. Check for dependencies and pay attention to branch behavior.

beq r2, r3 SKIP

addi r1, r1, 8

add r2, r2, r5

SKIP:

sw r2, -4(r1)

addi r1, r1, r5

lw r2, 0(r1)

xori r2, r2, 0xaa

slt r8, r1, r9
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Problem 3: (25 pts) When the modifications to the MIPS implementation on the facing page are complete
an add.s instruction will not have to stall to avoid a structural hazard with preceding mul.s instructions.
Here an add.s instruction can pass through the same number of stages as a mul.s, so there is no possibility
of a stall due to a structural hazard at WF. In the execution below add.s f14 avoids such structural hazard
stalls by passing through the two extra stages, a5 and a6. But to avoid the necessity of always having to
pass through those two extra stages an add.s can use hop multiplexors to skip ahead to WF early. The add.s

f10 skips over two stages, and add.s f7 skips over one stage.

To keep the problem description from getting too long the following interesting material was not included in
the original final exam. Hopping ahead this way is probably not the best way to deal with structural hazards,
even if the avoided structural hazard stalls justified the cost of the pipeline latches. The reason is that those
two new hop multiplexors could instead be used to implement bypass paths from a5 and a6 into the M1 and
A1 functional units. (See the Fall 2006 final exam.) With such bypasses possible there would no longer be a
need to write back early. Hmmm, this may turn into a Fall 2025 question.

New and important hardware is shown in blue. The hardware generating signals xw, we, and fd is from the
old design and needs to be modified. Hardware for lwc1 has been removed, it is not part of this problem.
When solved correctly code should execute as shown below:

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.s f1, f2, f3 IF ID M1 M2 M3 M4 M5 M6 WF

mul.s f4, f5, f6 IF ID M1 M2 M3 M4 M5 M6 WF

add.s f14, f15, f16 IF ID A1 A2 A3 A4 a5 a6 WF

sub r1, r2, r3 IF ID EX ME WB

add.s f7, f8, f9 IF ID A1 A2 A3 A4 a5 WF

or r4, r5, r6 IF ID EX ME WB

add.s f10, f11, f12 IF ID A1 A2 A3 A4 WF

a4/a5.wa 1 1 1

a5/a6.wa 1 1 0

a6/WF.wa 1 0 0

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

In cycle 11 the add.s f7 uses the lower input of Hop6 to hop from a6 to WF (which is why a6 is not shown).
In cycle 12 add.s f10 uses the upper input of Hop6 to hop from a5 to WF.

Connect logic to the inputs of AND gates W5 and W6 so that the wa (write add) signal will be 0 for an
instruction that hopped out of a stage, preventing a hopping add.s from writing back twice. See sample wa

values in the execution above.

Add select signals to the two hop multiplexors. Little or no logic is required. For partial credit assume
wa is correct.

Modify the design so that fd is correct for mul.s and the hopping add.s instructions.

Modify the xw logic so that it works for hopping add.s instructions and the mul.s.

Modify we so that it is correct for hopping add.s and mul.s instructions.

Remove logic that is no longer needed. That can include logic for xw or we, depending on the solution.
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The IF stage is not shown to make space.

FP Reg File

fd

WFAddr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A2A1

fd

we

xw

M2

fd

we

uses FP mul

uses FP add
Stall
ID

0 1

fd

we

xw

fd

we

xw xw

we

fd

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out
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Mem
Port

Outrtv
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MD

dst

Decode
dest. reg

NPC
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2'b0

PC

+
15:0

29:0

D

dst

dst

 

decode
dest. reg

msb lsb

M5

A3

M1

Int Reg File

=

format
immed

15:0

wa wa wa wa wa wa

M3

fd

we

xw

A4

wa

M4

a5 a6

Hop6

Hop7

W5 W6
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Problem 4: (12 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on several systems, each with a different branch
predictor. One system has a bimodal predictor, and the other uses a 3-outcome local history predictor.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: N N T T T N T N N T T T N T N N T T T N T <- Outcome

B2: N T N T N T N T N T N T N T N T N T N T N <- Outcome

What is the accuracy of the bimodal predictor on branch B1? Be sure to base the accuracy on a repeating
pattern.

What is the accuracy of 3-outcome local history predictor on B1 ignoring B2.

What is the accuracy of 3-outcome local history predictor on B1 taking into account B2. Note that the
B2 pattern repeats faster than the B1 pattern.
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Problem 5: (8 pts) The diagram below is for a two-way set associative cache.
(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data
Addr

Data
Out

=Tag

Valid

CPU

Addr

Data In

logic

hit

Addr
Data
Out

Tag

Data
Addr

Data
Out

=Tag

Valid

16 B

64

63:12

11:4

63:12

11:8 11:8

11:4

Complete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Address:
0

Cache Capacity, in Bytes (how much data can it cache).

Line Size Indicate Unit!!:
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The problem on this page is not based on the cache from Part a. The code in the problem belows run on
a cache with a line size of 64 bytes (characters). The code fragment starts with the cache cold (empty);
consider only accesses to the array. Of course, 26 = 64.

(b) Find the hit ratio executing the code below.

int64_t sum = 0;

int64_t *a = 0x2000000; // sizeof(int64_t) == 8

int ILIMIT = 1 << 14; // = 214

for ( int i=0; i<ILIMIT; i++ ) sum += a[ i ];

What is the hit ratio running the code above? Show formula and briefly justify.
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Problem 6: (20 pts) Answer each question below.

(a) For each item below provide a code fragment exhibiting the indicated dependency. For your solving
convenience one instruction is already shown.

Complete the code fragment so that it exhibits a true dependence. Circle the register carrying the
dependence.

add r1, r2, r3

Complete the code fragment so that it exhibits an output dependence. Circle the register carrying the
dependence.

add r1, r2, r3

Complete the code fragment so that it exhibits an anti-dependence. Circle the register carrying the
dependence.

add r1, r2, r3

(b) Show the encoding of the instructions below. For the FP instruction infer the encoding from the imple-
mentation diagrams in other problems.

Show encoding. Label fields, and show specific values where possible.

add r1, r2, r3

Show encoding. Label fields, and show specific values where possible.

sw r4, 5(r6)

Show encoding. Label fields, and show specific values where possible.

add.s f1, f2, f3
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(c) Based on the execution below, why can’t the exception raised by the mul.s instruction be precise? What
can’t the handler do after it returns that could be done if the exception were precise?

mul.s f4, f5, f6 IF ID M1 M2 M3 M4 M5*M6*WF

addi r6, r6, 1 IF ID EX ME WB

Handler:

sw r1, 4(fp) IF ID ..

mul.s exception can’t be precise because:

If the exception were precise the handler could:

(d) Many early RISC ISAs avoided branch instructions that compared registers, such as blt r1, r2, TARG,
(branch less than) because that would lower the clock frequency. Later ISAs have included them. Assume
that the time needed to compute r1 < r2 has not changed.

Explain why newer ISAs can have instructions like blt r1, r2, TARG without slowing the clock frequency,
given that comparison is no faster? In your answer indicate where branches might resolve and how
penalty is avoided.

(e) A design team is trying to decide between including bypass path A or bypass path B. With the target
workload compiled without optimization the implementation with A is faster. With the workload compiled
with optimization the implementation with B is faster.

Which should be used © bypass path A or © bypass path B. Explain.
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Problem 1: [17 pts] Candidate MIPS instruction subir r1, 22, r3 is to compute r1=22-r3, which can’t
be done with a single existing MIPS instruction. The 22 is taken from instruction bits 15:0, which is the
immediate field of Type-I instructions.

The subir instruction is to be encoded so that it can be executed by the implementation to the right with
the ALU computing X = A− B, the same operation used by existing subtract instructions. Notice that in
the implementation the immediate connects to both ALU inputs.

(a) Show how subir r1, 22, r3 instruction would be encoded for this hardware.

Show encoding of subir r1, 22, r3. Be sure to show the position of the fields and the field values
for the sample instruction.

Be sure that the encoding fits with the illustrated hardware and other MIPS instructions.

31 16

Immed

15 0

(b) Some control logic is shown for the implementation.

Modify the control logic that computes dst so that subir executes correctly. Do not design control logic
for the ALU multiplexors.

The control logic should not break existing instructions.

The control logic changes should be consistent with your answer to the previous part.
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IR

Addr25:21

20:16

IF ID EX WBME
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rtv
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No dest (use r0).
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Dest is rt.

rt 20:16

rd 15:11

5'd0

5'd31

00
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lsb

msb

2'b0
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Problem 2: [20 pts] Show the execution of the code fragments below on their accompanying MIPS
implementations.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D  

dstdst

E
2'b0 format

immed =

Show the execution of the code fragment below on the implementation above. Be sure to check for
dependencies.

addi r1, r2, 4

lw r3, 0(r1)

sw r1, 4(r3)

Show the execution of the code fragment below on the implementation above. Be sure to check for
dependencies.

addi r1, r2, 4

sw r1, 4(r3)

lw r3, 0(r1)
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Problem 2, continued:

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=
30 2

2'b0

PC

15:0

D

dstdst

Eformat
immed

=0
Z

N
31:31

Show the execution of the code fragment below on the implementation above. Be sure to check for
dependencies.

addi r1, r2, 4

lw r3, 0(r1)

sw r1, 4(r3)

Show the execution of the code fragment below on the implementation above. Be sure to check for
dependencies.

addi r1, r2, 4

sw r1, 4(r3)

lw r3, 0(r1)
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Problem 3: [16 pts] Appearing below is the MIPS implementation with labeled multiplexor select signals
from Homework 3. Following that is an execution diagram along with a row showing select signal values for
the D multiplexor. The first instruction, add, is shown.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data
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=
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msb lsb
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31:2

0
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2
3 0

1
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3
0

1
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3

0
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2

E
D

C

0

B

1

A

0 1

F

Complete the code fragment so that it produces the values shown for D.

# Cycle 0 1 2 3 4 5 6 7 8

add r1, r2, r3 IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8

D: 1 0 1 2 3

6 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Spring 2023 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4720/2023/mt.pdf


Problem 4: [16 pts] Rewrite each code fragment below so that it uses fewer instructions.

Simplify code fragment.

addi r1, r0, 123

add r1, r1, r2

Simplify code fragment.

lw r1, 0(r2)

addi r2, r2, 4

lw r2, 0(r2)

Simplify code fragment.

sub r1, r2, r3

beq r1, r0, TARG

lw r1, 0(r4)
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Problem 5: [16 pts] Appearing below are two identical illustrations of one of our MIPS implementations.
To the right are three executions of a code fragment, only one of which is possible on the implementation.

Identify the execution that is possible. For each of the executions that is not possible modify one of the
illustrations below so that it is. The modification is very simple, just consider the target address. A few well
chosen lines will suffice. No logic gates.

IR
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20:16

IF ID EX WBME

rsv

rtv
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IR
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20:16

IF ID EX WBME
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Is the execution below consistent with the unmodified implementation? © Yes or © No.

If not, modify the implementation so that it is and label your modifications A.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION A

bne r1, r2, TARG IF ID EX ME WB

add r1, r1, r3 IF ID EX ME WB

sw r1, 0(r4) IFx

lui r5, 0x1234

ori r5, r5, 0x6789

TARG:

xor r8,r9,r10 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION A

Is the execution below consistent with the unmodified implementation? © Yes or © No.

If not, modify the implementation so that it is and label your modifications B.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION B

bne r1, r2, TARG IF ID EX ME WB

add r1, r1, r3 IF ID EX ME WB

sw r1, 0(r4) IF IDx

lui r5, 0x1234 IFx

ori r5, r5, 0x6789

TARG:

xor r8,r9,r10 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION B

Is the execution below consistent with the unmodified implementation? © Yes or © No.

If not, modify the implementation so that it is and label your modifications C.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION C

bne r1, r2, TARG IF ID EX ME WB

add r1, r1, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID EXx

lui r5, 0x1234 IF IDx

ori r5, r5, 0x6789 IFx

TARG:

xor r8,r9,r10 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION C
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Problem 6: [15 pts] Answer each question below.

(a) Company A and B both come out with a new computer each year. Company A changes both the ISA
and implementation each year. Company B changes only the implementation each year but uses the same
ISA.

Which company is following accepted practice?

Which company’s customers are more likely to stay with the company when it is time to upgrade to a new
model? Explain.

(b) In MIPS nop is a pseudo instruction.

What is a pseudo instruction?

Does having too many pseudo instructions make implementations too expensive? Explain.
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(c) The first code fragment below, from code presented in the course, loads element i of an array of integers.
(Here integers are four bytes.) Complete the second code fragment so that it loads element i from an array
of shorts (A short is two bytes.).

# C CODE # ASM REGISTER = C VARIABLE NAME

# int *a; ... # $s1 = a; $t0 = i sizeof(int) = 4 chars.

# x = a[i];

sll $t5, $t0, 2 # $t5 -> i * 4; Each element is four characters.

add $t5, $s1, $t5 # $t5 -> &a[i] (Address of a[i].)

lw $t1, 0($t5) # x = a[i]; $t1 -> a[i]

Complete code below so that it loads a short.

# C CODE # ASM REGISTER = C VARIABLE NAME

# short *a; ... # $s1 = a; $t0 = i sizeof(short) = 2 chars.

# x = a[i];

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

11

← → Spring 2023 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4720/2023/mt.pdf


Name Formatted For 2-Sided Printing

Computer Architecture

LSU EE 4720

Final Examination

Monday, 8 May 2023 10:00-12:00 CDT

Alias

Problem 1 (25 pts)

Problem 2 (25 pts)

Problem 3 (20 pts)

Problem 4 (10 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck! Thank you for your effort in EE 4720!

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Spring 2023 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/2023/fe.pdf


Problem 1: (25 pts) Show the execution of the code fragments on the following implementations. In each
case the branch is taken.

(a) Show the execution on this basic MIPS implementation.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D  

dstdst

E
2'b0 format

immed =

Show execution for the case where the branch is taken. Check for dependencies. Base execution on
hardware shown. Pay close attention to branch behavior.

addi r6, r6, 1

lui r5, 0xf00d

lw r3, 0x81b4(r5)

bne r1, r2, TARG

or r8, r3, r6

sw r8, 0x8120(r5)

lw r3, 0x8200(r5)

addi r5, r5, 16

TARG:

sll r10, r3, 8

add r11, r10, r12

2 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Spring 2023 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/2023/fe.pdf


This page left blank to provide extra space for the solution.
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(b) Appearing below is a MIPS implementation and an incorrect execution of a code fragment on that imple-
mentation. The code executes more slowly than it would on the implementation. Modify the implementation
so that the execution is correct. Your modifications will reduce the cost of the implementation.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

31:2

31:2

0
1

2
3 0

1
2

3
0

1
2

3

0
1

2

0

1

0 1

Modify the implementation above so that the code below executes as shown.

Make as few changes as possible. For example, remove a bypass path from a mux input, rather than the
entire bypass path.

# Cycle 0 1 2 3 4 5 6 7 8 9 10

addi r6, r6, 1 IF ID EX ME WB

lui r5, 0xf00d IF ID EX ME WB

lw r3, 0x81b4(r5) IF ID -> EX ME WB

bne r1, r2, TARG IF -> ID EX ME WB

or r8, r6, r3 IF ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10
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(c) Appearing below is a 4-way superscalar MIPS implementation.

Immed

IF ID EX WBME

Ad
dr

D
 In

+16

Mem
Port

Addr

Addr

Mem
Port

md0

dst0Dest. reg

Addr25:21

20:16
rsv0

rtv0Addr
Data
Data

+
31:2

15:0

alu0

rtv0

 

rtv3

Addr25:21

20:16
rsv3

rtv3Addr
Data
Data

Ad
dr

D
 In

dst3

imm0

imm3

12
8

15:0

alu3  
Addr

Mem
Port

md3

dst0

dst3

Register File

ir0

ir3

PC

npc

2'b0

Dest. reg
Data
Out

dst0

dst3

alu3

alu0

Data
Out

Data
Out

Immed

D
In

D
In

Magic
Cloud

Show execution on the 4-way superscalar implementation with branch taken.

Pay attention to branch behavior and the order of instructions within a stage.

addi r6, r6, 1

lui r5, 0xf00d

lw r3, 0x81b4(r5)

bne r1, r2, TARG

or r8, r3, r6

sw r8, 0x8120(r5)

...

TARG:

sll r10, r3, 8

add r11, r10, r12
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Problem 2: (25 pts) The implementation of ANRI, a new RISC ISA, appears below. Many instructions
are similar to those of MIPS, though they differ in format and other features. Like MIPS, ANRI registers
are named r0, r1, . . .

format
immed

IR

Addr
11:6

5:0

IF ID EX WBME

rs1v

rs2v

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrs2v

ALU

MD

dst

NPC

=

30 2
2'b0

PC

+
31:16

29:0

25:16

D
 

dstdst

msb lsb

6'b031:26

(a) First, an easy question:

How does ANRI differ from MIPS in the number of registers and the immediate size?

(b) Like MIPS, ANRI’s Format R is used for three-register instructions such as add r1, r2, r3. Show a
possible ANRI Format R consistent with the hardware.

Show the bit positions and the name of each field in ANRI Format R based on reasonable guesses.

Show possible field values for add r1, r2, r3 and for or r1, r2, r3. (Two instructions for a reason.)
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(c) Like MIPS, ANRI’s Format I is used for immediate instructions such as addi r4, r5, 6. Assume that
like MIPS, each of the dozens of ANRI arithmetic and logical instructions has an immediate variant.

Show the bit position and name of each instruction field in ANRI Format I based on reasonable guesses and
heeding the bold text above. Show possible field values for addi r4, r5, 6 and for ori r4,

r5, 6.

(d) Consider load and store instructions.

Show encoding of lw r7, 8(r9) and sw r10, 12(r11) in ANRI Format I, or something similar. Don’t
forget to base the encoding on the hardware.

(e) Consider procedure call instructions.

Based on the implementation, why does it appear that ANRI would lack the equivalent of MIPS jal Some-

Procedure though it could still encode the equivalent of jalr r1, r2.

(f) Based on the hardware above, ANRI would lack a means of loading an arbitrary 32-bit constant into a
register using two instructions. Modify the hardware so that ANRI could encode an instruction like MIPS
lui, one that could be used to load an arbitrary 32-bit constant into a register using two instructions.

Modify hardware to implement an instruction to help loading a 32-bit constant.

Show the format and encoding of this new instruction. The format must fit in as much as possible with
existing formats.
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Problem 3: (20 pts) In the incomplete MIPS implementation to the right the FP multiply unit has its own
write port to the FP register file, shown in blue and labeled WM in several places. Because of this new MW

port the sub.s instruction in the execution below does not stall, both the sub.s and mul.s can write back
in cycle 8. The control logic has not yet been updated for MW.

# Cycle 0 1 2 3 4 5 6 7 8 9

mul.s f1, f2, f3 IF ID M1 M2 M3 M4 M5 M6 WM # Uses MW, the mult-only write port.

add.s f4, f5, f6 IF ID A1 A2 A3 A4 WF

sub.s f7, f8, f9 IF ID A1 A2 A3 A4 WF # No stall!

lwc1 f10, 0(r11) IF ID ----> EX ME WF # Stall due to WF str hazard.

add.s f12, f1, f14 IF ----> ID -> A1... # Stall due to dep with mul.s

(a) With the illustrated hardware a result cannot be bypassed from a mul.s to another instruction. The last
add.s suffers a stall because of that. Add bypass hardware for such cases.

Add the bypass hardware. Try to keep cost down by using one mux.

(b) Modify the control logic so that it no longer stalls instructions that would write back through WF at the
same time as a preceding mul.s. Hint: This is just a matter of crossing things out.

Modify logic to eliminate stalls due to mul.s but retain stalls for instructions contending for WF, such
as lwc1 in execution above.

(c) Provide the correct Addr and WE signals to the WM and WF ports of the FP register file. Note that the WF

ports are connected, but based on the original version. The WM port wires are shown unconnected on the
lower-left of the diagram.

Add hardware for the MW Addr and WE signals, and make changes to the WF Addr and WE signals.

Cross out unneeded hardware and simplify remaining hardware where possible.

Attention perfectionists: Get the SVG source for the hardware at
https://www.ece.lsu.edu/ee4720/2023/fe-ill-fp-2wr.svg and edit it yourself !
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FP Reg File

fd

WF

Addr Data

D
 In

WE

Addr

Addr

Data
fsv
ftv

15:11

20:16 M6

we

A4A2A1

M3 M4

fd

we

xw

M2

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

0
1
2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2
2'b0

PC

+
15:0

29:0

D

dstdst

 

2'd2

2'd1
2'd0

msb lsb

M5

A3

M1

Int Reg File

=

format
immed

15:0

dcd
dst

WE
Addr

D
 In

W
FW

M

W
M

W
F

WF

WM

WE

Addr

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

9

← → Spring 2023 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/2023/fe.pdf


Problem 4: (10 pts) The diagram below is for a 4 MiB two-way set-associative cache with a line size of
128 B. The character size is the usual 8 bits. Helpful facts: 4 MiB = 222 B, 128 = 27.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data
Addr

Data
Out

=Tag

Valid

CPU

Addr

Data In

logic

hit

Addr
Data
Out

Tag

Data
Addr

Data
Out

=Tag

Valid

8 B

32

Complete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Address:
0
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The code in the problem belows run on a cache with a line size of 128 B (which is 27 B). The code fragment
starts with the cache cold (empty); consider only accesses to the array.

(b) Find the hit ratio executing the code below.

float sum = 0;

bfloat16_t *a = 0x2000000; // sizeof(bfloat16_t) == 2

int ILIMIT = 1 << 11; // = 211

for ( int i=0; i<ILIMIT; i++ ) sum += a[ i ];

What is the hit ratio running the code above? Show formula and briefly justify.
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Problem 5: (20 pts) Answer each question below.

(a) How does the ARM A64 fcvtzs instruction differ from MIPS trunc.w.s instruction? These were the
instructions used in sum_thing_unusual from Homework 5.

The difference between fcvtzs and trunc.w.s is:

(b) With the SPEC CPU benchmarks it is the testers responsibility to compile and run the benchmarks.

A brand-new implementation has many more bypass paths than the old implementation. Why might the
results of a tester-compiles test (like SPEC CPU) show better performance on the new implementation than
on the old implementation, while with a pre-compiled test the old and new implementations would show the
same performance?
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(c) Appearing below are some hypothetical CISC instructions.

# Some Hypothetical CISC Instructions

I1: add r1, r2, 0x12345678 # r1 = r2 + 0x12345678

I2: add (r1), r2, 0x1234 # Mem[r1] = r2 + 0x1234

I3: add (r1), 0xff04(r2), 0x1234 # Mem[r1] = Mem[r2+0xff04] + 0x1234

I4: add r1, (r2), 8(r3) # r1 = Mem[r2] + Mem[r3+8]

I5: add (r1), r2, ((r3)) # Mem[r1] = r2 + Mem[ Mem[r3] ]

Which of these instructions could not easily be included in an ISA with 32-bit fixed-length instructions?
Explain.

Which of these instructions would be difficult to implement in a pipelined implementation, even if IF and
ID could easily handle variable-length instructions? Explain.

(d) Consider a 4-way superscalar implementation of a conventional ISA, like MIPS, that has just one memory
port in the ME stage. Also consider Hy4VI, a hypothetical 4-slot VLIW ISA in which only slot 1 can contain
a load or store instruction.

Why might the memory port and related hardware in the ME stage of a Hy4VI implementation cost less than
that hardware in the ME stage in the 4-way RISC implementation?

Why might code written in the conventional ISA enjoy an advantage over code in Hy4VI when running on
respective future implementations even when the performance of that code is the same on current imple-
mentations? The reason given must have something to do with load and store instructions.
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Problem 1: [30 pts] The code fragment below is to execute on the illustrated implementation. Show its
execution and compute the instruction throughput (IPC) for a large number of iterations. (Note: sh is store
half.)

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

1
0

Show execution of code below.

Mark each input to the rtv mux (in EX) and by the branch comparison (blue) mux used by the code
below.

Compute instruction throughput (IPC) for a large number of iterations.

lw r1, 0(r2)

LOOP:

addi r2, r2, 4

sh r1, -2(r2)

lw r3, -4(r2)

bne r3, r1, LOOP

lw r1, 0(r2)

2
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Problem 2: [30 pts] Appearing below (and larger on the next page) is a MIPS implementation based
on the solution to Homework 4 Problem 2, in which control logic for a branch bypass was designed. The
diagram includes a Stall signal in the lower right. Add control logic to set the stall signal to 1 when a beq

needs to stall due to a dependence that can’t be bypassed.

Appearing below are some code fragments. Complete executions are shown for the first two, in the others
the executions are incomplete. The control logic should work with these code fragments. It may be helpful
to complete the executions.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

1
0

is beq

='

Stall

is Load

25:21
rs

20:16
rt

='

='='

='

='

='

='

Use next page for solution.

# Cycle 0 1 2 3 4 5 6 7

addi r1, r2, 3 IF ID EX ME WB

beq r1, r4, TARG IF ID -> EX ME WB

nop IF -> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8

addi r1, r2, 3 IF ID EX ME WB

beq r4, r1, TARG IF ID -----> EX ME WB

nop IF -----> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2) IF ID EX ME WB # Note: Intentionally incomplete.

beq r1, r4, TARG IF ID

nop IF

# Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2) IF ID EX ME WB # Note: Intentionally incomplete.

beq r4, r1, TARG IF ID

nop IF

# Cycle 0 1 2 3 4 5 6 7 8

lw r9, 0(r2) IF ID EX ME WB # Note: Intentionally incomplete.

beq r1, r4, TARG IF ID

nop IF
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Design control logic to generate the stalls for a beq. Show connections to the input of the OR gate on the

lower right. Make sure that the logic handles the cases above and for similar situations. Use as

many or as few comparison units, =’ , as you need.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

1
0

is beq

='

Stall

is Load

25:21
rs

20:16
rt

='

='='

='

='

='

='
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Problem 3: [40 pts] Answer each question below.

(a) The MIPS code below loads, stores, and loads again. The two sets of tables further below show the
contents of memory before and after the code executes. Numbers in the table are hexadecimal. The code
runs on a big-endian system.

# Initially r2 = 0x1200

LOOP:

lw r1, 0(r2)

sb r1, 1(r2)

lw r3, 0(r2)

bne r1, r3, LOOP

addi r2, r2, 4

Modify the After column so that it shows the contents of memory after the code executes.

Before

Memory Memory

Address Contents

0x1200 0xa0

0x1201 0xa1

0x1202 0xa2

0x1203 0xa3

0x1204 0xa4

0x1205 0xa5

0x1206 0xa6

0x1207 0xa7

After

Memory Memory

Address Contents

0x1200 0xa0

0x1201 0xa1

0x1202 0xa2

0x1203 0xa3

0x1204 0xa4

0x1205 0xa5

0x1206 0xa6

0x1207 0xa7

Modify one row in the Before column below so that the code above executes just one iteration.

Before

Memory Memory

Address Contents

0x1200 0xa0

0x1201 0xa1

0x1202 0xa2

0x1203 0xa3

0x1204 0xa4

0x1205 0xa5

0x1206 0xa6

0x1207 0xa7

After

Memory Memory

Address Contents

0x1200 0xa0

0x1201 0xa1

0x1202 0xa2

0x1203 0xa3

0x1204 0xa4

0x1205 0xa5

0x1206 0xa6

0x1207 0xa7
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(b) Show the encoding of each MIPS instruction below. (That is, show the layout of the 32 bits in the
instruction.) Fill fields with numeric values whenever possible, such as for register numbers and immediate
values. For unknown opcodes and func field values show some kind of name.

Show encoding of: lw r1, 2(r3).

31 0

Show encoding of: xor r4, r5, r6.

31 0

Show encoding of: addi r7, r8, 9.

31 0

(c) Arm A32 is a 32-bit ISA, Arm A64 (Aarch64) is a 64-bit ISA.

What does the n in n-bit ISA refer to?

Name an application or kind of device for which a 32-bit ISA has an advantage, and describe the
advantage.

Name an application or kind of device for which a 64-bit ISA is a requirement or a big advantage, and
describe the requirement/advantage.
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(d) In the statement below the description of how ISAs and implementations are developed is different than
how they are typically developed in accepted practice.

By finalizing an ISA after its implementation is complete it is assured that the ISA exactly describes
the implementation and that the implementation makes the best use of the technology at hand.

How is this statement of ISA and implementation development different than accepted practice? What
is the disadvantage of the approach described in the statement (ignoring the “technology at hand” part)?

The phrase “makes the best use of the technology at hand” is correct. Explain why accepted practice of ISA
and implementation development may not make the best use of technology. Hint: think about the number
of bits in a register.

(e) Answer the following about CISC ISAs.

What feature of CISC ISAs allow them to have large, say 32-bit, immediate values?

Why can’t a RISC ISA like MIPS practically have 32-bit immediates?

7
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Problem 1: (20 pts) Show the execution of the code fragments on the following implementations for enough
iterations to determine the instruction throughput (IPC). As always, base the behavior of branches and the
availability of bypasses on the implementations. Also, don’t forget that MIPS branches have a delay slot.
Sorry for yelling, but I hate it when students miss things.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr
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D
In

Mem
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dest. reg
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D  

dstdst

E
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immed =

Show execution and determine instruction throughput (IPC) based on a large number of iterations.

LOOP:

bne r1, r2, LOOP

addi r1, r1, 4

xor r5, r6, r7

sub r8, r9, r10
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format
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Show execution and determine instruction throughput (IPC) based on a large number of iterations.

LOOP:

bne r1, r2, LOOP

addi r1, r1, 4

xor r5, r6, r7

sub r8, r9, r10
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format
immed
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Show execution and determine instruction throughput (IPC) based on a large number of iterations.

LOOP:

bne r1, r2, LOOP

addi r1, r1, 4

xor r5, r6, r7

sub r8, r9, r10
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Immed
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For the 4-way superscalar MIPS above show execution until the fetch of the lw r1 in the second iteration.
Show instruction throughput (IPC) assuming a large number of iterations.

LOOP:

lw r1, 0(r2)

lw r3, 4(r2)

add r4, r1, r3

sw r4, 0(r6)

sub r5, r1, r3

sw r5, 4(r6)

addi r6, r6, 4

bne r2, r9, LOOP

addi r2, r2, 8

xor r10, r11, r12
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Problem 2: (20 pts) Appearing below is our MIPS implementation with a floating-point pipeline. The
select inputs of some multiplexors are labeled with a letter. Also, the inputs to some multiplexors have been
colored to make them easier to follow.

FP Reg File
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Show the values on the select inputs (D, E, and H) expected from the execution shown below. Leave a
signal blank if it does not affect execution.

# Cycle 0 1 2 3 4 5 6

D:

E:

H:

# Cycle 0 1 2 3 4 5 6

add R3, r5, r6 IF ID EX ME WB

addi r2, R3, 4 IF ID EX ME WB

lw r1, 0(R3) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

Show instructions that could have produced the select input (D,E,G, and H) values shown below. Take
dependencies into account when choosing register numbers.

# Cycle 0 1 2 3 4 5 6

D: 2 2 3

E: 2 1 2

G: 0

H: 0 1

# Cycle 0 1 2 3 4 5 6

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

Show the values on the select inputs expected from the execution shown below. Leave an input blank if
it does not affect execution.

# Cycle 0 1 2 3 4 5 6 7 8 9

G:

H:

C:

# Cycle 0 1 2 3 4 5 6 7 8 9

lwc1 f1, 0(r5) IF ID EX ME WF

swc1 f2, 0(r7) IF ID EX ME WB

mtc1 f3, r8 IF ID EX ME WF

add.s f4, f5, f6 IF ID A1 A2 A3 A4 WF

# Cycle 0 1 2 3 4 5 6 7 8 9
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Problem 3: (20 pts) Appearing to the right is the early writeback 2-way superscalar implementation from
the 2021 Final Exam and 2022 Homework 6. Recall that in this implementation if slot 1 contains a load
instruction then slot 1 writes back when it reaches WB but slot 0 writes back early, in ME/MW. If slot 1 does
not contain a load instruction slot 0 writes back when it reaches WB and slot 1 writes back in ME/MW. This is
illustrated in the execution below.

# Cycle 0 1 2 3 4 5 6

add r2, r3, r4 IF ID EX ME WB # Slot 0 uses WB since slot 1 isn’t a load.

and r1, r5, r6 IF ID EX MW

or r10, r9, r7 IF ID EX MW # Slot 0 uses MW since slot 1 is a load.

lw r6, 8(r11) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

(a) Consider the execution of the code below:

# Cycle 0 1 2 3 4 5

add r2, r3, r4 IF ID EX ME WB

sub r1, r2, r5 IF ID -> EX MW

The sub stalls because it needs to wait for r2 from the add. Add control logic to generate a stall when slot
1 depends on slot 0. The output of rs src and rt src are 1 when the slot-1 instruction uses the rs and rt

registers as sources. Use these in your solution.

Add hardware to generate a stall (see the big OR gate) when slot 1 depends on slot 0.

(b) In the first code fragment below the lw r5 stalls, but because the lw has a zero immediate it could have
just used the value computed by the add instruction (since there is no need to add anything to it). In the
second execution Mux A is used to perform a lateral bypass from the add to the lw during cycle 2, avoiding
the stall.

Modify the control logic so that a lateral bypass will be performed when there is a zero-immediate load in
slot 1 that depends on the slot-0 instruction. Other code, such as the examples at the top of this problem,
should continue to work correctly.

# Cycle 0 1 2 3 4 5

add r2, r3, r4 IF ID EX ME WB

lw r5, 0(r2) IF ID -> EX ME WB

# Cycle 0 1 2 3 4 5

add r2, r3, r4 IF ID EX MW # add executes normally.

lw r5, 0(r2) IF ID EX ME WB # Lateral Bypass: lw uses slot-0 alu value.

Add logic to detect whether a lateral bypass is possible, and if so, suppress the stall from part a.

Modify the control logic to implement a lateral bypass, in part using Mux A.

Make sure that early writeback continues to work correctly in other cases and that the destination
of the slot 0 and slot 1 instructions are written to the correct registers.

As engineers always do, pay attention to cost and performance.
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Problem 4: (20 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on several systems, each with a different
branch predictor. One system has a bimodal predictor and the other system has a local predictor with an
6-outcome local history.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: T N N T T N T T N N T T N T T N N T T N T <- Outcome

All N’s All T’s All N’s All T’s

--------------- -------------- --------------- -------------- ...

B2: N N ... N N T T ... T T N N ... N N T T ... T T <- Outcome

1 2 7 8 9 10 16 1 2 7 8 9 10 16 <- Position

What is the accuracy of the bimodal predictor on branch B1? Be sure to base the accuracy on a repeating
pattern.

What is the accuracy of the local predictor on B1 ignoring B2.

What is the accuracy of the local predictor on B2 ignoring B1.

What is the accuracy of the bimodal predictor on branch B2?

What is the shortest history size for which the local history predictor is better than the bimodal predictor
on branch B2?

10 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Spring 2022 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/2022/fe.pdf


This page intentionally left blank, except for this notice.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

11

← → Spring 2022 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/2022/fe.pdf


Problem 5: (20 pts) Answer each question below.

(a) The diagram below shows a simple direct-mapped cache and the address bit categorization of four lookup
addresses (0x5439, 0x1270, ..).

Tag Store

Data Store
Addr

Data
Out

=
Tag

Valid

CPU

Addr

Data In

hit

Data Out Data
In

Align

Size
Sign

11:2

11:4

1:
0

Addr
Data
Out

Data
In

Memory

Data In

Data Out
Addr

31:12

tag

index

indoff

w

a

w

al
ig

n

tag index align
indoff

offset

31 12 0123411

Memory address
bits categorization.

32

32 32

lbu 0x54390x5 0x43 102 012

lw 0x12700x1 0x27 002 002

lbu 0x54380x5 0x43 102 002

lbu 0x64390x6 0x43 102 012

Two kinds of memory are used in the diagram above, fast/expensive and slow/cheap.

On the diagram above show which blocks are fast and which blocks are slow.

Suppose that the cache is initially cold (there is nothing in the cache). Show the outcome, hit or miss, of
each of the four lookups.

Show outcome, hit or miss, on diagram above.

Find the addresses requested below.

After the four lookups, what is the smallest address that will hit the cache.

After these four lookups, what is the largest address that will hit the cache.
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(b) Show the encoding for the beq and lw as used in the code below. Be sure to include the immediate value.

addi r6, r0, 10

beq r2, r6, SKIP

lw r1, 4(r3)

add r1, r1, r5

SKIP:

and r9, r9, r1

Encoding of beq. Be sure to show a value for the immediate field.

Encoding of lw. Be sure to show a value for the immediate field.

(c) Answer the following about ISA families.

Which style of implementation are RISC ISAs designed for?

Which style of implementation are VLIW ISAs designed for?

(d) Some early RISC ISAs omitted useful magnitude-comparison branch instructions such as bgt r1, r2,

TARG in which the branch is taken if r1 > r2. As branch prediction became more common magnitude-
comparison branch instructions were added to RISC ISAs. One might argue that with branch prediction the
cost and performance impact of magnitude-comparison instructions was lower.

Explain how the cost of implementing bgt is lower with branch prediction than without.

Explain how the performance impact of implementing bgt is lower with branch prediction than without.
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Problem 1: [30 pts] One instruction that might have come in handy for Homework 2 is the proposed lbit,
load bit, instruction. Consider lbit r1, (r2..r3). This instruction will load a single bit from memory into
r1. Register r2 holds a base address and r3 holds a bit offset. The bit offset is relative to the most-significant
bit of the byte at address r2. So if r3 is zero the MSB is loaded into r1. If r3 is 7 the LSB of the byte at r2
is loaded into r1, if r3 is 8 the MSB of the byte at r2+1 is loaded into r1, etc. (As with Homework 1 and 2,
bit ordering is big-endian.) To help understanding lbit there are two code fragments below. They do the
same thing, the first uses lbit, the second uses existing MIPS instructions.

# Proposed Instruction

lbit r1, (r2..r3)

# Equivalent MIPS Code

sra r9, r3, 3

add r9, r2, r9

lbu r1, 0(r9)

sll r1, r1, 24

andi r9, r3, 0x7

sllv r1, r1, r9

srl r1, r1, 31

(a) Modify the illustrated MIPS implementation so that it implements lbit, omitting control logic. Assume
that the memory port will be set to perform a read byte unsigned operation (the same operation as would
be performed for the lbu instruction) and the ALU will be set to perform an add operation. (That is, don’t
assume or try to add new operations for the memory port nor for the ALU.) The modifications should
provide the appropriate address to the memory port and should place the appropriate bit in the destination
register.

As always, assume that the critical path is through the memory port. For this problem it is okay to put
additional non-control logic in the WB stage.

Add logic to compute the correct load address.

Add logic to extract the needed bit.

There is no need to show control logic.

Don’t assume or implement new Mem Port or ALU operations.

It’s okay to add logic to the WB stage.

Pay attention to performance.

Pay attention to cost. Do not show functional units that are more complicated than necessary.
Use existing pipeline latches and other data carrying paths when possible.

As always, do not break other instructions.
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(b) Show the execution of the code fragments below on your implementation. Add reasonable bypass paths
to eliminate stalls.

Add reasonable bypass paths to avoid stalls that would be suffered by the code below.

Show execution of each code fragment (with reasonable bypass paths).

# Fragment A

addi r3, r3, 1

lbit r1, (r2..r3)

add r4, r4, r1

# Fragment B

lbit r1, (r2..r3)

addi r3, r3, 1

add r4, r4, r1

# Fragment C

lbit r1, (r2..r3)

bne r1, r0 TARG

addi r3, r3, 1

TARG:

xor r8, r9, r10

4
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(c) Consider another instruction ebit, extract bit. Consider ebit r1, r2, r3. This instruction extracts
the bit at position r3 from r2 and writes it to r1. The MSB is at position 0. The bit position is in the least
significant five bits of r3, other bits of r3 are ignored.

Both lbit and ebit extract a bit from a value, so it is possible to use some of the hardware for lbit to
implement ebit. One difference is that lbit extracts an 8-bit quantity while ebit extracts a bit from a
32-bit quantity. If the hardware were shared, the lbit hardware would have to be upgraded to handle 32-bit
values.

Ignoring whether such sharing really is a good idea, modify the implementation of lbit so that it could
implement ebit using hardware shared with lbit.

Modify MIPS hardware to implement ebit using hardware shared with lbit.

No need to show control logic.

(d) Explain why an implementation sharing ebit and lbit hardware would execute the code fragment below
slowly and describe a faster alternative.

ebit r1, r2, r3

add r4, r4, r1

Why does the shared hardware implementation slow code below?

Why is an implementation of ebit that is similar to other computation instructions faster?

5
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Problem 2: [15 pts] Consider the pointer-chasing loop below. Assume that the loop executes many
iterations on the illustrated hardware.
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(a) Show an execution of the loop below for enough iterations—at least two—to compute the IPC (inverse
of CPI). The IPC is the number of executed instructions divided by the number of cycles. Compute it for a
very large number of iterations.

Show execution.

Compute IPC for a large number of iterations.

Check for dependencies and available bypass paths.

lw r3, 8(r3)

LOOP:

lw r1, 4(r3)

sw r1, 0(r3)

bne r1, r5 LOOP

lw r3, 8(r3)

add r5, r3, r9
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(b) If the previous part were solved correctly, then there should be two stalls per iteration. One stall could
be eliminated by a bypass path, but the other could not (without increasing critical path). For each stall
in your execution (even if there are more or less than two) show a reasonable bypass path that would avoid
the stall or else explain why such a bypass is not reasonable.

format
immed

IR
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Show reasonable bypass paths needed to avoid stalls on your code.

For each stall that could not be eliminated with a bypass path, explain why:
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Problem 3: [15 pts] Appearing below are two candidate MIPS instructions, jca, jump case add, and
jcc, jump case concatenate, that can be used to implement C-style switch statements. The instructions
are designed for case statements that each consist of up to eight instructions. In both instructions the rs

register (register r1 in the examples) holds the address of case statement zero. Case statement 1 starts at
address r1+32, case statement 2 starts at address r1+32*2, etc. The rt register (r2 in the examples) holds
the number of the case statement to jump to, so the address to jump to is r1+32*r2. The only difference
between the two instructions is that in jca the value of r1 must be a multiple of 4 (since instruction addresses
are aligned) while in jcc the value of r1 must be a multiple of 4096 (the 12 least-significant bits must be
zero) and r2 must be less than 128. Like other MIPS control transfers, both instructions have a 1-instruction
delay slot. Note that jca r1, r0 is equivalent to jr r1.

The code below shows the use of jca and an equivalent code fragment that uses only existing MIPS instruc-
tions.

# Candidate Instruction

jca r1, r2 # Jump to r1 + r2 * 32

nop

# Another Candidate Instruction

jcc r1, r2 # Jump to { r1[31:12], r2[6:0], 5’b0 }

nop

# Equivalent code to jca (and partly jcc) using existing MIPS instructions.

sll r9, r2, 5

add r9, r9, r1

jr r9

nop

A resolve-in-ID implementation of jcc can be designed at low cost and with no risk of lengthening the critical
path. In contrast, a resolve-in-ID implementation of jca would add to cost and risk critical path impact.

(a) Show the datapath changes to the MIPS pipeline on the next page needed for resolve-in-ID implementa-
tions of the two instructions.

Show datapath changes (not control logic) for resolve-in-ID implementation of jca and jcc.

As always, pay attention to cost and performance.

(b) Explain why computing a branch target, which is done using an adder, has no critical path impact while
there is critical path impact for jca.

Why can a branch safely use an adder in ID, but not jca?

8
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format
immed
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Problem 4: [40 pts] Answer each question below.

(a) MIPS branches have one delay slot. That enables five-stage scalar MIPS implementations to fetch the
delay-slot instruction while resolving the branch. So, is the delay slot a feature of the ISA or a feature of
the implementation?

Is a delay slot an ISA feature or an implementation feature? Explain.

(b) There are 32 MIPS integer (general-purpose) registers, usually called r0 to r31. But these registers are
also given names, which are shown in the table below. Suppose we wanted to rearrange the names. For
example, suppose we wanted to name register r16 t8 (instead of name r24 t8) and make r24 the new k0.
Which registers could we rearrange without changing the ISA? It must be possible to use the registers for
the purpose suggested by their names after rearranging.

Names Numbers Suggested Usage

$zero: 0 The constant zero.

$at: 1 Reserved for assembler.

$v0-$v1: 2-3 Return value

$a0-$a3: 4-7 Argument

$t0-$t7: 8-15 Temporary (Not preserved by callee.)

$s0-$s7: 16-23 Saved by callee.

$t8-$t9: 24-25 Temporary (Not preserved by callee.)

$k0-$k1: 26-27 Reserved for kernel (operating system).

$gp 28 Global Pointer

$sp 29 Stack Pointer

$fp 30 Frame Pointer

$ra: 31 Return address.

Which register numbers can get new names without having to change the ISA? Explain.
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(c) The code fragment below adds 1 to the floating-point value in register f2 and puts the sum in f3.

addi $t1, $0, 1 # Integer 1

mtc1 $t1, $f1

cvt.s.w $f1, $f1

add.s $f3, $f1, $f2

Explain what the cvt.s.w instruction does in the code above.

Re-write the code so that it adds a 1, but does so without the cvt.s.w instruction.

(d) In early RISC ISAs, including MIPS I, floating-point registers were 32 bits and yet many of these ISAs had
double-precision (64-bit) floating-point instructions. Where do these instructions find their 64-bit operands?

MIPS-I gets 64-bit floating-point operands . . .

(e) ARM A64 and RISC-V RV64 are both late RISC ISAs. But ARM A64 has many more instructions than
RISC-V. How does having more instructions help A64 and fewer instructions help RISC-V?

Lots of instructions help A64 because . . .

Fewer of instructions help RISC-V because . . .

11
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(f) Explain the problem with this statement:

Implementations of CISC ISAs were slow because of complex instructions. Only later did computer
engineers discover that with simpler RISC ISAs implementations could be made faster.

The statement is misleading or incorrect because . . .

(g) Appearing below are MIPS and RISC ISAs’ immediate formats.

MIPS I:

Opcode

31 26

RS

25 21

RT

20 16

Immed

15 0

RISC-V I:

Imm

31 20

RS1

19 15

fn3

14 12

RD

11 7

Opcode

6 0

What advantage does the MIPS format have?

Show an example of a MIPS instruction that could not be encoded in the RISC-V format.

What advantage does the RISC-V format have? (Another question on this exam implies this advantage is
wasted.)

(h) Compilers optimize by scheduling (rearranging) instructions to avoid stalls due to true dependencies. In
that case, why do we need to have bypass paths?

Bypass paths are needed despite optimizations because:

12
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Name

Computer Architecture

LSU EE 4720

Solve-Home Final Examination

Tuesday, 27 April 2021 to Friday, 30 April 2021 16:00 (4 PM) CDT

Work on this exam alone. Regular class resources, such as notes, pa-

pers, documentation, and code, can be used to find solutions. Outside

material that covers the same topics, such as MIPS tutorials, digital

logic design guides, and computer architecture references can also be

used. Do not try to directly seek out solutions to any question here.

For example, don’t Web-search the text of a problem unless the prob-

lem specifically allows it. Do not discuss this exam with classmates

or anyone else, except questions or concerns about problems should be

directed to Dr. Koppelman. Suspected violation of these rules will be

reported to the Dean of Students as a violation of the Student Code of

Conduct.

Problem 1 (25 pts)

Problem 2 (25 pts)

Problem 3 (25 pts)
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Problem 1: (25 pts) Appearing below (and larger a few pages ahead) is an idea for a 2-way superscalar
MIPS implementation with an unorthodox feature: The register file is written both by an instruction in
the ME/MW stage (the former ME stage) and by an instruction in the WB stage. A memory instruction would
have to write back in the WB stage, but a non-memory instruction could write back in either stage. Consider
the execution below. For the first pair, lw and addi, the lw must use WB and the addi must use MW. The
situation is similar for the second pair except that the memory instruction, lb, is in slot 1 rather than slot 0.
When neither slot holds a memory instruction (the pair fetched in cycle 2) either one (but not both!) could
use MW. If both use the memory port, the later one should stall. In execution diagrams label MW is used by
an instruction that writes back in that stage, and ME is used by an instruction that will write back in the WB

stage.

Put solution on diagram several pages ahead!

Immed

IF ID EX WBME/MW
A

d
d

r
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 I
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Mem
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Addr

md

dst0Dest. reg

Addr rsv0
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d
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n

dst1
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64

alu1  

dst0

dst1

Register File

ir0

ir1

PC

npc

2'b0

Dest. regData
Out

dst0

dst1

alu1

alux

Immed

Addr

D In

Mem
Port

addr
D

Out

25:21

20:16

25:21

20:16

15:0

15:0

Is Mem

Put solution on diagram several pages ahead!

# Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2) IF ID EX ME WB

addi r2, r2, 4 IF ID EX MW

sub r3, r4, r5 IF ID EX MW

lb r7, 5(r2) IF ID EX ME WB

and r9, r10, r11 IF ID EX ME WB

or r12, r13, r14 IF ID EX MW

lb r16, 0(r7) IF ID EX ME WB

lh r17, 2(r7) IF ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8

This idea has a potential cost benefit, but it must be thought through because the order in which registers
are written can vary. (Which is a scary thing to those worried about correctness.) One cost benefit can be
seen in the diagram. The WB.alu1 pipeline latch is no longer needed. The label is still there but it is not
connected (and won’t be). Other cost-saving changes are part of the subproblems below.
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For all parts of this problem remember to pay attention to cost and performance. For example, don’t
connect a bypass path that will never be needed.

(a) The D In connections to the write ports of the register file have been changed, but the register number
inputs, Addr, are the same. Modify the hardware so that the Addr inputs to the write ports get the correct
register number. For this part don’t worry about two instructions writing the same register number.

Modify hardware (next page, not above) so that Addr inputs of the register file write ports get the correct
register number.

(b) The diagram shows one cost savings: the WB.alu1 pipeline latch is no longer needed. Notice that the
four bypass connections to the EX stage are unconnected. Reconnect them as needed so that any dependency
that could be bypassed in the unmodified superscalar can be bypassed here. Leave a bypass unconnected if
not needed.

Re-connect bypass paths (on next page, not above), possibly adding or modifying other hardware to
bypass values.

(c) Notice that there is an unconnected select signal in EX and MW. Design control logic for these and for any

multiplexors used to provide the correct register numbers (the first subpart above). The Is Mem logic in

ID should be helpful. Hint: There is not that much to do for this part. The Is Mem block should come in
handy.

Connect select signals in EX and MW.

Connect select signals for any multiplexors used for register numbers.

(d) Notice that in the execution below the and writes r9 after the or. It looks like the add instruction will
get the value written by the and rather than the or. That’s not right!

# Cycle 0 1 2 3 4 5 ... 9 10 11 12 13

and r9, r10, r11 IF ID EX ME WB

or r9, r7, r14 IF ID EX MW

# .. later..

add r1, r1, r9 IF ID EX MW WB

Add control logic to detect such WAW hazards and which will substitute r0 for the destination of the
earlier instruction.

3
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Use your favorite SVG or plain text editor on the SVG source for the implementation
https://www.ece.lsu.edu/ee4720/2021/fe-ss-px.svg and logic gates
https://www.ece.lsu.edu/ee4720/2021/g.svg.
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Problem 2: (25 pts) Show the execution of the code fragments as requested below.

(a) The MIPS implementation below is similar to the one used in class, but with some added bypass paths
for FP instructions and some labeled multiplexor select signals.

FP Reg File
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Addr Data
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Addr

Data
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ftv

15:11

20:16 M6

we
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xw xw
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C
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1

1

0

3
2
1

Appearing on the next page is a code fragment, and above the code fragment are the labels A, B, and C.
These labels correspond to those used in the implementation.

Show the execution of the code below on this pipeline long enough to determine the IPC for a long number
of iterations. Of course, that means the branch is taken. Show the value of each labeled select signal in those
cycles it is being used.
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Show the execution on the illustrated implementation.

Show the values of the labeled select signals, A, B, and C when they are in use.

Find the IPC for a large number of iterations.

A

B

C

LOOP:

lwc1 f1, 0(r1)

lwc1 f2, 4(r1)

add.s f3, f1, f2

swc1 f3, 8(r1)

bne r1, r2 LOOP

addi r1, r1, 12

xor r5, r1, r6

(b) There should have been stalls in the execution of the code above. Re-write the code so that it executes
with as few stalls as possible and still computes the same result. It is okay to add extra instructions before
and after the loop. For convenience assume that the code executes for at least two iterations. But don’t
unroll the loop.

Re-write code to avoid stalls. Code must compute the same values. Can re-arrange instructions,
change registers, and put instructions before the start of the loop.

6
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(c) Appearing below is a 4-way superscalar MIPS implementation. In this implementation fetch is not aligned
(which makes things easier). Also, there is no branch prediction, which is how we have been doing things in
class.

Immed
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Show the execution of the code below for enough iterations to determine IPC. (Note: There is no need
to put slot numbers on the stage labels.) Don’t forget that it is 4-way superscalar.

LOOP:

lw r10, 0(r1)

add r3, r10, r3

sw r3, 0(r5)

addi r5, r5, 4

bne r1, r9, LOOP

addi r1, r1, 4

lb r8, 0(r9)

xor r11, r8, r10
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(d) The code fragment below is to execute on the same 4-way superscalar MIPS implementation. Notice that
loop body in the code fragment below contains two copies of the loop body from the loop in the previous
subproblem. So one iteration of the loop below does the work of two iterations of the loop from the previous
problem. This is the first step in the application of a technique called loop unrolling. The loop from the
previous problem has been unrolled by degree 2. The next step is to re-arrange the instructions, and possibly
eliminate those that are no longer needed. Complete this step, of course without changing what the code
does. Finally, to eliminate all stalls software pipelining will need to be used: values computed used in one
iteration will have to come from instructions executed in the prior iteration.

LOOP:

lw r10, 0(r1)

add r3, r10, r3

sw r3, 0(r5)

addi r5, r5, 4

addi r1, r1, 4

lw r10, 0(r1)

add r3, r10, r3

sw r3, 0(r5)

addi r5, r5, 4

bne r1, r9, LOOP

addi r1, r1, 4

lb r8, 0(r9)

xor r11, r8, r10

Re-write the loop above so that it runs more efficiently on the 4-way MIPS implementation. Use
fewer instructions, even if doing so does not help with the degree 2 unroll, in the expectation that it might
be beneficial at higher unroll degrees.

8
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Problem 3: (25 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on several systems, each with a different
branch predictor. One system has a bimodal predictor and the other system has a local predictor with a
10-outcome local history.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: T T T N T N T T T N T N T T T N T N <- Outcome

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 <- Outcome Pos.

BA:

B2: N N N ... N N T T T N N N ... N N T T T

1 2 3 11 12 13 14 15 1 2 3 11 12 13 14 15 <- Outcome Pos.

What is the accuracy of the bimodal predictor on branch B1?

What is the accuracy of the local predictor on B1 ignoring B2.

What is the accuracy of the local predictor on B2 ignoring B1.

What is the longest local history size for which branch B1 and branch B2 will interfere with each other
on the local predictor? (The question is for a local predictor, not a global predictor.)

(b) If branch B1 at position 6 is mispredicted T (taken) then data at address a + x will be brought into the
cache. An adversary would like to learn the value of x. To do so the adversary, running in another process
on the same core as the process using B1, will force a misprediction of 6. Then the adversary will make
careful timing measurements of loads to addresses starting at a to determine what address was loaded, and
so learning x.

Branch BA is part of the adversary’s code. Find a pattern for BA that will force B1 to be mispredicted by
the 10-outcome local predictor at position 6 (but not at other positions). The misprediction does not need
to occur every time position 6 in B1 is executed.

Pattern for BA that forces misprediction of B1 at position 6 on 10-outcome local predictor.

9

← → Spring 2021 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/2021/fe.pdf


(c) Below on the left is a plain bimodal predictor as first described in class. Below on the right is a refined
version that makes better use of storage by splitting the BHT into two tables, a branch target buffer, holding
the target and a tag, and a BHT holding only the two-bit counters. The tag field replaces the IsBranch field
and is used like a cache tag. (Though a cache tag would include bits 31:15.) The control logic will compare
the tag retrieved from the BTB with bits 20:15 of the PC, if they match a prediction will be made using
the 2-bit counter from the BHT, if the tag doesn’t match it is assumed that the instruction is not a branch.
See 2017 Homework 8 Problem 3 for additional explanation.
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The memory address and behavior of two branches from two programs, A and B, are shown below. One
program runs better on the plain predictor than the BTB predictor, the other program runs better on the
BTB predictor. Identify which is better, and why, as requested below.

# Program A

B1: 0x9000: T T T ...

B2: 0x1000: T T T ...

Prediction of branches in A better on © Plain or © BTB predictor. Explain why other

predictor does worse on this program. Pay attention to address of branches.

# Program B

B3: 0x11000: N N N T N N N T N N N T ...

B4: 0x21000: T T T N T T T N T T T N ...

Prediction of branches in B better on © Plain or © BTB predictor. Explain why other

predictor does worse on this program. Pay attention to address of branches.
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Problem 4: (25 pts) Answer each question below.

(a) A program runs with fewer stalls on an 2-way superscalar than on an 8-way superscalar statically scheduled
processor. Both have the same clock frequency and are otherwise comparable.

Does that mean the program runs faster on the 2-way processor? Explain.

(b) Shorten the code fragments below.

Shorten code fragment.

addi r1, r0, 0x4755

sll r1, r1, 16

addi r1, r1, 0x4720

lw r1, 0(r1)

Shorten code fragment.

lw r3, 0(r1)

addi r2, r0, 4

add r1, r1, r2

lbu r1, 0(r1)

11
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(c) Appearing below are three code fragments. These are to run on a machine with vector instructions and
four-lane vector units. Indicate whether each fragment can easily be replaced by a vector instruction, and
the reason why or why not.

Fragment below © can or © cannot be replaced by a vector instruction. Explain.

add.s f1, f2, f3

add.s f4, f5, f6

mul.s f7, f8, f9

sub.s f10, f11, f12

Fragment below © can or © cannot be replaced by a vector instruction. Explain.

add.s F1, f2, f3

add.s f4, F1, f6

add.s F7, f8, f9

add.s f10, F7, f12

Fragment below © can or © cannot be replaced by a vector instruction. Explain.

add.s f1, f2, f3

add.s f4, f5, f6

add.s f7, f8, f9

add.s f10, f11, f12
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(d) Let’s break something! As we know, an implementation of an ISA must execute a program as defined in
the ISA. The Broeken Company is going to sell a 4-way superscalar statically scheduled five-stage “imple-
mentation” of ARM A64, call that the Broeken4 implementation. (There is no space between the Broeken
and the 4. That’s so you don’t notice the 4.) We know how smoothly our five-stage scalar MIPS implemen-
tation handles branches: zero penalty because of the delay slot. But A64 branches don’t have a delay slot.
That didn’t stop the Broeken Company from changing things a bit. In the Broeken4 implementation the
number of delay slots for a branch can vary from 4 to 7. If a branch is in slot 0 of its fetch group there are 7
delay slots. Branches in slots 1, 2, and 3 have 6, 5, and 4 slots, respectively. If the branch is not stalled by
dependencies there will be zero branch penalty. This chip performs about 20% better than the (rule-abiding)
competition on performance and energy efficiency benchmarks.

Computer engineering professors obviously will hate the Broeken company for ignoring what an implemen-
tation of an ISA should do. But what about others? Gauge the reaction of each group below.

Note: If this were an in-class exam questions would be shorter.

Compiler writers will be © positive, happy, and supportive or © negative, irritated, and obstreper-

ous . Explain.

Buyers of laptops and desktops using Broeken4 will be © positive, satisfied or © negative, seeking

a refund . Explain.

Engineers using Broeken4 in embedded devices, such as the controller chip in a microwave oven, will be

© positive, satisfied or © negative, seeking a new supplier . Explain.
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(e) The execution below is taken from an illustration of how exceptions work from a class lecture. The lw

raises an exception in cycle 4 and in response the handler starts in cycle 5. The first instruction that the
handler executes is sw. It is likely that the handler is saving registers to the stack before attending to the
event causing the exception. Presumably the handler will save every register that it plans to modify (or to be
safe, all registers). To reduce the number of registers saved, why not split the work between the interrupted
code and the handler. As with the ABI rules for procedure calls, why not have the interrupted code save
the caller-save registers it wants preserved (t0-t9, etc.) so that the handler would only need to save the
callee-save registers it plans to overwrite (s0-s7, etc.)?

# Cycle: 0 1 2 3 4 5 ... 99 100 ...

add r1, r2, r3 IF ID EX ME WB

lw r6, 0(r1) IF ID EX ME*x IF ID EX ME WB

or r5, r6, r7 IF ID EXx IF ID EX MEx

xor r10, r11, r12 IF IDx IF ID EXx

and r20, r21, r22 IFx IF IDx

...

Handler:

sw ... IF ... IF ...

...

eret (exception return) IF ID EX ME WB

Why can’t interrupted program save the caller-save registers before the handler starts, potentially re-
ducing work?

14
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Problem 1: [15 pts] The pipeline below is a slightly lower cost version of the bypassed MIPS implementation
that we’ve been using. The cost saving is achieved by not allowing an instruction to use a bypassed value
from both the ME and WB stage, the value must come from one stage or the other. Select inputs are shown
for three of the re-done EX stage multiplexors, they are labeled A, B, and C. For this problem assume that
they are connected to properly designed control logic.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

A B C

rt is src

(a) Show the values on the labeled select signals for an execution of the code below for those cycles in which
an instruction below is in the EX stage. If the value on a select signal does not matter, show an X.

Show values of A, B, and C for when EX occupied by code below. Use X if value does not matter, blank
when no insn in EX.

# Cycle 0 1 2 3 4 5 6

add r1, r2, r3 IF ID EX ME WB

sub r4, r5, r1 IF ID EX ME WB

sw r6, 8(r1) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

A

B

C

# Cycle 0 1 2 3 4 5 6

(b) Show a code fragment that would stall on the implementation above but would not stall on our usual
bypassed MIPS (which appears in Problem 3).

Code fragment that stalls on this implementation, but not our usual 5-stage MIPS.
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Problem 2: [25 pts] Appearing below is the lower-cost MIPS implementation from the previous problem.

Design the control logic specified below. The output of rt is src is 1 if the rt field of the instruction specifies
a source value, as it does in most type R but only a few type I, such as sw. The Inkscape SVG source for
the image below can be found at https://www.ece.lsu.edu/ee4720/2020/mt-p1.svg.

Design control logic for the labeled multiplexor select signals, A, B, and C.

Design control logic to generate a stall signal when a bypass would have been from both ME and WB.

Pay attention to the usual stuff: Cost and critical path. The stage that instructions are in when
the select signals are computed and the stage in which they are used.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In
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Mem
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D
In

Mem
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MD
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30 2
2'b0
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15:0

D
 

dstdst

 

msb lsb

msb

lsb

A B C

rt is src
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Problem 3: [15 pts] Show the execution of the code fragment below on the illustrated implementation.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

Show execution. Note that the branch is taken. Pay attention to the timing of the branch.

Check for dependencies, including for the branch.

lw r1, 0(r2)

slt r3, r1, r4

# Branch is taken.

beq r3, r0 SKIP

addi r2, r2, 4

xor r5, r5, r9

or r6, r6, r9

SKIP:

addi r7, r7, 4

sw r1, 0(r7)
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Problem 4: [15 pts] The code fragment below runs inefficiently. Modify the code so that it runs faster
on the implementation below. Instructions can be re-arranged, changed, or removed, and registers can be
changed. Don’t forget that the modified needs to do the same thing as the original code.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

Re-write code so that it is faster but, of course, does the same thing as the original.

LOOP:

lw r1, 0(r2)

andi r1, r1, 0xff

addi r2, r2, 4

lw r3, 0(r2)

srl r3, r3, 24

add r9, r9, r1

add r9, r9, r3

addi r2, r2, 4

sub r8, r2, r11

bne r8, r0 LOOP

nop
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Problem 5: [30 pts] Answer each question below.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

Y1 Y2

= mul

is load

a

b

a
*b

rt is src

STALL

mx mx
lx lx lx

1 0

='

='rt 20:16

rs 25:21

8
:3
1

Value too large
for 1-cyc multiply.

1 0

Ya
Ym
Yb

(a) The code fragments
below are to run on
the implementation with
the small-multiply by-
pass from Homework
3 and shown to the right.
For each code fragment,
indicate whether our
small-value bypass fea-
ture always eliminates
a stall, sometimes, or
never? Explain.

Eliminates stall on code below: © Always © Sometimes © Never

andi r3, r5, 0x3f

mul r1, r2, r3

add r6, r6, r1

lw r10, 0(r6)

Eliminates stall on code below: © Always © Sometimes © Never

ori r3, r5, 0x63f

mul r1, r2, r3

add r6, r6, r1

lw r10, 0(r6)

Eliminates stall on code below: © Always © Sometimes © Never

lbu r3, 0(r4)

mul r1, r2, r3

add r6, r6, r1

lw r10, 0(r6)

Eliminates stall on code below: © Always © Sometimes © Never

lw r3, 0(r4)

mul r1, r2, r3

add r6, r6, r1

lw r10, 0(r6)
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(b) In typical practice a company decides upon an ISA, and then makes multiple implementations of that
ISA. Let HI and LI be two implementations of ISA I, HI is a high-end system and LI is low-cost. Let ISA
E (for expensive) be an ISA designed for high-end systems, and ISA C (for cheap) be an ISA designed for
low-cost systems, and let HE and LC be their implementations. All three ISAs and all four implementations
were designed by skilled engineers with lots of resources.

Why might HE be better than HI and why might LC be better than LI? The same reason should apply to
both. The answer is related to the ISAs used for the implementations.

Even if LC is better than LI , why might a user still choose LI?

(c) Consider the preparation of a set of SPECcpu results. For each item below indicate who is responsible,
SPEC (the organization) or the tester. Also indicate what would be the problem if it were the other way
around. For example, if you answered that SPEC chooses the benchmarks, then explain the disadvantage of
having the tester choose the benchmarks.

Choose the benchmarks: © SPEC or © The Tester

Problem if it were the other way around:

Choose the benchmark input data: © SPEC or © The Tester

Problem if it were the other way around:

Choose the benchmark training data: © SPEC or © The Tester

Problem if it were the other way around:

Choose the compiler: © SPEC or © The Tester

Problem if it were the other way around:

Choose the compiler optimization flags: © SPEC or © The Tester

Problem if it were the other way around:
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(d) The IA-32 ISA has been described as Intel’s golden handcuffs. Who slapped on those handcuffs? What
does the gold refer to? What do the handcuffs refer to? This was discussed in class, but it is okay to use
Web searches to answer this question.

The reason for these handcuffs is:

They are golden because:

They are handcuffs (a restriction) because:

(e) Appearing below are some hypothetical instructions. Indicate whether each instruction is a better can-
didate for a RISC ISA or a CISC ISA. Explain why.

Is the instruction below more © RISC or © CISC like? Explain.

addi r1, r2, 0x12345678

Is the instruction below more © RISC or © CISC like? Explain.

lw r1, (r2+r3) # Load r1 = Mem[ r2 + r3 ]

Is the instruction below more © RISC or © CISC like? Explain.

bgt r1, r2, TARG # Branch if r1 < r2

Is the instruction below more © RISC or © CISC like? Explain.

add (r1), r2, (r3) # Mem[r1] = r2 + Mem[r3]

8
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Problem 1: (30 pts) The two-way superscalar MIPS implementation below has an ALU in the MX (née ME)
stage, call it the second-chance ALU. For this problem the second-chance ALU will be connected so that
two stall situations are avoided. A slightly similar problem appeared on the Spring 2006 Midterm Exam in
Problem 2. It’s okay to look at the problem and solution.

Yes, it’s small! Use the next page for the solution.

Immed
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(a) The sub in the code below suffers a stall due to a dependence with the other instruction in the same fetch
group. Connect the second-chance ALU so that the stall is avoided. The changes must not break existing
functionality and must not result in stalls for unrelated code. In particular note that the add does not stall
in either version.
# Cycle 0 1 2 3 4 5 6 7 # Unmodified Implementation

ori R3, r1, 0xff IF ID EX ME WB

xor R2, r8, r9 IF ID EX ME WB

add R1, R2, R3 IF ID EX ME WB

sub R4, R1, r5 IF ID -> EX ME WB

and r7, r8, R4 IF -> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

# Cycle 0 1 2 3 4 5 6 7 # With second-chance ALU.

ori R3, r1, 0xff IF ID EX MX WB

xor R2, r8, r9 IF ID EX MX WB

add R1, R2, R3 IF ID EX MX WB # No stall in either implementation.

sub R4, R1, r5 IF ID EX MX WB # No stall due to second-chance ALU!

and r7, r8, R4 IF ID -> EX MX WB # Stall due to second-chance ALU.

# Cycle 0 1 2 3 4 5 6 7

Connect second-chance ALU to avoid the stall by the sub and allowing code to execute as in the sample
above. The connections should work for any pair of dependent, ALU-using, non-memory instructions.

Pay attention to cost. Assume that a pipeline latch bit costs twice as much as a multiplexor bit.

Do not add unneeded bypass paths. Don’t break existing functionality.

(b) The code below suffers a load/use stall. Add the minimum number of connections to the second-chance
ALU so that such load/use stalls (in which the using instruction is in slot 1) can be avoided.

add r3, r2, r3 IF ID EX ME WB

lw r4, 5(r1) IF ID EX ME WB

ori r6, r1, 0xff IF ID EX ME WB

sub r5, r3, r4 IF ID -> EX ME WB

Add connections to the second-chance ALU to avoid load/use stalls when the using instruction (such as
the sub in the example) is in slot 1.

Pay attention to cost, use the same cost assumption as given in the previous part.
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(c) In the code below the sub does not stall due to the second-chance ALU but the and does stall. Add
control logic to generate a stall signal for cases such as this.

# Cycle 0 1 2 3 4 5 6 7

ori R3, r1, 0xff IF ID EX MX WB

xor r2, r8, r9 IF ID EX MX WB

add R1, r2, R3 IF ID EX MX WB

sub R4, R1, r5 IF ID EX MX WB # No stall due to second-chance ALU!

and r7, r8, R4 IF ID -> EX MX WB # Stall due to second-chance ALU.

# Cycle 0 1 2 3 4 5 6 7

Add logic to generate a stall signal for the situation described above. The logic should work for any
instruction dependent on an instruction using the second-chance ALU.

Pay attention to cost, use the same cost assumption as given in the previous part.

(d) Generate the select signal for the EX stage multiplexor shown in blue. The control logic should work for
the intra-group dependence case. (The control logic does not need to work for the load/use case.)

Add logic for the select signal for the intra-group dependence. The logic should work for any pair of
dependent, ALU-using, non-memory instructions.

Pay attention to cost, use the same cost assumption as given in the previous part.
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The Inkscape SVG source is at https://www.ece.lsu.edu/ee4720/2020/fe-p1-v2-ss.svg.
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Problem 2: (25 pts) Show the execution of the code fragments as requested below.

(a) Show the execution on the FP pipeline below, note that the adder unit has an initiation interval of 2.

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A2A1

M3 M4

fd

we

M2

fd

we

uses FP mul

uses FP add

FP load

Stall
ID
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1
2
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we
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we we
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IR
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20:16
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dest. reg

NPC

30 2
2'b0

PC

+
15:0

29:0

D

dstdst

 

decode
dest. reg

msb lsb

M5M1

Int Reg File

=

format
immed

15:0

ad ad ad ad ad

int int int

msb

An instruction
will use WF
five cycles
from now.

An instruction using A1 now
and in the next cycle.

Show execution. Pay attention to how the FP add unit should operate. Don’t forget to check
for dependencies.

lwc1 f2, 0(r1)

add.s f0, f2, f4

add.s f1, f2, f5

add.s f3, f1, f6
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(b) Show the execution on the FP pipeline below, note that the adder unit is different than the previous
problem and from other examples covered in class.

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A2A1

M3 M4

fd

we

M2

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

0

1
2

fd

we

fd

we

fd

we we

fd

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2
2'b0

PC

+
15:0

29:0

D

dstdst

 

decode
dest. reg

msb lsb

M5M1

Int Reg File

=

format
immed

15:0

ad ad ad ad ad

int int int

msb

Show execution. Pay attention to how the FP add unit should operate. Don’t forget to check
for dependencies.

lwc1 f2, 0(r1)

add.s f0, f2, f4

add.s f1, f2, f5

add.s f3, f1, f6
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(c) Show the execution of the code on the implementation below. Find the CPI for a large number of
iterations.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

Show execution on the illustrated implementation with the branch taken. Find the CPI for a large
number of iterations.

LOOP:

addi r2, r2, 16

lw r1, 8(r2)

sw r1, 12(r3)

bne r3, r4, LOOP

addi r3, r3, 32

sub r10, r3, r2
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(d) Show the execution of the code on the 2-way superscalar MIPS implementation illustrated below, and
find the CPI for a large number of iterations. This is not the same as the implementation from Problem 1.
Instruction fetch is of aligned groups.

Immed

IF ID EX WBME

A
d

d
r

D
 I
n

+8

Mem
Port

Addr

Addr

Mem
Port

md
0

dst0Dest. reg

Addr
25:21

20:16

rsv0

rtv0Addr

Data

Data

+
15:0

31:2

15:0

alu0

rtv0

 

rtv1

Addr
25:21

20:16

rsv1

rtv1Addr

Data

Data

A
d

d
r

D
 I
n

dst1

imm0

imm1

64

15:0

alu1  
Addr

Mem
Port

md
1

dst0

dst1

Register File

ir0

ir1

PC

npc

2'b0

Dest. reg
Data
Out

dst0

dst1

alu1

alu0

Data
Out

Data
Out

Immed

D
In

D
In

Show execution on the illustrated implementation. Find the CPI for a large number of iterations.

Take aligned fetch into account, the address of LOOP is 0x1000. Pay attention to available bypass
paths.

LOOP:

addi r2, r2, 16

lw r1, 8(r2)

sw r1, 12(r3)

bne r3, r4, LOOP

addi r3, r3, 32

sub r10, r3, r2

8
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(e) The code fragment below is the same as the one from the previous problem and is to run on the same
superscalar system. Re-write the code so that it runs with fewer stalls (and of course does the same thing),
and compute the CPI for a large number of iterations. Extra instructions can be added before or after the
loop. Do not unroll the loop.

Re-write code to minimize stalls on the superscalar implementation.

Compute the CPI of the re-written code for a large number of iterations.

LOOP:

addi r2, r2, 16

lw r1, 8(r2)

sw r1, 12(r3)

bne r3, r4, LOOP

addi r3, r3, 32

sub r10, r3, r2

9
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Problem 3: (15 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on several systems, each with a different
branch predictor. All systems use a 212 entry BHT. One system has a bimodal predictor and the other
systems have a local predictor, the length of the local history is given in the questions below.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: N N N N T T N N N N T T ...

B2: T T T T T T T T T T T T ...

What is the accuracy of the bimodal predictor on branch B1?

What is the accuracy of a local predictor with a 12-outcome local history on branch B1 and ignoring B2.

What is the accuracy of a local predictor with a 2-outcome local history on branch B1 and ignoring B2.

What is the accuracy of a local predictor with a 2-outcome local history on branch B1 and taking into
account B2.

What is the minimum local history size so that branch B1 is predicted with 100% accuracy, taking into
account B2.

10
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(b) Appearing below is a diagram of a local predictor. The local predictor illustrated has a specific BHT size
and an h-outcome local history size. The BHT size does not necessarily match the BHT in the prior part.
Determine the amount of storage, in bits, used by the BHT and PHT for a 16-bit local history. Assume that
Target is stored efficiently.

PC

2-bit
counter

1:1

Target

Post-resolve
2-b counter.

2

Target

+1

-1

Outcome (1=T, 0=N)

Pre-resolve 2-b counter
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e
d
).
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a d

a d in

PC

15:2

15:2
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Is Branch (1, branch; 0, anything else.)

P
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P
re

d
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D
ir

e
ct

io
n

(N
 o
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T
)

P
re

d
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Ta
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e
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P
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d
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PHT
a d

a d in
we

Local History
h-1:0

Updated local history

Local history
that had been
used for prediction.

h-2:0

h-1:0

lsb

msb

Pre-Resolve Local History

h-1:0

Amount of storage for PHT is:

Assumption about Target:

Amount of storage for BHT is:
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Problem 4: (30 pts) Answer each question below.

(a) Appearing below are the three integer MIPS I instruction formats. Consider a modified form of MIPS
in which there are 64 rather than 32 integer registers. A goal is compatibility with MIPS-I code and to use
as few new opcodes and function field values as possible. Modify each format so that it can use 64 registers
and explain what new opcodes (if any) are needed and any assumptions about existing MIPS-I instructions.
Hint: For one case there’s nothing to do, for one case many opcodes will be needed, for one case only a few.

Modification for 64-register MIPS. Describe what new opcode/func values are needed for, if any.

MIPS R:

Opcode

31 26

RS

25 21

RT

20 16

RD

15 11

SA

10 6

Function

5 0

Modification for 64-register MIPS. Describe what new opcode/func values are needed for, if any.

MIPS I:

Opcode

31 26

RS

25 21

RT

20 16

Immed

15 0

Modification for 64-register MIPS. Describe what new opcode/func values are needed for, if any.

MIPS J:

Opcode

31 26

II

25 0

(b) Chip A has five 4-way superscalar cores. Chip B has 20 scalar cores. The cores are similar to our pipelined
MIPS implementations. All cores use a 1 GHz clock. Yes, up until this comment the question is identical
to one asked on the Spring 2019 final exam. The SPECcpu benchmarks are run on each chip. Recall that
SPECcpu can be run to compute a speed score and a rate score. (Don’t confuse speed/rate with base/peak
or int/FP.) Feel free to visit the SPEC site to help answering this question.

Which chip would likely score higher (better) on the SPECspeed2017int benchmarks,

© Chip A or © Chip B . Explain.

Which chip would likely score higher (better) on the SPECrate2017int benchmarks,

© Chip A or © Chip B . Explain.
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(c) Our goal is to build a machine that can execute eight floating-point operations per cycle. Two machines
are under consideration, an 8-way superscalar system implementing ISA I, and a 2-way superscalar system
with an 8-lane vector unit implementing ISA IV, which is like I but with vector instructions. Both machines
run at 1 GHz, and both can sustain eight billion floating-point operations per second.

Which machine is likely to be more expensive? Explain.

Which machine is likely to be faster on typical code? Explain with a code example.

(d) In MIPS and many other RISC ISAs memory accesses must be aligned. For example, a lw instruction,
which loads a four-byte value, must load from an address that is a multiple of 4. The execution of a lw

loading from an address that is not a multiple of 4 will result in an exception (and on Linux system resulting
in the Bus Error signal handler being called). As we pointed out in class, integer instructions, and especially
load and store instructions, in any reasonable ISA would be required to raise precise exceptions. MIPS is
certainly reasonable in this respect.

Suppose that a program uses non-aligned addresses in memory accesses, but is otherwise correct. That
is, the program would run correctly if the load could handle a non-aligned address. (After all, CISC ISA
load instructions can do it.) But on MIPS it raises an exception as soon as a non-aligned load or store is
attempted. Suppose further that re-writing the program is not feasible.

Explain how we can take advantage of precise exceptions so that this program would run correctly. A
code example would be nice but not necessary.

Explain why it would be impossible if loads only raised deferred exceptions. (Assume that aligned
accesses work fine with such loads.)

13
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(e) MIPS has a slt (set less than) instruction, but doesn’t have a sge (set greater than or equal to)
instruction. Why not?

Why doesn’t MIPS have an sge instruction?

(f) Note: The following question was asked about two months after in-person classes were ended for the
CoViD-19 pandemic.

Perhaps many of us are wishing we could go back in time. (Not to warn people, that’s obviously futile.)
Wish granted. You are in a meeting (in person, not Zoom) with future Turing Prize winners discussing
which features to put into their new [airquotes] “RISC” ISA, MIPS.

One attendee is advocating for the inclusion of magnitude comparison branch instructions such as bgt r1,r2

TARG (branch if r1 greater than r2). But many others oppose the idea because it would have too much critical
path impact. “We can include bgt with zero critical-path impact if we use a surprisingly simple but effective
technique called branch prediction,” you say.

Explain how branch prediction can remove the critical path impact that was a concern at the meeting.

Was the phrase branch prediction an anachronism at that fictional meeting? Web-search freely to answer
this question.

14
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Problem 1: [7 pts] The MIPS pipeline below implements a hypothetical MIPS×jr instruction, the hardware
for ×jr is shown in blue. Don’t confuse ×jr with the existing MIPS jr instruction.

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+ 15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

= jr

10 Warning:

blah, blah,

blah.!!!!!!!
format
immed

(a) The diagram shows a warning in red with lots of arrows and an explanation. Alas, the explanation is
covered by the format immed box. Assume that the hardware for×jr is correct. Then what can the warning
be about?

Reason for warning:
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Problem 1, continued: (b) Note: This part did not appear on the exam because the exam was already long
enough. There are two differences between ×jr and jr. Fragment A, below, uses jr. Complete Fragment
B so that it uses ×jr, making changes to account for these two differences. Fragment B must jump to the
same location and perform the same computation as Fragment A. Register r9 can be used for intermediate
values. Hint: The differences are when and where.

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+ 15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

= jr

10 Warning:

blah, blah,

blah.!!!!!!!
format
immed

Complete code, or for partial credit explain two differences.

# Fragment A -- Uses jr. Don’t modify it.

lw r1, 0(r6)

jr r1

addi r2, r2, 4

xor r3, r4, r5

# Fragment B -- Finish code below, use ×jr

lw r1, 0(r6)

addi r2, r2, 4

xor r3, r4, r5
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Problem 2: [17 pts] The code below executes on the illustrated implementation. The implementation has
hardware that enables the bne to avoid the stall, but that hardware is not shown.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

B

A

C

(a) The illustration has several circled letters pointing to wires. In the diagram below show the values on
those wires on each cycle the value is used.

Show values for A, B, and C, show these for each cycle used.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11

lhu r1, 8(r2) IF ID EX ME WB

addi r2, r2, 2 IF ID EX ME WB

add r3, r1, r3 IF ID EX ME WB

sw r3, 12(r6) IF ID EX ME WB

slt r5, r3, r4 IF ID EX ME WB

bne r5, r0 LOOP IF ID EX ME WB # No stall? Next prob.

addi r6, r6, 4 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

A:

B:

C:

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

(b) For each dependency below highlight, on the illustration, the multiplexor input that provides the bypassed
value. Also indicate the cycle in which the bypass occurs.

Dependence from lhu to add r3. Cycle when bypass used.

Dependence from add r3 to sw. Cycle when bypass used.

Dependence from add r3 to slt. Cycle when bypass used.

4
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Problem 3: [27 pts] In the previous problem the bne did not stall despite a dependence with slt. Code
with a similar dependence appears below. Add hardware to the implementation below that correctly sets
the Taken signal for such slt rX, rY, rZ to bne rX, r0 dependencies. Branches without the dependence
should not be effected. Note that the result of slt is 0 or 1. Some useful hardware is shown in blue.

LOOP: # Cycle 0 1 2 3 4 5 6

slt r5, r3, r4 IF ID EX ME WB # Note: r5 is 0 or 1.

bne r5, r0 LOOP IF ID EX ME WB

addi r6, r6, 4 IF ID EX ME WB

Add logic to set Taken correctly for the dependence described above.

Avoid costly solutions. No part of the solution should operate on 32 bits.

Check that the second branch register is r0. Branches without the dependence should not be effected.

IR

Addr
25:21

20:16

IF

ID EX

WB

ME

rsv

rtv

IMM

NPC
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Addr

Data

Data
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Problem 4: [12 pts] The loop below writes zeros to a range of memory.

# Call Value: r1 is address of the start of the region to zero.

# Call Value: r3 is the number of bytes to zero.

add r2, r1, r3 # Memory location at which to stop.

addi r2, r2, -1

LOOP:

sb r0, 0(r1)

bne r1, r2, LOOP

addi r1, r1, 1

(a) Compute the rate that it zeros memory when it runs on our bypassed 5-stage pipeline. Use an appropriate
unit.

Rate at which loop above copies data.

(b) Apply loop unrolling and make other changes so that the code writes at the rate of two bytes per clock
cycle, assuming favorable values of r1 and r3. State those assumptions.

Show unrolled loop and make other changes for 2 byte per cycle copy.

Assumption about r1:

Assumption about r3:

# Call Value: r1 is address of the start of the region to zero.

# Call Value: r3 is the number of bytes to zero.

add r2, r1, r3

addi r2, r2, -1

LOOP:

6
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Problem 5: [12 pts] The MIPS code below adds an integer value loaded from memory to the constant π.

(a) Suppose no other instructions needed the value of a0 that was loaded. Modify the code to use fewer
instructions.

Use fewer instructions.

.data
famous_constant: # 0x10010300

.float 3.141592654

.text
pie:

lw $a0, 0($t2)

lui $t0, 0x1001

lwc1 $f0, 0x300($t0)

mtc1 $f1, $a0

cvt.s.w $f2, $f1

add.s $f3, $f0, $f2

(b) Modify the code below so that it would run correctly if a0 were a floating-point value. Also use fewer
instructions.

Fix code so it works correctly if a0 is FP.

.data
famous_constant: # 0x10010300

.float 3.141592654

.text
pie:

lw $a0, 0($t2) # a0 is FP! Fix code below for FP a0.

lui $t0, 0x1001

lwc1 $f0, 0x300($t0)

mtc1 $f1, $a0

cvt.s.w $f2, $f1

add.s $f3, $f0, $f2

7
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Problem 6: [25 pts] Answer each question below.

(a) SPARC divides the 32 integer registers an instruction can access into four groups, %l0 to %l7, %g0
to %g7, %o0 to %o7, and %i0 to %i7. The names reflect how they might be used in programs, and how
SPARC’s register windowing feature affects them when save and restore instructions are executed. Explain
what the first letter of each group stands for. Explain what happens to the values in those registers when
save or restore instruction is executed.

Word that l, g, o, and i each stand for.

What happens to values on a save or restore.

(b) Instructions like addi r1, r1, 1 occur frequently in programs. For this add-one-to-a-register operation
CISC ISAs have a specialized instruction, for example inc r1. MIPS lacks such an increment instruction.

Why do MIPS and other RISC ISAs lack such an instruction?

Why do CISC ISAs have such an instruction?

What is the benefit that RISC ISAs don’t realize?

(c) A CPU design team has an area budget that they can use for bypass paths. There’s not enough area for
all the bypass paths they’d like. They are simulating these design alternatives to determine which is best.

Explain the role that the compiler people have in this process.

Role for compiler writers in deciding on bypass paths.

8
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(d) Provide examples for the following common optimizations. Show code to which this optimization can
apply and how it is optimized.

Dead-code elimination. Example code and code after optimization.

Constant propagation and folding. Example code and code after optimization.

(e) Described below are three tuning levels for C++ programs, two of which are SPECcpu tuning levels the
other was just made up. Identify the one which is not a SPEC tuning level, and explain why it isn’t.

Level A: Each C++ program is compiled without optimization.

Is it a SPEC level? If so, name it:

Indicate the users that will benefit from this level, or why no one would benefit.

Level B: Each C++ program can have its own set of optimization flags.

Is it a SPEC level? If so, name it:

Indicate the users that will benefit from this level, or why no one would benefit.

Level C: All C++ programs must be compiled with the same set of optimization flags.

Is it a SPEC level? If so, name it:

Indicate the users that will benefit from this level, or why no one would benefit.

9
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Problem 1: (22 pts) Notice that the execution of the code fragment below suffers two stalls when executing
on our 2-way superscalar MIPS implementation. The add stalls due to a dependence with or and the sw

stalls due to a dependence with add. The MIPS implementation has three unconnected logic blocks that
may be useful. Each must be connected to the opcode and func of the instruction in the appropriate slot.
The output of the =or is 1 if the instruction is an or. The output of uses rs is 1 if the instruction uses

the rs register as a source, likewise for uses rt .

# Cycle 0 1 2 3 4 5 6 7 8

or r1, r2, r0 IF ID EX ME WB

add r3, r1, r4 IF ID -> EX ME WB

sw r3, 4(r6) IF -> ID ----> EX ME WB

addi r6, r6, 8 IF -> ID ----> EX ME WB

(a) In the execution below the sw no longer stalls for r3. Add a bypass path that can be used by sw to get
the r3 value in the execution below but not for other cases.

Add bypass path for r3 so sw executes as shown. Label the path “Part a”, and do not add unneeded
bypass paths.

# Cycle 0 1 2 3 4 5 6 7 8

or r1, r2, r0 IF ID EX ME WB

add r3, r1, r4 IF ID -> EX ME WB

sw r3, 4(r6) IF -> ID EX ME WB

addi r6, r6, 8 IF -> ID EX ME WB

(b) The add stalls due to the dependence with or carried by r1. Add control logic that detects such a
dependence and connect it to the Stall ID OR gate at the lower right. The output of the logic should be 1

for any true dependence between two instructions in a group.

Provide a stall signal when there is a dependence between the two instructions in ID.

(c) Notice that because the second operand is r0, the or just copies the value in r2 to r1. Therefore the
add could have used r2 instead of r1 and avoided the stall. Design hardware to perform such substitutions.
The hardware, including control logic, should detect when an or is used as a copy (as above) and if so avoid
the stall and deliver the correct source operand to the slot-1 instruction.

# Cycle 0 1 2 3 4 5

or r1, r2, r0 IF ID EX ME WB

add r3, r1, r4 IF ID EX ME WB

sw r3, 4(r6) IF ID EX ME WB

addi r6, r6, 8 IF ID EX ME WB

Detect the substitution opportunity and suppress the Stall ID signal (from the previous part).

Make sure the slot-1 instruction uses the correct value and that both instructions execute correctly.

Of course, pay attention to cost. Nothing added for this problem should touch 32 bits.

(d) The following is a bonus question that did not appear on the original exam. Bonus for whom you ask?
Definitely a bonus for those who took the class in the Spring 2019 semester and took a look at the posted

2
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exam. Those (you) will have an opportunity to make connections between concepts learned in the class and
that will provide a deeper understanding and longer retention. Yes, the substitution hardware eliminates
a stall. Suppose that r2 had to be copied into r1. Provide an argument that substitution hardware is
a waste of resources, illustrate with an example. Provide another argument—also with an example—that
substitution hardware eliminates a stall that cannot be eliminated in another way. Whether substitution
is a good idea will depend on whether the example illustrating its utility is representative of realistically
compiled actual code.

Argument against substitution hardware. Code example.

Argument for substitution hardware. Code example.
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Problem 2: (22 pts) Appearing below is our MIPS FP pipeline with the comparison units added.

(a) Show the execution of the following fragment on this hardware.

Show execution up to second fetch of lwc1. Pay attention to dependencies, including the FP condition.

# Cycle: 0

LOOP:

lwc1 f1, 0(r1)

add.s f2, f1, f2

add.s f4, f1, f3

c.lt.s f2, f6

bc1t LOOP # Taken

addi r1, r1, 8

swc1 f2, 4(r1)

and r1, r1, r9

(b) Notice that there are two circled letters (in blue) in the lower part of the diagram. For each letter provide
a code fragment that causes the labeled wire to go to logic 1.

Code fragment that makes A logic 1.

Show its execution and indicate cycle at which A is 1.

Code fragment that makes B logic 1.

Show its execution and indicate cycle at which B is 1.

4
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FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A4A2A1

M3 M4

fd

we

xw

M2

fd

weuses FP mul

uses FP add

FP load

Stall
ID

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2
2'b0

PC

+
15:0

29:0

D

dstdst

decode
dest. reg

2'd2

2'd1
2'd0

msb lsb

M5

A3

M1

Int Reg File

=

format
immed

15:0

FCC

we

D In

DOut

To branch
control

logic. C1 C2

FP branch

FP compare

cmp

c
m

p

c
m

p

A

B

5

← → Spring 2019 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/2019/fe.pdf


Problem 3: (21 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on two systems, each with a different branch
predictor. All systems use a 212 entry BHT. One system has a bimodal predictor and one system has a local
predictor with an 8-outcome local history.

Branch B1 has a repeating pattern, two repetitions are shown. Branch B2 repeatedly and randomly emits
three sequences, a, b, and c. Sequence a is NT, sequence b is NNNTT (five outcomes), and sequence c is
NNNN NTTT (eight outcomes). After finishing one sequence, a new one is started. Sequence a is chosen with
probability .4, sequence b with probability .5, and c with probability .1.

Here are some examples of B2 outcomes, with spaces placed between the sequences for clarity. Example 1:
NT NNNTT NT NNNNNTTT (that’s a, b, a, c). Example 2: NNNNNTTT NT NT NNNTT NNNTT (that’s c, a, a, b, b).

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: T N N N N T T T N N N N T T

B2: (a, p=.4): NT (b, p=.5): NNNT T (c, p=.1): NNNN NTTT

What is the accuracy of the bimodal predictor on branch B1?

What is the accuracy of the local predictor on branch B1?

What is the accuracy of the local predictor on branch B2?

What is the accuracy of the bimodal predictor on branch B2?

6
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(b) Appearing below is a diagram of our global predictor. Notice that the GHR is not updated until the
branch resolves. Modify the predictor so that the GHR is updated when the branch is being predicted (in
IF) using the predicted outcome. When the branch resolves check whether the prediction was correct, and
if not (if it was mispredicted) write the correct history into the GHR.

The following is interesting background material omitted from the original exam. The importance of updating
the GHR using the predicted outcome increases with the number of post-branch instructions that are in the
pipeline at the time a branch resolves. Consider our five-stage pipeline with branches resolving in ME. In
that case there are just three post-branch instructions. For an 8-way superscalar pipeline there would be
3 × 8 = 24 instructions. One or more of those 24 instructions could itself be a branch. In the unmodified
design below those branches would have been predicted with a GHR that lacked the outcome of the resolving
branch and those that followed. The problem is much greater in dynamically scheduled systems where over
100 instructions can be in flight. For that reason global-like predictors in dynamically scheduled systems use
designs like the one requested for this problem.

Add hardware to detect whether the resolving branch has been mispredicted.

During prediction write GHR based on prediction, during resolve apply corrected GHR if branch
mispredicted.
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Problem 4: (10 pts) The diagram below is for a 4MiB set-associative cache with a line size of 32B. The
character size is the usual 8 bits. Other information about the cache can be deduced using hints in the
diagram. Helpful facts: 4MiB = 222 B, 32 = 25.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

CPU

Addr

Data In

logic

hit

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

8B

39:18

Complete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Address:
0

Associativity:

Memory Needed to Implement Indicate Unit!!:

Show the bit categorization for a direct-mapped cache with the same line size and capacity as the cache
above.

Address:
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The problem on this page is not based on the cache from Part a. The code in the problem belows run on a
cache with a line size of 64B (which is 26 B). The code fragment starts with the cache empty; consider only
accesses to the array.

(b) Find the hit ratio executing the code below.

int sum = 0;

int *a = 0x2000000; // sizeof(int) == 4

int ILIMIT = 1 << 11; // = 211

for ( int i=0; i<ILIMIT; i++ ) sum += a[ i ];

What is the hit ratio running the code above? Show formula and briefly justify.

9
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Problem 5: (25 pts) Answer each question below.

(a) Appearing below are simple C routines and corresponding MIPS assembler code. C variable names match
the MIPS registers to which they were assigned. Register v0 is used for the return value. The first C routine,
proc1, operates on 32-bit signed integers. Further below are two similar C routines, proc2 and proc3, each
followed by the MIPS routine written for proc1—which is wrong because the MIPS routine is only correct
for proc1. Rewrite those MIPS routines for proc2 and proc3. Note that int16_t is a signed 16-bit integer
and uint8_t is an unsigned 8-bit integer.

int32_t proc1(int32_t *a0, int a1) { return a0[a1] + a0[a1+1]; }

# Code below is correct for proc1.

sll $t0, $a1, 2

add $t0, $t0, $a0

lw $v0, 0($t0)

lw $t1, 4($t0)

jr $ra

add $v0, $v0, $t1

Modify MIPS code for proc2. Pay attention to size and sign. Eliminate any unneeded
instructions.

int16_t proc2(int16_t *a0, int a1) { return a0[a1] + a0[a1+1]; }

# Modify MIPS code to be correct for proc2.

sll $t0, $a1, 2

add $t0, $t0, $a0

lw $v0, 0($t0)

lw $t1, 4($t0)

jr $ra

add $v0, $v0, $t1

Modify MIPS code for proc2. Pay attention to size and sign. Eliminate any unneeded
instructions.

uint8_t proc3(uint8_t *a0, int a1) { return a0[a1] + a0[a1+1]; }

# Modify MIPS code to be correct for proc3.

sll $t0, $a1, 2

add $t0, $t0, $a0

lw $v0, 0($t0)

lw $t1, 4($t0)

jr $ra

add $v0, $v0, $t1

10
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(b) The statement below is based on a lack of understanding of how compilers work. Explain the misunder-
standing and otherwise correct the statement.

It takes a great deal of effort to write a correct and effective compiler optimizer. Therefore optimizers
are written for popular high-level languages such as C++11 but not for less popular languages such
as COBOL.

The misunderstanding about compilers is:

How does that change the conclusion about which languages get better optimization?

(c) Chip A has five 4-way superscalar cores. Chip B has 20 scalar cores. The cores are similar to our pipelined
MIPS implementations. All cores use a 1GHz clock.

Compute the peak execution rate in units of instructions per second of Chip A and Chip B.

Why would Chip A run faster on simple code, such as the routines used in the homework assignments?

Which chip might be less expensive? Explain.

11
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(d) Answer the following questions about ISAs.

Implementations of VLIW ISAs are supposed to be less costly and have higher performance than super-
scalar implementations of conventional ISAs. Is Intel Itanium a good example of that? Explain

What important concept came out of the development IBM System/360?

VAX is a good example of which ISA type?

True or false: IA-32 (a.k.a. x86) was widely adopted because of its elegant design? Explain.

12
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(e) The SPECcpu benchmarks can be run at two tuning levels, base and peak. Base scores are useful to
those running software developed using typical practices.

What kind of computer buyers should use peak scores?

How do the SPEC rules for preparing base and peak runs differ?

13
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Problem 1: [25 pts] Appearing below is the solution to Homework 4, in which additional control logic is
added for the 12-bit bypass paths. The illustrated hardware generates stall signals for a load/use dependence
and for cases in which the value that needs to be bypassed is unknown or too wide for the 12-bit bypass
paths.

USE NEXT PAGE FOR SOLUTION
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USE NEXT PAGE FOR SOLUTION

(a) Suppose, on further consideration, it was decided that full-sized, 32-bit bypass paths to the upper ALU
mux were needed. Elsewhere 12-bit bypass paths would be retained. Modify the hardware so that a stall
signal would no longer be generated for such too-big values to the upper ALU mux. Do so without affecting
stalls for the 12-bit bypass paths to the lower ALU mux and without affecting stalls for load/use dependencies.

# Should not stall anymore, regardless of size of r1.

add $r1, $r2, $r3

lw $r4, 0($r1)

# Should still stall.

lw $r5, 0($r6)

addi $r7, $r5, 9

# Should still stall if r1 too big for 12-bit bypasses.

add $r1, $r2, $r3

sub $r5, $r6, $r1
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Remove hardware generating stall due to values too large for upper ALU bypass paths.

Do not change stalls for load/use cases and bypasses to lower ALU mux.
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Problem 1, continued:

(b) Suppose that the bypass paths to the EX-stage rtv mux were also just 12 bits wide. Modify the control
logic on the next page so that a stall signal would be generated when appropriate for store instructions.

Note that a lb produces a value small enough for the 12-bit bypass paths and that the store value needed
by a sb is always small enough for the 12-bit bypass paths. See the examples below.

USE NEXT PAGE FOR SOLUTION
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USE NEXT PAGE FOR SOLUTION

# sb should not stall for this dependency.

add $r1, $r2, $r3 IF ID EX ME WB

sb $r1, 0($r4) IF ID EX ME WB

# sw should stall for one cycle.

lb $r1, 0($r5) IF ID EX ME WB

sw $r1, 0($r4) IF ID -> EX ME WB

# sh should stall only if r1 is too large.

add $r1, $r2, $r3 IF ID EX ME WB

sh $r1, 0($r4) IF ID ----> EX ME WB
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Generate stall for unbypassable value from prior instructions to store value (not store address). Consider
store size and any load size. (See examples on previous page.)
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Problem 2: [20 pts] Answer the following questions about two versions of our bypassed MIPS implemen-
tation.
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(a) Show the execution of the code below on the implementation illustrated above when the branch is taken.

Show Execution.

Check the code for dependencies.

lw r2, 0(r4)

addi r1, r2, 3

bne r1, r3 TARG

ori r1, r9, 10

andi r11, r1, 14

TARG:

xor r20, r11, r22
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(b) Each mux in the implementation below is labeled with a circled letter, and mux inputs are numbered.
Some wires are colored to make them easier to follow. Write code sequences that use the mux inputs as
requested below. Some code sequences may consist of a single instruction.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

31:2

31:2

0
1

2
3 0

1
2

3
0

1
2

3

0
1

2

E
D

C

0

B

1

A

0 1

F

�Use C0 to carry r1, elsewhere r1 not used.

# Cycle 0 1 2 3 4 5 SAMPLE SOLUTION

add r1, r2, r3 IF ID EX ME WB

sub r4, r1, r5 IF ID EX ME WB

Use D3 to carry r1, elsewhere r1 not used.

Use E0 to carry r1, elsewhere r1 not used.

Use A1.

Use B0.

Use C1.
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Problem 3: [15 pts] The floating point code fragment below computes f2 = f3 * f0 + f1, where f3 is
a call argument and f0 and f1 are loaded from a table. A total of eight instructions are used to load the
constants into f0 and f1. Re-write the code so that fewer instructions are used. It is possible to load both
registers using a total of two instructions.

Load constants into f0 and f1 using two or three instructions.

The constants must be loaded from the table.

.data

famous_constants: # 0x10010300

.float 2.718282818

.float 3.141592654

.text

pie:
# Load f0 with first element of table.

lui $t0, 0x1001

ori $t0, $t0, 0x300

lw $t1, 0($t0)

mtc1 $t1, $f0

# Load f1 with second element of table.

lui $t0, 0x1001

ori $t0, $t0, 0x304

lw $t1, 0($t0)

mtc1 $t1, $f1

# Don’t modify the code below this line.

mul.s $f2, $f3, $f0

add.s $f2, $f2, $f1

8
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Problem 4: [40 pts] Answer each question below.

(a) In class we said that MIPS-I lacks an instruction like bgt (branch greater-than) because the magnitude
comparison would take a little too long. MIPS-I does have beq and bne instructions that compare two
registers. However, SPARC v8 has a bgt instruction, but it is done in such a way that here is no risk of
critical path impact.

How is the actual SPARC bgt different than a hypothetical MIPS bgt?

How does that difference avoid critical path impact in resolve-in-ID implementations?

Explain why a bgt r1, r2, TARG would not have a big critical path impact if it were resolved in EX.

10
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(b) In the MIPS add instruction the sa field must have a value of zero. Consider a future version of MIPS
in which the sa field would hold a scale factor, s. The result of the add would be rsv + rtv * s. Suppose
that analysis of users’ programs found that such an instruction would be very useful and that it could easily
be implemented in hardware. Should the add be extended in that way? If not, suggest another way of
providing the scaled add.

Should add be extended to compute rsv + rtv*s?

Explain a possible objection and suggest an alternative way of including the instruction.

(c) The MIPS-I assembly instruction below is invalid. Explain why and replace it with one that correctly
adds two double-precision values.

add.d $f0, $f1, $f2

11
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(d) What is the difference between a dependency and a hazard?

The difference between a dependency and a hazard is:

(e) Identify the type of dependence between each pair of instructions below, and indicate the corresponding
hazard.

The type of dependence is: . The corresponding hazard is:

add r1, r2, r3

sub r1, r5, r6

The type of dependence is: . The corresponding hazard is:

add r1, r2, r3

sub r4, r1, r6

The type of dependence is: . The corresponding hazard is:

add r1, r4, r3

sub r4, r2, r6
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(f) In class we said that the lifetime of an ISA can be decades and so it must be carefully designed to take
into account current and future implementation technologies. Is IA-32 (80x86) a good example of this rule?
Explain.

IA-32 © is © is not a good example of this rule because . . ..

(g) Indicate the most appropriate ISA family for each ISA below.

Intel 64 is considered © RISC © CISC © VLIW

Itanium is considered © RISC © CISC © VLIW

MIPS is considered © RISC © CISC © VLIW

SPARC is considered © RISC © CISC © VLIW

VAX is considered © RISC © CISC © VLIW
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Problem 1: (15 pts) Appearing below is the 2-way superscalar implementation used in class. As we usually
assume, fetch groups are aligned and stalls must keep instructions within a stage in order.
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Immed
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(a) Show the execution of the code below on the implementation above.

Show execution. Check for dependencies!!

LINE1: # Address of the first lw insn below is 0x1000

lw r1, 0(r2)

lw r3, 0(r1)

lw r4, 4(r1)

lw r5, 8(r1)

sw r5, 12(r1)

sw r4, 16(r1)
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(b) Show the execution of the code fragment below on the illustrated implementation.

Show execution and check for dependencies here too.

Don’t overlook the fact that the branch is taken.

Pay attention to fetch groups and the aligned fetch restriction.

# Address of beq is 0x1004

beq r1, r1, SKIP1

lw r2, 0(r3)

sw r4, 0(r3)

addi r3, r3, 4

SKIP1: # Address of andi r2 is 0x2008

andi r2, r2, 0xfff

andi r6, r2, 0xff0

add r7, r2, r6

sub r8, r2, r6
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(c) Appearing below is again our 2-way superscalar MIPS. Notice that the branch hardware shown can only
provide the target for a branch in slot 1. Add hardware for providing the branch target of a branch in slot
0. Do not add hardware for checking the branch condition. Do not add control logic.

Add hardware for a slot-0 branch.

Pay attention to cost.

Be sure the hardware computes the correct target address.
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Immed
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Problem 2: (10 pts) Appearing below is the execution of a bit more than two iterations of a loop on the
illustrated MIPS implementation. The execution shows the use of a two-stage FP compare unit, C1-C2, by
the c.lt.s instruction, but the unit isn’t shown.
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Int Reg File

=

format
immed

15:0

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

mul.s f1, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, f3 IF ID -------------> C1 C2 WF

bc1f LOOP IF -------------> ID ----> EX ME WB

add.s f1, f1, f4 IF ----> ID A1 A2 A3 A4 WF

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

mul.s f1, f1, f2 IF ID -------> M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, f3 IF -------> ID -------------> C1 C2 WF

bc1f LOOP IF -------------> ID ----> EX ME WB

add.s f1, f1, f4 IF ----> ID A1 A2 A3 A4 WF

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

mul.s f1, f1, f2 IF ID -------> M1 M2 M3 M4 M5 M6 WF
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(a) Compute the CPI of the execution of the loop above for a large number of iterations.

Compute the CPI.

Clearly show how the time for an iteration was determined, perhaps using the pipeline diagram.

(b) Reschedule the instructions to reduce the time needed to execute a large number of iterations of the loop.
Add a nop if that helps. A correct solution will still have many stalls.

Re-schedule to improve performance.

Don’t change what the loop is computing.
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Problem 3: (20 pts) The MIPS implementation on the next page shows the two stages of the comparison
units, C1 and C2, but they are not connected to anything. The illustration also shows an FCC register that
will hold the floating-point condition code value computed by compare instructions such as c.lt.s. Connect
the comparison units and the FCC register so that they operate correctly and as described by the check items
below. Notice that logic to detect FP branch instructions and FP compare instructions has been added to
the ID stage near the bottom.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

mul.s f1, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, f3 IF ID -------------> C1 C2 WF

bc1f LOOP IF -------------> ID ----> EX ME WB

add.s f1, f1, f4 IF ----> ID A1 A2 A3 A4 WF

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Provide connections to C1, C2, and the two FCC inputs so that the code above executes as shown.

Modify the control logic so that a compare does not arrive in WF in the same cycle as other FP instructions.
(This is despite the fact that compares do not write the FP register file.)

Modify the control logic so that the Stall ID signal is asserted for dependencies from compare to
branches, such as occurs above with the bc1f.

As always, pay attention to cost and performance and don’t break existing functionality.
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Problem 4: (16 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on two systems, each with a different branch
predictor. All systems use a 212 entry BHT. One system has a bimodal predictor and one system has a local
predictor with an 8-outcome local history.

Branch B2 starts with a random outcome, then repeats that same outcome two more times, followed by
another random outcome followed by two more repeats of that. The random outcome is T with probability
.3 and is independent of other outcomes. The following are possible B2 outcome sequences: TTT NNN NNN

TTT TTT. Note that the number of consecutive T’s or N’s must be a multiple of 3 and so the following is not
a possible sequence of outcomes for B2: TT NN T NNNN T.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: T T N T T T N N T T N T T T N N ...

B2: r r r q q q s s s ...

What is the accuracy of the bimodal predictor on branch B1?

What is the accuracy of the bimodal predictor on branch B2?

What is the accuracy of the local predictor on branch B1?

What is the accuracy of the local predictor on branch B2?

10
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(b) Appearing below is a diagram of a local predictor, showing in detail the logic for predicting the instruction
in IF and for updating the predictor for the resolving branch. Modify the diagram so that it is a global
predictor with an 8-outcome global history.

Modify so that it is a global predictor.

Remove hardware that’s no longer needed.

Be sure to show the GHR (global history register).
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Problem 5: (10 pts) The diagram below is for a 64MiB, 4-way set-associative cache with a line size of
256B, a bus width (w) of 8B, for a 64 b address space. Helpful facts: 64MiB = 64 × 220 B = 226 B and
256 = 28.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

Addr
Data
Out

T

Data

ddr
Data
Out

=T

Valid

ddr

Data In

l����

hit

ddr
Data
Out

T

Data

ddr
Data
Out

=T

Valid

Complete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Address:
0

Memory Needed to Implement Indicate Unit!!:

Show the bit categorization for a direct-mapped cache with the same line size and capacity as the cache
above.

Address:
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The problem on this page is not based on the cache from Part a. The code in the problem belows run on
a cache with a line size of 256B (which is 28 B). Each code fragment starts with the cache empty; consider
only accesses to the arrays.

(b) Find the hit ratio executing the code below.

int sum = 0;

short *a = 0x2000000; // sizeof(short) == 2

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

What is the hit ratio running the code above? Show formula and briefly justify.
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Problem 6: (8 pts) Appearing below is a MIPS implementation that includes hardware for interrupts
(hardware interrupts, exceptions, and traps). An exception code, exc, is collected and passed down the
pipeline. Its value indicates the type of hardware interrupt, exception, or trap that has been encountered, a
value of 0 indicates no interrupt of any kind.
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(a) Notice that the decode exc logic in the ID stage examines the opcode of the instruction in ID as well
as the value of ID.priv. Hint: priv is an abbreviation for privileged. Some opcode values raise exceptions
only when ID.priv is zero, others raise exceptions whether or not ID.priv is zero.

Describe an instruction that raises an exception in ID only if ID.priv is zero.

Why is it important that such an instruction raise an exception?

Describe an instruction that raises an exception in ID whether or not ID.priv is zero.

(b) The illustrated hardware squashes the faulting instruction in ME, but no hardware is shown to squash any
instructions that may be in the stages before ME nor for the stage after ME. That hardware may have been
omitted for simplicity (the same reason that control logic is omitted) or because it is not needed.

To implement precise exceptions should the instructions in the stages before ME be squashed? Explain
in terms of the handler and what would go wrong if instructions were not treated the right way.

To implement precise exceptions should the instructions in the stage after ME be squashed? Explain
in terms of the handler and what would go wrong if instructions were not treated the right way.
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Problem 7: (21 pts) Answer each question below.

(a) Show the encoding of the following MIPS instructions. Write the instruction name in opcode or func
field values that cannot be determined.

0x1000: beq r10, r11, TARG

0x1004: add r7, r8, r9

TARG:

0x1034: lw r12, 14(r15)

Encoding for beq from code fragment above. Pay attention to the branch target.

Encoding for add from code fragment above:

Encoding for lw from code fragment above:

(b) MIPS has one kind of memory addressing for all load and store instructions, such as in lw r1, 2(r3)

where the immediate, 2, is added to the value in r3. A CISC ISA might have two versions of the load, lw
r1, (r3), which lacks an immediate (the immediate would be zero in MIPS), and lwi r1, 2(r3) for when
an immediate is needed.

What would be the benefit for the CISC ISA of having the no-immediate version of the lw?

Why would MIPS and other RISC ISAs not realize the same benefit?

16
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(c) A design team is considering removing a bypass connection to the ALU and adding a bypass connection
to the branch resolve unit. This won’t change the cost, they hope it will improve performance. “Simulation
of this design change shows that performance drops by 5%,” a sad-faced engineer announces. “We forgot to
talk to the compiler people!,” another excitedly points out, splashing hope and excitement around the room.

What should they ask the compiler people?

(d) Someone preparing the SPECcpu benchmarks for their company’s next product (currently under de-
velopment) decides to replace one of the benchmark programs with an improved version, one which better
reflects that company’s customers. Note: the emphasis below was added after the original exam, as was the
phrase “not to market.”

Should the company use the SPECcpu benchmarks in this way to develop (but not to market) their
product?

With the substituted benchmark program the SPEC scores are higher (better). The company decides to
release these higher SPEC results without mentioning the substitution.

How does the design of SPECcpu make it likely that they will get caught?

(e) Compiler optimization is more important for a supercalar implementation than a scalar implementation.

Optimization is more important for superscalar than scalar because:

The important optimization is:

17

← → Spring 2018 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/2018/fe.pdf


9 Spring 2017

193

← → Spring 2017 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4720/2017/mt.pdf


Name

Computer Architecture

EE 4720

Midterm Examination

Wednesday, 22 March 2017, 9:30–10:20 CDT

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

← → Spring 2017 ← → Midterm Exam Exam Solution mt.pdf

http://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/2017/mt.pdf


Problem 1: [20 pts] Appearing below is our familiar MIPS implementation.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

(a) Show pipeline execution diagrams for the code fragments below executing on the illustrated implemen-
tation and label as indicated.

Show pipeline diagram. Doublecheck dependencies.

Label bypass paths used at mux inputs with C : I, where C is the cycle number (such as 2) and I is the
instruction consuming the bypassed value. Be sure to check for dependencies.

add r1, r2, r3

sub r4, r5, r6

sw r4, 8(r1)

Show pipeline diagram. Doublecheck dependencies.

Label bypass paths used at mux inputs with C : I, where C is the cycle number (such as 2) and I is the
instruction consuming the bypassed value. Be sure to check for dependencies.

and r1, r2, r3

lw r4, 16(r1)

ori r5, r4, 7
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Problem 1, continued:

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

(b) Show a pipeline execution diagram for an execution of the code fragment below when the branch is taken.
Label the ID-stage unit as indicated.

Show pipeline diagram. Pay close attention to the branch.

Label the inputs and outputs of the ID-stage unit that computes the branch target. Label with c : v, where
c is the cycle number and v is the value on the input or output.

0x4000: addi r1, r2, 3

0x4004: bne r1, r6, TARG

0x4008: lw r4, 0(r5)

0x400c: addi r5, r5, 4

0x4010: xor r8, r9, r10

TARG:

0x4014: add r5, r4, r4
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Problem 2: [20 pts] Appearing below is a partial implementation of ARM A64 taken from the solution
to Homework 4. The WB-stage mux is crossed out because it’s wasteful to use a 64-bit mux when the same
functionality can be realized using less expensive logic in the ID stage. For reference, some A64 instructions
are shown below, the comments show which field registers are encoded in.

IR

addr

IF ID EX WBME

rnv

rmv

IMM

ALU
addr

data

data

addr

D
 I
n

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outmdin

ALU

MD

62 2
2'b0

PC

+

D

 

msb lsb

we

fmt

imm

dcd wr rd

dcd wr rn

register file
rn: 9:5

rm: 20:16

addr

rn

rd

rnwe

rdwe

4:0

9:5
rn

rd

rnwe

rdwe

rn

rd

rnwe

rdwe

addr
we

23:5

is load

@ rd rn : Writes rd and rn

ldr x1, [x2], #8 @ x1 = Mem[x2]; x2 = x2 + 8

@ rd, rn, rm : Writes rd

add x3, x4, x1 @ x3 = x4 + x1

@ rd, rn : Writes rd

and x1, x2, #34 @ x1 = x2 & 34;

Complete the changes so that instructions such as the ones above can write back their results. Assume that
only the load instructions write the rn-field register.

In WB consider re-connecting wires broken by the removal of the mux.

In ID make changes so that instruction results can be written back to the correct registers.

Make the best use of the existing from-WB bypass path.

4
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Problem 3: [20 pts] Appearing below again is the partial implementation of ARM A64 taken from the
solution to Homework 4.

addr

EX WBME

rnv

rmv
ALU

addr

data

data

addr

+1

Mem

Port

Addr

Data

Out

Addr

D

Mem
Port

Out

ALU

MD

62 2
2'b0

+

D

 

m�� l��

we

fmt

imm

dcd wr rd

dcd wr rn

register file
rn: 9:5

rm: 20:16

addr

rn

rd

rnwe

rdwe

4:0

9:5
rn

rd

rnwe

rdwe

rn

rd

rnwe

rdwe

addr
we

23:5

is load

mdin

@ rd rn : Writes rd and rn. Post-index

ldr x1, [x2], #8 @ x1 = Mem[x2]; x2 = x2 + 8

@ rd rn : Writes rd and rn. Pre-index

ldr x1, [x2, #8]! @ x2 = x2 + 8; x1 = Mem[x2];

@ rd rn rm

str x1, [x2, x3] @ Mem[x2+x3] = x1

(a) Make changes needed to implement the store instruction, see the example above. Just show datapath,
not control logic.

Changes for the store instruction.

(b) Do we really need both pre-index and post-index addressing for loads and stores? Eliminating either of
them will reduce cost, but one’s elimination would reduce cost by more than the other’s. Indicate which
saves more and show the hardware that can be removed and other needed changes. Note: The phrase and
other needed changes was not in the original exam.

Greater cost reduction by eliminating: © pre-index © post-index (check exactly one).

Show the hardware that’s not needed and other needed changes.

5
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Problem 4: [20 pts] When MIPS routine coursei is called register a0 will hold an entry number, referring
to the table at label courses. Complete the routine so that when it returns register v0 will have the integer
representation of entry number a0 in the table. Note that the table itself holds floats. For example, when
called with a0=0 it should return with v0=2740, when called with a0=2 it should return with v0=3755, etc.

Complete so v0 is integer representation of a0th table entry.

Read the table as it is, don’t modify it or read a different table.

.data

courses:

.float 2740

.float 3750

.float 3755

.float 4755

.float 4720

.float 7722

.float 7725

.text

# CALL VALUE: $a0: Entry in table to look up.

# RETURN: $v0: Table entry #$a0 represented as an integer.

coursei:

la $t0, courses

jr $ra

nop

6
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Problem 5: [20 pts] Answer each question below.

(a) What kind of implementations were RISC ISAs designed to simplify?

Kinds of implementations that RISC designed to simplify:

(b) Describe how the features below simplify RISC ISA implementations.

Fixed-size instructions.

Avoiding arithmetic instructions that access memory.

(c) The SPECcpu package contains the source code for the SPEC benchmarks and scripts to compile and
run them, but it does not come with compilers. The tester provides his or her own. Consider a SPECcpu+
package that comes with compilers, and the requirement that those compilers be used. Why would that
make SPECcpu+ less useful to computer engineers?

SPECcpu+ less useful because:

7
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(d) In class we described some optimizations as high-level, and some as low-level, performed by the back
end. What distinguishes high- and low-level optimizations? Provide an example of a low-level optimization
that could only be performed by the compiler back end.

Difference between high- and low-level optimization.

Example of an optimization that must be low-level (that can only be done in the back end).

Briefly explain why.

(e) MIPS I has instruction bgtz r1, TARG in which the branch is taken if r1>0 but it lacks an instruction
like bgt r1, r2, TARG that would branch if r1>r2. Why?

Why does MIPS lack bgt r1, r2, TARG?

What would be the impact on performance of including bgt r1, r2, TARG in MIPS on “our” five-stage
implementation?

8
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Problem 1: (20 pts) The diagram below, based on the solution to Homework 5, shows control logic that
generates a stall signal when the value to be bypassed is too large for 12-bit bypass paths. The logic only
works when the dependency is with the rt register of the consuming instruction and when the producing
instruction is not a load. Modify the control logic so that it will generate a stall signal for a dependency to
an rs register (first example below) and dependencies with loads. Pay attention to the load sizes.

# Dependency through rs register (r1 in the sub).

add r1, r2, r3

sub r4, r1, r5

# Producing instruction is a load word.

lw r1, 2(r3)

and r4, r5, r1

# Producing instruction is a load half.

lh r1, 2(r3)

and r4, r5, r1

# Producing instruction is a load byte.

lb r1, 2(r3)

and r4, r5, r1

Use next page for solution.
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Use next page for solution.
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Modify the control logic so that it also generates the stall signal for dependencies through the rs register
that can’t use 12-bit bypasses.

Modify the stall control logic for when loads lb, lh, and lw produce the value to bypass, take into
account whether value can use the 12-bit bypasses and whether the instructions are too close to bypass.

Do not break existing control logic. As always consider cost and performance.
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Problem 2: (15 pts) Illustrated below is a superscalar implementation taken from the solution to last year’s
final exam and the subject of this semester’s Homework 7. Show the execution of the code sequences below
on the illustrated superscalar MIPS implementation. Don’t forget to check for dependencies.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
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md

dst0Dest. reg
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� I�
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isMem STA���	
��
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(a) Show the execution of the code below on this implementation. Note that the address of the first instruction
is 0x1000.

Show execution of the following code sequence. Pay attention to ME in the diagram.

Check for dependencies.

START: Address is 0x1000.

lw r1, 0(r2)

lw r3, 4(r2)

lw r4, 8(r2)

add r5, r1, r5

add r5, r3, r5

add r5, r4, r5
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Problem 2, continued: The illustration below is the same as the one on the previous page.

Immed
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(b) Show the execution of the code below on the illustrated implementation when the branch is taken. Use
the classroom default assumption: fetches are aligned.

Show execution of the following code sequence. Check for dependencies.

Show all instructions that enter the pipeline, even those that are squashed in IF or later.

Pay attention to instruction addresses, such as 0x1000.

# Branch is taken.

0x1000: bne r1, r4 TARG

0x1004: sub r5, r2, r7

0x1008: xor r10, r11, r12

0x100c: lbu r9, 0(r5)

0x1010: andi r8, r9, 12

TARG:

0x1014: or r11, r5, r12

0x1018: sb r11, 0(r5)
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Problem 2, continued: The illustration below is the same as on the previous page.

Immed

IF ID EX WBME
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(c) Appearing below is an execution of MIPS code on the illustrated superscalar implementation shown for
the first two iterations. Compute the CPI for a large number of iterations. If necessary extend the execution
diagram.

lw r1, 0(r2) IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10

add r1, r1, r4 IF ID -> EX ME WB # First Iteration

lw r1, 0(r2) IF ID -> EX ME WB

bne r2, r3 LOOP IF -> ID EX ME WB

addi r2, r2, 4 IF -> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10

add r1, r1, r4 IF ID EX ME WB # Second Iteration

lw r1, 0(r2) IF ID EX ME WB

bne r2, r3 LOOP IF ID EX ME WB

addi r2, r2, 4 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10

CPI for a large number of iterations.
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Problem 3: (20 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on three systems, each with a different branch
predictor. All systems use a 212 entry BHT. One system has a bimodal predictor, one system has a local
predictor with a 8-outcome local history, and one system has a global predictor with a 8-outcome global
history. Branch B2 consists of a repeating pattern that starts with TNTT and is either followed by three
not-taken outcomes, nnn, or four taken outcomes, tttt. (They are shown in lower case for clarity.) The nnn

sequence occurs with probability .4, and is not correlated with anything.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

↓
B1: T N T T N T N T T N T N T T N

B2: T N T T n n n T N T T t t t t

What is the accuracy of the bimodal predictor on branch B1?

What is the accuracy of the bimodal predictor on branch B2? Account for the variable pattern length.

What is the accuracy of the local predictor on branch B2? Account for the variable pattern length.

What is the minimum local history size for which branch B1 and B2 will not interfere with each other?
Explain.

Note that an arrow (↓) points at an execution of B1. Show the value of the GHR at the time that that
execution is being predicted.

7
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Problem 3, continued:

(b) Appearing below is a diagram of a bimodal predictor, showing in detail the logic for predicting the
instruction in IF and for updating the predictor for the resolving branch. Modify the diagram so that it is
a local predictor with an 8-outcome local history.

Show the PHT, and connections for prediction and update.
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Problem 4: (15 pts) The diagram below is for a 32MiB (225 B) four-way set-associative cache with a line
size of 32B.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

MNO

Addr

QRSR TU

logic

WXS

Addr
Data
Out

Tag

Data

Addr
Data
Out

Tag

Valid

64

16 c

Complete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Address:
0

Memory Needed to Implement Indicate Unit!!:

Show the bit categorization for a direct-mapped cache with the same line size and capacity as the cache
above.

Address:
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Problem 4, continued: The problem on this page is not based on the cache from Part a. The code in the
problem belows run on a cache with a line size of 1024B (210 B). Each code fragment starts with the cache
empty; consider only accesses to the arrays.

(b) Find the hit ratio executing the code below.

int sum = 0;

int *a = 0x2000000; // sizeof(int) == 4

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

What is the hit ratio running the code above? Show formula and briefly justify.

10

← → Spring 2017 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/2017/fe.pdf


Problem 5: (30 pts) Answer each question below.

(a) Consider a 4-way superscalar system and a scalar system with a 4-lane vector unit. Both can compute
arithmetic at a rate of 4 operations per cycle. The vector system is cheaper but the superscalar system is
more flexible.

Why is the vector system less costly?

Show something the superscalar system can do that the vector system cannot.

Explain why vector system can’t execute equivalent vector code as efficiently.

(b) Unlike MIPS, ARM A64 has pre-index and post-index load and store instructions. Show two code
examples, one in A64 that uses a post-index load, and one in MIPS that does the same thing (but without
a post-index load). The exact syntax of the ARM instructions is not important, use comments to clarify
instructions.

ARM code and equivalent MIPS code.

(c) What substantial additional hardware is needed to implement ARM A64 pre- and post-index loads when
starting with something like our five-stage MIPS implementation. (Think about Homework 4.) Note: The
words “substantial” and “costly” were not included in the original exam.

Costly additional hardware for pre- and post-index loads.

11
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(d) VLIW ISAs are supposed to do for superscalar implementations what RISC ISAs did for pipelined
implementations. The diagram below shows our 2-way superscalar MIPS. Show how a 2-slot-bundle VLIW
ISA (perhaps one a lot like MIPS) could simplify hardware in this implementation related to the sharing in
ME.
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Modify the hardware above.

Explain the bundle slot restrictions based on modified hardware.

Explain why the control logic driving STALL ID 1 would no longer be needed.
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(e) When an exception occurs (or a trap instruction is executed) the processor switches from user mode
into privileged mode (also called system mode). Explain how privileged mode affects instruction execution,
including loads, compared to user mode.

Effect of privileged mode on instruction execution including effect on load instruction execution.

(f) It’s hard to choose a line size that makes everyone happy. Explain how a long line size might slow down
some programs in a small cache in comparison to the right line size (for those programs).

With a small cache large lines can slow some programs because:

Describe the characteristics of code that works well with long lines.
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Problem 1: [25 pts] Appearing below are what are supposed to be pipeline execution diagrams (PEDs) of
code fragments executing on the illustrated implementation. The PEDs are incorrect.

(a) Correct the PEDs.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

Correct the PED below.

add r1, r2, r3 IF ID EX ME WB

lw r3, 0(r1) IF ID -> EX ME WB

Correct the PED below.

lw r3, 0(r1) IF ID EX ME WB

add r4, r3, r5 IF ID -> EX ME WB

sub r6, r7, r8 IF ID EX ME WB

Correct the PED below.

# Cycle 0 1 2 3 4 5 6 7

beq r1, r1 TARG IF ID EX ME WB # Branch is taken.

xor r5, r6, r7 IF IDx

add r8, r9, r10 IFx

TARG:

sub r2, r3, r4 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

2
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(b) Appearing below are more PEDs which are not correct for the illustrated implementation. This time
modify the implementation so that the executions are correct. Only make necessary changes.

• Delete a bypass path by showing an × at the mux input where it ends.

• Do not delete or add more hardware than is necessary.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

Modify the implementation so that the execution below is correct.

add r1, r2, r3 IF ID EX ME WB

sub r3, r1, r5 IF ID ----> EX ME WB

Modify the implementation so that the execution below is correct.

lw r1, 0(r2) IF ID EX ME WB

sw r1, 0(r3) IF ID EX ME WB

3
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Problem 2: [25 pts] The implementation below is based on the solution to Homework 2 Problem 2 in
which a bypass was added for bltz instructions.

Use Next Page for Solution

IR

Addr

25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

D
0

 

1

dstdst

 

msb lsb

msb

lsb

31:31

31:31

='

TAKEN

25:21

= bltz

is Load

STALL

=

format
immed

15:0

Use Next Page for Solution

(a) The implementation can only bypass values in EX to a bltz. Modify the implementation on the next

page so that values can be bypassed from both EX and ME. With these changes the two fragments below

should run without a stall and of course bypass the correct value.

# Example 1

add r1, r2, r3

sub r4, r5, r6

bltz r1, TARG

# Example 2.

add r1, r2, r3

sub r1, r1, r6

bltz r1, TARG

(b) A bypass from EX isn’t possible for the code fragment below, and a bypass from ME is problematic too.
On the next page add logic to generate a stall signal for these situations (load/bltz dependencies) and

connect it to the word STALL in the upper-right of the diagram. Notice that there is an is Load logic block
in ID.

lw r1, 0(r2)

bltz r1, TARG

(c) Explain why it would not be a good idea to bypass the load value to the bltz when the load is in ME.

Bypassing load from ME not a good idea because:

4
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Problem 2, continued:

Modify implementation so bltz can bypass from EX and ME.

Logic to generate stall signal for bltz dependent on load.

Answer part c.

IR

Addr

25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

D
0

 

1

dstdst

 

msb lsb

msb

lsb

31:31

31:31

='

TAKEN

25:21

= bltz

is Load

STALL

=

format
immed

15:0
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Problem 3: [12 pts] Answer each question below.

(a) Each code fragment below writes register f30 with the sum f2 + 4720.

# Plan A

addi $t0, $0, 4720

mtc1 $t0, $f17

cvt.s.w $f16, $f17

add.s $f30, $f2, $f16

# Plan B

lui $t0, 0x4593

ori $t0, $t0, 0x8000

mtc1 $t0, $f16

add.s $f30, $f2, $f16

What is the difference between mtc1 and cvt?

Why doesn’t Plan B need a cvt?

(b) All MIPS integer instructions have their source register numbers in the rs and, if needed, rt fields. But
the destination register number can be found in either the rt or rd fields.

How does limiting integer sources to rs and rt reduce cost and improve performance?

Why isn’t performance hurt by having the destination in either rt or rd?

6
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Problem 4: [28 pts] Answer each question below.

(a) The statement below omits an important reason why customers can be kept by companies that manage
an ISA and implementation as two different things.

By separating the ISA from the implementation we can keep our customers by offering them a faster
implementation when they are ready to buy a new system.

What is the important reason that has been omitted?

(b) To use profiling to improve performance a program is compiled twice.

What is done between the first and second compilation?

Why does the program need to be compiled a second time?

Suppose that taken branches have a penalty. Show how profiling helps.

7
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Problem 4, continued:

(c) Consider an instruction such as add (r1), r2, 4(r3). What about it makes it unsuitable for a RISC
ISA? Explain why it would be difficult to implement in our pipelined design.

add (r1), r2, 4(r3) unsuitable for RISC because:

It would be difficult to implement because:

(d) When we compared the un-optimized and optimized versions of the π program we found that the optimized
version had many fewer load and store instructions. Why?

The optimized π program had fewer loads and stores because:

(e) A tester preparing a run of the SPECcpu suite is responsible for compiling the benchmarks. Why does
that make SPECcpu results interesting to computer engineers?

Tester compilation makes SPECcpu interesting to computer engineers because:

8
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Problem 5: [10 pts] Answer the following questions about bypass paths.

(a) Consider the two statements below about bypasses in implementations like our five-stage MIPS running
typical programs.

A: Compiler scheduling makes bypass paths unnecessary.

Explain why the statement above is wrong.

B: Bypass paths make compiler scheduling unnecessary.

Explain why the statement above is wrong.

(b) Consider the two above statements (about bypass paths) again as it applies to our MIPS implementation,
but this time running a special set of programs. We plan to design an implementation for this set of
programs. For these programs the two statements are true! Note: The original exam did not mention the
new implementation, and it had an “or both” option below.

For such programs should we eliminate bypass paths or should we eliminate compiler scheduling?

Explain.

9
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Problem 1: (20 pts) Appearing below is our two-way superscalar MIPS implementation with a single,
unconnected memory port in the ME stage. Since there is only one memory port there will have to be a slot-1
ID-stage stall whenever ID contains two memory instructions, for example:

# Cycle 0 1 2 3 4 5

lw r1, 0(r2) IF ID EX ME WB

lw r3, 0(r4) IF ID -> EX ME WB

(a) On the next page add datapath to the implementation so that the memory port can be used by a load
or store instruction in either slot. Pay attention to the cost of pipeline latches.

(b) On the next page add control logic needed for the datapath changes. The control logic should be for any
multiplexors that you’ve added, don’t include control logic for the memory port itself.

(c) On the next page add control logic to generate a STALL_ID_1 signal when there are two memory instruc-
tions in ID, as occurs in cycle 1 to the lw r3 in the example above.

Use next page for solution.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

md
0

dst
0

Dest. reg

Addr
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+
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r
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1  

md
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1
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1
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0

Immed

Addr

Data

Out

D

In

Mem
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Use next page for solution.
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Problem 1, continued:

Datapath so that memory port can be used by a load or store in either slot.

Control logic for multiplexors that you’ve added. Control logic to generate STALL ID 1.

Pay attention to pipeline latch cost and the critical path.

Immed

IF ID EX WBME
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d
d
r
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n
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dst
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(d) Notice that the two instructions in the code below load from adjacent addresses. The superscalar
implementation from the previous page would stall the lbu r3. But that might not be necessary because
the memory port retrieves 32 b of data. A properly designed alignment network could provide data for both
instructions, in some cases. Let’s call such nice situations, shared loads.

lbu r1, 0(r2)

lbu r3, 1(r2)

Only show ID-stage changes. Show control logic to detect possible shared loads in ID. Generate a signal
named SHARED_LOAD which is 1 if the instructions in ID could form a shared load, based on register numbers
and immediate values.

Control logic to detect possible shared loads.

Explain why alignment and critical path make it impossible to know for sure in ID that a shared load
is possible.

Immed

IF ID EX WBME
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The following part was NOT on the final exam as given. It will be assigned as homework in 2017.

(e) Notice that the two instructions in the code below load from adjacent addresses. The superscalar
implementation from the previous page would stall the lbu r3. But that might not be necessary because
the memory port retrieves 32 b of data. A properly designed alignment network could provide data for both
instructions, in some cases. Let’s call such nice situations, shared loads.

lbu r1, 0(r2)

lbu r3, 1(r2)

Here’s the plan: In ID detect whether a shared load is possible. In EX check addresses. In ME have memory
port perform only one kind of load, 32 b (stores are unaffected). In WB have a separate alignment network
for each slot.

Show control logic to detect possible shared loads in ID. Generate a signal named SHARED_LOAD which is
1 if the instructions in ID could form a shared load, based on register numbers and immediate values. In
EX generate a STALL-EX-1-SL signal if the shared load cannot be performed. This will stall the pipeline
allowing the slot-0 load to proceed normally in the current cycle and the slot-1 load to be executed in the
next cycle. Show connections for the alignment units in the appropriate places.

Control logic to detect possible shared loads.

Explain why alignment and critical path make it impossible to know for sure in ID that a shared load
is possible.

EX-stage hardware to generate STALL-EX-1-SL if can’t do shared load based on addresses.

Add remaining ME- and WB-stage hardware.

Immed

IF ID EX WBME
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Problem 2: (20 pts) Show the execution of the code fragments below on the illustrated MIPS implemen-
tations. All branches are taken. Don’t forget to check for dependencies.

(a) Show executions.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

Show execution of this simple code sequence.

add r1, r2, r3

sub r4, r1, r5

Show execution of the following code sequence.

beq r1, r1 TARG

or r2, r3, r4

sub r5, r6, r7

xor r8, r9, r10

TARG:

lw r10, 0(r11)

6
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(b) Show the execution of the code sequences below on the illustrated MIPS implementation. Don’t forget
to check for dependencies.

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A4A2A1

M3 M4

fd

we

xw

M2

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2
2'b0

PC

+
15:0

29:0

D

dstdst

 

decode

dest. reg

2'd2

2'd1
2'd0

msb lsb

M5

A3

M1

Int Reg File

=

format
immed

15:0

Show execution of the following code sequence.

mul.s f5, f6, f7

add.s f1, f2, f3

sub.s f4, f8, f5

7
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(c) Add any datapath hardware needed to execute the code sequence below, and show its execution. (Control
logic is not needed.) Don’t forget to check for dependencies.

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A4A2A1

M3 M4

fd

we

xw

M2

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data

Out

Addr

D
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MD

dstDecode
dest. reg

NPC

30 2
2'b0

PC

+
15:0

29:0

D
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decode

dest. reg

2'd2

2'd1
2'd0

msb lsb

M5

A3

M1

Int Reg File

=

format
immed

15:0

Add hardware needed by, and show execution of, the following code sequence.

Consider both stores and, as always, avoid unnecessary costs.

add.s f2, f3, f4

swc1 f1, 0(r7)

swc1 f2, 4(r8)

8
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Problem 3: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 214 entry BHT. One system has a bimodal predictor,
one system has a local predictor with a 10-outcome local history, and one system has a global predictor with
a 10-outcome global history.

(a) Branch behavior is shown below. Two repetitions of a repeating sequence are shown for branches B1 and
B2. Branch B2 generates the following repeating sequence: the eight outcomes TNTNTNTN followed by either
NN, probability .2, or TT, probability .8. These last two outcomes are shown below as r r and q q.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: N N T T T N T N N T T T N T · · ·

B2: T N T N T N T N r r T N T N T N T N q q · · ·

What is the accuracy of the bimodal predictor on branch B1?

What is the accuracy of the bimodal predictor on branch B2?

What is the accuracy of the local predictor on B2?

What is the minimum local history size needed to predict B1 with 100% accuracy?

What is the minimum local history size needed to predict B2 with maximum accuracy?

9
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Problem 3, continued:

(b) The diagram below shows four branches. Branches B1 and B3 are loop branches, each in a 30-iteration
loop. Branches B2 and B4 are perfectly biased branches (B2 always taken, B4 never taken). Consider their
execution on the three variations of the global predictor shown below.

B1: TT · · · TN TT · · · TN TT · · · TN

B2: T T T

B3: TT · · · TN TT · · · TN

B4: N N

a d

PHT

12

2

GHR

d
12

2

PC

xor a d

PHT

12

2
GHR

PC

xor

13:2

a d
12

2

PC

7:2

a d

PHT

12

2
GHR

PC

6

Pred A

Pred B

Pred C

12

Which variation (A, B, or C) will predict B2 or
B4 poorly?

Why does the variation do poorly on one or both
of these simple to predict branches?

Which variation (A, B, or C) is best for B2 and
B4 and also for branches with repeating patterns?

Show an example that one variation predicts ac-
curately that the other can not.

10
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Problem 4: (20 pts) The diagram below is for a three-way set-associative cache. Hints about the cache are
provided in the diagram.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

CPU

Addr

Data In

logic

hit

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

64

8 c

20:

:6

Complete the address bit categorization. Label the sections appropriately. (Index, Offset, Tag.)

Address:
0

Cache Capacity Indicate Unit!!:

Memory Needed to Implement Indicate Unit!!:

Line Size Indicate Unit!!:

Show the bit categorization for the smallest direct mapped cache with the same line size and which can
hold at least as much data as the cache above.

Address:
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Problem 4, continued: The problems on the following pages are not based on the cache from Part a.
The code in the problems below run on a 16MiB (224 byte) two-way set-associative cache with a line size of
28 = 256 bytes. Each code fragment starts with the cache empty; consider only accesses to the arrays.

(b) Find the hit ratio executing the code below.

long double sum = 0;

long double *a = 0x2000000; // sizeof(long double) == 16

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

What is the hit ratio running the code above? Show formula and briefly justify.

12
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Problem 4, continued: The code in the problem below runs on a 16MiB (224 byte) two-way set-associative
cache with a line size of 28 = 256 bytes. Each code fragment starts with the cache empty; consider only
accesses to the arrays.

(c) The code below scans through an array (or arrays) twice, once in the First Loop and a second time in
the Second Loop. Three different variations are shown, Plan A, Plan C, and Plan D. For each Plan, find
the largest value of BSIZE for which the second loop will have a 100% hit ratio.

// Note: sizeof(double) == 8

// Plan A

struct Some_Struct { double val, norm_val; double stuff[14]; };

// Plan C

struct Some_Struct { double val, norm_val; };

struct Some_Struct_2 { double stuff[14];};

// Plan D

double *vals, *norm_vals;

struct Some_Struct_2 { double stuff[14]; };

// Plan A and Plan C

Some_Struct *b;

for ( int i = 0; i < BSIZE; i++ ) sum += b[i].val + b[i].norm_val; // First Loop.

for ( int i = 0; i < BSIZE; i++ ) b[i].norm_val = b[i].val / sum; // Second Loop.

// Plan D

for ( int i = 0; i < BSIZE; i++ ) sum += vals[i] + norm_vals[i]; // First Loop.

for ( int i = 0; i < BSIZE; i++ ) norm_vals[i] = vals[i] / sum; // Second Loop.

Largest BSIZE for Plan A. Show work or explain.

Largest BSIZE for Plan C. Show work or explain.

Largest BSIZE for Plan D: Show work or explain.

(d) What’s wrong with the statement below:

In the first iteration of the First Loop under Plan C there will be one miss but with Plan D there will
be two misses. Therefore Plan C is better, at least for the First Loop.

What’s wrong with the statement?

13
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Problem 5: (20 pts) Answer each question below.

(a) Suppose that a new ISA is being designed. Rather than requiring implementations to include control
logic to detect dependencies the ISA will require that dependent instructions be separated by at least six
instructions. As a result, less hardware will be used in the first implementation.

Explain why this is considered the wrong approach for most ISAs.

What is the disadvantage of imposing this separation requirement?

(b) In the execution below the add.s instruction encounters an arithmetic overflow when in the A4 stage and
as a result raises an exception in cycle 6.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add.s f1, f2, f3 IF ID A1 A2 A3 A* WFx

lwc1 f3, 0(r2) IF ID EX ME WB

lw r4, 0(r5) IF ID EX ME WBx

add r6, r7, r8 IF ID EX MEx

HANDLER:

sw IF ID ..

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Explain why this exception can’t be precise.

Describe something the handler could do if the exception were precise.

14
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(c) Chip A has 60 2-way superscalar cores and Chip B has 20 4-way superscalar cores. Both chips run at
3GHz, and so Chip A has a higher peak instruction throughput. The cost and power consumption of the
two chips are identical. Why might someone prefer Chip B over Chip A?

Chip B preferred, despite lower peak throughput, because:

(d) The SPECcpu suite is used to test new chips that might have cost hundreds of millions of dollars to
develop, and test results are closely watched.

Why might we trust the SPECcpu selection of benchmarks and rules for building and running the
benchmarks?

Why might we trust the SPECcpu scores that Company X publishes?

15
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Problem 1: [25 pts] Appearing on the next page is the HW 3 Implementation, one of the solutions to
Homework 3, Problem 2, in which the bgt instruction resolves in EX. In the HW 3 Implementation there is
a 1-cycle branch penalty when bgt is taken. (The branch penalty is the number of squashed instructions.)
Suppose that based on benchmark analyses we find that bgt is mostly taken. For that we would like a New
Implementation [tm] in which there is no penalty when bgt is taken, and a 1-cycle penalty when it’s not
taken. The PEDs below show execution examples for the HW3 and New implementations.

# Cycle 0 1 2 3 4 5 6 7 HW 3 Impl, bgt taken, 1-cyc penalty

bgt r1, r2 TARG IF ID EX ME WB

xor r3, r4, r5 IF ID EX ME WB

or r6, r7, r8 IF IDx

TARG:

and r9, r10, r11 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 HW 3 Impl, bgt not taken, no penalty

bgt r1, r2 TARG IF ID EX ME WB

xor r3, r4, r5 IF ID EX ME WB

or r6, r7, r8 IF ID EX ME WB

TARG:

and r9, r10, r11

# Cycle 0 1 2 3 4 5 6 7 New Impl, bgt taken, no penalty

bgt r1, r2 TARG IF ID EX ME WB

xor r3, r4, r5 IF ID EX ME WB

or r6, r7, r8

TARG:

and r9, r10, r11 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 New Impl, bgt not taken, 1-cyc penalty.

bgt r1, r2 TARG IF ID EX ME WB

xor r3, r4, r5 IF ID EX ME WB

or r6, r7, r8 IF ID EX ME WB

TARG:

and r9, r10, r11 IF IDx

# Cycle 0 1 2 3 4 5 6 7

2
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Problem 1, continued: Convert the HW 3 Implementation below into the New Implementation. Hint:
Calm down! A correct solution only requires three minor changes, one of those changes is substituting a mux
input with a constant.

ID changes: bgt acts like it’s always taken.

EX changes: if bgt resolves not taken, fetch insn after delay slot insn.

format
immed

IR

Addr
25:21

20:16

IF
ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+ 15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

is J

is BEQ

is BNE

is BGTZ

is BGEZ

opc 31:26

rt 20:16

=0

31:31 lsb

msb

10

01

jmp

t-br

10 jmp

00 inc

msb lsb

msb

lsb

01 t-br

is BGT

0:0

 

t-br-ex

SQ

t-br-id

3
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Problem 2: [25 pts] In the implementation below several multiplexor inputs are labeled. For each labeled
input write a program that uses it. A sample solution is provided for A.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

A

B

C

D

E

F

�Write a code fragment for mux input A. �Mux input used in cycle 3 , � for register r1 .

# SAMPLE SOLUTION -- Mux input A.

# Cycle 0 1 2 3 4 5

add r1, r2, r3 IF ID EX ME WB

sub r4, r1, r5 IF ID EX ME WB

Write a code fragment for mux input B. Mux input used in cycle , for register .

Write a code fragment for mux input C. Mux input used in cycle , for register .

4
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Problem 2, continued:

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

A

B

C

D

E

F

Write a code fragment for mux input D. Mux input used in cycle , for register .

Write a code fragment for mux input E. Mux input used in cycle , for register .

Write a code fragment for mux input F. Mux input used in cycle .

5
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Problem 3: [15 pts] Answer each question below.

(a) Show the encoding of the MIPS instructions below. The opcode for beq is 0x4 and the opcode for lw is
0x23. Hint: For the fields’ bit positions see the implementation diagrams in previous problems.

TARG:

lw r1, 2(r3)

beq r4, r5, TARG

Encoding of lw r1, 2(r3):

31 0

Encoding of the beq above with the correct immediate field value.

31 0

(b) Many MIPS Format-R instructions, such as add and sub, have an opcode value of 0. Explain why they
don’t have their own opcode field values, such as 0x11 for add and 0x12 for sub.

R-format instructions have opcode 0 because . . .

If R-format instructions each had their own opcodes that would be a problem because . . .

6
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Problem 4: [10 pts] Answer each question below.

(a) Describe what the dead-code elimination optimization is and provide an example.

Description of dead-code elimination.

Example.

(b) For instruction scheduling optimizations is it necessary or just helpful for the the compiler to know the
implementation?

Implementation: Necessary, important, not needed. Circle one and explain.

7
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Problem 5: [10 pts] Answer each question below.

(a) A CISC ISA might have an instruction like add (r1), r2, 8(r3), in which the source and destination
come from memory.

Explain why such an instruction is not suitable for a RISC ISA, refer to RISC goals in your answer.

(b) Describe a feature and goal of VLIW ISAs.

VLIW feature:

VLIW goal:

8
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Problem 6: [15 pts] Answer each question below.

(a) SPECcpu benchmark results have two levels of tuning, peak and base. In one of these tuning levels the
same optimization flags must be used for all benchmarks of the same language.

Which tuning level is this for?

What is the purpose for requiring the same flags?

(b) Explain how the following corruptions of SPECcpu would be (we hope) prevented.

The suite excludes benchmarks that perform poorly on Evil Company’s products. This won’t happen be-
cause . . .

The SPECcpu results for Evil Company’s System X are just made-up numbers. This won’t happen be-
cause . . .

9
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Problem 1: (20 pts) The instruction sequence below performs the calculation r2+3+r5 and requires two
MIPS instructions to do so. If these two instructions were in the same fetch group in a two-way superscalar
processor then the second one would stall, this is shown in the execution below.

addi r1, r2, 3 IF ID EX ME WB

add r4, r1, r5 IF ID -> EX ME WB

An FA-ALU has two regular inputs, and a third input reserved for small quantities, here for values < 16,
and it can produce a result in the same time as an ordinary two-input ALU. An FA-ALU can be used to
execute instruction pairs like the one above without a stall, call such an execution a fused add.

Illustrated below is a 2-way superscalar implementation with an FA-ALU. Most bypass paths have been
removed to provide space for the solution to this problem. In addition to a 4-bit input for the third operand,
the FA-ALU has a control input, FA, which should be set to 1 when the third input is to be used.

Use next page for solution.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

Addr

D
In

Mem
Port

md
0

dst
0

Dest. reg

Addr
25:21

20:16

rsv
0

rtv
0Addr

Data

Data

+

15:0

31:2

15:0

alu
0

rtv
0

rtv
1

Addr
25:21

20:16

rsv
1

rtv
1Addr

Data

Data

A
d
d
r

D
 I
n

dst
1

imm0

imm1

64

15:0

alu
1

Addr

D
In

Mem
Port

md
1

dst
0

dst
1

Register File

ir
0

ir
1

pc

npc

2'b0

Dest. reg

Data

Out

dst
0

dst
1

alu
1

alu
0

Data

Out

Data

Out
Immed

FA

4

Use next page for solution.

(a) Add datapath connections to this implementation so that the FA-ALU can be used for fused adds. Hint:
The datapath changes are not just for that new FA-ALU input.

Add datapath so that the correct operands are delivered to the FA-ALU for fused adds.

Non-fusable sequences must still execute correctly. (Don’t break existing functionality.)

Make reasonable cost and clock frequency tradeoffs.

(b) Add control logic.

Design logic to generate the FA signal for the FA-ALU and deliver it in the correct cycle.

Consider instruction type, dependencies, and operand size.

Add control signals for the datapath added in the previous part.

Make reasonable cost and clock frequency tradeoffs.

2
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Problem 1, continued: You can use logic blocks such as isADD and isADDI in your solution.
addi r1, r2, 3 # Sample fusable sequence.

add r4, r1, r5

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

Addr

D
In

Mem
Port

md
0

dst
0

Dest. reg

Addr
25:21

20:16

rsv
0

rtv
0Addr

Data

Data

+

15:0

31:2

15:0

alu
0

rtv
0

rtv
1

Addr
25:21

20:16

rsv
1

rtv
1Addr

Data

Data

A
d
d
r

D
 I
n

dst
1

imm0

imm1

64

15:0

alu
1

Addr

D
In

Mem
Port

md
1

dst
0

dst
1

Register File

ir
0

ir
1

pc

npc

2'b0

Dest. reg

Data

Out

dst
0

dst
1

alu
1

alu
0

Data

Out

Data

Out
Immed

FA

4
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Problem 2: (20 pts) Show the execution of the code fragments below on the illustrated MIPS implemen-
tations. All branches are taken.

(a) Show the execution of the code below on the following implementation. The branch is taken.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
0 1

dstdst

msb lsb

msb

lsb

Show execution. Doublecheck for dependencies.

add r4, r2, r3

lw r6, 8(r4)

sub r1, r6, r5

beq r7, r1 TARG

and r8, r7, r10

or r11, r12, r13

xor r14, r11, r8

TARG:

sw r1, 0(r2)

4
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(b) Show the execution of the MIPS FP code below on the following implementation. Assume that there is
a bypass from WF to M1 and A1.

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A4A2A1

M3 M4

fd

we

xw

M2

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

29:0

15:0

D
0 1

dstdst

decode

dest. reg

2'd2

2'd1 2'd0

msb lsb

M5

A3

M1

Show code execution. Doublecheck for dependencies.

add.s f6, f2, f3

add.s f1, f7, f8

lwc1 f9, 0(r10)

mul.s f4, f1, f9

5
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(c) Show the execution of the MIPS code below on the following 2-way superscalar implementation. The
branch is taken. Fetch groups in this implementation must be 8-byte-aligned.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

Addr

Mem
Port

md
0

dst
0

Dest. reg

Addr
25:21

20:16

rsv
0

rtv
0

Addr

Data

Data

+

15:0

31:2

15:0

alu
0

rtv
0

rtv
1

Addr
25:21

20:16

rsv
1

rtv
1

Addr

Data

Data

A
d
d
r

D
 I
n

dst
1

imm0

imm1

64

15:0

alu
1

Addr

Mem
Port

md
1

dst
0

dst
1

Register File

ir
0

ir
1

PC

npc

2'b0

Dest. reg

Data

Out

dst
0

dst
1

alu
1

alu
0

Data

Out

Data

Out
Immed

D

In

D

In

Show code execution. Show squashed instructions with an x.

Doublecheck for dependencies. Account for aligned fetch groups.

START: Instruction address of add is 0x1000

add r4, r2, r3

lw r6, 8(r4)

sub r1, r6, r5

beq r7, r15 TARG

and r8, r7, r10

or r11, r12, r13

xor r14, r11, r8

sll r16, r17, 8

TARG: Instruction address of sw is 0x2004

sw r1, 0(r2)

lui r15, 0x1234

6
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Problem 3: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 230 entry BHT. One system has a bimodal predictor,
one system has a local predictor with a 12-outcome local history, and one system has a global predictor with
a 12-outcome global history.

(a) Branch behavior is shown below. Branch B2 consists of a pattern in which there will be either 2, 4, or 6
T outcomes followed by exactly four N outcomes. After the fourth N the probability of exactly two Ts is 1

3
and the probability of exactly four Ts is 1

3 .

Answer each question below, the answers should be for predictors that have already warmed up.

B1: N T T N N N N T T N N N ...

B2: T{2,4,6} N N N N T{2,4,6} N N N N ...

B3: T T T T T T T T T T T T ...

What is the accuracy of the bimodal predictor on branch B1?

What is the accuracy of the bimodal predictor on branch B2? Explain.

What is the minimum local history size needed to predict B1 with 100% accuracy?

What is the accuracy of the local predictor on branch B2, after warmup. Explain.

What is the minimum GHR size to predict B1 with about 100% accuracy. Explain, and state any
assumption about B2’s behavior.

7
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Problem 3, continued:

In this part consider the same predictors as on the previous page, except this time the BHT has 214 entries.

Branch B1 below is perfectly biased not taken. It executes r1 times over a short time interval, followed by
a big time gap before its next bunch of r1 executions. Branch B2 behaves similarly, except that it is biased
taken and executes in bunches of length r2 executions.

0xee4720 B1: N..N r1 N..N r1
# ...

B2: T..T r2 T..T r2

(b) Choose an address for branch B2 that will result in a BHT collision with branch B1. (Branch B1 is at
address 0xee4720.)

Address for B2 that results in a collision.

(c) Assume that branch B1 and B2 collide in the BHT. For what positive values of r1 and r2 will this collision
be most harmful? For what range of positive values of r1 and r2 will collisions be least harmful?

Worst values of r1 and r2 for collision. Explain.

Favorable range of positive values of r1 and r2 for collision. Explain.

(d) A tag can be placed in the BHT to detect collisions. Which branch will this help?

Branch that would benefit from tag: B1 or B2. Explain.

8
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Problem 4: (20 pts) The diagram below is for a 4 MiB (222 B) set-associative cache with a line size of 128
bytes. Hints about the cache are provided in the diagram.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

ddr
Data
Out

Tag

Data

ddr
Data
Out

=Tag

V

CPU

ddr

Data In

l����

ddr
Data
Out

Tag

Data

ddr
Data
Out

=Tag

V

17:4

Complete the address bit categorization. Label the sections appropriately. (Index, Offset, Tag.)

Address:
0

Associativity:

Memory Needed to Implement (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

9
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Problem 4, continued: The problems on this page are not based on the cache from the previous page.
The code in the problems below run on a 4 MiB (222 byte) 4-way set-associative cache with a line size of 64
bytes. Each code fragment starts with the cache empty; consider only accesses to the arrays.

(b) Find the hit ratio executing the code below.

int sum = 0;

half *a = 0x2000000; // sizeof(half) == 2

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

What is the hit ratio running the code above? Show formula and briefly justify.

(c) The code appearing below is the same as the code from the 2014 Final Exam and 2015 Homework 6,
except that two possibilities for Some_Struct are shown, Plan A, and Plan B. The caches too are identical
except that here the line size is 64 bytes whereas in the prior problems it was 128 bytes. The value of BSIZE
has been chosen to the largest value for which the hit ratio of the second loop will be 100% when using the
Plan B struct. Note: In the original exam norm_val was omitted from the first loop.

struct Some_Struct { // Plan A

double val; // sizeof(double) = 8

double norm_val;

double a1[14]; };

struct Some_Struct { // Plan B

double val; // sizeof(double) = 8

double a1[7];

double norm_val;

double a2[7]; };

const int BSIZE = 1 << 15;

Some_Struct *b;

for ( int i = 0; i < BSIZE; i++ ) sum += b[i].val + b[i].norm_val; // First loop.

for ( int i = 0; i < BSIZE; i++ ) b[i].norm_val = b[i].val / sum; // Second loop.

Explain why the Plan A struct will result in better performance on the first loop than the Plan B struct.

Suppose that the value of BSIZE is to be chosen based on the Plan A struct, to a maximum value for
which the second loop enjoys a 100% hit ratio. Explain why that value is the same as for Plan B.

10
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Problem 5: (20 pts) Answer each question below.

(a) Which kind of implementations were RISC ISAs originally designed to simplify? Explain how a RISC
ISA feature achieves this goal.

Type of implementation RISC designed to simplify.

Choose a feature and explain how it achieves the goal.

(b) What is the difference between a trap instruction and an instruction that raises an exception? Give an
example of how each is used in a system with bug-free code.

Difference between trap and exception.

Example of what trap instruction used for.

Example of what instruction exception used for.

11
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Problem 5, continued:

(c) Consider a 5n-stage scalar implementation and an n-way superscalar implementation, both derived from
our 5-stage design with the goal of improving performance by as much as n×. As n increases the clock fre-
quency of the 5n-stage implementation increases but the frequency of the n-way superscalar implementation
decreases. Explain why. Assume that both types of system are well designed.

Clock increases in the 5n-stage system because . . .

Clock decreases in the n-way system because . . .

(d) A company is preparing a run of the SPEC benchmarks for their new system. While trying to tweak
compiler flags to get the best performance they discover a new optimization technique and implement it in
their compiler. They re-test with that compiler and disclose the test results. When is the use of the modified
compiler allowed under SPEC rules? When isn’t that allowed under SPEC rules?

Modified compiler allowed provided that . . .

This is a beneficial because . . .

Modified compiler isn’t allowed if . . .

The modified compiler is not beneficial because . . .

12
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Problem 1: [20 pts] The MIPS code fragment below executes on our familiar five-stage scalar MIPS
implementation.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
0 1

dstdst

0
1

2 0
1

2
3

0
1

2

(a) Show the execution of the code for enough iterations to determine CPI, and determine the CPI assuming
a large number of iterations.

(b) There are five labels in the diagram, labels A through D point at multiplexor control inputs and label
E points at the output of the EX.dst pipeline latch. Show the values of these signals up until the second
execution of lw r1. For A show only values 6= 2, for E show only values 6= 0, for the others only show values
at cycles in which the multiplexor is in use.

USE NEXT PAGE FOR SOLUTION

LOOP: Cycle 0

A 2

B

C

D

E 0

lw r2, 0(r5) IF

LOOP:

lw r1, 0(r2)

sh r1, 16(r2)

bne r1, r0, LOOP

add r2, r2, r3

xor r4, r5, r2

USE NEXT PAGE FOR SOLUTION

2
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Problem 1, continued:

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
0 1

dstdst

0
1

2 0
1

2
3

0
1

2

Check code for depen-
dencies.

Show pipeline execu-
tion diagram for enough
iterations to determine
CPI.

Determine the CPI.

Show values for A through
E.

LOOP: Cycle 0

A 2

B

C

D

E 0

lw r2, 0(r5) IF

LOOP:

lw r1, 0(r2)

sh r1, 16(r2)

bne r1, r0, LOOP

add r2, r2, r3

xor r4, r5, r2
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Problem 2: [20 pts] The pipeline execution diagram below shows the incorrect execution of the MIPS
code for the illustrated pipeline. That is, in the pipeline below the stall to avoid the structural hazard would
have occurred when lwc1 was in the ID stage.

# Cycle 0 1 2 3 4 5 6 7

add.s f1, f2, f3 IF ID A1 A2 A3 A4 WF

addi r1, r1, 4 IF ID EX ME WB

lwc1 f4, 0(r1) IF ID EX ME -> WF

USE NEXT PAGE FOR SOLUTION

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16
M6

we

Decode
dest. reg

A4A3A2A1

M3 M4 M5

fd

we

xw

M2

M

1

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

29:0

15:0

D
0 1

dstdst

Stall

ME

USE NEXT PAGE FOR SOLUTION

As described below, modify the pipeline so that FP load instructions, such as lwc1, will stall when they are
in ME rather than ID to avoid a WF structural hazard.

(a) Show logic to generate a signal Stall ME in the correct cycle. When Stall ME is logic 1 stages ME and
earlier will stall.

(b) Cross out the logic generating the Stall ID for the lwc1 that is no longer needed.

(c) Make other changes, including control logic, so that the correct destination register number, destination
value, and write-enable signal are delivered to the FP register file. Hint: Some solutions are simpler than
others.

4
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Problem 2, continued:

Generate Stall ME to avoid lwc1 WF structural hazard. Make sure signal is 1 in the right cycle.

Cross out Stall ID logic for FP loads, but leave logic for other instructions.

Make sure that correct fd, we, and value delivered to FP register file.

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16
M6

we

Decode
dest. reg

A4A3A2A1

M3 M4 M5

fd

we

xw

M2

M

1

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

29:0

15:0

D
0 1

dstdst

Stall

ME
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Problem 3: [18 pts] Answer each question below.

(a) Re-write the SPARC code fragment below in MIPS. Pay attention to the load instruction and the
instructions related to the branch. Don’t forget that in SPARC assembly language the last register is the
destination.

!

addcc %g1, %g2, %g3

ld [%g5+%g3], %g4

bg TARGET ! Branch greater than zero.

add %g5, 22, %g6 ! g6 = g5 + 22

MIPS equivalent of SPARC code. Pay attention to load and branch-related insn.

(b) Show a MIPS equivalent of the ARM A32 code below. The MIPS code will use more than one instruction.
(This is based on Homework 3.) Note: A32 added in 2017 to avoid confusion with the A64 instruction set.

add r1, r2, r3, LSL #4

MIPS equivalent of ARM code above.

(c) Explain why the MIPS code fragment below is certain to execute with an error.

lw r1, 0(r2)

lw r3, 1(r2)

Error is certain because:

6
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Problem 4: [12 pts] Answer each question below.

(a) In the execution below the ant instruction raises an illegal instruction exception and the handler is
fetched, note that the handler starts execution in cycle 4. Explain why this exception (as executed) cannot
be precise and show how execution should proceed for our five-stage pipeline.

# Cycle 0 1 2 3 4 5 6

add r10, r11, r12 IF ID EX ME WB

sw r3, 4(r5) IF ID EX x

ant r1, r2, r5 IF*ID*x

or r5, r6, r7 IF x

HANDLER:

sw IF ID ..

Reason why this execution not for a precise exception.

Show execution that could be precise when ID stage discovers the bad ant opcode.

# Cycle

add r10, r11, r12

sw r3, 4(r5)

ant r1, r2, r5

or r5, r6, r7

HANDLER:

sw

(b) An interrupt mechanism will switch the processor from user mode to privileged mode when the handler
starts. What is the difference between user and privileged mode and why are they necessary to implement
an operating system?

Difference between user and privileged mode? Importance for OS?

7
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Problem 5: [6 pts] In class we described three broad families of ISAs: CISC, RISC, and VLIW.

(a) In which ISA family is it easy to have instructions with long (say, 32 bit) immediates? Explain how.

ISA family with long immediates is:

What about the ISA family enables this?

(b) In which ISA family are dependencies between instructions explicitly given? How is the dependence
information supposed to help?

ISA family in which dependence information is part of program is:

Reason for providing dependence information.

(c) Which ISA family tends to have the most compact programs? (That is, the size in bytes of the program
is smallest.) What makes them compact?

ISA family with most compact programs is:

Program sizes are small because.

8
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Problem 6: [12 pts] Answer each question below.

(a) Consider a 2-way superscalar implementation and a 10-stage implementation, both derived from our
5-stage MIPS used in class. All implementations include reasonable bypass paths.

Explain how the instruction sequence below would always result in a stall on the 10-stage pipeline but might
not result in a stall on the 2-way system. (The compiler cannot separate the two instructions.) Illustrate
your answer with a pipeline execution diagram.

add r1, r2, r3

sub r4, r1, r5

Reason for maybe stall on superscalar and certain stall on 10-stage.

Illustrate using a pipeline diagram.

(b) Consider two MIPS implementation, one is an n-way superscalar of MIPS-I, with n sets of FP units,
the other is a scalar implementation of a hypothetical MIPS-I-vec, which includes an n-lane vector unit for
the vector instructions in MIPS-I-vec. Both the superscalar and vector MIPS implementations can sustain
execution at n FP operations per cycle. Note: The phrase “In terms of n” did not appear in the original
exam.

In terms of n how does the cost of bypass paths compare in the two systems?

In terms of n how does the cost of registers compare in the two systems?

9
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Problem 7: [12 pts] Answer each question below.

(a) The SPECcpu benchmarks are designed to evaluate the CPU and memory system in new implementations
and ISAs. To realize this testers are responsible for providing a compiler and for compiling the benchmarks.

Suppose SPEC required testers to use a compiler that they provide. How much would this impact the goal
of testing new ISAs? New implementations of existing ISas?

Degree of impact of SPEC-provided compilers for testing new ISAs. Explain.

Degree of impact of SPEC-provided compilers for testing new implementations of old ISAs. Explain.

(b) A company releases a SPEC disclosure in which they have substituted the bzip2 benchmark with another
version of bzip2 which does the same thing but runs faster. Since it does the same thing it provides the
correct output to the SPEC verification script. As a result they get very good scores. How will they get
caught? How is it against the goal of SPECcpu?

How will the benchmark substitution get caught?

How does the substitution undermine what SPECcpu is supposed to measure?

10
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Problem 1: (15 pts) Illustrated below is the stall-in-ME version of our MIPS implementation, taken from
the solution to the midterm exam.

FP Reg File
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Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16
M6

we

Decode
dest. reg
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we
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FP load

Stall
ID

2'd2

0

1

2

fd

we

xw
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we

xw xw
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format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM
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Addr
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Data
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D
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=
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15:0

29:0

15:0

D
0 1

dstdst

Stall

ME

fd

wl wl

fd fd

wl

2'd1 2'd0

(a) Show a pipeline execution diagram of the code below on this pipeline.

(b) Wires in the diagram are labeled A, B, C, and D. Under your pipeline execution diagram show the values
on those wires when they are in use.

Show pipeline execution diagram. Show values of A, B, C, and D.

add.s f4,f5,f6

sub.s f7,f8,f9

lwc1 f1, 0(r2)

A:

B:

C:

D:

2
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Problem 2: (15 pts) Illustrated below is a 2-way superscalar MIPS implementation. Design the hardware
described below. You can use the following logic blocks (with appropriate inputs) in your solution: The

output of logic block isALU is 1 if the instruction’s result is computed by the integer ALU. The output of

logic block rtSrc is 1 if the instruction uses the rt register as a source. The output of logic block isStore
is 1 if the instruction is a store.

Immed
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d
d
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Addr

Addr

Mem
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dst
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Dest. reg
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Immed

D
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D
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(a) Design logic to generate a signal named STALL, which should be 1 when there is a true (also called data
or flow) dependence between the two instructions in ID.

Control logic to detect true dependence in ID and assign STALL.

(b) The code fragment below should generate a stall in our two-way superscalar implementation when the
two instructions are in the same fetch group. However this particular instruction pair is a special case in
which the stall is not necessary when the right bypass path(s) and control logic are provided. Note: There
was a similar-sounding problem in last year’s final, but the solutions are different.

0x1000: add r1, r2, r3

0x1004: sw r1, 0(r5)

Add the bypass path(s) needed so that the code executes without a stall.

Add control logic to detect this special case and use it to suppress the stall signal from the first part.
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Problem 3: (15 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 230 entry BHT. One system has a bimodal predictor,
one system has a local predictor with a 12-outcome local history, and one system has a global predictor with
a 12-outcome global history.

(a) Branch behavior is shown below. Notice that B2’s outcomes come in groups of three, such as 3 qs. The
first outcome of each group is random and is modeled by a Bernoulli random variable with p = .5 (taken
probability is .5). The second and third outcomes are the same as the first. For example, if the first q is T

the second and third q will also be T. If the first s is N, the second and third s will also be N. Answer each
question below, the answers should be for predictors that have already warmed up.

B1: T T T N N T T T N N ...

B2: r r r q q q s s s u ...

B3: T T T T T T T T T T ...

What is the accuracy of the bimodal predictor on branch B1?

What is the approximate accuracy of the bimodal predictor on branch B2? Explain.

What is the minimum local history size needed to predict B1 with 100% accuracy?

What is the accuracy of the local predictor on branch B2, after warmup. Explain.

What is the best local history size for branch B2, taking warmup into consideration. Explain.

How many different GHR values will there be when predicting B3?

4
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Problem 3, continued:

In this part consider the same predictors as on the previous page, except this time the BHT has 214 entries.
Also, consider the same branch patterns, they are repeated below, along with the address of branches B1

and B2. The branch predictors are part of a MIPS implementation.

0x1234: B1: T T T N N T T T N N ...

0x1242: B2: r r r q q q s s s u ...

B3: T T T T T T T T T T ...

(b) Choose an address for branch B3 that will result in a BHT collision with branch B1.

Address for B3 that results in a collision.

(c) How does the collision change the prediction accuracy of the bimodal predictor on the two branches?

Change in B1 and Change in B3.

(d) (The answer to the following question does not depend on the sample branch patterns above.) Suppose
we detect a BHT collision (perhaps by using tags). Why should we predict not taken?

Reason for predicting not-taken for a collision.

5
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Problem 4: (15 pts) The diagram below is for a 256 kiB (218 B) set-associative cache. Hints about the
cache are provided in the diagram.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

CPU

Addr

Data In

logic

hit

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

64 b

:6

Complete the address bit categorization. Label the sections appropriately. (Index, Offset, Tag.)

Address:
31 0

Associativity:

Memory Needed to Implement (Indicate Unit!!):

Line Size (Indicate Unit!!):

Show the bit categorization for a fully associative cache with the same capacity and line size.

Address:
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Problem 4, continued: The problems on this page are not based on the cache from the previous page.
The code in the problems below run on a 4MiB (222 byte) 4-way set-associative cache with a line size of 128
bytes.

Each code fragment starts with the cache empty; consider only accesses to the arrays.

(b) Find the hit ratio executing the code below.

double sum = 0;

double *a = 0x2000000; // sizeof(double) == 8

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

What is the hit ratio running the code above? Show formula and briefly justify.

(c) Find the largest value for BSIZE for which the second for loop will enjoy a 100% hit ratio.

struct Some_Struct {

double val; // sizeof(double) = 8

double norm_val;

double a[14];

};

const int BSIZE = ; // <- FILL IN

Some_Struct *b;

for ( int i = 0; i < BSIZE; i++ ) sum += b[i].val;

for ( int i = 0; i < BSIZE; i++ ) b[i].norm_val = b[i].val / sum;

7
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Problem 5: (5 pts) The displacement in MIPS branches is 16 bits. Consider a new MIPS branch instruction,
bfeq rsn, rtn (branch far), where rsn and rtn are 2-bit fields that refer to registers 4-7. As with beq,
branch bfeq is taken if the contents of registers rsn and rtn are equal. With six extra bits bfeq can branch
64 times as far.

(a) Show an encoding for this instruction which requires as few changes to existing hardware as possible.

Encoding for bfeq. Explain how minimizes changes.

(b) Modify the pipeline below to implement the new instruction. Use as little hardware as possible.

Briefly show changes.
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Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb
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Problem 6: (10 pts) Illustrated below is a dynamically scheduled four-way superscalar MIPS implementa-
tion and the execution of code on that implementation.

25:21

20:16

rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem

Port

Addr

Data

PC

P
C



ID
:d

s
t

ID
:S

t: C
,X


0
,0



WB:ROB #

WB:C,X
Addr

D In

R
e
o
rd

e
r 

B
u
ff
e
r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

F
re

e
 L

is
t

ID
:d

s
tP

R


ID
:d

s
tP

R


C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr

D In

rsPR

rtPR

rsVal

rtVal

Physical

Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q EX

dstPR

dstVal.

WB

Q

Q

WB

Decode

dest. reg

ID
:in

c
m

b


Addr

Addr

Data

Data

Addr

D In

D Out

ID:dst

ID:incmb

ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

R
e
c
o
v
e
r

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lwc1 f2, 0(r1) IF ID Q RR EA ME WB

add.s f4, f4, f2 IF ID Q RR A1 A2 A3 A4 WB

bne r1, r2, LOOP IF ID Q RR B WB

addi r1, r1, 4 IF ID Q RR EX WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lwc1 f2, 0(r1) IF ID Q RR EA ME WB

add.s f4, f4, f2 IF ID Q RR A1 A2 A3 A4 WB

bne r1, r2, LOOP IF ID Q RR B WB

addi r1, r1, 4 IF ID Q RR EX WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(a) On the diagram above indicate when each instruction will commit.

Show commits on diagram above.

(b) What is the execution rate, IPC, for the code above for a large number of iterations assuming perfect
branch prediction. Note that the system is dynamically scheduled.

IPC for code above for large number of iterations.

(c) On the next page there is a table showing the values of selected signals during the execution of the code,
the signals are related to register renaming. Show values where indicated on the table. Note that ID:incmb
is already shown in cycle 1, show its values for later cycle(s).

9
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25:21

20:16

rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem

Port

Addr

Data

PC

P
C



ID
:d

s
t

ID
:S

t: C
,X


0
,0



WB:ROB #

WB:C,X
Addr

D In

R
e
o
rd

e
r 

B
u
ff
e
r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

F
re

e
 L

is
t

ID
:d

s
tP

R


ID
:d

s
tP

R


C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr

D In

rsPR

rtPR

rsVal

rtVal

Physical

Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q EX

dstPR

dstVal.

WB

Q

Q

WB

Decode

dest. reg

ID
:in

c
m

b


Addr

Addr

Data

Data

Addr

D In

D Out

ID:dst

ID:incmb

ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

R
e
c
o
v
e
r

Show values where indicated.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lwc1 f2, 0(r1) IF ID Q RR EA ME WB

add.s f4, f4, f2 IF ID Q RR A1 A2 A3 A4 WB

bne r1, r2, LOOP IF ID Q RR B WB

addi r1, r1, 4 IF ID Q RR EX WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lwc1 f2, 0(r1) IF ID Q RR EA ME WB

add.s f4, f4, f2 IF ID Q RR A1 A2 A3 A4 WB

bne r1, r2, LOOP IF ID Q RR B WB

addi r1, r1, 4 IF ID Q RR EX WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID:dstPR 0 (lwc1) 65 62

ID:dstPR 1 (add.s) 97 69

ID:dstPR 3 (addi) 60 79

# Show values for signals below, including incmb.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID:incmb 0 (lwc1) 83

ID:incmb 1 (add.s) 20

ID:incmb 3 (addi) 67

ID:rsPR 0 (lwc1)

ID:rsPR 1 (add.s)

ID:rsPR 3 (addi)

ID:rtPR 1 (add.s) <- rt, not rs

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

WB:dstPR 0 (lwc1)

WB:dstPR 1 (add.s)

WB:dstPR 3 (addi)

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

10
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Problem 7: (25 pts) Answer each question below.

(a) Describe how cost and performance limit the practical largest value of width (value of n) in an n-way
superscalar implementation.

Cost limiter.

Performance limiter.

(b) What is the most important factor in determining the size of a level 1 cache?

Most important factor in L1 cache size.

11

← → Spring 2014 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/2014/fe.pdf


(c) Suppose the 16-bit offset in MIPS lw instructions was not large enough. Consider two alternatives. In
alternative 1 the offset in the existing lw instruction is the immediate value times 4. So, for example, to
encode instruction lw r1, 32(r2) the immediate would be 8. In alternative 2 the behavior of the existing
lw is not changed but there is a new load lws r1, 32(r2), in which the immediate is multiplied by 4. Note
that alternative 2 requires a new opcode. Which instruction should be added to a future version of MIPS?

Should choose alternative 1 or alternative 2? Explain.

(d) The SPECcpu suite comes with the source code for the benchmark programs. How does that help with
the goal of measuring new ISAs and implementations?

Source code helps with testing new implementations because:

(e) What’s the difference between a 4-way superscalar implementation (of say MIPS) and a VLIW system
with a 4-slot bundle?

Difference between superscalar and VLIW.

12
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Problem 1: [20 pts] The code below executes on the illustrated MIPS implementation, which is the one
usually used in class.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2'b0

+
15:0

25:0

29:26

29:0

15:0

D
0 1

(a) Show the execution of the code below until the start of the third iteration.

• Check and double-check the code for dependencies.

Show execution to start of third iteration.

LOOP:

add r1, r2, r3

sw r4, 5(r1)

bne r1, r6, LOOP

lw r2, 7(r8)

(b) Compute the CPI assuming a large number of iterations. Hint: It’s important to consider up to the third
iteration.

CPI is:
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Problem 2: [15 pts] Illustrated below is our familiar five-stage MIPS implementation with a multiply unit
added. Unlike the multiplier in Homework 4, this unit has four stages.

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst dst dstdest. reg

NPC

=

30 2
2'b0

+
15:0

25:0

29:26

29:0

15:0

D
0 1

hi

lo

Y1
Y2

63:32

31:0

format

immed ihl

Y3 Y4

is mult

is mflo

y
1

y
2

y
3

(a) Show the execution of the code below on the illustrated implementation.

Show execution of code.

mult r1, r2

mflo r3

mfhi r4

(b) Explain why execution of the following code would be different.

mult r1, r2

mfhi r4

mflo r3

Execution of the code above would be different because:

(c) Design the control logic needed to generate a stall signal for dependencies between a mult and a mflo,
something the execution above should have experienced. For this problem do not assume any bypass paths
for the product other than those illustrated. Note that logic to identify the mult and mflo instructions has
already been added to the ID stage.

Control logic to generate stall signal.
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Problem 3: [15 pts] In this problem the multiply unit has been designed to produce a product sooner for
special cases, such as when one of its inputs is zero. To indicate when the product will be available Y1 has
three one-bit outputs along the bottom, y1, y2, and y3. Signal y1 is 1 if the center output of Y1 will have
a completed product at the end of the cycle, y2 is 1 if the center output Y2 will have a completed product
at the end of the cycle in which the mult is in Y2, output y3 works similarly. If y1 is 1, then y2 and y3 are
also 1, if y2 is 1 then y3 is also 1. In other words, if an early product is available at the output of Y1, it will
be at the outputs of Y2 and Y3 in subsequent cycles.

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst dst dstdest. reg

NPC

=

30 2
2'b0

+
15:0

25:0

29:26

29:0

15:0

D
0 1

hi

lo

Y1
Y2

63:32

31:0

format

immed ihl

Y3 Y4

is mult

is mflo

y
1

y
2

y
3

# Cycle 0 1 2 3 4 5 6 7

mult r10, r11 IF ID Y1 Y2 Y3 Y4

a: mflo r1 IF ID EX ME WB

b: mflo r2 IF ID EX ME WB

c: mflo r3 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

(a) Add bypass paths so that the code executes above without a stall assuming an early product is available.

Show bypass paths for each of the mflo instructions above.

Label the bypass paths with a, b, and c, based on the instruction (above) that uses them.

4
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Problem 4: [9 pts] Show the encoding of each of the instructions below. Be sure to handle the branch
target correctly. Fill in as many fields as you can. Use the value “lookup” for any field who’s value can’t be
determined by inspection.

0x1000 beq r1, r2 TARG

0x1004 lui r1, 0x1234

TARG:

0x1404 sw r3, 4(r5)

Encoding for beq as used above:

Encoding for lui as used above:

Encoding for sw as used above:

The formats appearing below are for reference.

MIPS R:

Opcode

31 26

RS

25 21

RT

20 16

RD

15 11

SA

10 6

Function

4 0

MIPS I:

Opcode

31 26

RS

25 21

RT

20 16

Immed

15 0

MIPS J:

Opcode

31 26

II

25 0

5
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Problem 5: [11 pts] Answer each question below.

(a) MIPS and many other RISC ISAs have a special zero register, r0 in MIPS. VAX, a CISC ISA, lacks a
zero register, but VAX has an mneg (negate) instruction (dest = -source), which MIPS and other RISC
ISAs lack.

Why does MIPS’ zero register make it unnecessary to have a negate instruction?

What can VAX use in place of a zero register? (The answer is not mneg or any other instruction.)

If VAX can use its zero register replacement in the same way MIPS uses its zero register, what is the
advantage for VAX in having a negate instruction? A quantitative answer will get full credit.

(b) Why might it be possible to have a higher clock frequency in an implementation of an ISA that uses
condition code registers (such as SPARC) compared to one which allows branch instructions to compare two
registers? Consider the types of implementations covered in class so far.

Higher clock frequency possible with condition code registers because:

6
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Problem 6: [20 pts] Answer each question below.

(a) What is the difference between a dependency and a hazard?

Difference between dependency and hazard:

(b) How do we know that the benchmarks in SPECcpu were not unfairly chosen to favor an influential
company’s processors.

Can trust choice of SPECcpu benchmarks because:

(c) When using profiling for optimization a program needs to be compiled twice. Explain what happens in
each compilation related to profiling.

During the first compilation:

During the second compilation:

(d) Who would benefit the most if each new processor implemented a new, one-of-a-kind, ISA: computer
engineers, compiler back-end writers, software developers, computer buyers? Explain.

Group that would benefit most (circle): computer engineers, compiler back-end writers, software developers,
computer buyers.

Reason that the group would benefit the most:

7
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Problem 7: [10 pts] Compiler and microarchitecture experts at a computer company are preparing the
optimization flags for a SPECcpu run. They have come up with a different set of optimization settings for
each benchmark in the suite.

(a) Based on the SPEC rules it is okay to use these individualized sets for the peak tuning runs but not the
base tuning runs. Why?

Reason individualized settings are not allowed for base:

(b) The compiler writer figures out a way to have the compiler itself, given only the -O3 flag, choose the
same individualized sets as the expert did. The compiler expert makes these changes to the compiler, which
the company will start selling. It is easy to do this in a way which goes against the spirit of the SPECcpu
rules. It would require great skill to do this in a way consistent with the spirit of the SPECcpu rules.

Easy way to have -O3 pick correct set of optimizations, but against spirit (goals) of rules. Explain.

Hard way to have -O3 pick correct set of optimizations, but in spirit (goals) of rules. Explain.

8
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Problem 1: (20 pts) The MIPS implementation below includes a two-stage integer multiply unit (Y1 and
Y2) for the mult instructions, similar to the MIPS implementation covered in Homework 4. Some wires are

labeled with cycle numbers and values that will then be present. For example, c5:14 indicates that at cycle
5 the pointed-at wire will hold a 14. Other wires just have cycle numbers, indicating that they are used in
that cycle. Note that instruction addresses are provided.

Write a program consistent with these labels.

All register numbers and immediate values can be determined.

Fill in this block (labeled Fill) →

IR

Addr
25:21

20:16

IF
ID

EX WBME

rsv

rtv

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst dst dstdest. reg

NPC

=

30 2
2'b0

+
15:0

25:0

29:26

29:0

15:0

D
0 1

lo

Y1 Y2

63:32

31:0

31:0

format

immed ihl

hi
c5:47

c5:12

c5:14

c6

c2

c4

c6c1:0

c5:16

c1:19

c3:11

c1: FILL IN

c7:0x9001

c1: 0010 0010 0010 1100 0000 0000 0001 0010

THIS ONE IS IMPORTANT

# Cycle: 0 1 2 3 4 5 6 7 8

0x1000 IF ID EX ME WB

0x1004 IF ID EX ME WB

0x1104 IF ID EX ME WB

0x1108 IF ID EX ME WB

0x110c IF ID EX ME WB

# Cycle: 0 1 2 3 4 5 6 7 8

2
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Problem 2: (15 pts) Illustrated below is a 2-way superscalar MIPS implementation. Design the hardware
described below. You can use the following logic blocks (with appropriate inputs) in your solution: The

output of logic block isALU is 1 if the instruction’s result is computed by the integer ALU. The output of

logic block rtSrc is 1 if the instruction uses the rt register as a source. The output of logic block isLoad
is 1 if the instruction is a load.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

Addr

Mem
Port

md
0

dst
0

Dest. reg

Addr
25:21

20:16

rsv
0

rtv
0

Addr

Data

Data

+
15:0

31:2

15:0

alu
0

rtv
0

 

rtv
1

Addr
25:21

20:16

rsv
1

rtv
1

Addr

Data

Data

A
d
d
r

D
 I
n

dst
1

imm0

imm1

64

15:0

alu
1  

Addr

Mem
Port

md
1

dst
0

dst
1

Register File

ir
0

ir
1

PC

npc

2'b0

Dest. reg

Data

Out

dst
0

dst
1

alu
1

alu
0

Data

Out

Data

Out
Immed

D

In

D

In

(a) Design logic to generate a signal named STALL, which should be 1 when there is a true (also called data
or flow) dependence between the two instructions in ID.

Control logic to detect true dependence in ID and assign STALL.

(b) The code fragment below should generate a stall in our two-way superscalar implementation when the
two instructions are in the same fetch group. However this particular arithmetic/load pair is a special case
in which the stall is not necessary when the right bypass path(s) and control logic are provided. Hint:
Something about the lw makes it a special case.

0x1000: add r1, r2, r3

0x1004: lw r4, 0(r1)

Add the bypass path(s) needed so that the code executes without a stall.

Add control logic to detect this special case and use it to suppress the stall signal from the first part.

3
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Problem 3: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 214 entry BHT. One system has a bimodal predictor,
one system has a local predictor with a 12-outcome local history, and one system has a global predictor with
a 12-outcome global history.

(a) Branch behavior is shown below. The r outcomes for branch B2 are random and are modeled by a
Bernoulli random variable with p = .25 (taken probability is .25). Answer each question below, the answers
should be for predictors that have already warmed up.

B1: T N T T T N T N T T T N ...

B2: T N T r T N T N T r T N ...

B3: T T T T T T T T T T T T ...

What is the accuracy of the bimodal predictor on branch B1?

What is the approximate accuracy of the bimodal predictor on branch B2? Explain.

What is the minimum local history size needed to predict B1 with 100% accuracy? Ignore branch B2

for this question.

What is the accuracy of the local predictor on branch B2, ignoring the effect of B1? Explain.

Describe a situation in which branch B2 is mispredicted using the local predictor due to the effect of
B1. The low bits of the address of B1 and B2 are different so there is no chance of a BHT collision. How
frequently do such mispredictions occur? Grading Note: The original exam and the Spring 2014 homework
question did not include the statement about the low address bits.

How many possible GHR values will be present when predicting branch B3? It’s okay to show patterns
that include r’s, but indicate how many of each pattern there are.

4
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Problem 3, continued: Recall that the local predictor uses a 12-outcome local history and a 214-entry
BHT.

(b) Draw a diagram of the local predictor hardware used for making a prediction but omit the hardware for
updating the predictor. The input to your hardware should be PC, and output should be a 1-bit quantity (0
for not-taken, 1 for taken).

• Be sure to show the BHT and PHT.

• Assume that PC is the address of a branch. (That is, don’t worry about detecting non-branch
instructions.)

• Don’t predict the target, just the direction (taken or not-taken).

Local predictor hardware for predicting branch direction.

Label wires with bit ranges (e.g. 31:26) or number of bits, as appropriate.

(c) How much memory is needed to implement the local predictor. Only include storage for predicting the
branch direction, do not include storage for predicting the branch target.

Storage needed to implement local predictor. Indicate unit.

5
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Problem 4: (20 pts) The diagram below is for an 8-way set-associative cache. Hints about the cache are
provided in the diagram and also in the address bit categorization just below the diagram.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

CPU

Addr

Data In

logic

hit

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid
19:5

Complete the address bit categorization. Label the sections appropriately. (Index, Offset, Tag.)

Address:
39 3 0

Cache Capacity (Indicate Unit!!):

Memory Needed to Implement (Indicate Unit!!):

Line Size (Indicate Unit!!):

Show the bit categorization for a fully associative cache with the same capacity and line size.

Address:

6
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Problem 4, continued: The problems on this page are not necessarily based on the cache from the
previous page. The code in the problems below run on a 4MiB (222 byte) 4-way set-associative cache with
a line size of 256 bytes.

Each code fragment starts with the cache empty; consider only accesses to the arrays.

(b) Find the hit ratio executing the code below.

Complex sum = {0,0};

Complex *a = 0x2000000; // sizeof(Complex) == 16 Each element loaded with 1 load insn.

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

What is the hit ratio running the code above? Show formula and briefly justify.

(c) Find the smallest value for ASIZE that will minimize the hit ratio (make things as bad as they can get)
of the code below.

struct Some_Struct {

double val; // sizeof(double) = 8

double norm_val;

double a[ASIZE]; };

const int BSIZE = 1 << 10;

Some_Struct *b;

for ( int i = 0; i < BSIZE; i++ ) sum += b[i].val;

for ( int i = 0; i < BSIZE; i++ ) b[i].norm_val = b[i].val / sum;

Smallest value of ASIZE to minimize hit ratio:

7
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Problem 5: (25 pts) Answer each question below.

(a) Indicate whether each feature below is a feature of an ISA or the feature of an implementation.

Number of stages in pipeline. Circle One: ISA or Implementation

Number of integer registers. Circle One: ISA or Implementation

Number of bits in an integer register. Circle One: ISA or Implementation

Whether an adjacent pair of instructions, such as add r1,r2,r3; sub r4,r1,r2 will generate a stall.
Circle One: ISA or Implementation

(b) Describe the problem with each of the following MIPS code fragments.

Problem with fragment below:

addi r1, r2, 0x123456

Problem with code execution on our FP pipeline.

add.s f1, f2, f3 IF ID A1 A2 A3 A4 WF

sub.s f4, f1, f5 IF ID A1 A2 A3 A4 WF

Problem with code execution on our 5-stage pipeline.

lw r1, 2(r3) IF ID EX ME WB

beq r1, r4 TARG IF ID EX ME WB

xor r6, r7, r8 IF ID EX ME WB

TARG:

add r9, r10, r11 IF ID EX ME WB

8
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(c) Consider the following two equal-cost design options:

A dual-core chip, each core is 4-way superscalar and dynamically scheduled.

A 16-core chip, each core is 2-way superscalar and statically scheduled.

Both have the same clock frequency.

What is the peak execution rate of each chip, in IPC?

Describe a situation in which the dual-core chip is a better choice than the 16-core chip.

Describe a situation in which the 16-core chip is a better choice than the dual-core chip.

(d) Consider a 5n-stage implementation created by splitting each stage of a 5-stage implementation into n
pieces.

How important is it to have a higher clock frequency in the 5n-stage design (compared to the 5-stage
design)? Explain.

(e) When an instruction raises an exception execution will switch to a trap handler.

How is the trap handler address determined for MIPS?

How is the trap handler address determined for SPARC?

9
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Problem 1: [20 pts] The MIPS code below executes on the illustrated seemingly familiar implementation.
If you look closely you’ll notice that certain bypass paths that are present in the five-stage implementation
usually used in class are missing from the diagram below.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2'b0

+
15:0

25:0

29:26

29:0

15:0

D
0 1

(a) Show the execution of the code below on the illustrated implementation for enough iterations to determine
CPI. Determine the CPI.

Execution diagram.

Double-check for bypass paths, stall when necessary.

Compute CPI.

LOOP:

lw r2, 0(r4)

add r1, r2, r3

sw r1, 4(r4)

bne r4, r5 LOOP

addi r4, r4, 8
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Problem 1, continued:

(b) The code above should have encountered at least one of the missing bypass paths. Choose one of those
missing bypass paths and design control logic for it. The ID-stage control logic should generate a 1-bit signal
STALL that will be logic 1 when the instruction in ID will have to stall because of the missing bypass path.

Show which missing bypass path the control logic is for.

Control logic for missing bypass.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2'b0

+
15:0

25:0

29:26

29:0

15:0

D
0 1
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Problem 2: [15 pts] Consider a MIPS implementation in which the memory port is split into two stages,
Ma and Mb. With this change the clock frequency can increase from 1 GHz to 1.2 GHz; with this added stage
our implementation is now six stages. A sample execution appears below.

add r2, r3, r4 IF ID EX Ma Mb WB

lw r1, 4(r2) IF ID EX Ma Mb WB

(a) Ignoring the cost of Ma and Mb, how is the cost of the pipeline changed in this design? Consider bypass
paths.

Cost change, ignore Ma and Mb, consider bypass, etc.

(b) Provide an example of a code fragment which will execute more slowly with the six-stage pipeline. Assume
that all reasonable bypass paths are provided.

Code fragment that will run more slowly.

(c) Provide an argument that this change is good.

This change is good because:

4
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Problem 3: [15 pts] Answer the following questions about a blt instruction.

(a) MIPS lacks an instruction such as blt r1, r2 TARG (branch if r1 less than r2). For the questions below,
which ask about the suitability of such an instruction, consider implementations similar to the five-stage
pipeline covered in class.

Explain why adding such an instruction would slow such implementations even though beq r1,r2 TARG is
okay.

Using a PED, explain why there would be no problem adding a blt instruction if the ISA had two delay
slots.

(b) The code fragment below includes the hypothetical MIPS instruction, blt.

# Hypothetical MIPS Instruction

blt r1, r2, targ

xor r4, r5, r6

Show an equivalent MIPS code fragment without using blt.

Show an equivalent SPARC V8 code fragment.

5
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Problem 4: [20 pts] For the ISA design tradeoff questions below consider the following data: A typical
program executes 1010 dynamic instructions, of these 1.38 × 109 are branches (half of which are taken),
9.12 × 107 are indirect jumps (jr and jalr), 2.22 × 108 are direct jumps (j and jal).

Consider a debate by those developing the MIPS ISA: don’t include format J, which means no j and no jal

instructions.

(a) Which MIPS instructions can be used to replace j and jal in the code below, paying attention to the
hints in the target names?

Replacement for j and jal in code below, paying attention to target names.

j NOT_TOO_FAR_AWAY

xor r1, r2, r3

jal A_FAR_AWAY_PROCEDURE

xor r1, r2, r3

(b) Determine how much longer (as a percentage or absolute time) it would take to run the typical program
described above without the format J instructions. Assume execution is always at 1 CPI. (A formula is
okay.)

Percent increase in execution time without format J:

(c) What parts of out implementation would be unnecessary without format J? Approximately how many
bypass paths could you add with the cost saved by not having the format J instructions?

What parts would be eliminated?

How many bypass paths could be added with cost savings?

6
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Problem 5: [15 pts] Answer the following ISA design questions.

(a) Suppose that one of the first modern computer designers, working in the 1940s, made the following
statement: “Let’s define an ‘Instruction Set Architecture’ [the last three words spoken slowly, for emphasis]
and then later design some hardware ‘im-ple-men-ta-tions’ of that architecture.” Would that be a good idea?
Explain. Hint: Pay attention to the slanted words.

ISA before implementation in 1940s, good or bad? Explain.

(b) CISC ISAs have variable-length instructions.

Benefit of variable-length instructions for CISC.

Benefit of fixed-length instructions for RISC.

7
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Problem 6: [15 pts] Answer each question below.

(a) In our π program demo we found that turning optimization on reduced execution time by half (yay!)
but reduced the instruction count even further, from 325 million to 100 million dynamic instructions. This
means that optimization increased (made worse) CPI from 2.77 to 4.93. Note: The data is from an earlier
semester, so the numbers won’t exactly match.

Optimization is supposed to eliminate stalls, why did the CPI go up?

What category of instruction was completely eliminated from the loop body of the π program by optimization.

(b) SPECcpu currently has two sets of results, base and peak. Consider a third set, shrink-wrap, for people
who buy mass-marketed software (say, buying a word processor at an office supply store).

Who should use the peak numbers and who should use the base numbers?

Explain how the run and reporting rules might be modified for the new shrink-wrap results.

8
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Problem 1: (15 pts) Consider the following method for implementing the MIPS32 integer multiply in-
struction mul (the one that writes ordinary registers, not to be confused with mult) on the implementation
below. The full set of stages M1 to M6 perform floating point multiply, but stages M2 to M4 perform integer
multiplication. The integer multiply mul will read and write registers from the integer register file but will
use M2 to M4 to perform the multiplication. A sample execution appears below. Grading Note: In the original
exam there was an ID-stage stall in cycle 6, implying that there was no WB to EX bypass for the mul.

# Cycle 0 1 2 3 4 5 6 7 8

add r1, r2, r3 IF ID EX ME WB

mul r4, r1, r5 IF ID M2 M3 M4 WB

xor r9, r10, r11 IF ID -> EX ME WB

sub r6, r4, r7 IF -> ID EX ME WB

USE NEXT PAGE FOR SOLUTION

format
immed

IR

Addr
25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw

USE NEXT PAGE FOR SOLUTION

CONTINUED ON NEXT PAGE
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(a) Modify the implementation below so that mul uses M2 to M4. Provide any necessary bypass paths so that
the code above executes as shown. For this part do not consider control logic. Hint: Pay attention to source
and destination registers.

Non-control logic modifications for integer mul.

(b) Add control logic related to this implementation of mul to detect the structural hazard on M2 and on WB.
Also add control logic needed for a data dependence between mul and an immediately following instruction.

All those signals should connect to the existing Stall ID signal and use a new uses int mul logic block.

Control logic for WB structural hazard, M2 structural hazard, and the data dependence.

format
immed

IR

Addr
25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw
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Problem 2: (10 pts) Show the execution of the instructions below on the illustrated implementation. Add
any needed datapath and reasonable bypass paths.

format
immed

IR

Addr
25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw

Show execution. Add datapath and reasonable bypass paths. Double-check for dependencies.

add.s f2, f4, f6

sub.s f8, f10, f12

add r1, r2, r3

mul.s f14, f2, f8

swc1 f14, 0(r1)

4
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Problem 3: (10 pts) The code fragments below execute on several different MIPS implementations. In all
cases the loop iterates many times. A five-stage scalar system is shown for reference.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

(a) Show the execution of the code below on our familiar scalar pipeline, above. Show enough iterations to
compute the CPI, and compute the CPI.

Execution for enough iterations to determine CPI.

Find the CPI.

Doublecheck for dependencies.

Note that the first instruction in not part of the loop body.

lw r2, 0(r10)

LOOP:

lw r1, 0(r2)

addi r2, r2, 4

bne r2, r4 LOOP

add r5, r5, r1

5
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Problem 3, continued:

(b) Show the execution of the code below on a 4-way superscalar statically scheduled system without branch
prediction. The superscalar system has five stages, aligned fetch, and can bypass between the same stages
as can our scalar system. This means there are no bypass paths to the branch condition. Compute the CPI.

Execution for enough iterations to determine CPI.

Find the CPI.

The code below is different than the previous part.

Doublecheck for dependencies.

Note that first instruction not part of loop body.

addi r1, r0, 0

LOOP: # Address of insn below is 0x1000

add r5, r5, r1

lw r1, 0(r2)

bne r2, r4 LOOP

addi r2, r2, 4

6
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(c) Show the execution of the code below on a four-way superscalar system with perfect branch prediction.

Execution for enough iterations to determine CPI.

Find the CPI.

The code below is different than the first part.

Doublecheck for dependencies.

Note that first instruction not part of loop body.

addi r1, r0, 0

LOOP: # Address of insn below is 0x1000

add r5, r5, r1

lw r1, 0(r2)

bne r2, r4 LOOP

addi r2, r2, 4

7
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Problem 4: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 210-entry BHT. One system uses a bimodal predictor,
one system uses a local predictor with a 12-outcome local history, and one system uses a global predictor
with a 12-outcome global history.

Insn Branch

Addr Outcomes

0x1000: B1 r r r r r r r r r r r r r r r r

0x1010: B2 T N N N N T N N T N N N N T N N

0x1020: B3 R R R R R R R R R R R R R R R R

0x2000: B4 T T T T T T T T T T T T T T T T

Branch B1 is random, and can be described by a Bernoulli random variable with p = .5 (models a fair coin
toss). The outcome of branch B3 is the same as the most recent execution of B1 (perhaps they are testing
the same condition). For the questions below accuracy is after warmup.

What is the accuracy of the bimodal predictor on B2?

What is the accuracy of the bimodal predictor on B3?

Considering BHT size, what is the approximate accuracy of the bimodal predictor on B4? Explain.

What is the accuracy of the local predictor on B2?

What is the minimum local history size needed to predict B2 with 100% accuracy?

What is the accuracy of the global predictor B3? Explain

How many PHT entries are used by the global predictor to predict B2?

8
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Problem 5: (15 pts) The diagram below is for an eight-way set-associative cache. The size of a tag is 42
bits and the size of a line is 128 = 27 bytes.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

64 b

:2

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Cache Capacity (Indicate Unit!!):

Memory Needed to Implement (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

9

← → Spring 2012 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/2012/fe.pdf


Problem 5, continued: The problems on this page are not based on the cache from the previous page.
The code fragments below run on a 32MiB (225 byte) direct-mapped cache with a 128-byte line size. Each
code fragment starts with the cache empty; consider only accesses to the array, a.

(b) Find the hit ratio executing the code below.

What is the hit ratio running the code below? Show formula and briefly justify.

int sum = 0;

half *a = 0x2000000; // sizeof(half) == 2

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

(c) Find the minimum positive value of OFFSET needed so that the code below experiences a hit ratio of 0%
on accesses to a. Explain.

Minimum positive OFFSET to achieve 0% hit ratio. Explanation.

int sum = 0;

half *a = 0x2000000; // sizeof(half) == 2

int i;

int ILIMIT = 1 << 11;

int OFFSET = <-- FILL IN

for ( i=0; i<ILIMIT; i++ ) sum += a[ i ] + a [ i + OFFSET ];

10
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Problem 6: (30 pts) Answer each question below.

(a) For the SPECcpu benchmark suite results can be reported using two tuning levels, base and peak.
Consider a new level, no-opt in which the code is compiled without optimization. How valuable would no-
opt tuning scores be to the people that care about SPECcpu scores? How different is no-opt tuning from
base tuning?

Value of no-opt tuning level?

Difference between no-opt tuning and base tuning?

(b) The lw below will experience a TLB miss exception when it first executes, remember that this exception
is considered routine and is not due to any kind of error. The word in memory at location 0x12345678 is
0x222. Show the execution of this code on our five-stage static pipeline until the add instruction reaches
writeback, and show the value in register r1 when the handler starts (see code).

Show execution from lui to when add reaches WB.

FILL IN the value that will be in r1 when the handler starts.

lui r1, 0x1234

lw r1, 0x5678(r1)

add r2, r2, r1

HANDLER:

# Value of r1 is <- FILL IN

sw ...

...

11
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(c) The instruction below is not a good candidate for a RISC ISA. Explain why in terms of hardware, not
just in terms of a rule the instruction would violate. add (r1), r2, (r3)

Instruction above unsuitable for RISC because the implementation . . .

Provide a quick sketch to illustrate your answer.

(d) With the aid of a diagram, explain why a 5n-stage pipeline would need fewer bypass paths than a 5-stage,
n-way superscalar implementation. (Both implementations are statically scheduled.)

Diagram showing why there are fewer bypass paths in 5n-stage pipeline than 5-way superscalar.

(e) Why is it more important to have a good compiler for a superscalar statically scheduled system than a
scalar statically scheduled system?

Compiler more important for superscalar because . . .

12
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(f) Consider the executions of the MIPS code below on a 4-way superscalar dynamically scheduled system
of the type discussed in class (method 3). The first execution is correct, the others, though they would run
the program correctly, have problems. Describe the problems by completing the statements below.

lw r1, 0(r2) IF ID Q RR EA ME WB C

add r3, r1, r4 IF ID Q RR EX WB C

lh r1, 0(r6) IF ID Q RR EA ME WB C

sub r7, r1, r3 IF ID Q RR EX WB C

The one-commit-per-cycle execution below is silly because . . .

lw r1, 0(r2) IF ID Q RR EA ME WB C

add r3, r1, r4 IF ID Q RR EX WB C

lh r1, 0(r6) IF ID Q RR EA ME WB C

sub r7, r1, r3 IF ID Q RR EX WB C

The stalls shown below would be necessary on a statically scheduled pipeline because . . .

. . . but should not occur on a dynamically scheduled one because . . .

lw r1, 0(r2) IF ID Q RR EA ME WB C

add r3, r1, r4 IF ID Q ----> RR EX WB C

lh r1, 0(r6) IF ID Q ----> RR EA ME WB C

sub r7, r1, r3 IF ID Q ----------> RR EX WB C

13
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Problem 1: [15 pts] The MIPS code below executes on the illustrated hopefully familiar implementation.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

0 1

15:0

LOOP:

lh r1, 0(r2)

addi r4, r4, 4

andi r3, r1, 0xf0f0

bne r3, r0 LOOP

lw r2, 4(r2)

(a) Show a pipeline execution diagram for the code below running on the illustrated MIPS implementation
for enough iterations to determine CPI.

Show a pipeline execution diagram.

(b) Determine the CPI.

Find the CPI.
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Problem 2: [20 pts] In the implementation below the datapath for the jalr and jr instructions is not
shown.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

0 1

15:0

(a) Add datapath (but not control logic) needed for the jr instruction to the diagram above.

Add datapath (but not control logic) for jr.

(b) Show the execution of the code below based upon the answer above. Show execution starting from the
first instruction (as usual) and continue until ori executes or eight instructions have executed whichever is
longer. (In the correct answer ori is the eighth instruction to execute.) Note that the jalr will jump to
ROUTINE the first time it executes.

Show execution consistent with previous answer.

addi r1, r1, 16

# r1 = ROUTINE

jalr r31, r1

addi r4, r31, -8

ori r6, r6, 0xff

ROUTINE:

addi r4, r4, 4

jr r4

lw r31, 0(r7)

(c) If your answer to the previous part was correct the code above would suffer stall(s). Add bypasses to
avoid as many of the stalls as possible without significant critical path impact.

Bypass paths to eliminate stalls.

3
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Problem 3: [15 pts] In the code fragment below the lw raises an exception due to a TLB miss. Remember
that a TLB miss is something that happens all the time to almost any load.

# Cycle 0 1 2 3 4 5 6 7

lw r1, 0(r2) IF

add r3, r5, r6

xor r4, r3, r9

...

HANDLER:

sw r10, ..

(a) Based on the exception hardware presented in class, at which cycle will the first instruction of the handler
be in IF?

Handler in IF in cycle:

For the next parts of this problem don’t consider the exception hardware presented in class, instead the lw

will trigger a deferred exception. That is, the lw will raise a TLB miss exception but add will successfully
complete WB before the handler is called. Register r1 will have some garbage value but the add will execute
correctly.

(b) This is not a good example for why precise exceptions are needed for loads. Why not?

Not a good example because:

(c) Modify the code after the lw so that this is a good example of why precise exceptions are needed. Briefly
explain why.

Modify code.

Explain why it is a better example.

4
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Problem 4: [10 pts] Show the execution of the MIPS code below on the illustrated implementation.
Assume that all needed bypass paths are available.

format

immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M

1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

Execution of code.

add.d f2, f4, f6

sub.d f8, f4, f10

mul.d f12, f2, f14

addi r1, r1, 8

5
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Problem 5: [10 pts] Answer each question about the SPECcpu suite.

(a) With SPECcpu the tester is responsible for providing compilation tools and choosing optimization
switches. Which feature or goal of the SPEC benchmarks does that support?

Compilation tools and optimization choices supports:

(b) Part of the SPEC rules requires that compilation tools be actively marketed as products, not just available
to someone who knows exactly how to ask for them. What sort of abuse does that prevent?

Actively marketed compilation tools prevents:

6
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Problem 6: [15 pts] Answer each question below.

(a) ISAs are frequently updated, examples mentioned in class include MIPS I, MIPS II, SPARC v8, SPARC
v9, and the multimedia extensions such as MMX, SSE, SSE 2, etc. for IA-32. With all these updates it
sounds like an ISA is not really frozen for All Time. Does that mean the main advantage in separating ISA
design from implementation design has been lost?

Has main advantage of ISA/implementation separation been lost? Explain.

(b) Why is the typical RISC program larger than an equivalent CISC program?

RISC larger than CISC because:

(c) Explain how the approaches to encoding immediate arithmetic instructions differ in the SPARC and
MIPS ISAs.

How approaches differ.

7
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Problem 7: [15 pts] Answer each question below.

(a) Provide the following optimization examples:

An optimization that can be performed well without knowing the particular implementation being targeted.

An optimization that can be performed well only if the compiler knows the particular implementation being
targeted.

8
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(b) In an alternate universe, when designing the ALT-MIPS ISA, computer engineers insisted, perhaps for
cost reasons, that the data memory port and ALU had to be in the same stage (that is, the EX and ME stages
would be combined), resulting in a four-stage pipeline. How would the matching ALT-MIPS be different
from our MIPS ISA? Note that elegance and performance are important for both ALT-MIPS and MIPS.
Provide two code samples, one for which the four-stage ALT-MIPS is better and one for which the five-stage
MIPS is better.

ALT-MIPS differences with MIPS.

Code sample better for ALT-MIPS.

Explain.

Code sample better for MIPS.

Explain.

9
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Problem 1: (20 pts) The MIPS implementation below is similar to the one frequently used in class, except
that it has bypass paths to the branch condition comparison unit.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem

Port

Addr

Data
Out

Addr

Data
In

Mem

Port

Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

=

30 2
2'b0

+
15:0

25:0

29:26

29:0

1

15:0

Data

(a) Show the execution of the code fragments below on the illustrated implementation up until the fetch of
the first instruction of the second iteration. Be sure to account for the dependence on the branch condition.

Pipeline execution diagram of code below.

LOOP1:

lw r1, 0(r2)

addi r2, r2, 4

bne r2, r3 LOOP1

add r4, r4, r1

Pipeline execution diagram of code below.

LOOP2:

lw r1, 0(r2)

lw r2, 4(r2)

bne r2, r0 LOOP2

add r4, r4, r1

2
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(b) The implementation below has hardware in IF (not shown) to predict branches. Since it has prediction
hardware the branch resolution hardware (the hardware that computes the branch condition and branch
target) could be moved to the ME stage. Move the branch resolution hardware. Note that the resolution
hardware will be used only if the branch is mispredicted.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data
In

Mem

Port

Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

=

30 2
2'b0

+
15:0

25:0

29:26

29:0

1

15:0

Data

Move resolution hardware to the ME stage.

Add any bypasses to resolution hardware needed by code samples in this problem.

Cross out unused hardware in ID.

Avoid adding unnecessary hardware.

3
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Problem 1, continued: Consider the implementation from the previous part.

(c) Resolving the branch in ME with prediction can hurt performance with the code below compared to
resolving in ID with prediction when the branch is hard to predict. By how much will it hurt performance?
Note: An exact number was not required on the original exam. Explain, use a diagram if necessary. Hint:
Resolve is where recovery starts for a misprediction. Another hint: pay attention to dependencies on the
branch condition.

LOOP1:

lw r1, 0(r2)

addi r2, r2, 4

bne r2, r3 LOOP1

add r4, r4, r1

Resolving in ME hurts performance here by cycles.

Explanation.

(d) Resolving the branch in ME with prediction should help performance with the code below compared to
resolving in ID with prediction. Explain why, preferably with an execution diagram. Hint: Same hints as
previous part.

LOOP2:

lw r1, 0(r2)

lw r2, 4(r2)

bne r2, r0 LOOP2

add r4, r4, r1

Resolving in ME helps performance because...

4
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Problem 2: (10 pts) The diagrams below show the execution of code on two-way superscalar dynamically
scheduled systems of the type described in class. Each diagram has mistakes. Identify and fix them. Also
explain why code should not execute as illustrated. The answer should specify what would go wrong, or why
the system would be particularly inefficient, as appropriate.

(a) Find and fix the two problems with commit in the execution below, and explain why execution would be
incorrect or inefficient.

# Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2) IF ID Q RR EA ME WB C

sub r4, r5, r6 IF ID Q RR EX WB C

or r7, r4, r8 IF ID Q RR EX WB C

# Cycle 0 1 2 3 4 5 6 7 8

Fix the two problems above.

Describe one error or inefficiency with execution.

Describe another error or inefficiency with execution.

(b) Find and fix the problem with the code below. Note that the processor has two FP adders, named A
and B. Hint: Check dependencies.

add.d f0, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

sub.d f6, f0, f8 IF ID Q RR A1 A2 A3 A4 WB C

add.d f10, f11, f12 IF ID Q RR B1 B2 B3 B4 WB C

addi r1, r1, 4 IF ID Q RR EX WB C

Fix the problem above.

Describe one error or inefficiency with execution.

5
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Problem 3: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 214-entry BHT. One system uses a bimodal predictor,
one system uses a local predictor with a 10-outcome local history, and one system uses a global predictor
with a 10-outcome global history. The outcomes of branch B1 form a repeating pattern, the outcome of B2
can be modeled by a Bernoulli random variable with p = .7 (the branch is taken with probability .7), and
B3 is always taken.

B1: N T T T T T N N N T T T T T N N

B2: R R R R R R R R R R R R R R R R

B3: T T T T T T T T T T T T T T T T

For the questions below accuracy is after warmup.

What is the accuracy of the bimodal predictor on B1?

What is the approximate accuracy of the bimodal predictor on B2? Explain. Hint: A correct answer
would be slightly more or less (pick one) than. . .. For the exact answer one would need the state probability
formula for a Markov chain.

What is the accuracy of the local predictor on branch B1?

What is the warmup time of the global predictor on branch B1? Be sure to consider the effect of B2.

What is the minimum local history size needed for a local predictor to predict B1 with 100% accuracy?

What is the accuracy of a global predictor with a three-outcome global history on branch B1?

What is the minimum global history size needed for a global predictor to predict B1 with 100% accuracy?

6
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Problem 4: (20 pts) The diagram below is for a set-associative cache with a capacity of 16 MiB (224

bytes), and a line size of 64 bytes. The system has the usual 8-bit characters. Each data store below has a
capacity of 220 bytes.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

64 b

64 b

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Associativity:

Memory Needed to Implement (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

7
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Problem 4, continued: The problems on this page are not based on the cache from the previous page.
The code fragments below run on a 32MiB (225 byte) direct-mapped cache with a 256-byte line size. Each
code fragment starts with the cache empty; consider only accesses to the arrays, a, ax, and ay.

(b) Find the hit ratio executing the code below.

What is the hit ratio running the code below? Explain

double sum = 0.0;

double *a = 0x2000000; // sizeof(double) == 8

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

(c) The two code fragments below, labeled Method 1 and Method 2, perform the same computation but
organize the data differently.

// Method 1

struct Our_Struct { int x; int y; };

Our_Struct a[SIZE];

for (int i=0; i<SIZE; i++) sum += a[ i ].x;

for (int i=0; i<SIZE; i++) myfunc(sum,a[ i ].y);

// Method 2

int ax[SIZE];

int ay[SIZE];

for (int i=0; i<SIZE; i++) sum += ax[ i ];

for (int i=0; i<SIZE; i++) myfunc(sum,ay[ i ]);

Which method has a higher hit ratio if the cache is small (or SIZE is large)? Explain

8
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Problem 5: (30 pts) Answer each question below.

(a) Eliminating bypass paths from an n-way superscalar statically scheduled processor would have a much
larger effect than eliminating them from a scalar statically scheduled processor (like our 5-stage MIPS
implementation).

Describe a positive benefit of eliminating the bypass paths that’s much larger for the n-way superscalar.

Describe a disadvantage of eliminating the bypass paths that’s a much bigger disadvantage for the
n-way superscalar.

(b) Consider a deeply pipelined system with 5n stages without bypass paths and that runs programs in which
dependent instructions are far apart. Name two factors that will limit clock frequency for larger values of n.
Note: bypass paths were not mentioned in the original exam.

One frequency limiter.

Another frequency limiter.

9
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(c) Consider the BHT of a bimodal branch predictor. An entry would contain a CTI type, a two-bit counter,
a branch target, and perhaps a tag. The tag would be used like a cache tag, but does not need to be as
large. For this problem only consider branches.

How large would the target need to be to predict MIPS branches? Hint: The answer is not 32 bits.

Explain what the predictor can do with the tag to improve prediction accuracy.

(d) A four-way statically scheduled processor is much less expensive than a four-way dynamically scheduled
processor. Why would the dynamically scheduled processor run some code faster than the statically processor
even when the code was compiled with a good compiler that targeted the specific four-way implementation?

Specific advantage of dynamically scheduled processor for some code.

Describe properties of code that would run at the same rate on the two processors.

10
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(e) In many VLIW ISAs the bundle size is 3 slots. Describe a disadvantage of making a VLIW ISA with a
larger bundle size.

Disadvantage of larger bundle size.

(f) A tester measuring the performance of a system using SPECcpu has the source code to SPECcpu programs.
Why is that important to the goals of the suite?

Source code important to SPECcpu goals?

11
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Problem 1: Show the execution of the following code fragments on the illustrated MIPS implementations.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

(a) [20 pts] The code below executes for many iterations. Show a pipeline execution diagram for the execution
of the code on the implementation above for enough iterations to determine the CPI, and determine the
CPI.

LOOP:

lw r1, 0(r2)

lw r3, 0(r1)

bne r3, r4, LOOP

lw r2, 8(r1)

Pipeline diagram of execution. Don’t forget to check for dependencies!

CPI for a large number of iterations.
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Problem 1, continued:

format

immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M

1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

(b) [10 pts] Show the execution of the code below on the implementation above.

mul.s f1, f2, f3

add.s f4, f5, f6

add.s f7, f8, f9

lwc1 f10, 0(r1)

Pipeline diagram of execution.

3
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Problem 2: The MIPS implementation below includes the shift unit (taken from the Homework 3 solution).
Notice that it is not possible to bypass a shift result to the EX stage. For that reason the add in the code
below stalls:

# Cycle 0 1 2 3 4 5 6

sll r1, r2, r3 IF ID EX ME WB

add r4, r1, r5 IF ID -> EX ME WB

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

VIN

VOUT
SIN

AMT

DIR

s

a

mx
d

10:6

4:0

is Shift

0:0

2:2

1:1

31:31
shf

mx

(a) [10 pts] Design control logic to generate a signal named STALL which will be logic 1 when a stall is
needed due to a shift result that cannot be bypassed, as in the example above. (Generate the signal, but
don’t do anything with it.)

Logic to generate stall signal.

(b) [5 pts] The stall above can be avoided by disconnecting the ME-to-EX bypass from the EX/ME.ALU latch
and instead connecting it to the output of the ME-stage mux. What was the reason for not doing something
like that in Homework 3.

Problem with ME-to-EX bypass for shift results.

4
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Problem 3: Answer the following questions about interrupts.

(a) [7 pts] An important part of an ISA’s interrupt mechanism is a separate privileged mode (also called
system or supervisor mode) and user mode.

Why is it necessary to have these two modes?

Explain the difference between privileged and user mode in how the CPU operates.

(b) [8 pts] In class our 5-stage implementations resolved exceptions only in ME, and by doing so all integer-
pipeline exceptions were precise. Note: In the original exam the phrase “and by doing so. . .” was not present.
Suppose instead we resolved exceptions in WB. Show a code fragment in which an exception could not be
precise on such a system.

Simple code fragment.

What can’t the handler do, and why can’t it do it?

5
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Problem 4: Answer each question below.

(a) [8 pts] Consider the distinction between an ISA and its implementation.

What was to be achieved by separating computer design into separate ISA design and implementation design?

Provide a reason not to have separate ISA and implementation design, consider the point of view of a
conservative computer engineer from the 1960s.

(b) [8 pts] One reason to not compile a program with optimization turned on is because you plan to debug
the program. Explain why stepping through a program in a debugger can be confusing when the code has
been optimized.

Debugging optimized code is confusing because . . .

Name a particular type of optimization and explain how it can cause confusing results when single stepping
through a program.

(c) [7 pts] Do you agree or disagree with the statement below regarding the rules for building the SPECcpu
benchmarks? Answer with respect to the goals for the SPECcpu benchmarks.

“Testers should not be allowed to use their own compilers because the SPECcpu benchmarks are supposed
to test CPUs, not compilers. All testers of a particular ISA should use the same compiler.” Grading note:
the phrase “of a particular ISA” was not in the original exam.

Agree or disagree? Explain.

6
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Problem 5: [10 pts] CISC programs generally are smaller than RISC programs.

(a) Show how the instruction below is encoded in MIPS and in VAX. For MIPS the name and bit position
of each field should be known, and the value of all but one field should be known. For VAX one should know
the fields and their sizes, but not every field value needs to be known. Hint: VAX has 16 general-purpose
registers. The size of the two instructions should be the same.

add r1, r2, r3

Encoding in MIPS.

Encoding in VAX.

(b) Identify unused field(s) in the MIPS instruction.

Unused MIPS field.

(c) Since VAX instruction sizes can vary they should be able to use space more efficiently. Yet even though
the MIPS instruction has unused field(s) the two instructions are the same size. Explain why the VAX
instruction is larger than one might expect and explain what advantage that provides.

Why is VAX larger than one might expect?

What advantage does this larger size provide?

7

← → Fall 2010 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4720/2010f/mt.pdf


Problem 6: Answer each question below.

(a) [7 pts] Unlike MIPS, SPARC integer branches use condition codes.

Why might this allow SPARC branch targets to be further away than MIPS branch targets?

Why might this enable certain SPARC implementations to have a higher clock frequency than comparable
MIPS implementations?

8
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Problem 1: (10 pts) The diagram below shows a 5-stage pipeline that looks alot like our familiar MIPS
implementation but it’s actually an implementation of ISA X. (The diagram is based on the solution to
Homework 3, in which a shift unit was added to MIPS.)

format

immed

IR

Addr
20:16

9:5

IF ID EX WBME

rs1v

rs2v

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst

NPC

=

30 2
2’b0

+
25:0

29:26

29:0

01

VIN

VOUT
sign in

AMT

DIR (1=left)

s

a

mx
d

4:0

4:0

is Shift

10:10

12:12

11:11

31:31

shf

mx

im5

5b0

5b31

25:21

31:26

15:10

(a) ISA X instruction format T encodes the shift instructions and others, it is the equivalent of format R in
MIPS. Based on the diagram above show the encoding for ISA X format T.

Format T encoding, including bit positions and field names.

Encoding:
31 0

(b) Consider the shift instructions sll, sllv, srl, srlv, sra, and srav. Suppose that the encoding of one
of these instructions is zero (meaning that every field value is zero). Show the opcode field value(s) for each
of these instructions based on the diagram above. Hint: The control signal for each top mux input is 0, etc.

Opcode field value(s) for: sll, sllv, srl, srlv, sra, and srav.

(c) Explain why the implementation of instructions such as sw r1,2(r3) and beq r1, r2 TARG would be
less elegant for ISA X than for MIPS. Hint: It has something to do with registers.

sw and beq less elegant because...

2
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Problem 2: (14 pts) Answer the questions below.

(a) Complete the execution diagram for the MIPS code below on a two-way superscalar statically scheduled
implementation of the type described in class.

add r1, r2, r3

add r4, r5, r6

add r7, r4, r8

lw r9, 0(r7)

addi r1, r9, 3

xor r10, r11, r12

Complete the diagram above.

(b) Show the execution of the code below on an 8-way superscalar statically scheduled processor of the type
described in class. Branches are not predicted. Find the CPI for a large number of iterations.

LOOP: # Address of first insn is 0x1000

and r1, r1, r5

add r3, r3, r1

lw r1, 0(r2)

bne r2, r4 LOOP

addi r2, r2, 4

Complete diagram above for enough iterations to determine CPI.

Find the CPI for a large number of iterations.

3
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(c) Complete the execution diagram for the MIPS code below on a two-way superscalar dynamically scheduled
implementation of the type described in class. The execution of the first instruction is shown. The lw

instruction uses stages EA and ME in place of EX.

add r1, r2, r3 IF ID Q RR EX WB C

add r4, r5, r6

add r7, r4, r8

lw r9, 0(r7)

addi r1, r9, 3

xor r10, r11, r12

Complete diagram above.

4
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Problem 3: (14 pts) A deeply pipelined MIPS implementation can be constructed by dividing some stages
of our familiar 5-stage statically scheduled scalar implementation (shown below) into two or more parts. In
this problem the technique is applied to construct several 8-stage implementations. All have just one ID and
WB stage, and in all implementations it takes 4.4 ns for an instruction to pass through all 8 stages, from the
beginning of IF1 to end of WB1. The stages are divided without changing what they do. For example, if an
“original” MIPS stage, say EX, is divided into multiple stages, say EX1 EX2 ... EXn, then all values from
ID and bypass paths are needed when EX1 starts, and values reach ME in the cycle after EXn. Our familiar
5-stage implementation is shown below for reference:

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

(a) Consider the 8-stage baseline implementation below (indicated by the stage labels). What is the execu-
tion rate of a friendly program (one written to maximize performance) on the implementation, in units of
instructions per second? The answer can be given as a formula of constants (as opposed to putting down
just x as an answer).
Baseline Implementation: IF1 IF2 ID1 EX1 EX2 ME1 ME2 WB1

Execution rate in instructions per second.

5

← → Fall 2010 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/2010f/fe.pdf


(b) Call a program favorable for an implementation if it runs faster on the implementation than on the
baseline (repeated below). If it runs slower, call it unfavorable. For each implementation below write a two-
or three-instruction favorable program and a two- or three-instruction unfavorable program. Also provide a
concise but clear explanation of what it is about the program and implementation that makes it favorable or
unfavorable. If a program is favorable on one implementation and unfavorable on another write it once, but
provide an explanation for each. Hint: The three implementations differ in how they are affected by certain
dependencies.

Baseline Impl.: IF1 IF2 ID1 EX1 EX2 ME1 ME2 WB1

Implementation 1: IF1 IF2 IF3 ID1 EX1 ME1 ME2 WB1

Favorable program. Explanation.

Unfavorable program. Explanation.

Baseline Impl.: IF1 IF2 ID1 EX1 EX2 ME1 ME2 WB1

Implementation 2: IF1 ID1 EX1 EX2 EX3 ME1 ME2 WB1

Favorable program. Explanation.

Unfavorable program. Explanation.

Baseline Impl.: IF1 IF2 ID1 EX1 EX2 ME1 ME2 WB1

Implementation 3: IF1 ID1 EX1 EX2 ME1 ME2 ME3 WB1

Favorable program. Explanation.

Unfavorable program. Explanation.

6
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Problem 4: (14 pts) Answer the following branch predictor questions.

(a) Code producing the branch patterns shown below is to run on three systems, each with a different branch
predictor. All systems use a 214-entry BHT. One system uses a bimodal predictor, one system uses a local
predictor with a 16-outcome local history, and one system uses a global predictor with a 16-outcome global
history.
0x1000: B1: T N T T N T T T N T N T T N T T T N ...

0x1010: B2: T T N T T N ...

0x1020: B3: T T ...

For the questions below accuracy is after warmup.

What is the accuracy of the bimodal predictor on B1?

What is the accuracy of the local predictor on branch B1?

What is the warmup time of the local predictor on branch B1?

What is the minimum local history size needed for a local predictor to predict B1 with 100% accuracy?

What is the accuracy of a global predictor with a three-outcome global history on branch B2 (not B1)?

What is the minimum global history size needed for a global predictor to predict B2 (not B1) with 100%
accuracy?

7
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Problem 4, continued:

(b) Consider code producing the patterns below running on two systems, one using a global predictor and
the other using a gshare predictor. Both systems use a 216-entry BHT and a 12-outcome global history. The
hexadecimal numbers indicate the address of the branch instruction. For example, B5: 0x1100 indicates
that the instruction we call B5 is at address 0x1100.

Pattern L: T T T ... N (A hundred iteration loop.)

B5: 0x1100: L L L L

B6: 0x1110: N N N N

B7: 0x1200: L L L L

B8: 0x1210: T T T T

Why is the accuracy of the gshare predictor so much better than the global predictor on this example?

What is the minimum number of BHT entries for which the gshare predictor will outperform global on
this code? Hint: Look at the branch addresses.

8
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Problem 5: (15 pts) The diagram below is for a 4-way set-associative cache with a capacity of 8 MiB (223

bytes). The system has the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

64 b

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:
7 4

Memory Needed to Implement (Indicate Unit!!):

Line Size (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

9
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Problem 5, continued: The problems on this page are not based on the cache from the previous page.
The code fragments below run on a 32MiB (225 byte) direct-mapped cache with a 64-byte line size. Each
code fragment starts with the cache empty; consider only accesses to the array, a.

(b) Find the hit ratio executing the code below.

What is the hit ratio running the code below? Explain

float sum = 0.0;

float *a = 0x2000000; // sizeof(float) == 4

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

(c) Find the smallest value of STRIDE for which the cache hit ratio in the program below will be zero.

Fill in smallest value for STRIDE for which hit ratio 0.

Briefly explain.

float sum = 0.0;

float *a = 0x2000000; // sizeof(float) == 4

int i;

int ILIMIT = 1 << 11; // = 211

int STRIDE = ; // <---- FILL IN

for (i=0; i<ILIMIT; i++) sum += a[ i ] + a[ i + STRIDE ];

10
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Problem 6: (15 pts) Answer each question below.

(a) What is the difference between instruction-level parallelism (ILP) and explicit parallelism?

ILP and explicit parallelism difference.

(b) A company has a large customer base for its ISA Y products, the most advanced of which is a 4-
way superscalar dynamically scheduled implementation. The company is considering three possible next-
generation systems: Develop an 8-way superscalar dynamically implementation of ISA Y , develop a chip
with 16 scalar implementations of ISA Y , or develop a VLIW ISA and implementation. For each strategy
indicate how much effort it will take for customers to use the new system.

Customer effort to use 8-way superscalar dynamically scheduled system. Explain.

Customer effort to use chip with 16 scalar implementations. Explain.

Customer effort to use VLIW implementation.

(c) Consider the three systems from the previous part. For each system indicate an advantage over the
others. The advantage should specify an assumed workload, an answer might start “The advantage, those
customers that run programs that are , is . . ..

Advantage of 8-way superscalar dynamically scheduled system.

Advantage of 16 scalar system chip.

Advantage of VLIW implementation.

11
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Problem 7: (18 pts) Answer each question below.

(a) Why might a 1% change in branch prediction accuracy have a larger impact on the performance of a
4-way superscalar processor than on a 2-way superscalar system?

Larger impact on 4-way over 2-way because...

(b) Dynamically scheduled systems use a technique called register renaming in which an instruction’s archi-
tected registers are renamed into physical ones. Provide a brief example illustrating why register renaming
is necessary.

Example illustrating need for register renaming and explanation.

12
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(c) The SPECcpu rules require that the compilers used to prepare a run of the suite be real products that
the company (or some other company) makes an honest effort to sell (or give away). Explain how the
SPECcpu scores might be inflated if the compilers could be products in a technical sense, but not something
the company is trying to put in customer hands.

Scores inflated by unmarketed compilers because...

If the compilers produce faster programs, why not promote them?

(d) What is the difference between a trap and an exception?

Difference between trap and exception.

13
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Problem 1: [40 pts] In the MIPS implementation below some wires are labeled with cycle numbers and

values that will then be present. For example, c5:6 indicates that at cycle 5 the wire will hold a 6. Other
wires are labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any
labeled wire is changed the code would execute incorrectly. Write a program consistent with these labels.

All register numbers and immediate values can be determined.

The first instruction address has been provided, show the addresses of the remaining four instructions.

The third instruction is an addi, don’t forget to show its registers and immediates.

If an instruction is a load or store, show all possible size and sign possibilities. For example, (lw,lh)

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

C2:2

C3:2

C5:2

C1

C5:6 C3:1
C5:0

C3:8 C5:3

C6

C5

C3:16

C5

C5:0xabcd1234

C0: 0001 0001 1001 0100 0000 0000 0010 0000

Cycle: 0 1 2 3 4 5 6 7 8

0x1000 IF ID EX ME WB

IF ID EX ME WB

addi IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

Cycle: 0 1 2 3 4 5 6 7 8
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Problem 2: [12 pts] Consider the following cost-reducing design options for the MIPS implementation
shown below. Performance is still important, and a compiler will be able to optimize for this lower-cost
implementation, but even with skillful optimization there may be some performance loss.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

(a) Suppose one had to choose between eliminating all upper-ALU-input bypass paths or all lower-ALU-input
bypass paths. Which would you choose? Note: The following sentence did not appear on the original exam.
(Only bypass paths are eliminated, other mux inputs remain.)

Eliminate: upper or lower. (Circle one.)

Briefly explain why.

(b) Suppose one had to choose between eliminating all upper-ALU-input bypass paths or all rtv (not to the
ALU) bypass paths. Which would you choose (Note: Only bypass paths are eliminated, other mux inputs
remain.)

Eliminate: upper or rtv. (Circle one.)

Briefly explain why.

(c) Suppose that the mux in the WB stage was moved to the ME stage.

How would that reduce cost?

How might that affect performance?

3
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Problem 3: [14 pts] The branch delay slot ISA feature eliminates the need for the stall or squash following
a branch that occurs in implementations such as our 5-stage pipeline.

(a) The two MIPS code fragments below do not exactly make a strong case for delay slots. In both cases
there is no squash or stall, which sounds good. For each code fragment indicate whether performance is
slower, equal to, or faster than corresponding non-delay-slot ISA code on a corresponding implementation
(one that will suffer a squash after every branch). If faster indicate if the improvement is full (based on the
eliminated squash) or partial. Hint: it won’t be full.

# -------------------- Code Fragment 1 --------------------

beq r1, r2, TARG

nop

lw r3, 0(r1)

Delay slot in code above results in: slower, equal, partial improvement, full improvement. (CIRCLE ONE).

Explain.

# -------------------- Code Fragment 2 --------------------

beq r1, r2 SKIP

add r9, r4, r5

or r6, r9, r8

SKIP:

sub r3, r6, r5

lw r9, 0(r3)

Delay slot in code above results in: slower, equal, partial improvement, full improvement. (CIRCLE ONE).

Explain.

(b) How can Code Fragment 2 (above) be improved by profiling? Show the optimized fragment and how
profiling led to the optimized fragment.

Optimized version of Code Fragment 2

Specifically, how did profiling help?

4
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Problem 4: [10 pts] The SPECcpu2006 integer suite has 12 benchmarks. Suppose instead it included only
four benchmarks, but those benchmarks were chosen fairly, given that only four could be chosen.

(a) Considering just the base score (or ignoring the base/peak distinction altogether), what is the disadvan-
tage of having just four benchmarks?

Disadvantage of having four benchmarks.

(b) Suppose that with this smaller set of benchmarks the difference between the base and peak scores was
smaller than if 12 benchmarks were used. Assume that in both cases the testers were skilled and followed
the rules. Also assume that the base score values were about the same with 4 or 12 benchmarks.

Give a reason for the smaller difference that has to do with the different rules for base and peak tests.

Does the smaller difference indicate that base and peak are not measuring what they should?

5
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Problem 5: Answer the questions below.

(a) [14 pts] Write the following MIPS code fragments with the minimum number of instructions. If you
don’t know the exact mnemonic, such as mtc1 or cvt.w.f, make up something that sounds right.

Put constant 0x12345678 into register r1.

Jump to address 0x72345678 from address 0x1000.

Jump to address 0x72345678 from address 0x1000 using a SPARC-like jmpl (but in MIPS, like Homework
2).

Registers r1 and r2 contain integers. Write register f4 with the sum as a single-precision floating point
number.

6

← → Spring 2010 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4720/2010/mt.pdf


(b) [10 pts] Typical CISC ISAs have a range of immediate sizes for use in ALU instructions, up to the data
size limit. (Say, 8, 16, 24, and 32 bits). MIPS, and other RISC ISAs, have just one immediate size for ALU
instructions.

Why can’t MIPS have a 32-bit immediate?

Why can a CISC ISA have a 32-bit immediate?

Why would there be no benefit for MIPS to have both 8- and 16-bit immediate sizes for arithmetic instruc-
tions?

What is the benefit for CISC ISAs in having 8-, 16-bit, (and more) immediate sizes for arithmetic instruc-
tions?

7
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Problem 1: (15 pts) The statically scheduled MIPS implementation including the floating-point pipeline
is illustrated below.

format

immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M

1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

(a) Consider the instruction mtc1 f2, r4. On the diagram above show the path taken by the data on its
trip from r4 to f2.

Show path taken by value using a squiggly line on the diagram above.

(b) The control logic for the FP pipeline needs only a small change to handle mtc1. Make that change above.
(This has nothing to do with the bypass problem below.)

Control logic for mtc1 in diagram above. (Ignore bypasses.)

(c) Add the hardware needed to implement swc1. Add only datapath, not control logic.

Datapath for swc1.

2
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Problem 1, continued:

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

lui r1, 0x4593 IF ID EX ME WB

ori r1, r1, 0x819c IF ID EX ME WB

mtc1 f1, r1 IF ID EX ME WF

add.s f2, f2, f1 IF ID A1 A2 A3 A4 WF

mtc1 f4, r4 IF ID EX ME WF

sub.s f6, f4, f1 IF ID A1 A2 A3 A4 WF

swc1 f6, 0(r5) IF ID -------> EX ME WF

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

(d) The code fragment execution (pipeline diagram) above could not occur on the pipeline above because
certain bypass paths are needed.

Add those bypass paths for the code above.

Show the cycle in which each added bypass path is used by the code above.

(e) Add control logic needed to detect the bypass used from mtc1 to sub.s. The logic should deliver a signal,
BYPASS, to the stage containing the bypass multiplexors. The BYPASS signal should be true if the bypass is
needed.

Logic generating mtc1 to sub.s bypass signal.

format

immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M

1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

3
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Problem 2: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 214-entry BHT. One system uses a bimodal predictor,
one system uses a local predictor with a 16-outcome local history, and one system uses a global predictor
with a 16-outcome global history.

Branch B1 is random, and can be described by a Bernoulli random variable with p = .5. The outcome of
branch B3 will always be the same as the most recent outcome of branch B1. (That is, if an execution of B1
is taken, the next execution of B3 will be taken.) Branch B2 has a repeating pattern, it repeats twice below.

B1: r r r r r r r r

B2: T N T N N T N N N T T N T N N T N N N T

B3: R R R R R R R R

For the questions below accuracy is after warmup.

What is the accuracy of the bimodal predictor on B2?

What is the accuracy of the bimodal predictor on B3?

What is the accuracy of the local predictor on B2?

How small can the local history size be made without affecting the accuracy of branch B2? Explain.

What is the accuracy of the local predictor on B3?

What is the accuracy of the global predictor on B3?

How small can the global history size be made without affecting the accuracy of branch B3? Explain.

How many PHT entries are used by B2 in the system using the local predictor?

What is the warmup time of the global predictor on branch B3?

4
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Problem 3: (10 pts) Suppose that in a MIPS-I system using a bimodal predictor there were BHT collisions
on 5% of the predictions. (A BHT collision occurs when two branches use the same BHT entry.) A BHT
entry stores both a 2-bit counter and the branch’s 16-bit displacement. Grading Note: The contents of a
BHT entry was not in the original exam.

Consider a design alternative in which a tag were used to detect BHT collisions, in the same way a cache
uses a tag to detect hits (or misses).

(a) How large would the tag have to be to perfectly detect misses on a MIPS-I system using a 214-entry
BHT?

Tag size needed, reason:

(b) Suppose that the storage budget for the BHT was fixed at the number of bits in a 214-entry BHT without
tags.

About how many entries would there be in a BHT with tags?

(c) Based on the answer to the previous part, could we use a tagged BHT if the benefit of detecting collisions
were small, moderate, or large?

Benefit needs to be small, medium, or large. Explain.

(d) What is the benefit of detecting BHT collisions on a four-way superscalar statically scheduled MIPS
implementation?

Benefit for 4-way MIPS:

5
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Problem 4: (15 pts) The diagram below is for a set-associative cache with a line size of 64 bytes and a
tag size of 11 bits. The system has the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32 b

32 b

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Cache Capacity (Indicate Unit!!):

Associativity:

Memory Needed to Implement (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

6
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Problem 4, continued:

(b) The code below runs on a 32MiB direct-mapped cache with a 256-byte line size. Initially the cache is
empty; consider only accesses to the array.

What is the hit ratio running the code below? Explain

double sum = 0.0;

double *a = 0x2000000; // sizeof(double) == 8

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ 4 * i ];

7
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Problem 5: (15 pts) Several possible new MIPS instructions appear below. Show how each instruction can
be encoded and show datapath changes needed to implement the instruction.

• The changes cannot break existing instructions.

• The changes can not have a large impact on clock frequency.

• A shift unit is present, but not shown.

Note: The original exam only asked for a summary of datapath changes, and did not mention the shift unit
or clock frequency.

Also indicate the relative difficulty of implementing the instruction. If an instruction is deemed moderate or
difficult indicate the most important reasons why.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

(a) The sllii instruction is like an lui except it can shift the immediate by any amount. For example,
sllii r1, 0x1234,16 would be equivalent to an lui r1, 0x1234.

sllii r1, 0x1234, 6 ! r1 = 0x1234 << 6

Show possible encoding (instruction format (R, I, etc) and field (rs, rt, etc) usage):

Easy, moderate, or difficult to implement:

Show datapath changes.

8
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Problem 5, continued:

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

(b) The adds (add scaled) can shift the second operand left by any amount.

adds r1, r2, r3, 4 ! r1 = r2 + ( r3 << 4 )

Show possible encoding:

Easy, moderate, or difficult to implement:

Show datapath changes.

(c) The addsid instruction produces a sum like add but one operand is obtained from memory.

addsid r1, r2, (r3) ! r1 = r2 + Mem[r3]

Show possible encoding:

Easy, moderate, or difficult to implement:

Show datapath changes.

9
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Problem 6: (10 pts) Consider a single four-way superscalar implementation and a chip with four scalar
implementations (like our five-stage MIPS). Both are statically scheduled and have similar features.

Why might the clock frequency of the superscalar system be lower than the scalar systems?

Why might the chip area (or cost) of the four scalar systems be less than the superscalar system?

How does the average program run less efficiently on the superscalar system than on one of the scalar
systems? (Less efficiently means more stalls and squashes.)

Given the answers above, why does a typical chip have two four-way superscalar implementations rather
than eight scalar implementations? (Please do not confuse eight scalar implementations with one eight-way
superscalar system.)

10
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Problem 7: (15 pts) Answer each question below.

(a) One use for exceptions is to implement rare or specialized instructions in software (called emulation).
One example is the SPARC quad-precision arithmetic instructions, such as faddq f4, f8, f12 (floating-point
add quad). No existing SPARC implementation can execute these instructions in hardware.

Why would faddq have to raise a precise exception in order to be emulated?

(b) Consider an implementation similar to our pipelined MIPS in which a floating-point overflow on a fmuld

did not raise a precise exception (because the hardware to do so would not be worth the trouble).

Does that mean it would not be possible for the faddq to raise the precise exception needed for emulation?
Explain.

11
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(c) Answer the following questions about the SPECcpu benchmarks.

Why are branches in the FP suite easier to predict than branches in the integer suite?

Why is it important that the source code is available for the SPECcpu benchmarks?

(d) Answer each ISA question below:

Describe a feature of VLIW ISAs that distinguishes them from RISC and CISC ISAs.

Describe a feature of CISC that distinguishes it from RISC.

12
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Problem 1: [30 pts] The code below executes on the illustrated FP pipeline.

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M
1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0
1

2

LOOP:

ldc1 f0, 0(r1)

addi r1, r1, 8

mul.d f2, f0, f0

bneq r1, r2, LOOP

add.d f6, f6, f2

(a) Add reasonable bypass paths needed by the code above, for both the integer and FP pipelines.

Add reasonable bypass paths. Don’t add unneeded bypass paths.

(b) Analyze the performance of the code using your bypasses:

Show a PED for the code above using your bypasses. (Use this page or next page.)

Compute the CPI of the code for a large number of iterations.

2
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Use this page for PED, if needed.

LOOP:

ldc1 f0, 0(r1)

addi r1, r1, 8

mul.d f2, f0, f0

bneq r1, r2, LOOP

add.d f6, f6, f2

3
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Problem 1, continued:

(c) A component failure in the MIPS implementation below has changed the circled OR gate into an AND
gate.

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M
1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0
1

2

Is it still possible to perform a FP multiply? If yes, show how with PED, if no explain.

# Original Code. (For answer show modified code with PED.)

mul.d f0, f2, f4

Is it still possible to perform a FP add? If yes, show how with PED, if no explain.

# Original Code. (For answer show modified code with PED.)

add.d f0, f2, f4

4
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Problem 2: [30 pts] The MIPS-A ISA is like MIPS-I except that load and store instructions use only the
rs register value for an address, they don’t add an offset (or anything else). As a result MIPS-A can be
implemented with a four-stage pipeline.

(a) Our familiar 5-stage MIPS-I implementation appears below with one of the pipeline latches missing.
Make additional changes so that this is a reasonable four-stage implementation of MIPS-A.

Show all connections to the memory port.

Cross out wires and other items that are not needed, add what is needed.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

Addr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Out

ALU

MD

dst dst
Decode
dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

0 1

15:0

(b) Describe two ways in which this MIPS-A implementation costs less than the five-stage MIPS-I.

Two reasons for lower cost.

5
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Problem 2, continued:

(c) The four-stage MIPS-A implementation may be faster or slower than the five-stage MIPS-I.

Provide a pair of equivalent code fragments, one for MIPS-I that runs on the five-stage implementation and
one for MIPS-A that runs on the four-stage, in which the MIPS-A version is faster. Hint: The MIPS-I code
will have a familiar stall.

Provide a pair of equivalent code fragments, one for MIPS-I that runs on the five-stage implementation and
one for MIPS-A that runs on the four-stage, in which the MIPS-A version is slower. Hint: Think about the
difference in the ISAs.

(d) A company needs to decide whether to develop MIPS-I or MIPS-A. How does it decide? Assume that
at this point software compatibility is not an issue.

How should company decide which to develop?

Will having skilled compiler writers tilt the decision towards MIPS-A or MIPS-I? Explain.

6
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Problem 3: [10 pts] Answer the questions below.

(a) Why does MIPS have a beq but does not have a blt (branch less than), even though a blt instruction
would be frequently used?

Why beq but no blt?

(b) Explain why a branch delay slot can be though of as a short-sited feature in an ISA.

Delay slots are good when...

...but delay slots are bad when...

7
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Problem 4: [20 pts] The doing-it-the-hard-way MIPS code below loads the constant 1
3 in IEEE 754

single-precision format, 0x3eaaaaab, into register f2.

addi r10, r0, 1

addi r20, r0, 3

mtc1 f12, r10

mtc1 f22, r20

cvt.s.w f14, f12

cvt.s.w f24, f22

div.s f2, f14, f24

(a) Describe what the mtc1 and cvt.s.w instructions do.

Explain mtc1

Explain cvt.s.w

(b) The code above uses more instructions than are necessary and also uses a wastefully time-consuming
instruction.

What is the wastefully time-consuming instruction?

Re-write the code so it uses fewer instructions without using load instructions. Hint: A correct answer uses
three instructions and a piece of information slipped into the first sentence of the problem.

8
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Problem 5: [10 pts] Answer the following SPECcpu questions.

(a) In the SPECcpu2000 suite profiling was allowed for both base and peak results but in SPECcpu2006
profiling is allowed for peak results but not for base results.

Why isn’t profiling allowed for base results in SPECcpu2006? Your answer should say something about the
difference between base and peak.

(b) Company A has a reputation for reliable compilers, company B has a reputation for buggy compilers.
Both companies and their customers are okay with this. (Think Italian sports cars.)

Optimization X results in a substantial improvement in SPECcpu base scores. Company B has it in their
shipping compilers (those sold to customers) but company A only has optimization X in their experimental
compilers (not available to customers), but they are working hard on it. The optimization achieves the same
results for company A and B. Company B’s compiler will not run on company A’s system (as though they’d
want to!). Grading Note: The last line was not in the original exam, but a student did see the possibility of
using B’s compiler for A’s spec run.

Can Company A use optimization X to prepare SPECcpu2006? Explain.

Can Company B use optimization X to prepare SPECcpu2006? Explain.

Your answers above should reflect the letter of SPEC’s rules. Do you think this achieves SPECcpu’s goals
or what you would like to see in benchmark results? Explain.

9
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Problem 1: (20 pts) The MIPS implementation below, taken from the solution to last semester’s final,
includes hardware to implement an exception test instruction.

Several wires on the diagram are broken with heavy solid lines and marked with Fx and a value (mostly 0).
These indicate potential fault locations. If there is no fault the wire acts normally, if there is a fault the wire
is broken at the heavy line and the free half takes on the indicated value. For example, if fault Fa is present
the bottom input to the OR gate is always zero however the ID/EX.we signal on the other side is unaffected.

format

immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M

1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

is test

e

e

0

1

2

1’b0

t t

Changes to stall for test insn.

Logic to

suppress

WF if

exception

occurs

before test.

Fa
0

Fb
0

Fc1

The problem here is to detect which fault, if any, is present by running test programs. One test program,
and a pipeline diagram, appears below. A handler has been set up that will set a goodException variable
to 1 if register and memory values are as expected, otherwise it is set to -1. The goodException variable is
initialized to 0 before each test.

2
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Problem 1, continued:

# Test 1: The mul should raise a precise exception.

# Initial: f0 = 1; r1 = 20; Mem[r2] = 50; f2 * f4 = NaN

# Cycle 0 1 2 3 4 5 6 7 8 9

Many nops.

mul.s f0, f2, f4 IF ID M1 M2 M3 M4 M5 M6x

test IF ID -------> EX MEx

sw r1,0(r2) IF -------> ID EXx

(a) When a test is run the exception handler is called (because the tests intentionally raise an exception).
A handler is shown below, written in C, but the handler does not set goodException correctly (not even
close). Modify the code so that goodException is set correctly based on the information provided by the
Test 1 code and comments. That is, goodException is set to -1 if the exception could not be precise.

int handler_fp(Regs *regs){

// Code below wrong, but shows how to read registers and memory.

if ( regs->f10 == regs->f12 && is_nan(f14) && MemW(regs->r31) == 0x1234 )

goodException = 1; else goodException = -1;

(b) Suppose Test 1 is run and goodException is set to -1 (it would be 1 in the no-fault case). Which of the
faults (Fa, Fb, or Fc) could have been responsible for the goodException value?

Faults that are definitely present. Explain.

Faults that could be present. Explain.

3
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Problem 1, continued:

(c) Develop tests to determine for certain whether each of the faults is present. Test 1 and each of your tests
will be run, and based on the goodException values from each test one can say for certain which faults are
present.

Assume that at most one of the faults is present. Your tests should look similar to Test 1.

Tests (Code like Test 1)

Which combination of goodException values conclude Fa for certain.

Which combination of goodException values conclude Fb for certain.

Which combination of goodException values conclude Fc for certain.

4
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Problem 2: (20 pts) Answer each question below. Be sure to check each code fragment carefully for
dependencies.

(a) The loop below runs on a statically scheduled 4-way superscalar MIPS implementation.

Show a pipeline execution diagram.

LOOP:

addi r2, r2, 8

lw r1, 0(r2)

add r3, r1, r4

bneq r2, r5 LOOP

sw r3, 4(r2)

Determine the IPC for a large number of iterations and assuming no cache misses.

Comment on the difference between the IPC and the potential IPC of the processor.

Schedule the code to improve execution time.

5
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Problem 2, continued:

(b) The code below (same as the previous problem) executes on a 4-way superscalar dynamically scheduled
machine. Assume that branch prediction on this machine is perfect. Load instructions use the EA and ME

stages, branch instructions use the B stage, store instruction only use EA (they write memory when they
commit).

Though the machine is 4-way, assume an unlimited number of WB, EX, and RR stages.

Show a pipeline execution diagram for two iterations.

LOOP:

addi r2, r2, 8

lw r1, 0(r2)

add r3, r1, r4

bneq r2, r5 LOOP

sw r3, 4(r2)

Determine the IPC for a large number of iterations.

6
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Problem 3: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 214-entry BHT. One system has a bimodal predictor,
one system uses a local history predictor with a 10-outcome local history, and one system uses a global
predictor with a 10-outcome global history.

The code has three branches, B1, B2, and B3. The outcome of B1 is random, described by a Bernoulli random
variable with p = .5 and is independent of everything. Branch B2 has a simple j-iteration loop pattern (j−1
T’s and an N) and branch B3 is a repeating pattern of k N’s followed by k T’s (see diagram below). Also
from the diagram notice that B1 occurs just before B2 but that a set of j B1 and B2s occur between each B3,
(similar to a branch in the homework and last semester’s final).

A A A

------------------ ------------------ ------------------ ...

B1: R R R ... R R R R ... R R R R ... R

B2: T T T ...T N T T T ...T N T T T ...T N

!<--- j --->!

B1&2: A A A A

B3: N N N ... N T T T ... T N N N ... N T...

!<--- k Ns --->! !<--- k Ts ---->! !<--- k Ns --->! ...

For the questions below accuracy is after warmup.

What is the accuracy of the bimodal on B1?

What is the accuracy of the bimodal on B2 in terms of j?

What is the accuracy of the bimodal on B3 in terms of k?

What is the accuracy of the local predictor on B3 when k ≫ 10 and j < 5 in terms of j and k?

What is the accuracy of the local predictor on B3 when k ≫ 10 and j > 10 in terms of j and k?

What is the accuracy of the global predictor on B3 when j = 10 and k is very, very large, in terms of j
and k?

What is the warmup time for B3 on the global predictor. (This warmup occurs whenever B3 switches
from Ns to Ts or Ts to Ns.) in terms of j and k?

7
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Problem 4: (20 pts) The diagram below is for a 32-MiB (225-character) set-associative cache with the
usual 8-bit characters and a 64-bit address space.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

22:6

64 b

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Associativity:

Memory Needed to Implement (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

8
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Problem 4, continued:

(b) The code below runs on the cache from the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

What is the hit ratio running the code below? Explain

double sum = 0.0;

char *a = 0x2000000;

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

(c) The code below runs on a direct-mapped cache unrelated to the one above. When the code starts running
the cache is cold, for the solution only count accesses to array.

struct My_Struct {

double val;

double something;

double relative;

double more_data[29];

}; // Total size: 32 * sizeof(double) = 256 bytes

const int SIZE = 1 << 12;

My_Struct array[SIZE]; // &array[0] = 0x1000000

void tri()

{

double sum = 0;

for ( int i=0; i<SIZE; i++ ) sum += array[i].val;

const double avg = sum / SIZE;

for ( int i=0; i<SIZE; i++ ) array[i].relative += array[i].val - avg;

}

Determine the minimum cache and line size needed so that there are no misses in the second for loop.

Explain your answer.

9
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Problem 5: (20 pts) Answer each question below.

(a) In a dynamically scheduled machine one would like to be able to have a large number of instructions
in flight to, say, find something to do while waiting for data from memory. Which part of the dynamically
scheduled machine is most difficult to scale up to support a large number of in-flight instructions?

Part that’s difficult to scale, and reason why.

(b) How might profiling improve the performance of the following C code:

if ( a > b ) { x = d / e; } else { y = q / f; }

Explain how profiling is used.

Explain why this profiled code might be faster than code compiled without profile feedback.

10
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(c) In the first implementation of a company’s ISA the integer multiply instruction was slow. An Engineer
working on the second implementation is deciding whether to speed up the multiply instruction. To decide
he plans to analyze some benchmark runs, but he can’t decide whether the code should be optimized. The
compiler was designed for the first implementation.

What is the disadvantage of counting multiply usage in code compiled with optimization?

What is the disadvantage of counting multiply usage in code compiled without optimization?

(d) A memory system that can fetch 2w chars of data is less expensive and faster if the data address is a
multiple of 2w. (That’s one reason for the alignment restriction.)

How do VLIW ISAs take advantage of that?

(e) Compared to a RISC implementation, say the 5-stage MIPS, what additional logic does a CISC imple-
mentation require between the IF-stage memory port output and decode?

Additional logic for CISC.

11
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Problem 1: In the MIPS implementation below some wires are labeled with cycle numbers and values that
will then be present. For example, c5:3 indicates that at cycle 5 the wire will hold a 3. Other wires are
labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any labeled
wire is changed the code would execute incorrectly. Instruction addresses and the first instruction have been
provided. [50 pts]

(a) Finish a program consistent with these labels.

All register numbers and immediate values can be determined.

Be sure to fill the three blocks marked PLEASE FILL IN.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst

Control
Logic

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

0 1

15:0

Shift sh

5’d16

amt

val

c5:3 c5:3

c2:12

c6

c5: right 6
c6: left

c3

c5

c5:31

c4:
0
1
2

smx

c1:
c4: 0
c5:

c5:0x03??????

dir
dir

PLEASE FILL IN

c7:4

Cycle: 0 1 2 3 4 5 6 7 8

0x0b0000 lui r2, 0xb IF ID EX ME WB

0x0b0004 IF ID EX ME WB

0x0b0008 IF ID EX ME WB

0x0b000c IF ID EX ME WB

0xedd900 IF ID EX ME WB

Cycle: 0 1 2 3 4 5 6 7 8

2
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Problem 1, continued: Continue referring to the implementation on the previous page.

(b) Explain whether each instruction below could be the instruction at address 0xb0008 (on the previous
page). If it could be the instruction write “Possible” otherwise write “Impossible because . . .” (The grade
will be based on the reason.)

add

j

jal

beq

3

← → Fall 2008 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4720/2008f/mt.pdf


Problem 2: [10 pts] Based on the experience of preparing SPECcpu benchmark runs manufacturers A
and B each release a new compiler that improves their respective SPECcpu scores.

(a) In the course of preparing a SPECcpu benchmark run manufacturer A discovers a new optimization
technique that improves the performance of most of the SPECcpu programs, and other programs. This
optimization technique is added to the compiler for use at the -O1 and higher optimization levels. The
manufacturer sells the compiler, proudly boasting about the performance benefits.

Is it in the spirit of the SPECcpu rules to use this new optimization technique for the base results? Explain.

(b) To prepare a SPECcpu benchmark run manufacturer B has its best programmers prepare hand-written
assembly code for the most time consuming portion of each benchmark. The compiler will recognize each
benchmark based on the source code and substitute the hand-written routines where needed; the hand-
written code will only work for these benchmarks.

These optimizations are included in manufacturer B’s compiler and used at -O1 and higher levels. Manu-
facturer B sells this new compiler.

Is it in the spirit of the SPECcpu rules to use this new optimization technique for the peak results? Explain.

Explain why it is not in the spirit of SPECcpu rules to use such optimizations for base results.

Assuming that the compiler can not be reverse engineered (there is no way to inspect the compiler itself)
and assuming that manufacturer B can keep secrets, how might this cheating be discovered?

4
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Problem 3: Answer the following ISA questions.

(a) [10 pts] A RISC advocate claims that by having fixed-length instructions and alignment restrictions a
branch can reach twice as far for a given displacement field size than would be possible in CISC ISAs.

Explain why.

A CISC advocate responds that branches in CISC programs would take less space anyway.

Provide a reason for small-displacement branches.

Provide a reason for large-displacement branches.

(b) [10 pts] Indicate whether each item below is usually an ISA feature or an implementation feature.

Number of bits in immediate.

Clock frequency.

Number of branch delay slots (if any).

Floating-point format.

Minimum distance between load instruction and a dependent instruction to avoid a stall.

5
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Problem 4: Equivalent MIPS and SPARC code fragments appear below.

(a) [10 pts] Taking advantage of SPARC’s condition code features, modify the SPARC code to use one fewer
instruction (without changing what it does).
# MIPS Branch Example

addi $t1, $t1, -1

bne $t1, 0 LOOP

add $t2, $t2, $t3

...

! Equivalent SPARC Branch Example

add l1, -1, l1 ! l1 = l1 - 1

subcc l1, 0, g0 ! g0 = l1 - 0

bne LOOP

add l2, l3, l2

...

(b) [10 pts] For branch-in-ID implementations, why might it be possible to attain higher clock frequencies
for condition-code ISAs, like SPARC, than for register-test branche ISAs, like MIPS.

Condition code performance advantage.

6
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Problem 1: (10 pts) Consider a new floating point instruction nin.d which uses a 5-stage computation
unit, N1 - N5 (in contrast to FP add’s A1-A4). The format and register usage for nin.d is the same as
the other FP arithmetic instructions. Modify the implementation below so that it can execute nin.d. Hint:
This is an easy question, nin.d is just like the FP add and multiply, except it’s 5 stages.

Add the datapath components, including the functional unit stages (N1 to N5).

Add control logic for proper write-float and structural hazard detection (as is already present for add
and multiply). Be sure not to break existing instructions.

The changes must fit in efficiently with what is already present.

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M
1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0
1

2

2
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Problem 2: (15 pts) With the MIPS implementation illustrated below floating-point add and multiply
instructions do not raise precise exceptions. If a programmer needs a precise exception for a particular FP
instruction he or she can follow it with a test (test for exception) instruction. In the code below test is
used to provide a precise exception for mul.d.

mul.d f2, f2, f6

test

sub.d f16, f14, f20

The test instruction will stall in ID for the minimum number of cycles necessary to ensure a precise exception
and will suppress a WF if necessary.

(a) Add hardware to implement the test instruction. The output of is test is 1 if a test instruction is
in ID. Assume there are A4 and M6 outputs that indicate whether an exception was raised. These can be
checked in the middle of the cycle.

Add control logic to stall the pipeline using a new input to the Stall ID or gate. Hint: Very little logic
is needed.

Add logic to suppress WF when necessary.

The hardware should work correctly for floating-point multiplies and adds.

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M
1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0
1

2

is test

3
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Problem 2, continued:

(b) Show an example in which, in a faulty implementation, the test instruction stalls one less than the
minimum number of cycles and as a result an exception is not precise.

Example code and pipeline execution diagram, including fetch of first handler instruction.

Explain why the exception is not precise.

4
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Problem 3: (20 pts) The code below has two branches, branch B1 implements a 3-iteration loop with
outcome pattern T T N T T N· · ·. The outcome pattern for branch B2 is shown below. Note that B1 executes
three times for each execution of B2.

The code runs on three systems, the branch predictor on all systems uses a 214-entry BHT. One system
has a bimodal predictor, one system uses a local history predictor with a 10-outcome local history, and one
system uses a global predictor with a 10-outcome global history.

BIGLOOP: Note: B1 and B2 are the only branches in this code.

T1:

B1: bne r3, r4 T1 .. 3 iteration loop ..

# .. no CTIs ..

B2: beq r1, r2 T2 N N N T N N T N N N T N N T N N N T N N T N N N T N N T ...

T2:

j BIGLOOP

What is the accuracy of the bimodal predictor on branch B2 after warmup?

What is the accuracy of the local predictor on branch B2 after warmup?

What is the size of the BHT and PHT, in bits, needed to implement the local predictor? Only take into
account the storage need for the branch predictor, omit things like CTI type.

What is the minimum local history size needed to achieve 100% accuracy on branch B2 using the local
predictor? Explain.

What is the minimum global history size needed to achieve 100% accuracy on branch B2 using the global
predictor? Explain.

5
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Problem 4: (15 pts) Consider two alternatives for improving the performance of our familiar scalar 5-stage
implementation: an n-way superscalar implementation or a 5n-stage superpipelined implementation.

(a) Both systems can potentially reduce execution time by a factor of n. Explain how this is achieved for each
system in terms of CPI (cycles per instructions), clock frequency, and other relevant factors. The answers
might read, “Because of . . . the CPI is x2 times larger which causes . . . but . . . and so overall execution is n
times faster.”

Explain how the superscalar system is potentially n times faster.

Explain how the superpipelined system is potentially n times faster.

(b) Bypass paths add substantially to the cost of sufficiently large superscalar systems. Provide expressions
in terms of n for the cost of bypass paths in both systems. Briefly justify your answers, using a diagram if
necessary.

Expression for the cost of bypass paths in superscalar systems, with quick diagram and brief description.

Expression for the cost of bypass paths in superpipelined systems, with quick diagram and brief descrip-
tion.

(c) Ideally the 5n-stage superpipelined system would have a speedup of n (the scalar system would take n
times longer than the superpipelined system to run a program). Consider a program that has no nearby
dependencies so that the superpipelined system does not have to stall.

Explain why the speedup of the superpipelined system might be t0+t1
t0+

t1
n

, where the clock frequency of our

familiar scalar system is 1
t0+t1

.

Explain what t0 is likely to be.

6
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Problem 5: (20 pts) The diagram below is for a 4-MiB (222-character) set-associative cache with a line
size of 512 (29) characters, with the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32 b

64 b

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Associativity:

Memory Needed to Implement (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

7
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Problem 5, continued:

(b) The code below runs on the cache from the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

What is the hit ratio running the code below? Explain

double sum = 0.0;

short *a = 0x2000000; // sizeof(short) = 2 characters.

int i;

int ILIMIT = 1 << 10; // = 210

for (i=0; i<ILIMIT; i++) sum += a[ i ];

(c) The code below runs on a direct mapped (not set-associative) cache with a line size of 512 characters
and a capacity of 4 MiB. Grading note: The cache size was omitted from the original problem.

Determine an address for b that will result in a 0% hit ratio when running the code below.

Briefly explain.

double sum = 0.0;

short *a = 0x2000000; // sizeof(short) = 2 characters.

short *b = <-- FILL IN

int i;

int ILIMIT = 1 << 10; // = 210

for (i=0; i<ILIMIT; i++) sum += a[ i ] + b[ i ];

8
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Problem 6: (20 pts) Answer each question below.

(a) Describe restrictions (or lack of) on instruction addresses and the placement of instructions that distin-
guish RISC, CISC, and VLIW ISAs.

RISC address and placement restrictions.

Reason for each restriction (if any).

CISC address and placement restrictions.

Reason for each restriction (if any).

VLIW address and placement restrictions.

Reason for each restriction (if any).

9
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(b) A feature of the SPECcpu benchmarks is that they come with source code and it is the tester’s re-
sponsibility to compile (and run) them. Note: “are these” in the questions below refers to source code and
compiling.

Are these necessary, important, or irrelevant for testing an implementation of a new ISA? (This is not
a yes-or-no question.) Explain.

Are these necessary, important, or irrelevant for testing a new implementation of an existing ISA?
Explain.

(c) A corrupt member of the committee choosing benchmarks for the next SPECcpu suite has successfully
bribed the other committee members so that the benchmarks that were selected favor the corrupt member’s
company.

How might this be discovered? Indicate who would discover the problem and what public information
draw their suspicion?

Can we expect those involved to be sufficiently motivated to correct the situation? Explain.

10
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Problem 1: In the MIPS implementation below some wires are labeled with cycle numbers and values that
will then be present. For example, c2:4 indicates that at cycle 2 the wire will hold a 4. Other wires are
labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any labeled wire
is changed the code would execute incorrectly. Note that instruction addresses have been provided. [50 pts]

Finish a program consistent with these labels.

All register numbers and immediate values can be determined.

Be sure to fill the two blocks marked Fill In.

Provide an explanation for the EX-stage fill-in block.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

0 1

15:0

5‘b0

=0

=movn

c2:4

c8:6 c5:4720

c4:1

c4:1

c5 c6c3:0x2000

c5

c3:3

c4:0x2011

c___:___

Fill in cycle number and
value.

c2:0x20a2000e = 0010 0000 1010 0010 0000 0000 0000 1110

c5:____

Fill in and explain:

c1:8

c1:8

Cycle: 0 1 2 3 4 5 6 7 8

0x1000 IF ID EX ME WB

0x1004 IF ID EX ME WB

0x1034 IF ID EX ME WB

0x1038 IF ID EX ME WB

0x103c IF ID EX ME WB

Cycle: 0 1 2 3 4 5 6 7 8

2
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Problem 2: Answer the following questions about, or inspired by, ARM.

(a) [10 pts] MIPS lacks a counterpart to the ARM instruction shown below. Hint: This has nothing to do
with MIPS’ movn.

mov r1, #5 // Move the constant 5 to register r1.

Explain how r0 makes such a MIPS instruction unnecessary.

Show how to perform the same operation using MIPS instruction(s).

(b) [5 pts] The ARM ISA states that the result of executing an instruction like str r15, [r1] is that either
PC+8 or PC+12 is stored in memory, depending on the implementation. (Remember that ARM r15 is an
alias for PC.)

What is the benefit of making the result of the store implementation dependent?

(c) [5 pts] Consider an ISA which stated that the number of branch delay slots could be either zero or one,
depending on the implementation.

As an ISA feature, how does this delay-slot implementation dependence compare in practicality to ARM’s
store PC implementation dependent behavior?
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Problem 3: In RISC ISAs instructions fixed size, that is, all instructions are the same size. For example,
in MIPS, all instructions are 32 bits. The character size in MIPS (and all ISAs mentioned in this test) is 8
bits.

(a) [5 pts] Describe a benefit of having fixed-size instructions. (This answer can be mentioned in the next
answer’s explanation.)

Fixed-size instruction benefit for RISC.

(b) [5 pts] In the Itanium VLIW ISA all instructions are 41 bits. Why would 41-bit instructions be difficult or
wasteful to implement in a RISC ISA, such as MIPS, but cause no difficulties in VLIW ISA implementations,
including Itanium implementations.

Forty-one bit RISC instructions difficult or wasteful because:

Forty-one bit VLIW instructions not wasteful and make sense because:

4
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Problem 4: Answer the following compiler questions.

(a) [10 pts] A company is considering removing a bypass connection in a design of an implementation.
Analysis on good test programs shows that performance drops by 5% with the bypass removed (and no
other changes).

What can compiler writers do about the performance drop?

(b) [10 pts] Dead-code elimination is a commonly used compiler optimization, while profiling is used less
often because it is a multi-step process.

Using an example briefly describe dead-code elimination.

Briefly describe the steps used in profiling.

Which is more likely to result in disappointing results that surprise the programmer? Explain.

5
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Problem 1: (10 pts) The tables below show the state of a dynamically scheduled system using method 3
during the execution of a code fragment.

• The code is preceded by many nop instructions.

• Instructions use either a 4-stage FP multiply unit (M1-M4) or a 2-stage FP add unit (A1, A2).

• Assume that there are unlimited RR, WF and execute (A,M) units.

(a) Show a program and pipeline execution diagram consistent with these tables.

Show program and all stages used.

On the physical register file show where physical registers are removed from the free list, using a [, and
where they are put back in the free list, using a ].

All destination registers can be determined exactly.

The time for all stages can be determined exactly.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

IF ID

IF ID

IF ID

IF ID

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID Register Map

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

f15 9 39

f20 16 43 82 93

Commit Register Map

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

f15 9 39

f20 16 43 82 93

Physical Register File

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

9 11

16 22

39 33

43 44

82 55

93 66

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2
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Problem 1, continued: The implementation diagram is provided below for references. Don’t forget to
answer the question below.

25:21

20:16
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ID Reg. Map
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Addr

Data

PC
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dstPR

dstVal.

WB
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Decode
dest. reg

ID
:incm

b

Addr

Addr

Data

Data
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D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

R
ec

ov
er



EA*

A1

M1

ME*

* Were called
L1 and L2.

(b) In the code fragment on the previous page only two true dependencies are possible.

Show them (by connecting the destination and source with an arrow).

Briefly explain why other dependencies are not possible.
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Problem 2: (30 pts) Answer the following branch predictor questions.

(a) The code below runs on two branch predictors, a bimodal predictor with a 210 entry BHT and a local
predictor with a 210 entry BHT and a 9-outcome history.

The outcomes of branch B1 form a repeating pattern as shown below.

The outcome pattern for branch B2 can be constructed by tossing a fair coin, adding a N N N for heads or
a T T T for tails, then repeating. More precisely, outcome 3i is a Bernoulli random variable with p = .5 and
outcomes 3i + 1 and 3i + 2 match outcome 3i, for i = 0, 1, 2, . . .. For example, the following is a possible
pattern of outcomes for B2: N N N T T T T T T. The following is not possible for B2: N N N T T N T T T,
it’s not possible because the number of consecutive N’s or T’s must be a multiple of 3.

LOOP:

B1: N N N N T T T N N N N T T T N N N N T T T...

B2: N N N T T T T T T N N N T T T N N N (See text.)

j LOOP

nop

For the questions below assume all tables are initially zero. All accuracies are after warmup.

What is the accuracy of the bimodal predictor on branch B1?

What is the accuracy of the local predictor on B1?

What is the minimum local history size needed to predict B1 with 100% accuracy ignoring branch B2.
Briefly explain.

What is the approximate accuracy of the bimodal predictor on branch B2? Explain.

What is the approximate accuracy of the local predictor on branch B2 ignoring B1? Explain.

What is the approximate warmup time for the local predictor on B2? Note: This problem was alot more
difficult to get perfectly correct than originally intended.

4
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PC

Addr Data

D in 4b
Shift in
D in 1b
Shift in

Data Out

GHR

target

is branch

is jr

32

1

1

Addr Data+

+4

15:2

8:2

7

BHT

PHT

2

control
logic

1:1

IF ID

5:2

Not Shown: Predictor
Update, Predictor

Recovery

(b) The predictor to the right is from
the solution to last semester’s final exam
(and this semester’s Homework 4). It
is similar to gshare except in how the
GHR is updated. Like global and gshare,
when a branch is predicted the pre-
dicted outcome is shifted into the GHR,
but when a jr is predicted four bits of
the target are shifted into the GHR.

The code fragment below is the one
used to justify the predictor, except
that now the code is in a four-iteration
loop. Important assembler code is shown
in the comments.

for ( iter=0; iter<4; iter++ ) {

int c = getchar(); // Unpredictable

switch (c) { // jr $t0 # Jump to correct case.

case ’a’: x = 3; j++; break; // addi $t1, $0, 3; j ENDSWITCH; addi $t2, $t2, 1

case ’b’: x = 7; break;

...

case ’z’: x = 1; i++; break;

} // ENDSWITCH:

if ( x < 5 ) foo(); else bar();

}

Why might the prediction accuracy of the for loop branch be worse with the predictor above than an
ordinary gshare?

Considering the assembler code above, why might it make more sense to shift in the PC of the jump (j)
instructions rather than the target of the jr? Hint: This would only be useful when the case statements had
branches.

5
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Problem 3: (20 pts) The diagram below is for a 32-MiB (225-character) 4-way set-associative cache with
a line size of 4096 (212) characters, with the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out       :5

32 b

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Memory Needed to Implement (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

6

← → Spring 2008 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/2008/fe.pdf


Problem 3, continued:

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

What is the hit ratio running the code below? Explain

double sum = 0.0;

long *a = 0x2000000; // sizeof(long) = 8 characters.

int i,j;

int ILIMIT = 1 << 10; // = 210

for (j=0; j<2; j++)

for (i=0; i<ILIMIT; i++) sum += a[ i ];

(c) The code below runs on a fully associative cache with 27-byte lines, not the same as the previous cache.
Let h denote the hit ratio of the code below for a cache size of 8 MiB (223 bytes). As always, assume the
cache is empty before the code starts.

void p4(double *a, double *b) {

// sizeof double = 8 characters.

double sum = 0;

int size = 1 << 8;

for ( int d=0; d<size; d++ )

for ( int col=0; col<size; col++ )

sum += b[ col * size + d ] * a[ d * size + col ];

}

What is the minimum cache size for which the hit ratio is h? Explain.

7
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Problem 4: (15 pts) Answer each question below.

(a) Describe what’s wrong with each execution below.

What’s wrong with this execution on our usual bypassed 5-stage MIPS implementation.

# Cycle 0 1 2 3 4 5

lw r1, 0(r2) IF ID EX ME WB

add r3, r1, r4 IF ID EX ME WB

What are the two problems below with this execution on our usual scalar statically scheduled MIPS
implementation?

add.d f0, f1, f2 IF ID A1 A2 A3 A4 ME WF

What’s wrong with this execution on a 2-way superscalar dynamically scheduled machine?

# Cycle 0 1 2 3 4 5 6 7 8 9

add r1,r2,r3 IF ID Q RR EX WB C

add r4,r1,r6 IF ID Q RR EX WB C

add r7,r8,r9 IF ID Q RR EX WB C

add r8,r2,r1 IF ID Q RR EX WB C

# Cycle 0 1 2 3 4 5 6 7 8 9

8
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(b) Alas, it is unlikely that there will soon be 16-way, statically scheduled, superscalar implementations that
anyone would want to buy. Three reasons are started below, complete them.

It would be too expensive because . . .

The clock frequency would be too low because . . .

A few programs might realize the full potential of the processor, but most won’t because . . .

9
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Problem 5: (15 pts) Answer each question below.

(a) In ARM the PC is a general purpose register, r15. It could have been defined in ways consistent with
ISA design principles, but it wasn’t.

Describe how the use of r15 appears contrary to the usual goals of an ISA.

(b) The two code fragments below are supposed to do the same thing, the first is MIPS the second is
SPARC. In both a branch is taken if a less-than comparison is true. The code would work correctly if the
called subroutine returned immediately.

Explain why the SPARC code may not execute as intended.

Suggest a fix.

# MIPS Code

slt $s1, $s2, $s3 # Registers %s0-%s7 preserved.

jal some_subroutine

nop

bneq $s1, $0 SKIP1

...

! SPARC code

subcc %l2, %l3, %l1 ! Registers %l0-%l7 preserved.

call some_subroutine

nop

blt SKIP1

...

10
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Hint: The following two questions are really asking about exceptions.

(c) A compiler writer is wondering whether dead-code elimination should remove the first assignment to x
in the code fragment below (which sure looks dead, right?).

x = a / b;

x = a + c;

The guy down the hall wrote a program that included these two lines and that program would run differently
if dead-code elimination removed the first assignment (the one with the division). The difference has nothing
to do with timing or the size of the program.

Why might the program have run differently?

The compiler writer wants to DTRT (do the right thing), how does he or she find out what the right
thing is?

(d) The code fragment below may have come from the code in the previous problem.

div.d f0, f2, f4

add.d f0, f2, f6

Designers of an implementation are considering whether to avoid WAW hazards like the one above by convert-
ing the div.d to a nop when the add.d reaches ID. This will work correctly under ordinary circumstances.

Show a pipeline execution diagram illustrating the WAW hazard.

Under what circumstances will this produce the wrong answer?

11
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Problem 6: (10 pts) SPECcpu provides a separate set of training inputs to be used for feedback-directed
optimization (FDO) techniques, such as profiling.

Why is a separate training input set needed?

Why might an honest and good tester want to substitute a different training set?

The run and reporting rules don’t allow such a substitution.

Why do you think the run and reporting rules don’t allow a training set substitution when they allow
so much flexibility on compilers, optimizations, and libraries?

12
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Problem 1: In the MIPS implementation below some wires are labeled with cycle numbers and values that
will then be present. For example, c2:9 indicates that at cycle 2 the wire will hold a 9. Other wires are
labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any labeled wire
is changed the code would execute incorrectly. Note that the fourth instruction has been provided. [50 pts]

Finish a program consistent with these labels.

All register numbers and immediate values can be determined.

Be sure to fill the block marked Fill In.

format
immed

IR

Addr25:21

20:16

IF

ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

c1

c2:9c1:1

c3:-2

c2:4

c3

c4

c3:6

c6: FILL
IN

c6:0xaaaa

c6:8

c6

c5:10 c5:0x22

IM
PO

RT
AN

T

THAT’S MINUS
TWO

Cycle: 0 1 2 3 4 5 6 7 8

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

lb r3, 0xB(r1) IF ID EX ME WB

IF ID EX ME WB

Cycle: 0 1 2 3 4 5 6 7 8
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Problem 2: The VAX locc instruction (from Homework 3) appears below, along with its encoding (taken
from the Homework 3 solution).[20 pts]

locc #65, r2, (r3)

Instruction Encoding:

-opcode- -- 1st operand ---- -- 2nd op - -- 3rd op -

locc imm PC* immed reg r2 reg-d r3

mode value mode mode

0x3a 0x8 0xf 0x41 0x5 0x2 0x6 0x3 <- Encoded value.

7 0 7 4 3 0 7 0 7 4 3 0 7 4 3 0 <- Bit position.

(a) A MIPS implementation can easily retrieve its two source register values in one clock cycle.

What about the VAX instruction formats makes one-cycle source register value retrieval more difficult in
a VAX implementation (without lowering clock frequency)? Consider instructions with at most two source
register operands.

(b) The constant 65 (0x41) is encoded in immediate mode, taking a total of two bytes, rather than literal
mode, which would take only one byte if 65 were small enough for literal mode.

Given the way VAX encodes operands one might expect the maximum literal size to be only four bits. Why?

In fact, the maximum literal size is six bits. How is that accomplished? (If you don’t know or remember the
details then make up something reasonable.)

3
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Problem 3: Under SPECcpu2006 base rules at most four compiler optimization switches can be used per
language. [15 pts]

What is the rationale for that restriction?

Suppose a tester would like to use five options:

cc -O4 --optimization-a --optimization-b --optimization-c --optimization-d

The tester modifies the compiler by combining options a and b, the modified compiler is made available as
a product. Now compilation can be done consistent with the rules:

cc -O4 --optimization-ab --optimization-c --optimization-d

Should that be considered cheating? Explain why or why not.

4
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Problem 4: Answer each question below.[15 pts]

(a) In MIPS the branch instruction uses a 16-bit immediate to specify a displacement target, and the jal

instruction uses a 26-bit immediate. Why does it make sense to choose a coding for jal that has a larger
immediate?

(b) An ISA should be designed to support decades of implementations but invariably ISA designers are biased
towards a first implementation at the expense of later ones. A branch delay slot (as present in MIPS and
SPARC, for example) is a good example of such a phenomenon.

Explain why the branch delay slot is a good example of a shortsighted ISA feature.

5
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Problem 1: (25 pts) Suppose it turns out that many mul.d instructions are executed with a 0 or 1 for one
of the operands, in that case the product could be computed in less than the six stages used in the class
implementation. The MIPS implementation below includes a new multiply fast unit, Mf, for such situations.

Mf has two inputs (unlabeled) and two outputs, valid and prod (they are not yet connected to anything).
As with A1 and M1, IEEE 754 doubles are expected at the inputs of Mf. If one of the inputs is 0 or 1 then the
valid output will be 1 (otherwise it is 0). If valid is 1 the prod output is the product of the two inputs;
both outputs are available by the end of the cycle.

Call a multiply fast if one of its operands is 0 or 1.

USE NEXT PAGE FOR SOLUTION!

fmt imm

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM
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ALUAddr

Data

Data
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we

fd

we

A3A2A1

M3 M4 M5

xw

fd
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xw

fd
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xw

M2M
1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+ 15:0 29:0

0
1

2

Mf
valid

prod

USE NEXT PAGE FOR SOLUTION!

(a) Add datapath and control logic for Mf meeting the requirements below:

Add datapath so the Mf output will be written to the FP register file at the right time.

In order of decreasing priority: the added datapath must be correct, must not increase critical paths,
and should use as little new hardware as possible.

The control logic must detect and handle the new WF structural hazard with preceding instructions that’s
possible when writing a fast product.

If Mf is used then the mul.d’s usual WF slot should be available for other instructions. For example,
suppose the second instruction after mul.d is an add.d. If the multiply is normal the add.d would stall, if
the multiply is fast the add.d shouldn’t stall (at least for the WF conflict with mul.d).

2
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(b) Add bypass hardware and control logic so that the code below executes without a stall if the mul.d turns
out to be fast. For this part assume that multiplexors at FP unit inputs won’t add to critical path.
mul.d f2, f4, f6

add.d f8, f2, f10

Bypass hardware for case above.

fmt imm

IR

Addr
25:21

20:16

IF EX WBMEM
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M3 M4 M5

xw

fd

we
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fd

we
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uses FP mul

uses FP add

FP load
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Problem 2: (25 pts) Answer the following predictor questions.

(a) The code below executes on three systems, one uses a bimodal predictor with a 214-entry BHT, one uses
a local predictor with a 214-entry BHT and a 7-outcome local history, and one uses a global predictor with
a 7-outcome global history. Consider the execution of the code below, all branches are shown.

BIGLOOP:

...

B1: beq r1, r2, SKIP1 T T T T N T T T T N T T T T N T T T T N ...

...

SKIP1:

...

B2: bne r3,r4 SKIP2 T T T N N N T T T N N N T T T N N N T T T N N N ...

...

SKIP2:

...

j BIGLOOP

nop

For partial credit show work, not just answer.

Accuracy of bimodal predictor on B1 after warmup:

Accuracy of bimodal predictor on B2 after warmup:

Accuracy of local predictor on B2 after warmup:

Warmup time of local predictor on B2:

Minimum local history size for 100% accuracy of local predictor on B2 (without ignoring B1) (show
work):

Accuracy of global predictor on B2 after warmup:

Warmup time of global predictor on B2 (explain):

4
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(b) Consider the execution of the code fragment below on a system using branch prediction. The value of c
used in the switch statement is random, uniformly distributed over a to z, and outcomes are independent
(like a 26-sided die). The branch implementing the if ( x < 5 ) statement, which will be called the if
branch, is taken 50% of the time.

int c = getchar(); // Unpredictable

switch (c) {

case ’a’: x = 3; j++; break;

case ’b’: x = 7; break;

...

case ’z’: x = 1; i++; break;

}

if ( x < 5 ) foo(); else bar();

As shown below, the switch construct is implemented using a dispatch table and a jr, and other jumps.
The switch construct itself and the case blocks use no branches.

# Part of code implementing switch construct.

# Value in register $t1 has been computed using variable c.

lw $t0, 0($t1) # Load the address of the case statement corresponding to c.

jr $t0 # Jump to case statement.

nop

# Case ’a’

addi $t5, $0, 3 # x = 3;

j endswitch

addi $t7, $t7, 1 # j++

...

The predictors covered in class would all achieve just a 50% prediction accuracy on the if branch.

Modify one of the predictors used in class so that it does better than 50% on the if branch. Hint: Note that x
is assigned a different constant in each case statement. A correct solution requires just a small modification
of one of the predictors shown in class.

Briefly explain the idea behind your predictor.

Draw a diagram of the predictor.

Show tables such as BHT and PHT.

5
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Problem 3: (20 pts) The diagram below is for a 256-MiB (228-character) set-associative cache with a line
size of 64 characters on a system with the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU
Addr

Data

Data

 Addr
Out

Tag

 Addr

=Tag

Valid
Data

 Addr
Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out 23:

64 b

32 b

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Associativity:

Memory Needed to Implement (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

6
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Problem 3, continued:

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

What is the hit ratio running the code below? Explain

double sum = 0.0;

long *a = 0x2000000; // sizeof(long) = 8 characters.

int i;

int ILIMIT = 1 << 10; // = 210

for(i=0; i<ILIMIT; i++) sum += a[ i ];

(c) Consider a 1 MiB (220 byte) direct mapped cache with a line size of 256 characters (not the same as
the one from parts a and b) for a system with a 32-bit address space. Suppose this cache has the following
defect: a particular bit position in the tag comparison unit will match even if the tags differ. That is, if the
bad bit position were 2 then tags 0x5 and 0x1 would match. Other cache hardware functions correctly. The
cache is write through and write around.

Complete the program below so that it finds the bad bit position in a small amount of time and assigns
it to badbit.

For maximum partial credit briefly describe your strategy.

• The cache is empty when the program starts.

• Assume that any address can be read or written.

char *a = 0x1000;

int bad_bit = -1; // At end should be set to position of bad tag bit.

7
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Problem 4: Answer each question below.

(a) (6 pts) A trap instruction is sort of like a procedure call (e.g., jal) to the operating system.

Describe a difference between a trap and jal in how the target address is specified.

Describe another difference between a trap and a jal.

(b) (6 pts) A log (logarithm) instruction is to be added to an ISA. Group E wants to define the log

instruction as producing the IEEE 754 double representation that is closest to the exact result. Group A
would define log as producing any result within a certain number of bits of the exact result. Group A argues
that the precision of an exact result is not needed and their approximate result is sufficient. Group E agrees
with this, they want an exact result for other reasons. Hint: Think about the reasons for separating ISA and
implementation.

Why might group A want an approximate result?

Why might group E want an exact result?

8
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(c) (6 pts) Consider two scalar MIPS implementations, implementation A is similar to the one covered in
class with the familiar stages IF ID EX ME WB while implementation B has stages IF I1 I2 I3 I4 EX ME

WB. The two implementations run at the same clock frequency and are similar in other ways.

Explain why implementation A does not need a branch predictor, or at best would only gain a small
amount of performance.

Explain why a branch predictor would help implementation B much more than implementation A.

Consider the performance of implementation A and implementation B when branch prediction is perfect
for both. Which (if any) is faster, and by how much? Explain, state any assumptions made.

9
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(d) (6 pts) The code below executes on a two-way superscalar dynamically scheduled machine similar to the
one presented in class. The sub instruction reads the value of r1 from the register file in cycle 10, xori
writes a value for r1 in cycle 6 and lw writes a value for r1 in cycle 9.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

lw r1, 0(r2) IF ID Q RR EA ME WB C

add r3, r9, r1 IF ID Q RR EX WB C

or r6, r3, r8 IF ID Q RR EX WB C

xori r1, r4, 5 IF ID Q RR EX WB C

sub r5, r1, r3 IF ID Q RR EX WB C

Briefly explain why the code runs correctly despite the fact that lw writes after xori.

(e) (6 pts) Modern VLIW ISAs are designed with modern implementations in mind, unlike decades old RISC
ISAs.

Show the contents of a typical VLIW bundle.

Provide an example of a VLIW feature that’s designed to make implementation easier. Explain how it
does so.

10
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Problem 1: In the MIPS implementation below some wires are labeled with cycle numbers and values that
will then be present. For example, c1:15 indicates that at cycle 1 the wire will hold a 15. Other wires
are labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any labeled
wire is changed the code would execute incorrectly. Note that the last instruction and the address of two
instructions have been provided. [40 pts]

Finish a program consistent with these labels.

All register numbers and immediate values can be determined.

Be sure to fill the three blocks marked Fill In.

format
immed

IR

Addr25:21

20:16

IF ID

EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

=

30 2
"0"

+
15:0

25:0

29:26

29:0

01

15:0

c1:15
c4:12

c1:14

Fill In
c3:___

c5:0x5e1f

c2:6

c3

c3

Fill In
c6:___

c4:0x1006

Fill In
c7:___

c4:19

c6

c5

c3:0

Cycle: 0 1 2 3 4 5 6 7 8

0x1000 IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

0x1030 sb r17, 3(r4) IF ID EX ME WB

Cycle: 0 1 2 3 4 5 6 7 8

2

← → Spring 2007 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4720/2007/mt.pdf


Problem 2: Answer each question below.

(a) Show the encoding of the MIPS xor instruction below. In particular, show the name of each field in the
encoded instruction, the fields’ bit positions, and the fields’ values. If you don’t know the value of a field
(there’s one or two you’re not expected to know) make up a value and label it “made up.” Hint: It is not
cheating to look at the diagram for Problem 1.

xor r5, r7, r10

[10 pts] Encoding showing field names, bit positions, and values.

(b) Unlike some other benchmark suites, in SPECcpu the tester compiles the benchmarks (rather than having
SPEC provide the benchmarks already compiled). [10 pts]

How does this difference make SPECcpu valuable to those in the area of computer architecture?

Why might this difference make SPECcpu less valuable to those looking for the fastest computer to run their
favorite game?

(c) A company is considering adding a BCD data type to their new ISA. An analysis of a suite of Cobol
programs, widely used by their customers, shows that the ISA’s BCD data type would be extensively used.
[10 pts]

What more does the company need to know to make the decision?

3
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Problem 3: Answer each question below.

(a) The MIPS code below loads a character from memory and places it in bit positions 15:8 of register r3.
[10 pts]

lbu r1, 0(r2) # Note: r2 can be any address.

sll r1, r1, 8

and r3, r3, r4 # r4 = 0xffff00ff

or r3, r3, r1

Explain how this code is similar to, and differs from, the operation performed by lwl and lwr (from Home-
work 1).

Given that MIPS already has lwl and lwr is it worthwhile adding an instruction that performs the same
operation as the code above? Explain, stating any necessary assumptions or made-up data.

4
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(b) The first code fragment below, standard MIPS, uses a slt to perform a comparison for a branch. The
second uses a proposed MIPS branch instruction that does the comparison itself and as a result the target is
fetched one cycle sooner. The first execution is on sImp, an implementation of standard MIPS, the second
execution is on bImp, an implementation of the proposed MIPS; bImp includes blt but is otherwise identical
to sImp. [10 pts]

# Standard MIPS Cyc: 0 1 2 3 4 5 6 7

slt r1, r2, r3 IF ID EX ME WB

bne r1, r0, TARG IF ID EX ME WB

nop IF ID EX ME WB

TARG: xor r4, r5, r6 IF ID EX ME WB

# Proposed MIPS Cyc: 0 1 2 3 4 5 6 7

blt r2, r3, TARG IF ID EX ME WB

nop IF ID EX ME WB

TARG: xor r4, r5, r6 IF ID EX ME WB

Why might the clock frequency of bImp be lower than sImp?

How does knowing the percentage of branches in a program help determine if bImp can run the program
faster than sImp (when compiled for the respective implementation)?

5
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(c) All a compiler needs to know about the target (the implementation being compiled for) is its ISA.
However, if the compiler also knows the implementation it can produce faster code. [10 pts]

What’s wrong with the following statement: If the compiler also knows the target implementation it can
make better register assignment decisions since it knows the exact number of registers available.

How can the compiler produce better code knowing operation latencies, such as the time needed for a mul

instruction?

6
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format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPCInt Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2M
1

xw xw

fd

we

"0"
"2"
"1"

30 2
"0"

+ 15:0 29:0

0
1

2

A B C

D

Stall
ID

Problem 1:
(20 pts) The
statically sched-
uled MIPS
implementa-
tion illustrated
to the right
is taken from
the class notes.
To avoid mak-
ing things too
easy some de-
scriptions were
removed from
logic blocks
in the lower-
left corner.

(a) The execution of a code
fragment is shown below, fol-
lowed by a table with rows
corresponding to labeled wires
in the diagram (including
Stall ID). Fill in the table
showing values on those wires
only for cycles in which those
values are used. That is, if
a value in the table is changed
execution must be incorrect.

Complete the table, omitting unused values.

# Cycle 0 1 2 3 4 5 6 7 8 9 10

mul.d f2, f12, f18 IF ID M1 M2 M3 M4 M5 M6 WF

add.d f8, f10, f16 IF ID A1 A2 A3 A4 WF

sub.d f6, f20, f14 IF ID -> A1 A2 A3 A4 WF

lwc1 f4, 0(r1) IF -> ID -------> EX ME WF

# Cycle 0 1 2 3 4 5 6 7 8 9 10

A:

B:

C:

D:

Stall ID:

# Cycle 0 1 2 3 4 5 6 7 8 9 10

2
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format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPCInt Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2M
1

xw xw

fd

we

"0"
"2"
"1"

30 2
"0"

+ 15:0 29:0

0
1

2

Stall
ID

(b) Show the execution of the code below on the implementation assuming that all needed bypass are present.
Don’t forget to check for dependencies. (Instruction mtc1 moves a value from an integer register to a floating-
point register.)

Pipeline diagram.

mtc1 f2, r7

add.s f3, f4, f2

add.s f6, f3, f8

(c) Add the bypass paths needed by the code above and show the control logic for the added paths. Do not
add unneeded bypass paths. Hint: Control logic should consist of two one-bit signals.

Bypass paths for code above.

Control logic for added bypass paths.
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Problem 2: (20 pts) Illustrated is the execution of some code on our dynamically scheduled MIPS imple-
mentation along with the contents of the ID register map, the commit register map, and the physical register
file. The implementation itself is shown on the next page.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.d f2, f4, f6 IF ID Q RR M1 M2 M3 M4 WF C

add.d f4, f2, f10 IF ID Q RR A1 A2 A3 WF C

ldc1 f2,0(r1) IF ID Q EA ME WF C

sub.d f2, f2, f8 IF ID Q RR A1 A2 A3 WF C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID Register Map

F2: 12 9 71 99

F4: 18 51

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Commit Register Map

F2: 12 9 71 99

F4: 18 51

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Physical Register File

9 [ 2.1 ]

12 2.0 ]

18 4.0 ]

51 [ 4.1

71 [ 2.2 ]

99 [ 2.3

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(a) Answer the following

Which physical register was allocated for f4 in add.d?

If one used the ID map to determine the value of f2 in cycle 11, what value would one obtain? Hint:
It’s a two-step process.

If one used the commit map to determine the value of f2 in cycle 11, what value would one obtain?
Hint: It’s a two-step process.

In cycle 11 where is the value of f2 from ldc1 located?

4
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Problem 2, continued: Dynamically scheduled processor shown for reference.

25:21

20:16
rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

PC

ID:dst
ID:St: C,X

0,0
WB:ROB #
WB:C,X

Addr

D In

Re
or

de
r B

uf
fe

r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

Fr
ee

 L
ist



ID:dstPR
ID:dstPR

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q EX

dstPR
dstVal.

WB

RR

WB

Decode
dest. reg

ID:incm
b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

Re
co

ve
r

EA*

A1

M1

ME*

* Were called
L1 and L2.
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Problem 2, continued:
# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.d f2, f4, f6 IF ID Q RR M1 M2 M3 M4 WF C

add.d f4, f2, f10 IF ID Q RR A1 A2 A3 WF C

ldc1 f2,0(r1) IF ID Q EA ME WF C

sub.d f2, f2, f8 IF ID Q RR A1 A2 A3 WF C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID Register Map

F2: 12 9 71 99

F4: 18 51

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Commit Register Map

F2: 12 9 71 99

F4: 18 51

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Physical Register File

9 [ 2.1 ]

12 2.0 ]

18 4.0 ]

51 [ 4.1

71 [ 2.2 ]

99 [ 2.3

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(b) Suppose that in cycle 11 the contents of physical register number 71 was somehow changed, perhaps due
to a one-time problem. If the code executes as shown then the program runs correctly. But if a hardware
interrupt happens (is taken) at the wrong time execution would be incorrect because of this change. Explain
why, illustrate timing details on the diagram.

Reason for incorrect execution.

Timing details on diagram.

6
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Problem 3: (20 pts) The MIPS code below runs on a system using a bimodal branch predictor of the
indicated sizes. Branch outcomes are shown for each branch, the outcome patterns will continue to repeat.

BIGLOOP:

B1: 0x1000 beq r1, r2 T T T T T N T N N T T T T T T N T N N T ...

... nonbranch insn.

...

B2: 0x1100 bne r3, r4 N N N N N N N N N N N N N N N N N N N N ...

nop

j BIGLOOP

nop

(a) What is the accuracy after warmup of a bimodal branch predictor with a 214-entry BHT on branch B1?

214-entry BHT bimodal accuracy on B1.

(b) What is the accuracy after warmup of a bimodal branch predictor with a 24-entry BHT on branch B1?

24-entry BHT bimodal accuracy on B1.

(c) What is the smallest BHT size for which one can obtain the same accuracy on branch B1 as a 214 entry
table? Explain.

Smallest size for 214 entry accuracy.

Reason.

(d) Normally the BHT in a MIPS implementation is indexed starting at bit position 2 (omitting the 2
least-significant digits) of the branch PC (address). For the following questions think about answers to the
preceding parts but answer the question for ordinary programs, not the code sample above.

Why might starting at position 3 or 4 be better?

Why might starting at position 10 or 11 be worse?

7
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Problem 4: (20 pts) The diagram below is for a 4-MiB (222-character) set-associative cache with a line
size of 16 characters on a system with the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU
Addr

Data

Data

 Addr
Out

Tag

 Addr

=Tag

Valid
Data

 Addr
Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32 b

32 b

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Associativity:

Memory Needed to Implement (Indicate Unit!!):

Show the bit categorization for a 64-way set-associative cache with the same capacity and line size.

Address:

8
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Problem 4, continued:

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

What is the hit ratio running the code below? Explain

double sum = 0.0;

short *a = 0x2000000; // sizeof(short) = 2 characters.

int i;

int ILIMIT = 1 << 10; // = 210

for(i=0; i<ILIMIT; i++) sum += a[ i ];

(c) The code below runs on a direct mapped cache with the same line size and capacity as the cache from the
first part. Initially the cache is empty; consider only accesses to the arrays. Choose b, ILIMIT, and ISTRIDE

so that the cache is completely filled in the minimum number of iterations (minimum ILIMIT). (Every access
should be a miss.)

b, ILIMIT, and ISTRIDE

Briefly explain each choice.

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

char *b = // FILL IN

int i;

int ILIMIT = // FILL IN

int ISTRIDE = // FILL IN

for(i=0; i<ILIMIT; i++)

sum += a[ i * ISTRIDE ] + b[ i * ISTRIDE ];

9
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Problem 5: Answer each question below.

(a) (5 pts) Consider trap instructions and instructions that raise exceptions.

What are trap instructions typically used for?

Sometimes when an instruction in a program raises an exception the program ultimately is allowed to
continue. Give an example of such an exception, and what the handler might do.

(b) (5 pts) When a MIPS instruction raises an exception the type of exception is written to the cause register.
SPARC V8 lacks an equivalent of a cause register, so what does it use as a substitute? Explain.

SPARCs alternative to MIPS’ cause register.

10
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(c) (5 pts) An early critic might have said that the improvements realized by dynamically scheduled systems
could be achieved on much less expensive statically scheduled systems by using better compilers. The
particular compiler improvements would help statically scheduled systems but have no impact on dynamically
scheduled ones. Consider two-way superscalar systems for the examples needed below.

Explain what the compilers would have to do and why.

Provide an example, showing code before and after optimization.

(d) (5 pts) What is it about loads that allow dynamically scheduled systems to outperform statically scheduled
systems even with good compilers?

Explain.

11
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Problem 1: In the MIPS implementation below the data memory port is in an unusual position that avoids
a stall and allows the implementation of a new (to MIPS but not CISC ISAs) instruction. Some wires are

labeled with cycle numbers and values that will then be present. For example, C1:10 indicates that at
cycle 1 the wire will hold a 10. Other wires are labeled just with cycle numbers, indicating that the wire is
used at that cycle. If a value on any labeled wire is changed the code would execute incorrectly. [50 pts]

Write a program consistent with these labels.

All register numbers and immediate values can be determined.

Identify the new (to MIPS) instruction and describe what it does.

format
immed

IR

Addr25:21

20:16

IF

ID EX

WB

ME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

rtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

30 2
"0"

+
15:0

25:0

29:26

29:0

01

15:0

Addr
Data
In

Mem Port

Data
Out

C1:10

C5:8

C4:8

C3:6

C7:9

C3 C4

C5
C6

C6:12

C2

C4

C5

C5

C7

C2: 0010 0000 0100 0111 0000 0000 0000 1010

Cycle: 0 1 2 3 4 5 6 7 8

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

Cycle: 0 1 2 3 4 5 6 7 8

2
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Problem 2: Answer each question below.

(a) Both the SPARC subcc and MIPS slt instructions below determine if the contents of r1 (g1) is less than
r2 (g2).

! SPARC

subcc g1, g2, g3

# MIPS

slt r3, r1, r2

[5 pts] Show where each writes the comparison result, what is written, and how the result is used for a
branch.

[5 pts] Describe two ways in which the SPARC instruction is more powerful.

3
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(b) One advantage of variable-length ISAs is that programs are shorter (take up less memory). For each code
fragment below show how CISC instructions can reduce code size using the MIPS code below as the starting
point of an example: Make up CISC instruction(s) for the code below, show how they might be encoded,
and indicate how much smaller the code fragments are with the CISC instructions.

[5 pts] New CISC instruction(s). Encoding. Size Reduction.

lui r1, 0x1234

ori r1, r1, 0x5678

add r2, r2, r1

[5 pts] New CISC instruction(s). Encoding. Size Reduction.

jr r31

4
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Problem 3: Answer each question below.

(a) The SPECcpu2006 benchmark contains two suites, CINT2006 and CFP2006.

[8 pts] Why are there two suites? What would be the disadvantage of combining them into one suite?

(b) A company develops a new ISA and some implementations of it. It sells the implementations, but keeps
the ISA secret.

[8 pts] What’s wrong with that?

(c) Operations on packed operand data types often use saturating arithmetic.

[7 pts] What is it and why is it used? Explain using a typical application for packed-operand instructions.

(d) One reason to not use optimization is to make debugging (using a debugger) easier.

[7 pts] Describe two ways optimization makes debugging more difficult. Hint: Consider single-stepping
through code and printing variable values.

5
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Problem 1: In the MIPS implementation on the next page some wires are labeled with cycle numbers and
corresponding values. For example, c3:1 indicates that at cycle 3 the pointed-to wire will hold a 1. Other
wires are labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any
labeled wire is changed the code would execute incorrectly. The ALU label shows the arithmetic operation
performed at the indicated cycle.(20 pts)

• There are no branches or other control-transfer instructions.

• There are no stalls.

• Every instruction writes the floating-point register file.

• Some instruction(s) read the integer register file.

• One instruction has only briefly been covered, make up a reasonable name for it if you don’t
remember it.

Write a program consistent with these labels.

Some registers can be determined exactly, others must be made up. Use as many different register
numbers as possible while still being consistent with the labels.

Fill in the block in the lower-left of the diagram.

2
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Problem 1, continued:

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPCInt Reg File

FP Reg File

fdfd

WF
Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16

M6

we we
Decode
dest. reg

ID

A4

fd
we

fd
we

A3A2A
1

M3 M4 M
5

fd
we

fd
we

M2M
1

fd
we

uses FP add

uses FP mul

FP load

30 2
"0"

+ 15:0 29:0

ad
ml

ad ad
ml ml ml

ad ad
ml ml ml

c3:1 c4:10 c10:1 c10:20

c5

c6

c5

c3:24

s

t
x

 c3: x = s + t
 c4: x = t

c3:5

c1:12

c5:6

c1:
c2:
c3:
c4:
c5:

c1:
c2:
c3:
c4:
c5:

PLEASE
FILL IN

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12

IF ID _1 _2 _3 _4 _5 _6 WF

IF ID _1 _2 _3 _4 _5 _6 WF

IF ID _1 _2 _3 _4 _5 _6 WF

IF ID _1 _2 _3 _4 _5 _6 WF

IF ID _1 _2 _3 _4 _5 _6 WF

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12

3
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PC

BHT PHT

addr d addr d

local history

2

predict taken if >1

511:2

Predictor X

4:2

Problem 2: The code below runs on three sys-
tems which are identical except for the branch
predictors. One system uses a bimodal predic-
tor with a 1024-entry BHT, one uses a local his-
tory predictor with a 1024-entry BHT and a five-
outcome history, and one uses Predictor X, illus-
trated below. (The PHT input is a concatenation
of the local history and three branch PC bits.)
The code below has two branches, B1 and B2,
which execute in a repeating pattern as shown.
There are no other branches in the code.(20 pts)

Note: In the original problem the input to Predictor X used an exclusive or rather than a concatenation.

LOOP:

..

0x1000: B1: bne r1,r2 SKIP1 N N N T T N N N T T N N N T T N N N T T ...

..

SKIP1:

..

0x1124: B2: bne r3,r4, SKIP2 N N N T T T N N N T T T N N N T T T ...

..

SKIP2

..

j LOOP

What is the accuracy of the bimodal predictor on branch B1 after warmup?

Note: In the original exam the questions below asked about B1 rather than B2.

What is the accuracy of the local predictor on branch B2 after warmup? (Do not ignore branch B1 when
answering this part.)

What is the minimum local history size for the local predictor to achieve 100% accuracy on branch B2
(without ignoring B1)?

What is the accuracy of Predictor X on branch B2?

What is the minimum local history size for the Predictor X to achieve 100% accuracy on branch B2
(without ignoring B1)?

Explain why predictor X has lower or higher accuracy than the local predictor on branch B2.

As indicated above, B1 is at address 0x1000 and B2 is at address 0x1124. How would different branch
addresses affect the answers above?

4
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Problem 3: Consider the execution of MIPS code below. The code follows a large number of nop instruc-
tions. As can be seen the system below is statically scheduled. In the questions below “relatively simple”
means simple compared to dynamic scheduling.

(15 pts)

# PC Cycle: 0 1 2 3 4 5 6 7

0x1ff0: lh r1, 0(r2) IF ID EX ME WB

0x1ff4: lw r4, 8(r2) IF ID -> EX ME WB

0x1ff8: addi r6, r6, 1 IF ID -> EX ME WB

0x1ffc: xor r8, r9, r10 IF ID -> EX ME WB

0x2000: sub r11, r8, r13 IF -> ID EX ME WB

0x2004: and r14, r11, r16 IF -> ID -> EX ME WB

# PC Cycle: 0 1 2 3 4 5 6 7

What is the minimum fetch/decode width of a system that could produce that execution? (The x in
x-way superscalar)

Why is the fetch/decode width above a minimum and not an exact number?

What caused the and to stall in cycle 4? Could the stall be avoided?

What might have caused lw to stall? Suggest a relatively simple change to the implementation to avoid
such stalls.

What might have caused addi and xor to stall? Note: The original question also asked for a “relatively
simple solution.”

5
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Problem 4: Consider the dynamically scheduled implementation below. (15 pts)

25:21

20:16
rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

PC

ID:dst
ID:St: C,X

0,0

WB:ROB #
WB:C,X

Addr

D In

Re
or

de
r B

uf
fe

r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

Fr
ee

 L
ist



ID:dstPR
ID:dstPR

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q EX

dstPR
dstVal.

WB

RR

WB

Decode
dest. reg

ID:incm
b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

Re
co

ve
r

EA*

A1

M1

ME*

* Were called
L1 and L2.

(a) Where is the logic for finding the (data) dependencies that requiring bypassing most likely to be?

Indicate on diagram.

(b) Suppose due to a manufacturing error every entry in the ID register map is initialized to 12 after each
reset, but the commit register map was properly initialized. Initial register values are not defined, so getting
the wrong value for a register that was never written is not a problem here.

Which code fragment below is more likely to encounter a problem? Hint: It has something to do with
the connection from the ID Register Map to the ROB.
# Fragment A

add r1, r2, r3

add r2, r1, r5

add r1, r6, r7

add r2, r8, r9

nop

..

# Fragment B

add r0, r2, r3

add r0, r1, r5

nop

...

Explain what goes wrong.

Suppose millions of these defective implementations have already been manufactured. Suppose when
turned on the processor starts executing code at address 0x1000. What code could be put there to fix the
problem? (It’s not one of the fragments above because one of them only avoids it, later code could still
trigger it.) Hint: There’s enough room for the answer below.

6
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Problem 5: The diagram below is for a 64-MiB (226-character) set-associative cache on a system with the
usual 8-bit characters. (15 pts)

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU
Addr

Data

Data

 Addr
Out

Tag

 Addr

=Tag

Valid
Data

 Addr
Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

:

::5 .

:63:2416

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Associativity:

Memory Needed to Implement (Indicate Unit!!):

Line Size (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

7
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Problem 5, continued: For the problems on this page use the cache from the previous page.

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

What is the hit ratio running the code below? Explain

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

int i;

int ILIMIT = 1 << 10; // = 210

for(i=0; i<ILIMIT; i++) sum += a[ i * 4 ];

(c) The code below also runs in the cache from part a. Find the minimum values of JLIMIT and JSTRIDE

that will result in the code below having a 0% hit ratio.

JSTRIDE and JLIMIT

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

int i, j;

int ILIMIT = 1 << 10;

int JLIMIT = // FILL IN

int JSTRIDE = // FILL IN

for(i=0; i<ILIMIT; i++)

for(j=0; j<JLIMIT; j++)

sum += a[i + j * JSTRIDE ];

8
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Problem 6: Answer each question below.

(a) In MIPS, SPARC, and many other RISC ISAs memory accesses are aligned and so any instruction that
uses an un-aligned address, such as 0x1001 for a MIPS word, will raise an exception usually resulting in the
program exiting with a Bus Error.

Perhaps due to the stress of an upcoming code freeze for a product release, a mysterious programmer at
Software Company X secretly hacked the operating system of their SPARC computers so that loads and
stores to un-aligned addresses would complete correctly, as though un-aligned accesses were not forbidden.
There would be no more bus errors. (5 pts)

How might the mysterious programmer have done it?

Should Software Company X reward or punish the mysterious programmer? Explain.

(b) The SRAM used to implement caches is costly but in many cache designs can provide 1- or 2-cycle hit
latencies. If cost were not an issue, could one use SRAM for the entire memory system and get 1- or 2-cycle
latencies on all memory accesses?(5 pts)

Explain.

(c) Manufacturers have a great interest in having their processors score high in SPECcpu. Given this strong
interest how can we be sure that benchmark selection and the run & reporting rules have not been chosen
to favor a particular manufacturer? (This isn’t kindergarten, so “because it’s not allowed” is not a good
answer.)(5 pts)

Explain.

9
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Problem 1: The MIPS code below runs on the illustrated implementation. [10 pts]

Show the execution of the code below on the illustrated pipeline.

format
immed

IR

Addr25:21

20:16

IF
ID EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

=

30 2
"0"

+
15:0

25:0

29:26

29:0

01

# Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2)

add r1, r1, 7

sw r1, 0(r2)

# Cycle 0 1 2 3 4 5 6 7 8

Note: To keep the test from getting too long the following parts were not included on the original exam.
There should be at least one stall.

Think about the questions below for a few moments, then look at the problem on the next page.

Is it possible to add bypass connections to eliminate the stall and gain performance?

If bypasses won’t work does that mean it’s impossible to eliminate the stall?

2
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Problem 2: The five-stage MIPS implementation below has an ALU in the MX (new name for MEM)
stage (connections for that ALU are shown bold) and what was the ALU in the EA (new name for EX)
stage is now just an adder and is to be used only for loads and stores.

format
immed

IR

Addr25:21

20:16

IF
ID EA WBMX

rsv

rtv

IMM

NPC

eaAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

rxv
MD

dst dst dstDecode
dest. reg

NPC

=

30 2
"0"

+
15:0

25:0

29:26

29:0

Addr
Data
In

Mem
Port

Data
Out

alu

IMM
rtv

rsv

+

Now for loads and stores only.

(a) Add bypass connections needed so that the code below (same as last problem) executes as shown. Label
those bypass connections: LAS-c, where c is the cycle number in which the bypass connection is used. Do
not add unneeded bypass connections!

[10 pts] Add bypass connections, label with LAS-c.

# Cycle 0 1 2 3 4 5 6

lw r1,0(r2) IF ID EA MX WB

addi r1, r1, 7 IF ID EA MX WB

sw r1, 0(r2) IF ID EA MX WB

# Cycle 0 1 2 3 4 5 6

(b) Several connections to the EA-stage adder are now unneeded (but were needed when it was an ALU).
(Don’t add new connections here.)

[10 pts] Label unneeded EA-adder connections with an X at mux inputs.

3
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Problem 2, continued: The implementation below is identical to the one on the previous page.

format
immed

IR

Addr25:21

20:16

IF
ID EA WBMX

rsv

rtv

IMM

NPC

eaAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

rxv
MD

dst dst dstDecode
dest. reg

NPC

=

30 2
"0"

+
15:0

25:0

29:26

29:0

Addr
Data
In

Mem
Port

Data
Out

alu

IMM
rtv

rsv

+

Now for loads and stores only.

(c) For each code fragment below: Add reasonable bypass connections to eliminate stalls (if any). Show the
execution and label the bypass connections that are used (new or existing) with a cycle number. If there
is a stall circle Yes if an EX-stage ALU (in addition to the ME stage ALU) would remove the stall, if an
EX-stage ALU wouldn’t help circle No; if there is no stall don’t circle anything. [20 pts]

Add bypasses (if needed). Label bypasses used AS-c. Show execution. EX ALU would help: Yes No.

# Cycle 0 1 2 3 4 5 6 7 8

add r1, r2, r3 IF ID EA MX WB

sub r4, r1, r5

Add bypasses (if needed). Label bypasses used AL-c. Show execution. EX ALU would help: Yes No.

# Cycle 0 1 2 3 4 5 6 7 8

add r1, r2, r3 IF ID EA MX WB

lw r4, 4(r1)

Add bypasses (if needed). Label bypasses used LL-c. Show execution. EX ALU would help: Yes No.

# Cycle 0 1 2 3 4 5 6 7 8

lw r1, 12(r2) IF ID EA MX WB

lw r3, 16(r1)

Add bypasses (if needed). Label bypasses used AB-c. Show execution. EX ALU would help: Yes No.

# Cycle 0 1 2 3 4 5 6 7 8

addi r1, r1, 1 IF ID EA MX WB

beq r1,r2 TARG

nop

4
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Problem 3: Answer each question below.

(a) A computer’s scores on SPECint2000 are baseline, 2011; and result (peak) 2014. These baseline and
result scores are close, who might be responsible and should they be proud or ashamed: [10 pts]

How might the people who conducted the test be responsible for the close scores? Should they be proud or
ashamed?

How might the people who wrote the compiler be responsible for the close scores? Should they be proud or
ashamed?

(b) On a SPARC system the handler for trap number 4 is located at address 0xa0001000 and is 100 instruc-
tions long. [10 pts]

Show the Trap Base Register (TBR) value and Trap Table contents needed so that execution of a trap
instruction will reach this handler. (Don’t worry about returning.)

Why isn’t a user program allowed to call the handler directly, for example, using the ordinary call instruction
call 0xa0001000. (The SPARC call has a 30-bit immediate field so the target address is not too far away.)

What would happen if the user tried to execute the call instruction above?

5
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Problem 3, continued:

(c) Packed integer and BCD data types are very superficially similar. [10 pts]

Describe a situation in which a packed integer data type would be useful.

Describe a situation in which BCD would be useful.

(d) Describe the contents of a typical bundle in a VLIW ISA. [10 pts]

Bundle contents.

(e) Which is it more important to do a good job on, the ISA or the implementation? Explain. [10 pts]

Good job on ISA or implementation? Explain.

6
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Problem 1: The execution of code on a dynamically scheduled scalar MIPS implementation using Method
3 (the only one covered in class) is shown below. Beneath the diagram are signal labels, for example, ID:dst.
(25 pts)

(a) On the next page show the values of the signals at the cycles they are used.

• Some values are shown, they are needed to determine other values.

• All values can be determined.

• Ignore the distinction between integer and FP registers.

• The free list contents at cycle zero is shown on the lower right-hand side of the figure on the next
page.

25:21

20:16
rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

PC

ID:dst
ID:St: C,X

0,0

WB:ROB #
WB:C,X

Addr

D In

Re
or

de
r B

uf
fe

r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

Fr
ee

 L
ist



ID:dstPR
ID:dstPR

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q EX

dstPR
dstVal.

WB

RR

WB

Decode
dest. reg

ID:incm
b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

Re
co

ve
r

EA*

A1

M1

ME*

* Were called
L1 and L2.

Tables for answer on next page.
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Problem 1, continued:

25:21

20:16
rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

PC

ID:dst
ID:St: C,X

0,0

WB:ROB #
WB:C,X

Addr

D In
Re

or
de

r B
uf

fe
r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

Fr
ee

 L
ist



ID:dstPR
ID:dstPR

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q EX

dstPR
dstVal.

WB

RR

WB

Decode
dest. reg

ID:incm
b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

Re
co

ve
r

EA*

A1

M1

ME*

* Were called
L1 and L2.

Free list at cycle zero: 47, 49, 61, 32, 50, 46, 73, 60, 48, 95

LOOP: # First Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LOOP: # Second Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ID:rsPR 56 30 30

ID:rtPR 63 54

ID:dst

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ID:dstPR

ID:incmb

RR:rsPR

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RR:rtPR

WB:dstPR

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C:incmb

C:dstPR

C:dst

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3
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Problem 1, continued: The diagram below is for the same code on the same system as the previous part,
except now three iterations are shown.

25:21

20:16
rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

PC

ID:dst
ID:St: C,X

0,0

WB:ROB #
WB:C,X

Addr

D In

Re
or

de
r B

uf
fe

r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

Fr
ee

 L
ist



ID:dstPR
ID:dstPR

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q EX

dstPR
dstVal.

WB

RR

WB

Decode
dest. reg

ID:incm
b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

Re
co

ve
r

EA*

A1

M1

ME*

* Were called
L1 and L2.

LOOP: # First Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LOOP: # Second Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LOOP: # Third Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

(b) What is the CPI for a large number of iterations? Hint: It’s not 1.

CPI?

(c) Suppose the ROB can hold 256 entries and there are an unlimited number of physical registers. Assuming
a very large number of iterations, at about what cycle will fetch stall?

Fetch will stall at cycle ≈

(d) Would the code above run faster on a four-way superscalar dynamically scheduled system with the same
clock frequency and pipeline depth? Explain.

Circle One: Faster Not Faster.

Because

4
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Problem 2: The code fragments below run on three systems which are identical except for the branch
predictor: One uses a bimodal predictor with a 214-entry BHT, one uses a local predictor with an 8-outcome
local history and a 214-entry BHT, and one uses a global predictor with an 8-outcome global history. (25 pts)

(a) Provide the information requested below.

• All accuracies are after warmup.

• For the warmup time show the approximate number of times the predicted branch needs to be
executed before the predictor reaches its warmup accuracy. Assume the 2-bit counters start out
at 0 or 3, whichever is worse.

BIG:addi r3, r0, 3

LP: bne r3, r0 LP # Iterates four times.

addi r3, r3, -1

lw r1,0(r2)

C2: beq r1, 0 SK # T N T T N T N T T N T N T T N T N T T N ...

nop

nop

SK: j BIG

addi r1, r1, 4

Bimodal: accuracy on C2:

Bimodal: warmup time on C2:

Local: accuracy of C2:

Local: warmup time on C2:

Local: smallest history size needed for 100% accuracy on C2:

Global: accuracy on C2:

Global: warmup time on C2:

Global: smallest history size needed for 100% accuracy on C2:

5
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Problem 2, continued:

(b) The code below is similar to the code on the previous page except the four-iteration loop has been
replaced by two random branches. Each random branch will be taken with probability .5 and the outcome
is independent of everything, including the other random branch.

BIG:lb r3, 0(r4)

beq r3, r0 S2 # Random.

lb r3, 1(r4)

S2: beq r3, r0 S3 # Random.

addi r4, r4, 2

S3: nop

lw r1,0(r2)

C2: beq r1, 0 SK # T N T T N T N T T N T N T T N T N T T N ...

nop

nop

SK: j BIG

addi r1, r1, 4

Global: accuracy on C2:

Explain using GHR values.

Global: warmup time on C2:

Explain using GHR values.

Global: smallest history size needed for 100% accuracy on C2:

Explain using GHR values.

6
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Problem 3: The diagram below is for a 64-MiB (226-character) 16-way set-associative cache on a system
with the usual 8-bit characters. (20 pts)

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU
Addr

Data

Data

 Addr
Out

Tag

 Addr

=Tag

Valid
Data

 Addr
Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

64 b

32 b

:9

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Memory Needed to Implement (Indicate Unit!!):

Line Size (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

7
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Problem 3, continued: For the problems on this page use the cache from the previous page.

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

What is the hit ratio running the code below? Explain

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

int i;

int ILIMIT = 1 << 27; // = 227

for(i=0; i<ILIMIT; i++) sum += a[ i ];

for(i=0; i<ILIMIT; i++) sum += a[ i ];

(c) The slightly different code below runs on the same cache as the first part of this problem. Initially the
cache is empty; consider only accesses to the array.

Find the hit ratio. Very briefly explain.

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

int i;

int ILIMIT = 1 << 27;

for(i=0; i<ILIMIT; i++) sum += a[ i ];

for(i=ILIMIT-1; i>=0; i--) sum += a[ i ];

8
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Problem 4: Answer each question below.

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPCInt Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2M
1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+ 15:0 29:0

0
1

2

(a) The execution of some code
fragments on the illustrated im-
plementation appear below. Ex-
plain why each execution is im-
possible and show a corrected
pipeline execution diagram. (7 pts)

# Cycle 0 1 2 3 4 5 6

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r3 IF -> ID EX ME WB

Fix.

Was impossible because:

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r3 IF ID -> EX ME WB

xor r5, r6, r7 IF ID -> EX ME WB

Fix.

Was impossible because:

add.d f0, f2, f4 IF ID A1 A2 A3 A4 ME WB

Fix.

Was impossible because:

9

← → Spring 2006 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/2006/fe.pdf


(b) For each feature below indicate whether it is usually a feature of the ISA or the implementation, and
explain why it’s not a feature of the other. (7 pts)

Feature: The opcode can be found in bits 31:26.

ISA or Implementation?

Why not the other?

Feature: The add in the code below will stall for one cycle.

lw r1, 0(r2)

add r3, r1, r4

ISA or Implementation?

Why not the other?

Feature: Two consecutive delayed (as in MIPS) branches will yield unpredictable results.

bneq r1, r2 DEST1

beq r3, r4 DEST2

addi r5, r6, r7

ISA or Implementation?

Why not the other?

Feature: Integer addition overflow raises exception.

ISA or Implementation?

Why not the other?

10
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(c) Consider the use of a packed-operand 8-bit add (of the type described in class) to speed up the code
fragments below. For each fragment indicate whether it’s certainly feasible, feasible with certain assumptions,
or not feasible. (6 pts)

extern char *a, *b, *c;

for(i=0; i<1024; i++) a[i] = b[i] + c[i];

Circle One: No. Yes! Yes, assuming . . .

Explain.

extern int *a, *b, *c;

for(i=0; i<1024; i++) a[i] = b[i] + c[i];

Circle One: No. Yes! Yes, assuming . . .

Explain.

extern char *a, *b, *c;

for(i=1; i<1024; i++) a[i] = a[i] + a[i-1];

Circle One: No. Yes! Yes, assuming . . .

Explain.

11
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(d) MIPS and other RISC ISAs typically have instructions using displacement addressing but lack register
deferred addressing. (See the examples below.)

lw r1, 4(r2) # Displacement addressing.

lw r1, (r2) # Register deferred addressing.

Given that RISC and CISC ISAs have displacement addressing:

(5 pts) Why is register deferred addressing helpful for CISC but not helpful for RISC?

(e) Dead-code elimination (DCE) is a common compiler optimization.

(5 pts) What is it? Illustrate using an example.

12
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Problem 1: The partially completed routine on the next page is called with the address of a string which
may contain characters that look like letters, for example, “g0!1y.” The routine should replace those
characters with the letters they look like; the example would be converted to “golly.”

The string DMAP (see the next page) specifies the look-alikes. It specifies a letter (always lower case)
followed by one or more look-alike characters followed by a comma (possibly followed by another group). For
example, “o0,l1!,” indicates that the letter oh’s look-alike is the digit zero and the letter el’s look-alikes
are the digit 1 and an exclamation point.

The routine on the next page is almost finished. The part at the end uses a look-up table to translate the
string, and the part at the beginning has started setting up the look-up table. Write the code that finishes
setting up the look-up table based on DMAP. [50 pts]

Write the code that sets up the look-up table.

The code must be reasonably efficient.

The only synthetic instructions that can be used are nop and la.

Use the next page for the solution.
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## Register Usage

#

# $a0: Procedure call argument. Address of string to translate.

# There are no return values.

DMAP: .asciiz "o0,l1!,c([,t+,s$," # Translate 0->o, 1->l, !->l, (->c, etc.

LUT: .space 256

la $t0, LUT

addi $t1, $0, 255

# First, initialize look-up table so every character is mapped to itself.

#

LOOP0: add $t3, $t0, $t1 # Compute address of LUT entry.

sb $t1, 0($t3) # Write default entry. (A->A, B->B, etc.)

bne $t1, $0 LOOP0

addi $t1, $t1, -1

# Next, set up look-up table based on DMAP string. (Finish in solution.)

#

la $t0, DMAP

la $t1, LUT

addi $t5, $0, 44 # ’,’ Comma character separates groups.

# Start solution here. (Can be done in 9 insn.)

# Use the look-up table to translate the string.

la $t1, LUT

LOOP3: lb $t2, 0($a0) # Load character of string.

beq $t2, $0, EXIT2

add $t2, $t2, $t1 # Compute address of look-up table entry.

lb $t2, 0($t2) # Load translated character.

sb $t2, 0($a0) # Write translated character to string.

j LOOP3

addi $a0, $a0, 1

EXIT2: jr $ra

nop

3
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Problem 2: Answer each question below. The instruction format descriptions are provided for reference.

MIPS R:

Opcode

31 26

RS

25 21

RT

20 16

RD

15 11

SA

10 6

Function

4 0

MIPS I:

Opcode

31 26

RS

25 21

RT

20 16

Immed

15 0

MIPS J:

Opcode

31 26

II

25 0

(a) A proposed new MIPS branch instruction compares a register value to a constant to determine if the
branch should be taken. For example, the branch below is taken if the contents of t1 is 123. [10 pts]

beqi $t1, 123, TARGET

nop

Why isn’t it feasible to code such an instruction using any of the existing MIPS formats?

How could a conditional control transfer instruction that compared a register to an immediate be coded
using the MIPS formats? (The instruction would be different than beqi.)

Show the instruction in assembly language.

4
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(b) Show the results of addition for the 32-bit data types shown below. [10 pts]

Unsigned Integer:

0x0999

+ 0x0109

BCD:

0x0999

+ 0x0109

Packed 4-bit integers with saturating arithmetic.:

0x0999

+ 0x0109

(c) The MIPS ISA specifies that the sa (shift amount) field in the add instruction must be zero (an add

instruction with a non-zero sa field value should cause an execution error). [10 pts]

Describe a difficulty that might have arisen if the MIPS ISA had specified that implementations should
ignore the sa field in an add instruction (and so the sa field could contain any value).

Describe a difficulty that might have arisen if the MIPS ISA said nothing about the sa field in an add
instruction.

Describe a difficulty that might have arisen if the MIPS ISA did specify that sa must be zero but did not
say what should happen if the field were non-zero.

5
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(d) Consider a benchmark suite that’s similar to SPECcpu in that the tester is responsible for compiling the
programs but that unlike SPEC, specifies that the tester should not use any optimizations when compiling
the benchmarks. [10 pts]

Compared to SPECcpu base and peak (result) scores, how useful would such results be? Explain.

(e) Using a new compiler optimization a program’s dynamic instruction count is cut in half. The values for
CPI, IC, and φ are available for a run of the program compiled without the new optimization. Other than
the instruction count, nothing has been measured for the program using the new optimization. How useful
is the CPU performance equation for estimating the run time with the new optimization on the same system
in this situation? Explain. [10 pts]

6
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Problem 1: The implementation of a version of MIPS with loop count instructions is shown below, these
are the same instructions used in Homework 5. Instruction mtlc rt moves the contents of the rt register
into a special loop count register, lc, and instruction mtlci immed moves a 16-bit immediate, immed, into
lc. The loop-counted branch bclz is taken unless the lc register is zero, it also decrements lc. (In the
diagram the upper input to the lc register is the data input and the lower input, we, is a write enable.)

Three wires in the implementation are labeled ( A , B , and C ). Show the values present on those wires
for each cycle of the illustrated execution of the program in the space provided. Leave a value blank if the
value has no effect, assume that instructions before and after the illustrated code are nops. Note that two
iterations of the loop are shown. (15 pts)

# Cycle 0 1 2 3 4 5 6 7 8

mtlci 100 IF ID EX ME WB

LOOP:

bclz LOOP IF ID EX ME WB

add r2, r2, r3 IF ID EX ME WB

# (2nd iteration)

bclz LOOP IF ID EX ME WB

add r2, r2, r3 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8

A: <- ANSWER HERE

B: <- AND HERE

C: <- AND HERE TOO

# Cycle 0 1 2 3 4 5 6 7 8

format
immed

IR

Addr25:21

20:16

IF
ID

EX

WB

MEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

=

30 2
"0"

+
15:0

25:0

29:26

29:0

01

=0

-1

15:0

wlc
Writes lc

wlc wlc

we
lc0

1
2

0
1

3
2

A

Control Logic B

C

lcv

lcv

2
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Problem 2: Complete the pipeline execution diagrams for the different MIPS implementations below. Pay
attention to the type of implementations in each part, they’re not all the same. Don’t forget to check for
dependencies.

(5 pts) Scalar (not superscalar), statically scheduled, as illustrated in the previous problem.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

add r1, r2, r3

lw r4, 6(r1)

xor r7, r4, r8

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

In all of the parts below the floating-point multiply unit has four stages and is fully pipelined, the stage labels

are M1-M4 . The floating-point add unit is two stages and fully pipelined, the stage labels are A1 and A2 .

(5 pts) Scalar, statically scheduled, full set of bypass paths.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.d f2, f4, f6

add.d f8, f2, f10

mul.d f2, f4, f14

sub.d f12, f2, f10

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(5 pts) Two-way superscalar, statically scheduled, full set of bypass paths. No alignment restriction on
instruction fetches.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.d f2, f4, f6

add.d f8, f2, f10

mul.d f2, f4, f14

sub.d f12, f2, f10

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(5 pts) Two-way superscalar, dynamically scheduled, with a full set of bypass paths. No alignment
restriction on instruction fetches.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.d f2, f4, f6

add.d f8, f2, f10

mul.d f2, f4, f14

sub.d f12, f2, f10

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3
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Problem 3: The diagram below is for a cache on a system with the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants. (7 pts)

Fill in the blanks in the diagram.

CPU
Addr

Data

Data

 Addr
Out

Tag

 Addr

=Tag

Valid
Data

 Addr
Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32 b

32 b

14:6

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Cache Capacity (Indicate Unit!!):

Memory Needed to Implement (Indicate Unit!!):

Line Size (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:
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Problem 3, continued: For the problems on this page use the cache from the previous page.

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

(5 pts) What is the hit ratio running the code below?

double sum = 0.0, *a = 0x2000000; // sizeof(double) = 8 characters

int i, j;

for(j=0; j<3; j++)

for(i=0; i<32; i++)

sum += a[ i ];

(c) The slightly different code below runs on the same cache as the first part of this problem. Initially the
cache is empty; consider only accesses to the array.

(5 pts) Set ILIMIT to the smallest value that will fill the cache.

double sum = 0.0, *a = 0x2000000; // sizeof(double) = 8 characters

int i;

int ILIMIT = <- ANSWER HERE

for(i=0; i<ILIMIT; i++)

sum += a[ i ];

5
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Problem 4: Answer each question below.

(a) An n-way superscalar processor need not have n copies of everything that an ordinary scalar implemen-
tation has.

(5 pts) Which of the following is it most important that an n-way superscalar processor does have n of
(explain):

• Mem-stage memory ports.

• Write ports to the register file.

• Floating-point adders.

(b) In the dynamically scheduled MIPS implementation covered in class:(5 pts)

When is a physical register allocated (removed from the free list and assigned to an instruction)?

When is the physical register put back in the free list. Show an example that includes register numbers.

(c) Describe the contents of an Itanium (IA-64) bundle or a bundle in a typical VLIW ISA.

(5 pts) Bundle Contents

6
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Problem 5: Answer each question below.

(a) When a company wants to benchmark a new computer using SPECcpu it gets the benchmark suite
from SPEC, compiles the code, runs the benchmarks, and proudly publishes the results. (The last step is
optional.)

Below are two variations on this procedure, for each explain how the results might differ from those obtained
using the usual SPEC procedure, and explain how useful the results would be to the typical user of SPECcpu
results. (7 pts)

(1) SPEC gives a compiler (in addition to the usual material) to the company and allows the company to
compile and run the suite following the usual SPECcpu rules (but using SPEC’s compiler).

Compared to actual SPEC rules and to (2), how might the results differ? Explain.

Compared to actual SPEC rules and to (2), how useful would results be? Explain.

(2) The company gives the new computer and a compiler to SPEC and SPEC compiles and runs the
benchmark suite using the usual SPECcpu rules.

Compared to actual SPEC rules and to (1), how might the results differ? Explain.

Compared to actual SPEC rules and to (1), how useful would results be? Explain.

7
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(b) There is much less advantage in unrolling one of the loops below when the code is to run on a two-way
statically scheduled superscalar MIPS implementation. Note: The original problem did not mention the code
was to run on a superscalar implementation.(6 pts)

Unroll the loop below or explain why it shouldn’t be unrolled.

addi r9, r0, 1024

LOOP_A:

lw r1, 0(r2)

lw r1, 0(r1)

add r3, r1, r3

addi r2, r2, 4

bneq r9, r0 LOOP_A

addi r9, r9, -1

Unroll the loop below or explain why it shouldn’t be unrolled.

addi r9, r0, 1024

LOOP_B:

lw r1, 0(r2)

add r3, r3, r1

lw r2, 4(r2)

bneq r9, r0 LOOP_B

addi r9, r9, -1

8
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(c) Which are smaller, RISC programs or CISC programs. Provide some instruction examples to illustrate
your answer. (5 pts)

Example and explanation.

(d) The cost of implementing a rarely used instruction is deemed too high and so is omitted from an
implementation. How can an operating system enable the implementation to run code that uses the rare
instruction without modifying the code or examining it in advance. (5 pts)

9
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(e) BCD data types were once popular ISA features. (5 pts)

Were BCD data types absolutely necessary?

What were the reasons for including BCD data types in an ISA?

Why might a BCD data type be considered old fashioned and so not worthy of adding to an ISA now?

(f) MIPS-I is big endian but more recent MIPS versions can run in either big-endian or little-endian modes.

(5 pts) Complete (possibly modifying) the MIPS program below so that it writes v0 with a 0 if it is
running on a system using big endian byte order or a 1 if running on a system using little-endian byte order.

# At finish: $v0: 0, if big endian; 1, if little endian.

lui $t1, 0x1122

ori $t1, $t1, 0x3344

sw $t1, 0($t2)

10
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Problem 1: In the diagram below some wires are labeled with cycle numbers, indicating that the wire is
used at that cycle. If a value on any labeled wire is changed the code would execute incorrectly.

• There are no branches or other control-transfer instructions.

[15 pts] Write a program consistent with these labels.

All register numbers must be made up; use as many different register numbers as possible while still being
consistent with the labels.

[10 pts] Why would there be no solution to the problem if the C5:1 label in WB were changed to C5:0 ?

format
immed

IR

Addr
25:21

20:16

IF
ID EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

=

30 2
"0"

+
15:0

25:0

29:26

29:0

0 1

C2

C3

C4

mxmx

mx C5
C5:1

Cycle: 0 1 2 3 4 5 6 7

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

Cycle: 0 1 2 3 4 5 6 7

2
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Problem 2: In the diagram on the next page some wires are labeled with cycle numbers and corresponding

values. For example, C1:8 indicates that at cycle 1 the pointed-to wire will hold an 8. Other wires are
labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any labeled wire
is changed the code would execute incorrectly.

• Unlike other problems of this type all registers are different and there are no dependencies.

• The code contains at least one floating-point add and one floating-point multiply.

[10 pts] Write a program consistent with these labels; if a register number cannot be determined use rX or
fX.

[5 pts] Complete the pipeline execution diagram.

[5 pts] Fill in the box on the lower-left of the diagram.

[5 pts] Your answer should have a FP multiply instruction. Explain how you knew it was a multiply. (Don’t
answer “because I already found the add.”)

[5 pts] Your answer should have a FP add instruction. Explain how you knew it was an add. (Don’t answer,
“because I already found the multiply.”)

3
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Problem 2, continued:

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2M
1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+ 15:0
29:0

C2:0 C4

C1:4

C1:16

C1:8

C4:2

0
1

2

C3:20
C3:1
C4:0

C3:24

C0:
C1:
C2:
C3:
C4:
C5:
C6:
C7:
C8:
C9:
C10:
C11:

Fill In

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11

IF ID

IF ID

IF ID

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11

Be sure to complete all parts, including the justification for add and multiply.
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Problem 3: Answer each question below.

(a) The encoding of the PowerPC lwzx r1, r2, r3 instruction is illustrated below, followed by the Type-R
MIPS instruction format. [6 pts]

If a field in the illustrated PowerPC instruction format has a counterpart in the MIPS R format draw an
arrow between the fields. For example, an arrow should be drawn from OPCD to Opcode. Pay close attention
to the register fields.

If fields connected by an arrow are different sizes explain the significance of the difference. (What advantage
or disadvantage would the format with the larger field have, if any.)

PowerPC:

OPCD

31

0 5

RT

1

6 10

RA

2

11 15

RB

3

16 20

XO

23

21 30

1

31 31

MIPS R:

Opcode

31 26

RS

25 21

RT

20 16

RD

15 11

SA

10 6

Function

4 0

5
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(b) Suppose that your favorite program is both in the SPEC CPU2000 suite and in the suite used by a popular
personal computing magazine and that the input data used for testing the program are also identical. You
are considering buying two computers, A, and B. The spec testing shows that your favorite program is faster
on A but the magazine’s test shows that it is faster on B. The exact same model of machine A is used for
running the spec test and the magazine’s test, likewise for B. [6 pts]

Provide a possible reason for the discrepancy, the reason should help explain why SPEC is used by the CPU
research and development community. Note: In the original exam the text after discrepancy was offered as
a hint.

(c) SPEC members and associates are drawn from computer manufacturers, other industries, academia, and
elsewhere. [6 pts]

Would you trust SPEC benchmark results more (or less) if computer manufacturers were not allowed to join
SPEC? Explain.

6
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(d) In class we saw that the optimized π program (reproduced below) ran faster than the unoptimized version
(good) but also had higher CPI than the unoptimized version (bad). Note: the words “than the unoptimized
version” was not included in the original exam. [7 pts]

Why was the CPI higher?

Hint: It has to do with something you learned early in grade school.

double i, sum = 0;

for(i=1; i<5000; )

{

sum = sum + 4.0 / i;

i += 2;

sum = sum - 4.0 / i;

i += 2;

}

7
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Problem 4: Answer each question below.

(a) MMX and VIS are examples of ISA extensions that add packed-operand data types and instructions.[7 pts]

How do packed-operand data types and instructions improve performance?

Show a code example that can use such instructions and explain how they would be used.

8
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(b) Name an advantage and a disadvantage that RISC’s fixed-size instructions have over CISC’s variable
length instructions.[6 pts]

Advantage:

Disadvantage:

(c) A trap instruction is something like a subroutine call to the operating system. [7 pts]

So why couldn’t it just specify the address of the trap handler?

What does the trap instruction specify (in SPARC but not MIPS) in place of an address and how does
execution actually reach the trap handler.

9
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Problem 1: (25 pts) The madd.s fd, fr, fs, ft instruction writes floating-point register fd with
(fr×fs)+ft. The fr field is in bits 25:21, the other fields are in their usual places. The instruction is used
in the code below:

# With ordinary instructions:

mul.s f1, f2, f3

add.s f1, f1, f4

# With a madd.s instruction:

madd.s f1, f2, f3, f4

(a) Add datapath connections (including any connections to the register file) to the implementation on the
next page (also shown below) to implement the madd.s instruction. The code below should execute as shown
(pay attention to f4).

madd.s f1, f2, f3, f4 IF ID M1 M2 M3 M4 M5 M6 A1 A2 A3 A4 WF

lwc1 f4, 0(r2) IF ID EX ME WF

add.s f5, f6, f7 IF ID A1 A2 A3 A4 WF

• Use the existing multiplier and adder.

• It should still be possible to execute ordinary floating point multiply and add instructions.

(b) Modify the logic so that xw, we, and fd work correctly for the madd.s instruction (and continue to work
correctly for existing instructions).

(c) Without a madd.s instruction there is no possible structural hazard on WF in the implementation below
for multiply because multiply is the longest latency instruction implemented. With madd.s that’s no longer
true, add control logic to detect this new structural hazard and generate the Stall ID signal.

SOLVE PROBLEM ON THE NEXT PAGE.

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2M
1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+ 15:0
29:0

0
1

2

SOLVE PROBLEM ON THE NEXT PAGE.
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Problem 1, continued:

Datapath for madd.s, don’t break add.s or mul.s.

Code on previous page must run as shown.

Modify xw, we, and fd for madd.s, don’t break other instructions.

Detect and handle new structural hazard when mul.s in ID.

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2M
1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+ 15:0
29:0

0
1

2
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Problem 2: (15 pts) The execution of a MIPS program on a dynamically scheduled system using method
3 appears below. Complete the ID Register Map, Commit Register Map, and Physical Register File tables
for registers f2 and f4.

• The initial value of f2 is 2.0, the mul writes 2.1, ldc1 writes 2.2, and sub.d writes 2.3. The initial
value of f4 is 4.0, the add writes 4.1. Make up physical register numbers as needed.

As always, show table contents.

Show where registers are removed from and placed back in the free list.

Show initial values.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.d f2, f4, f6 IF ID Q RR M1 M2 M3 M4 WF C

add.d f4, f2, f10 IF ID Q RR A1 A2 A3 WF C

ldc1 f2,0(r1) IF ID Q EA ME WF C

sub.d f2, f2, f8 IF ID Q RR A1 A2 A3 WF C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID Register Map

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Commit Register Map

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Physical Register File

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HARDWARE SHOWN ON NEXT PAGE.

4
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Problem 2, continued: Dynamically scheduled processor shown for reference.

25:21

20:16

rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

P
C



ID
:dst

ID
:S

t: C
,X


0,0

WB:ROB #
WB:C,X

Addr

D In

R
eo

rd
er

 B
uf

fe
r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

Fr
ee

 L
is

t

ID
:dstP

R


ID
:dstP

R


C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q EX

dstPR

dstVal.

WB

RR

WB

Decode
dest. reg

ID
:incm

b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

R
ec

ov
er



EA*

A1

M1

ME*

* Were called
L1 and L2.
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Problem 3: (20 pts) The code below runs on three systems, one using a bimodal predictor (B) with a
210-entry BHT, a local predictor (L) with a 210-entry BHT and a 16-bit local history, and a global predictor
(G) with a 16-bit GHR. The outcomes of B2 are shown, pay attention to where B1’s outcomes would be
located.

LOOP:

SHORT:

# B1 Iterates 10 times

B1: bne r3,r4 SHORT

addi r4, r4,1

...

B2: beq r1, r2 SKIP N N T N T N N T N T ...

...

SKIP:

j LOOP

nop

(a) Find the prediction accuracy of each predictor on each branch. Briefly explain.

Accuracy predicting B1 on B:

Accuracy predicting B1 on L:

Accuracy predicting B1 on G:

Accuracy predicting B2 on B:

Accuracy predicting B2 on L:

Accuracy predicting B2 on G:

(b) Determine the number of table entries used by branch B2 on each predictor:

Entries for B2 on B:

Entries for B2 on L:

Entries for B2 on G:

(c) Suppose the history sizes were reduced.

What is the smallest local history size for which the accuracy on B2 will be unchanged (from the previous
answer) when using the local predictor. Briefly explain.

What is the smallest global history size for which the accuracy on B2 will be unchanged when using the
global predictor. Briefly explain.

6
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Problem 4: The diagram below is for a 256-kiB (218 byte) 4-way set-associative cache with a line size of
16 characters on a system with 8-bit characters. (20 pts)

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram. Pay attention to the width of the CPU address port.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid
Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

64 b

44 b

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Memory Needed to Implement (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

7
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Problem 4, continued:

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

What is the hit ratio?

double sum = 0.0, *a = 0x2000000; // sizeof(double) = 8 characters

int i, j, ILIMIT = 0x1000000;

for(j=0; j<2; j++)

for(i=0; i<ILIMIT; i++)

sum += a[ i ];

The code in the problems below is to be run on a cache of unknown configuration, though it will be one of the
types discussed in class (direct mapped or set-associative). In all cases the cache is empty when the program
starts. Routine get miss count() returns the number of cache misses at the time of the call (and does not
cause any misses).

(c) Complete the code so that line size is assigned the correct line size based on the number of misses
encountered and the nature of the code. Assume that all misses are due to access to a.

int ILIMIT = 0x10000;

char *a;

int miss_count_before = get_miss_count();

for(i=0; i<ILIMIT; i++) sum += a[i];

int miss_count_during = get_miss_count() - miss_count_before;

int line_size = // FILL IN

(d) Complete the code so that associativity is aptly assigned. Assume that the cache is smaller than 256
MiB (228)(but the exact size is not known), that the associativity is no larger than 64, and that there is a
64-bit address space.

int ISHIFT = // FILL IN

int JSHIFT = // FILL IN

char *a; // Pointer to a really large array.

int miss_count_before = get_miss_count();

for(i=0; i<64; i++) sum += a[ i << ISHIFT ];

for(j= ) // FILL IN

sum += a[ j << JSHIFT ];

int miss_count_during = get_miss_count() - miss_count_before;

int associativity = // FILL IN

8
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Problem 5: Answer each question below.

(a) Suppose in a five-stage statically scheduled MIPS implementation (like the one in class) an instruction
could raise an exception in the WB stage. Explain why that would make precise exceptions for that instruc-
tion impossible. Use a code example to explain what should happen for a precise exception and why its
impossible (or very difficult) if the exception is raised in WB. (5 pts)

(b) Arrange the ISA families below in order by code (program) size, the one for which programs are smallest
should be first. Starting at the second ISA in the arranged list, explain why code size is larger than the ISA
above. (That is, provide three reasons why code size is larger.) (5 pts)

ISA families (in alphabetical order): CISC RISC Stack VLIW

ISA families in code size order.

Reasons for size differences.

9
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(c) Deciding on a line size for a cache is a tough decision. (5 pts)

Describe the behavior of programs that run better on caches with smaller line sizes.

Describe the behavior of programs that run better on caches with larger line sizes.

(d) Answer the following question on cost.(5 pts)

Name two parts of an n-way superscalar processor that cost about n times as much as a comparable
scalar processor.

Name two parts of an n-way superscalar processor that cost about n2 times as much as a comparable
scalar processor.

10
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Problem 1: The routine below is to do a binary search on an array and return 1 if the item is found, 0
otherwise. Complete the MIPS program using the C++ code as a guide. [30 pts]

The only allowable synthetic instruction is nop.

Fill as many delay slots as possible. The order of the assembly code does not have to match the order of the
C code.

# unsigned int delta = size; int pos = 0;

# while( true ) {

# delta = delta >> 1;

# int next_pos = pos + delta;

# int e = array[next_pos];

# if( e == target ) return 1;

# if( !delta ) return 0;

# if( e < target ) pos = next_pos;

# }

# CALL VALUE: $a0, array: Address of array. Each element is a WORD-SIZED int.

# CALL VALUE: $a1, size: Number of elements in array. A power of 2.

# CALL VALUE: $a2, target: Value to find.

# RETURN VALUE: $v0, 1, if target in array; 0, if not in array.

# Can modify registers $a0-a3, $t0-$t9

2
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Problem 2: In MIPS and many other ISAs floating-point instructions read and write a FP register file while
most other instructions read and write general-purpose (integer) registers. Suppose MIPS-I were modified
so that FP instructions used the same registers as the integer instructions. The registers are still 32 bits and
can be used in pairs by instructions operating on double-precision operands. The new version of MIPS is
not compatible with MIPS-I, don’t worry about that.

(a) For each MIPS-I instruction below indicate whether it will be retained in the new ISA, “KEEP”, or will
not be needed, “OMIT.” Also add any new instructions that might be needed. If an instruction is kept but
operates differently describe the difference. [15 pts]

Indicate KEEP or OMIT.

If omitted show an existing instruction that would be used in its place.

If kept, explain how it would operate differently.

lwc1:

ldc1:

cvt.w.d:

cvt.d.w:

mfc1:

mtc1:

add.s: Keep, but operates on integer registers.

add.d:

c.lt.s:

c.le.d:

bc1t:

Hint: In bc1t b is for branch, t is for true.

(b) If your answer for bc1t above was “OMIT” describe below how the instruction can be kept (possibly
modified). If your answer was “KEEP” explain how it can be omitted. This will affect other instructions,
list them and explain how they are affected.

3
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Problem 3: Using an interesting technique the program below returns the value of register X, where X is
a number in register $a0. For example, if $a0 held an 8 the program would return the value of $8 (or $t0

using the register name) in register $v0. Consider:

jal copyreg

addi $a0, $0, 8

# At this point $v0 has contents of $t0.

addi $v0, $t0, 0 # $t0 is $8, register number 8

# At this point $v0 has contents of $t0.

From the code above it looks like the copyreg routine is doing things the hard way. The one advantage
is that it can copy a source register known only at run time, or that might change. The addi instruction
always copies $t0. Note: In the original exam the description and example above were not included.

(a) Modify the program so that it takes a second call value, a1, which holds a second register number. The
return value is put in that register. For example, if a0 holds a 12 and a1 holds a 3 then the routine copies
the value in r12 to r3. [17 pts]

Show additions and changes. The added code must use a similar technique to the existing code.

Hint: Can be solved with two added instructions and a few minor modifications.

# CALL VALUE: $a0 A register number. (Except v0)

# RETURN VALUE: $v0 The value in reg number X, where X is val in a0.

copyreg:

la $v0, template # Put address of label "template" into $v0.

lw $v0, 0($v0)

sll $a0, $a0, 21

add $a0, $v0, $a0

la $v0, mod

sw $a0, 0($v0)

jr $ra

mod:

add $v0, $0, $0

template:

add $v0, $0, $0

Format R:

opcode

31 26

rs

25 21

rt

20 16

rd

15 11

sa

10 6

func

5 0

4
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Problem 3, continued:

(b) Suppose one were considering adding a new machine instruction, copyreg, that does the same thing
as the routine above (before modification for part 1). Provide arguments for and against adding the new
instruction. The arguments can include made-up data as long as it does not conflict with what has been
given in this problem or in class. At least one of the arguments must refer to features of the code from
part 1. [8 pts]

Provide an argument in favor of adding the instruction.

Provide an argument against adding the instruction. Do not simply reverse an assumption made above.

5
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Problem 4: Answer each question below.

(a) A company is developing an implementation of an ISA. To guide their design they are using a SUBSET
of the SPECcpu benchmark programs. [7 pts]

Describe a situation in which that’s a foolish thing to do and explain why it’s foolish.

Describe a situation in which that’s a smart thing to do.

6
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(b) Compiler optimizations are important. [8 pts]

Describe a compiler optimization for which the compiler needs no knowledge of the ISA.

Show an example.

Describe a compiler optimization for which the compiler does need to know the target ISA.

7
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(c) A goal in the design of MIPS and other RISC ISAs is to minimize the number of registers with specialized
purposes. In MIPS r31, a.k.a. $ra, does have a specialized purpose. [7 pts]

Why was it necessary to make an exception in this case?

(d) The target in MIPS branch instructions is specified by indicating the number of instructions to skip.
[8 pts]

Why couldn’t such an approach be used in CISC ISAs?

Specifying the number of instructions to skip saves two bits over what is needed for CISC targets. Why is
saving two bits not as important in the design of CISC instructions?

8
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Problem 1: The MIPS code below executes as shown on the illustrated dynamically scheduled scalar
implementation. There are no exceptions or recoveries; the result (value to be written in r2) of the first
instruction is 101, the second is 102, etc. (15 pts)

25:21

20:16

rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

P
C

ID
:dst

ID
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t: C
,X

0,0

WB:ROB #

WB:C,X
Addr

D In

R
eo

rd
er

 B
uf

fe
r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

F
re

e 
Li

st

ID
:dstP

R
ID

:dstP
R

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q
EX

dstPR

dstVal.

WB

RR

WB

Decode
dest. reg

ID
:incm

b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

R
ec

ov
er

EA*

A1

M1

ME*

* Were called
L1 and L2.

Show where each instruction commits.

The initial value of r1 is 111 and the initial value of r2 is 222. Fill in the tables to show these values.

Complete the tables for the execution of the code. Take into account the results (see first paragraph).

Show where registers are removed from and put back in the free list.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

lw r2, 0(r4) IF ID Q RR EA ME WB

add r1, r2, r3 IF ID Q RR EX WB

sw r1, 0(r4) IF ID Q RR EA ME WB

xor r2, r5, r3 IF ID Q RR EX WB

and r2, r2, r6 IF ID Q RR EX WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

# ID Map

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

# Commit Map

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

Physical Register File

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

2
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Problem 2: An extended version of MIPS, called MMMIPS, includes memory-to-memory (MM) arithmetic
instructions that can read the first source operand from memory and write a result to memory; the second
source operand is always an immediate and the MM’s are encoded in format I. Their mnemonics end with
.mm, .mr, or .rm and they operate as described in the comments below. (25 pts)

lw r1, 2(r3) # r1 = Mem[r3+2] (Existing instruction, for your reference.)

add.mm (r4),(r5), 3 # Mem[r4] = Mem[r5] + 3

sub.rm r6, (r7), 3 # r6 = Mem[r7] + 3

or.mr (r8), r9, 3 # Mem[r8] = r9 + 3

(a) Shown below is a partially completed implementation of MMMIPS. It includes a new stage, MS (the S
is for source), that has a memory port for the source operand, shown unconnected. For use in a later part of

this problem, boxes mem src and mem dst identify an instruction as having a memory source operand

(output 1) or a memory destination operand (output 1) (an instruction can have both). An output of 0
means the respective operand is not from or to memory.

Connect the MS-stage memory port for the MM instructions.

Modify connections to the MEM-stage memory port for the MM instructions.

Make sure existing MIPS load and store instructions continue to work correctly.

For this part don’t add bypassing or control logic.

format
immed

IR

Addr
25:21

20:16

IF
ID EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

D out

rtv

dst dst
Decode
dest. reg

30 2
"0"

+
15:0

25:0

29:26

29:0

Addr

Mem
Port

D out

Addr

D in

Mem
Port

D out

ALU

MD

dstdst

rsv

rtv

IMM

MS

mem dst
mem src
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For the problems below use either the diagram below or the one on the previous page.

format
immed

IR

Addr
25:21

20:16

IF
ID EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

D out

rtv

dst dst
Decode
dest. reg

30 2
"0"

+
15:0

25:0

29:26

29:0

Addr

Mem
Port

D out

Addr

D in

Mem
Port

D out

ALU

MD

dstdst

rsv

rtv

IMM

MS

mem dst
mem src

(b) Add a bypass connection so that the code below can execute without a stall or show which existing bypass
connection can be used.

Add or identify the connection.

Show which cycle the bypass connection is used.

# Cycle 0 1 2 3 4 5 6

add r1, r2, r3 IF ID MS EX ME WB

sub.mr (r1), r4, 5 IF ID MS EX ME WB

(c) Can a bypass connection be added for the code below? If yes, should it be added? Explain.

Show how and/or explain why not.

# Cycle 0 1 2 3 4 5 6

add r1, r2, r3 IF ID MS EX ME WB

sub.rm r6, (r1), 5 IF ID MS EX ME WB

(d) Show the bypass connections (if any) and control logic so that the code below executes without a stall
(and without causing other instructions to execute incorrectly, of course). The control logic should deliver
a BYPASS signal to the EX stage at the right time, it should be 1 if a bypass of the type needed below is
necessary. Do not connect it to anything.

Show the control logic generating BYPASS.

Add the bypass connection or show which existing one would be used.

# r1 = 0x1000, r5 = 0x1000

# Cycle 0 1 2 3 4 5 6

add.mr (r1), r2, 3 IF ID MS EX ME WB

sub.rm r4, (r5), 6 IF ID MS EX ME WB

4
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Problem 3: Answer each question below. Be sure to check each code fragment for dependencies. (25 pts)

(a) Show a pipeline execution diagram for the code fragment below running on the usual statically scheduled
and bypassed scalar MIPS implementation. Note: Bypassing and static scheduling not mentioned in the
original exam.

# Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2)

add r3, r1, r4

Solve this easy problem.

(b) The sub.s instruction below stalls in IF.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

add.s f4, f5, f6 IF ID A1 A2 A3 A4 WF

sub.s f7, f4, f8 IF -------> ID A1 A2 A3 A4 WF

add.s f9, f10, f11 IF ID A1 A2 A3 A4 WF

What’s wrong about the stall?

Show correct execution.

5
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Problem 3, continued:

(c) The code below executes on a dynamically scheduled machine of the type used in the first problem and
in class. The mul.s stalls in ID.

# ROB initially empty.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

add.s f4, f5, f6 IF ID Q RR A1 A2 A3 A4 WF C

sub.s f7, f4, f8 IF ID Q RR A1 A2 A3 A4 WF C

mul.s f9, f10, f11 IF ID -------> Q RR M1 M2 M3 M4 M5 M6 WF C

What’s wrong about the stall?

Show correct execution.

If the “ROB initially empty.” comment was not there then the execution above would be possible,
albeit misleading. How would the stall be possible?

(d) Show a pipeline execution diagram for the code below executing on a 2-way statically scheduled super-
scalar MIPS implementation. Note: In the original exam “statically scheduled” was omitted so an answer
for either type of system would be correct.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

0x1000:

lw r4, 0(r5)

add r1, r2, r3

lh r6, 0(r4)

xor r7, r1, r9

sll r10, r11, 12

srl r14, r15, 16

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

Execution must be for decode logic of ordinary complexity. (See next item.)

Execution must allow precise exceptions.

6
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Problem 4: (10 pts) The diagram below is for a two-way set-associative cache on a system with 8-bit
characters. Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32 b

32 b

15:8

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Cache Capacity (Indicate Unit!!):

Memory Needed to Implement (Indicate Unit!!):

Line Size (Indicate Unit!!):

Show the bit categorization for an eight-way cache with the same capacity and line size.

Address:

7
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Problem 5: Answer each question below.

(a) The register renaming technique used in the dynamically scheduled processor (what the register maps
do) solves a problem encountered when instructions execute out of order.(5 pts)

What is the problem and how does it solve it?

Provide an example showing what would go wrong without renaming.

(b) When it comes to caches one line size does not fit all.(5 pts)

When is it better to have larger line sizes? Explain how the larger lines help.

When is it better to have smaller line sizes? Explain how larger lines would hurt.

8
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(c) Why would the SPEC CPU benchmark suite be less useful if it contained one integer program and one
floating-point program? (5 pts)

Why not just one of each?

(d) How would you answer a critic who said that the SPEC CPU benchmarks were rigged to make rich and
powerful company I’s products look good? (5 pts)

They are not rigged because . . .

(e) What is the difference between a hardware interrupt, an exception, and a trap (as defined in class)?
(5 pts)

A hw interrupt’s unique feature.

An exception’s unique feature.

A trap’s unique feature.

9
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Problem 1: In the diagram below some wires are labeled with cycle numbers and values that will then be

present. For example, C3:0 indicates that at cycle 3 the pointed-to wire will hold a 0. Other wires are
labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any labeled wire
is changed the code would execute incorrectly. There are no stalls during the execution of the code. The
first instruction (or) is shown (but don’t forget to add the registers). [40 pts]

Write a program consistent with these labels.

Show the address of every instruction.

Show every register number that can be determined and use r10, r11, etc. for other register numbers.

Show the exact instruction (they can all be determined). For example, not just a load, but a load .

format
immed

IR

Addr
25:21

20:16
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Insn Addr Cycle: 0 1 2 3 4 5 6 7 8

0x1000: or IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

Cycle: 0 1 2 3 4 5 6 7 8
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Problem 2: Consider a new ISA, F-MIPS, similar to MIPS-I except that it has 64 rather than 32 general
purpose registers. F-MIPS has R, I, and J instruction formats like MIPS-I but with modifications to handle
the larger number of registers. A goal of F-MIPS is to have all of MIPS-I instructions.

Possible instruction formats are shown below. Some details of Format R are omitted and are the subject of
the first question.

Format-R:

Opcode

31 26

rs

25 20

rt

19 14

rd

13 8

sa

7 ?

func

? 0

Format-I:

Opcode

31 26

rs

25 20

rt

19 14

immed

13 0

Format-J:

Opcode

31 26

ii

25 0

[6 pts] Describe a problem with Format-R F-MIPS instructions using the Format R shown above.

[7 pts] Fix the problem in Format R (show the changes in the illustration above). Explain the impact (this
is important) on the coding of F-MIPS instructions.

[6 pts] Explain an impact on typical F-MIPS Format-I instructions (compared to their MIPS-I counterparts)
that would not apply to Format-R instructions.

[6 pts] Why is something going to have to be done about lui? Describe a new version of lui, possibly using
a new format, that would fix the problem. Hint: That’s load upper immediate.

3
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Problem 3: Answer each question below.

(a) A company has to choose between developing two new implementations of their ISA. Implementation
A would have a peak (result) score of 2200 and a base (baseline) score of 2000 on the SPEC CINT2000
benchmarks. Implementation B would have a peak (result) score of 2150 and a base score of 2100 on the
benchmarks.

[0 pts] Which implementation should the company choose? Hint: Either answer is correct.

[9 pts] Why? Your reason should say something about the difference between the peak and base scores and
about the company’s customers.

(b) Should a BCD data type be added to a modern general-purpose ISA?

[8 pts] Explain why or why not, using the criteria discussed in class for adding data types to an ISA.
(Discuss specific features of BCD, don’t give an answer that could apply to any data type.)

4
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(c) Re-write the SPARC code fragment below in MIPS-I. Use as few instructions as possible. [9 pts]

! Notes: r0 is the zero register; destination is rightmost register;

! be means branch if equal. Use the same register names.

subcc %r1, %r2, %r0

add %r3, %r4, %r5

be TARG

xor %r6, 10, %r6

(d) The code below includes a hypothetical MIPS predicated instruction. Re-write the code using real MIPS
instructions. [9 pts]

sub r3, r6, r7

(r1) add r2, r3, r4

xor r5, r8, r7

5
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Problem 1: The MIPS code below executes on the illustrated implementation. (19 pts)

• The implementation makes backup copies (not illustrated) of the ID map for each predicted
branch instruction.

• The implementation is scalar, but there can be any number of writebacks per cycle.
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Op, dstPR, ROB#

OutIn

Scheduler

Q
EX

dstPR

dstVal.

WB

RR

WB

Decode
dest. reg

ID
:incm

b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

R
ec

ov
er

EA*

A1

M1

ME*

* Were called
L1 and L2.

The pipeline execution diagram on the next page shows the complete execution of the first instruction, a
branch, and partial execution of the others. (Because of instructions before it, the branch enters RR after a
wait of four cycles and commits after waiting another two.) The branch is mispredicted and some instructions
will have to be squashed.

(a) Complete the pipeline execution diagram.

Show where instructions are squashed.

Show correct path instructions.

Show each instruction until it is squashed or commits.

(b) Complete the tables:

Physical register file. Assume the result of the load is 101, xor is 102, and add is 103. You can make up
your own physical register numbers!

Show where registers are removed from and put back in the free list.

Complete the ID map. Don’t forget to include the effect of branch misprediction recovery.

Complete the commit map.
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Problem 1, continued: Continued from previous page.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

bneq r1, r2 SKIP IF ID Q RR B WB C

lw r3, 0(r4) IF ID Q RR EA ME WB

xor r3, r8, r6 IF ID Q RR EX

SKIP:

add r3, r3, r7 IF ID Q RR

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

# ID Map

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

# Commit Map

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Physical Register file

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3
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Problem 2: Answer each question about the illustrated MIPS implementation. (18 pts)

(a) Complete a pipeline execution diagram for the code below running on the illustrated implementation.
Assume that any needed bypass connection is available and please check for dependencies.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

add.d f6, f2, f4

add.d f4, f6, f2

(b) In the diagram below add the bypass connection(s) needed for the code above. Do not add bypass
connections that are not needed. (Don’t worry if it’s a tight squeeze in the diagram, but be legible.)

(c) Add control logic that generates the stall signal encountered in the code above.

(d) Add control logic for the bypass multiplexor added in a previous part.

format
immed

IR

Addr
25:21

20:16

IR

IF EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPCInt Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M
1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"
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Problem 3: The following questions refer to the assembly language code below. Branch outcomes are
shown. (19 pts)

LOOP:

0x1000:

B1: beq r1,r2 SKIP1 T T T N N T T T N N T T T N N

nop !

add r5, r6, r7 A

SKIP1: !

# **Ten** arithmetic instructions only until next branch, no other instructions.

# !

B2: beq r3,r4 SKIP2 T N T N T N T N T N T N T N T N

nop

add r8, r9, r10

SKIP2:

add r11, r12, r13

j LOOP

nop

(a) Suppose the code above runs on a system using a bimodal branch predictor with a 256-entry branch
history table. What would be the best prediction accuracy of branch B1 and B2 after warmup. Hint: “Best”
applies to B2 but not B1.

Accuracy of B1.

Accuracy of B2.

Why is there a “best” accuracy?

(b) Suppose the code above runs on a system using a local predictor with a 256-entry BHT. What is the
smallest local history size that would allow the two branches above to be predicted with 100% accuracy?

Smallest size. Explain

(c) Suppose the code runs on a system using a gshare branch predictor with a 10-bit GHR. Show the contents
of the GHR at time A (see the right-hand side of the diagram).

Gshare GHR contents:

(d) Suppose the code runs on a PPC970 (or a POWER4) processor. Show the contents of what it uses for
a GHR at time A. State any assumptions. Note: This part based on a homework assigned Spring 2004, and
would not be asked other semesters.

PPC970 GHR contents:

5
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Problem 4: (19 pts) The diagram below is for a four-way set-associative cache on a system with 8-bit
characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

64 b

32 b

9 9

Yes, it’s nine bits,
but which nine bits?

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:
10

Cache Capacity (Indicate Unit!!):

Memory Needed to Implement (Indicate Unit!!):

Line Size (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:
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Problem 4, continued:

(b) The code below runs on the cache from the previous part. When the code below starts running the cache
is empty. Consider only accesses to the array and assume the cache is cold (empty) when the code starts.

short int *a = 0x1000000; // sizeof(short int) = 2 characters

int sum, i, j;

int ILIMIT = 1024;

for(j=0; j<2; j++)

for(i=0; i<ILIMIT; i++)

sum += a[ i ];

What is the hit ratio for the program above?

(c) Choose values for the address of b, ILIMIT, and ISTRIDE so that the cache is completely filled with the
minimum number of accesses. Note: The original exam read “minimum number of misses,” is easier to do.
The address of b must be greater than a and as small as possible.

short int *a = 0x1000000; // sizeof(short int) = 2 characters

int sum, i;

short int *b =

int ILIMIT =

int ISTRIDE =

for(i=0; i < ILIMIT; i++)

sum += a[ i * ISTRIDE ] + b[ i * ISTRIDE ];

7
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Problem 5: Answer each question below.

(a) One way to improve the performance of an implementation is to redesign the processor so that it uses
more stages. Increasing the number of stages beyond five will yield a big improvement in performance, but
at some point adding stages will have little effect.(5 pts)

Give a reason for this limit having to do with the pipeline latches.

Give a reason for this limit having to do with program characteristics.

(b) An instruction does not raise precise exceptions (because the ISA says it does not have to). (5 pts)

Name something its handler cannot do (but could do if the exception were precise).

(c) The code below uses an indirect load. Re-write it using MIPS instructions. (5 pts)

lw r1, @(r2) # Load using indirect addressing.

8
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(d) Every integer instruction that reads a GPR uses the rs and rt fields (or just one of them). What would
be the disadvantage of a modified ISA in which some instructions use other fields to specify GPR source
registers? (5 pts)

(e) Consider two options for the design of a load/store unit (LSU) for a dynamically scheduled system. The
aggressive option would execute the code below quickly, while the conservative option would execute it more
slowly. Hint: the conservative option is how the LSU was described in class. Note: The original problem
used r1 for the address, which was not intended, but the answer with r1 is similar.

(5 pts)

div.d f2, f4, f6

sw r1, 0(r9)

sh r2, 0(r9)

sb r3, 0(r9)

lw r4, 0(r9)

What is it about that code that requires special treatment?

Describe how the aggressive option would execute the code.

Give a brief argument for the conservative option, feel free to include made-up data (for the purposes of this

test only!).

9
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Problem 1: The routine below is called with an unsigned integer in register $a0 and the address
of some allocated memory in register $a1. When it returns the memory at should $a1 contain the
hexadecimal representation of $a0 as a null-terminated (C format) string. Complete the routine,
follow the guidelines in the comments. (For partial credit write a routine that converts a string
holding a hexadecimal number to an integer.) [25 pts]

################################################################################

# utoh: Convert unsigned integer to hexadecimal string.

#

# $a0: Call Value: Unsigned integer to convert.

# $a1: Call Value: Address of allocated memory.

# Write converted string to this address, assume there is enough.

# Sample strings: "1F3", "1", "0" written at $a1.

# [ ] String should not have leading zeros. (Good: "123", Bad "00123".)

# [ ] Fill as many delay slots as possible.

# [ ] Registers $a0-$a3 and $t0-$t7 can be modified.

# The ASCII value of ’0’ is 48, the ASCII value of ’A’ is 65

# Put solution here.

utoh:

jr $ra

nop

2

← → Fall 2003 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4720/2003f/mt.pdf


Problem 2: Code similar to the histogram program presented in class appears below. MIPS
instruction formats are shown below for reference. [15 pts]

(a) Design three new MIPS instructions to reduce the size of the program fragment below

• Each new instruction should replace at least two related instructions in the program below.
(Do not combine two unrelated instructions, such as j and sw.)

Show the coding for the new instruction, making up the opcode and other field values as necessary.
The coding should use one of MIPS’ existing formats and should fit as naturally as possible.

• Do not worry whether the instruction is appropriate for a RISC ISA.

addi $t7, $0, 26

LOOP:

lbu $t1, 0($t0)

addi $t0, $t0, 1

beq $t1, $0, DONE

addi $t1, $t1, -65

sltu $t2, $t1, $t7

beq $t2, $0, LOOP

sll $t1, $t1, 2

add $t3, $a1, $t1

lw $t4, 0($t3)

addi $t4, $t4, 1

j LOOP

sw $t4, 0($t3)

Format R:

opcode

31 26

rs

25 21

rt

20 16

rd

15 11

sa

10 6

func

5 0

Format I:

opcode

31 26

rs

25 21

rt

20 16

immed

15 0

Format J:

opcode

31 26

ii

25 0

(b) Show an instruction that can be created by combining several instructions from the program
but that would be impossible to code. Explain why it would be impossible to code.

3
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Problem 3: Answer each question below.

(a) In MIPS (and similar ISAs) there is a lb, lbu (load byte unsigned), and a sb but there is no
sbu (store byte unsigned). Why not? [6 pts]

(b) Explain why the MIPS instruction below won’t work: [6 pts]

add.d $f1, $f2, $f3

(c) Show the result of each add instruction below. The instructions execute on a machine with
32-bit registers that is capable of BCD, and packed integer, and ordinary integer arithmetic. The
packed integer operations all use saturating unsigned arithmetic. [6 pts]

# r1 = 0x8080888

# r2 = 0x1020999

# Ordinary Integer Add

add r3, r1, r2 r3 =

# BCD Add

add.bcd r3, r1, r2 r3 =

# Packed Integer (4 bits per int.)

add.p4 r3, r1, r2 r3 =

# Packed Integer (8 bits per int.)

add.p8 r3, r1, r2 r3 =

4
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Problem 4: Answer each question below.

(a) A company compiles and runs the SPECint2000 benchmarks on its new system, complying with
all rules except one: it refuses to divulge the steps it used to compile the programs. Nevermind
that it’s against the rules, is it in the company’s interest to keep this information secret? Explain.
[6 pts]

(b) A program is compiled two ways, one for ISA A, implementation x, the other also for ISA A,
but for implementation y. Explain what would be common to the two executables and what would
be different. Provide an example. [6 pts]

(c) Explain the dead-code elimination (DCE) optimization using an example. [6 pts]

5
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Problem 5: Answer each question below.

(a) CISC ISAs have variable length instructions. What advantages over RISC ISAs does that
enable? Name at least two and briefly explain each advantage. [6 pts]

(b) RISC ISAs have fixed length instructions. What advantages over CISC ISAs does that enable?
Name at least one and briefly explain each advantage. [6 pts]

(c) Why are programs written in a stack ISA small? Be brief but as specific as possible. [6 pts]

6
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(d) Listed below are several behaviors or features. For each, explain whether it is usually an ISA
feature, an implementation feature, or an ABI (application binary interface) feature. Briefly explain
why. If it can fit into more than one category (for example, ISA or implementation) say so and
explain why. [6 pts]

An add instruction raises an exception on an overflow.

The unused field in an instruction must be set to zero.

Procedure call saves return address in a particular register.

Multiply instruction takes four cycles.

7
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Problem 1: (20 pts) The execution of a MIPS code fragment on a dynamically scheduled machine is shown

on the next page. The diagram shows the values on certain wires at certain cycles. For example, 4:65
means that at cycle 4 the labeled wire holds value 65. The physical register file table is completed, ID- and
commit-map tables are blank.

• The FP add unit has 3 stages, the FP multiply unit has 5, and the EA and ME are used for loads
and stores.

• All destination registers are floating point.

• WB and commit can be done in the same cycle (indicate with a WC).

• To keep things simple the result of every instruction is zero and there are no cache misses.

(a) The ID and commit register map tables are blank . . .

. . . complete them (the ID and commit register map tables.)

Show the correct architected register numbers, or for partial credit make them up. (Two are easy, the rest

are interesting.)

Show the initial values (just before cycle 0) in the ID and commit map tables.

(b) Complete the pipeline execution diagram.

Be sure to show Q, RR, WB, C (or WC), and a possible functional unit.

(c) Write a program consistent with these tables and labels.

Choose consistent instructions.

Choose consistent registers. If a register number cannot be determined, use a question mark.

• Hint 1: In the physical register file table, put a “1” next to the first (earliest) register removed
from the free list, put a “2” next to the second register removed from the free list, and so on.
Similarly, put a “1” next to the first register put back in the free list, etc. To figure out which
physical register belongs to which instruction destination (easy) use the fact that certain events
occur in program order.

• Hint 2: To figure out which architected register an instruction is writing (interesting) remember
what causes a register to be put back in the free list.

2
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Problem 1, continued: See previous page for instructions.

25:21

20:16

rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

P
C

ID
:dst

ID
:S

t: C
,X

0,0

WB:ROB #

WB:C,X
Addr

D In

R
eo

rd
er

 B
uf

fe
r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

F
re

e 
Li

st

ID
:dstP

R
ID

:dstP
R

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

dstPR

OutIn

Scheduler

Q
EX

dstPR

dstVal.

WB

RR

WB

Decode
dest. reg

ID
:incm

b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

R
ec

ov
er

EA

A1

M1

ME

1:12, 2:6

A3

M5

3:7, 5:88, 7:78, 8:49, 11:57

Op, ROB#

2:14, 4:18

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IF ID

IF ID

IF ID

IF ID

IF ID

# ID Map Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

# Commit Map Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

# Phys. Reg. File Cy 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

7 [ 0. ]

33 ]

49 [ 0. ]

57 [ 0.

78 [ 0.

88 [ 0. ]

95 ]

# Phys. Reg. File Cy 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Problem 2: (20 pts) In all of the problems below please check the code samples carefully for dependencies.
All implementations below are fully bypassed. Please check the code samples carefully for dependencies.

(a) The code below executes on a 1-way statically scheduled machine in which the add FP functional unit
has a latency of 3 and an initiation interval of 2.

Show a pipeline execution diagram for the code.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

add.s f2, f4, f6 IF

add.s f8, f2, f12

add.s f14, f10, f16

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) The code below executes on a 1-way statically scheduled machine in which the add FP functional unit
has a latency of 3 and an initiation interval of 1.

Show a pipeline execution diagram for the code.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

add.s f2, f4, f6 IF

add.s f8, f2, f12

add.s f14, f10, f16

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4
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Problem 2, continued:

(c) The code below executes on a 2-way statically scheduled machine in which the add FP functional unit
has a latency of 3 and an initiation interval of 1.

Show a pipeline execution diagram for the code.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LINE: # LINE = 0x1000

add.s f2, f4, f6 IF

add.s f8, f2, f12

add.s f14, f10, f16

and r1, r2, r3

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(d) In a correct solution to the problem above there should be at least one instruction for which a precise
exception is impossible. If that describes your solution, show a pipeline execution diagram below in which
all instructions could raise precise exceptions (even though they don’t). It’s also possible that in a correct
solution to the problem above all instructions can raise precise exceptions. If so, show a pipeline execution
diagram below in which some instructions cannot raise a precise exceptions. In the absence of exceptions all
pipeline execution diagrams must show correct execution.

Show the appropriate pipeline execution diagram, or show how the one above would be different.

Identify those instructions for which precise exceptions are impossible (above or below) and explain why.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LINE: # LINE = 0x1000 (Either put solution here or show changes to previous solution.)

add.s f2, f4, f6 IF

add.s f8, f2, f12

add.s f14, f10, f16

and r1, r2, r3

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5
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Problem 2, continued:

(e) The code below executes on a 2-way superscalar dynamically scheduled machine using method 3 (the
only one covered this semester), the same one used in Problem 1. The FP add unit has a latency of 3 and
an initiation interval of 1.

Show a pipeline execution diagram. Don’t forget the commit stage.

Assume an unlimited number of reorder buffer entries and physical registers.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LINE: # LINE = 0x1000

add.s f2, f4, f6 IF

add.s f8, f2, f12

add.s f14, f10, f16

and r1, r2, r3

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Problem 3: (20 pts) Two MIPS implementations are illustrated below, the right one has a multiplexor at
the input to the EX/MEM.rtv pipeline latch, the left one does not.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

format
immed

IR

Addr
25:21

20:16

IF ID EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

15:0

0
1
2

(a) Provide two code samples, one in which the multiplexor is useful and one in which it is not. Briefly
explain.

(b) Suppose version 5.11 of a compiler was written for the implementation on the left and is in the hands of
customers. Version 5.99 of the compiler also includes the right implementation and is being released soon.
Which two compilation options would you have to use to take advantage of the changes made for the right
implementation? (The exact names of the compiler options is unimportant, but it should be obvious what
they do.) Briefly explain why each option is necessary and how it would affect the code.

7
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Problem 3, continued:

(c) Design the control logic for the rtv multiplexor. Unlike Homework 4, the logic must be in the EX stage.
Where appropriate, show which bits are being used, e.g., 12:5.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

15:0

0
1
2

(d) There is a good reason why the control logic for the ALU input multiplexors should be in the ID stage
that does not apply to the rtv multiplexor control logic. What is the reason, and why does it not apply to
the rtv logic?

8
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Problem 4: (20 pts) The diagram below is for a 32-MiB (225 bytes) cache with 512-byte (29-byte) lines on
a system with 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

128 b

40 b

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Associativity:

Memory Needed to Implement (Indicate Unit!):

Show the bit categorization for a fully associative cache with the same capacity and line size. Note: Emphasis
not included in original exam.

Address:

9
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Problem 4, continued:

(b) The code below runs on the cache from the previous part. When the code below starts running the cache
is empty. Consider only accesses to the array and assume the cache is cold (empty) when the code starts.

char *a = 0x1000000; // sizeof(char) = 1 character

int sum, i, j;

int ILIMIT = 1024;

for(j=0; j<2; j++)

for(i=0; i<ILIMIT; i++)

sum += a[ i ];

What is the hit ratio for the program above?

(c) Find the hit ratio for the code below running on the cache from the first part. Consider only accesses to
the arrays and assume the cache starts out cold. State any assumptions made.

char *a = 0x1000000; // sizeof(char) = 1 character

char *b = 0x2000000; // sizeof(char) = 1 character

char *c = 0x3000000; // sizeof(char) = 1 character

int sum, i, j;

int ILIMIT = 1024;

for(j=0; j<2; j++)

for(i=0; i<ILIMIT; i++)

sum += a[ i ] + b[ i ] + c[ i ];

(d) Modify the addresses of a, b, and c to maximize hit ratio. Explain how the modified addresses improve
hit ratio.

10
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Problem 5: (20 pts) Answer each question below.

(a) The diagram below shows the branch outcome patterns for two branches.

# Loop contains only the branches shown.

BIGLOOP:

B1: 0x1000 beq $t1, $t2, SKIP1 N N N N T T N N N N T T N N N N T T

...

B2: 0x1200 beq $v0, $v1, SKIP2 T T T T T T T T T T T T T T T T T

...

0x2010 j BIGLOOP

How accurately would branch B1 be predicted by a bimodal (one-level) branch predictor with a 214-entry

branch history table (BHT)?

What is the minimum size of the BHT for which the accuracy in the previous part is possible? Explain.

Why might it be pointless to perform branch prediction in the ID stage of the 1-way statically scheduled
pipeline used in class?

11
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(b) Answer the following questions about exception codes as defined for SPARC V8 and using the class
terminology.

What is an exception code number (or trap type)? Note: In the original exam the question was shorter:
“What is an exception code?”

How is it obtained for traps?

How is it obtained for hardware interrupts?

How is it obtained for exceptions?

How is it used to start the handler?

12
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(c) Consider two processors, one is a 6-way superscalar implementation of an ordinary ISA, say MIPS, the
other is a 6-way implementation of a VLIW ISA, say Itanium (IA-64).

Describe two features of Itanium (or some other VLIW ISA) that would allow it to execute faster than the
superscalar implementation. Explain how the features allow faster execution.

If the implementation for the VLIW ISA were faster why might the superscalar implementation still be
better from a business perspective?

13
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Problem 1: In the diagram below certain wires are labeled with cycle numbers and values that

will then be present. For example, C5:8 indicates that at cycle 5 the pointed-to wire will hold an
8. Other wires are labeled just with cycle numbers, indicating that the wire is used at that cycle.
There are no stalls during the execution of the code.[30 pts]

Write a program consistent with these labels.

The branch is taken. Use labels for branch targets and label the target line.

Show the address of every instruction.

Fill in every register number that can be determined and use r10, r11, etc. for other register
numbers.

format
immed

IR

Addr
25:21

20:16

IR

IF
ID EX

WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

C5

C4

C2:20

C4:7

C5:8

15:0

C0: 0x1000

C2: 0x1008

C6

C5:16

C4

Cycle 0 1 2 3 4 5 6 7 8

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8
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Problem 2: The CISC-A ISA is making its world premier in this exam!

• It has 32 integer registers (the MIPS names can be used) and the address size is 32 bits.

• Each operand in each instruction can use any appropriate addressing mode, including register,
immediate, and the full range of memory addressing modes described in class.

• Instructions are variable size, the entire first byte is the opcode.

(a) Re-write the code below in CISC-A, making up appropriate instructions as needed. [10 pts]

Take advantage of CISC-A’s characteristics to reduce code size within the loop (primary goal) and
outside the loop (secondary goal). (See the next problem.)

Take advantage of: the available addressing modes (memory, register, and immediate), the variable
instruction size, and operand flexibility.

A correct solution includes at least three big-improvement-over-MIPS instructions.

Identify non-MIPS addressing modes used.

lui $t0, 0x1234

ori $t0, $t0, 0x5678

lw $t2, 0($s0)

lw $t2, 0($t2)

addi $t3, $t0, 0x1000

LOOP:

lw $t1, 0($t0)

addi $t0, $t0, 4

bne $t0, $t3 LOOP

add $t2, $t2, $t1

(b) Describe a possible coding for three of the CISC-A instruction used above. Don’t choose three
similar instructions. [10 pts]

It should be obvious (to a computer engineer) that the full range of operands is available.

The coding must follow the • bulleted • points above.

Instruction size should be small, though not the absolute minimum size.

3
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Problem 2, continued: Consider a second ISA, CISC-B, which differs from CISC-A in the
following RISCy ways:

• Only load and store instructions can access memory.

• Each instruction has a fixed set of operand types, for example, an addi might be limited to
one register destination, one register source and one immediate source.

• CISC-B still has variable-size instructions.

(c) Show how one such instruction might be coded. Try to choose a good example from the problem
above. [5 pts]

The coding should reflect and exploit CISC-B’s operand restrictions.

(d) Show two program fragments: [5 pts]

Show a program fragment that would be smaller in CISC-B than CISC-A. (No more than four
instructions.)

Show a program fragment that would be larger in CISC-B than CISC-A. (No more than four
instructions.)

4
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Problem 3: Answer each question below.

(a) Answer the following optimization questions. [10 pts]

Explain the difference between front-end and back-end optimizations.

Can typical front-end optimizations be performed by the back end? Explain using an example.

Can typical back-end optimizations be performed by the front end? Explain using an example.

5
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(b) It is important to computer manufacturers to have high SPEC benchmark ratings. For each
technique of improving SPEC ratings, describe whether it will work, and if it won’t describe why
not. [10 pts]

Try to have a favorable benchmark added to the suite by sending the name of the benchmark and
a little something for their trouble (a bribe) to morally weak SPEC members. In the exam as given
the sentence started “Have a favorable . . .”.

Modify the source code to the benchmarks, honestly improving performance on your system.

Modify your compiler so that it honestly produces faster benchmark executables.

Report results with certain benchmarks omitted.

6
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(c) The typical ISA has one-, two-, four-, and eight-byte integers. [10 pts]

Explain a possible benefit of having five-byte integers.

Explain a difficulty with adding five-byte integers, taking in to account a certain feature (some
would call it a restriction) of many RISC ISAs. Hint: The name of the feature begins with an “a”.

(d) Provide the requested code examples and answer the questions. Two instructions suffice. [10 pts]

Show code having a data dependency; circle the registers carrying the dependency.

What is the name of the corresponding hazard?

Show code having an anti dependency; circle the registers carrying the dependency.

What is the name of the corresponding hazard?

7
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Problem 1: The execution of a MIPS code fragment on a dynamically scheduled machine is shown in the
tables and in the labels on the diagram, both on the next page. The tables show the contents of the ID
Register Map, Commit Register Map, and the Physical Register File at each cycle. The diagram shows the
values on certain wires at certain cycles. For example, 4:65 means that at cycle 4 the labeled wire holds
value 65.

The following are functional unit segment labels: Load/store, L1 L2; floating-point add, A1 A2 A3 A4;
floating-point multiply, M1 M2 M3 M4 M5 M6; integer, EX. The register maps handle both integer and
floating-point registers.

(a) Write a program consistent with these tables and labels.(12 pts)

Show a pipeline execution diagram, be sure to show where each instruction commits.

Choose consistent instructions.

Choose consistent registers. If a register number cannot be determined, use a question mark.

(b) Complete the tables on the next page as follows:(8 pts)

Show where registers are added to, “]”, and removed from, “[”, the free list.

Show the values on the line marked X in the illustration.

2
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Problem 1, continued: See previous page for instructions.

25:21

20:16

rsPR

dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

P
C

dst
S

t: C
,X

0,0

ROB #

C,X
Addr

D In

R
eo

rd
er

 B
uf

fe
r

dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ROB #
tail

head

IDIF

rtPR

F
re

e 
Li

st

dstP
R

dstP
R

dstPR

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

EX

dstPR

dstVal.

Decode
dest. reg

incm
b

Addr

Addr

Data

Data

Addr
D In
D Out

dst

incmb
dstPR

Addr

D In

C Reg. Map

Data

incmb

dstPR

R
ec

ov
er

Q

2:50, 3:65, 5:20,
6:93,10:59

10:93

3:12

4:65

X

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IF ID

IF ID

IF ID

IF ID

IF ID

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X (See Diagram)

# ID Map Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f12 7 50 93 59

r5 3 65

f10 10 20

# Commit Map Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f12 7 50 93 59

r5 3 65

f10 10 20

# Phys. Reg. File Cy 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 0

7 0.

10 0.

20 0.

50 0.

59 0.

65 100

93 0.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Problem 2: The diagram below shows the branch outcome patterns for a branch. (15 pts)
BIGLOOP:

B1: 0x1000 beq $t1, $t2, SKIP1 N N N T T N N N T T N N N T T

...

B2: 0x1020 beq $v0, $v1, SKIP2

...

0x2010 j BIGLOOP

How accurately would branch B1 be predicted by a bimodal (one-level) branch predictor with a 214-entry
branch history table?

How accurately would branch B1 be predicted by a local history predictor with a 10-bit local history and a

214-entry branch history table?

What is the minimum local history size needed to predict B1 with 100% accuracy (after warmup). No partial
credit without an explanation.

Find a pattern for branch B2 that will reduce the accuracy of the local predictor on branch B1. The branch

history table (not to be confused with the pattern history table) remains 214 entries and the history length
remains 10 bits.

4
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Problem 3: Answer the following load/store unit questions.

(a) Why don’t store instructions write to the cache until they commit? (5 pts)

For the two problems below consider the four instructions (repeated) which are in the reorder buffer of a
dynamically scheduled 1-way system. On a cache miss data will arrive in four cycles or more. The effective
address for the second load is 0x1000. (10 pts)

(b) Describe a scenario in which the data for address 0x1000 is not cached but the second load does not wait
for its data.

Show a pipeline execution diagram.

Explain the involvement of the load/store queue and why the second load does not wait more than a cycle
or two.

First: lw $t1, 0($t2)

addi $t0, $0, 4720

sw 0($t1), $t0

Second: lw $t3, 0($t4)

Eff. Addr is 0x1000

(c) Describe a scenario in which the data for address 0x1000 is cached but the second load waits for its data
at least four cycles.

Show a pipeline execution diagram.

Explain the involvement of the load/store queue and why the second load waits.

First: lw $t1, 0($t2)

addi $t0, $0, 4720

sw 0($t1), $t0

Second: lw $t3, 0($t4)

Eff. Addr is 0x1000

5
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Problem 4: The diagram below is for a 2-MiB (221 bytes) cache on a system with 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants. (7 pts)

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32

:8

:3

:8

:3

Fill in

Number of
bits

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Associativity:

Memory Needed to Implement (Indicate Unit!):

Show the bit categorization for a four-way set-associative cache with the same capacity and line size.

Address:

6
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Problem 4, continued:

(b) The code below runs on the cache from the previous part. When the code below starts running the cache
is empty. Consider only accesses to the array. (7 pts)

char *a = 0x1000000; // sizeof(char) = 1 character

int sum, i, j;

int ILIMIT = 1024;

for(j=0; j<2; j++)

for(i=0; i<ILIMIT; i++)

sum += a[ i * 2 ];

What is the hit ratio for the program above?

What is the minimum value of ILIMIT needed to fill the cache?

(c) The code below runs on the same cache as parts above. Initially the cache is empty; consider only accesses
to the arrays. (6 pts)

Choose values for KLIMIT, MLIMIT, KSHIFT, and MSHIFT so that array matrix is completely removed from

the cache with the minimum number of accesses (to b). That is, each j iteration must begin with matrix

reloaded. Don’t forget that the cache is set associative.

int *matrix = 0x1000000; // sizeof(int) = 4 characters

char *b = 0x2000000;

int sum, dummy, i, j, k, m;

int KLIMIT = int MLIMIT =

int KSHIFT = int MSHIFT =

for(j=0; j<3; j++)

{

for(i=0; i<1024; i++)

sum += matrix[ i ];

for(k=0; k<KLIMIT; k++)

for(m=0; m<MLIMIT; m++)

dummy += b[ ( k << KSHIFT ) + ( m << MSHIFT ) ];

}

7
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Problem 5: Answer each question below.

(a) Suppose the instructions below are being considered for the latest extension of the MIPS ISA. For each
new instruction explain why it should be added or why it should not be added. Consider a variety of factors
related to the ISA and implementation. (10 pts)

A mask instruction. Based on analysis of benchmarks.
New Instruction

mask $t1, $t2, 5

Equivalent Code Using Existing Instructions

srl $t1, $t2, 5

sll $t1, $t1, 5

An integer negate instruction. Based on analysis of existing code. With this extension sub does not have to
be used for negation!!!

New Instruction

neg $t1, $t2

Equivalent Code Using Existing Instructions

sub $t1, $0, $t2

An indirect load. Useful based on most existing benchmarks.

New Instruction

lwi $t1, 0($t2)

Equivalent Code Using Existing Instructions

lw $t1, 0($t2)

lw $t1, 0($t1)

Added functionality for the sllv instruction. The existing sllv looks at the low 5 bits of the rt register,
ignoring the other bits. It only shifts left. The improved instruction also shifts right if the rt register holds
a negative value and left if it’s positive.

Improved Instruction

sllv $t1, $t2, $t3 # Shifts right if $t3 negative.

Equivalent Code Using Existing Instructions

bltz $t3, SHIFTRIGHT

nop

sllv $t1, $t2, $t3

j DONE

SHIFTRIGHT:

sub $at, $0, $t3

srlv $t1, $t2, $at

DONE:

8
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(b) Answer the following questions about exceptions. (5 pts)

Why are precise exceptions necessary for instructions like lw but optional for instructions like div?

What can handlers for instructions that raise precise exceptions do that handlers for other instructions
cannot? Explain how that capability is used for lw.

(c) Delayed branches are common in RISC ISAs. (5 pts)

Explain why delayed branches were useful in early RISC processors, such as the 1-way statically scheduled
MIPS implementation covered in class.

Why are delayed branches of less benefit with more recent implementations?

9
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(d) Why might a gshare branch predictor with a longer global history register (GHR) have a significantly
longer warm up time? (5 pts)

(e) Why might a functional unit with an initiation interval of 4 and latency of 3 be less costly (as in dollars)
than a functional unit with an initiation interval of 1 and a latency of 3?(5 pts)

Include an illustration with your answer.

10
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Problem 1: A new MIPS branch instruction, bieq rt,(rs) disp (branch indirect equal) compares a
register value to a memory location, if they are equal the branch is taken. The target is computed in the
same way as other branches. In the code below, the contents of register $s1 is compared to the contents of
the memory location at address $s2. Like all MIPS control transfers, bieq has one delay slot. [30 pts]

(a) Modify the pipeline so that it can execute this new instruction. Show comparison units, multiplexors,
and wires. Do not show control logic. For partial credt replace bieq ... with bneq $s1,$s2, LOOP.

Use as much existing hardware as possible. Do not add a new memory port.

The change should not reduce the clock frequency.

Include the comparison unit for the branch condition.

Add bypass paths so that the code below executes as shown.

Label bypass paths with the cycle in which they are used. Include existing and any added bypass paths.

Label the path carrying the branch target address with the cycle in which it is used.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

LOOP: # Assume bieq always taken.

# Cycle 0 1 2 3 4 5 6 7 8 9 10

srl $s1, $s1, 1 IF ID EX ME WB

addi $s2, $s2, 1 IF ID EX ME WB

bieq $s1, ($s2), LOOP IF ID EX ME WB

sw $s1, 100($s2)

add $0, $0, $0

sub $0, $0, $0

or $0, $0, $0

xor $0, $0, $0
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Problem 1, continued:

(b) The pipeline execution diagram on the previous page only shows the first iteration.

Continue the pipeline execution diagram to the beginning of the second iteration (when srl is fetched),
consistent with your solution to the first part.

Show which instruction is in each stage of the pipeline a cycle eight. Include squashed instructions, if any.

Determine the CPI for a large number of iterations.

3
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Problem 2: Convert the MIPS program below to SPARC, making use of condition codes. [13 pts]

Make reasonable guesses about instruction names. Reasonable guesses will receive full credit.

For the branch instructions, explain what the name stands for.

Explain how each line of code uses the condition codes.

Use the minimum number of registers.

Do not rearrange instructions.

sub $s6, $s1, $s2

blt $s6, TARGET1

and $s3, $s6, $s4

beq $s3, $0, TARGET2

nop

beq $s6, $0 TARGET3

add $s5, $s6, $s3

4
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Problem 3: Sometimes it’s necessary to jump to a location specified in the program. [13 pts]

(a) SPARC V8 includes an instruction that can jump anywhere in the address space using an address specified
in the instruction, for example, call 0xabcd1234.

How does the call instruction, which is 32 bits, manage to specify a 32-bit jump target?

Switching now to MIPS, show the minimum number of instructions needed to jump to address 0xabcd1234.
(If jr is used the instructions must put the address in a register. The address cannot be loaded from
memory.)

(b) Without introducing a new format, add a new instruction to MIPS that would allow a jump to an
arbitrary address using two instructions. The address must be specified in the instructions themselves.

Use the instruction in an example.

Show the coding for the new instruction.

5
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Problem 4: Answer each question below.

(a) Certain RISC ISA features are intended to facilitate pipelined implementations. [12 pts]

Using the diagram below, briefly explain how RISC implementations benefit from fixed-length instructions
and how things would be different with variable-length instructions.

Using the diagram below, briefly explain how RISC implementations benefit from load/store instructions
(restricting memory access to load instructions) and how relaxing the restriction would complicate things.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
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(b) Before there was MMX there was BCD. [12 pts]

Why are binary coded decimal (BCD) and packed-integer data types superficially similar? What is an
important difference between them?

Describe a computation in which packed integer data types yield a performance advantage over ordinary
integers. Show a brief advantage of the computation.

Why were BCD data types added to some ISAs?

(c) Describe two compiler optimizations that reduce instruction count. [8 pts]

7
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(d) The BAPCO benchmarks used by PC magazine and others evaluates a computer by timing the execution
of a suite of benchmarks. The suite of benchmarks is drawn from common applications, such as Adobe
Photoshop. The applications are in executable form, source code is not used.

Like BAPCO, SPEC CPU2000 consists of a suite of common applications, unlike BAPCO source code is
used. Assume that the BAPCO and SPEC benchmarks are both well chosen and aimed at roughly the same
user community. [12 pts]

How is source code used in preparing the SPEC CPU 2000 benchmark results?

Consider two processors, A and B. Suppose BAPCO ranks A faster but SPEC ranks B faster. How might
the use of source code account for this difference?

Taking in to account the differences due to the use of source code, who should make buying decisions based
on BAPCO results? Who should make buying decisions on SPEC results?

8
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Problem 1: In the diagram below certain wires are labeled with cycle numbers and, in some cases, values
that will then be present, for example, 2:9 indicates that at cycle 2 the wire will hold a 9. Other wires are
labeled just with cycle numbers, indicating that the wire is used at that cycle. Write a program consistent
with these labels. There are no stalls during the execution of the code. The code should use five instructions,
use the PED to help solve the problem. (10 pts)

Write a program consistent with these labels.

Use labels for branch targets (if any) and label the target line.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv
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NPC
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Data
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4:8
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1:106:11

4:-4
15:0

Cycle 0 1 2 3 4 5 6 7 8

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8
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Problem 2: The PED below shows execution on a defective 1-way dynamically scheduled machine using
Method 3. A diagram appears on the next page. The circuitry that’s supposed to restore the ID map after
a branch misprediction is not working, the ID map is left unchanged. Everything else works correctly, in
particular the free list is correctly restored to the exact state it was right after the lw. (17 pts)

(a) For this incorrect execution:

Show where each instruction commits.

Complete the ID map. (See the phys. reg. file for the free list.)

Complete the commit map, include the initial state.

Complete the physical register file.

In addition to other information the physical register file should include a [ in the cycle a register is removed
from the free list and a ] in the cycle it is returned to the free list.

Circle incorrect entries (due to the defect) in the tables below.

# lw loads a 0x200, lb loads a 0x202

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

bne $s1, $s2 SKIP IF ID Q B WB

lw $t1, 16($t1) IF ID Q L1 L2 WB

addi $t4, $t4, 3 IF ID Q EX WB x (squash)

ori $t5, $t4, 0x30 IF ID Q EX WB x (squash)

nop ... (lots of nops)

SKIP:

lb $t1, 16($t1) IF ID Q L1 L2 WB

addi $t4, $t4, 3 IF ID Q EX WB

ori $t5, $t4, 0xc0 IF ID Q EX WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ID Map

t1 3

t4 7

t5 10

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Commit Map

t1

t4

t5

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Physical Reg File. All values in hex. Free List: 18, 20, 23, 30, 37

3 100

7 101

10 102

18 103

20 104

23 105

30 106

37 107

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
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Problem 2, continued: The illustration below is similar to one used in class; it is provided for reference.
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(b) Suppose 1000 instructions later an instruction finds 0x4720 in register t4 despite the fact that the code
above wrote something else and no instruction wrote t4 after that. (If the free list is used improperly the
question might apply to t5, not t4. See the diagram for hints on proper use of the free list.)

Note: On the original exam register t5 was used instead of t4. Register t5 can not change unexpectedly,
though it still has an incorrect value.

How could that have happened? Be specific in how it’s due to the defect.

(c) How could the defect have gone undetected?!? (That’s not the question.)

Suppose the lw raised an exception in L2 on this defective hardware. Would the code above execute incor-
rectly? Explain. Remember, the only defect is with recovering the ID map on a branch misprediction. Note:
Original exam omitted “on a branch misprediction.”

Now suppose the lb raised an exception in L2 on this defective hardware. Would the code above execute
incorrectly? Explain. Once again, the only defect is with recovering the ID map on a branch misprediction.

4

← → Fall 2002 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/2002f/fe.pdf


Problem 3: The code below runs on three systems: one using a bimodal (one-level) predictor, I; one using
a two-level local history predictor, L; and one using a two-level gshare predictor, G. The global history
register is 16 bits and the local history is 16 bits. The branch history tables have 256 entries. Assume
that each branch below has its own BHT entry. The branch outcomes for B2 and B3 are provided for your
solving convenience. Note that B3 has the same pattern as B2 but at a different phase, the phase difference
is important. (11 pts)

BIGLOOP: LOOP:

B1: bne $t1, $0, SKIP # Random, independent, taken 25% of time.

...

SKIP:

B2: bne $t2, $t5, SKIP2 # Pattern: N N N N N N T T N N N N N N T T N N N N N N T T ....

...

SKIP2:

B3: bne $t7, $t8, SKIP3 # Pattern: N N N N N T T N N N N N N T T N N N N N N T T N ....

...

SKIP3:

B4: bne $t9, $t10, LOOP # Iterates 50 times.

...

j BIGLOOP

nop

(a) Determine the prediction accuracy for each branch and each predictor. The accuracies should be after
warmup. Do not compute the number of entries. Approximate the accuracy of B1 predictions.

B1 on I: Accuracy:

B1 on L: Accuracy:

B1 on G: Accuracy:

B2 on I: Accuracy:

B2 on L: Accuracy:

B2 on G: Accuracy:

B3 on I: Accuracy:

B3 on L: Accuracy:

B3 on G: Accuracy:

B4 on I: Accuracy:

B4 on L: Accuracy:

B4 on G: Accuracy:

(b) A gshare predictor using a 15-bit GHR (instead of the 16-bit GHR used above) should give the same
prediction accuracy for branch B2. How small can the GHR be made without changing the prediction
accuracy of B2? Assume there are no collisions. Note: The original question asked about B3.

(c) For the local predictor, how small can the local history be made without affecting the prediction accuracy
of B2 and B3?

5
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Problem 4: The diagram below is for a cache with 256-character lines on a system with 8-bit characters.
(17 pts)

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32

32 b

31:2431:24

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Associativity:

Cache Capacity (Indicate Unit!):

Memory Needed to Implement (Indicate Unit!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

6
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Problem 4, continued:

(b) The code below runs on the cache from the previous part. When the code below starts running the cache
is empty. Consider only accesses to the array.

int *a = 0x100000; // sizeof(int) = 4 characters

int sum, i, j;

for(j=0; j<2; j++)

for(i=0; i<1024; i++)

sum += a[ i ];

What is the hit ratio for the program above?

(c) In the problem below, only consider accesses to the arrays.

int *a = 0x10000; // sizeof(int) = 4 characters

int *b = 0x20000;

int sum, i, j;

for(j=0; j<2; j++)

for(i=0; i<1024; i++)

sum += a[ i ] + b[ i ];

What is the minimum size of a direct mapped cache for which the program above will have a 100% hit ratio
on the second j iteration? Explain.

What is the minimum size of a two-way, set-associative cache for which the program above will have a 100%
hit ratio on the second j iteration?

What is the minimum size of a three-way, set-associative cache for which the program above will have a

100% hit ratio on the second j iteration?

7
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Problem 5: Answer each question below.

(a) In the PED below for a statically scheduled 2-way superscalar machine the xor instruction stalls in IF
even though there is an empty space in ID. (5 pts)

add s1, s2, s3 IF ID EX ME WB

or s4, s1, s5 IF ID -> EX ME WB

xor s6, s7, s8 IF -> ID EX ME WB

and s9, s10, s11 IF -> ID EX ME WB

Why?

Would it be difficult or would it be impossible to modify the implementation (but keeping it statically

scheduled) so that such an instruction could move to ID? Explain.

(b) In a dynamically scheduled system why should store instructions wait until they are ready to commit
before storing the data? (6 pts)

8
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(c) The same code fragment executes on 1-way, statically scheduled systems with the specified FP add
functional unit(s). For each show a pipeline execution diagram. Don’t forget to consider all structural
hazards and check carefully for dependencies. All adders take a total of four cycles to compute a result
(latency is 3). (5 pts)

One adder, A, initiation interval: 1.

add.d f0, f2, f4

add.d f6, f0, f8

add.d f10, f0, f12

One adder, A, initiation interval: 2.

add.d f0, f2, f4

add.d f6, f0, f8

add.d f10, f0, f12

One adder, A, initiation interval: 4.

add.d f0, f2, f4

add.d f6, f0, f8

add.d f10, f0, f12

Two adders, A and B, each has initiation interval: 4.

add.d f0, f2, f4

add.d f6, f0, f8

add.d f10, f0, f12

9
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(d) One problem in Homework 5 was to analyze the execution of an unoptimized program to compute π.
Many people got the question below wrong, here’s your chance to get it right! (5 pts)

Should computer engineers analyze the performance of processors running unoptimized code? Explain.

(e) Consider a new data type, binary coded trianary. This 32-bit data type consists of 16 radix-3 digits, each
coded with two bits, in the same way a BCD data type would consist of 8 radix-10 digits. (8 pts)

Why might 3- and 9-fingered aliens find this data type useful?

Explain how the data type would be useful in accessing arrays in which the element size was a power of
three.

In a meeting next week you plan to argue that this data type should be included in the next revision of
the ISA, one of several proposed new data types. Only one will be chosen. Three-fingered aliens are not
expected to make up a large portion of your customer base.

How will you argue that the data type should be included?

What will you do in the next week to prepare your argument?

10
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(f) In Homework 6 the performance of a linear search of an array and linked list were compared. On the
dynamically scheduled systems the search was much faster on the array. Now consider the array program
on a statically scheduled system. (8 pts)

\scoreable Would the array program perform as well? Consider

the effect of memory latency and line size.\par

\solution{The array program would still perform better than the linked

list program, but with longer memory latency or shorter line size the

array program on the dynamically scheduled system would run

substantially faster. }

Explain. Hint: the solution above was intentionally included.

(g) Predicated instructions can be used to avoid branches. (8 pts)

Why do predicated instructions have maximum benefit over branches that skip over one instruction (com-

pared to predicated instructions used to avoid branches that skip over more than one instruction)?

Suppose the compiler is considering whether to replace a branch that skips n instructions with predicated
instructions. How could the compiler use an estimate of prediction accuracy, fcorrect, and resolution time,
tresolve, as well as implementation details to make its decision?

11
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Problem 1: In the diagram below certain wires are labeled with cycle numbers and values that

will then be present, for example, C2:9 indicates that at cycle 2 the wire will hold a 9. Other
wires are labeled just with cycle numbers, indicating that the wire is used at that cycle. Write a
program consistent with these labels. There are no stalls during the execution of the code. The code
should use five instructions. Note: The diagram in the original exam had an error that resulted in

contradictory information about the third instruction (fetched in cycle 2). The error was a C3:5
pointing to the input to the ID/EX.dst latch; that now points to the rt address input to the register
file. [35 pts]

Write a program consistent with these labels.

Use labels for branch targets (if any) and label the target line.

format
immed

IR

Addr
25:21

20:16

IR

IF
ID EX

WBMEM

IR IR
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C5 C4

C4

C3: 12

C5:3C2: 9

C3:5

15:0

C1: 2

C0: 0x1000

C2: 0x1008

# Cycle 0 1 2 3 4 5 6 7 8 9

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB
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# Cycle 0 1 2 3 4 5 6 7 8 9
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Problem 2: Consider the CISCy instruction below: [25 pts]

(a)
add 0x123456(r1), 8(r2), r3 # 0x123456(r1) is the destination.

What makes it CISCy? (CISCy means characteristic of CISC ISAs.)

Ignoring instruction size, why would it be difficult to implement such an instruction on the kind of
five-stage pipeline used in class for MIPS?

4
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Problem 2, continued:
add 0x123456(r1), 8(r2), r3 # 0x123456(r1) is the destination.

(b) How could the single-issue (not superscalar) pipeline used in class be modified so that instruc-
tions like the one above could be executed with a potential for a CPI of 1 without impacting clock
frequency? (Instructions like the one above have one destination and two sources, the destination
and first source can either use a register value or memory value specified with displacement ad-
dressing, the second source can be either a register value or an immediate.) Feel free to throw
hardware at the problem, but do not assume that the hardware is any faster than what we’ve been
using.

Show a sketch of the pipeline, briefly explaining what should be done in each stage.

Show a pipeline execution diagram for the following code on your new pipeline, assuming no
dependencies.

add 0x1234(r1), 8(r2), r3

or r4, 7(r5), r6

and 0x1234(r7), r8, r9

In the part above, why was it necessary to assume no dependencies?

5
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Problem 3: Answer each question below.

(a) What’ll it be? One FP adder with an initiation interval of 2 and a latency of 3 (four cycles of
computation) or two FP adders each with an initiation interval of 4 and a latency of 3? [10 pts]

What is the maximum number of FP adds per second with each alternative on a 1 GHz system?

Show a code fragment in which one of the alternatives is slightly faster. For the alternative with
two adders, use label “A” for one adder and “B” for the other.

Ignoring the cost of the adders themselves, which alternative would be more costly and why?

6
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(b) SPEC benchmark numbers are provided in “base” and “peak” forms. [10 pts]

How are they different?

When should an intelligent (passed EE 4720) computer buyer use the base numbers, and when
should the buyer use the peak numbers?

(c) Stack ISAs had burrowed their way in to our past and percolated to the fore in the past decade.
[10 pts]

Why are programs compiled for stack ISAs smaller than the same programs compiled for other
ISAs? (Assume all compilers are of high quality.)

Why would superscalar implementations of stack ISAs be less efficient (further from the ideal CPI)
than superscalar implementations of RISC and some other “conventional” ISAs? Ignore instruction
fetch problems. Consider the simple stack programs presented in class.

7
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(d) At last superscalar implementations and VLIW ISAs will wage their epic [tm] battle now at the
dawn of the twenty-first century.[10 pts]

What distinguishes a superscalar implementation from a nonsuperscalar implementation? (VLIW
isn’t part of this question).

Explain two ways in which VLIW machines overcome problems encountered in superscalar imple-
mentations of conventional (say RISC) ISAs?

8
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Problem 1: The (hopefully familiar) code fragment on the next page executes as shown on the dynamically
scheduled system illustrated below.

(a) For each entry in the Physical Register File table on the next page place a “[” at the cycle(s) at which a
physical register is allocated (removed from the free list) and place a “]” at the cycle(s) at which it is placed
back in the free list. (This was part of the solution to Homework 5.) (10 pts)

(b) The diagram below includes circled letters, these letters appear in a Signals Values Table on the next
page.

(10 pts) Fill in the table showing the signals that will appear on the labeled wires.

• Use register names (f0, $1, etc.) for architected registers (but not for physical registers!).

• Use a question mark for a physical register number that cannot be determined from the tables.

• Since the machine is four-way superscalar each wire holds four values. Do not show values for the
instructions that are not in the table, such as the two instructions following sub.

• Assume that values have been correctly computed, even if they depend upon preceding instructions
in the same group. (This affects row E in the table.)
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LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ldc1 f0, 0($1) IF ID Q L1 L2 WC

IF ID Q L1 L2 WB C

IF ID Q L1 L2 WB C

IF ID Q L1 L2 WB

mul.d f0, f0, f2 IF ID Q M1 M2 M3 M4 M5 M6 WC

IF ID Q M1 M2 M3 M4 M5 M6 WC

IF ID Q M1 M2 M3 M4 M5 M6 WC

IF ID Q M1 M2 M3 M4 M5

sdc1 0($1), f0 IF ID Q L1 L2 WC

IF ID Q L1 L2 WC

IF ID Q L1 L2 WC

addi $1, $1, 8 IF ID Q EX WB C

IF ID Q EX WB C

IF ID Q EX WB C

bne $2, $0 LOOP IF ID Q B WB C

IF ID Q B WB C

IF ID Q B WB C

sub $2, $1, $3 IF ID Q EX WB C

IF ID Q EX WB C

IF ID Q EX WB C

# ID Map 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

f0 99 97,96 94,93 91,90

$1 98 95 92 89

# In cycle one first 97 is assigned to f0, then 96 (replacing 97). The

# same sort of replacement occurs in cycles 4 and 7.

# Commit Map 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

f0 99 97 96 94 93 91 90

$1 98 95 92 89

# Physical Reg File 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

99 1.0

98 0x1000

97 10

96 11

95 0x1008

94 20

93 2.2

92 0x1010

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

# Signal Values 0 1 2 3 4 5 6 7 8 9 10 11 12

A

D

E

M

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
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Problem 2: The add instruction below is a predicated version of a MIPS instruction (for this exam). If
the contents of register $s5 (for the example) is non-zero the add instruction executes normally. If it’s zero
then it’s as though the add never executed. Any GPR can be used to hold the predicate.
# Cycle 0 1 2 3 4 5 6

xor $v1, $a0, $a1 IF ID EX ME WB

lw $s5, 0($t2) IF ID EX ME WB

($s5) add $s1, $s2, $s3 IF ID EX ME WB

(a) Suppose there are predicated versions of other two-source, one-destination instructions. How might they
be coded in MIPS? The coding should be chosen to ease implementation. (5 pts)

(b) Modify the pipeline below to implement predication; it should run the code above correctly and without
stalls (as illustrated). The added hardware must detect whether the predicate is true or false and take
appropriate action. It should include bypassing, for example, to handle the dependency carried by $s5 or
from xor if the predicate were $v1.

Hint: A correct solution uses multiplexors, an is P (box that recognizes a predicated instruction), assorted
gates, and some modifications to existing components.

(9 pts)

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
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Problem 2, continued:

(c) Assume predicates were implemented as requested in the previous part. Explain why bypassing of the
dependency carried by $s1 in the program below won’t work for the hardware below. Explain how the
problem might be fixed. (8 pts)

# Cycle 0 1 2 3 4 5 6

xor $s5, $a0, $a1 IF ID EX ME WB

lw $s5, 0($t2) IF ID EX ME WB

($s5) add $s1, $s2, $s3 IF ID EX ME WB

or $s4, $s1, $v0 IF ID EX ME WB

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

Control
Logic

c1

c2
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Problem 2, continued: Consider such predicated instructions in a dynamically scheduled implementation
using method 3. The implementation without predicate prediction (the next two parts) should realize the
benefit of predicated instructions: avoiding the need for branches.

(d) How might the ID Register Map be updated for predicated instructions? (For partial credit: Why is this
a good question?)(5 pts)

(e) Based on your answer above, how is execution affected if the predicate turns out to be false? (5 pts)

(f) Consider a dynamically scheduled system using predicate prediction. What should be done when a
predicate is mispredicted? Under what circumstances (properties of program being run) would it be faster
than a system without predicate prediction? Under what circumstances would it be slower? (5 pts)

6
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Problem 3: The diagram below is for an 2MiB (221 byte) 16-way set-associative cache, with a line size of
128 characters, for a system with 8-bit (how ordinary) characters.

(a) Answer the following, formulæ are fine as long as they consist of literals and grade-time constants. (10 pts)

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32

64 b
16-Way

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Memory Needed to Implement (Indicate Unit!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

7
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Problem 3, continued: Continue to use the set-associative cache from the previous part.

When the code below starts running the cache is empty. Consider only accesses to the array.

half *h = 0x100000; // sizeof(half) = 2 characters

int sum;

int i,j;

int ISTRIDE = 1;

int ILIMIT = 1024;

for(j=0; j<4; j++)

for(i=0; i<ILIMIT; i++)

sum += h[ ISTRIDE * i ];

(b) Answer the following. (10 pts)

What is the hit ratio for the program above?

Find the minimum value of ISTRIDE needed to maximize the miss ratio. (That is, minimize the hit ratio,

make things really slow.) Don’t forget that the cache is set associative. Do not modify ILIMIT.

8
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Problem 4: Answer each question below.

(a) In the pipeline execution diagram below the multiply is squashed to avoid the WAW hazard. How does
this make a precise exception impossible? (5 pts)

mul.d f0, f2, f4 IF ID M1x

add.d f0, f6, f8 IF ID A1 A2 A3 A4 WB

(b) How do processes share memory in a virtual memory system? Provide an example in which two processes
share address 0x12000 but address 0x34000, used by each process, is not shared. The addresses must be
used in the example. (5 pts)

9
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(c) Show how the branch history table and pattern history tables are connected in a local history branch
predictor. Show how the table is indexed and how its contents are used to make a prediction. (5 pts)(For
partial credit show a one-level [bimodal] predictor.)

10
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(d) One way to improve performance is to divide the pipeline into more stages, as in the Pentium 4 compared
to the Pentium III. This does not reduce the amount of time it takes to compute things, such as sums, though.
Given that: (8 pts)

How are dependencies potential performance limiters when dividing pipeline stages?

How does the Pentium 4 Fast ALU get around that?

Are dependencies still a problem or can we now use zillion-stage pipelines (at least as far as dependencies

are concerned)? Explain.

Why is branch prediction accuracy more important when there are more stages?

11
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Problem 1: The DLX implementation below lacks bypass paths and, worse than that, lacks the
hardware needed for control-transfer instructions.

sign
ext.

IR

Addr
6:10

11:15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Data

NPC

Decode
RD RD RD RD

[5 pts] Add exactly the hardware needed so that the control-transfer instructions execute as shown

below. Include a connection to the =0 box used in determining whether a branch is taken.

[5 pts] Add exactly those bypass paths necessary so that the code below executes as shown. Check
the code carefully for dependencies, including all those related to the jalr instruction.

[5 pts] Show the cycles in which each added wire will be used.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

ori r1, r1, #15 IF ID EX ME WB

bnez r1, SKIP IF ID EX ME WB

add r0, r0, r0 IF IDx

xor r0, r0, r0 IFx

SKIP:

sub r20, r20, r21 IF ID EX ME WB

jalr r20 IF ID EX ME WB

xor r0, r0, r0 IFx

...

add r15, r31, r0 IF ID EX ME WB

or r16, r16, r15 IF ID EX ME WB

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

2
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Problem 2: The DLX implementation below includes bypass paths into the EX/MEM.B register.

sign
ext.

IR

Addr
6:10

11:15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Data

NPC

Decode
Rd

RD RD RD

Bx

0
1

2

[5 pts] Write a program that uses all three paths into the EX/MEM.B register. Hint: It’s easy.

[10 pts] Design the control logic for the multiplexor feeding the EX/MEM.B register. The control
logic should be in the ID stage and feed into the ID/EX.Bx pipeline latch provided in the diagram
above.

3
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Problem 3: Registers r1 and r2 each contain a signed integer, call them i and j. Register r10

contains an address, call the address A. Let p = i× j.

[10 pts] Starting at address A write p in three formats: integer, double-precision floating-point, and
single-precision floating-point. Maintain as much precision as possible.

Hint: A reasonable solution would use movitof and cvtXtoY instructions.

! Initially: r1 and r2 each contain an integer, i and j.

! r10 contains an address.

!

! At Mem[r10] write i * j (integer format).

! At Mem[r10+?] write i * j (double-precision FP)

! At Mem[r10+??] write i * j (single-precision FP)

4
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Problem 4: Answer each question below.

(a) In the two pipelined functional units below an instruction must pass through each segment
twice. The A’s are for FP addition and M’s are for FP multiplication.

A1

P
ipeline Latch

A2
P

ipeline Latch

M1
P

ipeline Latch
M2

P
ipeline Latch

[10 pts] Complete the pipeline execution diagram below for a system using these functional units.
Don’t overlook the dependency through f6.

addd f0, f2, f4

addd f6, f8, f10

muld f12, f6, f14

muld f16, f18, f20

5
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(b) The code below, which of course is not DLX, uses memory-indirect and autoincrement address-
ing.

lw r1, @(r2) ! Memory-indirect load.

lw r4, (r5)+ ! Autoincrement

lh r6, (r7)+ ! Autoincrement

[10 pts] Rewrite the code in DLX.

(c) The three types of interrupts discussed in class are traps, hardware interrupts, and exceptions.

[6 pts] For each one explain how the exception code is determined.

[6 pts] For each one explain where control returns after the handler completes.

6

← → Fall 2001 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4720/2001f/mt.pdf


(d) An ISA has two implementations, A and B; each implementation has a well-written compiler.

[5 pts] Would the code compiled by A’s compiler run on implementation B? Briefly explain.

[5 pts] A program is compiled using A’s compiler and B’s compiler. How might the compiled code
differ? Provide a reason for the difference.

(e) You have become the owner of a large American computer company, congratulations.

[6 pts] How can you (legally) influence the decision-making process so that SPECs next benchmark
suite does not unfairly put your company’s products at a disadvantage? (Note: Bribery is illegal
in the U.S.)

7
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(f) DLX does not have delayed branches, but many other RISC ISAs do.

[6 pts] What is a delayed branch and how does it help?

(g)

[6 pts] How and why is the CPI affected in an implementation re-designed for a higher clock
frequency?

8
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Problem 1: The code fragment below executes as shown on a single-issue dynamically scheduled system
using a physical register file (Method 3). Initially register f0 contains a 0, f2 contains a 0.2, and f4 contains
a 0.4. The value computed by each instruction is shown near the right margin. (20 pts)

Show where each instruction commits.

Complete the ID- and commit-stage register map tables.

Complete the physical register file table.

Be sure to show the initial values for f0, f2, and f4 in the register maps and the register file.

In the physical register file use a [ to indicate when a register is removed from the free list and use a ] to
indicate when it’s put back.
!Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

addd f0, f0, f2 IF ID Q A1 A2 WB (.2)

addd f4, f2, f4 IF ID Q A1 A2 WB (.6)

addd f2, f0, f8 IF ID Q A1 A2 WB (1.)

addd f0, f4, f8 IF ID Q A1 A2 WB (1.4)

addd f4, f2, f8 IF ID Q A1 A2 WB (1.8)

!Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ID Register Map: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

f0

f2

f4

Commit Reg Map: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

f0

f2

f4

Physical Reg File: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0 0

1 .2

2 .4

3

4

!Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

5

6

7

8

9

!Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
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Problem 2: The code fragment below executes on three different systems, I, L, and G, each using a different
branch predictor:

I: One-level predictor, 216-entry BHT. L: Sixteen-bit (two-level) local history. G: Sixteen-bit (two-level)
gshare.

In the spaces provided below show the accuracy of, and the number of entries used by, the indicated branch
on the indicated system. The accuracy and number of entries should be after warmup. The number of
entries used for the gshare scheme can be approximate. If there is more than one table, show the number of
entries in each table separately.(20 pts)

B1 on I: Accuracy: Entries:

B2 on I: Accuracy: Entries:

B3 on I: Accuracy: Entries:

B1 on L: Accuracy: Entries:

B2 on L: Accuracy: Entries:

B3 on L: Accuracy: Entries:

B1 on G: Accuracy: Entries:

B2 on G: Accuracy: Entries:

B3 on G: Accuracy: Entries:

BIGLOOP:

LOOP2: ! Iterates 100 times

! Random, 0 or 1

lw r1, 0(r2)

addi r2, r2, #4

B1: bnez r1, SKIP1

add r10, r10, r11

SKIP1:

sub r3, r2, r12

B2: bnez r3, LOOP2

addi r1, r0, #3

LOOP3:

subi r1, r1, #1

B3: bnez r1, LOOP3

j BIGLOOP

3

← → Fall 2001 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/2001f/fe.pdf


Problem 3: The diagram below is for an 8MiB (223 byte) set-associative cache for a system with 8-bit
(how ordinary) characters.

(a) Answer the following, formulæ are fine as long as they consist of literals and grade-time constants. (10 pts)

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

19:8 19:8

19:5 19:5

32

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Associativity:

Line Size (Indicate Unit!):

Memory Needed to Implement (Indicate Unit!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:
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Problem 3, continued: Continue to use the set-associative cache from the previous part.

When the code below starts running the cache is empty. Consider only accesses to the array.

double *d = 0x100000; // sizeof(double) = 8 characters

double sum;

int i;

int ISTRIDE = 1;

int ILIMIT = 64;

for(i=0; i<ILIMIT; i++)

sum += d[ ISTRIDE * i ];

(b) Answer the following. (10 pts)

What is the hit ratio for the program above?

Modify ISTRIDE and ILIMIT so that the cache, which remember is set-associative, is completely filled with
the minimum number of accesses.

5
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Problem 4: Answer each question below.

(a) The contents of the load/store queue in a dynamically scheduled system is shown below for t = 4720. At
this particular time the cache is empty, but with a load/store queue full of instructions it won’t be empty
for long. The instruction in entry L0 is the oldest.

The EA field indicates the effective address, a #1 in this field indicates that the effective address cannot be
computed until the instruction in ROB entry #1 (not shown) completes. It completes at t = 7700.

The Data field indicates the data that will be written by the store instruction in the entry.

The cache is nonblocking and the load/store queue can process an unlimited number of instructions per
cycle.

(5 pts) For each load instruction at t = 4721 if it’s complete show what data it has loaded otherwise indicate
the first thing it’s waiting for.

Type EA Data Data loaded or reason for waiting.

L8: load #1

L7: load 0x1000

L6: store 0x2000 66

L5: store 0x1000 55

L4: load 0x1000

L3: store #1 33

L2: store 0x1000 22

L1: load 0x2000

L0: load 0x1000

6

← → Fall 2001 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/2001f/fe.pdf


(b) The exception recovery mechanism in the R10000 does not need a commit map, the one in Method 3
does.

(5 pts) But the R10000 takes longer to recover. Why does it take longer and how much longer does it take?

(c) In some schemes for recovering from branch mispredictions on dynamically scheduled systems recovery
can start at completion rather than waiting for commitment.

(5 pts) What additional hardware is needed for this? How is it used?

(d)

(5 pts) Show how bits are categorized in a real address and a physical address in a system with a 64-bit
virtual address space, a 40-bit real address space and 214-character pages.

7
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(e) Connections for the jr instruction are omitted from the pipeline below.

(5 pts) Add them.

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

RD RD RD
Decode

RD

(5 pts) Show a pipeline execution diagram for the code below consistent with the modified hardware above.

slli r10, r1, 2

addi r10, r10, r2

lw r10, 0(r10)

jr r10

TARG: !Target of jr.

add r20, r21, r22

8
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(f) Here are the IA-64 instructions used in the solution to Homework 3: ld1 (load byte), cmp.eq (compare
equal), cmp.le (compare less than or equal), cmp.gt (compare greater than), add (add of course), st1 (store
byte), and br (branch).

(5 pts) Convert the DLX code below to IA-64, be sure to use predicated instructions.

Show the stops.

sle r1, r2, r3

beqz r1, SKIP

add r10, r10, r11

j CONT

SKIP:

sub r12, r12, r13

CONT:

add r14, r12, r10

(5 pts) Besides needing fewer instructions, how does predication speed execution? (Not necessarily in IA-64
implementations.) Modify the DLX program (without changing the branch and jump) so that predication
would be less useful.

sle r1, r2, r3

beqz r1, SKIP

add r10, r10, r11

j CONT

SKIP:

sub r12, r12, r13

CONT:

add r14, r12, r10

9
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Problem 1: In the DLX implementation below six paths are marked with a number, a cycle in
which the path will be used. Write a DLX program that uses those six paths at the indicated
cycles. Some marked paths are bypass paths and some are not; the bypass paths can be used only
at the cycles indicated. A pipeline execution diagram is provided for your convenience.

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A

B

IMM

NPC

ALU

=0

Addr

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Data

NPC

Control
Logic

RD RD RD

5

5

6

6

3

5

[15 pts] Choose the register operands so the bypass paths are used only at the cycles indicated.

[15 pts] Choose the instructions so that the marked paths will be used as indicated. There need be
only one control transfer instruction.

[5 pts] One instruction will be squashed. Show where by crossing out the segment labels (ID, etc.)
in the diagram.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

2
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Problem 2: The DLX code below runs on a dynamically scheduled system that uses reorder
buffer entries to name destination registers (Method 1). The floating-point adder has five stages,
A1 through A5, and is fully pipelined. The common data bus (CDB) can handle an unlimited
number of writebacks per cycle, but other parts of the implementation are ordinary. The cache
is non-blocking. The cvtftoi instruction uses the FP adder; the movfptoi instruction uses the
integer (EX) functional unit. The pipeline is fully bypassed.

(a) For this part no instructions raise exceptions.

[7 pts] Show a pipeline execution diagram for the code. Reorder buffer and reservation station
numbers do not have to be shown.

[5 pts] Indicate where each instruction commits.

Check the code carefully for dependencies! Register r1 is part of a long chain of dependencies. Pay
attention to the register equality and inequality comment.

! r4 = r2, r6 != r2, r6 != r1

!Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

addf f0, f1, f2

cvtftoi f0, f0

movfptoi r1, f0

subd f0, f4, f6

sd 0(r1), f10

sd 0(r2), f0

ld f12, 0(r4)

ld f14, 0(r6)

!Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(b) Suppose an arithmetic exception is discovered for the subd instruction when it is in the first FP
adder stage, A1, in an execution of the program above.

[6 pts] At what cycle is the reorder buffer flushed and the handler fetched?

[7 pts] Show the contents of the reorder buffer when the status of the subd instruction is set to
exception. (For partial credit show the contents of the reorder buffer halfway through execution,
be sure to indicate the cycle.)
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Problem 3: Answer each question below.

(a)

[8 pts] Design the control logic for the WB-stage multiplexor. The control logic itself must be in
the ID stage. Show the connection to the mux and number the mux inputs. Hint: This is an easy
problem.
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(b) In the pipeline execution diagram below multd is delayed because of a true dependency with
the addd instruction.

[8 pts] Why can’t any realistic implementation do things this way?

addd f0, f2, f4 IF ID A1 A2 A3 A4 WB

multd f6, f0, f8 IF ID M1 M2 M3 M4 M5 M6 WB

subd f10, f12, f14 IF ID A1 A2 A3 A4 WB

(c) Unlike DLX, many ISAs, such as SPARC, use a condition code register for integer branch
conditions.

[4 pts] In what way is DLX’s method more flexible?

[4 pts] In what way is a condition code register more flexible?

5
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(d) An ISA may have variable-width instructions, fixed-width instructions, and bundled instruc-
tions.

[4 pts] How do the different alternatives affect displacement branches?

[4 pts] Name an ISA category (type) that uses each instruction format:

Variable-Width Instructions:

Fixed-Width Instructions:

Bundled Instructions:

(e) Packed-operand data types and instructions are de rigueur for any au courant fin-de-siècle ISA.
(Are a must-have for any up-to-date end-of-the-century ISA.)

[8 pts] What are packed-operand data types and instructions? Show a short program that would
benefit from these. The program can be in a high-level language or even pseudo code. Do not show
the packed-operand instructions, just explain what they would do.

6
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Problem 1: The reference count of a value stored in a register is the number of times the value is referenced
(read) by instructions before being overwritten. In the example below the reference count of the value written
by the add is zero because it is overwritten before being read. The reference count of the value written by
the lw is two.
add r1, r2, r3 ! A first value for r1 is defined (written).

lw r1, 0(r4) ! A second value for r1 is written, the first one is never used.

sub r5, r5, r1 ! The second value is referenced (read).

xor r6, r1, r7 ! The second one is referenced again.

or r1, r0, r0 ! A third value for r1 is defined.

Three new instructions are to be added to DLX to obtain reference count information. The instructions
refer to two registers, rc.z and rc.nz. Register rc.z holds the number of values written to r1 with a zero
reference count and rc.nz holds the number of values written to r1 with a non-zero reference count. The
counts are updated on either the first reference or when a new value is defined, whichever is earlier.

Instruction rc.reset sets both of these registers to zero. Instruction movstoi RD, rc.z moves the contents
of rc.z to a general-purpose register (shown as RD), movstoi RD, rc.nz moves the contents of rc.nz to a
general-purpose register.

The instructions are used in the code below.

rc.reset ! rc.z -> 0, rc.nz -> 0

add r1, r2, r3

lw r1, 0(r4) ! rc.z -> 1

sub r5, r5, r1 ! rc.nz -> 1

xor r6, r1, r7

and r1, r0, r0

or r1, r0, r0 ! rc.z -> 2

slli r1, r1, #1 ! rc.nz -> 2

movstoi r8, rc.z ! r8 -> 2

movstoi r9, rc.nz ! r9 -> 2

add r10, r8, r9 ! Total number of writes to r1.

The new instructions should work for r1 and no other register. (25 pts)

(a) For each new instruction below cross out the instruction type that could not reasonably be used to code
it. Circle the type that would best be used to code it.

rc.reset Possible types: Type R, Type I, Type J.

movstoi RD,rc.z Possible types: Type R, Type I, Type J.

(b) As the alert test taker has noticed, there is already a movstoi instruction, used to move a special-purpose
register (such as the processor status word, not covered much in class) to a general-purpose register.

The new movstoi RD,rc.z instruction can be coded as a new instruction (with its own opcode) or as a new
use of movstoi. That would depend on how the existing movstoi is defined. Explain that. Hint: Suppose
there was only one special register in DLX.

Problem continued on next page.
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(c) Modify the pipeline below to implement the new instructions. The code on the previous page should
execute properly.

Assume that all Type-R instructions have two source operands and all Type-I instructions have one source

operand. Use is Type R and is Type I to recognize these instruction types.

Assume that Decode RD in the diagram can recognize the new instructions

The counts should not include squashed instructions.

Show control logic for all multiplexor and registers that you add. Use symbols like =rc.reset to recognize
instructions, show the inputs to these boxes.

Don’t forget the modifications for movstoi RD, rc.z and movstoi RD, rc.nz.
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Problem 2:

(a) The code below executes on a dynamically scheduled single-issue (not superscalar) machine using Method
1, register names are reorder buffer entry numbers. The multiply unit is six stages and is fully pipelined
(latency 5, initiation interval 1). The add unit has a latency of 3 and an initiation interval of 2. The CDB
can handle an unlimited number of writebacks per cycle. Floating point exceptions are not precise. (15 pts)

Show a pipeline execution diagram.

Show where instructions commit.

Show changes to the reorder buffer, register map and register file at each cycle. Register f0 initially contains
zero, f2 initially contains 20.0; f4, 40.0; etc. Use line numbers for reorder buffer entry numbers.

L1:multd f0, f2, f4

L2:addd f0, f0, f6

L3:addd f2, f2, f8

L4:addd f10, f12, f14

The pipeline execution diagram above is the same whether or not exceptions are precise. Why?

4
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(b) The code below executes on a two-way superscalar statically scheduled DLX implementation with perfect
branch and jump target prediction. (10 pts)

Show a pipeline execution diagram for the worst-case execution of the code below for two iterations. (The

worst case is achieved by proper choice of the labels, LOOP and THERE.)

Explain why it’s worst case.

What is the CPI of the for a large number of iterations?

addi r1, r0, #2000

LOOP:

subi r1, r1, #1

j THERE

HERE: ! Immediately follows the instruction above.

bnez r1, LOOP

THERE:

add r2, r2, r3

j HERE

5
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Problem 3: The cache for a system implementing an ISA with 10-bit characters is described by the following
incomplete schematic diagram and address bit categorization.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

Address:

Tag

63 20

Index

19 3

Offset

2 2

Alignment

1 0

(a) Answer the following, formulæ are fine as long as they consist of literals and grade-time constants. (10 pts)

Fill in the blanks in the diagram.

In the diagram above the processor’s data out port is not shown. Given what is shown is the cache probably
write back or write through? Argue your answer in terms of what is missing or what is present.

What is the associativity of this cache? (Look carefully.)

What is the capacity of the cache? Specify units!

How much memory does it take to implement the cache? Specify units!

6
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Problem 3, continued: Continue to use the cache from the previous part.

(b) When the program below starts execution no data is cached. Consider only memory accesses needed for
the array access. The address bits are repeated for convenience. (15 pts)

Address:

Tag

63 20

Index

19 3

Offset

2 2

Alignment

1 0

extern char *a; // & a[ 0 ] = 0x1000000;

int i, j, k, t;

int ISTRIDE = 1024;

for(k=0; k<2; k++) for(i=0; i<256; i++) for(j=0; j<32; j++)

t += a[ ISTRIDE * i + j ];

What is the hit ratio?

What is the smallest line size that would maximize the hit ratio?

What is the smallest reasonable line size that would maximize hit ratio?

What is the smallest power-of-two value of ISTRIDE for which a two-way set-associative cache is necessary
to avoid conflict misses?

If ISTRIDE were larger than the answer to the previous question but not a power of two, would there be
lots of conflict misses? Explain.

7
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Problem 4: Answer each question below.

(a) One-level predictors are usually outperformed by two-level predictors. (5 pts)

Write a code fragment containing a branch that would be predicted well by a two-level predictor such as
gshare but poorly by a one-level predictor.

(b) Virtual memory allows two processes on the same processor to use the same address as though they were
on different systems, that is, one process never loads what the other stores. (5 pts)

Why doesn’t one process loading from, say, address 0x1000 get data previously stored by another process
at address 0x1000?

8
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(c) A processor implementing a 64-bit ISA has the following integer add latencies: 8- and 16-bit integers, 0
cycles; 32-bit integers, 1 cycle; 64-bit integers, 2 cycles; 128-bit integers, 3 cycles. (5 pts)

Why are these latencies not appropriate for a 64-bit ISA? In what important way would the processor suffer?

(d) Precise exceptions are optional for floating-point instructions but required for integer instructions. (5 pts)

Why is this so?

Illustrate your answer with an example showing an integer instruction that raises an exception.

Explain what goes wrong if the exception is not precise.

9
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(e) What are stops and lookaheads? (5 pts)

How are they used?

What benefit to they have to implementations?

Explain the similarities and differences between stops and lookaheads.

10
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Problem 1: The program below executes on the pipeline below as illustrated in the pipeline
execution diagram below. Bypass paths do not appear in the illustration (below).
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! Cycle 0 1 2 3 4 5 6 7 8 9 10 11

andi r8, r8, #31 IF ID EX ME WB

add r10, r9, r8 IF ID EX ME WB

bnez r8, LINEX IF ID EX ME WB

jalr r10 IF ID EX ME WB

xor IFx

...

subi r31, r31, #8 IF ID EX ME WB

sw 0(r10), r31 IF ID EX ME WB

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11

[10 pts] Add exactly those bypass paths that are needed so that the code (above) executes as shown.
Credit will be deducted for unneeded bypasses. Please, please, please check the code carefully for
dependencies.

[7 pts] Next to each bypass path indicate the cycle(s) in which it will be used.
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Problem 2: As described in class, postincrement instruction lw r1,(r2+) loads the value at
memory address r2 into register r1 and stores r2+4 in r2. Postincrement stores are similar. The
pipeline below is to be modified so that it can execute postincrement loads and stores for bytes,

half words, and words. A logic block size can be used; its input is the opcode and func fields;
the output is 0 for a postincrement with a byte-size load or store value, 1 for a postincrement with
a half-word value, 2 for a postincrement with a word-size value, and 3 if the instruction is not a
postincrement load or store.
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[10 pts] Show the datapath changes needed so that the pipeline can execute postincrement store
instructions. Include the control logic for obtaining the amount to increment the address by but
do not include any other control logic.

[7 pts] Show the additional datapath changes needed so that the pipeline can execute postincrement
loads. These changes must not add structural hazards and the load must execute without stalling
the pipeline (assuming favorable dependencies).
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Problem 3: The four-stage (no WB) pipeline below includes an Express Writeback feature,
eliminating the need for bypass connections. Instructions proceed through the pipeline slightly
differently than the DLX pipeline presented in class. Do not add or assume the presence of bypass
connections.
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[6 pts] Show a pipeline execution diagram for the code below on this pipeline. (Don’t forget to look
for dependencies.) State any assumptions about how the register file operates.

add r1, r2, r3

lw r4, 8(r1)

sw 12(r5), r4

One disadvantage of Express Writeback is that it introduces a structural hazard.

[6 pts] Show a program that encounters the hazard and a pipeline execution diagram showing how
the hazard can be avoided by stalling. (Hint: the program can be just two instructions.)

[4 pts] Explain how Express Writeback affects the critical path.

Part II on Wednesday at 12:40 precisely.
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Problem 4: The diagram below includes näıve hardware for implementing the jal and jalr

instructions. With this hardware precise exceptions are impossible.
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[6 pts] Explain why precise exceptions are impossible here.

[7 pts] Show a program including a jalr that encounters an exception and which does not run
correctly (after the exception handler returns) because of the way jalr is implemented. Briefly
explain why it does not run correctly. (For partial credit answer the question using an instruction
other than jalr.)

6
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Problem 5: For some, 16 bits is just not enough. Consider a new DLX instruction, mbi (move
big immediate), which moves a large immediate into register r1. (Register r1 is always used, a
different register cannot be specified.) The following code uses the new instruction:

mbi 0x12345 ! Move 0x12345 into register r1.

add r2, r1, r2 ! Use 0x12345 in an add.

[5 pts] Describe how the instruction could be coded using an existing DLX instruction type to get
the biggest immediate possible. Specify the size of the immediate.

Ignoring the previous part, suppose one wanted the immediate to be 30 bits.

[4 pts] Why are 30-bit immediates impossible using an existing instruction type?

[4 pts] Describe how a 30-bit immediate mbi could be coded using a new DLX instruction type.
(See the next subpart before answering.)

Whether it is possible to add a 30-bit immediate instruction and maintain compatibility depends
on certain details of DLX which during lectures were usually made up on the spot.

[4 pts] What kind of details were those? Make them up so that the new instruction is compatible.

7
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Problem 6: Answer each question below.

(a) Loads and stores in DLX are aligned.

[6 pts] What does that mean? Provide examples of aligned and unaligned accesses.

(b) As described in class, an ISA implementing a time data type might have instructions to determine
the number of days between two times. (Say between 18 October 2000 and 15 December 2000.)

[7 pts] Give two reasons why an ISA should not include such a time data type.

(c) RISC and CISC are sometimes seen as two competing architectural styles.

[7 pts] Name two features that distinguish RISC processors from CISC processors.

8
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Problem 1: New DLX instruction jalr.safe is like a jalr instruction except that it automatically returns
after a certain number of instructions in the called routine have been executed. Suppose r1 contains 0x1000
and r2 contains 23 when jalr.safe r1, r2 is executed. Execution would jump to address 0x1000 and PC+4

would be saved in r31. Nothing special happens if a jr r31 (a return) is executed within 23 instructions. If
after 23 instructions a return is not executed control will automatically return to the instruction following
jalr.safe. When jalr.safe is used the called procedure cannot call another procedure.

(a)

(5 pts) Show how jalr.safe might best be coded.

(b) Modify the pipeline on the next page so that it executes the jalr.safe instruction.

• The output of the Live box is 1 if the corresponding stage contains a non-squashed instruction

that will advance to the next stage in the next cycle. (The instruction is neither squashed nor
stalled.)

• =Ret can be used for detecting return instructions, =jalr.safe for jalr.safe instructions, etc.

Continued on next page.
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Problem 1, continued:

(7 pts) Show the hardware needed to properly save the automatic return address and count. (For the
automatic return address do not use the contents of r31, instead add a register for this address.)

(2 pts) Base the return on the number of instructions that will complete, squashed instructions should not
be counted.

(2 pts) Make sure jalr.safe can be squashed before it sets a return address.

(2 pts) Generate a signal named Auto Return, it shall be true when there is to be an automatic return and
false other times.

(2 pts) Explain what the controller must do when Auto Return is asserted.
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Problem 2: The programs below run on statically and dynamically scheduled systems. All systems are
single issue (not superscalar), have perfect branch prediction, have an unlimited number of functional units,
and use non-blocking caches. The programs run for a large number of iterations, and the first lw in every
iteration will miss the cache. On a cache miss data arrives 10 cycles after MEM or L2 is entered. The line size
is 1024 characters.

! Program 1 ! Program 2

LOOP: LOOP:

lw r1, 0(r2) lw r1, 0(r2)

addi r2, r2, #1024 lw r2, 4(r2)

add r3, r3, r1 add r3, r3, r1

bneq r1, LOOP bneq r1, LOOP

(a) Suppose the programs were are run on a statically scheduled machine and loop unrolling was being
considered. Note: The following important point was not included in the 2000 final exam. The statically
scheduled machine treats load misses like floating-point operations: it allows them to complete out of order
if there are no name or data dependencies with following instructions.

(1 pts) For a statically scheduled system applying loop unrolling to Program 1 would improve performance:

(a) by a large amount; (b) by a small amount; (c) not at all; (d) none of the above.

(1 pts) For a statically scheduled system applying loop unrolling to Program 2 would improve performance:

(a) by a large amount; (b) by a small amount; (c) not at all; (d) I do not wish to reveal my
intent.

(5 pts) Explain the two answers above. In particular explain, if appropriate, why loop unrolling is more
effective on one program than the other.

(b) Suppose the programs were to be run as is (not unrolled).

(1 pts) Compared to a statically scheduled machine, a dynamically scheduled machine would run Program

1: (a) much faster; (b) slightly faster; (c) about the same speed; (d) dimple.

(1 pts) Compared to a statically scheduled machine, a dynamically scheduled machine would run Program

2: (a) much faster; (b) slightly faster; (c) about the same speed; (d) I assume that if my answer
below is correct points will not be deducted for this choice.

(5 pts) Explain the two answers above. In particular explain, if appropriate, why the dynamically scheduled
machine is more effective on one program than the other.

4
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Problem 3: The code below executes on a dynamically scheduled system with branch prediction but without
branch target prediction. The branch is predicted taken but it ultimately is not taken. The processor is
single-issue (not superscalar) but, conveniently, has an unlimited number of functional units and can handle
any number of write-backs per cycle. At most one instruction per cycle can be committed.

(a) The code below executes on such a machine in which the register map is not backed up when branches
are decoded. Registers are intentionally omitted from the last three instructions, assume those instructions
are not data-dependent on the loads.

(6 pts) Complete the pipeline execution diagram for this system until all instructions complete.

(2 pts) Show instruction commitment and squashing.

• Don’t forget to check for dependencies!

! Branch predicted taken, but branch is NOT taken.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r3, 0(r4) IF ID L1 L2 RS RS RS RS RS L2 WB

lw r1, 0(r2) IF ID L1 L2 RS L2 WB

bneq r1, TARGET

xor r5, r6, r7

sgt r8, r9, r10

...

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TARGET:

add r11, r12, r13

sub r14, r15, r16

and r17, r18, r19

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5
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Problem 3, continued: (b) The code below executes on a version of the machine in which the register
map is backed up (checkpointed) when branches are decoded.

(6 pts) Complete the pipeline execution diagram for this system until all instructions complete.

• Show instruction commitment and squashing.

! Branch predicted taken, but branch is NOT taken.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r3, 0(r4) IF ID L1 L2 RS RS RS RS RS L2 WB

lw r1, 0(r2) IF ID L1 L2 RS L2 WB

bneq r1, TARGET

xor r5, r6, r7

sgt r8, r9, r10

...

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TARGET:

add

sub

and

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(c) Suppose the processor from the previous part has the following defect: it does not back up or restore the
register map, but it executes instructions as though it did. Suppose execution up until the code fragment
above is okay.

(6 pts) Add registers to the last three instructions in the previous part so that the xor instruction executes
correctly but the sgt (set greater than) executes incorrectly.

6
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Problem 4: A system has a 1-megabyte (220 byte) two-way set-associative cache with 256-character blocks
and a 50-bit address space addressing 16-bit characters.

(7 pts) Fill in the rounded boxes in the diagram below so that it describes this cache.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

64

(5 pts) Show the smallest set of addresses that cannot all be in this cache at the same time.

(5 pts) What would be the associativity of a fully associative cache with the same capacity and block size
as this one?

7
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Problem 5: Answer each question below.

(a) The DLX program below runs on a system using a one-level branch predictor with a 216-entry BHT,
each BHT entry is a two-bit saturating counter. The loop iterates many times.

Please do not confuse andi with addi.

LOOP:

addi r1, r1, #1

andi r2, r1, #1

bneq r2, SKIP

nop

nop

nop

nop

SKIP:

sub r3, r1, r4

bneq r3, LOOP

(4 pts) What are the best-case and worst-case prediction accuracies for the first branch. Briefly explain.

(3 pts) What is the smallest BHT size for which there will not be a collision between the two branches?

(b) Consider a dynamically scheduled four-way superscalar processor with a common data bus (CDB) that
can handle two write-backs per cycle.

(3 pts) Compare its speed to that of an ordinary dynamically scheduled two-way superscalar processor.
Justify your answer.

(3 pts) Compare its speed to that of an ordinary dynamically scheduled four-way superscalar processor.
Justify your answer.

8
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(c)

(4 pts) Why is branch target prediction potentially more useful for DLX jalr instructions than it is for bneq
and beqz instructions?

(d)

(4 pts) What is a predicated instruction? Show how predicated instructions can be used in the code below.
(Exact syntax is not important.)

beqz r1, SKIP

add r2, r2, r3

SKIP:

or r4, r4, r5

9
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(e) Consider a statically scheduled DLX implementation in which the floating-point add functional unit is
two stages and the floating-point multiply functional unit is four stages, and both are fully pipelined. An
exception can occur in any stage of the FP functional units.

(4 pts) Show how the code below would execute to ensure precise exceptions.

muld f0, f2, f4

addd f2, f8, f10

or r1, r2, r3

(4 pts) Suppose that floating-point instructions did not have precise exceptions. Show how a test instruction
could be used to ensure that an exception in muld was precise. Illustrate with a pipeline execution diagram.

10
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Problem 1: The DLX implementation below has six stages. (The work done by ID is now done
by ID and RR.)

sign
ext.

Addr
6..10

11..15

16..20
or

11..15

IR

RR EX WBMEM

IR IR

A

B

IMM

ALU

=0

Addr

Data

Data

Addr D In

Addr

In

Mem

Out
B

ALU

MD

NPC

IR

IF

NPC

+4

PC

Mem
Port

Addr

Data IR

NPC

IMM

Control

ID

(a) The execution of some code on this pipeline is shown below. Add exactly the bypass paths
needed so that the code executes as illustrated. Next to each bypass path indicate the cycle(s) in
which it will be used. (Do not add bypass paths that won’t be used in the execution of the code
below.) (10 pts)

! Cycle 0 1 2 3 4 5 6 7 8

add r1, r2, r3 IF ID RR EX ME WB

lw r5, 10(r1) IF ID RR EX ME WB

xor r4, r1, r2 IF ID RR EX ME WB

and r6, r5, r4 IF ID RR EX ME WB

(b) Show the execution of the code below on this pipeline until bneq reaches IF a second time. The
branch is taken. Be sure to base the CTI behavior on the hardware shown above. Show where
instructions are squashed. (10 pts)

LOOP:

! Branch Taken.

bneq r1, SKIP

add r2, r3, r4

sub r5, r6, r7

and r8, r9, r10

or r11, r12, r13

SKIP:

j LOOP

add r2, r3, r4

sub r5, r6, r7

and r8, r9, r10

or r11, r12, r13
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Problem 1, continued: The figure and code below are identical to the ones on the previous
page.

(c) Add branch and jump hardware so that the code executes as quickly as possible. Additional
adders can be used, the fewer the better. Branches and jumps can be handled separately. The
register file cannot be moved or duplicated and cannot be read before the RR stage. (Jumps and
branches both use displacement addressing. In branches the displacement is in bits 16 to 31 and
in jumps the displacement is in bits 6 to 31. Do not show control hardware.) (10 pts)

sign
ext.

Addr
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16..20
or
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IR
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IR IR

A

B

IMM

ALU

=0

Addr

Data

Data

Addr D In
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(d) Show how the code below executes on the modified pipeline. As before, show execution until
bneq enters IF a second time. (5 pts)

LOOP:

! Branch Taken.

bneq r1, SKIP

add r2, r3, r4

sub r5, r6, r7

and r8, r9, r10

or r11, r12, r13

SKIP:

j LOOP

add r2, r3, r4

sub r5, r6, r7

and r8, r9, r10

or r11, r12, r13
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Problem 2: The code below executes on a dynamically scheduled processor that uses reorder buffer entry numbers to name registers.
There are 128 reorder buffer entries, the next free entry is #1.

(a) Show when each instruction commits and show the contents of the register map, register file and reorder buffers using the space
provided. Show only the instruction line numbers (A, B, C, D) in the reorder buffer. Indicate cycle numbers above the reorder buffer.
(10 pts)

Pipeline Execution Diagram

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A:addd f0, f2, f0 IF ID A0 A1 A2 A3 WB

B:addd f6, f0, f6 IF ID RS RS RS A0 A1 A2 A3 WB

C:addd f0, f0, f6 IF ID RS RS RS RS RS RS A0 A1 A2 A3 WB

D:addd f6, f2, f8 IF ID A0 A1 A2 A3 WB

Register Map

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Arch. Reg. Val. or ROB#

f0 10

f2 20

f6 60

f8 80

Register File

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Arch. Reg. Val.

f0 10

f2 20

f6 60

f8 80

Cycle:

Reorder buffer:

4

← → Spring 2000 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4720/2000/mt.pdf


Problem 2, continued: (b) The code below is identical to the code above, however the second add instruction raises an exception in
cycle 9 (indicated by a star). Complete the pipeline execution diagram and other tables for this situation for the instructions shown.
(Do not show the trap handler.) Show the contents of the reorder buffers after each change. (10 pts)

Pipeline Execution Diagram

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A:addd f0, f2, f0 IF ID A0 A1 A2 A3 WB

B:addd f6, f0, f6 IF ID RS RS RS A0 A1 A2 *A3*

C:addd f0, f0, f6 IF ID RS RS RS RS RS RS

D:addd f6, f2, f8 IF ID A0 A1 A2 A3 WB

Register Map

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Arch. Reg. Val. or ROB#

f0 10

f2 20

f6 60

f8 80

Register File

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Arch. Reg. Val.

f0 10

f2 20

f6 60

f8 80

Cycle:

Reorder buffer:
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Problem 2: Answer each question below.

(a) Why do DLX Type-R instructions have a func field? (7 pts)

Type R:

Opcode

0

0 5

rs1

6 10

rs2

11 15

rd

16 20

func

21 31

(b) Would there be any advantage in pipelining the integer ALU used in the statically scheduled
DLX implementation? Explain. (7 pts)

(c) Why do ISAs include one-byte integers? (What are the advantages of using them when running
on typical implementations.) (7 pts)

6
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(d) The DLX implementations covered in class start reading registers before the instruction is
decoded. Why is this possible? Modify the instruction codings so that it is no longer possible.
That is, with the modified codings decoding would have to be performed before register read (as
in problem 1). (8 pts)

The DLX codings are given below for reference and can be used to explain your answer.

Type R:

Opcode

0

0 5

rs1

6 10

rs2

11 15

rd

16 20

func

21 31

Type I:

Opcode

0 5

rs1

6 10

rd

11 15

Immediate

16 31

Type J:

Opcode

0 5

Offset

6 31
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(e) Ignoring floating-point instructions, how can precise exceptions be implemented on the statically
scheduled (Chapter 3) DLX implementation? Illustrate your answer with an example in which
exceptions occur out of order but are handled in order. Show the code and a pipeline execution
diagram, indicate where the exceptions are occurring. (9 pts)

(f) What is an advantage of a stack ISA over a RISC ISA? What is a disadvantage of a stack ISA
over a RISC ISA? (7 pts)

8
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Problem 1: An extended DLX ISA, Triple-DLX [tm], includes new three-operand integer ALU in-
structions. (Assume that the integer ALU can perform integer multiply.) Some sample instructions
appear below:

add_add r1, r2, r3, r4 ! r1 = r2 + r3 + r4

add_mul r5, r6, r7, r8 ! r5 = ( r6 + r7 ) * r8

mul_add r5, r6, r7, r8 ! r5 = ( r6 * r7 ) + r8

(a) (8 pts)A new instruction type, Type-T, will be used for these instructions. Show how the new
Type-T instructions can be coded. The coding should be chosen to ease implementation and should
allow for at least 64 three-operand instructions. Assume that there are six free opcode field values
and seven free func-field values available for your use.

• Explain how to distinguish Type-T instructions from Type-R, Type-I, and Type-J in-
structions.

• How many Type-T instructions can be provided using your coding?

The DLX codings are given below for reference and can be used to explain your answer.

Type R:

Opcode

0

0 5

rs1

6 10

rs2

11 15

rd

16 20

func

21 31

Type I:

Opcode

0 5

rs1

6 10

rd

11 15

Immediate

16 31

Type J:

Opcode

0 5

Offset

6 31
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(b) Modify the pipeline below so that it can execute the three-operand instructions. A second ALU
has been placed in the MEM stage; it should be used to help implement the instructions. The
register file is among the parts that need to be modified. (6 pts)
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IR IR

A

B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

(c) Show a pipeline execution diagram for the code below assuming that all needed bypass paths
are available. The code should execute as fast as possible. Add any needed bypass paths to the
diagram above. Do not add any bypass paths that are not needed by the code below. Label each
bypass path (added or already present) with the cycle in which it is used. Please be sure not to
miss any true dependencies. (6 pts)

add_add r1, r2, r3, r4

add_sub r5, r1, r2, r3

sub_sub r6, r1, r5, r6

sub_add r7, r1, r5, r6

3
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Problem 2: The code appearing on the next page executes on a dynamically scheduled machine
using physical registers to name destination registers.

Complete the tables, showing only changes. Show where instructions commit. Show only entries
associated with registers f0 and f6 in the physical register file.

At cycle zero, register f0 contains a 5, f2 contains a 20, f4 contains a 40, and f6 contains a 60.
None of the instructions raise exceptions. The diagram below is provided for convenience; it is the
same one used in class. (10 pts)
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Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

add f0,f2,f4 IF ID Q A0 A1 WB

add f6,f0,f4 IF ID Q A0 A1 WB

add f0,f4,f4 IF ID Q A0 A1 WB

add f6,f0,f4 IF ID Q A0 A1 WB

sub f0,f2,f4 IF ID Q A0 A1 WB

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Arch. Reg. ID Register Map

f0 17

f6 6

ID Free List

12
7
8
4
3

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Commit Register Map

f0 17

f6 6

Commit Free List

12
7
8
4
3

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Phys Reg. Physical Register File
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Problem 3: Provide a pipeline execution diagram for the code below running on a dynamically
scheduled two-way superscalar machine using reorder buffer entry numbers to name destination
operands. Be sure to show when instructions complete.

There are more than enough reservation stations and reorder buffer entries. Do not show reservation
station numbers in the diagram. There are two load-store units and the cache is nonblocking.

The first lw misses the cache, the data arrives 6 cycles after it first enters the L1 stage; the second
lw also misses the cache, its data arrives 4 cycles after it first enters the L1 stage. (10 pts)

Carefully check the code for dependencies before working on a solution.

LINE: LINE = 0x1000

lw r3, 0(r1)

lw r5, 0(r2)

sw 0(r4), r5

lw r7, 0(r9)

sw 0(r3), r1

lw r8, 0(r10)

6
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Problem 4: A system uses the following cache:
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(a) Determine the value of the following parameters for the cache illustrated above. Be sure to
specify units (bits, bytes, etc.). Answers can be in the form of mathematical expressions. (8 pts)

Associativity:

Number of Sets:

Address Space Size:

Block (Line) Size:

Cache Capacity:

Amount of Memory to Implement Cache:

Character Size:

Tag Bits: (Can show on diagram.)

7
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(b) Write a program that will fill the cache using the minimum number of accesses. (Ignore instruc-
tion accesses.) (8 pts)

(c) Determine the parameters for a direct-mapped cache with the same block size and the same
capacity designed for the same system. (5 pts)

Associativity:

Number of sets:

Address Space Size:

Block (Line) Size: (Same, don’t answer.)

Cache Capacity: (Same, don’t answer.)

Character Size:

Tag Bits:

8
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Problem 5: Answer each question below.

(a) The program below runs on a system using a gselect branch predictor. What is the minimum
global history size needed so that there is a good chance that the last branch will be correctly
predicted at the last iteration (after warmup)? Assume that there are no collisions. Explain your
answer. (7 pts)

addi r1, r0, #10

add r5, r0, r0

LOOP:

lw r2, 0(r3)

add r5, r5, r2

subi r1, r1, #1

addi r3, r3, #4

bneq r1, LOOP

(b) What is the advantage of backing up (checkpointing) the register map when a branch is encoun-
tered in a system using branch prediction and dynamic scheduling? Explain how execution would
be different if the register map were not backed up. (7 pts)

9
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(c) Why are three-way superscalar machines difficult to build but three-instruction-bundle VLIW
ISAs are common? (5 pts)

(d) An ISA is almost like DLX except, oops, the lbu (load byte unsigned) instruction was omitted,
and so the program below won’t run on an implementation of this ISA. Modify the program so
that it will run, and run as though an lbu instruction was used. (In other words, replace lbu r1,

1(r2) by instructions that do the same thing.) (5 pts)

lbu r1, 1(r2)

10
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(e) The table below shows virtual and physical addresses in use in a virtual memory system having
a 32-bit address space. What is the largest possible page size this system can have? Using this
page size (or some other one, but show what page size is being used) show the possible contents of
a two-level page table storing this virtual-to-physical mapping. State any assumptions made. (For
partial credit solve the problem for a one-level page table.) (10 pts)

Virtual Physical

0xfea34b62 0x74b4b62
0xfeb92b90 0x14b2b90
0xeaa31f16 0x77b1f16

(f) Describe two ways that loop unrolling improves performance. (5 pts)
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Problem 1:

(a) Add exactly the bypass paths that are needed so the code below executes as shown in the pipeline
execution diagram. (Don’t add any bypass paths that are not needed by the code.) (15 pts)

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

! r1 = 0x1010 r2 = 0x2020, r3 = 0x3030, r4 = 0x4040, r5 = 0x5050

! Cycle 0 1 2 3 4 5 6 7

LINE1: LINE1 = 0x100

lw r1, 16(r2) IF ID EX MEM WB IF ID EX ...

addi r2, r2, #4 IF ID EX MEM WB IF ID ...

sw 20(r2), r1 IF ID EX MEM WB IF ...

beqz r2, LINE1 IF ID EX MEM WB ...

and r3, r4, r5 IFx

(b) Show the values of the registers listed below in cycle 4 of the execution above using the added
bypass paths. Assume that the load instruction retrieves a 0x1234 from memory. Instructions are
squashed by replacing them with an or r0, r0, r0. (18 pts)

IF.PC

IF/ID.NPC

IF/ID.IR

ID/EX.A

ID/EX.B

ID/EX.IMM

ID/EX.IR

EX/MEM.ALU

EX/MEM.B

EX/MEM.IR

MEM/WB.ALU

MEM/WB.MD

MEM/WB.IR

2
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Problem 2:

(a) Show a pipeline execution diagram for the code below on the implementation shown until lw
is fetched a second time. The first branch is not taken but the last one is. The only bypass paths
available are the ones shown. (18 pts)

sign
ext.

IR

Addr
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11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B
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NPC
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=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr
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Mem

Out
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ALU

MD

LOOP:

lw r1, 0(r2)

andi r3, r1, #4

beqz r3, LINE1

add r4, r4, r1

j LINE2

LINE1:

add r5, r5, r1

LINE2:

sw 4(r2), r1

addi r2, r2, #8

bneq r2, LOOP

xor r5, r6, r7

3
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(b) Rewrite the code below (which is the same as the code on the previous page) using one-cycle
delayed branches and predicated instructions and schedule the code so that it executes as quickly
as possible. (Do not unroll the loop.) Assume that bypass paths are provided for the predicated
instructions. It should be possible to remove all stalls, but if any remain point them out (for partial
credit). (15 pts)

LOOP:

lw r1, 0(r2)

andi r3, r1, #4

beqz r3, LINE1

add r4, r4, r1

j LINE2

LINE1:

add r5, r5, r1

LINE2:

sw 4(r2), r1

addi r2, r2, #8

bneq r2, LOOP

xor r5, r6, r7

4
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Problem 3: Answer each question below.

(a) Why do DLX branches (and branches in many other ISAs) use displacement addressing? Why
don’t branches use indirect addressing (destination address in a register) instead of displacement
addressing? (8 pts)

(b) The code below executes on an implementation that uses a reservation register to detect WB
structural hazards. At cycle zero the reservation register contains all zeros. Show the state of the
reservation register at the end of each cycle below. Indicate which (if any) bit positions are tested
in each cycle. (9 pts)

! Cycle 0 1 2 3 4 5 6 7 8 9 10

multf f0, f1, f2 IF ID M0 M1 M2 M3 M4 M5 WB

addf f3, f4, f5 IF ID A0 A1 A2 A3 WB

subf f6, f7, f8 IF ID -> A0 A1 A2 A3 WB

gtf f9, f10, f11 IF -> ID A0 A1 A2 A3 WB

nop

nop

...

5
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(c) Many packed operand instructions perform saturating arithmetic. What is saturating arith-
metic? Provide an example. (8 pts)

(d) In homework 3, a special return address register (ERA) was used to hold exception return
addresses. The jump and link instructions, jal and jalr, use r31 for the return address; is this
an option for exceptions? Explain. (9 pts)

6
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Problem 1: The code in the table on the next page executes on a dynamically scheduled machine
using reorder buffer entry numbers to rename registers. The implementation performs branch and
branch target prediction.

There are an unlimited number of reorder buffer entries, reservation stations, and functional units.
Integer instructions use the EX functional unit, branches use the B unit, and loads and stores use
the load/store unit, consisting of segments L1 and L2.

When the code in the table starts to execute all register values are available, as shown in the tables
on the next page.

The lw instruction will suffer a miss; it will finish L2 five cycles after entering L2, loading a 100.

The bneq instruction is predicted not taken but is, in fact, taken.

(a) For this subproblem the register file is not backed up when branches are encountered. Using the
tables provided on the next page show a pipeline execution diagram for the code and the changes to
the register map and register file at the end of each cycle. Do not show reservation station numbers
or reorder buffer entries in the pipeline execution diagram itself. The entry number for the next
available reorder buffer entry is 1. Show when instructions commit or when they are squashed.
(15 pts)

(b) Explain how execution would be different if the register file were backed up when branches
are encountered. A second diagram is not necessary, just show where execution differs and how it
differs. (5 pts)

There is one more part.

2
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Problem 1, continued:

Pipeline Execution Diagram

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r4, 0(r5) IF

add r1, r2, r3

or r2, r1, r3

bneq r4, SKIP

sub r1, r2, r5

SKIP:

add r2, r1, r2

Register Map

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Arch. Reg. Val. or ROB#

r1 10

r2 20

r3 30

r4 40

r5 50

Register File

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Arch. Reg. Val.

r1 10

r2 20

r3 30

r4 40

r5 50

← → Fall 1999 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/1999f/fe.pdf


Problem 1, continued:

(c) The DLX code in the table below executes on the dynamically scheduled machine described above. The machine uses a load/store
queue and a nonblocking (lockup free) cache as described in class. For this part the cache miss latency is lower: If an instruction in L2

encounters a cache miss it returns to its reservation station for three cycles then returns to L2.

Show the execution of the code in the table below. Show when instructions commit but do not show reservation station or reorder
buffer entry numbers.

The instructions at lines Line1 and Line3 miss the cache. The contents of each register is different. (5 pts)

Pipeline Execution Diagram

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Line1: sw 0(r1), r2 IF

Line2: lw r3, 0(r2)

Line3: lw r1, 0(r4)

Line4: sw 0(r1), r2

Line5: lw r5, 0(r2)

Don’t forget part (b)!!!!
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This problem consists of four parts. For full credit do parts (a), (b), and (c) only. For reduced

credit do parts (a) and (d). If you have time but lack confidence do all parts, the grade will be
max{a+ b+ c, a+ d}.
Problem 2: The code below is run on systems having a 32-bit address space, 1-byte characters,
and using 256-kibibyte (218-byte) caches as described below. Before the code is run the cache is
cold (empty). Only consider accesses to the array, a.

// sizeof(int) = 4 characters

int *a = 0x1000000; // Storage allocated elsewhere.

for(x=0; x<4; x++)

for(i=0; i<512; i++)

for(j=0; j<8; j++)

sum += a[ i * 1024 + j ];

(a) Find the hit ratio encountered executing the code above on a direct-mapped 218-byte cache
with a line size of 8 characters. How much of the cache is filled? (9 pts)

(b) Suppose the associativity of the cache could be increased while fixing the cache capacity at
218-byte and the line size at 8. What would the hit ratio be if the associativity were 2? What
is the smallest associativity needed to achieve the maximum hit ratio on the code above? Is that
associativity practical? Explain. (8 pts)

5
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Problem 2, continued:

(c) Suppose any address bits could be used to form the index (set number, address used in the tag
store) and any line size could be used. (Lines must still be contiguous.) In the diagram below show
which address bits should be used (using the rounded boxes) to maximize the hit ratio of the code
above. The capacity of the cache must still be 218-byte. (8 pts)

CPU

Addr

Data

Data

Tag

 Addr

=
Tag

Valid

Hit

Out

Out

32

 Addr

 In
Tag

32

(d) Optional: Only solve this part if you cannot solve parts (b) and (c). Total credit will be lower.

This part is unrelated to the previous parts. Show how 234 × 32 b memory devices should be
connected to implement a 40-bit address space on a system with four-bit (one-nibble) characters
and a bus width of 64 bits. Include the alignment network. (8 pts)

6
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Problem 3: The code below is compiled and run on two machines, one using a one-level branch
predictor and the other using a two-level gselect branch predictor. Both predictors use a 4096-entry
BHT, the gselect predictor uses a 3-branch global history. Each entry holds a 2-bit saturating
counter.

for(i=0; i<100000; i++)

{

Line1: if( a == 1 ) aa++;

Line2: if( b == 1 ) bb++;

Line3: if( C == 1 ) cc++;

Line4: if( i & 0x2 ) { x++; } /* N N T T N N T T N N T T N N T T ... */

Line5: if( i & 0x4 ) { y++; } /* N N N N T T T T N N N N T T T T ... */

Line6: if( i & 0x2 ) { z++; }

}

(a) The ISA has a 32-bit address space, all instructions are 32 bits (four characters) and must be
aligned. How is the address for the BHT in the gselect predictor obtained? Be sure to specify bit
positions. (9 pts)

(b) Assume that exactly one branch instruction is generated for each if statement and that the com-
piler does no optimizing. What is the prediction accuracy for each of the last three if statements
using the one-level predictor after a large number of iterations? (8 pts)

(c) As above, assume that exactly one branch instruction is generated for each if statement and
that the compiler does not do any optimizing. What is the prediction accuracy for each of the
last three if statements using the gshare predictor after a large number of iterations? Hint: The
solution to this part does not require tedious computation or the construction of lengthy tables.
(8 pts)

7

← → Fall 1999 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/1999f/fe.pdf


Problem 4: Answer each question below.

(a) Synthetic instruction clr 12(r2) writes a zero to the memory location at address 12 + r2.
How could it be added to DLX? (5 pts)

(b) What would be the disadvantage of a RISC ISA that had 1048576 (220) integer (general-purpose)
registers? (5 pts)

(c) Why would it be inappropriate to add a memory indirect load instruction to DLX. (For example,
lw r1,@(r2).) Justify your answer for the statically scheduled DLX implementation. Weigh the
complexity of changes needed to the implementation against expected benefit over a software-only
solution. Be brief. (5 pts)

8
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(d) The code below runs on a dynamically scheduled 4-way superscalar machine with perfect branch
target prediction and a cache that never misses. There are an unlimited number of reorder buffer
entries, reservation stations, and functional units. This machine is not 100% perfect: its fetch
mechanism is the type described in class. What is the minimum and maximum CPI executing the
code below for a large number of iterations? Explain the conditions under which minimum and
maximum CPI are encountered. (5 pts)

LOOP:

lb r1, 0(r2)

addi r2, r2, #1

bneq r1, LOOP

(e) What is the difference between a write-through cache and a write-back cache? Which one needs
a dirty bit and why? (5 pts)

9
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Problem 1: Design control logic to generate the control signal for the multiplexor at the lower
input to the ALU. The control logic should be located in the ID stage and should generate a
two-bit integer for the multiplexor. The integer specifies which multiplexor input to use, they are
numbered from zero starting at the top. (Input 0 connects to ID/EX.B, 1 connects to EX/MEM.ALU,

etc.) The logic can use units that test for equality of their two inputs, = , and units that test for

instruction formats,
= Type I

,
= Type R

, and
= Type J

, and can use the usual logic gates.
Base the setting on instruction type, rather than the exact opcode. Show how the control signal is
connected to the multiplexor. (25 pts)
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Problem 2: Consider the code below.

LOOP:

lw r1, 0(r2)

addi r3, r1, #12

sw 4(r2), r3

add r5, r5, r1

addi r2, r2, #8

slt r6, r2, r7

bneq r6, LOOP

xor r8, r9, r10

(a) Show a pipeline execution diagram for execution up to the second time lw enters instruction
fetch. Use the pipeline from problem 1. As with homework 3, a bypass path is unavailable if it’s
not shown. What is the CPI for a large number of iterations? (10 pts)

(b) Unroll the loop so that two iterations of the code above is performed by one iteration of the
unrolled loop. (Assume the number of iterations in the original loop is a multiple of two.) Schedule
the unrolled loop to minimize stalls. (10 pts)

(c) What is the CPI of the unrolled and scheduled loop found above? What conclusions about per-
formance improvement can and cannot be made by comparing the CPI of the original and unrolled
loop? What is the performance improvement? (Give a number for performance improvement, don’t
just say “it’s good.”) (10 pts)

3
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Problem 3: Answer each question below.

(a) Show an example of DLX code that encounters a WAW hazard on the Chapter-3 implementation
of DLX (in which the multiply floating-point functional unit has an initiation interval of 1 and a
latency of 6 and the add floating-point functional unit has an initiation interval of 1 and a latency
of 3) but which does not encounter a WAW hazard on a DLX implementation which is identical
except the FP add latency is 1 and the FP multiply latency is 4. The code should not encounter a
structural hazard on either implementation. (12 pts)

(b) Why are there separate lh (load half) and lhu (load half unsigned) instructions, a sh (store
half) instruction but no shu (store half unsigned) instruction? (11 pts)

4

← → Spring 1999 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4720/1999/mt.pdf


(c) The code below is for a stack architecture. Rewrite the code below in DLX using as few
instructions as possible. Assume that ADDRA is in r10, ADDRB is in r11, ADDRX is in r12, and ADDRY

is in r13. The data at the addresses are double-precision floating-point values. (11 pts)

push ADDRX

push ADDRX

mult

push ADDRA

push ADDRB

add

push ADDRX

mult

push ADDRA

push ADDRB

mult

add

add

pop ADDRY

(d) Explain two ways in which precise exceptions can be made optional for floating-point instruc-
tions. That is, the programmer may choose to have precise exceptions where they are needed or
may choose to not have precise exceptions were performance is most important. Explain what the
programmer would have to do for each of the two ways. (11 pts)

5
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Problem 1: With the following extension to the DLX ISA a program can get a count of how many
times a particular address has been read or written by load and store instructions. The count is
kept in a load/store counter (LSC) which is incremented whenever a load or store instruction uses
a particular effective address. Two new instructions are added, setlsc (type I) and getlsc (type
R). Instruction setlsc r1,r2+#3 sets the effective address to r1 and initializes the counter to
r2+#3. Instruction getlsc r3 copies the LSC to r3.

For example, consider the code below. The first instruction, setlsc, initializes the count to zero
and sets the address to watch to the value of r1. When lw executes the count will be incremented
because the addresses match. If r1=r10-8 then the count will be incremented again when sw

executes, otherwise the count will remain at one. The getlsc instruction will load r2 with a two,
if r1=r10-8, or a one, otherwise.
setlsc r1, r0+#0

lw r5, 0(r1)

sw 8(r10), r11

getlsc r2

add r3, r3, r2

add r4, r4, r2

(a) Show the changes necessary to add the two instructions to the pipeline below. (The illustration
and program are repeated on the next page for convenience.)(20 pts)

• Include the hardware, including control, needed to set, increment, and read the LSC.

• The code above (and any other valid DLX program) must execute correctly and with as
few stall cycles as possible.

• The solution can use basic gates, multiplexors, instruction recognizers (
=getlsc

,

=setlsc ,
=load/store

, etc.), equality testers ( = ), incrementers, and similar logic.

• Equality testers produce their output in 1
2 cycle, instruction recognizers produce an

output in much less than one cycle.

(b) If the solution above works correctly when instructions raise exceptions you’ve solved this part
too. Otherwise, explain how an exception could result in incorrect execution and how it might be
fixed. (Of course, the pipeline handled exceptions correctly before the changes for the first part.)
(5 pts)
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Use the next page for the solution.
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Problem 1, continued:

setlsc r1, r0+#0

lw r5, 0(r1)

sw 8(r10), r11

getlsc r2

add r3, r3, r2

add r4, r4, r2
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Problem 2: Provide pipeline execution diagrams for the code and machines indicated below. All
machines have the following features in common:

• Dynamically scheduled processor using register renaming with a reorder buffer.

• Branch and branch target prediction (but no branch folding).

• Speculative execution past predicted branches with the reorder buffer used for mispre-
diction recovery.

• Functional unit inputs connect to CDB (and reservation stations).

• Functional units and reservation stations are as listed below. The quantity of functional
units is given for both an ordinary single-issue machine and a 4-way superscalar machine.

Quantity Functional Abbr. Latency Initiation Reservation
Single 4-Way Unit Interval Station Nums

1 1 Load/Store L 1 1 0-1
1 4 Integer EX 0 1 2-3,13-15
1 2 F.P. Add A 1 1 4-6
1 1 F.P. Mul. M 7 2 7-8
1 1 Branch BR 0 1 9-10
1 1 F.P. Divide DIV 22 23 11-12

(a) Show the execution of the code below on a single-issue (not superscalar) machine as described
above.

The branch is predicted taken and its target is correctly predicted. However, the branch is in
fact not taken. Show execution until the last instruction completes. Show when each instruction
commits; indicate canceled instructions with an X. (Note: ltf f0,f3 sets the floating-point
condition register to f0<f3; bfpt SKIP branches to SKIP if the floating-point condition is true.
The ltf instruction uses the FP add unit. (9 pts)

addf f0, f1, f2

ltf f0, f3

bfpt SKIP

lf f0, 0(r1)

SKIP:

addf f4, f0, f5

addi r1, r1, #4

4
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(b) Show the execution of the code below on a single-issue (not superscalar) machine as described
above. The branch is correctly predicted not taken. Show execution until the last instruction
completes. Show when each instruction commits. Show the state of the reorder buffer when addf

reaches writeback. (8 pts)

multf f0, f1, f2

ltf f0, f3

bfpt SKIP

lf f0, 0(r1)

SKIP:

addf f4, f0, f5

addi r1, r1, #4

5
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(c) Show the execution of the code below on a 4-way superscalar processor as described above.
Instructions are fetched in aligned blocks of four. The branch is correctly predicted taken. All
targets are correctly predicted. Show execution until the last instruction completes. Show when
each instruction commits. (8 pts)

LINE0: ! LINE0 = 0x100c

beqz r1, LINE1

addf f0, f0, f1

j LINE2

LINE1:

addf f0, f0, f2

add r2, r2, r3

and r2, r2, r4

LINE2:

addf f0, f0, f3

addf f5, f5, f0

addf f6, f6, f0

addf f7, f7, f0

addf f8, f8, f0

and r5, r6, r7

or r8, r9, r10

xor r11, r12, r13

sub r14, r15, r16

6
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Problem 3:

(a) A system is equipped with the cache shown below.

CPU
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Out

Determine a value for each of the following. Be sure to specify units (bits, bytes, etc.) (10 pts)

Character Size (Size of item at a single address.):

Associativity:

Block Size:

Number of Sets:

Cache Capacity (Amount of data that can be stored.):

Memory Needed to Implement Cache:

7
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The problems on this page are for the cache described below, not the cache from the previous page.

Consider a system with a 64-bit address space (a = 64) which addresses the usual 8-bit (1-byte)
characters (c = 8) and is equipped with a 2-way set-associative cache with 64-byte lines and 256
sets. The cache uses LRU replacement.

(b) Initially the cache is empty. What is the hit ratio for accesses to the array in the code below.
Ignore all other memory accesses. (7 pts)

extern char *the_array;

// Note: sizeof(char) = 1 byte.

// &the_array[0] = 0x10000

for(i=0; i<16; i++) a += the_array[ i * 8 ];

(c) Choose values for i_limit and stride so that the program below completely fills the cache
using the minimum number of accesses. Assume the cache is initially empty and only include
accesses to the array. (8 pts)

extern char *the_array;

// Note: sizeof(char) = 1 byte.

// &the_array[0] = 0x10000

int i_limit =

int stride =

for(i=0; i<i_limit; i++) a += the_array[ i * stride ];

8
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Problem 4: Answer each question below.

(a) Show how the DLX instructions below are encoded. That is, write the instructions as numbers.
Make up numbers for opcode and func fields, but use actual values for other fields. Hint: If you
can’t remember field sizes look at the illustration for problem 1. (5 pts)

beqz r7, SKIP

add r1, r2, r3

xori r4, r5, #6

SKIP:

(b) Describe an advantage of VLIW over superscalar processors. Describe a disadvantage of VLIW
over superscalar processors. (Use the VLIW ISA described in class.) (5 pts)

(c) What is a translation lookaside buffer (TLB) and what does it do? (5 pts)

9
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(d) Show how an address can be constructed for the branch history table in an (m,n) two-level
correlating branch predictor. (Two ways were presented in class, show either one.) (5 pts)

(e) Re-write the program below using DLX instructions. Additional registers may be used. (5 pts)

lw r1,@(r2) ! Memory indirect addressing.

add r3, r4, (r5) ! Register indirect addressing.

ld f0, (0xfedcba01) ! Direct addressing.

10
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Problem 1: The DLX implementation below uses ID-stage address calculation (as illustrated)
and bypassing (which is not illustrated) including the branch condition bypassing developed in
homework 3. The branches do not include delay slots.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A

B

IMM

NPC

ALU
Out

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU
Out

MD

! Initial values: r1=2028, r2=0xf11, r3=5, r4=5004, r5=-1000, LOOP=0x3000, MEM[0xf11]=0x97

LOOP: ! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

lb r1, 0(r2)

add r2, r2, r3

lw r4, 3(r2)

sub r5, r1, r4

bneq r5, LOOP

addi r2, r2, #1

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a) Show a pipeline execution diagram for two iterations of the code on the DLX implementation.
Don’t forget, bypass paths are present but not shown. The space to the right of the program or a
separate sheet may be used. A description of some mnemonics appears on the next page. (7 pts)

(b) On the figure above show exactly those bypass paths needed to execute the code. (7 pts)

(c) What is the CPI while executing the loop (assuming a large number of iterations)? (7 pts)

(d) Show the contents (values, not functions of register names) of the pipeline latches at the middle
of the first cycle that lb is in WB. Include PC and NPC. For IR contents, just show the mnemonic;
if an IR contains a nulled instruction show the original mnemonic and “(nulled).” Show the values
on the diagram above, write the value within the stage to which it applies with an arrow pointing
to the latch or register. (7 pts)

2
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(e) Show a pipeline execution diagram of two iterations of the loop below on the DLX implemen-
tation illustrated (it’s the same as the earlier one). As before, bypass paths are provided but not
shown, including hw3 bypass paths. The target of the beqz r2, SKIP2 instruction is really just
the next instruction. Assume that no special hardware optimizations have been made. (7 pts)
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! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

addi r1,r0,#0x200

SKIP1:

andi r2, r1, #1

beqz r2,SKIP2

SKIP2:

subi r1, r1, #1

bneq r1,SKIP1

xor r1, r1, r1

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(f) Compute the CPI of the execution
of the loop above for a large number of
iterations. (7 pts)

For Reference:

Mnemonic Description
addi Add immediate
andi Logical “and” immediate
beqz r1, TARGET Branch if r1 equals zero.
bneq r1, TARGET Branch if r1 not zero.
lbu Load byte unsigned.
lb Load byte.
lw Load word.

3
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Problem 2: Consider an ISA, DLXPC, which is like DLX except it uses a condition code bit
and predicated execution. The condition code bit is set by the execution of new integer arithmetic
instructions, to zero if the result is zero and to one if the result is nonzero. The ISA also includes
predicated arithmetic instructions which complete only if the condition code bit (set by the most
recent condition-code setting instruction) is 1, otherwise they have no effect. The mnemonic for a
predicated instruction has a “p” appended, e.g., add p, and the mnemonic for an instruction that
sets the condition code has a “c” appended, e.g., add c. An instruction can be both predicated and
set the condition code; for example, add pc only executes if the condition code (set by a previous
instruction) is 1, and sets the condition code itself.

(a) Using these instructions rewrite the code below so that it uses fewer instructions and registers.
Assume that the value in register r1 is not used after beqz.(6 pts)

sub r1, r2, r3

beqz r1, SKIP

add r4, r5, r6

SKIP:

addi r4, r4, #1

4
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(b) The pipeline below implements DLXPC—almost: it will not execute predicated, condition-code
setting instructions (such as xor pc) correctly if an exception occurs at a certain time. Show code
and a pipeline execution diagram that illustrates the problem. Be sure to point out where the
exception occurs and what goes wrong. Hint: the problem would not occur if the execution of some
other instructions could be stopped in the cycle that an exception was detected. (9 pts)

In the figure below the ALU has a second output, which is 1 if the main output is not equal to

zero, 0, otherwise. The output of is C is 1 if the instruction is a type that sets the condition code

(e.g., add c); the output of is P is 1 if the instruction is predicated, zero otherwise.
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(c) Modify the pipeline to fix the problem. (9 pts)
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(d) Suppose the ISA also includes a new branch instruction, mnemonic b p, that tests the condition
bit (instead of a register) and branches if it’s true. To implement the branch instruction an ID-
stage take branch signal is needed. The signal should be 1 when a b p instruction that will be
taken is in the ID stage (zero otherwise). Show how the pipeline below would have to be modified
to provide this signal. Be sure that the modified pipeline executes the code below correctly and
without adding an unnecessary stalls. (8 pts)

sub_c r0, r1, r2 ! Set condition code.

b_p TARGET

add_c r3, r4, r5 ! Set condition code.

add r6, r7, r8 ! Doesn’t affect condition code.

b_p TARGET2
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IR
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or

11..15

IR
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IR IR
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Problem 3: Answer each question below.

(a) In class execution time has been modeled using the equation t = 1
φ

∑
i ICiCPIi. Given what

has been covered in class so far, to what degree is CPIi a function of the implementation and to
what degree is CPIi a function of the program? Explain. (9 pts)

(b) Synthetic instruction neg r1 assigns register r1 to the negation of its previous value, that is,
r1 = -r1. How would such a synthetic instruction be defined in DLX? (8 pts)

(c) Packed-operand instructions (as found in MMX or VIS) and elaborate procedure call instruc-
tions (that perform extensive stack-frame preparation actions including register saves) are similar
in that they can replace many individual instructions. Provide contrasting reasons on whether or
not such instructions should be added to an ISA, including implementation factors. For exam-
ple, instructions should be added because the implementation while

should not be added because though certainly if it
would , but that’s not enough1. (9 pts)

1 This is just an example, don’t try to fill in the blanks!

7

← → Spring 1998 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4720/1998/mt.pdf


Name

Computer Architecture

EE 4720

Final Examination

11 May 1998, 10:00–12:00 CDT

Modified

Alias

Problem 1 (20 pts)

Problem 2 (30 pts)

Problem 3 (20 pts)

Problem 4 (30 pts)

Exam Total (100 pts)

Good Luck!

← → Spring 1998 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/1998/fe.pdf


Problem 1: An extended version of DLX is to include a new morph instruction, mnemonic mrph.
Morph takes two arguments, an instruction address and a new instruction. After executing mrph

IADDR INSTR, when execution reaches IADDR instead of executing the instruction at IADDR,
INSTR is executed. This substitution only happens once, if execution reaches IADDR a second
time the instruction at IADDR executes normally (unless mrph was executed again). For example
consider:

mrph POINTA, [subd f0, f2, f6]

...

LOOP:

subi r2, r2, #3

POINTA:

muld f0, f0, f2 ! On the first iteration subd will execute.

bneq r2, LOOP

addd f0, f0, f4

In the first iteration of the loop the subd instruction specified by mrph will be executed instead of
the muld. After that the loop will execute normally. Morph might be useful for debuggers (the
substituted instruction would be a jump to a debug routine).

A system can have at most one morph active at any time. The morph instruction cannot modify
memory1.

(a) Determine a format for the morph instruction that fits naturally into the DLX ISA. (An
instruction fits naturally if it uses an existing type and its implementation requires little new
hardware.) The format should include the type and how the arguments are specified, that is how
mrph’s arguments relate to IADDR and INSTR. In other words, how is the address specified (not
too difficult since many existing DLX instructions specify addresses) and how is the instruction
specified (the interesting part). (The three DLX formats types are type-R, used by add r1,r2,r3;
type-I, used by addi r1,r2,#3; and type-J, used by j LOOP. Don’t confuse the assembly language
instruction with the actual instruction format, the assembly language form used above may be
misleading.) Hint: If you’re not sure what to do in this part, attempt the next part first. (5 pts)

1 Morph could be implemented in software by replacing the instruction at IADDR by a jump to a morph routine. The
morph routine would execute the substituted instruction and then return.

2
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(b) Modify the pipeline below to implement mrph using the format chosen above. The pipeline must
always execute the code below correctly. (The code itself is correct.) (For partial credit if your
design will not execute the code below correctly explain why and how it might be fixed.) (15 pts)

bneq r10,L1

mrph A,[add r1,r2,r3]

j L2

L1:

mrph SKIP,[add r0,r0,r0]

L2:

...

bneq r1, SKIP ! Hint: May cause trouble.

A:

sub r1, r2, r3 ! Maybe add r1, r2, r3 substituted.

lw r4, 0(r1) ! Hint: May cause trouble.

SKIP:

addi r4, r4, #12 ! Maybe add r0, r0, r0 substituted.
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Problem 2: The program below executes on a 2-way, dynamically scheduled superscalar processor.
The processor’s features are summarized in the list below, the table gives details of the functional
units. (The load/store unit computes the address in its first cycle and does the actual access in its
second cycle. An operation does not enter the load/store unit until all its operands are ready.)

♦ Two-way superscalar instruction issue.

♦ Dynamically scheduled (see table), register renaming.

♦ CDB can accommodate results from any two functional units in any cycle.

♦ Reorder buffer for speculative execution and precise exceptions.

♦ Reorder buffer can retire as many as two instructions per cycle.

♦ Reservation stations, not reorder buffer, used for renaming.

♦ Zero-delay branch and branch target prediction. No branch folding.

♦ Branches do not have delay slots.

Name Abbreviation Latency Initiation Reservation
Interval Station Nums

Load/Store L 1 1 0-1
Integer EX 0 1 2-3
F.P. Add A 1 1 4-5
F.P. Mul. M 5 2 6-7
Branch BR 0 1 8-9
F.P. Divide DIV 22 23 10-11

! When loop first entered r2-r1 large (loop iterates many times).

LOOP: ! LOOP = 0x1000

lf f0, 0(r1) ! Don’t overlook true dependencies on f0!

mulf f0, f0, f2

addf f0, f0, f3

sf 4(r1), f0

addi r1, r1, #8

slt r3, r1, r2

bnez r3, LOOP

div f4, f5, f6

(a) Using the grid on the next page show the execution of the code above up to and including the
last cycle shown on the grid. Assume perfect branch and branch target prediction, and no cache
misses. Include instructions even if they have not yet finished executing at the end of the grid.
(10 pts)

(b) Either determine and justify the CPI of an execution of a large number of iterations of the loop
(ignoring cache misses and assuming perfect target prediction) or explain why it cannot easily be
determined from the pipeline execution diagram. (A correct explanation of why it cannot be easily
determined will get full credit, a correct CPI that left no time for problems 3 and 4 will get full
credit for this subproblem and sympathy—but not credit—for omitting the others. ) (4 pts)

4

← → Spring 1998 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4720/1998/fe.pdf


First Iteration, Third Iteration, etc.?

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

lf f0,0(r1)

mulf f0,f0,f2

addf f0,f0,f3

sf 4(r1),f0

addi r1,r1,#8

slt r3,r1,r2

bnez r3,LOOP

div f4,f5,f6

Second Iteration, Fourth Iteration?, etc.?

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

lf f0,0(r1)

mulf f0,f0,f2

addf f0,f0,f3

sf 4(r1),f0

addi r1,r1,#8

slt r3,r1,r2

bnez r3,LOOP

div f4,f5,f6
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(c) Suppose the second time the load (lf) executes it triggers a page fault exception, perhaps due
to a bad load address.

In what cycle will the exception occur? Show the contents of the reorder buffer at that cycle and
place a check mark next to instructions that have completed execution.

Explain how the reorder buffer will allow the exception to be precise. Specify what happens to the
reorder buffer as a result of the exception, when it happens, and the contents of the buffer before
and after it happens. At what cycle will the trap be inserted in the pipeline? (If solutions to the
previous parts are not ready, make up a pipeline execution diagram just for this question.) (8 pts)

(d) What are the minimum number of reservation stations of each type needed to attain a minimum
CPI on the code above? What is that CPI? (There is a grid on the next page to work this out,
other methods may be faster.)(8 pts)

6
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First Iteration, Third Iteration, etc.?

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

lf f0,0(r1)

mulf f0,f0,f2

addf f0,f0,f3

sf 4(r1),f0

addi r1,r1,#8

slt r3,r1,r2

bnez r3,LOOP

div f4,f5,f6

Second Iteration, Fourth Iteration?, etc.?

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

lf f0,0(r1)

mulf f0,f0,f2

addf f0,f0,f3

sf 4(r1),f0

addi r1,r1,#8

slt r3,r1,r2

bnez r3,LOOP

div f4,f5,f6
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Problem 3: A system has a 64-bit address space (a = 64), addresses 16-bit characters (c = 16),
and has a 256-bit data bus (w = 256).

(a) Show how memory devices could be connected to construct a 2-way set-associative cache with
1024-bit lines and 64 sets. Memory devices of any size can be used, be sure to specify their sizes (e.g.,
xb × 2y). Show only the connections needed to retrieve the data and tag information, determine
if the access is a hit, and pass the data to the CPU. (10 pts)

(b) Suppose the cache is write-through. What is the capacity of the cache and how much memory
is needed to implement it? Be sure to specify units. (5 pts)

(c) Find the addresses specified below. (5 pts)

• Three different address that are part of the same line and require exactly two loads to
access. (Assume there are 256-bit load instructions.)

• Two addresses that can be in different lines but the same set.

• Three addresses that are in different sets.

8
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Problem 4: Answer each question below.

(a) What is branch folding? In the implementations of DLX covered in class, why must the predic-
tions used for branch folding always be correct? (6 pts)

(b) Why might the cost of a functional unit with an initiation interval of 2 be less than one
performing the same operations but with an initiation interval of 1 but having the same latency?
Given such a cost relationship, what should the minimum number of reservation stations be for a
functional unit with an initiation interval of ι and a latency of λ? Explain. (6 pts)

(c) What are some difficulties that might be encountered in developing a superscalar implementation
of a stack ISA? (For partial credit, list some distinguishing features of a stack ISA.) (6 pts)

9
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(d) Explain how a reservation register can be used to detect MEM-stage structural hazards while
an instruction is in the ID stage. (6 pts)

(e) What is the difference between a RAW hazard and a true dependency? (6 pts)

10
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Problem 1: Consider a new instruction, mems r1,(r2), which loads and examines consecutive
memory words, starting at the address stored in r2, until a word equal to the contents of r1 is
loaded. When the instruction finishes, r2 will have the address of the matching word. (The loaded
words are not written to registers, although they might be temporarily stored somewhere.) For
example, if the contents of r1 was 123 and the contents of r2 was 1000, and a 123 were stored
at memory location 1016 (and not at memory locations before 1016), then after mems r1,(r2)

executed there would be a 1016 in r2.

(a) Modify the pipeline to implement this instruction and show its execution on the modified
pipeline (ID, EX, etc.). Show only the data connections on the modified pipeline, not control or
changes in the IR path. When showing the execution of mems briefly explain what is happening in
each stage. The implementation can be either low cost or high speed. (10 pts)

(Hint: first do part b. Then returning to this part, try to figure out how the instruction might
execute. Use this to modify the pipeline and to solve part c. Even if the execution is based on a
wild guess, it can still be used for part c.)
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Problem 1, continued.

(b) Write a DLX program that performs the same function as mems. (10 pts)

(c) Compare the time needed to execute mems to the time needed to run the program when the
word is found after 1000 loads. (10 pts)

Reference Information:

Instruction type/opcode Instruction Meaning

LW, SW Load word, store word (to/from integer registers)

ADD, ADDI, ADDU, ADDUI Add, add immediate (all immediates are 16 bits); signed and unsigned

AND, ANDI And, and immediates

LHI Load high immediate—loads upper half of register with immediate

S Set conditional: “ ” may be LT, GT, LE, GE, EQ, NE

BEQZ, BNEZ Branch GPR equal/not equal to zero; 16-bit offset from PC+4

J, JR Jumps: 26-bit offset from PC+4 (J) or target in register (JR)

JAL, JALR Jump and link: save PC+4 in R31, target is PC-relative (JAL) or a register (JALR)

3
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Problem 2: Suppose arithmetic instructions skipped the MEM stage, going straight from EX to
WB, saving a cycle.

(a) Because the register memory has only one write port, this scheme introduces a structural hazard
in the WB stage. Find a sequence of instructions that encounter the hazard, show how they would
execute (IF ID, etc.) if nothing were done about the hazard, and show where the hazard occurs.
(7 pts)

(b) Ignoring the hazard, show how the pipeline would have to be modified to accommodate such
instructions. Show both data and control (IR path) modifications. (8 pts)
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(c) Describe two ways the structural hazard could be dealt with without delaying execution. (8 pts)

(d) Is this skipping of the MEM stage for arithmetic instructions worthwhile? (Hint: It depends on
whether register forwarding is used.) Explain, stating any reasonable assumptions about pipeline
features. (7 pts)
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Problem 3: Answer each question below and on the next page.

(a) An ISA defines 200 out of 256 possible opcodes. An implementation can raise an illegal in-
struction exception when any of the unused instructions are encountered, or it might allow the
instruction to execute (with the result being undefined). The first option is more expensive than
the second. Why is the first option still the better choice? (8 pts)

(b) Describe two differences between a trap instruction and a subroutine call (jump and link).
(8 pts)

(c) Why is the pipelined DLX implementation able to start fetching registers before decoding the
instruction? (8 pts)

It’s not over yet, more problems on next page.
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(d) What is the advantage of the geometric mean over the harmonic and arithmetic means when
combining normalized execution rates? (8 pts)

(e) Consider two implementations of an ISA, one old and one new. Describe why each factor, φ,
IC, and CPI, might change from the old to the new implementation. (8 pts)
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Problem 1: DLX’s immediate instructions use 16-bit immediates. Because in many cases larger
immediates are needed, new larger-immediate instructions are to be added to DLX. Larger-
immediate instructions specify an integer arithmetic operation and an immediate, but no registers.
The operation is performed using the immediate as one source and the most-recent destination
register as both the other source and the destination. For example, consider larger-immediate
instruction addli in the code fragment below:

lw r6, 0(r7)

sub r1, r2, r3

sw 0(r4), r5

addli #0x1ffff ! Operation: r1 = r1 + 0x1ffff

The addli instruction uses r1 because it was the most-recent destination register used. (The sw

does not modify r4 or r5, so they aren’t used. The lw does modify r6, but it is executed before
the sub.) The larger-immediate instructions use the J-type format: a 6-bit opcode followed by a
26-bit immediate.

(a) Let register r10 hold the memory address of an integer. The sum of that integer and 0x981234
is to be written to r11. Write two code fragments to perform this operation, one with and one
without a larger-immediate instruction. (5 pts)
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Problem 1 continued: (b) Show the modifications needed to implement larger-immediate in-
structions on the pipeline illustrated below. (Read the next part before solving.) (10 pts)

(c) Show how bypassing can be implemented for the instruction. (Hint: This is easier than regular
bypassing since one source is the most-recent destination.) (10 pts)

• Addresses must be presented to the register file at the beginning of a cycle and the data won’t be
available until the end of the cycle.

• Be sure to label the function of each connection to registers and other devices. (E.g., address, write,
data.) Avoid magic boxes and clouds.

• Explain your modifications using an annotated timing diagram showing sample code executing. A
detailed logic and timing diagram are preferred over a lengthy verbal description.
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Problem 2: The code fragment repeated below is to be executed on several machines similar to
DLX. All machines have an integer execution unit, a multiply FP unit, an add FP unit, and a
divide FP unit. The integer unit takes one cycle, the add unit takes two cycles, the multiply unit
takes 4 cycles, and the divide unit takes nine cycles. The multiply unit has an initiation interval of
2, the divide unit has an initiation interval of 9, all other functional units have an initiation of 1.
In all cases make sure distinct pipeline segments have distinct names. All registers and functional
units are available when the fragment starts. State any assumptions. (25 pts)

(a) Show how the sequence would execute on a single-issue pipeline without register renaming and
which is fully bypassed.

div f0,f10,f11

mul f0,f3,f2

add f8,f9,f0

add f0,f1,f2

mul f3,f0,f4

mul f5,f0,f6

(b) Show how the sequence would execute on a single-issue pipeline using Tomasulo’s approach as
described in class, with two reservation stations per functional unit.

div f0,f10,f11

mul f0,f3,f2

add f8,f9,f0

add f0,f1,f2

mul f3,f0,f4

mul f5,f0,f6
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Problem 2 continued:

(c) Show how the sequence would execute on a dynamic issue two-way superscalar machine using
Tomasulo’s approach with two reservation stations per functional unit. The superscalar machine
has the same functional units as the others. (I.e., there is not two of every functional unit.) Of
course, there are two common data busses; every functional unit can write either one.

div f0,f10,f11

mul f0,f3,f2

add f8,f9,f0

add f0,f1,f2

mul f3,f0,f4

mul f5,f0,f6

(d) Show how the sequence would execute on a static issue two-way superscalar machine. The
superscalar machine has the same functional units as the others. (I.e., there is not two of every
functional unit.) The pipelines are fully bypassed.

div f0,f10,f11

mul f0,f3,f2

add f8,f9,f0

add f0,f1,f2

mul f3,f0,f4

mul f5,f0,f6
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Problem 3: Consider a 3-way, set-associative cache with 4096 sets and 256-byte blocks using LRU
replacement to be used with a CPU reading data in aligned 8-byte units. The size of the address
space is 64 bits, the cache uses virtual addresses.

(a) (1) Show the bit positions used for the tag, index, and offset. (2) How many bytes can the
cache cache? (3) How many bytes of memory does it take to implement the cache? (5 pts)

(b) Modify the program below (or re-write completely) so that it moves as many blocks as possible
(without replacing other blocks) into each of 2048 sets and moves exactly one block into each of the
other 2048 sets. The program should accomplish this using the minimum number of array accesses.
The cache is empty before the program is run; assume that only array accesses generate memory
references. (5 pts)

double *a = 0x10000000; /* Assume the entire address space is ours. */

for( i=0; i<5; i++ ) total += a[i];

The size of a double is 8 bytes. The address of a[0] is 0x10000000.
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Problem 3 continued:

(c) Because of the 64-bit address space, a large amount of memory is used by the cache for storing
tags. If the number of distinct tags present in the cache is much less than the number of blocks,
that memory is wasted. To reduce the storage needed, tags can be converted to smaller htags using
a hash function. A hash function is given1 which hashes a tag to an 8-bit htag. (If you’re hopelessly
confused, see the last point below.) Design a cache with the above specifications (3-way . . .) that
uses the hash function to reduce the amount of storage needed for tags. (15 pts)

• Show hardware to convert addresses from the CPU to addresses for the cache’s memory devices, to
detect cache hits, to detect hash-function collisions, and to connect data read from the cache to the
CPU. (The hash function can map two different tags to the same htag, that’s called a collision.) Do
not show hardware needed for writes, hardware to handle misses, and connections to main memory.

• Show the hash function itself as a box with a single input and output. Assume memory devices of
any size are available (any number of address bits and any number of data bits). Where appropriate,
specify the bits used in a connection (e.g., 1..3). Omit controller details.

• Briefly describe what happens when (1) an address with a new tag is presented; (2) an address with
an already-cached tag is presented (Note that this can be a miss or a hit.); and (3) an address with a
tag colliding with a tag in the cache is presented.

• For reduced credit: (1) design just the cache described on the previous page (showing the memory
devices, how the memory address is converted to addresses for the devices, etc.) and (2) assuming
the cache is write-back, describe the sequence of events during a cache hit and cache miss requiring
replacement. This part can be skipped if the tag-hashing design is presented.

1 Read this footnote after the exam. The hash function would have to be more elaborate than the simple bit mask used
in the BHT. The hash function properties and design are not a part of the problem, so don’t think them until the test
is over.
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Problem 4: Answer each question below and on the next page.

(a) As presented in class, a system using Tomasulo’s approach attempts to write the common data
bus in the cycle after execution is complete. The DLX pipeline using bypassing was able to transmit
a result in the last cycle of execution. Why would it be more difficult (but far from impossible) to
write the common data bus in the last cycle of execution than it is to do bypassing? (5 pts)

(b) Computer engineers are hard at work on the next implementation of an architecture. Consider
two benchmarks, one is a synthetic benchmark written by the engineers, the other is an application
benchmark suite used by P.O. Signers, a computer magazine the engineers’ customers read and
respect. Describe a situation in which the benchmark suite would be a better choice for the engineers
and another situation where the synthetic benchmark would be the better choice. Briefly justify
your answers. (5 pts)

8
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Problem 4 continued:

(c) During program execution on the Chapter 3 DLX implementation, an exception is raised in the
IF stage while fetching an add instruction. No other exceptions occur on this or previous cycles.
Show a timing diagram in which this occurs and in which the trap handler for a different instruction
ends up being called. Explain why a different handler was called. Point out important steps in
the timing diagram. The timing diagram should end with the fetch of the first instruction of the
handler. (5 pts)

(d) How is the code scheduling done for static-issue superscalar machines similar to, and different
from, the re-compiling needed for VLIW machines? (5 pts)

(e) Suppose the value of m were to be increased in an (m,n) correlating branch predictor while
keeping the size of the branch history table constant. Give a reason why branch prediction might
improve, and a reason why branch prediction might get worse. (Both are possible, depending upon
how large m was before the increase.) (5 pts)

Yes, it’s finally over.
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Problem 1: [30 pts] Appearing on the facing page is the MIPS implementation that includes the addsc

from Homework 3.

(a) The first four code fragments below will execute as shown with the illustrated control logic (from the
Homework 3 solution), but the logic won’t generate the stall for the last fragment.

�Add control logic to the implementation so that all of the code fragments execute as shown. That is, add
logic to generate the stall signal �for the last fragment �without changing whether the others stall.

Solution and discussion on the next page.

lw R5, 8(r2) IF ID EX ME WB # Correctly stalls with existing logic.

addsc r3, r4, R5, 7 IF ID -> EX ME WB

lw R4, 8(r2) IF ID EX ME WB # Correct with existing logic.

addsc r3, R4, r5, 7 IF ID EX ME WB

xori R4, r2, 8 IF ID EX ME WB # Correct with existing logic.

and r6, R4, r5 IF ID EX ME WB

lw R5, 8(r2) IF ID EX ME WB # Correctly stalls with existing logic.

xor r6, r4, R5 IF ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6

lw R4, 8(r2) IF ID EX ME WB # Should stall but doesn’t with existing logic.

xor r6, R4, r5 IF ID -> EX ME WB

(b) Notice that in the first two fragments below the addsc shift amount is zero, and so those instructions
just add. In the first fragment addsc executes in ME due to the load dependence, but in the second fragment
it executes in EX so it can avoid stalling the or. Note: The material about doADDSC described below was not
in the original exam.

�Modify the control logic so that an addsc with a zero shift executes as shown below. Do so by �relabeling
the isADDSC pipeline latches to doADDSC. Set this signal to 1 only if there is an addsc in ID that needs to
execute in ME. �The logic should not break correct behavior for other cases, such as the ones above.

Solution and discussion on the next page.

# Cycle 0 1 2 3 4 5 6 7 Fragment b1 - addsc adds in ME.

lw R2, 8(r9) IF ID EX ME WB

addsc r1, R2, r3, 0 IF ID EX ME WB

or r5, r10, r6 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 Fragment b2 - addsc adds in EX

andi R2, r9, 8 IF ID EX ME WB

addsc R1, R2, r3, 0 IF ID EX ME WB

or r5, R1, R6 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 Fragment b3 - addsc adds in ME.

lw R6, 8(r9) IF ID EX ME WB

addsc R1, r2, r3, 4 IF ID EX ME WB

or r5, R1, R6 IF ID -> EX ME WB
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The solution to Part a appears below in blue. The last code fragment stalls because of a dependence between a load, lw in particular,
and the rs register of an ALU instruction, xor. The stall occurs in cycle 2, when the xor is in ID and the lw is in EX. (The xor
is also in ID during cycle 3, but it is not stalled, it’s free to leave in the next cycle.) For this discussion refer to cycle 2 in the last
code fragment. A new AND gate checks for the dependence, its output is commented “Dependence: load; insn rs.” There should not
be a stall if the instruction in ID is an addsc because it is possible to bypass the loaded value without a stall. That case is handled
by the second blue AND gate which suppresses the stall if there is an addsc in ID.

The solution to Part b appears in green. The goal is to execute addsc in EX in some cases and ME in other cases. When addsc is
executed in EX it is treated like an ordinary add instruction. The control signal isADDSC that appeared in the pipeline latches has
been renamed to doADDSC. When doADDSC=0 an addsc is treated like an add instruction, executing in EX. When doADDSC=1
the ALU will execute the x=a operation and the C select signal will route the ME-stage adder output to the WB.ALU pipeline latch
(otherwise it routes the EX.ALU value to the WB.ALU latch).

The value of doADDSC is set to 1 if there is an addsc in ID and either the sa field is non-zero (and so it must use the ME-stage
adder) or the rs source of the addsc depends on a load in EX (and so uses the ME-stage adder to avoid a stall). The logic computing
this is on the lower left.

Grading Note: Many students mistakenly thought that a stall signal was needed. The problem as given did
not mention the doADDSC signal which might have contributed to this mistake.
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Problem 2: [30 pts] In the MIPS implementation below pay attention to bypass paths and how the branch
is resolved.
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control logic.

� Show the execution of this code on the implementation above. �Don’t forget to check for dependencies!

Solution appears below. The and stalls because its rt register, R4, could not be bypassed in cycle 4 since in this particular
implementation there is no bypass path to the lower ALU input. The other dependencies are with the rs register, and those can be
bypassed (to the upper ALU input).

## SOLUTION
# Cycle 0 1 2 3 4 5 6 7 8 9

add R1, r2, r3 IF ID EX ME WB

sub R4, R1, r5 IF ID EX ME WB

and R6, r7, R4 IF ID ----> EX ME WB

sw r1, 0(R6) IF ----> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9

� Show the execution of this code on the implementation above. �Don’t forget to check for dependencies!

Solution appears below. There is a dependency from the addi to the two sw instructions. The EX-stage mux routing a value to the
ME.rtv input can bypass a value from WB but not ME, and so the first sw must stall one cycle. Note that there is no problem for
the second sw because it is in ID when addi is in WB and so it can get the value from the register file.

## SOLUTION
# Cycle 0 1 2 3 4 5 6 7

addi R1, r1, 1 IF ID EX ME WB

sw R1, 0(r2) IF ID -> EX ME WB

sw R1, 4(r2) IF -> ID EX ME WB
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� Show the execution of this code on the implementation above. �Don’t forget to check for dependencies!

There are no stalls here because each sw can use the bypass from WB.

## SOLUTION
lw r1, 0(r2) IF ID EX ME WB

lw r4, 4(r2) IF ID EX ME WB

sw r1, 0(r3) IF ID EX ME WB

sw r4, 4(r3) IF ID EX ME WB

� Show the execution of the code below with �the branch taken on the implementation above. �Don’t
forget to check for dependencies! �Pay attention to branch behavior.

Solution appears below. The beq stalls two cycles because there are no bypass paths to the EX-stage comparison unit needed by the
branch. Also notice that the branch is resolved in EX, and so the correct target is not fetched until the branch is in ME. As a result
the and instruction is fetched and then squashed.

## SOLUTION
# Cycle 0 1 2 3 4 5 6 7 8 9 10

add R1, r2, r3 IF ID EX ME WB

beq R1, r4, TARG IF ID ----> EX ME WB

sw R1, 0(r8) IF ----> ID EX ME WB

and r5, r1, r6 IFx

ori r5, r5, 0x6

sw r5, 4(r8)

TARG:

lw r1, 8(r8) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10

� Show how the inputs to the = box in EX can be changed to eliminate stall(s) �in the example above,

and stalls for other kinds of �dependenices. �Do not add hardware, just change the inputs.

Solution appears on the diagram in blue. The rs value is taken from the mux at the upper ALU input. That works here because
the ALU is not computing the branch target. The rt value is taken from the mux for the store value, which can bypass from WB. In
contrast the lower ALU mux can’t bypass at all.

With these changes the branch would not stall. However, because it is resolved in EX there would still be a squashed instruction.

5

← → Spring 2025 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4720/2025/mt_sol.pdf


Problem 3: [40 pts] Answer each question below.

(a) In the routine below r4 holds an integer, call its value x, and f1 holds a single-precision float, call its
value y. Complete the routine so that register f9 holds x× y in single-precision floating point.

�Complete the routine so that f9 is written with the product of the values of r4 and f1. The solution only
requires a few instructions, �don’t try to fill the entire page.

add r4, r5, r5

add.s f1, f2, f3

# At this point r4 holds an integer and f1 holds a single-precision float.

# SOLUTION

#

# Let x denote the value in r4.

# At this point r4 holds an integer representation of x.

#

# Let y denote the value in f1.

# At this point f1 holds a single-precision floating point representation of y.

#

mtc1 f4, r4 # Move x to f4.

# At this point f4 holds an integer representation of x.

cvt.s.w f5, f4 # Convert x to a single-precision FP representation.

# At this point f4 still holds an integer representation of x ...

# ... but f5 now holds a single-precision FP representation of x.

mul.s f9, f1, f5 # Perform the multiplication.
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(b) The three MIPS code fragments below each do the same thing, and infinite loops are not the problem.

loop: # Fragment A

sw $t4, 0($t5)

bne $t5, $t3, loop

addi $t5, $t5, 4

loop: # Fragment B

sw $t4, 0($t5)

sw $t4, 4($t5)

bne $t5, $t3, loop

addi $t5, $t5, 8

loop: # Fragment C

sb $t4, 0($t5)

sb $t4, 1($t5)

sb $t4, 2($t5)

sb $t4, 3($t5)

bne $t5, $t3, loop

addi $t5, $t5, 4

�Which code fragment is the fastest, © Fragment A, ×© Fragment B, or © Fragment C?

�Which code fragment is the slowest, © Fragment A, © Fragment B, or ×© Fragment C?

�Explain choice of �fastest and �slowest fragment, and �include a good definition of fast.

Here fast will be defined as executing few instructions to complete a task. The task here is initializing an area of memory from t5 to
t3 with the value in t4. (This is taken from the solution Homework 1.) So the fastest fragment is the one that executes the fewest
instructions.

The number of iterations performed by the Fragment A and Fragment C loops is the same, call the number n. Because t5 is
incremented by 8 rather than 4, Fragment B runs for just n/2 iterations.

An iteration of Fragment A is 3 instructions, an iteration of B is 4 instructions, and an iteration of C is 6 instructions. The total
number of instructions is 3n for A, 4n

2 = 2n for B, and 6n for C. So B is the fastest and C is the slowest.

�Assume that the contents of t5 and t3 refer to a range of valid memory addresses. Which fragment(s) put

a restriction on the value of t5? �Explain. Assume that t3 is always chosen to avoid an infinite loop.

MIPS memory accesses are aligned, meaning the memory address must be a multiple of the access size. The access size for a sw is 4
and so t5 must be a multiple of 4. That restriction applies to Fragments A and B. The access size for sb is 1 and so Fragment C
imposes no restriction on t5.

7

← → Spring 2025 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4720/2025/mt_sol.pdf


(c) When designing a RISC ISA what is the most important criterion when considering possible instructions
based on the material presented in class?

�Most important factor when deciding whether an instruction should be added to a RISC ISA.

In class it was explained that the most criterion for RISC is easy pipelining. Other RISC characteristics, such as fixed instruction
size and restricting memory access to load and store instructions are ways of facilitating easy pipelining.

�Give an example of an instruction unsuitable for RISC and �explain how the criterion makes it unsuitable.

An instruction such as add r1, (r3), (r4) because that would require two memory accesses before the arithmetic operation.
A pipelined implementation that could implement it would need two memory ports before the ALU. Memory ports are expensive, so
it would not be worthwhile to pipeline it.

(d) CISC ISAs have powerful instructions, such as add 4(r1), (r2), ((r3)) or a call instruction that
automatically saves registers.

�What is the benefit of powerful instructions, especially in the days when memory was made by people sewing
wires around little metal rings.

Programs using such powerful instructions take up less space. Here is the equivalent MIPS code for the example instruction:

# add 4(r1), (r2), ((r3))

lw r12, 0(r2) # Put value of (r2) into r12

lw r4, 0(r3)

lw r13, 0(r4) # Put value of ((r3)) into r13

add r11, r12, r13

sw r11, 4(r1)

The MIPS equivalent uses 5 instructions taking up 20 bytes of memory. The size of the CISC instruction would be less, maybe 4 or
5 bytes.

One cannot easily claim that the implementation of a RISC ISA would be faster or slower than a CISC ISA. Current CISC
implementations work by cracking CISC instructions into RISC-like micro-ops where they proceed through pipelined hardware.
This adds to complexity (and the latency of cracking) but if your sales are high enough you can pay for the computer engineers to
handle it.
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(e) Intel has updated IA-32 (a.k.a. x86) since the 1980s, and later added a 64-bit variant, Intel-64. Recall
that nobody actually likes IA-32.

� So why did Intel’s customers continue to buy implementations of IA-32 and Intel 64 rather than switching
to a better-designed ISA? (Note that Apple is an exception to the rule that computer makers don’t switch
ISAs.)

Those Intel customers (or the customers’ customers) had lots of software for IA-32 (and later Intel 64). (One notable Intel customer
is IBM, using the processor in their PC. It is IBM’s customers that had lots of software.) When they buy a newer implementation of
IA-32 they can run their old software as is. But, if they switch to a new ISA then they must recompile or port their old software, a
time-consuming distraction. To get a customer to switch ISAs the implementation of the new ISA would need to be so much better
than the old ISA that its is worth the trouble.

The Apple Mac (Macintosh) did switch ISAs several times. It started with the Motorola 68020, then PowerPC, then Intel 64, and now
uses Arm A64. This worked for Apple in part because many layers of the software is Apple-written, and they’d make the effort to
port it to the newer ISA. Third-party software would call Apple-written libraries for many time-sensitive tasks (such as for the user
interface) and the remaining parts could run under emulation until ported. (Emulated code is run by simulating the older ISA for
which it was written.) And yes, there’s also the reality distortion field that insured everyone would go along without complaining.

(f) MIPS uses the func field as an opcode extension field.

�Why is an opcode extension field needed?

The opcode field is 6 bits, allowing for only 64 instructions. The func field enables a greater number of instructions to be encoded.

�Why didn’t they just make the opcode longer when designing MIPS?

In some formats, including Format I, they wanted to have as much space as possible for an immediate. If the opcode field were made
larger the immediate would be smaller.
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Problem 1: [18 pts] Appearing below is a changed version of the MIPS implementation appearing in
Homework 3 and the 2020 midterm exam.
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=' ME By
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=' ='

='

ME By

rt By

rs 25:21

rt 20:16

D
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1
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� In the table show the select signal values expected for the execution shown below. �Use X for select signals
that don’t matter (that can be either 0 or 1). �Don’t forget to check for dependencies

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

ori r7, r1, 9 IF ID EX ME WB

sub r8, r9, r7 IF ID EX ME WB

sw r7, 5(r6) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7

A X 0 0 1

B 0 1 X 1

C 1 1 0 1

D X X X 0

# Cycle 0 1 2 3 4 5 6 7
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Problem 2: [17 pts] Appearing below is the implementation from the previous problem. It is not identical
to the Homework 3 implementation. See the last page of this exam for the Homework 3 Problem 3 solution.

�Design the control logic for the A, B, C, and D select signals.

�Take advantage of existing logic, not much more logic is needed. �Make sure that C works for the code
fragment in the previous part. �Don’t forget that execution is pipelined.

Solution appears below in green (in the ID stage).

Select signal A uses the existing ME By signal, though inverted since a select signal of 1 connects the ME-stage bypass connection to
the output. (In the Homework 3 solution the multiplexor inputs were numbered differently. In this exam all multiplexor inputs were
numbered in the default way [0 at the top] to avoid confusion.)

Select signal B uses the existing type R signal, also inverted because a 1 selects an immediate, something not used in any type-R
instruction.

Select signal D uses the existing rt By signal, inverted too. Note that there is no need to check whether a store instruction is
present, because if one weren’t it would not matter what D was.

Select signal C requires a bit more thought. It should be 1 if either the immediate is needed (not type R) or the unbypassed rt

value is needed (not rt By). The OR gate computes that.

Note that the logic for the select signals is in the ID stage so that the select signals are ready at the very beginning of EX.
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Problem 3: [15 pts] Show the execution of the MIPS code fragments on the implementation.
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� Show the execution of the fragment below with �the branch taken. �Pay close attention to branch
behavior.

The solution appears below. In MIPS there is a delay slot, which is why add executes. In the implementation above the branch target
is fetched when the branch is in EX.

# SOLUTION

# Cycle 0 1 2 3 4 5 6

beq r1, r1, SKIPA IF ID EX ME WB

add r2, r3, r4 IF ID EX ME WB

sub r5, r6, r7

ori r8, r9, 100

xori r10, r11, 101

SKIPA:

lw r12, 0(r14) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

� Show the execution of the fragment below. �Be sure to check for dependencies.

The solution appears below. There is no way to bypass a load value from ME to EX in cycle 4, so the add stalls. Bypass paths can
be used for all other dependencies.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8

addi R5, r5, 4 IF ID EX ME WB

lw R2, 0(R5) IF ID EX ME WB

add R1, R2, r3 IF ID -> EX ME WB

sub r4, R1, r4 IF -> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8
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Problem 4: [15 pts] Appearing below is the implementation of Another RISC ISA (ARI) and incomplete
diagrams for the encoding of its MIPS-like R and I formats.
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�How many registers does ARI have?

The address inputs to the register file read ports (in ID) each are connected to 7 bits (6 + 1− 0 = 7 and 13 + 1− 7 = 7), and

so there are 27 = 128 registers .

�What is ARI’s immediate size?

The immediate size is 16 + 1− 7 = 10 bits .

�Why is it possible to implement an instruction like lw r1, 4(r2) but not an instruction like sw r1, 4(r2)

on the implementation above?

Answer: Because the instruction bits for the immediate and rs2 overlap.

Explanation: Both the lw and sw use the immediate (along with the rs1 value) to compute the memory address. The sw would
need to store a register value, r1 in the example, to memory. The register to store can’t be encoded in the rs1 field because the
rs1 field is needed for the base address (r2 in the example). Furthermore the register to store can’t be encoded in the rs2 filed
because that overlaps the immediate field. So there is no way to encode a sw that includes an offset (the 4 in the example). There’s
no problem with the lw since r1 is a destination, and those bits don’t overlap the immediate.
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� In the spaces below complete �ARI R and �ARI I instruction formats consistent with the implemen-
tation. �Be sure to show the opcode field and any opcode extensions that are needed.

The solution appears below. The opcode is chosen by using available overlapping bits in both formats after the bit positions for
rs1, rs2, rd, and the immediate are claimed. That leaves bits 24:17, which is big enough for 256 instructions. The three leftover
bits in the type R format are labeled res, for reserved. They might be used as an opcode extension field.

How realistic is ARI? Not very. Not many ISAs have 128 general-purpose registers. (Itanium is an exception.) Also, the 10-bit
immediate is on the small size, it could have been made a few bits larger without shrinking the opcode field too much.

ARI R:

rd

1

31 25

opcode

add

24 17

res

0

16 14

rs2

3

13 7

rs1

2

6 0
add r1, r2, r3

ARI I:

rd

4

31 25

opcode

addi

24 17

imm

6

16 7

rs1

5

6 0
addi r4, r5, 6
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Problem 5: [20 pts] Answer each question below.

(a) Show the contents of the destination register after each MIPS I instruction below executes.

# Initially r1 = 0x12345678

sll r2, r1, 16

# � r2 = 0x56780000 # SOLUTION

srl r3, r1, 16

# � r3 = 0x1234 # SOLUTION

or r4, r2, r3

# � r4 = 0x56781234 # SOLUTION

(b) Given the MIPS code below, why might execution never reach the or instruction?

lw $a0, 0($t0)

jal SOME_CONVENTIONAL_STANDARD_LIBRARY_FUNCTION

addi r31, r31, -8

or $s1, $s1, $v0

�The or instruction won’t be reached because:

Each time the jal executes the return address (automatically written to r31) is changed by the addi from the or instruction
address to the jal instruction address.

�What will happen instead is:

Each time SOME CONVENTIONAL STANDARD LIBRARY FUNCTION returns it is immediately called again, forming some kind of
an infinite loop.
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(c) Register r9 holds the address of the middle of a large memory allocation, and so all the MIPS lb

instructions below execute with no problem. Not so for the lw instructions.

lb r11, 0(r9) # Will execute correctly.

lb r12, 5(r9) # Will execute correctly.

lb r13, 10(r9) # Will execute correctly.

lb r14, 15(r9) # Will execute correctly.

lw r1, 0(r9)

lw r2, 5(r9)

lw r3, 10(r9)

lw r4, 15(r9)

�Why won’t the rest of the MIPS code execute to completion?

Because memory address in the first or second lw will be unaligned (not a multiple of 4) and so the unlucky load will raise an
unaligned access exception.

�What are the maximum and minimum number of lw instructions that will execute before an error occurs,
and �briefly explain how the maximum and minimum number are determined by the exact value of r9.

The maximum number is one, and the minimum number is zero.

If the value of r9 is a multiple of 4, say 0x1000, then the first lw will execute correctly but the second, attempting to load from
0x1005, will raise an unaligned address exception and never finish.

If the value of r9 is not a multiple of 4, say 0x1001, then the first lw will raise the exception and execution will never even reach
the second lw.

(d) Simplify MIPS the code fragment below.

lbu r1, 0(r10)

lbu r2, 1(r10)

sll r1, r1, 8

or r1, r1, r2

sh r1, 2(r10)

# Note: r1 and r2 not used again.

� Simplify the code fragment �without changing what it does.

# SOLUTION

lh r1, 0(r10)

sh r1, 2(r10)
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Problem 6: [15 pts] Answer each question below.

(a) In class we described three families of ISAs, CISC, VLIW, and RISC.

�How do VLIW ISAs differ from both RISC and CISC ISAs?

In a VLIW ISA multiple instructions are grouped into bundles, typically containing three instructions. Branch and jump targets are
always to the first instruction in a bundle. In contrast CISC and RISC ISAs jump and branch targets can be to any instruction. Also
in VLIW ISAs each slot of a bundle can have different restrictions on the kind of instruction that can be placed there. For example,
loads and stores may not be allowed in slot 2, and branches might not be allowed in slots 0 and 1. Lacking bundles, RISC and CISC
ISAs lack such restrictions.

(b) Identify the ISA family of the following ISAs:

MIPS: © CISC © VLIW ×© RISC

Arm A64: © CISC © VLIW ×© RISC

Itanium: © CISC ×© VLIW © RISC

Intel 64 /IA-32: ×© CISC © VLIW © RISC

VAX: ×© CISC © VLIW © RISC

(c) The statement below is wrong.

CISC ISAs can have large immediate values, but at the cost of having large instructions. That is why
programs in CISC ISAs are large compared to those in RISC ISAs.

�What is correct in the statement above?

The first sentence is correct, but perhaps a little misleading. Misleading because CISC instruction sizes vary, and so though large-
immediate instructions are of course large, other CISC instructions can be small, say one byte for a nop.

�What is wrong in the statement above?

First of all, CISC instruction sizes vary, and so some instructions are smaller than typical RISC instructions. Also, since CISC
instructions are more powerful, a single CISC instruction does the same work as multiple RISC instructions, so though that CISC
instruction is larger than one RISC instruction, it is smaller than the total size of the RISC instructions it replaces.
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Appearing below is part of the solution to Homework 3 Problem 3. It may be helpful in solving Problem 2 in
this exam.
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Problem 1: (20 pts) Appearing below are MIPS implementations and code fragments. Show execution (a
pipeline execution diagram) of the code on the accompanying implementations.
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� Show execution of the code below on the implementation above. �Check for dependencies.

The solution appears below. The implementation above can bypass to the ALU, which is why lw and sub do not stall. But, it can’t
bypass to the input of the ME-stage memory port, which is why the sw stalls.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

add r6, r7, r8 IF ID EX ME WB

lw r9, 0(r6) IF ID EX ME WB

add r1, r2, r9 IF ID -> EX ME WB

sub r4, r1, r5 IF -> ID EX ME WB

sw r4, 0(r5) IF ID ----> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11
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� Show execution of the code below on the implementation above �until the second fetch of lw. �Show
when and where instructions are squashed (with an x). �The branch must be taken. �Pay close
attention to branch behavior. �Check for dependencies.

The solution appears below. In the implementation above the branch resolves in ME, so the branch target is fetched when the branch
is in WB, which is cycle 6 in the execution below.

In MIPS the delay-slot instruction (addi r1 below) executes whether or not the branch is taken. Because the branch resolves in ME
two instructions had to be squashed.

# SOLUTION

LOOP: # Cycle 0 1 2 3 4 5 6 7

lw r3, 0(r4) IF ID EX ME WB IF

addi r4, r4, 4 IF ID EX ME WB

bne r1, r2, LOOP IF ID EX ME WB

addi r1, r1, r3 IF ID EX ME WB

sw r3, 0(r9) IF IDx

sw r4, 4(r9) IFx

sw r2, 8(r9)

# Cycle 0 1 2 3 4 5 6 7
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Complete the execution of the code below for the implementation above. Check for dependencies,
don’t overlook the first two mul.s instructions.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 ...

mul.s f1, f2, f3 IF ID M1 M2 M3 M4 M5 M6 WF

mul.s f4, f5, f6 IF ID M1 M2 M3 M4 M5 M6 WF

add.s f8, f15, f16

add.s f7, f4, f9

lwc1 f11, 0(r1)

add.s f10, f11, f1

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12...
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This page left mostly blank to provide room for the pipeline execution diagram.
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Problem 2: (15 pts) Answer the following questions on superscalar MIPS implementations.

(a) The superscalar MIPS implementation below has only four bypass paths, one per ALU multiplexor. The
paths have labels, slot 0 and slot 1 (showing where they originate).

Immed
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Complete the code fragment below (by adding registers) so that it uses all four bypass paths in cycle 4.

# Cycle 0 1 2 3 4 5 6

add IF ID EX ME WB

sub IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

or IF ID EX ME WB

xor IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

and IF ID EX ME WB

slt IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6
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(b) Show the execution of the code below on the following 4-way superscalar MIPS implementation. As we
have been doing this semester, instruction fetches are not aligned (the address can be any multiple of 4).

Immed
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Show execution on this 4-way superscalar MIPS implementation, with the branch taken. Show
all squashes with an x. Check for dependencies and pay attention to branch behavior.

beq r2, r3 SKIP

addi r1, r1, 8

add r2, r2, r5

SKIP:

sw r2, -4(r1)

addi r1, r1, r5

lw r2, 0(r1)

xori r2, r2, 0xaa

slt r8, r1, r9
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Problem 3: (25 pts) When the modifications to the MIPS implementation on the facing page are complete
an add.s instruction will not have to stall to avoid a structural hazard with preceding mul.s instructions.
Here an add.s instruction can pass through the same number of stages as a mul.s, so there is no possibility
of a stall due to a structural hazard at WF. In the execution below add.s f14 avoids such structural hazard
stalls by passing through the two extra stages, a5 and a6. But to avoid the necessity of always having to
pass through those two extra stages an add.s can use hop multiplexors to skip ahead to WF early. The add.s

f10 skips over two stages, and add.s f7 skips over one stage.

To keep the problem description from getting too long the following interesting material was not included in
the original final exam. Hopping ahead this way is probably not the best way to deal with structural hazards,
even if the avoided structural hazard stalls justified the cost of the pipeline latches. The reason is that those
two new hop multiplexors could instead be used to implement bypass paths from a5 and a6 into the M1 and
A1 functional units. (See the Fall 2006 final exam.) With such bypasses possible there would no longer be a
need to write back early. Hmmm, this may turn into a Fall 2025 question.

New and important hardware is shown in blue. The hardware generating signals xw, we, and fd is from the
old design and needs to be modified. Hardware for lwc1 has been removed, it is not part of this problem.
When solved correctly code should execute as shown below:

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.s f1, f2, f3 IF ID M1 M2 M3 M4 M5 M6 WF

mul.s f4, f5, f6 IF ID M1 M2 M3 M4 M5 M6 WF

add.s f14, f15, f16 IF ID A1 A2 A3 A4 a5 a6 WF

sub r1, r2, r3 IF ID EX ME WB

add.s f7, f8, f9 IF ID A1 A2 A3 A4 a5 WF

or r4, r5, r6 IF ID EX ME WB

add.s f10, f11, f12 IF ID A1 A2 A3 A4 WF

a4/a5.wa 1 1 1

a5/a6.wa 1 1 0

a6/WF.wa 1 0 0

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

In cycle 11 the add.s f7 uses the lower input of Hop6 to hop from a6 to WF (which is why a6 is not shown).
In cycle 12 add.s f10 uses the upper input of Hop6 to hop from a5 to WF.

Connect logic to the inputs of AND gates W5 and W6 so that the wa (write add) signal will be 0 for an
instruction that hopped out of a stage, preventing a hopping add.s from writing back twice. See sample wa

values in the execution above.

Add select signals to the two hop multiplexors. Little or no logic is required. For partial credit assume
wa is correct.

Modify the design so that fd is correct for mul.s and the hopping add.s instructions.

Modify the xw logic so that it works for hopping add.s instructions and the mul.s.

Modify we so that it is correct for hopping add.s and mul.s instructions.

Remove logic that is no longer needed. That can include logic for xw or we, depending on the solution.
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The IF stage is not shown to make space.
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Problem 4: (12 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on several systems, each with a different branch
predictor. One system has a bimodal predictor, and the other uses a 3-outcome local history predictor.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: N N T T T N T N N T T T N T N N T T T N T <- Outcome

B2: N T N T N T N T N T N T N T N T N T N T N <- Outcome

What is the accuracy of the bimodal predictor on branch B1? Be sure to base the accuracy on a repeating
pattern.

What is the accuracy of 3-outcome local history predictor on B1 ignoring B2.

What is the accuracy of 3-outcome local history predictor on B1 taking into account B2. Note that the
B2 pattern repeats faster than the B1 pattern.
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Problem 5: (8 pts) The diagram below is for a two-way set associative cache.
(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data
Addr

Data
Out

=Tag

Valid

CPU

Addr

Data In

logic

hit

Addr
Data
Out

Tag

Data
Addr

Data
Out

=Tag

Valid

16 B

64

63:12

11:4

63:12

11:8 11:8

11:4

Complete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Address:
0

Cache Capacity, in Bytes (how much data can it cache).

Line Size Indicate Unit!!:
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The problem on this page is not based on the cache from Part a. The code in the problem belows run on
a cache with a line size of 64 bytes (characters). The code fragment starts with the cache cold (empty);
consider only accesses to the array. Of course, 26 = 64.

(b) Find the hit ratio executing the code below.

int64_t sum = 0;

int64_t *a = 0x2000000; // sizeof(int64_t) == 8

int ILIMIT = 1 << 14; // = 214

for ( int i=0; i<ILIMIT; i++ ) sum += a[ i ];

What is the hit ratio running the code above? Show formula and briefly justify.
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Problem 6: (20 pts) Answer each question below.

(a) For each item below provide a code fragment exhibiting the indicated dependency. For your solving
convenience one instruction is already shown.

Complete the code fragment so that it exhibits a true dependence. Circle the register carrying the
dependence.

add r1, r2, r3

Complete the code fragment so that it exhibits an output dependence. Circle the register carrying the
dependence.

add r1, r2, r3

Complete the code fragment so that it exhibits an anti-dependence. Circle the register carrying the
dependence.

add r1, r2, r3

(b) Show the encoding of the instructions below. For the FP instruction infer the encoding from the imple-
mentation diagrams in other problems.

Show encoding. Label fields, and show specific values where possible.

add r1, r2, r3

Show encoding. Label fields, and show specific values where possible.

sw r4, 5(r6)

Show encoding. Label fields, and show specific values where possible.

add.s f1, f2, f3
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(c) Based on the execution below, why can’t the exception raised by the mul.s instruction be precise? What
can’t the handler do after it returns that could be done if the exception were precise?

mul.s f4, f5, f6 IF ID M1 M2 M3 M4 M5*M6*WF

addi r6, r6, 1 IF ID EX ME WB

Handler:

sw r1, 4(fp) IF ID ..

mul.s exception can’t be precise because:

If the exception were precise the handler could:

(d) Many early RISC ISAs avoided branch instructions that compared registers, such as blt r1, r2, TARG,
(branch less than) because that would lower the clock frequency. Later ISAs have included them. Assume
that the time needed to compute r1 < r2 has not changed.

Explain why newer ISAs can have instructions like blt r1, r2, TARG without slowing the clock frequency,
given that comparison is no faster? In your answer indicate where branches might resolve and how
penalty is avoided.

(e) A design team is trying to decide between including bypass path A or bypass path B. With the target
workload compiled without optimization the implementation with A is faster. With the workload compiled
with optimization the implementation with B is faster.

Which should be used © bypass path A or © bypass path B. Explain.
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Problem 1: [17 pts] Candidate MIPS instruction subir r1, 22, r3 is to compute r1=22-r3, which can’t
be done with a single existing MIPS instruction. The 22 is taken from instruction bits 15:0, which is the
immediate field of Type-I instructions.

The subir instruction is to be encoded so that it can be executed by the implementation to the right with
the ALU computing X = A− B, the same operation used by existing subtract instructions. Notice that in
the implementation the immediate connects to both ALU inputs.

(a) Show how subir r1, 22, r3 instruction would be encoded for this hardware.

� Show encoding of subir r1, 22, r3. Be sure to show �the position of the fields and �the field values
for the sample instruction.

�Be sure that the encoding fits with the illustrated hardware and other MIPS instructions.

The solution appears below. The location of the immediate was given in the problem, bits 15:0. The opcode of every instruction
in an ISA must be in the same place, for MIPS that is bits 31:26. The instruction has two register operands, a source, r3 in the
example, and a destination, r1 in the example. Since the ALU will be computing A−B the value of the source register, r3, must
be delivered to the B ALU input. Only the rt value can reach the B input and so the source register must be encoded in the rt
field. If the source is put in rt, the destination register number must be put in the rs field, which no other MIPS instruction does.

This encoding is shown below, with the destination, r1 in the rs field and the source, r3, in the rt field. The immediate is shown
in three different radices, full credit would have been given for any one of them, even decimal.

Opcode

subir

31 26

RS

r1

25 21

RT

r3

20 16

Immed

2210 = 1616 = 101102

15 0

(b) Some control logic is shown for the implementation.

�Modify the control logic that computes dst so that subir executes correctly. �Do not design control logic
for the ALU multiplexors.

�The control logic should not break existing instructions.

�The control logic changes should be consistent with your answer to the previous part.

As described above, the destination register for subir must be placed in the rs field, something that no other MIPS instruction
does. So, the logic that computes the destination register, dst, must be modified so that dst is set to the rs field when a subir
is in ID. To do so a fifth input is connected to the mux and that input is set to the rs bits, 25:21. That fifth input is numbered
1112 rather than 1002 to simplify the logic.
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Problem 2: [20 pts] Show the execution of the code fragments below on their accompanying MIPS
implementations.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
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Mem
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Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D  

dstdst

E
2'b0 format

immed =

� Show the execution of the code fragment below on �the implementation above. �Be sure to check for
dependencies.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10

addi R1, r2, 4 IF ID EX ME WB

lw R3, 0(R1) IF ID ----> EX ME WB

sw r1, 4(R3) IF ----> ID ----> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10

� Show the execution of the code fragment below on �the implementation above. �Be sure to check for
dependencies.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10

addi R1, r2, 4 IF ID EX ME WB

sw R1, 4(r3) IF ID ----> EX ME WB

lw r3, 0(r1) IF ----> ID EX M WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10

The solution appears above. A common mistake was to not realize that register r1 in the sw instruction is a source register, not
a destination. Therefore there is no true dependence between sw and lw.
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Problem 2, continued:

IR
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20:16

IF ID EX WBME

rsv
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Data
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immed
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Z
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31:31

� Show the execution of the code fragment below on �the implementation above. �Be sure to check for
dependencies.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10

addi R1, r2, 4 IF ID EX ME WB

lw R3, 0(R1) IF ID EX ME WB

sw r1, 4(R3) IF ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10

� Show the execution of the code fragment below on �the implementation above. �Be sure to check for
dependencies.

The solutions appear above and below. Note that this implementation has bypass paths to the ALU but lacks bypass paths to the
EX/ME.rtv latch, and so the sw below must stall until the fresh value of r1 arrives in ID.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10

addi R1, r2, 4 IF ID EX ME WB

sw R1, 4(r3) IF ID ----> EX ME WB

lw r3, 0(r1) IF ----> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10

5
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Problem 3: [16 pts] Appearing below is the MIPS implementation with labeled multiplexor select signals
from Homework 3. Following that is an execution diagram along with a row showing select signal values for
the D multiplexor. The first instruction, add, is shown.

format
immed
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A
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�Complete the code fragment so that it produces the values shown for D.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8

add R1, r2, r3 IF ID EX ME WB

sub r4, r5, R1 IF ID EX ME WB

xor R6, r7, R8 IF ID EX ME WB

addi r9, r10, 11 IF ID EX ME WB

or r11, r12, R6 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8

D: 1 0 1 2 3
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Problem 4: [16 pts] Rewrite each code fragment below so that it uses fewer instructions.

� Simplify code fragment.

addi r1, r0, 123

add r1, r1, r2

# SOLUTION

addi r1, r2, 123

� Simplify code fragment.

lw r1, 0(r2)

addi r2, r2, 4

lw r2, 0(r2)

# SOLUTION

lw r1, 0(r2)

lw r2, 4(r2)

� Simplify code fragment.

sub r1, r2, r3

beq r1, r0, TARG

lw r1, 0(r4)

# SOLUTION

beq r2, r3, TARG

lw r1, 0(r4)
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Problem 5: [16 pts] Appearing below are two identical illustrations of one of our MIPS implementations.
To the right are three executions of a code fragment, only one of which is possible on the implementation.

Identify the execution that is possible. For each of the executions that is not possible modify one of the
illustrations below so that it is. The modification is very simple, just consider the target address. A few well
chosen lines will suffice. No logic gates.

The solution appears to the right and below. The branch target address must appear at the PC mux in IF in the cycle before the
target is in IF. In Execution A the target is in IF in cycle 3, so the target address must appear at the PC mux in cycle 2, when
the bne is in EX. Therefore for Execution A the path to the PC mux must be moved from ME to EX, that’s shown in blue. Similar
reasoning applies to Execution C.
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20:16

IF ID EX WBME

rsv
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E
2'b0 format

immed =

A: Provide a path for the target address
from EX to the PC mux in IF.
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C: Provide a path for the target address
from WB to the PC mux in IF.

E
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� Is the execution below consistent with the unmodified implementation? © Yes or ×© No.

� If not, modify the implementation so that it is and �label your modifications A.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION A

bne r1, r2, TARG IF ID EX ME WB

add r1, r1, r3 IF ID EX ME WB

sw r1, 0(r4) IFx

lui r5, 0x1234

ori r5, r5, 0x6789

TARG:

xor r8,r9,r10 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION A

� Is the execution below consistent with the unmodified implementation? ×© Yes or © No.

� If not, modify the implementation so that it is and �label your modifications B.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION B

bne r1, r2, TARG IF ID EX ME WB

add r1, r1, r3 IF ID EX ME WB

sw r1, 0(r4) IF IDx

lui r5, 0x1234 IFx

ori r5, r5, 0x6789

TARG:

xor r8,r9,r10 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION B

� Is the execution below consistent with the unmodified implementation? © Yes or ×© No.

� If not, modify the implementation so that it is and �label your modifications C.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION C

bne r1, r2, TARG IF ID EX ME WB

add r1, r1, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID EXx

lui r5, 0x1234 IF IDx

ori r5, r5, 0x6789 IFx

TARG:

xor r8,r9,r10 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION C
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Problem 6: [15 pts] Answer each question below.

(a) Company A and B both come out with a new computer each year. Company A changes both the ISA
and implementation each year. Company B changes only the implementation each year but uses the same
ISA.

�Which company is following accepted practice?

Company B.

�Which company’s customers are more likely to stay with the company when it is time to upgrade to a new
model? �Explain.

Company B, because they do not need to re-write their software.

(b) In MIPS nop is a pseudo instruction.

�What is a pseudo instruction?

It is something that can be used as though it were a machine instruction in assembly language, even though no such instruction is
defined by the ISA or recognized by implementations. Instead, an assembler will translate a pseudoinsruction into a machine instruction
(or if necessary multiple machine instructions) that performs the operation defined for the pseudoinsruction. Pseudoinstructions are
provided as a convenience. For example, in MIPS it is easier to type nop than to type some other instruction that does nothing, such
as sll r0, r0, 0.

�Does having too many pseudo instructions make implementations too expensive? �Explain.

No, since they do not affect the hardware. For example, consider a collection of 500 pseudo-instructions including plus1 RS which
is translated to addi RS, RS, 1, pseudo-instruction left1 RS which is translated to sll RS, RS, 2, . . ., and less1

RT, RS which is translated to slti RT, RS, 1. All of these pseudoinstructions translate into an existing machine instruction
so their presence does not affect the ISA and therefore the implementation.

10
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(c) The first code fragment below, from code presented in the course, loads element i of an array of integers.
(Here integers are four bytes.) Complete the second code fragment so that it loads element i from an array
of shorts (A short is two bytes.).

# C CODE # ASM REGISTER = C VARIABLE NAME

# int *a; ... # $s1 = a; $t0 = i sizeof(int) = 4 chars.

# x = a[i];

sll $t5, $t0, 2 # $t5 -> i * 4; Each element is four characters.

add $t5, $s1, $t5 # $t5 -> &a[i] (Address of a[i].)

lw $t1, 0($t5) # x = a[i]; $t1 -> a[i]

�Complete code below so that it loads a short.

# C CODE # ASM REGISTER = C VARIABLE NAME

# short *a; ... # $s1 = a; $t0 = i sizeof(short) = 2 chars.

# x = a[i];

# SOLUTION

sll $t5, $t0, 1 # $t5 -> i * 2; Each element is two characters.

add $t5, $s1, $t5 # $t5 -> &a[i] (Address of a[i].)

lh $t1, 0($t5) # x = a[i]; $t1 -> a[i]

11
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Problem 1: (25 pts) Show the execution of the code fragments on the following implementations. In each
case the branch is taken.

(a) Show the execution on this basic MIPS implementation.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D  

dstdst

E
2'b0 format

immed =

� Show execution for the case where the branch is taken. �Check for dependencies. �Base execution on
hardware shown. �Pay close attention to branch behavior.

The solution appears below. To help in understanding the solution registers carrying dependencies that result in stalls are shown in
uppercase and bold, for example as R5 instead of r5.

Notice that in this implementation there are no bypass paths, which is why ALU-to-ALU dependencies (such as between sll and
add) are two cycles. If this does not make sense then please please please study more carefully and ask for help if you don’t get it!

Also notice that we can tell that the branch resolves in ME because a connection to the multiplexor in the IF stage comes from the
ME stage. Because the branch resolves in ME the target will be fetched in the next cycle, when the branch is in WB, which is cycle 9
in the example below. (In most five-stage MIPS implementations used in class the branch resolved in ID.)

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

addi r6, r6, 1 IF ID EX ME WB

lui R5, 0xf00d IF ID EX ME WB

lw R3, 0x81b4(R5) IF ID ----> EX ME WB

bne r1, r2, TARG IF ----> ID EX ME WB

or r8, R3, r6 IF ID -> EX ME WB

sw r8, 0x8120(r5) IF ->x

lw r3, 0x8200(r5)

addi r5, r5, 16

TARG:

sll R10, r3, 8 IF ID EX ME WB

add r11, R10, r12 IF ID ----> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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(b) Appearing below is a MIPS implementation and an incorrect execution of a code fragment on that imple-
mentation. The code executes more slowly than it would on the implementation. Modify the implementation
so that the execution is correct. Your modifications will reduce the cost of the implementation.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

31:2

31:2

0
1

2
3 0

1
2

3
0

1
2

3

0
1

2

0

1

0 1

�Modify the implementation above so that the code below executes as shown.

�Make as few changes as possible. For example, remove a bypass path from a mux input, rather than the
entire bypass path.

# Cycle 0 1 2 3 4 5 6 7 8 9 10

addi r6, r6, 1 IF ID EX ME WB

lui R5, 0xf00d IF ID EX ME WB

lw R3, 0x81b4(R5) IF ID -> EX ME WB

bne r1, r2, TARG IF -> ID EX ME WB

or r8, r6, R3 IF ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10

Solution shown above in red in the EX stage. The crossed out input on the upper mux is for the bypass from ME that would have
provided the value of R5 needed by the lw. The crossed out lower mux input would have been used by the or instruction to bypass
the in WB from the lw instruction.
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(c) Appearing below is a 4-way superscalar MIPS implementation.

Immed

IF ID EX WBME

Ad
dr

D
 In

+16

Mem
Port

Addr

Addr

Mem
Port

md0

dst0Dest. reg

Addr25:21

20:16
rsv0

rtv0Addr
Data
Data

+
31:2

15:0

alu0

rtv0

 

rtv3

Addr25:21

20:16
rsv3

rtv3Addr
Data
Data

Ad
dr

D
 In

dst3

imm0

imm3

12
8

15:0

alu3  
Addr

Mem
Port

md3

dst0

dst3

Register File

ir0

ir3

PC

npc

2'b0

Dest. reg
Data
Out

dst0

dst3

alu3

alu0

Data
Out

Data
Out

Immed

D
In

D
In

Magic
Cloud

� Show execution on the 4-way superscalar implementation �with branch taken.

�Pay attention to �branch behavior and �the order of instructions within a stage.

Solution appears below. Notice that the branch target, sll, is fetched when the branch is in EX.

Grading Note: A common mistake (in 2024 when this appeared in Homework 5) was to mistake lui for some kind of load.
Remember that lui is the load upper immediate instruction, it puts the immediate into the 16 high bits of the destination register
and zeros the low 16 bits.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9

addi r6, r6, 1 IF ID EX ME WB

lui r5, 0xf00d IF ID EX ME WB

lw r3, 0x81b4(r5) IF ID -> EX ME WB

bne r1, r2, TARG IF ID -> EX ME WB

or r8, r3, r6 IF -> ID -> EX ME WB

sw r8, 0x8120(r5) IF ->x

lw r3, 0x8200(r5) IF ->x

addi r5, r5, 16 IF ->x

# Cycle 0 1 2 3 4 5 6 7 8 9

TARG:

sll r10, r3, 8 IF -> ID EX ME WB

add r11, r10, r12 IF -> ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9
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Problem 2: (25 pts) The implementation of ANRI, a new RISC ISA, appears below. Many instructions
are similar to those of MIPS, though they differ in format and other features. Like MIPS, ANRI registers
are named r0, r1, . . .

format
immed

IR

Addr
11:6

5:0

IF ID EX WBME

rs1v

rs2v

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrs2v

ALU

MD

dst

NPC

=

30 2
2'b0

PC

+
31:16

29:0

25:16

D
 

dstdst

msb lsb

6'b031:26

11:0

(f) Used only for lui.

(a) First, an easy question:

�How does ANRI differ from MIPS in the �number of registers and �the immediate size?

Full-Credit Answer: ANRI has 64 registers, while MIPS has 32, and the ANRI immediate size is 10 bits while MIPS’ is 16 bits.

Explanation: The number of registers (integer [general-purpose] registers to be exact) is determined by looking at the number of
bits used as an address in the ports of the register file (in the ID stage). The width of each of the Addr inputs is 6 bits, and so the
number of registers is 26 = 64. The size of the immediate can be determined by looking at the number of bits at the input to the
original (black in the diagram) format immed unit in ID, that’s 10 bits. (The input labeled (f) is part of the solution to part (f).)

(b) Like MIPS, ANRI’s Format R is used for three-register instructions such as add r1, r2, r3. Show a
possible ANRI Format R consistent with the hardware.

� Show the bit positions and the name of each field in ANRI Format R based on reasonable guesses.

� Show possible field values for add r1, r2, r3 �and for or r1, r2, r3. (Two instructions for a reason.)

Solution:

ANRI R:

rd

1

31 26

opR

1 (add)

25 16

opc

0

15 12

rs2

2

11 6

rs1

3

5 0
add r1, r2, r3

ANRI R: 1

31 26

2 (or)

25 16

0

15 12

2

11 6

3

5 0
or r1, r2, r3
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Explanation: The position of the rs1 and rs2 fields can be determined by looking at the read-port Addr inputs of the register
file (in the ID stage). Similarly, the rd field can be determined by looking at the bits, 31:26, that travel through the pipeline dst
latches on their way to the register file write Addr port.

The position of the opcode field needs to be inferred. The opcode field must appear in the same place in every instruction. Bits
25:16 are used for the immediate, and so they can’t be used for the opcode field. The only remaining bits are 15:12, and so those
must be the location of the opcode field. A 4-bit opcode field, with only 16 distinct values, is not enough to encode every instruction.
So like MIPS an opcode extension field will be needed, that’s called opR (opcode extension for format R) here. Also like MIPS, the
opcode field is set to zero for type-R integer instructions. Values of 1 and 2 in the opR field are used for add and or instructions.

Note: MIPS uses field names opcode, rs, rt, rd, sa, func, immed, ii. There is no reason to use exactly the same
names in ANRI. Most ISAs use rd for a destination and opcode for the opcode, so that’s retained in this solution. But MIPS’
ambiguously named rt does not apply because rd is always a destination and the two sources are always sources (if used at all).
For that reason, the sources were named rs1 and rs2 (which is how many other ISAs name sources). Many ISAs use an immediate
field to specify a constant shift amount, MIPS is an exception using a dedicated sa field. Given that no shift unit was shown there
was no reason to expect a dedicated shift amount field.

(c) Like MIPS, ANRI’s Format I is used for immediate instructions such as addi r4, r5, 6. Assume that
like MIPS, each of the dozens of ANRI arithmetic and logical instructions has an immediate variant.

� Show the bit position and name of each instruction field in ANRI Format I based on reasonable guesses and�heeding the bold text above. �Show possible field values for addi r4, r5, 6 �and for ori r4,

r5, 6.

Solution:

ANRI I:

rd

4

31 26

imm

6

25 16

opc

1

15 12

opI

1 (addi)

11 6

rs1

5

5 0
addi r4, r5, 6

ANRI I: 4

31 26

6

25 16

1

15 12

2 (ori)

11 6

5

5 0
ori r4, r5, 6

Explanation: The type I instruction uses an imm field, whose position is determined by the input to the format immed unit in
ID. Because there are dozens of type I instructions (see the bold text) the 4-bit opcode field will not be sufficient to code them
all. For that reason bits 11:6 are used as an opcode extension field, called opI, occupying the same position as rs2, which is not
used in type-I instructions.

(d) Consider load and store instructions.

� Show encoding of lw r7, 8(r9) and �sw r10, 12(r11) in ANRI Format I, or something similar. Don’t
forget to �base the encoding on the hardware.

Solution:

ANRI I:

rd

7

31 26

imm

8

25 16

opc

1

15 12

opI

34 (lw)

11 6

rs1

9

5 0
lw r7, 8(r9)

ANRI I:

opS

2 (sw)

31 26

imm

12

25 16

opc

2

15 12

rs2

10

11 6

rs1

11

5 0
sw r10, 12(r11)

Explanation: The lw is encoded the same way as the other type I ANRI instructions. However, that approach won’t work for sw
because the rs2 field is needed for the register holding the value to be written to memory (r10 in the example). Therefore for store
instructions bits 31:26 are used for an opcode extension field, called opS here.
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(e) Consider procedure call instructions.

�Based on the implementation, why does it appear that ANRI would lack the equivalent of MIPS jal Some-

Procedure though it could still encode the equivalent of jalr r1, r2.

Full-Credit Answer: Because the only inputs to the dst mux are zero and rd, so there is no way to encode an implicit destination
register such as r31.

Explanation: The MIPS jal instruction writes the return address in r31. The instruction has only an opcode and an immediate
field, the 31 is not encoded. The ID-stage mux selecting the writeback register (dst) has only two inputs, a zero or the rd field.
Therefore every instruction in ANRI that writes a register must use the rd field to specify the destination register, explicitly. That
makes it impossible to have an implicit register such as r31 in MIPS. (Note that r0 must be the zero register because the register
file lacks a write-enable input.)

Grading Note: Many solutions to 2024 Homework 2, based on this problem, incorrectly answered that there was no way for an
ANRI jal to write a return address into a register. The return address in MIPS is PC + 8 (the same as NPC+4). If that were the
case for ANRI, then a return address could easily be saved by having the ALU add 4 (or maybe 1) to the NPC value available in the
upper input.

(f) Based on the hardware above, ANRI would lack a means of loading an arbitrary 32-bit constant into a
register using two instructions. Modify the hardware so that ANRI could encode an instruction like MIPS
lui, one that could be used to load an arbitrary 32-bit constant into a register using two instructions.

�Modify hardware to implement an instruction to help loading a 32-bit constant.

� Show the format and encoding of this new instruction. �The format must fit in as much as possible with
existing formats.

The encoding appears below and the hardware modifications appear in the diagram in blue. The format is called type U, following
RISC-V terminology. Since a lui instruction does not need source registers the rs1 and rs2 fields are used for an immediate
extension field, called imxii here. With the 10-bit imm field and the 12-bit imxii field the ANRI lui can accommodate 22-bit
immediates. That is sufficient to load an arbitrary 32-bit contents using the instruction pair lui r1, hi(0x12345678);

ori r1, ri, lo(0x12345678);, where assembler macros hi and lo extract the high 22 bits and low 10 bits of their
arguments. Because ordinary type-I instructions use imm for their entire immediate it would be more efficient hardware-wise to use
imm for the least-significant 10 bits of the immediate in lui instructions and imxii for the remaining 12 bits. In this example
hi(0x12345678) evaluates to 0x048d15 or 00 0100 1000 1101 0001 01012. So the imm field would be set to the lower ten
bits, 01 0001 01012 = 11516. The imxii would be set to the high 12 bits, 0001 0010 00112 = 12316.

ANRI U:

rd

12

31 26

imm

0x115

25 16

opc

2

15 12

imxii

0x123

11 0
lui r12, 0x48d15
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Problem 3: (20 pts) In the incomplete MIPS implementation to the right the FP multiply unit has its own
write port to the FP register file, shown in blue and labeled WM in several places. Because of this new MW

port the sub.s instruction in the execution below does not stall, both the sub.s and mul.s can write back
in cycle 8. The control logic has not yet been updated for MW.

# Cycle 0 1 2 3 4 5 6 7 8 9

mul.s f1, f2, f3 IF ID M1 M2 M3 M4 M5 M6 WM # Uses MW, the mult-only write port.

add.s f4, f5, f6 IF ID A1 A2 A3 A4 WF

sub.s f7, f8, f9 IF ID A1 A2 A3 A4 WF # No stall!

lwc1 f10, 0(r11) IF ID ----> EX ME WF # Stall due to WF str hazard.

add.s f12, f1, f14 IF ----> ID -> A1... # Stall due to dep with mul.s

(a) With the illustrated hardware a result cannot be bypassed from a mul.s to another instruction. The last
add.s suffers a stall because of that. Add bypass hardware for such cases.

�Add the bypass hardware. �Try to keep cost down by using one mux.

Solution appears in green. Notice that the bypass can either be from the multiply unit or the value headed to WF, but not both.
Because of this stalls are still possible, which might be the topic of a followup question in 2024.

(b) Modify the control logic so that it no longer stalls instructions that would write back through WF at the
same time as a preceding mul.s. Hint: This is just a matter of crossing things out.

�Modify logic to eliminate stalls due to mul.s �but retain stalls for instructions contending for WF, such
as lwc1 in execution above.

Gates shown crossed out with red exes. The exed-out gates checked for an instruction in M2 to avoid a structural hazard on WF. The
only instruction that can be in M2 is a multiply, and that now uses its own write port, so there is no need to check.

(c) Provide the correct Addr and WE signals to the WM and WF ports of the FP register file. Note that the WF

ports are connected, but based on the original version. The WM port wires are shown unconnected on the
lower-left of the diagram.

�Add hardware for the MW Addr and WE signals, �and make changes to the WF Addr and WE signals.

Solution appears in orange. Because the multiply is the only instruction that uses the WM port, multiply-only pipeline latches are
provided for the write-enable and destination register signals. The multiply’s write-enable signals are labeled w2 and the multiply’s
destination register signals are labeled f2.

�Cross out unneeded hardware and �simplify remaining hardware where possible.

Because a multiply has its own write-enable and destination register pipeline latches, there is no need for the fd multiplexor, the xw
multiplexor, and OR gate in the M2 stage. Also notice that the xw signal can be made 1 bit since the WF mux now has two inputs.
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NPC
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+
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2'd2

2'd1
1'd0

msb lsb

M5

A3

M1

Int Reg File

=

format
immed

15:0

dcd
dst

WE
Addr

D
 In

W
FW

M

W
M

W
F

WF

WM

WE

Addr

f2
w2

f2
w2

f2
w2

f2
w2

f2
w2

1'd1

(a) Use mux 
to bypass 
either mul 
or other op.

(c) Provide 
mult-only 
we (w2) and 
fd (f2) 
signals.

(b) No earlier insn can 
use wf, so no need to 
check.
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Problem 4: (10 pts) The diagram below is for a 4 MiB two-way set-associative cache with a line size of
128 B. The character size is the usual 8 bits. Helpful facts: 4 MiB = 222 B, 128 = 27.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

� Fill in the blanks in the diagram.

Solution appears below.

Addr
Data
Out

Tag

Data
Addr

Data
Out

=Tag

Valid

CPU

Addr

Data In

logic

hit

Addr
Data
Out

Tag

Data
Addr

Data
Out

=Tag

Valid

8 B

32

31:21

20:3

31:21

20:7 20:7

20:3

�Complete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Address:

Tag

31 21

Index

20 7

Offset

6 3 2 0
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The code in the problem belows run on a cache with a line size of 128 B (which is 27 B). The code fragment
starts with the cache cold (empty); consider only accesses to the array.

(b) Find the hit ratio executing the code below.

float sum = 0;

bfloat16_t *a = 0x2000000; // sizeof(bfloat16_t) == 2

int ILIMIT = 1 << 11; // = 211

for ( int i=0; i<ILIMIT; i++ ) sum += a[ i ];

�What is the hit ratio running the code above? Show formula and briefly justify.

The line size of 27 = 128 bytes is given. The size of an array element, which is of type bfloat16 t (a 16-bit floating point type
called brain float), is 2 = 21 B, and so there are 27/21 = 27−1 = 26 = 64 elements per line. The first access, at i=0, will
miss but bring in a line with 26 elements, and so the next 26 − 1 = 63 accesses will be to data on the line, hits. The access at

i=64 will miss and the process will repeat. Therefore the hit ratio is 63
64 .
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Problem 5: (20 pts) Answer each question below.

(a) How does the ARM A64 fcvtzs instruction differ from MIPS trunc.w.s instruction? These were the
instructions used in sum_thing_unusual from Homework 5.

�The difference between fcvtzs and trunc.w.s is:

Full-Credit Short Answer: Both read a FP register and convert the truncated FP value to an integer, the result is written to
an integer register by fcvtzs and to a FP register by trunc.w.s.

Long Answer: Both instructions read a floating-point value from a floating-point register, truncate the value, and convert it from
a floating-point representation to an integer representation. (Truncating a floating-point value means discarding the fractional part.
For example, truncating 2.1 yields 2 and truncating −3.9 yields −3. The representation before and after truncation is floating
point, which is way conversion to an integer representation is specifically mentioned above as something each instruction does. So
that both 2.1 and 2.9 are converted to 2. Or, put another way, both 0x40066666 and 0x4039999a are converted to 0x2.) The
ARM A64 fcvtzs writes the result to an integer register. In contrast, the MIPS trunc.w.s writes its result to a floating-point
register (even though the result is in an integer representation). If the converted value is to be used by an integer instruction the
MIPS trunc.w.s needs to be followed by a mfc1 (move from co-processor 1) instruction.

(b) With the SPEC CPU benchmarks it is the testers responsibility to compile and run the benchmarks.

�A brand-new implementation has many more bypass paths than the old implementation. Why might the
results of a tester-compiles test (like SPEC CPU) show better performance on the new implementation than
on the old implementation, while with a pre-compiled test the old and new implementations would show the
same performance?

Suppose that the only change in the new implementation are the new bypass paths. Further, suppose the compiler used in the
pre-compiled test was targeting the old implementation. (It could not target the brand new implementation because the compiler
would not have been available or if it were, it would make no sense to have compiled the code for an implementation that was not yet
available.) Consider an instruction pair that could make use of the new bypass path. To avoid a stall, the compiler would separate
those two instructions. Suppose the compiler separates every pair of instructions that would otherwise use the new bypass paths.
Then the code would run at the same rate on both processors. The bypass paths would go unused.

If the code were compiled for the new implementation there would be no reason to separate instruction pairs that could use the bypass
paths. Such code would suffer stalls on the old implementation that would not occur on the new implementation.
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(c) Appearing below are some hypothetical CISC instructions.

# Some Hypothetical CISC Instructions

I1: add r1, r2, 0x12345678 # r1 = r2 + 0x12345678

I2: add (r1), r2, 0x1234 # Mem[r1] = r2 + 0x1234

I3: add (r1), 0xff04(r2), 0x1234 # Mem[r1] = Mem[r2+0xff04] + 0x1234

I4: add r1, (r2), 8(r3) # r1 = Mem[r2] + Mem[r3+8]

I5: add (r1), r2, ((r3)) # Mem[r1] = r2 + Mem[ Mem[r3] ]

�Which of these instructions could not easily be included in an ISA with 32-bit fixed-length instructions?�Explain.

Instructions I1 and I3, because the total size of the immediate(s) in each instruction would be 32 bits, leaving no room for anything
else.

�Which of these instructions would be difficult to implement in a pipelined implementation, even if IF and
ID could easily handle variable-length instructions? �Explain.

Short, Full-Credit Answer: Instructions I3, I4, and I5 because they each require more than one memory access. A pipelined
implementation would need multiple memory ports, which would be costly.

Explanation: A typical scalar RISC pipeline has one memory port for data access, using our notation, in the ME stage. To
implement these three instructions in a pipelined fashion there would need to be multiple memory ports, inflating the cost by a
substantial amount. For example, to implement I4 two memory ports would be needed to read the sources. Those could be in the
same stage, but for I5 they would need to be in separate stages, one to read Mem[r3] and one to read Mem[ Mem[r3] ], and
finally one to write the result to memory. It is possible to implement I3-I5 with one data memory port by using the port multiple
times per instruction. But such an implementation would not be considered pipelined by most people.

What about I2? That could be implemented by our 5-stage pipeline. RISC ISAs lack such an instruction because they would be more
difficult to compile code for. Difficult because sources would still have to come exclusively from registers, so dependent instructions
would need to have a companion load to get the value that was written to memory.

(d) Consider a 4-way superscalar implementation of a conventional ISA, like MIPS, that has just one memory
port in the ME stage. Also consider Hy4VI, a hypothetical 4-slot VLIW ISA in which only slot 1 can contain
a load or store instruction.

�Why might the memory port and related hardware in the ME stage of a Hy4VI implementation cost less than
that hardware in the ME stage in the 4-way RISC implementation?

In the superscalar implementation the memory port would need to connect to each of the four slots in the ME stage. The multiplexors
to make that connection aren’t free. In Hy4VI the memory port only connects to slot 1, avoiding the multiplexors.

�Why might code written in the conventional ISA enjoy an advantage over code in Hy4VI when running on
respective future implementations even when the performance of that code is the same on current imple-
mentations? The reason given �must have something to do with load and store instructions.

Because sometimes code has lots of loads and stores. In a conventional ISA there’s no problem with, say, eight consecutive load
instructions. But in Hy4VI each load instruction would have to be accompanied by three non-load instructions. If no such useful
instructions could be found those non-load instructions would be no-ops. In the current one-memory port superscalar implementation
there would be stalls to limit one load at a time entering ME, and so it would have no advantage over Hy4VI. But a future superscalar
implementation might have two memory ports (or even four) in ME, and so there would be fewer or no stalls and thus a performance
advantage over Hy4VI.
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Problem 1: [30 pts] The code fragment below is to execute on the illustrated implementation. Show its
execution and compute the instruction throughput (IPC) for a large number of iterations. (Note: sh is store
half.)

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst

 

msb lsb

msb

lsb

1

0

Input 0 used in cycle 6.

Input used
in cycle 3.
(From lw to sh.)

� Show execution of code below.

� Mark each input to the rtv mux (in EX) � and by the branch comparison (blue) mux used by the code
below.

Solution shown above in green. For the branch the value is taken from the register file in cycle 6, using input 0 of the mux. For the
sh the value from WB is used.

� Compute instruction throughput (IPC) for a large number of iterations.

As can be seen in the execution below, the first iteration starts in cycle 0 and the second iteration starts in cycle 7. Each iteration
consists of 5 instructions and so the instruction throughput is 5

7 insn/cycle.

# SOLUTION

lw r1, 0(r2)

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

addi r2, r2, 4 IF ID EX ME WB # 1st Iteration

sh r1, -2(r2) IF ID EX ME WB

lw r3, -4(r2) IF ID EX ME WB

bne r3, r1, LOOP IF ID ----> EX ME WB

lw r1, 0(r2) IF ----> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

addi r2, r2, 4 IF ID EX ME WB # 2nd Iteration
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Problem 2: [30 pts] Appearing below (and larger on the next page) is a MIPS implementation based
on the solution to Homework 4 Problem 2, in which control logic for a branch bypass was designed. The
diagram includes a Stall signal in the lower right. Add control logic to set the stall signal to 1 when a beq

needs to stall due to a dependence that can’t be bypassed.

Appearing below are some code fragments. Complete executions are shown for the first two, in the others
the executions are incomplete. The control logic should work with these code fragments. It may be helpful
to complete the executions.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv
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NPC

ALUAddr

Data

Data
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Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC
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25:0

29:26
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15:0

D
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msb lsb

msb

lsb

1
0

is beq

='

Stall

is Load

25:21
rs

20:16
rt

='

='='

='

='

='

='

Use next page for solution.

# Cycle 0 1 2 3 4 5 6 7 8 Frag A

addi r1, r2, 3 IF ID EX ME WB

beq r1, r4, TARG IF ID -> EX ME WB

nop IF -> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 Frag B

addi r1, r2, 3 IF ID EX ME WB

beq r4, r1, TARG IF ID -----> EX ME WB

nop IF -----> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 Frag C

lw r1, 0(r2) IF ID EX ME WB # Execution below part of solution.

beq r1, r4, TARG IF ID -----> EX ME WB

nop IF -----> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 Frag D

lw r1, 0(r2) IF ID EX ME WB # Execution below part of solution.

beq r4, r1, TARG IF ID -----> EX ME WB

nop IF -----> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 Frag E

lw r9, 0(r2) IF ID EX ME WB # Execution below part of solution.

beq r1, r4, TARG IF ID EX ME WB

nop IF ID EX ME WB

3
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� Design control logic to generate the stalls for a beq. Show connections to the input of the OR gate on the

lower right. �Make sure that the logic handles the cases above and for similar situations. �Use as

many or as few comparison units, =’ , as you need.

The solution appears below. The branch can’t bypass anything in EX, and so logic in EX checks for a dependence with the branch rs
or rt sources. Examples of such a stall are Frag A and Frag B in cycle 2. A branch can’t bypass from ME to its rs if the instruction
in ME is a load. An example of such a stall is Frag C in cycle 3. The logic shown in purple checks for this case. This logic needs

to know whether a load instruction is in ME, and it does so using a new ld pipeline latch which carries the output of the is Load
through the pipeline. The branch needs to stall if there is an rt dependence with any instruction in ME. An example is Frag D cycle
3. In all cases the logic checks whether there is a branch in ID. Otherwise the logic would stall non-branch instructions.

format
immed
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Addr25:21

20:16
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rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
 

dstdst
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1
0

is beq

='

Stallis Load

25:21
rs

20:16
rt

='

='='

='

='

ld ld

rs or rt dependence with
any insn in EX.
Frag A cyc 2, Frag B cyc 2.

rs dependence with
load insn in ME.
Frag C cyc 3.

rt dep with
any insn in ME.
Frag B cyc 3, 
Frag D cyc 3.
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Problem 3: [40 pts] Answer each question below.

(a) The MIPS code below loads, stores, and loads again. The two sets of tables further below show the
contents of memory before and after the code executes. Numbers in the table are hexadecimal. The code
runs on a big-endian system.

# Initially r2 = 0x1200

LOOP:

lw r1, 0(r2)

sb r1, 1(r2)

lw r3, 0(r2)

bne r1, r3, LOOP

addi r2, r2, 4

� Modify the After column so that it shows the contents of memory after the code executes.

Solution appears below, emphasized with→ arrows←.

Before

Memory Memory

Address Contents

0x1200 0xa0

0x1201 0xa1

0x1202 0xa2

0x1203 0xa3

0x1204 0xa4

0x1205 0xa5

0x1206 0xa6

0x1207 0xa7

After

Memory Memory

Address Contents

0x1200 0xa0

0x1201 → 0xa3←
0x1202 0xa2

0x1203 0xa3

0x1204 0xa4

0x1205 → 0xa7←
0x1206 0xa6

0x1207 0xa7

� Modify one row in the Before column below so that the code above executes just one iteration.

Before

Memory Memory

Address Contents

0x1200 0xa0

0x1201 → 0xa3←
0x1202 0xa2

0x1203 0xa3

0x1204 0xa4

0x1205 0xa5

0x1206 0xa6

0x1207 0xa7

After

Memory Memory

Address Contents

0x1200 0xa0

0x1201 0xa1

0x1202 0xa2

0x1203 0xa3

0x1204 0xa4

0x1205 0xa5

0x1206 0xa6

0x1207 0xa7
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(b) Show the encoding of each MIPS instruction below. (That is, show the layout of the 32 bits in the
instruction.) Fill fields with numeric values whenever possible, such as for register numbers and immediate
values. For unknown opcodes and func field values show some kind of name.

� Show encoding of: lw r1, 2(r3).

Solution:

Opcode

2316

31 26

RS

3

25 21

RT

1

20 16

Immed

2

15 0

� Show encoding of: xor r4, r5, r6.

Solution:

Opcode

016

31 26

RS

5

25 21

RT

6

20 16

RD

4

15 11

SA

0

10 6

Function

2616

4 0

� Show encoding of: addi r7, r8, 9.

Solution:

Opcode

816

31 26

RS

8

25 21

RT

7

20 16

Immed

9

15 0

(c) Arm A32 is a 32-bit ISA, Arm A64 (Aarch64) is a 64-bit ISA.

� What does the n in n-bit ISA refer to?

Full-Credit Answer: It refers to the number of bits in a memory address.

Discussion: Memory addresses, of course, are what are used by instructions such as MIPS instruction lw r1,2(r3). For this
instruction the memory address is r3+2. In 32-bit versions of MIPS (including the default MIPS used in classroom examples) that
address is 32 bits. In MIPS64 the address would be 64 bits.

For those that already know the difference between a virtual address and a physical address, the n is the number of bits in a virtual
address.

� Name an application or kind of device for which a 32-bit ISA has an advantage, and � describe the
advantage.

Full-Credit Answer: An embedded processor controlling a simple device, such as a coffee maker. In these devices a less-expensive
32-bit processor makes sense because the processor is a big chunk of the cost and the large address space of a 64-bit processor is not
needed.

� Name an application or kind of device for which a 64-bit ISA is a requirement or a big advantage, and �
describe the requirement/advantage.

One which needs to access more than 232 bytes of data. With 64-bit addresses this can easily be done. Though accessing this much
data using 32-bit addresses is possible, it is extremely tedious.
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(d) In the statement below the description of how ISAs and implementations are developed is different than
how they are typically developed in accepted practice.

By finalizing an ISA after its implementation is complete it is assured that the ISA exactly describes
the implementation and that the implementation makes the best use of the technology at hand.

� How is this statement of ISA and implementation development different than accepted practice? � What
is the disadvantage of the approach described in the statement (ignoring the “technology at hand” part)?

In accepted practice the ISA is designed first, then implementations are designed. The disadvantage of the approach is that since
each implementation has its own ISA, code compiled for one implementation cannot be run on a different (perhaps newer) one.

� The phrase “makes the best use of the technology at hand” is correct. Explain why accepted practice of ISA
and implementation development may not make the best use of technology. Hint: think about the number
of bits in a register.

The ISA must be followed. This means that one cannot add things, such as wider registers, just because space is available. The
number of bits in a register is specified by the ISA, and that can’t be increased in an implementation just because the area is available
and wider registers would be beneficial.

(e) Answer the following about CISC ISAs.

� What feature of CISC ISAs allow them to have large, say 32-bit, immediate values?

Variable-size instructions.

� Why can’t a RISC ISA like MIPS practically have 32-bit immediates?

Because the instruction size is only 32 bits, and so they would not fit.
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Problem 1: (20 pts) Show the execution of the code fragments on the following implementations for enough
iterations to determine the instruction throughput (IPC). As always, base the behavior of branches and the
availability of bypasses on the implementations. Also, don’t forget that MIPS branches have a delay slot.
Sorry for yelling, but I hate it when students miss things.
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IF ID EX WBME
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rtv
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Mem
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dest. reg
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dstdst

E
2'b0 format

immed =

� Show execution and �determine instruction throughput (IPC) based on a large number of iterations.

The solution appears below. The branch is resolved in ME, and so the target is fetched (in IF) in the next cycle, when the branch
is in WB. Two wrong-path instructions are fetched, xor and sub. They are squashed when the branch is resolved. (Of course, they
would not be squashed if the branch were not taken.)

The instruction throughput is 2 insn
(8−4) cyc = 2

4 insn/cycle based on the second iteration starting at cycle 4 and the third iteration
starting at cycle 8.

# SOLUTION -- Dynamic Instruction Order

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

bne r1, r2, LOOP IF ID EX ME WB # First Iteration

addi r1, r1, 4 IF ID EX ME WB

xor r5, r6, r7 IF IDx

sub r8, r9, r10 IFx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

bne r1, r2, LOOP IF ID EX ME WB # Second Iteration

addi r1, r1, 4 IF ID EX ME WB

xor r5, r6, r7 IF IDx

sub r8, r9, r10 IFx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

bne r1, r2, LOOP IF ID EX ME WB

...

# These instructions will be completely executed after the last iteration.

xor r5, r6, r7

sub r8, r9, r10

2
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� Show execution and �determine instruction throughput (IPC) based on a large number of iterations.

The solution appears below. The good news in this pipeline the branch is resolved in ID, meaning that zero wrong-path instructions
are fetched. The bad news is that there is a dependence carried by r1 that stalls bne in ID for two cycles. For this reason, the
instruction throughput is the same: 2 insn

(6−2) cyc = 2
4 insn/cycle based on the second iteration starting at cycle 2 and the third

iteration starting at cycle 6.

LOOP: # Code in Static Instruction Order

bne r1, r2, LOOP

addi r1, r1, 4

xor r5, r6, r7

sub r8, r9, r10

# SOLUTION -- Dynamic Instruction Order

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

bne r1, r2, LOOP IF ID EX ME WB # First Iteration

addi r1, r1, 4 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

bne r1, r2, LOOP IF ID ----> EX ME WB # Second Iteration

addi r1, r1, 4 IF ----> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

bne r1, r2, LOOP IF ID ----> EX ME WB

addi r1, r1, 4 IF ----> ID EX ME WB

# These instructions will be executed after the last iteration.

xor r5, r6, r7

sub r8, r9, r10
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format
immed

IR
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� Show execution and �determine instruction throughput (IPC) based on a large number of iterations.

In this implementation there is a bypass that helps with the branch condition dependence, reducing the stall from two cycles to one
cycle. The instruction throughput is higher, 2 insn

(5−2) cyc = 2
3 insn/cycle based on the second iteration starting at cycle 2 and the

third iteration starting at cycle 5.

LOOP: # Code in Static Instruction Order

bne r1, r2, LOOP

addi r1, r1, 4

xor r5, r6, r7

sub r8, r9, r10

# SOLUTION -- Dynamic Instruction Order

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11

bne r1, r2, LOOP IF ID EX ME WB # First Iteration

addi r1, r1, 4 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11

bne r1, r2, LOOP IF ID -> EX ME WB # Second Iteration

addi r1, r1, 4 IF -> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11

bne r1, r2, LOOP IF ID -> EX ME WB

addi r1, r1, 4 IF -> ID EX ME WB
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Immed
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� For the 4-way superscalar MIPS above show execution until the fetch of the lw r1 in the second iteration.�Show instruction throughput (IPC) assuming a large number of iterations.

Solution appears below. The add stalls due to the dependence carried by r3 and the sw stalls due to the dependence carried by r4.
In this implementation there is a bypass to the memory port D In connection and so the sw r4 need only stall one cycle. In cycle
1 the sub and sw r5 are stalling only so that instructions in ID remain in program order.

The instruction throughput is 9 insn
(7−0) cyc = 9

7 insn/cycle.

# SOLUTION -- Dynamic Instruction Order

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12

lw r1, 0(r2) IF ID EX ME WB # 1st Iteration

lw r3, 4(r2) IF ID EX ME WB

add r4, r1, r3 IF ID ----> EX ME WB

sw r4, 0(r6) IF ID -------> EX ME WB

sub r5, r1, r3 IF -------> ID EX ME WB

sw r5, 4(r6) IF -------> ID -> EX ME WB

addi r6, r6, 4 IF -------> ID -> EX ME WB

bne r2, r9, LOOP IF -------> ID -> EX ME WB

addi r2, r2, 8 IF -> ID EX ME WB

xor r10,r11,r12 IFx

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

lw r1, 0(r2) IF ID EX ME WB # 2nd Iteration
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Problem 2: (20 pts) Appearing below is our MIPS implementation with a floating-point pipeline. The
select inputs of some multiplexors are labeled with a letter. Also, the inputs to some multiplexors have been
colored to make them easier to follow.
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� Show the values on the select inputs (D, E, and H) expected from the execution shown below. �Leave a
signal blank if it does not affect execution.

# Cycle 0 1 2 3 4 5 6

## SOLUTION
D: 2 0 3

E: 1 2 2

H: 1 1 0

# Cycle 0 1 2 3 4 5 6

# Cycle 0 1 2 3 4 5 6

add R3, r5, r6 IF ID EX ME WB

addi r2, R3, 4 IF ID EX ME WB

lw r1, 0(R3) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

� Show instructions that could have produced the select input (D,E,G, and H) values shown below. �Take
dependencies into account when choosing register numbers.

# Cycle 0 1 2 3 4 5 6

D: 2 2 3

E: 2 1 2

G: 0

H: 0 1

# Cycle 0 1 2 3 4 5 6

## SOLUTION
lw R3, 1(r5) IF ID EX ME WB

add R2, r5, r4 IF ID EX ME WB

sw R2, 0(R3) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

� Show the values on the select inputs expected from the execution shown below. �Leave an input blank if
it does not affect execution.

# Cycle 0 1 2 3 4 5 6 7 8 9

## SOLUTION
G: 2

H: 0 1

C: 0 0 1

# Cycle 0 1 2 3 4 5 6 7 8 9

lwc1 f1, 0(r5) IF ID EX ME WF

swc1 f2, 0(r7) IF ID EX ME WB

mtc1 f3, r8 IF ID EX ME WF

add.s f4, f5, f6 IF ID A1 A2 A3 A4 WF

# Cycle 0 1 2 3 4 5 6 7 8 9

7
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Problem 3: (20 pts) Appearing to the right is the early writeback 2-way superscalar implementation from
the 2021 Final Exam and 2022 Homework 6. Recall that in this implementation if slot 1 contains a load
instruction then slot 1 writes back when it reaches WB but slot 0 writes back early, in ME/MW. If slot 1 does
not contain a load instruction slot 0 writes back when it reaches WB and slot 1 writes back in ME/MW. This is
illustrated in the execution below.

# Cycle 0 1 2 3 4 5 6

add r2, r3, r4 IF ID EX ME WB # Slot 0 uses WB since slot 1 isn’t a load.

and r1, r5, r6 IF ID EX MW

or r10, r9, r7 IF ID EX MW # Slot 0 uses MW since slot 1 is a load.

lw r6, 8(r11) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

(a) Consider the execution of the code below:

# Cycle 0 1 2 3 4 5

add r2, r3, r4 IF ID EX ME WB

sub r1, r2, r5 IF ID -> EX MW

The sub stalls because it needs to wait for r2 from the add. Add control logic to generate a stall when slot
1 depends on slot 0. The output of rs src and rt src are 1 when the slot-1 instruction uses the rs and rt

registers as sources. Use these in your solution.

�Add hardware to generate a stall (see the big OR gate) when slot 1 depends on slot 0.

The solution is on the next page.

(b) In the first code fragment below the lw r5 stalls, but because the lw has a zero immediate it could have
just used the value computed by the add instruction (since there is no need to add anything to it). In the
second execution Mux A is used to perform a lateral bypass from the add to the lw during cycle 2, avoiding
the stall.

Modify the control logic so that a lateral bypass will be performed when there is a zero-immediate load in
slot 1 that depends on the slot-0 instruction. Other code, such as the examples at the top of this problem,
should continue to work correctly.

# Cycle 0 1 2 3 4 5

add r2, r3, r4 IF ID EX ME WB

lw r5, 0(r2) IF ID -> EX ME WB

# Cycle 0 1 2 3 4 5

add r2, r3, r4 IF ID EX MW # add executes normally.

lw r5, 0(r2) IF ID EX ME WB # Lateral Bypass: lw uses slot-0 alu value.

�Add logic to detect whether a lateral bypass is possible, and if so, suppress the stall from part a.

�Modify the control logic to implement a lateral bypass, in part using Mux A.

�Make sure that �early writeback continues to work correctly in other cases and �that the destination
of the slot 0 and slot 1 instructions are written to the correct registers.

�As engineers always do, pay attention to cost and performance.

The solution is on the next page.
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Solutions appears below. The hardware for part (a) appears in purple. To detect the dependence the destination of the slot-0

instruction is compared to the rs and rt sources of the slot-1 instruction. The rs src and rt src blocks are used to check whether
the rs and rt fields of the instruction are used for sources. (In most type I instructions the rt is not used for a source. Some
instructions, such as floating-point instructions don’t have any integer sources.)

The hardware for part (b) appears in orange. A lateral bypass is possible if there is a memory instruction in slot 1 with a zero
immediate, and if the rs source depends on the slot-0 instruction. If these conditions are true the stall is suppressed.

The logic for implementing the lateral bypass is very simple. If there is a lateral bypass Mux A uses input 0, otherwise Mux A uses
the input it would have used without a lateral bypass.
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Problem 4: (20 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on several systems, each with a different
branch predictor. One system has a bimodal predictor and the other system has a local predictor with a
6-outcome local history.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: T N N T T N T T N N T T N T T N N T T N T <- Outcome

All N’s All T’s All N’s All T’s

--------------- -------------- --------------- -------------- ...

B2: N N ... N N T T ... T T N N ... N N T T ... T T <- Outcome

1 2 7 8 9 10 16 1 2 7 8 9 10 16 <- Position

�What is the accuracy of the bimodal predictor on branch B1? �Be sure to base the accuracy on a repeating
pattern.

The accuracy is 3
7 . The work is shown below. The accuracy is based on the repeating pattern, shown underlined below.

SOLUTION WORK

0 1 0 0 1 2 1 2 3 2 1 2 3 2 3 3 2 1 2 3 2 3 <- 2-bit Counter

B1: T N N T T N T T N N T T N T T N N T T N T <- Br Outcome

x x x x x x x x x x x x x <- Mispreds

-------------------- <- Repeating Ptrn

�What is the accuracy of the local predictor on B1 ignoring B2.

Though the B1 pattern is 7 outcomes long, no 6-outcome sequence appears twice and so the 6-outcome history is long enough to
achieve an accuracy of 100%.

10
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�What is the accuracy of the local predictor on B2 ignoring B1.

Full Credit Answer: The accuracy is 14
16 because out of the 16 positions the local history starting at positions 3 and 11 will fool

the predictor, as can be seen based on the table below.

Explanation for students studying: The way to solve this is to construct a table for all possible six-outcome local histories of
branch B2, that table is shown below. The local history in the second row, NNNNNT, occurs one per repeating pattern, at position 4.
In fact, the local histories for all but two rows appears exactly once per repeating pattern. The exceptions are NNNNNN and TTTTTT.
Each of those local histories can appear in three possible places. For NNNNNN local history can start at positions 1, 2, and 3. If it
starts at positions 1 and 2 the next outcome is an N, but if it starts at position 3 the next outcome is a T. Therefore the 2-bit counter
at the PHT entry for NNNNNN will have values 0, 0, 1, 0, 0, 1, . . .. Since the counter value is 0 or 1 the branch will be predicted
N for this local history, and the prediction will be correct for positions 1 and 2 and wrong for 3. Something similar happens with
local history TTTTTT. The other local histories for this branch each correspond to one starting position and each have one possible
outcome, so all will be predicted perfectly. The table below shows the number of predictions for each entry and the number of correct
predictions. The sum of these last two columns is used to compute the correct prediction ratio 14

16 .

Local Possible Counter Number Number

History Start Pos. Values Pred. Correct

NNNNNN 1, 2, 3 0,0,1,0,.. 3 2

NNNNNT 4 3,3,3,.. 1 1

NNNNTT 5 3,3,3,.. 1 1

NNNTTT 6 3,3,3,.. 1 1

NNTTTT 7 3,3,3,.. 1 1

NTTTTT 8 3,3,3,.. 1 1

TTTTTT 9, 10, 11 3,3,2,3,. 3 2

TTTTTN 12 0,0,0,.. 1 1

TTTTNN 13 0,0,0,.. 1 1

TTTNNN 14 0,0,0,.. 1 1

TTNNNN 15 0,0,0,.. 1 1

TNNNNN 16 0,0,0,.. 1 1

------

Total: 16 14

�What is the accuracy of the bimodal predictor on branch B2?

The bimodal predictor will mispredict the first two Ns and the first two Ts of B2, other predictions will be correct. So the overall
accuracy will be 12

16 . The two-bit counters and outcomes appear below.

All N’s All T’s All N’s All T’s SOLUTION WORK

--------------- -------------- --------------- -------------- ...

0 0 0 0 0 0 1 2 3 3 3 2 1 0 0 1 2 3 3 3

B2: N N ... N N T T ... T T N N N. ... N T T T ... T <- Br Outcome

x x x x x x <- Mispred

1 2 7 8 9 10 16 1 2 3 8 9 10 11 16 <- Position

�What is the shortest history size for which the local history predictor is better than the bimodal predictor
on branch B2?

One outcome. With a one-outcome local history the local predictor will, with this pattern, predict that the next outcome will match
the previous one. It will still just be wrong 2 out of 16 times.
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Problem 5: (20 pts) Answer each question below.

(a) The diagram below shows a simple direct-mapped cache and the address bit categorization of four lookup
addresses (0x5439, 0x1270, ..).
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32

32 32

lbu 0x54390x5 0x43 102 012

lw 0x12700x1 0x27 002 002

lbu 0x54380x5 0x43 102 002

lbu 0x64390x6 0x43 102 012

Miss
Miss

Miss
Hit

Fast and
Expensive

Slow and
Cheap

Outcome (of cache lookup).

Two kinds of memory are used in the diagram above, fast/expensive and slow/cheap.

�On the diagram above show which blocks are fast and which blocks are slow.

The blocks are labeled in blue. The Memory block is labeled slow. (If it weren’t slow there would be no need for a cache.) Note that
both the Data Store and Tag Store must use fast memory.

Suppose that the cache is initially cold (there is nothing in the cache). Show the outcome, hit or miss, of
each of the four lookups.

� Show outcome, hit or miss, on diagram above.

The outcomes appears in the diagram above, in blue.

Find the addresses requested below.

�After the four lookups, what is the smallest address that will hit the cache.

The smallest address is 0x1270.

�After these four lookups, what is the largest address that will hit the cache.

Answer: The largest address is 0x643f.

Explanation: The largest lookup address is 0x6439. Since it is the last of the four lookup addresses it will surely be in the
cache after the four lookups are complete. Each cache miss, including the one for lookup address 0x6439, brings in a line’s worth
of data. The starting address of a line is found by setting the offset and align bits (bits 3 to 0 here) to zero. For 0x6439 the line
starting address is 0x6430. The last, or largest, address in a line can be found by setting all of the offset and align bits to 1. That
yields the answer to the question, 0x643f.
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(b) Show the encoding for the beq and lw as used in the code below. Be sure to include the immediate value.

addi r6, r0, 10

beq r2, r6, SKIP

lw r1, 4(r3)

add r1, r1, r5

SKIP:

and r9, r9, r1

�Encoding of beq. �Be sure to show a value for the immediate field.

The encoding is shown below. Though the solution shows the opcode of beq, 1002 = 4, full credit would be received for an answer
that showed beq or something like that in the opcode field.

MIPS I:

Opcode

4

31 26

RS

2

25 21

RT

6

20 16

Immed

2

15 0

�Encoding of lw. �Be sure to show a value for the immediate field.

The encoding is shown below. Though the solution shows the opcode of lw, 100112 = 2316 = 3510, full credit would be received
for an answer that showed lw or something like that in the opcode field.

MIPS I:

Opcode

0x23

31 26

RS

3

25 21

RT

1

20 16

Immed

4

15 0

(c) Answer the following about ISA families.

�Which style of implementation are RISC ISAs designed for?

RISC ISAs are designed for pipelined implementations.

�Which style of implementation are VLIW ISAs designed for?

VLIW ISAs are designed for multiple issue (sort of like superscalar) implementations.

(d) Some early RISC ISAs omitted useful magnitude-comparison branch instructions such as bgt r1, r2,

TARG in which the branch is taken if r1 > r2. As branch prediction became more common magnitude-
comparison branch instructions were added to RISC ISAs. One might argue that with branch prediction the
cost and performance impact of magnitude-comparison instructions was lower.

�Explain how the cost of implementing bgt is lower with branch prediction than without.

Because without branch prediction it is likely that the branch would be resolved in the ID stage and so would require the use of a
magnitude comparison unit used only for resolving branches. With branch prediction the magnitude comparison could be done later,
in EX, and could be done using the ALU, and so no extra magnitude comparison unit would be needed.

�Explain how the performance impact of implementing bgt is lower with branch prediction than without.

Without branch prediction the magnitude comparison would likely be done in the ID stage. That magnitude comparison could not
start until the register values were retrieved from the register file, and the time to do both might lengthen the critical path, and so
lower performance. With branch prediction the register values would be retrieved in one cycle ID, and the comparison would be done
in the next cycle, EX, assuming something like the MIPS five-stage implementation used in class.
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LSU EE 4720
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Problem 1: [30 pts] One instruction that might have come in handy for Homework 2 is the proposed lbit,
load bit, instruction. Consider lbit r1, (r2..r3). This instruction will load a single bit from memory into
r1. Register r2 holds a base address and r3 holds a bit offset. The bit offset is relative to the most-significant
bit of the byte at address r2. So if r3 is zero the MSB is loaded into r1. If r3 is 7 the LSB of the byte at r2
is loaded into r1, if r3 is 8 the MSB of the byte at r2+1 is loaded into r1, etc. (As with Homework 1 and 2,
bit ordering is big-endian.) To help understanding lbit there are two code fragments below. They do the
same thing, the first uses lbit, the second uses existing MIPS instructions.

# Proposed Instruction

lbit r1, (r2..r3)

# Equivalent MIPS Code

sra r9, r3, 3

add r9, r2, r9

lbu r1, 0(r9)

sll r1, r1, 24

andi r9, r3, 0x7

sllv r1, r1, r9

srl r1, r1, 31

(a) Modify the illustrated MIPS implementation so that it implements lbit, omitting control logic. Assume
that the memory port will be set to perform a read byte unsigned operation (the same operation as would
be performed for the lbu instruction) and the ALU will be set to perform an add operation. (That is, don’t
assume or try to add new operations for the memory port nor for the ALU.) The modifications should
provide the appropriate address to the memory port and should place the appropriate bit in the destination
register.

As always, assume that the critical path is through the memory port. For this problem it is okay to put
additional non-control logic in the WB stage.

� Add logic to compute the correct load address.

� Add logic to extract the needed bit.

� There is no need to show control logic.

� Don’t assume or implement new Mem Port or ALU operations.

� It’s okay to add logic to the WB stage.

� Pay attention to performance.

� Pay attention to cost. � Do not show functional units that are more complicated than necessary. �
Use existing pipeline latches and other data carrying paths when possible.

� As always, do not break other instructions.

The solution appears on the next page.
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The solution to parts a, b, and c appears below in blue and part-c-specific (ebit) changes appear in green.

For lbit assume that control logic is set initially for an lbu instruction. To actually implement lbit some control logic would
need to be changed, but that’s not part of this problem. In the EX stage we need to change how the address is computed. An lbu

would compute rsv+IMM, but for lbit we need rsv+rtv/8. The added logic computes rtv/8 and connects the value to a new
input on the lower ALU mux. Note that rtv/8 is computed by effectively shifting to the right by 3 bits while sign extending. (With
sign extension rtv can be negative.) Note that the shifting itself uses no hardware, it just relabels bit positions. The only added
hardware in EX is the new mux input.

Note that the value of rtv is taken from the output of the mux used by store instructions. By doing so we can get bypassed values
without having to add new hardware. Bypassed values are needed for part b.

In WB a mux is used to extract the needed bit, it will be called the bit-extract mux in this discussion. (That’s the mux with more
than two inputs.) For lbit the mux needs 8 inputs, each of one bit, connected to the 8 LSB of WB.MD. The hardware shown, rather
than connecting directly to WB.MD, connects to the mux that selects either WB.MD or WB.ALU. This is needed for part c. Also, for
part c the bit extract mux has 32 inputs.

The select signal for the bit-extract mux is taken from the LSB of rtv. In the existing hardware rtv only makes it as far as ME.
So for this problem a new pipeline latch is added carrying the 5 LSB of rtv to WB. For part a only the 3 LSB are used, for part c
all 5 bits are used.

The output of the bit-extract mux is just 1 bit. Thirty-one zeros are appended to make a 32-bit quantity.

For part c, in which ebit is implemented, there are several differences with the lbit implementation. First, we need to deliver
the rsv to WB. To do so without requiring a new ALU operation, a new zero input to the lower mux has been added. The ALU
will perform an add operation and use the zero input, so the output of the ALU will be rsv. In WB the rsv is in WB.ALU, and as
mentioned earlier, it has a path to the bit extract mux. The select signal needs to be 5 bits for ebit, so a mux is used to set the 2
MSB of the bit-extract mux’s select signal: to zero for lbit (valid values are 7-0) and for ebit use bits 4:3 of rtv so we can get
a range of 31-0 at the select signal.

Common Mistakes: One common mistake was to use the equivalent MIPS code as a blueprint for the hardware. That equivalent
code was provided to be clear on what the lbit instruction should do, not how it should do it. So a solution with a box for each
instruction in the equivalent code, such as a four shift-unit boxes for sra, sll, sllv, and srl would be very wasteful.
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(b) Show the execution of the code fragments below on your implementation. Add reasonable bypass paths
to eliminate stalls.

� Add reasonable bypass paths to avoid stalls that would be suffered by the code below.

� Show execution of each code fragment (with reasonable bypass paths).

The executions appear below, with highlighting used to emphasize registers carrying dependencies.

## SOLUTION
# Fragment A 0 1 2 3 4 5 6 7

addi R3, r3, 1 IF ID EX ME WB

lbit R1, (r2..R3) IF ID EX ME WB

add r4, r4, R1 IF ID -> EX ME WB

## SOLUTION
# Fragment B 0 1 2 3 4 5 6

lbit R1, (r2..r3) IF ID EX ME WB

addi r3, r3, 1 IF ID EX ME WB

add r4, r4, R1 IF ID EX ME WB

## SOLUTION
# Fragment C 0 1 2 3 4 5 6 7 8 9

lbit R1, (r2..r3) IF ID EX ME WB

bne R1, r0 TARG IF ID ----> EX ME WB

addi r3, r3, 1 IF ----> ID EX ME WB

TARG:

xor r8, r9, r10 IF ID EX ME WB

# Cycle: 0 1 2 3 4 5 6 7 8 9

4
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(c) Consider another instruction ebit, extract bit. Consider ebit r1, r2, r3. This instruction extracts
the bit at position r3 from r2 and writes it to r1. The MSB is at position 0. The bit position is in the least
significant five bits of r3, other bits of r3 are ignored.

Both lbit and ebit extract a bit from a value, so it is possible to use some of the hardware for lbit to
implement ebit. One difference is that lbit extracts an 8-bit quantity while ebit extracts a bit from a
32-bit quantity. If the hardware were shared, the lbit hardware would have to be upgraded to handle 32-bit
values.

Ignoring whether such sharing really is a good idea, modify the implementation of lbit so that it could
implement ebit using hardware shared with lbit.

� Modify MIPS hardware to implement ebit using hardware shared with lbit.

� No need to show control logic.

The solution to this part is shown and discussed several pages back on the page showing the hardware changes.

(d) Explain why an implementation sharing ebit and lbit hardware would execute the code fragment below
slowly and describe a faster alternative.

ebit r1, r2, r3

add r4, r4, r1

� Why does the shared hardware implementation slow code below?

� Why is an implementation of ebit that is similar to other computation instructions faster?

It is slower because the result is computed in WB. This will force a dependent instruction, such as the add in the example above to
stall one cycle. If a bit-extraction mux for ebit had been placed in EX then it would be possible to bypass in the example above
without a stall.
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Problem 2: [15 pts] Consider the pointer-chasing loop below. Assume that the loop executes many
iterations on the illustrated hardware.
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(a) Show an execution of the loop below for enough iterations—at least two—to compute the IPC (inverse
of CPI). The IPC is the number of executed instructions divided by the number of cycles. Compute it for a
very large number of iterations.

� Show execution.

� Compute IPC for a large number of iterations.

� Check for dependencies and available bypass paths.

The execution appears below. The first iteration starts in cycle 1, the second starts in cycle 7, so the time for an iteration is
7− 1 = 6 cycles. (The start time is when the first instruction is in IF.) Since there are 4 instructions in the loop body the IPC is
4
6 = 2

3 insn/cycle.

Common Mistakes: One common mistake is forgetting the delay slot instruction (lw r3).

## SOLUTION
lw r3, 8(r3) IF ID EX ME WB BEFORE LOOP

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r1, 4(r3) IF ID -> EX ME WB FIRST ITERATION

sw r1, 0(r3) IF -> ID -> EX ME WB

bne r1, r5 LOOP IF -> ID EX ME WB

lw r3, 8(r3) IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r1, 4(r3) IF ID -> EX ME WB SECOND ITERATION

sw r1, 0(r3) IF -> ID -> EX ME WB

bne r1, r5 LOOP IF -> ID EX ME WB

lw r3, 8(r3) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

add r5, r3, r9 AFTER LOOP
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(b) If the previous part were solved correctly, then there should be two stalls per iteration. One stall could
be eliminated by a bypass path, but the other could not (without increasing critical path). For each stall
in your execution (even if there are more or less than two) show a reasonable bypass path that would avoid
the stall or else explain why such a bypass is not reasonable.
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� Show reasonable bypass paths needed to avoid stalls on your code.

� For each stall that could not be eliminated with a bypass path, explain why:

As stated in the problem, the code suffers two stalls. The first stall is due to a lw/lw dependence. On the execution above it ends
in cycle 3 in the first iteration and 9 in the second iteration. (A stall ends at the arrow head in the diagram.)

The second stall is due to the lw/sw dependence. That ends at cycle 5 in the first iteration.

To examine which bypass paths are possible consider the stall-less, hypothetical, not necessarily correct execution below.

## WARNING: HYPOTHETICAL EXECUTION WITHOUT STALLS. WILL NOT RUN CORRECTLY.
lw r3, 8(r3) IF ID EX ME WB BEFORE LOOP

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r1, 4(r3) IF ID EX ME WB

sw r1, 0(r3) IF ID EX ME WB

Consider first the lw r3 / lw r1 stall. In the hypothetical stall-less execution above the lw r1 needs the value of r3 in the
beginning of cycle 3 when it is in EX. But at that time lw r3 is just starting ME and so the value has not been loaded. So there is
no reasonable way to bypass the value.

Next, consider the lw/sw dependence, carried by r1. The sw needs r1 at the beginning of its time in the ME stage in cycle 5. At
that time the lw is in WB, and so it is possible to bypass it. That bypass path is shown in blue. It has been pointed out that the
Mem Port is assumed to be on the critical path. But the critical path is from the Addr input to the D Out output. We can assume
that there is some slack on the D In input, meaning that it can be delayed for a short time, which is why the mux is not a problem.
It would be a problem to put a mux before the Mem Port Addr input or after the Mem Port D Out output.
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Problem 3: [15 pts] Appearing below are two candidate MIPS instructions, jca, jump case add, and
jcc, jump case concatenate, that can be used to implement C-style switch statements. The instructions
are designed for case statements that each consist of up to eight instructions. In both instructions the rs

register (register r1 in the examples) holds the address of case statement zero. Case statement 1 starts at
address r1+32, case statement 2 starts at address r1+32*2, etc. The rt register (r2 in the examples) holds
the number of the case statement to jump to, so the address to jump to is r1+32*r2. The only difference
between the two instructions is that in jca the value of r1 must be a multiple of 4 (since instruction addresses
are aligned) while in jcc the value of r1 must be a multiple of 4096 (the 12 least-significant bits must be
zero) and r2 must be less than 128. Like other MIPS control transfers, both instructions have a 1-instruction
delay slot. Note that jca r1, r0 is equivalent to jr r1.

The code below shows the use of jca and an equivalent code fragment that uses only existing MIPS instruc-
tions.

# Candidate Instruction

jca r1, r2 # Jump to r1 + r2 * 32

nop

# Another Candidate Instruction

jcc r1, r2 # Jump to { r1[31:12], r2[6:0], 5’b0 }

nop

# Equivalent code to jca (and partly jcc) using existing MIPS instructions.

sll r9, r2, 5

add r9, r9, r1

jr r9

nop

A resolve-in-ID implementation of jcc can be designed at low cost and with no risk of lengthening the critical
path. In contrast, a resolve-in-ID implementation of jca would add to cost and risk critical path impact.

(a) Show the datapath changes to the MIPS pipeline on the next page needed for resolve-in-ID implementa-
tions of the two instructions.

� Show datapath changes (not control logic) for resolve-in-ID implementation of � jca and � jcc.

� As always, pay attention to cost and performance.

The solution and a discussion of the solution appears on the next page.

(b) Explain why computing a branch target, which is done using an adder, has no critical path impact while
there is critical path impact for jca.

� Why can a branch safely use an adder in ID, but not jca?

Because the inputs to the adder for the branch are available at the beginning of the clock cycle, in contrast the inputs to the adder
for jca are available later, after they are retrieved from the register file. Because of this one cannot automatically assume that there
is enough time for the jca adder to compute its sum.
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Solution to part a appears below in blue. Note that since the PC holds only 30 bits, it is not necessary to compute the two LSB of
the target. (They would always be zero anyway.) For that reason 3 bits, instead of 5 bits, are prepended to the rt register value.
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Problem 4: [40 pts] Answer each question below.

(a) MIPS branches have one delay slot. That enables five-stage scalar MIPS implementations to fetch the
delay-slot instruction while resolving the branch. So, is the delay slot a feature of the ISA or a feature of
the implementation?

� Is a delay slot an ISA feature or an implementation feature? � Explain.

It’s an ISA feature because it describes what instructions do. That is, the feature says that the instruction after a branch executes
whether or not the branch is taken. Because of this ISA feature some implementations, including our five-stage MIPS pipeline, execute
branches with zero penalty. But for others, such as superscalar pipelines (which will be covered soon), a delay slot adds to complexity
and provides little benefit. Because it is an ISA feature, a superscalar implementation must execute the one delay slot instruction,
even if a different number of delay slots would have made more sense.

(b) There are 32 MIPS integer (general-purpose) registers, usually called r0 to r31. But these registers are
also given names, which are shown in the table below. Suppose we wanted to rearrange the names. For
example, suppose we wanted to name register r16 t8 (instead of name r24 t8) and make r24 the new k0.
Which registers could we rearrange without changing the ISA? It must be possible to use the registers for
the purpose suggested by their names after rearranging.

Names Numbers Suggested Usage

$zero: 0 The constant zero.

$at: 1 Reserved for assembler.

$v0-$v1: 2-3 Return value

$a0-$a3: 4-7 Argument

$t0-$t7: 8-15 Temporary (Not preserved by callee.)

$s0-$s7: 16-23 Saved by callee.

$t8-$t9: 24-25 Temporary (Not preserved by callee.)

$k0-$k1: 26-27 Reserved for kernel (operating system).

$gp 28 Global Pointer

$sp 29 Stack Pointer

$fp 30 Frame Pointer

$ra: 31 Return address.

� Which register numbers can get new names without having to change the ISA? � Explain.

The ISA dictates special behavior for r0 (it’s always zero) and for r31 (the jal instruction writes it with return address). There
is no special behavior for the other registers so they can be renamed. That is, there’s no problem with making r1-r4 the argument
registers and r5-r6 the return value registers.

Common Mistake: Some incorrectly supposed that the important-sounding registers such as sp and at could not be renamed.
When it comes to the ABI (which includes rules for how registers are used when making procedure calls) sp is important, but no
more important than t0 or s0. But there is nothing about the MIPS ISA that makes r29 a good choice for the stack pointer (sp),
any other register except r0 and r31 could be chosen.
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(c) The code fragment below adds 1 to the floating-point value in register f2 and puts the sum in f3.

addi $t1, $0, 1 # Integer 1

mtc1 $t1, $f1

cvt.s.w $f1, $f1

add.s $f3, $f1, $f2

� Explain what the cvt.s.w instruction does in the code above.

The instruction converts the value in the fs register (f1 in the example) from a signed integer to a single-precision floating-point
value and writes the result in the fd register (also f1 in the example, but it could be different than the source).

� Re-write the code so that it adds a 1, but does so without a cvt instruction. Note: The original exam used
the wording “without a cvt.s.w instruction.”.

## SOLUTION
lui $t1, 0x3f80 # Note: An IEEE 754 Single 1.0 = 0x3f800000

mtc1 $t1, $f1

add.s $f3, $f1, $f2

(d) In early RISC ISAs, including MIPS I, floating-point registers were 32 bits and yet many of these ISAs had
double-precision (64-bit) floating-point instructions. Where do these instructions find their 64-bit operands?

� MIPS-I gets 64-bit floating-point operands . . .

. . . from a pair of registers consecutive. The instruction specifies the even-numbered register of the pair. Consider add.d f0,

f2, f8. The first source is in registers f2 and f3, the second source is in f8 and f9. Registers f0 and f1 are written with the
result.

(e) ARM A64 and RISC-V RV64 are both late RISC ISAs. But ARM A64 has many more instructions than
RISC-V. How does having more instructions help A64 and fewer instructions help RISC-V?

� Lots of instructions help A64 because . . .

They enable programs to be written with fewer instructions. This reduces program size and presumably reduces execution time and
execution energy. (Certainly reduced execution time and energy were a goal, since A64 is successful we presume that these goals have
been reached in many A64 implementations.)

� Fewer instructions help RISC-V because . . .

. . . it was designed for teaching research purposes and having fewer instructions would reduce the difficulty of carrying out investi-
gations. (Though intended for teaching and research an important design goal is that it be complete enough to be used in practical
applications.)

Some pointed out that RISC-V could have fewer instructions in its base version, say RV64I, because its modular design enabled
additional instructions to be added only by those who needed them. Even so, RISC-V is still much simpler than A64. Bit extraction
instructions are still in draft form, and there is nothing like A64’s scaled indexing. Though not 100% correct, an answer along these
lines would get full credit.

Some pointed out that RISC-V was intended for embedded applications where low hardware cost is important and easier to achieve
with fewer instructions. That’s not a bad argument, but it ignores several contributors to cost: the core itself (such as our pipeline),
program storage, and execution energy. With a smaller instruction set comes lower-cost cores. But programs will be longer, requiring
more storage and potentially more energy executing them. That’s only a problem if the code for the embedded application is beyond
a certain size and if energy is an issue.
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(f) Explain the problem with this statement:

Implementations of CISC ISAs were slow because of complex instructions. Only later did computer
engineers discover that with simpler RISC ISAs implementations could be made faster.

� The statement is misleading or incorrect because . . .

. . . it ignores that the implementation technology used when CISC ISAs were developed was much more costly, so pipelined designs
(for which RISC ISAs were intended) were out of the question and memory could not be wasted. For that reason an implementation of
a RISC ISA would be slower than an implementation of a CISC ISA back then. Those complex instructions helped reduce redundant
work (such as reading and writing registers or memory). In a non-pipelined implementation complex instructions are not particularly
difficult to implement. For example, and arithmetic instruction could retrieve its operands from memory, compute arithmetic on
them, and store them back in memory. There’s no problem with complex memory addressing modes, because a single ALU could be
used as many times as needed.

(g) Appearing below are MIPS and RISC ISAs’ immediate formats.

MIPS I:

Opcode

31 26

RS

25 21

RT

20 16

Immed

15 0

RISC-V I:

Imm

31 20

RS1

19 15

fn3

14 12

RD

11 7

Opcode

6 0

� What advantage does the MIPS format have?

� Show an example of a MIPS instruction that could not be encoded in the RISC-V format.

The MIPS format has a larger immediate field and so it can be used with larger immediate values. For example, the MIPS instruction
addi r1, r2, 0x1234 has no RISC-V counterpart. That is addi a1, a2, 0x1234 is not a RISC-V instruction because
the immediate would not fit.

� What advantage does the RISC-V format have? (Another question on this exam implies this advantage is
wasted.)

There are more opcode bits in the RISC-V format, a total of 10 and so based on this format there can be more format-I opcodes
than in MIPS.

(h) Compilers optimize by scheduling (rearranging) instructions to avoid stalls due to true dependencies. In
that case, why do we need to have bypass paths?

� Bypass paths are needed despite optimizations because:

Because it is not always possible to find an instruction to put between a dependent pair to avoid a stall. This is particularly difficult
in code with frequent branches. Suppose, for example, one out of six instructions were a branch. Then scheduling could only easily
be done with about five instructions, making it difficult to find instructions to move.
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Name Solution

Computer Architecture

LSU EE 4720

Solve-Home Final Examination

Tuesday, 27 April 2021 to Friday, 30 April 2021 16:00 (4 PM) CDT

Work on this exam alone. Regular class resources, such as notes, pa-

pers, documentation, and code, can be used to find solutions. Outside

material that covers the same topics, such as MIPS tutorials, digital

logic design guides, and computer architecture references can also be

used. Do not try to directly seek out solutions to any question here.

For example, don’t Web-search the text of a problem unless the prob-

lem specifically allows it. Do not discuss this exam with classmates

or anyone else, except questions or concerns about problems should be

directed to Dr. Koppelman. Suspected violation of these rules will be

reported to the Dean of Students as a violation of the Student Code of

Conduct.

Problem 1 (25 pts)

Problem 2 (25 pts)

Problem 3 (25 pts)

Problem 4 (25 pts)

Exam Total (100 pts)

V ( [ mRNA | aV ] ) ∧ r ≥ 2 m ⇒ Re < 1

Good Luck! Thank you for your effort in EE 4720!
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Problem 1: (25 pts) Appearing below (and larger a few pages ahead) is an idea for a 2-way superscalar
MIPS implementation with an unorthodox feature: The register file is written both by an instruction in
the ME/MW stage (the former ME stage) and by an instruction in the WB stage. A memory instruction would
have to write back in the WB stage, but a non-memory instruction could write back in either stage. Consider
the execution below. For the first pair, lw and addi, the lw must use WB and the addi must use MW. The
situation is similar for the second pair except that the memory instruction, lb, is in slot 1 rather than slot 0.
When neither slot holds a memory instruction (the pair fetched in cycle 2) either one (but not both!) could
use MW. If both use the memory port, the later one should stall. In execution diagrams label MW is used by
an instruction that writes back in that stage, and ME is used by an instruction that will write back in the WB

stage.

Put solution on diagram several pages ahead!
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Put solution on diagram several pages ahead!

# Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2) IF ID EX ME WB

addi r2, r2, 4 IF ID EX MW

sub r3, r4, r5 IF ID EX MW

lb r7, 5(r2) IF ID EX ME WB

and r9, r10, r11 IF ID EX ME WB

or r12, r13, r14 IF ID EX MW

lb r16, 0(r7) IF ID EX ME WB

lh r17, 2(r7) IF ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8

This idea has a potential cost benefit, but it must be thought through because the order in which registers
are written can vary. (Which is a scary thing to those worried about correctness.) One cost benefit can be
seen in the diagram. The WB.alu1 pipeline latch is no longer needed. The label is still there but it is not
connected (and won’t be). Other cost-saving changes are part of the subproblems below.
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�For all parts of this problem remember to pay attention to cost and performance. �For example, don’t
connect a bypass path that will never be needed.

(a) The D In connections to the write ports of the register file have been changed, but the register number
inputs, Addr, are the same. Modify the hardware so that the Addr inputs to the write ports get the correct
register number. For this part don’t worry about two instructions writing the same register number.

�Modify hardware (next page, not above) so that Addr inputs of the register file write ports get the correct
register number.

Solution shown in green. If mem1 is true then the slot 0 instruction writes in MW and the slot 1 instruction writes in WB. New
multiplexors wrote the signals appropriately. Note that since dst1 is not needed in WB it is not sent to WB.

(b) The diagram shows one cost savings: the WB.alu1 pipeline latch is no longer needed. Notice that the
four bypass connections to the EX stage are unconnected. Reconnect them as needed so that any dependency
that could be bypassed in the unmodified superscalar can be bypassed here. Leave a bypass unconnected if
not needed.

�Re-connect bypass paths (on next page, not above), possibly adding or modifying other hardware to
bypass values.

Solution shown in purple. Note that because only one value is written back in WB only one bypass path is needed from WB. The
bypass values from ME are taken from the pipeline latches, ME.alu0 and ME.alu1, which is good because their values are available
at the beginning of the clock cycle.

(c) Notice that there is an unconnected select signal in EX and MW. Design control logic for these and for any

multiplexors used to provide the correct register numbers (the first subpart above). The Is Mem logic in

ID should be helpful. Hint: There is not that much to do for this part. The Is Mem block should come in
handy.

�Connect select signals in EX and MW.

�Connect select signals for any multiplexors used for register numbers.

Solution appears in turquoise. Fortunately, that Is Mem logic block provides the exact signal needed for the select inputs.

Grading Note: some solutions, by also considering the case in which a memory instruction is in slot 0, were
more complicated than they needed to be. There is no need to consider whether a memory instruction is in
slot 0 because if there is not a memory instruction in slot 1 the execution will be correct whether or not there
is a memory instruction in slot 0. (And what if there’s a memory instruction in both slots? Should I answer
that now (11 May 2021, 17:50:37 CDT) or should I make this a problem on the 2022 final exam?)

(d) Notice that in the execution below the and writes r9 after the or. It looks like the add instruction will
get the value written by the and rather than the or. That’s not right!

# Cycle 0 1 2 3 4 5 ... 9 10 11 12 13

and r9, r10, r11 IF ID EX ME WB

or r9, r7, r14 IF ID EX MW

# .. later..

add r1, r1, r9 IF ID EX MW WB

�Add control logic to detect such WAW hazards and which will substitute r0 for the destination of the
earlier instruction.
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Solution shown in blue. If both registers are the same the slot-0 register is changed to zero. The comparison unit is put in the EX
stage to provide more time. (Okay, I’ll be honest, I didn’t want to squeeze it in.)

4
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Use your favorite SVG or plain text editor on the SVG source for the implementation
https://www.ece.lsu.edu/ee4720/2021/fe-ss-px.svg and logic gates
https://www.ece.lsu.edu/ee4720/2021/g.svg.
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Problem 2: (25 pts) Show the execution of the code fragments as requested below.

(a) The MIPS implementation below is similar to the one used in class, but with some added bypass paths
for FP instructions and some labeled multiplexor select signals.
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2
1

Appearing on the next page is a code fragment, and above the code fragment are the labels A, B, and C.
These labels correspond to those used in the implementation.

Show the execution of the code below on this pipeline long enough to determine the IPC for a long number
of iterations. Of course, that means the branch is taken. Show the value of each labeled select signal in those
cycles it is being used.
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�Show the execution on the illustrated implementation.

Solution appears below. The add.s stalls one cycle waiting for the loaded value. The swc1 stalls until the add.s, writing f3,
reaches WF and then bypasses the value to the input of ME.rtv.

The following reminders are based on common mistakes made on the exam: Don’t forget that since MIPS has delay
slots the addi executes. Also don’t forget that since the branch is taken the xor should not be executed. Based on the diagram the
branch resolves in ID, meaning that in the next cycle, when the branch is in EX, the target will be in IF. That the branch resolves
in ID can be seen by noting that the branch target input to the PC mux originates from the ID stage.

�Show the values of the labeled select signals, A, B, and C when they are in use.

The values are also shown below. Those values are only shown for cycle in which they are needed.

Signal A routes the correct store value for a store instruction in EX. In the execution below swc1 is in EX in cycle 9 and its store
value, specified by f3, is being written by the add.s which is in WF. Input 3 connects to the value in WF (admittedly taking a long
path). A is only used in cycle 9 (below) and so a blank is shown for the other cycles. In real life A can have any value at those other
cycles and execution would still be correct.

Signal B selects the value from the integer pipeline that will proceed to WB or WF. In cycles 4 and 5 (and again in 14) when the two
loads write back B is zero to select the output of the memory port. In cycle 13, when addi is in WB, B is 1 to select the output of
the ALU. Nothing is written back in the other cycles and so they are shown blank. (The swc1 and bne reach the WB stage but they
don’t write a register.)

Signal C selects the value to be written to the FP register file. In cycles 4, 5, and 14, the value is 0 so that the load value has a path
from the integer pipeline. In cycle 9 the add.s reaches WF, and the value of C is 1 to select the output of the A4 functional unit.

�Find the IPC for a large number of iterations.

The instruction throughput, or IPC, is computed by dividing the number of instructions by the number of cycles. The number of
instructions is 6. The number of cycles is based on the fetch of the first instruction of the loop (the lwc1 f1). That’s at cycles 0

and 10, so the number of cycles for an iteration is 10. The instruction throughput is then 6
10−0 = 0.6 insn/cycle .

Grading Note: In many—too many—answers the number of cycles is computed incorrectly. Just remember to use a common
reference point on the two iterations, usually the fetch of the first instruction. This way the time for one iteration does not overlap
the time for the next.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SOLUTION

A 3

B 0 0 1 0

C 0 0 1 0

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lwc1 f1, 0(r1) IF ID EX ME WF # 1st Iter

lwc1 f2, 4(r1) IF ID EX ME WF

add.s f3, f1, f2 IF ID -> A1 A2 A3 A4 WF

swc1 f3, 8(r1) IF -> ID -------> EX ME WB

bne r1, r2 LOOP IF -------> ID EX ME WB

addi r1, r1, 12 IF ID EX ME WB

xor r5, r1, r6

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lwc1 f1, 0(r1) IF ID EX ME WF # 2nd Iter
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(b) There should have been stalls in the execution of the code above. Re-write the code so that it executes
with as few stalls as possible and still computes the same result. It is okay to add extra instructions before
and after the loop. For convenience assume that the code executes for at least two iterations. But don’t
unroll the loop.

�Re-write code to avoid stalls. �Code must compute the same values. �Can re-arrange instructions,
change registers, and put instructions before the start of the loop.

The solution appears below. The code is shown, followed by the execution of the code shown in dynamic instruction order.

To avoid the swc1 stall the swc1 stores the value computed in the previous iteration (or by the prologue code in the first
iteration). The swc1 is put between the second lwc1 and the add.s eliminating the load/use stall. Also note that the offsets on
the stores have changed because they are loading a value that will be needed for the next iteration. The first iteration has stalls, but
that’s due to the prologue code. The second and subsequent iterations execute stall-free.

# Solution Code

#

lwc1 f1, 0(r1)

lwc1 f2, 4(r1)

add.s f3, f1, f2

LOOP:

lwc1 f1, 12(r1)

lwc1 f2, 16(r1)

swc1 f3, 8(r1)

add.s f3, f1, f2

bne r1, r2 LOOP

addi r1, r1, 12

xor r5, r1, r6

# Solution Code Execution (Shown in dynamic instruction order.)

#

lwc1 f1, 0(r1) IF ID EX ME WF

lwc1 f2, 4(r1) IF ID EX ME WF

add.s f3, f1, f2 IF ID -> A1 A2 A3 A4 WF

# Loop

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lwc1 f1, 12(r1) IF -> ID EX ME WF

lwc1 f2, 16(r1) IF ID -> EX ME WF

swc1 f3, 8(r1) IF -> ID EX ME WB

add.s f3, f1, f2 IF ID A1 A2 A3 A4 WF

bne r1, r2 LOOP IF ID EX ME WB

addi r1, r1, 12 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

lwc1 f1, 0(r1) IF ID EX ME WF

lwc1 f2, 4(r1) IF ID EX ME WF

swc1 f3, 8(r1) IF ID EX ME WB

add.s f3, f1, f2 IF ID A1 A2 A3 A4 WF

bne r1, r2 LOOP IF ID EX ME WB

addi r1, r1, 12 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

lwc1 f1, 0(r1) IF ID EX ME WF
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(c) Appearing below is a 4-way superscalar MIPS implementation. In this implementation fetch is not aligned
(which makes things easier). Also, there is no branch prediction, which is how we have been doing things in
class.

Immed

IF ID EX WBME

A
d

d
r

D
 I
n

+16

Mem
Port

Addr

Addr

Mem
Port

md
0

dst0Dest. reg

Addr
25:21

20:16
rsv0

rtv0Addr
Data
Data

+
31:2

15:0

alu0

rtv0

 

rtv3

Addr
25:21

20:16
rsv3

rtv3Addr
Data
Data

A
d

d
r

D
 I
n

dst3

imm0

imm3

1
2

8

15:0

alu3  
Addr

Mem
Port

md
3

dst0

dst3

Register File

ir0

ir3

PC

npc

2'b0

Dest. reg
Data
Out

dst0

dst3

alu3

alu0

Data
Out

Data
Out

Immed

D
In

D
In

Magic
Cloud

�Show the execution of the code below for enough iterations to determine IPC. (Note: There is no need
to put slot numbers on the stage labels.) �Don’t forget that it is 4-way superscalar.

Solution appears below. To keep instructions in order in ID, the stall of one instruction in ID stalls all instructions ahead in ID. So,
in cycle 1 and 2 the add is stalling for the lw value. That forces the sw and addi to stall to, even though the bne and addi are
not waiting for anything.

The branch resolves in ID and so the target is not fetched until the branch is in EX, resulting in the squash of six instructions. Just
because it would be nice to fetch the branch target in cycle 7, does not mean the hardware can actually do so.

The instruction throughput is 6
8−0 = .75 insn/cycle.

# SOLUTION

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lw r10, 0(r1) IF ID EX ME WB

add r3, r10, r3 IF ID ----> EX ME WB

sw r3, 0(r5) IF ID -------------> EX ME WB

addi r5, r5, 4 IF ID -------------> EX ME WB

bne r1, r9, LOOP IF -------------> ID EX ME WB

addi r1, r1, 4 IF -------------> ID EX ME WB

lb r8, 0(r9) IF -------------> IDx

xor r11, r8, r10 IF -------------> IDx

some insn IFx

some insn IFx

some insn IFx

some insn IFx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lw r10, 0(r1) IF ID EX ME WB

add r3, r10, r3 IF ID ----> EX ME WB
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(d) The code fragment below is to execute on the same 4-way superscalar MIPS implementation. Notice that
loop body in the code fragment below contains two copies of the loop body from the loop in the previous
subproblem. So one iteration of the loop below does the work of two iterations of the loop from the previous
problem. This is the first step in the application of a technique called loop unrolling. The loop from the
previous problem has been unrolled by degree 2. The next step is to re-arrange the instructions, and possibly
eliminate those that are no longer needed. Complete this step, of course without changing what the code
does. Finally, to eliminate all stalls software pipelining will need to be used: values computed used in one
iteration will have to come from instructions executed in the prior iteration.

�Re-write the loop above so that it runs more efficiently on the 4-way MIPS implementation. �Use
fewer instructions, even if doing so does not help with the degree 2 unroll, in the expectation that it might
be beneficial at higher unroll degrees.

The solution appears below. A single load/add/store calculation is spread across three iterations. For example, suppose lw r10

loads something in iteration x. The add r19 and add r3 instructions will operate on that r10 in iteration x + 1 and the value
computed by the add r3 and the add r13 instructions in iteration x+1 will be written by the sw instructions in iteration x+2.
This technique is called software pipelining. The prologue code starts up the process. As can be seen from the execution, this
avoids all stalls.

An iteration takes just 4 cycles now, compared to 8 cycles in the original code. Also, each iteration computes twice as many values,
and so the code runs 4 times faster than the original.

# SOLUTION - Code

#

# Prologue

lw r10, 0(r1)

lw r12, 4(r1)

add r3, r10, r3

add r13, r12, r3

lw r10, 8(r1)

lw r12, 12(r1)

#

# Main Loop

LOOP:

add r19, r10, r12

sw r3, 0(r5)

sw r13, 4(r5)

add r3, r13, r10

lw r10, 16(r1)

lw r12, 20(r1)

add r13, r13, r19

addi r5, r5, 8

bne r1, r9, LOOP

addi r1, r1, 8

#

# Post-Loop Code

lb r8, 0(r9)

xor r11, r8, r10
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# Solution Code Execution (Omitting prologue)

#

LOOP: Cycle 0 1 2 3 4 5 6 7 8 9 10

add r19, r10, r12 IF ID EX ME WB

sw r3, 0(r5) IF ID EX ME WB

sw r13, 4(r5) IF ID EX ME WB

add r3, r13, r10 IF ID EX ME WB

lw r10, 16(r1) IF ID EX ME WB

lw r12, 20(r1) IF ID EX ME WB

add r13, r13, r19 IF ID EX ME WB

addi r5, r5, 8 IF ID EX ME WB

bne r1, r9, LOOP IF ID EX ME WB

addi r1, r1, 8 IF ID EX ME WB

LOOP: Cycle 0 1 2 3 4 5 6 7 8 9 10

add r19, r10, r12 IF ID EX ME WB

sw r3, 0(r5) IF ID EX ME WB

sw r13, 4(r5) IF ID EX ME WB

add r3, r13, r10 IF ID EX ME WB

lw r10, 0(r1) IF ID EX ME WB

lw r12, 4(r1) IF ID EX ME WB

add r13, r13, r19 IF ID EX ME WB

addi r5, r5, 8 IF ID EX ME WB

bne r1, r9, LOOP IF ID EX ME WB

addi r1, r1, 8 IF ID EX ME WB

LOOP: Cycle 0 1 2 3 4 5 6 7 8 9 10
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Problem 3: (25 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on several systems, each with a different
branch predictor. One system has a bimodal predictor and the other system has a local predictor with a
10-outcome local history.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: T T T N T N T T T N T N T T T N T N <- Outcome

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 <- Outcome Pos.

BA:

B2: N N N ... N N T T T N N N ... N N T T T

1 2 3 11 12 13 14 15 1 2 3 11 12 13 14 15 <- Outcome Pos.

�What is the accuracy of the bimodal predictor on branch B1?

The accuracy is 4
6 . The work is shown below. The accuracy is based on the repeating pattern, shown underlined below.

SOLUTION WORK

0 1 2 3 2 3 2 3 3 3 2 3 2 3 3 3 2 3 <- 2b Counter

B1: T T T N T N T T T N T N T T T N T N <- Branch Outcome

x x x x x x x x <- Pred. Outcome

-------------------- <- Repeat

�What is the accuracy of the local predictor on B1 ignoring B2.

The 10-outcome history is longer than the period of B1, six outcomes, and so the accuracy is 100%.

�What is the accuracy of the local predictor on B2 ignoring B1.

In B2 there are twelve consecutive Ns, and so a local history of 10 Ns, that is, NNNNNNNNNN, will occur three times: when predicting
positions 11, 12 and 13. The outcome of positions 11 and 12 will be N, decrementing the counter, and the outcome at 13 will be T,
incrementing the counter. After warmup the counter will be 0 or 1 and so position 13 will be mispredicted. The overall accuracy will
be 14

15 . B2 in the original exam had 11 consecutive Ns, and in that case the accuracy would likely be 13
14 but in

the worse case could be 12
14 .

�What is the longest local history size for which branch B1 and branch B2 will interfere with each other
on the local predictor? (The question is for a local predictor, not a global predictor.)

Five outcomes. Local history NTTTN precedes a T in B1 and a N in B2. Any B1 local history of length 6 would have to contain at
least four Ts, no local history of B2 can contain four Ts, so there can be no interference with a six outcome local history.
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(b) If branch B1 at position 6 is mispredicted T (taken) then data at address a + x will be brought into the
cache. An adversary would like to learn the value of x. To do so the adversary, running in another process
on the same core as the process using B1, will force a misprediction of 6. Then the adversary will make
careful timing measurements of loads to addresses starting at a to determine what address was loaded, and
so learning x.

Branch BA is part of the adversary’s code. Find a pattern for BA that will force B1 to be mispredicted by
the 10-outcome local predictor at position 6 (but not at other positions). The misprediction does not need
to occur every time position 6 in B1 is executed.

�Pattern for BA that forces misprediction of B1 at position 6 on 10-outcome local predictor.

For B1 outcome 6 to be mispredicted T branch B2 must have a matching local history that precedes an outcome of T, and that
pattern must occur more frequently. The B1 local history when predicting outcome 6 is TTNTN TTTNT (the space is for readability).
One choice for BA would be the pattern repeating TTNTN TTTNT T, but that can be shortened to NTN TTTNT T. To induce a
misprediction BA must occur more frequently than B1. In the timing shown below two repeats of the BA pattern occur between each
pattern of B1. (There is no reason why the branch outcomes of B1 and BA needed to be neatly interleaved with each other.)

B1: T T T N T N T T T N T N <- Outcome

1 2 3 4 5 6 1 2 3 4 5 6 <- Outcome Pos.

BA: NTNTTTNTTNTNTTTNTT NTNTTTNTTNTNTTTNTT

Outcomes of BA shown below for clarity, shown above with intended timing.

BA: N T N T T T N T T N T N T T T N T T

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

------------------------------- <- Local History
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(c) Below on the left is a plain bimodal predictor as first described in class. Below on the right is a refined
version that makes better use of storage by splitting the BHT into two tables, a branch target buffer, holding
the target and a tag, and a BHT holding only the two-bit counters. The tag field replaces the IsBranch field
and is used like a cache tag. (Though a cache tag would include bits 31:15.) The control logic will compare
the tag retrieved from the BTB with bits 20:15 of the PC, if they match a prediction will be made using
the 2-bit counter from the BHT, if the tag doesn’t match it is assumed that the instruction is not a branch.
See 2017 Homework 8 Problem 3 for additional explanation.
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The memory address and behavior of two branches from two programs, A and B, are shown below. One
program runs better on the plain predictor than the BTB predictor, the other program runs better on the
BTB predictor. Identify which is better, and why, as requested below.
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# Program A

B1: 0x9000: T T T ...

B2: 0x1000: T T T ...

�Prediction of branches in A better on
⊗

Plain or © BTB predictor. �Explain why other

predictor does worse on this program. �Pay attention to address of branches.

For Program A the two branches, B1 and B2, differ in bit position 15 and so they would use different entries in the plain predictor’s
BHT. For that reason the plain predictor would correctly predict them.

On the BTB predictor the same BTB entry would be used for B1 and B2 since their addresses are identical at bit positions 14:2. So,
when predicting B2 the BTB would return a tag for B1. Because the tag would not match no prediction would be made. (And, if a
prediction were made the target address would be wrong since it’s the target of B1.) Something similar happens when B1 is predicted.

# Program B

B3: 0x11000: N N N T N N N T N N N T ...

B4: 0x21000: T T T N T T T N T T T N ...

�Prediction of branches in B better on © Plain or
⊗

BTB predictor. �Explain why other

predictor does worse on this program. �Pay attention to address of branches.

The addresses of branches B3 and B4 are identical in bit positions 15:2 (and so also 14:2) but differ in bits 17:2. A prediction of B3
in the plain predictor’s BHT will retrieve the 2-bit counter and target address of B4, and so there will possibly be a misprediction.
B4 could similarly be mispredicted by the plain predictor. In a worst case both would be mispredicted.

In the BTB predictor branches B3 and B4 will use separate BHT entries, so their 2-bit counters will be entirely their own. The BHT
is always written, but the BTB is only written if the branch would be predicted taken. For that reason only branch B4 is written
to the BTB. So, when B3 arrives there will be a miss in the BTB (the tag won’t match), and so the predictor will assume that the
instruction being fetched is either not a branch or a not-taken branch. For B3 that will be correct three out of four times. When B4
is predicted the BTB will hit. The 2-bit counter from the BHT will be 3 or 4 and so the branch will be predicted taken. That will
be correct 3 out of 4 times, and the target will also be correct.
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Problem 4: (25 pts) Answer each question below.

(a) A program runs with fewer stalls on an 2-way superscalar than on an 8-way superscalar statically scheduled
processor. Both have the same clock frequency and are otherwise comparable.

�Does that mean the program runs faster on the 2-way processor? �Explain.

No, of course not. Consider a stall of one instruction (the sub in the example below) waiting for a value computed by another (the
add in the example below). Because the pipeline is the same depth (five stages) on both the 2-way and 8-way systems (because they
are otherwise comparable), the number of cycles it takes for the value to be bypassable will be the same on both. That is, on both
systems the sub can bypass the value two cycles after the add is in ID. There is no stall in the 2-way system because the sub is
fetched one cycle later.

# Execution on 2-way. No Stall!

add R1, r2, r3 IF ID EX ME WB

xor r9, r10, r11 IF ID EX ME WB

sub r4, R1, r5 IF ID EX ME WB

or r12, r13, r14 IF ID EX ME WB

# Cycle 0 1 2 3 4 5

# Execution on 4-way. No slower!!

add R1, r2, r3 IF ID EX ME WB

xor r9, r10, r11 IF ID EX ME WB

sub r4, R1, r5 IF ID -> EX ME WB

or r12, r13, r14 IF ID -> EX ME WB

(b) Shorten the code fragments below.

�Shorten code fragment.

addi r1, r0, 0x4755

sll r1, r1, 16

addi r1, r1, 0x4720

lw r1, 0(r1)

Solution appears below. Many forgot that they could use an offset in the load.

# SOLUTION

lui r1, 0x4755

lw r1, 0x4720(r1)

�Shorten code fragment.

lw r3, 0(r1)

addi r2, r0, 4

add r1, r1, r2

lbu r1, 0(r1)

# SOLUTION

lw r3, 0(r1)

lbu r1, 4(r1)
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(c) Appearing below are three code fragments. These are to run on a machine with vector instructions and
four-lane vector units. Indicate whether each fragment can easily be replaced by a vector instruction, and
the reason why or why not.

�Fragment below © can or
⊗

cannot be replaced by a vector instruction. �Explain.

add.s f1, f2, f3

add.s f4, f5, f6

mul.s f7, f8, f9

sub.s f10, f11, f12

The code performs three different operations, add, mul, and sub. A vector instruction performs the same operation on multiple
sets of operands (bit positions within vector registers).

�Fragment below © can or
⊗

cannot be replaced by a vector instruction. �Explain.

add.s F1, f2, f3

add.s f4, F1, f6

add.s F7, f8, f9

add.s f10, F7, f12

Typical vector instructions do not support dependencies like that. Certainly not arbitrary dependencies.

�Fragment below
⊗

can or © cannot be replaced by a vector instruction. �Explain.

add.s f1, f2, f3

add.s f4, f5, f6

add.s f7, f8, f9

add.s f10, f11, f12

The code sequence can easily be replaced by a vector instruction.
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(d) Let’s break something! As we know, an implementation of an ISA must execute a program as defined in
the ISA. The Broeken Company is going to sell a 4-way superscalar statically scheduled five-stage “imple-
mentation” of ARM A64, call that the Broeken4 implementation. (There is no space between the Broeken
and the 4. That’s so you don’t notice the 4.) We know how smoothly our five-stage scalar MIPS implemen-
tation handles branches: zero penalty because of the delay slot. But A64 branches don’t have a delay slot.
That didn’t stop the Broeken Company from changing things a bit. In the Broeken4 implementation the
number of delay slots for a branch can vary from 4 to 7. If a branch is in slot 0 of its fetch group there are 7
delay slots. Branches in slots 1, 2, and 3 have 6, 5, and 4 slots, respectively. If the branch is not stalled by
dependencies there will be zero branch penalty. This chip performs about 20% better than the (rule-abiding)
competition on performance and energy efficiency benchmarks.

Computer engineering professors obviously will hate the Broeken company for ignoring what an implemen-
tation of an ISA should do. But what about others? Gauge the reaction of each group below.

Note: If this were an in-class exam questions would be shorter.

�Compiler writers will be © positive, happy, and supportive or
⊗

negative, irritated, and ob-

streperous . �Explain.

It will be difficult to fill all those delay slots. Depending on personality type, putting in nop instructions will make compiler writers
feel like failures or make them feel like they are being set up to take the blame for an unworkable idea (the large number of delay
slots).

�Buyers of laptops and desktops using Broeken4 will be © positive, satisfied or
⊗

negative, seeking

a refund . �Explain.

They will be negative because most software won’t run. They expected their new computer to run their old software.

�Engineers using Broeken4 in embedded devices, such as the controller chip in a microwave oven, will be⊗
positive, satisfied or © negative, seeking a new supplier . �Explain.

Software is usually custom written for an embedded system, and so compatibility is not an issue. They will be happy because of the
performance and efficiency improvements.
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(e) The execution below is taken from an illustration of how exceptions work from a class lecture. The lw

raises an exception in cycle 4 and in response the handler starts in cycle 5. The first instruction that the
handler executes is sw. It is likely that the handler is saving registers to the stack before attending to the
event causing the exception. Presumably the handler will save every register that it plans to modify (or to be
safe, all registers). To reduce the number of registers saved, why not split the work between the interrupted
code and the handler. As with the ABI rules for procedure calls, why not have the interrupted code save
the caller-save registers it wants preserved (t0-t9, etc.) so that the handler would only need to save the
callee-save registers it plans to overwrite (s0-s7, etc.)?

# Cycle: 0 1 2 3 4 5 ... 99 100 ...

add r1, r2, r3 IF ID EX ME WB

lw r6, 0(r1) IF ID EX ME*x IF ID EX ME WB

or r5, r6, r7 IF ID EXx IF ID EX MEx

xor r10, r11, r12 IF IDx IF ID EXx

and r20, r21, r22 IFx IF IDx

...

Handler:

sw ... IF ... IF ...

...

eret (exception return) IF ID EX ME WB

�Why can’t interrupted program save the caller-save registers before the handler starts, potentially re-
ducing work?

Short answer: This is an absurd idea! Where would all that register save code be placed? Surely the effort needed to find it when
there was an exception or to jump over it when there wasn’t will be much greater than any reduction in the number of registers saved.

Explanation: For caller-save registers to be saved, routines to save those registers need to be written and put somewhere. It would be
no problem for a compiler to write such code. The problem is a register-save routine would need to be written for every instruction
that could raise an exception, which would be a huge number. Putting such register-save routines before each instruction would
be a waste for instructions like loads, because they only raise exceptions infrequently, but the register save code would be executed
each time, and for nothing. Or, some scheme could be developed to either locate a register save routine for each exception raising
instruction, or to skip over such code if it were placed just before the instruction.

Also, instructions in the register save code itself could raise exceptions.
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Name Solution

Computer Architecture

LSU EE 4720

Midterm Solve-Home Examination

Tuesday, 14 April 2020 to Friday, 17 April 2020 23:59 CDT

Work on this exam alone. Regular class resources, such as notes, papers,

documentation, and code, can be used to find solutions. Do not discuss
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about problems should be directed to Dr. Koppelman.
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Problem 1: [15 pts] The pipeline below is a slightly lower cost version of the bypassed MIPS implementation
that we’ve been using. The cost saving is achieved by not allowing an instruction to use a bypassed value
from both the ME and WB stage, the value must come from one stage or the other. Select inputs are shown
for three of the re-done EX stage multiplexors, they are labeled A, B, and C. For this problem assume that
they are connected to properly designed control logic.
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Problem continues on next page.
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(a) Show the values on the labeled select signals for an execution of the code below for those cycles in which
an instruction below is in the EX stage. If the value on a select signal does not matter, show an X.

� Show values of A, B, and C for when EX occupied by code below. � Use X if value does not matter, blank
when no insn in EX.

Solution appears below.

The following is an explanation to help those studying. There is no need to provide such a long-winded
answer on an exam. The A select signal is set to 1 when a bypass from WB is needed and is set to 0 when a bypass from ME is
needed. The add instruction does not use a bypassed value, so A is shown as X (meaning it could be either 0 or 1) in cycle 2 (when
add is in EX). The sub bypasses from ME so A is 0 in cycle 3 and sw bypasses from WB in cycle 4 so A is 1.

The B select signal is 0 if the rt source is bypassed. Only the sub bypasses an rt source, so B is 0 in cycle 3, the other instructions
use the value from the register file so B is 1 in cycles 2 and 4.

The C select signal is 1 if the immediate is needed at the lower ALU input. That is only true for the sw, where the store memory
address is computed by adding the immediate, 8, to the r1 value. The sw instruction uses the rt value too, but that’s the store
data which is delivered to D In.

# Cycle 0 1 2 3 4 5 6

add r1, r2, r3 IF ID EX ME WB

sub r4, r5, r1 IF ID EX ME WB

sw r6, 8(r1) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

A X 0 1

B 1 0 1

C 0 0 1

# Cycle 0 1 2 3 4 5 6

(b) Show a code fragment that would stall on the implementation above but would not stall on our usual
bypassed MIPS (which appears in Problem 3).

� Code fragment that stalls on this implementation, but not our usual 5-stage MIPS.

Solution appears below. The xor instruction uses the result of both the addi and or. The execution is for “our usual bypassed
MIPS,” where both values can be bypassed and so no stall is needed.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 Note: Execution is for usual bypassed MIPS.

addi R1, r2, 3 IF ID EX ME WB

or R4, r5, r6 IF ID EX ME WB

xor r7, R1, R4 IF ID EX ME WB
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Problem 2: [25 pts] Appearing below is the lower-cost MIPS implementation from the previous problem.

Design the control logic specified below. The output of rt is src is 1 if the rt field of the instruction specifies
a source value, as it does in most type R but only a few type I, such as sw. The Inkscape SVG source for
the image below can be found at https://www.ece.lsu.edu/ee4720/2020/mt-p1.svg.

� Design control logic for the labeled multiplexor select signals, A, B, and C.

� Design control logic to generate a stall signal when a bypass would have been from both ME and WB.

� Pay attention to the usual stuff: � Cost and critical path. � The stage that instructions are in when
the select signals are computed and the stage in which they are used.

Solution appears below. Logic for the select signals is shown in two shades of purple (two shades to help emphasize longer wires).
Signal ME By is 1 if there is a dependence between the instruction in ID and the instruction in EX. It is used in the next cycle
for select signal A. Signal rt By is 1 if the rt register of the instruction in ID is a source and it depends on either the instruction
in EX or ME. It is used for B in the next cycle. Signal C is easiest, it is 1 if the instruction is a type R, otherwise it is zero. Type I
instructions that use the ALU need the immediate at the lower input. The few type I instructions that use the rt value as a source,
such as sw and beq, use the rt value in some place other than the ALU, such as the ID-stage comparison unit for a beq. Logic
for the stall signal, in green, simply checks for a bypass from both stages.

The solution discussion continues on the next page.
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Problem 2 Common Mistakes: Many solutions would generate a stall signal when a bypass was needed and the instructions in
EX and ME wrote the same register. For example in the following code fragment . . .

# Cycle 0 1 2 3 4 5 6

sub r1, r2, r3 IF ID EX ME WB

add r1, r1, r4 IF ID EX ME WB

and r5, r1, r6 IF ID EX ME WB

. . . the and instruction uses the value of r1 computed by the add. That value will by bypassed to the add in cycle 4 from the ME
stage. The value of r1 carried by the sub instruction is irrelevant to the and. The correct solution here handles this case using the
AND gate with a bubbled input.

In too many solutions the rt is src was optimistically assumed to compute the exact signal needed by the B select input. I’m not
sure if this counts as a mistake, or as a face-saving way to avoid putting in the necessary effort or time management discipline to
solve the problem.

On the original exam there was no description of what the rt is src logic block did, but it had been used in
earlier assignments in the Spring 2020 semester, and students were free to ask what that block did.

5
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Problem 3: [15 pts] Show the execution of the code fragment below on the illustrated implementation.

format
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� Show execution. � Note that the branch is taken. � Pay attention to the timing of the branch.�Check for dependencies, � including for the branch.

The solution appears below.

One common mistake was overlooking that there is no bypass path to supply the beq with r3 (which is needed in the ID stage),
and so the branch must stall until slt reaches WB.

Another common mistake is stalling when a bypass path is available.

# Branch taken. SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

lw r1, 0(r2) IF ID EX ME WB

slt r3, r1, r4 IF ID -> EX ME WB

beq r3, r0 SKIP IF -> ID ----> EX ME WB

addi r2, r2, 4 IF ----> ID EX ME WB

xor r5, r5, r9

or r6, r6, r9

SKIP:

addi r7, r7, 4 IF ID EX ME WB

sw r1, 0(r7) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
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Problem 4: [15 pts] The code fragment below runs inefficiently. Modify the code so that it runs faster
on the implementation below. Instructions can be re-arranged, changed, or removed, and registers can be
changed. Don’t forget that the modified needs to do the same thing as the original code.
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� Re-write code so that it is faster but, of course, does the same thing as the original.

LOOP:

lw r1, 0(r2)

andi r1, r1, 0xff

addi r2, r2, 4

lw r3, 0(r2)

srl r3, r3, 24

add r9, r9, r1

add r9, r9, r3

addi r2, r2, 4

sub r8, r2, r11

bne r8, r0 LOOP

nop

First, the easier optimizations: The two addi instructions were replaced by one by using offsets on the load instructions. (More
about those offsets later.) Instructions were re-arranged to avoid load-use stalls (for example the stall suffered by the andi in the
original code waiting for r1 to reach WB), and the branch delay slot was filled.

The sub was eliminated by just checking for equality in the branch, bne r2, r11. The andi sets r1 to the 8 least-significant
bits of the loaded value (which was in r1). The lbu r1, 3(r2) loads just those 8 bits, and so the andi is no longer necessary.
(The offset is 3 because MIPS is big-endian, meaning the memory address, r2+0, is where the 8 most significant bits are.) The srl
instruction extracts the 8 most significant bits of r3. The srl can be avoided by again using an lbu to load just the needed byte.
Note that the offset is -4 because r2 is incremented by 8 between the two lbu instructions.

LOOP: # SOLUTION

lbu r1, 3(r2) # Replacement for: lw r1,0(r2) andi r1, r1, 0xff

addi r2, r2, 8 # Replacement for: addi r2, r2, 4 addi r2, r2, 4

lbu r3, -4(r2) # Replacement for: lw r3,0(r2) srl r3, r3, 24

add r9, r9, r1

bne r2, r11 LOOP # Replacement for: sub r2,r2,r11 beq r8, r0, LOOP

add r9, r9, r3 # Fill branch delay slot.
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Problem 5: [30 pts] Answer each question below.
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= mul
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a

b

a
*b

rt is src

STALL

mx mx
lx lx lx

1 0

='

='rt 20:16

rs 25:21

8
:3
1

Value too large
for 1-cyc multiply.

1 0

Ya
Ym
Yb

(a) The code fragments
below are to run on
the implementation with
the small-multiply by-
pass from Homework
3 and shown to the right.
For each code fragment,
indicate whether our
small-value bypass fea-
ture always eliminates
a stall, sometimes, or
never? Explain.

� Eliminates stall on code below: ×© Always © Sometimes © Never

andi r3, r5, 0x3f # SOLUTION: In bitwise AND result the high 24 bits all 0.

mul r1, r2, r3

add r6, r6, r1

lw r10, 0(r6)

� Eliminates stall on code below: © Always © Sometimes ×© Never

ori r3, r5, 0x63f # SOLUTION: This bitwise OR result must be > 255.

mul r1, r2, r3

add r6, r6, r1

lw r10, 0(r6)

� Eliminates stall on code below: ×© Always © Sometimes © Never

lbu r3, 0(r4) # SOLUTION: Loaded unsigned byte must fit in 8 bits.

mul r1, r2, r3

add r6, r6, r1

lw r10, 0(r6)

� Eliminates stall on code below: © Always ×© Sometimes © Never

lw r3, 0(r4) # SOLUTION: Loaded value may or may not be < 256.

mul r1, r2, r3

add r6, r6, r1

lw r10, 0(r6)
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(b) In typical practice a company decides upon an ISA, and then makes multiple implementations of that
ISA. Let HI and LI be two implementations of ISA I, HI is a high-end system and LI is low-cost. Let ISA
E (for expensive) be an ISA designed for high-end systems, and ISA C (for cheap) be an ISA designed for
low-cost systems, and let HE and LC be their implementations. All three ISAs and all four implementations
were designed by skilled engineers with lots of resources.

� Why might HE be better than HI and why might LC be better than LI? The same reason should apply to
both. The answer is related to the ISAs used for the implementations.

HE would be better then HI because ISA E would be designed just for high-end implementations and so can include features that are
good for these implementations without regard for whether such features would make it difficult to design low-cost implementations.
In contrast, I might have omitted expensive-to-implement features and so HI would not be as good. Similarly, LC would be better
(perhaps cost less) than LI because C would omit features that are only needed in high-end implementations.

� Even if LC is better than LI , why might a user still choose LI?

Software compatibility. The cash-strapped user buys LI but hopes that later he can afford HI and run his software on it unmodified.
Had the user bought LC and then later bought HE , software would have to be re-compiled before HE could be used.

(c) Consider the preparation of a set of SPECcpu results. For each item below indicate who is responsible,
SPEC (the organization) or the tester. Also indicate what would be the problem if it were the other way
around. For example, if you answered that SPEC chooses the benchmarks, then explain the disadvantage of
having the tester choose the benchmarks.

� Choose the benchmarks: ×© SPEC or © The Tester

A benchmark suite is only useful if all testers use the same benchmarks.

� Problem if it were the other way around:

If each tester chose the benchmarks there would be no way to compare results from two different testers. They could differ even if
exactly the same system were tested.

� Choose the benchmark input data: ×© SPEC or © The Tester

Changing the input data can drastically change the run time, so the reasons are the same as for benchmark choice above.

� Problem if it were the other way around:

Certain testers would choose inputs for which run time would be low, thus making the tested system appear fast.

� Choose the benchmark training data: ×© SPEC or © The Tester

Training data is used for profiling runs. Results from the profiling run are used by the compiler to optimize code, for example, to
re-arrange code so that most branches are not taken.

A case could be made that the choice of training data should be based on how the compiler will use the profiling information. Since
the compiler choice is up to the tester, training data ought to be up to the tester to. But the SPEC R&R rules say no, testers SHALL
use the SPEC-provided training inputs.

� Problem if it were the other way around:

If the tester were allowed to choose the training data then certain unscrupulous testers might use the reference data (the data used
to compute SPEC scores) for training. That would yield the best results, but does not reflect a real-world situation because for all
kinds of reasons developers don’t know in advance the exact inputs their programs will be run with. For one thing, each run the
program usually get different inputs. How many people write the exact same letter each time they use a word processor?

9
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� Choose the compiler: © SPEC or ×© The Tester

SPECcpu is designed to test new ISAs and implementations, and to show their full potential. If an ISA is truly new then there is
no way SPEC could choose the compiler, the compiler would be developed in-house by the company that designed the new ISAand
implementation. Furthermore, the compiler can be thought of as part of the system being tested, for example, it might optimizing
assume the presence of certain features.

� Problem if it were the other way around:

If SPEC did choose the compiler it would be impossible or difficult to test new designs.

� Choose the compiler optimization flags: © SPEC or ×© The Tester

If the tester chose the compiler, but SPEC choose the flags that would mean that SPEC is requiring compilers to support a set of
SPEC flags. A case could be made for this at the base tuning level, in which the programmer is expected to use a set of flags providing
good results, for example, -O3 (optimization level 3) or -fast. But for the peak tuning level SPEC-provided flags would preclude
experts choosing flags specially chosen for a particular benchmark on the tested system.

� Problem if it were the other way around:

If SPEC chose the flags then the peak results would reflect the best possible performance. That’s because SPEC could not be expected
to choose them for each system and benchmark. (They certainly could not do that years in advance when the suite is developed,
because they couldn’t know how to set flags for implementations and using compilers that don’t yet exist. It would cost way too
much money to have a SPEC team updating the flags for each new benchmark, and anyway would be a source of endless squabbling
about the amount of effort the team puts in.)

10

← → Spring 2020 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4720/2020/mt_sol.pdf


(d) The IA-32 ISA has been described as Intel’s golden handcuffs. Who slapped on those handcuffs? What
does the gold refer to? What do the handcuffs refer to? This was discussed in class, but it is okay to use
Web searches to answer this question.

� The reason for these handcuffs is:

IBM chose the Intel 8086, sort of an IA-32 implementation, for their personal computer, the IBM PC. That product became very
successful, not because it was the first personal computer, but because the IBM name signaled that personal computers were now
usable by anyone, not just hobbyists.

� They are golden because:

IBM sold lots of PCs so Intel made lots of money.

� They are handcuffs (a restriction) because:

Short Answer, but sufficient for full credit: A huge base of software ensured customers for future implementations of the
ISA despite its many limitations.

Long Answer: Intel may have felt that the 8086 ISA (called IA-32 in class) was saddled with too many restrictions to be useful for
a personal computer ISA with a decade or more of implementations ahead, and so would have wanted to develop a new ISA and scrap
IA-32. But a computer with a new ISA would not be able to run all the software developed for the very successful PC, and so buyers
would have to wait for new software to become available and hope that their favorite programs would be ported. A buyer then could
just as easily by a computer using a non-Intel CPU. Intel and IBM were well aware of this, and so they dared not change the ISA,
despite its flaws. Among the more irritating flaws was the need to use a pair of registers to specify a 32-bit memory address. That
made address arithmetic much more complicated.

11
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(e) Appearing below are some hypothetical instructions. Indicate whether each instruction is a better can-
didate for a RISC ISA or a CISC ISA. Explain why.

� Is the instruction below more © RISC or ×© CISC like? � Explain.

addi r1, r2, 0x12345678

RISC ISAs have fixed size instructions, usually 32 bits. That leaves no room for large immediates, including the one in the example
above.

Common Mistake: Some incorrectly assumed that 64-bit ISAs had 64-bit instructions and so that immediate could be accom-
modated. In current use “32-bit” and “64-bit” ISAs refer to the size of a virtual memory address (the only kind used in class so
far). Typically the integer register size matches the virtual address size, so 64-bit systems have 64-bit registers. However there is no
need to increase the size of the instruction itself. What would a 64-bit type R instruction use all the extra space for—other than
immediates? And it would not make sense to nearly double the size of program for those few cases where a larger immediate was
needed.

� Is the instruction below more ×© RISC or © CISC like? � Explain.

lw r1, (r2+r3) # Load r1 = Mem[ r2 + r3 ]

The instruction above could easily execute in a RISC pipeline, including our 5-stage MIPS (though MIPS lacks such an instruction)
in which the ALU could add r2 and r3 just as easily as it could add a register value to an immediate.

� Is the instruction below more ×© RISC or © CISC like? � Explain.

bgt r1, r2, TARG # Branch if r1 < r2

This can also easily be pipelined. It is omitted from MIPS I only, one assumes, to make it possible to resolve branches in ID. (Testing
equality is easier than comparing magnitude.)

� Is the instruction below more © RISC or ×© CISC like? � Explain.

add (r1), r2, (r3) # Mem[r1] = r2 + Mem[r3]

In RISC ISAs memory is accessed by memory instructions (loads and stores) other instructions must get their operands from registers,
and so the instruction isn’t suitable for RISC.
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Name Solution

Computer Architecture

LSU EE 4720

Solve-Home Final Examination

Wednesday, 6 May 2020 to Saturday, 9 May 2020 5:00 (5 AM) CDT

Work on this exam alone. Regular class resources, such as notes, papers,

documentation, and code, can be used to find solutions. Outside ma-

terial that covers the same topics, such as MIPS tutorials, digital logic

design guides, and computer architecture references can also be used.

Do not try to directly seek out solutions to any question here. That is,

don’t Web-search the text of a problem. Do not discuss this exam with

classmates or anyone else, except questions or concerns about problems

should be directed to Dr. Koppelman.

� r ≥ 2 m ⇒ Re < 1

Problem 1 (30 pts)

Problem 2 (25 pts)

Problem 3 (15 pts)

Problem 4 (30 pts)

Exam Total (100 pts)
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Problem 1: (30 pts) The two-way superscalar MIPS implementation below has an ALU in the MX (née ME)
stage, call it the second-chance ALU. For this problem the second-chance ALU will be connected so that
two stall situations are avoided. A slightly similar problem appeared on the Spring 2006 Midterm Exam in
Problem 2. It’s okay to look at the problem and solution.

Yes, it’s small! Use the next page for the solution.
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(a) The sub in the code below suffers a stall due to a dependence with the other instruction in the same fetch
group. Connect the second-chance ALU so that the stall is avoided. The changes must not break existing
functionality and must not result in stalls for unrelated code. In particular note that the add does not stall
in either version.
# Cycle 0 1 2 3 4 5 6 7 # Unmodified Implementation

ori R3, r1, 0xff IF ID EX ME WB

xor R2, r8, r9 IF ID EX ME WB

add R1, R2, R3 IF ID EX ME WB

sub R4, R1, r5 IF ID -> EX ME WB

and r7, r8, R4 IF -> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

# Cycle 0 1 2 3 4 5 6 7 # With second-chance ALU.

ori R3, r1, 0xff IF ID EX MX WB

xor R2, r8, r9 IF ID EX MX WB

add R1, R2, R3 IF ID EX MX WB # No stall in either implementation.

sub R4, R1, r5 IF ID EX MX WB # No stall due to second-chance ALU!

and r7, r8, R4 IF ID -> EX MX WB # Stall due to second-chance ALU.

# Cycle 0 1 2 3 4 5 6 7

�Connect second-chance ALU to avoid the stall by the sub and allowing code to execute as in the sample
above. �The connections should work for any pair of dependent, ALU-using, non-memory instructions.

�Pay attention to cost. Assume that a pipeline latch bit costs twice as much as a multiplexor bit.

�Do not add unneeded bypass paths. �Don’t break existing functionality.

Solution appears in blue in the diagram several pages ahead. The muxes at the second-chance ALU inputs are needed because the
MX.alu0 value could be needed by the rs or rt operands (or both). Many solved the problem assuming that the MX.alu0 value
is only needed for the rs source.

(b) The code below suffers a load/use stall. Add the minimum number of connections to the second-chance
ALU so that such load/use stalls (in which the using instruction is in slot 1) can be avoided.

add r3, r2, r3 IF ID EX ME WB

lw r4, 5(r1) IF ID EX ME WB

ori r6, r1, 0xff IF ID EX ME WB

sub r5, r3, r4 IF ID -> EX ME WB
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�Add connections to the second-chance ALU to avoid load/use stalls when the using instruction (such as
the sub in the example) is in slot 1.

�Pay attention to cost, use the same cost assumption as given in the previous part.

See solution several pages ahead.
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(c) In the code below the sub does not stall due to the second-chance ALU but the and does stall. Add
control logic to generate a stall signal for cases such as this.

# Cycle 0 1 2 3 4 5 6 7

ori R3, r1, 0xff IF ID EX MX WB

xor r2, r8, r9 IF ID EX MX WB

add R1, r2, R3 IF ID EX MX WB

sub R4, R1, r5 IF ID EX MX WB # No stall due to second-chance ALU!

and r7, r8, R4 IF ID -> EX MX WB # Stall due to second-chance ALU.

# Cycle 0 1 2 3 4 5 6 7

�Add logic to generate a stall signal for the situation described above. �The logic should work for any
instruction dependent on an instruction using the second-chance ALU.

�Pay attention to cost, use the same cost assumption as given in the previous part.

See solution on next page.

(d) Generate the select signal for the EX stage multiplexor shown in blue. The control logic should work for
the intra-group dependence case. (The control logic does not need to work for the load/use case.)

�Add logic for the select signal for the intra-group dependence. �The logic should work for any pair of
dependent, ALU-using, non-memory instructions.

�Pay attention to cost, use the same cost assumption as given in the previous part.

You’re almost there! The solution is on the very next page!!
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The Inkscape SVG source is at https://www.ece.lsu.edu/ee4720/2020/fe-p1-v2-ss.svg.

Solution appears below in blue (part a and b), green (part c or d, depending on whether I swap them), and turquoise (part d or c).
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Problem 2: (25 pts) Show the execution of the code fragments as requested below.

(a) Show the execution on the FP pipeline below, note that the adder unit has an initiation interval of 2.
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msb

An instruction
will use WF
five cycles
from now.

An instruction using A1 now
and in the next cycle.�Show execution. �Pay attention to how the FP add unit should operate. �Don’t forget to check

for dependencies.

Solution appears below. The second add.s stalls one cycle because of the initiation interval of the FP add unit. You get what you
pay for.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SOLUTION

lwc1 f2, 0(r1) IF ID EX ME WF

add.s f0, f2, f4 IF ID -> A1 A1 A2 A2 WF

add.s f1, f2, f5 IF -> ID -> A1 A1 A2 A2 WF

add.s f3, f1, f6 IF -> ID -------> A1 A1 A2 A2 WF

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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(b) Show the execution on the FP pipeline below, note that the adder unit is different than the previous
problem and from other examples covered in class.
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�Show execution. �Pay attention to how the FP add unit should operate. �Don’t forget to check
for dependencies.

Solution appears below. As can be inferred from the control signals, a FP add instruction passes through the A1 and A2 stages twice
as shown in the solution below. Note that the second add.s no longer stalls waiting for A1!

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 SOLUTION

lwc1 f2, 0(r1) IF ID EX ME WF

add.s f0, f2, f4 IF ID -> A1 A2 A1 A2 WF

add.s f1, f2, f5 IF -> ID A1 A2 A1 A2 WF

add.s f3, f1, f6 IF ID -------> A1 A2 A1 A2 WF

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13
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(c) Show the execution of the code on the implementation below. Find the CPI for a large number of
iterations.

format
immed
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�Show execution on the illustrated implementation with the branch taken. �Find the CPI for a large
number of iterations.

The solution appears below. The only stall is a 1-cycle load/use stall suffered by the sw. The first iteration starts in cycle 0 (when
the first instruction, addi, is in IF) and second at cycle 6. The second iteration is the same as the first, so all iterations will take
6−0 = 6 cycles. An iteration has 5 instructions and so the CPI is 6

5 = 1.2 CPI, and the instruction throughput is 5
6 insn/cycle.

# SOLUTION

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11

addi r2, r2, 16 IF ID EX ME WB First Iteration

lw r1, 8(r2) IF ID EX ME WB

sw r1, 12(r3) IF ID -> EX ME WB

bne r3, r4, LOOP IF -> ID EX ME WB

addi r3, r3, 32 IF ID EX ME WB

sub r10, r3, r2

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11

addi r2, r2, 16 IF ID EX ME WB Second Iteration

lw r1, 8(r2) IF ID EX ME WB

sw r1, 12(r3) IF ID -> EX ME WB

bne r3, r4, LOOP IF -> ID EX ME WB

addi r3, r3, 32 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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(d) Show the execution of the code on the 2-way superscalar MIPS implementation illustrated below, and
find the CPI for a large number of iterations. This is not the same as the implementation from Problem 1.
Instruction fetch is of aligned groups.
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�Show execution on the illustrated implementation. �Find the CPI for a large number of iterations.

�Take aligned fetch into account, the address of LOOP is 0x1000. �Pay attention to available bypass
paths.

Solution appears below. Because there is no bypass path for the store value the sw must stall until the lw reaches WB.

The CPI is 6
5 = 1.2, which is disappointing because the implementation is capable of a CPI of 1

2 .

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 # SOLUTION

addi r2, r2, 16 IF ID EX ME WB # First Iteration

lw r1, 8(r2) IF ID -> EX ME WB

sw r1, 12(r3) IF -> ID ----> EX ME WB

bne r3, r4, LOOP IF -> ID ----> EX ME WB

addi r3, r3, 32 IF ----> ID EX ME WB

sub r10, r3, r2 IFx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

addi r2, r2, 16 IF ID EX ME WB # Second Iteration

lw r1, 8(r2) IF ID -> EX ME WB

sw r1, 12(r3) IF -> ID ----> EX ME WB

bne r3, r4, LOOP IF -> ID ----> EX ME WB

addi r3, r3, 32 IF ----> ID EX ME WB

sub r10, r3, r2 IFx

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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(e) The code fragment below is the same as the one from the previous problem and is to run on the same
superscalar system. Re-write the code so that it runs with fewer stalls (and of course does the same thing),
and compute the CPI for a large number of iterations. Extra instructions can be added before or after the
loop. Do not unroll the loop.

�Re-write code to minimize stalls on the superscalar implementation.

�Compute the CPI of the re-written code for a large number of iterations.

LOOP:

addi r2, r2, 16

lw r1, 8(r2)

sw r1, 12(r3)

bne r3, r4, LOOP

addi r3, r3, 32

sub r10, r3, r2

Two solutions are given here, Partial Credit and Full Credit (starting on the next page). An easy change was moving the addi
r2,r2,16 increment after the lw and adding 16 to the load offset. This is shown as the Partial Credit solution—partial credit
because the sw still stalls.

# SOLUTION - Partial Credit

LOOP:

lw r1, 24(r2) # Move lw before addi and increase offset to 24.

addi r2, r2, 16

sw r1, 12(r3) # Still lots of stall cycles.

bne r3, r4, LOOP

addi r3, r3, 32

sub r10, r3, r2

10
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In the full-credit solution the sw is put before the lw where it will store the r1 value that was loaded in the previous iteration
or by the prologue instruction added before the loop. The lw in the loop is loading a value for the next iteration, which is why its
offset is increased by another 16 to 40.

To compute the instruction throughput (or CPI) a repeating pattern needs to be found. The repeating pattern is established in the
second iteration and verified in the third by noting that the pipeline state at cycles 10 and 14 are identical. So the iteration time is
14− 10 = 4 cycles and so the instruction throughput is 5

4 = 1.25 insn/cycle or the CPI is 4
5 = .8 CPI, an improvement.

# SOLUTION - Full Credit

#

lw r1, 24(r2) # Prologue: Load initial value of r1.

LOOP:

sw r1, 12(r3) # This finishes up the previous iteration.

lw r1, 40(r2) # Load value to be used in next iteration, if any.

addi r2, r2, 16 # Increment r2 after lw to avoid a stall.

bne r3, r4, LOOP

addi r3, r3, 32

sub r10, r3, r2

# Pipeline Execution Diagram

#

lw r1, 24(r2) IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

sw r1, 12(r3) IF ID ----> EX ME WB First Iteration

lw r1, 40(r2) IF ID ----> EX ME WB

addi r2, r2, 16 IF ----> ID EX ME WB

bne r3, r4, LOOP IF ----> ID EX ME WB

addi r3, r3, 32 IF ID EX ME WB

sub r10, r3, r2 IFx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

sw r1, 12(r3) Second Iteration IF ID EX ME WB

lw r1, 40(r2) IF ID EX ME WB

addi r2, r2, 16 IF ID EX ME WB

bne r3, r4, LOOP IF ID -> EX ME WB

addi r3, r3, 32 IF -> ID EX ME WB

sub r10, r3, r2 IFx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

sw r1, 12(r3) Third Iteration IF ID EX ME WB

lw r1, 40(r2) IF ID EX ME WB

addi r2, r2, 16 IF ID EX ME WB

bne r3, r4, LOOP IF ID -> EX ME WB

addi r3, r3, 32 IF -> ID EX ME WB

sub r10, r3, r2 IFx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

sw r1, 12(r3) IF ID EX ME WB

lw r1, 40(r2) IF ID EX ME WB

11

← → Spring 2020 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2020/fe_sol.pdf


Problem 3: (15 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on several systems, each with a different
branch predictor. All systems use a 212 entry BHT. One system has a bimodal predictor and the other
systems have a local predictor, the length of the local history is given in the questions below.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: N N N N T T N N N N T T ...

B2: T T T T T T T T T T T T ...

�What is the accuracy of the bimodal predictor on branch B1?

Short answer: 3
6 , see work below.

SOLUTION WORK

0 0 0 0 0 1 2 1 0 0 0 1 2 <- Two-bit counter

B1: N N N N T T N N N N T T ...

x x x x x <- Prediction Outcome

-------------------- <- Repeating Pattern

Explanation: The line just below SOLUTION WORK (above) shows 2-bit counter values for B1, for when the counter starts at zero.
The prediction outcomes are shown below the branch outcomes. To compute the prediction ratio we need to use a repeating pattern.
A pattern is repeating if the branch outcomes pattern repeats and if the two-bit counter value is the same before the pattern starts
and after it ends. Such a pattern is underlined, the counter is two at the start and the end. The prediction accuracy is 3

6 = 1
2 .

�What is the accuracy of a local predictor with a 12-outcome local history on branch B1 and ignoring B2.

Branch B1’s pattern repeats and has a length of 6 outcomes and so it can easily be predicted with 100% accuracy by a 12-outcome
local predictor.

12
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�What is the accuracy of a local predictor with a 2-outcome local history on branch B1 and ignoring B2.

The accuracy is worked out below. The local histories table shows the 6 local histories used when predicting B1. The labels (1-6)
refer to the outcome being predicted, and the local history (LH) consists of the 2 preceding outcomes. For example, then predicting
the first T, label 3, the local history is NN. The Pattern History Table Analysis table has one row for each possible PHT entry, all
22 = 4 of them. (In this case the branch affects every entry in the table, but usually branches use only a small fraction of the
entries. For example, if the local history size were 10 there would be 1024 PHT entries but branch B1 would use only 6 of them [after
warmup].) A PHT entry holds a two-bit value (called a counter), and the table shows values for these counters for each entry as well
as the outcome pattern used to update the counter. For TN the outcome pattern is just a sequence of Ns so the counter stays at zero.
The NT and TT entries are similarly well-behaved. But the NN entry is used to predict three outcomes, those at label 1, 2, and 3.
The counter will change form 1 to 0 and back, and so N will be consistently predicted, which will be correct 2 out of 3 times. These
accuracies are shown in the last column and totaled at the bottom. Note that the total is computed by adding the numerators and
denominators: 2+1+1+1

3+1+1+1 = 5
6 , and that it is important that the denominator is set to the number of times the local history is seen

in the repeating pattern. Based on this analysis the prediction accuracy is 5
6 .

SOLUTION WORK

B1: N N N N T T N N N N T T

5 6 1 2 3 4 5 6 1 2 3 4 <- Label of predicted branch.

Local Histories (LH) and Outcome

LH Outcome

1: NN N

2: NN N

3: NN T

4: NT T

5: TT N

6: TN N

Pattern History Table Analysis

LH Pattern Two-Bit Counter Evolution Accuracy

-- ------------------ ------------------------- --------

NN: N N T N N T 1,0,0, 1,0,0, 2/3

NT: T T 3, 3, 1/1

TT: N N 0, 0, 1/1

TN: N N 0, 0, 1/1

-- ------------------ ------------------------- --------

5/6
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�What is the accuracy of a local predictor with a 2-outcome local history on branch B1 and taking into
account B2.

The local history for B2 is consistently TT and of course the outcome too is consistently T. Branch B1 and B2 will share the TT
entry, but not nicely. When B1 is resolved the entry is decremented but when B2 is resolved the entry is incremented. We can infer
from the branch patterns that B2 will use the TT local history six times more frequently than B1 and so B1 at label 5 will retrieve
a 3 and predict T and be wrong. That’s shown in the table below, with the B2 outcomes shown in lower case, t, for clarity. So,

the accuracy of B1 taking into account B2 is 4
6 . Branch B2 is predicated at 100% accuracy.

Pattern History Table Analysis B1

LH Pattern Two-Bit Counter Evolution Accuracy

-- ------------------------ ------------------------- --------

NN: N N T N N T 1,0,0, 1,0,0, 2/3

NT: T T 3, 3, 1/1

TT: t t t tNt t t t t tNt t 3,3,3,3,2,3,3,3,3,3,2,3,3 0/1

TN: N N 0, 0, 1/1

-- ------------------------ ------------------------- --------

4/6

�What is the minimum local history size so that branch B1 is predicted with 100% accuracy, taking into
account B2.

To solve this problem increase the local history size until the local histories are followed by consistent outcomes (unlike NN above). Be-

cause of NNNNT a local history of 3 is too short because NNN can be followed by N or T. A local history size of four will be sufficient.

Note that this time B1 uses 6 out of 24 = 16 entries and that B2 no longer causes trouble since its one local history, TTTT, does
not match any of B1’s six local histories.

Local Histories (LH) and Outcome

LH Outcome

1: TTNN N

2: TNNN N

3: NNNN T

4: NNNT T

5: NNTT N

6: NTTN N

Pattern History Table Analysis B1 B2

LH Pattern Two-Bit Counter Evolution Accuracy Accuracy

---- ------------ ------------------------- -------- --------

NNNN: T 3,3,... 1/1

NNNT: T 3,3,... 1/1

NNTT: N 0,0,... 1/1

NTTN: N 0,0,... 1/1

TNNN: N 0,0,... 1/1

TTNN: N 0,0,... 1/1

TTTT: t t t t t t 3,3,... 6/6

---- ------------ ------------------------- -------- --------

6/6 6/6
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(b) Appearing below is a diagram of a local predictor. The local predictor illustrated has a specific BHT size
and an h-outcome local history size. The BHT size does not necessarily match the BHT in the prior part.
Determine the amount of storage, in bits, used by the BHT and PHT for a 16-bit local history. Assume that
Target is stored efficiently.
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�Amount of storage for PHT is:

Short answer: The amount of storage is 216 × 2 = 217 b = 214 B.

Each PHT entry holds a 2-bit counter, and for a 16-bit local history there are 216 = 65536 entries. The total size is 65536×2 b =
131072 b = 16384 B. Note: full credit would be given for an answer in bits, no need to convert to bytes. That said, it is a good
idea to include the unit (bits or bytes).

�Assumption about Target:

�Amount of storage for BHT is:

Short answer: (1 + 16 + 16) 214 b assuming that the Target field is 16 bits and is used, after retrieval from the BHT, as a
displacement from PC+4 to compute the full 32-bit target address.

From the diagram it can be seen that 16−2 = 14 bits are used for the BHT address (a) input, and so there must be 214 BHT entries.
The diagram shows that an entry consists of three fields: Is Branch, Target, and Local History. Assume 1 bit for Is Branch
because nothing was mentioned about predicting other kinds of control-transfer instructions. For the target assume that just 16 bits
are stored, and that the full 32-bit target is computed using PC+4, just as it is for a branch. The local history is given as 16 bits.
Totaling these yields the of a BHT entry, (1+16+16) b. The sum of the 214 entry sizes yields the BHT size, (1+16+16)214 b.
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That’s all that’s needed for full credit. But since we’re here, let’s convert it to bytes and compare the size to other parts of the CPU
to see how much the BHT is costing us. So, (1+16+16)214 b = (1+16+16)214/23 B = (1+16+16)211 B = 67584 B.
That’s roughly the size of a typical L1 data cache, so it is on the large size. Real BHTs are smaller.
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Problem 4: (30 pts) Answer each question below.

(a) Appearing below are the three integer MIPS I instruction formats. Consider a modified form of MIPS
in which there are 64 rather than 32 integer registers. A goal is compatibility with MIPS-I code and to use
as few new opcodes and function field values as possible. Modify each format so that it can use 64 registers
and explain what new opcodes (if any) are needed and any assumptions about existing MIPS-I instructions.
Hint: For one case there’s nothing to do, for one case many opcodes will be needed, for one case only a few.

To encode 64 registers a 6-bit register field is needed. Since a goal is compatibility we want to make as few changes to the instruction
format as possible.

�Modification for 64-register MIPS. �Describe what new opcode/func values are needed for, if any.

MIPS R:

Opcode

31 26

RS

25 21

RT

20 16

RD

15 11

SA

10 6

Function

5 0

For most MIPS-I Type R instructions the SA field is unused and must be zero. So for MIPS-I64r use the SA field for the three extra
register field bits, one for RS, one for RT, and one for RD. New Function values will be needed for the shift instructions because
they use the SA field. The existing shift instructions, such as sll r1, r2, 3 must use the SA field in the same way as MIPS-I
(otherwise MIPS-I64r would not be compatible). New shift instructions, such as sll64 r40, r1, 3 will use the RT field for the
shift amount. No new opcodes or Function values will be needed for the other Type R instructions.

�Modification for 64-register MIPS. �Describe what new opcode/func values are needed for, if any.

MIPS I:

Opcode

31 26

RS

25 21

RT

20 16

Immed

15 0

There is no free space in most type I instructions, so new opcodes will be needed. Since there are not many opcodes available a new
3-bit fuI field was added (see below) to provide more opcode space, serving the role that Function places in type R instructions.
The extra bit for the RS and RT registers are in the same place they are for MIPS I64r instructions, they are labeled RSh and RTh.
The immediate, now 11 bits, is split between two fields, ImmHi and ImmLo. If a compiler or human needs an instruction with an
immediate value of 12 or more bits it will need to use a MIPS-I instruction and so will have to limit itself to registers r0 to r31.

MIPS I64r I:

Opcode

31 26

RS

25 21

RT

20 16

ImmHi

15 11

RSh

10 10

RTh

9 9

fuI

8 6

ImmLo

5 0

�Modification for 64-register MIPS. �Describe what new opcode/func values are needed for, if any.

MIPS J:

Opcode

31 26

II

25 0

No changes need to be made because there are no register fields.
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(b) Chip A has five 4-way superscalar cores. Chip B has 20 scalar cores. The cores are similar to our pipelined
MIPS implementations. All cores use a 1 GHz clock. Yes, up until this comment the question is identical
to one asked on the Spring 2019 final exam. The SPECcpu benchmarks are run on each chip. Recall that
SPECcpu can be run to compute a speed score and a rate score. (Don’t confuse speed/rate with base/peak
or int/FP.) Feel free to visit the SPEC site to help answering this question.

�Which chip would likely score higher (better) on the SPECspeed2017int benchmarks,

×© Chip A or © Chip B . �Explain.

Chip A because SPECspeed2017 is run with one benchmark at a time and the SPECcpu benchmarks use few threads, maybe one.
For one thread Chip A has a peak performance of 4 insn/cycle, much better than Chip B’s peak of 1 insn/cycle.

�Which chip would likely score higher (better) on the SPECrate2017int benchmarks,

© Chip A or ×© Chip B . �Explain.

Chip B because a 1-way core would run code more efficiently (fewer stalls) than a 4-way core, and the SPECrate scores are obtained
by running many copies of an individual benchmark and so all cores would be used.
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(c) Our goal is to build a machine that can execute eight floating-point operations per cycle. Two machines
are under consideration, an 8-way superscalar system implementing ISA I, and a 2-way superscalar system
with an 8-lane vector unit implementing ISA IV, which is like I but with vector instructions. Both machines
run at 1 GHz, and both can sustain eight billion floating-point operations per second.

�Which machine is likely to be more expensive? �Explain.

The 8-way superscalar. Both machines will have eight sets of FP functional units. But the 8-way superscalar has hardware for
decoding eight instructions versus two for the 2-way system. Also the cost of bypass paths in the 8-way superscalar system will be
higher than bypass paths in the 2-way system, even when including the vector unit. That’s because the vector unit would not have
inter-lane bypass paths.

�Which machine is likely to be faster on typical code? �Explain with �a code example.

Short answer: The peak FP operation rate of the two systems is identical, but the ISA I implementation is likely faster on typical
code because unlike ISA IV, ISA I does not need sets of eight identical operations to realize eight operation per cycle performance.

Description: The ISA I (8-way superscalar) implementation is likely faster than the ISA IV (2-way superscalar plus vector unit)
because the ISA IV system can sustain 8 billion floating-point operations (plus one instruction) per second only on code containing
one vector instruction per fetch group. On code which is not vectorizable, meaning for which vector instructions are not useful
or on which vector instructions operate on only one lane, the ISA IV will execute at most only 2 × 109 insn/s. Since most code
is not vectorizable the ISA I implementation will be faster. For example, the eight instructions in the code fragment below could be
executed at the same time on ISA I. Those eight instructions could not be replaced by a single vector instruction because there are
eight different instructions, not the same instruction, say add, operating on eight different sets of operands.

# Code not vectorizable because each instruction performs a different operation.

add.d f0, f2, f4

andi r1, r2, 0xeof

sub.d f6, f8, f10

ori r3, r2, 0xfood

mul.d f12, f14, f16

xori r4, r2, 0xa8

add.s f18, f19, f20

slt r9, r10, r11

19

← → Spring 2020 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2020/fe_sol.pdf


(d) In MIPS and many other RISC ISAs memory accesses must be aligned. For example, a lw instruction,
which loads a four-byte value, must load from an address that is a multiple of 4. The execution of a lw

loading from an address that is not a multiple of 4 will result in an exception (and on Linux system resulting
in the Bus Error signal handler being called). As we pointed out in class, integer instructions, and especially
load and store instructions, in any reasonable ISA would be required to raise precise exceptions. MIPS is
certainly reasonable in this respect.

Suppose that a program uses non-aligned addresses in memory accesses, but is otherwise correct. That
is, the program would run correctly if the load could handle a non-aligned address. (After all, CISC ISA
load instructions can do it.) But on MIPS it raises an exception as soon as a non-aligned load or store is
attempted. Suppose further that re-writing the program is not feasible.

�Explain how we can take advantage of precise exceptions so that this program would run correctly. A
code example would be nice but not necessary.

The execution of a lw with a misaligned address will cause execution to reach the exception handler. We will re-write the exception
handler so that when a misaligned address exception occurs it will performs the unaligned lw using four load byte unsigned instructions
(for which there is no alignment restriction). The exception handler will get the attempted load address and the address of the faulting
instruction (the load) from MIPS’ co-processor 0 registers (or from the appropriate place in some other ISA). Rather than using a
lw to load the data, the handler will load the data using four lbu instructions since they don’t have alignment restrictions. The
four loaded values will be put together in one register (see the code sample below). Next, the handler routine will need to load the
faulting lw instruction and determine which register it intended to write. (That is, the instruction will be read from memory as
though it were data and the rt field value would be extracted using a srl and an andi.) The handler will place the value in that
register, or in the part of the exception handler stack holding the saved value of that register. Finally, the exception handler will
resume execution of the interrupted code at the instruction after the faulting load. See the example below.

(In this solution four lbu instructions were used. Some ISAs provide instructions specifically intended to load and piece together a
misaligned value.)

# SOLUTION -- Example of code raising exception.

#

add r1, r1, r2

lw r3, 0(r1) # Note: r1 may not be aligned. If not, handler called ..

and r8, r8, r3 # .. and later returns to this instruction with r3 loaded.

# SOLUTION -- Part of handler that loads 32-bit value in four pieces.

# Register usage:

# r1: Attempted load address.

# r3: Register to put load value in.

# Load the value without risk of misalignment. (For big-endian byte order.)

lbu r10, 0(r1) # Most significant byte.

lbu r11, 1(r1)

lbu r12, 2(r1)

lbu r3, 3(r1) # Least significant byte.

sll r10, r10, 24 # Move byte to most-significant position.

or r3, r3, r10 # Combine with least-significant byte.

sll r11, r11, 16

or r3, r3, r11

sll r12, r12, 8

jr r31

or r3, r3, r12
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�Explain why it would be impossible if loads only raised deferred exceptions. (Assume that aligned
accesses work fine with such loads.)

In a deferred exception the handler starts after the faulting instruction and at least one following instruction finishes execution. Any
value written by the faulting instruction will not be correct. (In a precise exception the handler is called after instructions up to but
not including the faulting instruction finish execution. All values written will be correct.)

For the handler to emulate unaligned loads it needs to resume execution at the instruction following the unaligned load. In the
solution example above the lw is the faulting instruction and the and is the instruction at which execution needs to resume for the
program to work correctly. If the exception were deferred then by definition at least the and and possibly several other instructions
would execute before the handler were called. In that case the old value of r8 would be lost and so there would be no way to return
to the and and execute the code correctly. For example, suppose r8 were 7 (a correct value) and r3 were 0 (incorrect, assume that
the correct value is 17) when the and executes the first time (before the handler is called). The execution of and sets r8 to 0.
Suppose that the handler is called and sets r3 to 17 (a correct value) and then returns to the and. The second execution of and
sets r8 to 0 (the value of 0 & 17) when it should be set to 1 (the value of 7 & 17).
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(e) MIPS has a slt (set less than) instruction, but doesn’t have a sge (set greater than or equal to)
instruction. Why not?

�Why doesn’t MIPS have an sge instruction?

Because the exact same operation can be obtained by swapping the two source operands of slt. For example, if you need a sge

r1, r2, r3 just use slt r1, r3, r2. There is no need to waste a precious opcode.

(f) Note: The following question was asked about two months after in-person classes were ended for the
CoViD-19 pandemic.

Perhaps many of us are wishing we could go back in time. (Not to warn people, that’s obviously futile.)
Wish granted. You are in a meeting (in person, not Zoom) with future Turing Prize winners discussing
which features to put into their new [airquotes] “RISC” ISA, MIPS.

One attendee is advocating for the inclusion of magnitude comparison branch instructions such as bgt r1,r2

TARG (branch if r1 greater than r2). But many others oppose the idea because it would have too much critical
path impact. “We can include bgt with zero critical-path impact if we use a surprisingly simple but effective
technique called branch prediction,” you say.

�Explain how branch prediction can remove the critical path impact that was a concern at the meeting.

MIPS was designed so that branches could be resolved in the ID stage of a five-stage pipeline. For any branch instruction that tests
register values, the test (such as greater-than) can’t start until the register values are retrieved. Since the register values are retrieved
in the ID stage the critical path includes both the retrieval and the test. This limited the kinds of two-register tests that branches
could do to equality comparison but not magnitude comparison. With branch prediction the test is moved from the ID stage to
the EX stage. In the EX stage the test starts near the beginning of the clock cycle (as do all other ALU operations) and so more
time-consuming tests such as magnitude comparison can easily be done.

(In class we talk about performing branch prediction in the IF stage, which is the appropriate place to predict for most implementa-
tions.)

�Was the phrase branch prediction an anachronism at that fictional meeting? Web-search freely to answer
this question.

No, branch prediction was in use for years before MIPS was designed (in the mid 1980s). For example, see James Smith’s 1981 survey
[1] appearing in the 8th International Symposium on Computer Architecture, one of the leading conferences in the area.

[1] Smith, J. E. A study of branch prediction strategies. In Proceedings of the 8th Annual Symposium
on Computer Architecture (Washington, DC, USA, 1981), ISCA ’81, IEEE Computer Society Press,
p. 135148. https://dl.acm.org/doi/10.5555/800052.801871.
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Problem 1: [7 pts] The MIPS pipeline below implements a hypothetical MIPS×jr instruction, the hardware
for ×jr is shown in blue. Don’t confuse ×jr with the existing MIPS jr instruction.
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10 Warning:

blah, blah,

blah.!!!!!!!
format
immed

(a) The diagram shows a warning in red with lots of arrows and an explanation. Alas, the explanation is
covered by the format immed box. Assume that the hardware for×jr is correct. Then what can the warning
be about?

� Reason for warning:

The warning is probably about the critical path which passes through the IF-stage memory port. The address input to a memory
port should be available at the beginning of a clock cycle but in the×jr implementation the IF-stage memory port address is taken
from the register file, and that adds too much to the critical path.

For the record, the text under the format immed box says, “Blah, blah, blah!!!”.
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Problem 1, continued: (b) Note: This part did not appear on the exam because the exam was already long
enough. There are two differences between ×jr and jr. Fragment A, below, uses jr. Complete Fragment
B so that it uses ×jr, making changes to account for these two differences. Fragment B must jump to the
same location and perform the same computation as Fragment A. Register r9 can be used for intermediate
values. Hint: The differences are when and where.
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� Complete code, or for partial credit explain two differences.

Solution appears below, and the implementation of the ordinary jr instruction is shown above in purple. The jr r1 instruction
jumps to the address in r1 after the delay-slot instruction, in this case addi r2,r2,4, is executed. The hardware in purple above
shows the path used by the jr instruction. It carries rsv (the rs value, in the example the value of r1) from the register file (in
ID) to the PC mux (in IF). As is done with the branch and jump targets, the two least-significant bits of the rsv are not used since

these will be zero for any valid instruction address. The ×jr r1 instruction is different in two ways. First, it jumps to the address
4*r1. That’s because unlike the path used by jr, the two-least significant bits of the register value are retained and two zeros are
prepended to the less-significant side at the input to the IF-stage memory port. The second difference is that the target address for
×jr is at the input to the memory port when×jr is in ID, meaning that the target is in IF while the×jr is in ID, and so the target
is fetched one cycle earlier than jr (and one cycle earlier than the branch instructions). This also means that×jr lacks a delay-slot.

So that Fragment B jumps to the same address as Fragment A, the address must be shifted right by two bits. Because ×jr lacks a
delay slot, the delay slot instruction for jr, addi, must be moved before the×jr.

# Fragment A -- Uses jr. Don’t modify it.

lw r1, 0(r6)

jr r1

addi r2, r2, 4

xor r3, r4, r5

# Fragment B -- � Finish code below, use ×jr SOLUTION

lw r1, 0(r6) # Load address of instruction to jump to.

srl r1, r1, 2 # Divide address by 4.

addi r2, r2, 4 # ×jr lacks a delay slot, so move addi before ×jr
×jr r1 # Jump to target

xor r3, r4, r5 # Not executed. (Unless reached by some other code.)
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Problem 2: [17 pts] The code below executes on the illustrated implementation. The implementation has
hardware that enables the bne to avoid the stall, but that hardware is not shown.

format
immed
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add r3 → sw

Cycle 4, lhu → add r3 Cycle 6, add r3 → slt

(a) The illustration has several circled letters pointing to wires. In the diagram below show the values on
those wires on each cycle the value is used.

� Show values for � A, � B, and � C, show these � for each cycle used.

Solution appears below. In cycle 7 the B row (the immediate) shows the branch displacement, -6 instructions. For the C row it is
important to show zeros for instructions that don’t write a register, sw and bne.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11

lhu r1, 8(r2) IF ID EX ME WB

addi r2, r2, 2 IF ID EX ME WB

add r3, r1, r3 IF ID EX ME WB

sw r3, 12(r6) IF ID EX ME WB

slt r5, r3, r4 IF ID EX ME WB

bne r5, r0 LOOP IF ID EX ME WB # No stall? Next prob.

addi r6, r6, 4 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

A: 2 2 1 6 3 5 6 # SOLUTION

B: 8 2 12 -6 4 # SOLUTION

C: 1 2 3 0 5 0 6 # SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

(b) For each dependency below highlight, on the illustration, the multiplexor input that provides the bypassed
value. Also indicate the cycle in which the bypass occurs.

� Dependence from lhu to add r3. � Cycle when bypass used.

� Dependence from add r3 to sw. � Cycle when bypass used.

� Dependence from add r3 to slt. � Cycle when bypass used.

Solution appears in the implementation diagram in purple.
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Problem 3: [27 pts] In the previous problem the bne did not stall despite a dependence with slt. Code
with a similar dependence appears below. Add hardware to the implementation below that correctly sets
the Taken signal for such slt rX, rY, rZ to bne rX, r0 dependencies. Branches without the dependence
should not be effected. Note that the result of slt is 0 or 1. Some useful hardware is shown in blue.

LOOP: # Cycle 0 1 2 3 4 5 6

slt r5, r3, r4 IF ID EX ME WB # Note: r5 is 0 or 1.

bne r5, r0 LOOP IF ID EX ME WB

addi r6, r6, 4 IF ID EX ME WB

� Add logic to set Taken correctly for the dependence described above.

� Avoid costly solutions. No part of the solution should operate on 32 bits.

� Check that the second branch register is r0. � Branches without the dependence should not be effected.

Solution appears below in purple and orange. Sample instructions are shown in green. The inputs to the big AND gate from top to
bottom check for the following: (1) that the instruction in ID is a bne, (2) that the rt register of the branch is r0, (3) that the
rs register of the branch is the same as the destination register of the instruction in EX, (4) that the instruction in EX is an slt,
and (5) that the slt result is 1 (meaning that the condition is true).

To reduce hardware cost the logic checks whether rt=0 (a 5-bit comparison) rather than rtv=0 (a 32-bit comparison).

Note: The following is the solution to 2019 Homework 5 Problem 2. If the slt/bne dependence is detected then
the branch taken condition computed using rsv and rtv (using the = logic) needs to be ignored. To do so a new bubbled input,
shown in orange, has been added to the AND gate computing the bne taken condition. That input only checks for the dependence
(ID-stage rs with EX-stage destination). (It doesn’t matter what instruction is in the EX stage, if there’s a dependence that taken
signal should be suppressed.)

I�

Addr
25:21

20:16

IF

ID EX

WB

ME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2
2'b0

PC

+ 15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 i� ���

i� ���

o�� �	
26

j��
t��

���

01

00

10

msb lsb

msb

lsb

f��mat
�����

=

Ta�en

�� ���

0:0

=
25:21 rs

5'b0
20:16 rt

bne rX, � s!" �#, �$, �Z

D%&'( )*e +D-*(./e 0&e 1e23*3%& 4he& 1e5e&1e&2e 1e(e2(e1d

5

← → Spring 2019 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4720/2019/mt_sol.pdf


Problem 4: [12 pts] The loop below writes zeros to a range of memory.

# Call Value: r1 is address of the start of the region to zero.

# Call Value: r3 is the number of bytes to zero.

add r2, r1, r3 # Memory location at which to stop.

addi r2, r2, -1

LOOP:

sb r0, 0(r1)

bne r1, r2, LOOP

addi r1, r1, 1

(a) Compute the rate that it zeros memory when it runs on our bypassed 5-stage pipeline. Use an appropriate
unit.

� Rate at which loop above copies data.

Short answer: Rate is 1/(7 − 3) = .25 bytes per cycle.

Appearing below is a pipeline diagram showing the execution of the loop. The first iteration completes without a stall, but the
dependence from the addi to the bne causes a one-cycle stall on subsequent iterations. The time for the second iteration is
7 − 3 = 4 cyc and we can expect subsequent iterations to also take 4 cycles. Since only one byte is zeroed the rate is 1

4
B
cyc .

# SOLUTION

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

sb r0, 0(r1) IF ID EX ME WB

bne r1, r2, LOOP IF ID EX ME WB

addi r1, r1, 1 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

sb r0, 0(r1) IF ID EX ME WB

bne r1, r2, LOOP IF ID -> EX ME WB

addi r1, r1, 1 IF -> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

sb r0, 0(r1) IF ID EX ME WB

bne r1, r2, LOOP IF ID -> EX ME WB

addi r1, r1, 1 IF -> ID EX ME WB
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(b) Apply loop unrolling and make other changes so that the code writes at the rate of two bytes per clock
cycle, assuming favorable values of r1 and r3. State those assumptions.

� Show unrolled loop and make other changes for 2 byte per cycle copy.

Short Answer: The unrolled loop appears below.

Explanation: To increase the rate at which memory is zeroed two sw instructions are used instead of one sb. The second sw uses
an offset of 4, avoiding the need for a second addi instruction. Since the loop body has one more instruction than the original loop
the branch does not need to stall, so the loop still takes 4 cycles per iteration. The loop zeroes memory at the rate of 8/4 = 2 bytes
per cycle.

� Assumption about r1: is a multiple of 4. (See below)

� Assumption about r3: is a multiple of 8. (See below)

Because the base address of lw must be 4-byte aligned, r1 must be a multiple of 4. Because the address (r1) is incremented by 8
each iteration, the number of bytes to zero must be a multiple of 8.

# Call Value: r1 is address of the start of the region to zero.

# Call Value: r3 is the number of bytes to zero.

add r2, r1, r3

# SOLUTION - Code

addi r2, r2, -8

LOOP:

sw r0, 0(r1)

sw r0, 4(r1)

bne r1, r2, LOOP

addi r1, r1, 8

# Execution of solution code.

#

add r2, r1, r3 IF ID EX ME WB

addi r2, r2, -8 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 Time: 6-2 = 4 cycles

sw r0, 0(r1) IF ID EX ME WB

sw r0, 4(r1) IF ID EX ME WB

bne r1, r2, LOOP IF ID EX ME WB

addi r1, r1, 8 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

sw r0, 0(r1) IF ID EX ME WB

sw r0, 4(r1) IF ID EX ME WB

bne r1, r2, LOOP IF ID EX ME WB

addi r1, r1, 8 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

7
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Problem 5: [12 pts] The MIPS code below adds an integer value loaded from memory to the constant π.

(a) Suppose no other instructions needed the value of a0 that was loaded. Modify the code to use fewer
instructions.

� Use fewer instructions.

Solution appears below. Since the value loaded into a0 is only used by the FP code, it would be more efficient to load it into a FP
register (using lwc1) and so avoid the need of an mtc1 instruction to move the value from a0 to a FP register.

.data
famous_constant: # 0x10010300

.float 3.141592654

.text
pie:

# lw $a0, 0($t2) # SOLUTION - Replace lw ..

lwc1 $f1, 0($t2) # .. with a lwc1

lui $t0, 0x1001

lwc1 $f0, 0x300($t0)

# mtc1 $f1, $a0 # SOLUTION - Remove mtc1, since val already in f1.

cvt.s.w $f2, $f1

add.s $f3, $f0, $f2

(b) Modify the code below so that it would run correctly if a0 were a floating-point value. Also use fewer
instructions.

� Fix code so it works correctly if a0 is FP.

Solution appears below. Since the loaded value is already FP there is no need for the conversion instruction, cvt.s. As in the
previous problem, the value is loaded directly into a FP register, avoiding a need for the mtc1.

.data
famous_constant: # 0x10010300

.float 3.141592654

.text
pie:

# lw $a0, 0($t2) # a0 is FP! � Fix code below for FP a0.

lwc1 $f2, 0($t2) # SOLUTION: Replace lw with lwc1.

lui $t0, 0x1001

lwc1 $f0, 0x300($t0)

# mtc1 $f1, $a0 # SOLUTION - Don’t need move insn, val in a FP reg.

# cvt.s.w $f2, $f1 # SOLUTION - Don’t need convert, it’s already in FP repr.

add.s $f3, $f0, $f2

8
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Problem 6: [25 pts] Answer each question below.

(a) SPARC divides the 32 integer registers an instruction can access into four groups, %l0 to %l7, %g0
to %g7, %o0 to %o7, and %i0 to %i7. The names reflect how they might be used in programs, and how
SPARC’s register windowing feature affects them when save and restore instructions are executed. Explain
what the first letter of each group stands for. Explain what happens to the values in those registers when
save or restore instruction is executed.

� Word that l, g, o, and i each stand for.

They are: local, global, output, input.

What happens to values on a save or restore.

Values in the global (g) registers aren’t changed by save and restore.

FINISH.

(b) Instructions like addi r1, r1, 1 occur frequently in programs. For this add-one-to-a-register operation
CISC ISAs have a specialized instruction, for example inc r1. MIPS lacks such an increment instruction.

� Why do MIPS and other RISC ISAs lack such an instruction?

Because there would be no benefit to having an inc instruction. The addi instruction would do exactly the same thing. Furthermore,
a new inc instruction would require a new opcode, and there are only a limited number of opcodes, so such an opcode would be
wasted.

� Why do CISC ISAs have such an instruction?

� What is the benefit that RISC ISAs don’t realize?

Short Answer: A CISC inc instruction would be shorter than a CISC add instruction, and so programs using inc would be shorter.

Explanation: CISC ISAs have variable-length instructions. So an inc r1 instruction would take less space than an addi r1,

r1, 1 since there would be no need to specify the increment amount (it’s always 1) and there would be no need to list a separate
source and destination registers (since they’d be the same).

(c) A CPU design team has an area budget that they can use for bypass paths. There’s not enough area for
all the bypass paths they’d like. They are simulating these design alternatives to determine which is best.

Explain the role that the compiler people have in this process.

� Role for compiler writers in deciding on bypass paths.

They need to provide back-ends for each alternative design that optimizes taking into account the bypass paths they provide. By
doing so compiled code would have fewer stalls than a compiler that optimized for an old design. This would enable the team to
properly assess how well each set of bypass paths performs.

9
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(d) Provide examples for the following common optimizations. Show code to which this optimization can
apply and how it is optimized.

� Dead-code elimination. � Example code and code after optimization.

Solution appears below. Because planb is false the if part is never executed, so after DCE only the else part remains.

// SOLUTION: Before DCE

bool planb = false;

if ( planb ) x = value >> ( log2p1(y) >> 1 ); else x = sqrt(y);

// After DCE.

// Note: Code below would be in compiler’s intermediate representation.

x = sqrt(y);

� Constant propagation and folding. � Example code and code after optimization.

Solution appears below.

// SOLUTION: Before constant propagation and folding.

int wp_lg = 5;

int wp_sz = 1 << wp_lg;

int wp_num = tid / wp_sz;

// After optimization.

// Note: Code below would be in compiler’s intermediate representation.

int wp_num = tid / 32;

// Note: A strength reduction optimization would replace divide by a right shift.

(e) Described below are three tuning levels for C++ programs, two of which are SPECcpu tuning levels the
other was just made up. Identify the one which is not a SPEC tuning level, and explain why it isn’t.

Level A: Each C++ program is compiled without optimization.

� Is it a SPEC level? No � If so, name it:

� Indicate the users that will benefit from this level, or why no one would benefit.

Not appropriate for anyone, because almost everyone runs programs with some optimization.

Level B: Each C++ program can have its own set of optimization flags.

� Is it a SPEC level? Yes � If so, name it: Peak

� Indicate the users that will benefit from this level, or why no one would benefit.

Peak. For those who plan to have highly motivated experts tune their code.

Level C: All C++ programs must be compiled with the same set of optimization flags.

� Is it a SPEC level? Yes � If so, name it: Base

� Indicate the users that will benefit from this level, or why no one would benefit.

Base. For those who plan to run code prepared with a typical level of effort.

10
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Problem 1: (22 pts) Notice that the execution of the code fragment below suffers two stalls when executing
on our 2-way superscalar MIPS implementation. The add stalls due to a dependence with or and the sw

stalls due to a dependence with add. The MIPS implementation has three unconnected logic blocks that
may be useful. Each must be connected to the opcode and func of the instruction in the appropriate slot.
The output of the =or is 1 if the instruction is an or. The output of uses rs is 1 if the instruction uses

the rs register as a source, likewise for uses rt .

# Cycle 0 1 2 3 4 5 6 7 8

or r1, r2, r0 IF ID EX ME WB

add r3, r1, r4 IF ID -> EX ME WB

sw r3, 4(r6) IF -> ID ----> EX ME WB

addi r6, r6, 8 IF -> ID ----> EX ME WB

(a) In the execution below the sw no longer stalls for r3. Add a bypass path that can be used by sw to get
the r3 value in the execution below but not for other cases.

�Add bypass path for r3 so sw executes as shown. �Label the path “Part a”, and do not add unneeded
bypass paths.

Solution appears in blue (several pages ahead). The sw needs the value of r3 written by the add. A bypass path was added to the
rtv mux in the EX stage, the path connects to the slot 1 instruction in the ME stage. As can be seen from the execution below the
add is in slot 1 and when the sw is in EX (in cycle 4) the add is in ME, and so it can use the added bypass path.

# Cycle 0 1 2 3 4 5 6 7 8

or r1, r2, r0 IF ID EX ME WB

add r3, r1, r4 IF ID -> EX ME WB

sw r3, 4(r6) IF -> ID EX ME WB

addi r6, r6, 8 IF -> ID EX ME WB

(b) The add stalls due to the dependence with or carried by r1. Add control logic that detects such a
dependence and connect it to the Stall ID OR gate at the lower right. The output of the logic should be 1

for any true dependence between two instructions in a group.

�Provide a stall signal when there is a dependence between the two instructions in ID.

Solution appears in green on the diagram a page or two ahead. The =’ comparison units check whether the destination of the

instruction in slot 0 matches the rs or rt register of the instruction in slot 1. The uses logic checks whether the rs and rt fields
of the slot-1 instruction specify sources. (In many classroom examples it is assumed that every instruction uses rs as a source, here
we are being more careful.)

2
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(c) Notice that because the second operand is r0, the or just copies the value in r2 to r1. Therefore the
add could have used r2 instead of r1 and avoided the stall. Design hardware to perform such substitutions.
The hardware, including control logic, should detect when an or is used as a copy (as above) and if so avoid
the stall and deliver the correct source operand to the slot-1 instruction.

# Cycle 0 1 2 3 4 5

or r1, r2, r0 IF ID EX ME WB

add r3, r1, r4 IF ID EX ME WB

sw r3, 4(r6) IF ID EX ME WB

addi r6, r6, 8 IF ID EX ME WB

�Detect the substitution opportunity and �suppress the Stall ID signal (from the previous part).

�Make sure the slot-1 instruction uses the correct value �and that both instructions execute correctly.

�Of course, pay attention to cost. Nothing added for this problem should touch 32 bits.

Solution appears a page or two ahead in purple. The logic at the lower left checks for a slot-0 or using r0 as the rt operand. If
such a copy is found and if the rs source of the slot-1 instruction uses or destination the stall is suppressed and the rs register
number of the slot 1 instruction is substituted. The register number is 5 bits, while the value is 32 bits, so it is far less expensive
to substitute the number than the value.

3
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(d) The following is a bonus question that did not appear on the original exam. Bonus for whom you ask?
Definitely a bonus for those who took the class in the Spring 2019 semester and took a look at the posted
exam. Those (you) will have an opportunity to make connections between concepts learned in the class and
that will provide a deeper understanding and longer retention. Yes, the substitution hardware eliminates
a stall. Suppose that r2 had to be copied into r1. Provide an argument that substitution hardware is
a waste of resources, illustrate with an example. Provide another argument—also with an example—that
substitution hardware eliminates a stall that cannot be eliminated in another way. Whether substitution
is a good idea will depend on whether the example illustrating its utility is representative of realistically
compiled actual code.

�Argument against substitution hardware. �Code example.

The substitution hardware is not needed if the compiler can use the source register of the substitution instruction. For the code
sample above the compiler would emit add r3, r2, r4, eliminating the dependence. See the code below. (It is always better to
avoid a stall using a compiler optimization than by hardware changes.)

# Cycle 0 1 2 3 4 5 # SOLUTION. No stall, no costly hardware needed!

or r1, r2, r0 IF ID EX ME WB

add r3, r2, r4 IF ID EX ME WB # Replacement for add r3, r1, r4.

sw r3, 4(r6) IF ID EX ME WB

addi r6, r6, 8 IF ID EX ME WB

�Argument for substitution hardware. �Code example.

The compiler cannot easily perform substitution when the two instructions are in different basic blocks. For example, in the code
below the compiler cannot just replace add r3, r1, r4 with add r3, r2, r4 because that would not be correct if the bne
were not taken. This is a weak example for the substitution hardware because the compiler could prepare two code sequences, both
containing the add, sw, and addi instructions.

# SOLUTION

bne r8, r9 TARG # If branch taken add uses r1, if not taken r2.

nop

or r1, r2, r0

TARG:

add r3, r1, r4

sw r3, 4(r6)

addi r6, r6, 8

(A basic block is a sequence of instruction that can only have a control transfer [such as a branch] at the end, and which can only
have a branch label [labels TARG and LOOP are frequently used in class] at the beginning. A basic block always starts with the first
instruction and always ends with the last instruction.)
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Solution to hardware questions appears below. A discussion of the solution appears on prior pages.
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Instruction in slot 0 copies rs to dest.

Slot 1 rs uses slot 0 dest.

Slot 1 rt uses slot 0 dest.

# SOLUTION: Use this execution to help in understanding the solution.

# Cycle 0 1 2 3 4 5

or r1, r2, r0 IF ID EX ME WB

add r3, r1, r4 IF ID EX ME WB

sw r3, 4(r6) IF ID EX ME WB

addi r6, r6, 8 IF ID EX ME WB

# Cycle 0 1 2 3 4 5
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Problem 2: (22 pts) Appearing below is our MIPS FP pipeline with the comparison units added.

(a) Show the execution of the following fragment on this hardware.

�Show execution up to second fetch of lwc1. �Pay attention to dependencies, including the FP condition.

Solution appears below. The second fetch of lwc1 is shown using static instruction order. Note that c.lt.s depends on add.s

f2 (carried by f2) and that bc1t depends on c.lt.s (carried by fcc).

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

LOOP:

lwc1 f1, 0(r1) IF ID EX ME WF IF

add.s f2, f1, f2 IF ID -> A1 A2 A3 A4 WF

add.s f4, f1, f3 IF -> ID A1 A2 A3 A4 WF

c.lt.s f2, f6 IF ID ----> C1 C2 WF

bc1t LOOP IF ----> ID ----> EX ME WB

addi r1, r1, 4 IF ----> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

swc1 f2, 4(r1)

and r1, r1, r9

(b) Notice that there are two circled letters (in blue) in the lower part of the diagram. For each letter provide
a code fragment that causes the labeled wire to go to logic 1.

�Code fragment that makes A logic 1.

�Show its execution and �indicate cycle at which A is 1.

Solution appears below. Wire A will be 1 in cycle 3, that’s when the lwc1 is in ID while the add is in A2. The lwc1 must stall
one cycle to avoid a WF structural hazard in cycle 6.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7

add.s f1, f2, f3 IF ID A1 A2 A3 A4 WF

xor r1, r2, r3 IF ID EX ME WB

lwc1 f4, 0(r4) IF ID -> EW ME WF

# Cycle 0 1 2 3 4 5 6 7

�Code fragment that makes B logic 1.

�Show its execution and �indicate cycle at which B is 1.

Solution appears below. Wire B will be 1 in cycles 2 and 3, that’s when bc1t has to wait for the comparison result to reach the
FCC.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7

c.lt.s f0, f1 IF ID C1 C2 WF

bc1t TARG IF ID ----> EX ME WB
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Problem 3: (21 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on two systems, each with a different branch
predictor. All systems use a 212 entry BHT. One system has a bimodal predictor and one system has a local
predictor with an 8-outcome local history.

Branch B1 has a repeating pattern, two repetitions are shown. Branch B2 repeatedly and randomly emits
three sequences, a, b, and c. Sequence a is NT, sequence b is NNNTT (five outcomes), and sequence c is
NNNN NTTT (eight outcomes). After finishing one sequence, a new one is started. Sequence a is chosen with
probability .4, sequence b with probability .5, and c with probability .1.

Here are some examples of B2 outcomes, with spaces placed between the sequences for clarity. Example 1:
NT NNNTT NT NNNNNTTT (that’s a, b, a, c). Example 2: NNNNNTTT NT NT NNNTT NNNTT (that’s c, a, a, b, b).

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: T N N N N T T T N N N N T T

B2: (a, p=.4): NT (b, p=.5): NNNT T (c, p=.1): NNNN NTTT

�What is the accuracy of the bimodal predictor on branch B1?

SOLUTION WORK

0 1 0 0 0 0 1 2 3 2 1 0 0 1 2 <- 2-bit counter values

B1: T N N N N T T T N N N N T T

x x x x x x x <- Prediction outcomes

---------------------- <- First occurrence repeating pattern.

Short answer: 3
7 , see work above.

Explanation: The line just below SOLUTION WORK (above) shows 2-bit counter values for B1, assuming that the counter starts at
zero. The prediction outcomes are shown below the branch outcomes. To compute the prediction ratio we need to use a repeating
pattern. Such a pattern is underlined. Note that the counter value at the start and end is the same and that the underlined part

corresponds to a set of repeating branch outcomes. The prediction accuracy is (7−4)
7 = 3

7 .

�What is the accuracy of the local predictor on branch B1?

The pattern can easily fit the 8-outcome local history, so the accuracy is 100%.

�What is the accuracy of the local predictor on branch B2?

First, lets number the outcomes on each pattern:

a: 01

NT

b: 0123 4

NNNT T

c: 0123 4567

NNNN NTTT

8
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Start by considering the prediction of the first outcome of each of the three patterns. Then because one of the three patterns has
just finished the local history at this point will be either *****TNT, **TNNNTT, or NNNNNTTT, where the * can be either N or
T. The first outcome of all three are N and so the PHT entries for all the local histories will be zero (after warmup) and so the first
outcome of all three patterns will be predicted correctly (assuming that the local histories only occur at the beginning, which is easy
to verify). After the first outcome is predicted the local histories will be one of ****TNTN, *TNNNTTN, or NNNNTTTN. If pattern
a is occurring the next outcome is T, otherwise N. Pattern a occurs with probability .4 and so it is more likely that an N occurs.
The PHT entries for the local histories are more likely to be 0 or 1, but it’s not certain because it is possible that there are two
consecutive occurrences of a. So for pattern a the first outcome is predicted with 100% accuracy and the second outcome at a lower
accuracy, which can be approximated as 50% and which can be solved exactly using a Markov chain.

If outcome 1, the second outcome using the number above, is N then outcome 2 will be predicted with 100% accuracy because it is
always N. That is the local histories ***TNTNN, TNNNTTNN, NNNTTTNN only appear when the next outcome is N and so the PHT
entries will reach zero after warmup. Outcome 3 will be predicted T nearly 100% of the time because b is much more likely than c.
Outcomes 4 and later will be predicted perfectly because they are unambiguous.

Here is the number of correct predictions for each pattern: a, 1 + 0.5 = 1.5; b 1 + 0.5 + 1 + 1 + 1 = 4.5, and c=1 + 0.5 +
1 + 0 + 1 + 1 + 1 + 1 = 6.5. The accuracy during a is 1.5

2 = .75, during b is 4.5
5 = .9, and during c is 6.5

8 = .8125. To
compute the overall prediction accuracy we need to weight these by how frequently they occur. That is:

.4 × 1.5 + .5 × 4.5 + .1 × 6.5

.4 × 2 + .5 × 5 + .1 × 8
= .853659

.

�What is the accuracy of the bimodal predictor on branch B2?

The problem is solved by first considering the effect that each pattern has on the 2-bit counter. Consider pattern b. It starts with
three N’s guaranteeing that the counter will be zero when the first T is predicted, and that the counter will be 2 after the second
T. Similarly, the counter will be 3 after sequence c completes. Unless the counter is zero, pattern a does not change the counter.
Therefore, at the start of a sequence the counter will be either 2 or 3. It will be 2 with probability P (k = 2) = .5

.5+.1 = 5
6 and 3

with probability P (k = 3) = .1
.5+.1 = 1

6 , where P (k = x) is the probability that the 2-bit counter is x. Let P (a|k) denote the
prediction accuracy during pattern a given that the 2-bit counter value is k and remember that k ∈ { 2, 3 }. Then P (a|2) = 0,
P (a|3) = 1

2 , P (b|2) = 2
5 , P (b|3) = 1

5 , P (c|2) = 5
8 , and P (c|3) = 4

8 . The probabilities need to be properly combined.
First,

P (�|a) = P (a|2)P (k = 2) + P (a|3)P (k = 3) = 0 × 5

6
+

1

2

1

6
,

where P (�|a) is the prediction accuracy during pattern a. Similarly, P (�|b) = 2
5
5
6 + 1

5
1
6 = 11

30 and P (�|c) = 5
8
5
6 + 4

8
1
6 = 29

48 .

Each pattern’s probability needs to be weighted by how often the pattern occurs. Pattern a has a respectable probability of .4
but only two outcomes, so its relative contribution is .4 × 2. The relative contribution of patterns b and c are .5 × 5 and
.1 × 8. If we arrived at some random time and waited for the next B2 execution the probability of B2 being in pattern a would be

.4×2
.4×2+.5×5+.1×8 = .8

4.1 ≈ .195.

So the overall branch prediction ratio for B2 is

P (�|B2) =
P (�|a).4 × 2 + P (�|b).5 × 5 + P (�|c).1 × 8

.4 × 2 + .5 × 5 + .1 × 8

=
44

123
≈ .357724
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(b) Appearing below is a diagram of our global predictor. Notice that the GHR is not updated until the
branch resolves. Modify the predictor so that the GHR is updated when the branch is being predicted (in
IF) using the predicted outcome. When the branch resolves check whether the prediction was correct, and
if not (if it was mispredicted) write the correct history into the GHR.

The following is interesting background material omitted from the original exam. The importance of updating
the GHR using the predicted outcome increases with the number of post-branch instructions that are in the
pipeline at the time a branch resolves. Consider our five-stage pipeline with branches resolving in ME. In
that case there are just three post-branch instructions. For an 8-way superscalar pipeline there would be
3 × 8 = 24 instructions. One or more of those 24 instructions could itself be a branch. In the unmodified
design below those branches would have been predicted with a GHR that lacked the outcome of the resolving
branch and those that followed. The problem is much greater in dynamically scheduled systems where over
100 instructions can be in flight. For that reason global-like predictors in dynamically scheduled systems use
designs like the one requested for this problem.

�Add hardware to detect whether the resolving branch has been mispredicted.

�During prediction write GHR based on prediction, �during resolve apply corrected GHR if branch
mispredicted.

Solution appears below in blue. The mux at the input to the GHR selects either an updated global history for the branch in IF (which
we hope to be the frequent case) or a corrected global history for the branch in ME (also identified as resolve). The latter case is
only used if the branch is mispredicted, which is determined by XORing the predicted and resolved outcomes (if they are different
the result is 1) and also making sure that the instruction in ME is a branch.
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Problem 4: (10 pts) The diagram below is for a 4MiB set-associative cache with a line size of 32B. The
character size is the usual 8 bits. Other information about the cache can be deduced using hints in the
diagram. Helpful facts: 4MiB = 222 B, 32 = 25.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

CPU

Addr

Data In

logic

hit

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

8B

40

39:18

17:3

39:18

17:5 17:5

17:3

�Complete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Address:

Tag

39 18

Index

17 5

Offset

4 3 2 0

�Associativity:

The associativity is 16 . The associativity is determined based on the given cache capacity, 222 bytes, and the capacity of an

individual data store, 218 bytes. Since the cache capacity is the sum of the data store sizes, the associativity must be 222

218 =
222−18 = 16.

�Memory Needed to Implement �Indicate Unit!!:

It’s the cache capacity, 4MiB plus 16 × 218−5 (40 − 18 + 1) b = 4MiB + 3014656 b.

�Show the bit categorization for a direct-mapped cache with the same line size and capacity as the cache
above.

Address:

Tag

39 22

Index

21 5

Offset

4 3 2 0
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The problem on this page is not based on the cache from Part a. The code in the problem belows run on a
cache with a line size of 64B (which is 26 B). The code fragment starts with the cache empty; consider only
accesses to the array.

(b) Find the hit ratio executing the code below.

int sum = 0;

int *a = 0x2000000; // sizeof(int) == 4

int ILIMIT = 1 << 11; // = 211

for ( int i=0; i<ILIMIT; i++ ) sum += a[ i ];

�What is the hit ratio running the code above? Show formula and briefly justify.

The line size of 26 = 64 bytes is given. The size of an array element, which is of type int, is 4 = 22 B, and so there are
26/22 = 26−2 = 24 = 16 elements per line. The first access, at i=0, will miss but bring in a line with 24 elements, and so the
next 24 − 1 = 15 accesses will be to data on the line, hits. The access at i=16 will miss and the process will repeat. Therefore

the hit ratio is 15
16 .
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Problem 5: (25 pts) Answer each question below.

(a) Appearing below are simple C routines and corresponding MIPS assembler code. C variable names match
the MIPS registers to which they were assigned. Register v0 is used for the return value. The first C routine,
proc1, operates on 32-bit signed integers. Further below are two similar C routines, proc2 and proc3, each
followed by the MIPS routine written for proc1—which is wrong because the MIPS routine is only correct
for proc1. Rewrite those MIPS routines for proc2 and proc3. Note that int16_t is a signed 16-bit integer
and uint8_t is an unsigned 8-bit integer.

int32_t proc1(int32_t *a0, int a1) { return a0[a1] + a0[a1+1]; }

# Code below is correct for proc1.

sll $t0, $a1, 2

add $t0, $t0, $a0

lw $v0, 0($t0)

lw $t1, 4($t0)

jr $ra

add $v0, $v0, $t1

�Modify MIPS code for proc2. Pay attention to �size and �sign. �Eliminate any unneeded
instructions.

int16_t proc2(int16_t *a0, int a1) { return a0[a1] + a0[a1+1]; }

# Modify MIPS code to be correct for proc2.

sll $t0, $a1, 2

add $t0, $t0, $a0

lw $v0, 0($t0)

lw $t1, 4($t0)

jr $ra

add $v0, $v0, $t1

## SOLUTION
sll $t0, $a1, 1 # Element size is 16 bits which is 2 chars, so mult by 2.

add $t0, $t0, $a0

lh $v0, 0($t0) # Because element is two bytes change lw to lh ..

lh $t1, 2($t0) # .. and change offset to 2.

jr $ra

add $v0, $v0, $t1

13
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�Modify MIPS code for proc2. Pay attention to �size and �sign. �Eliminate any unneeded
instructions.

uint8_t proc3(uint8_t *a0, int a1) { return a0[a1] + a0[a1+1]; }

# Modify MIPS code to be correct for proc3.

sll $t0, $a1, 2

add $t0, $t0, $a0

lw $v0, 0($t0)

lw $t1, 4($t0)

jr $ra

add $v0, $v0, $t1

## SOLUTION
# Element size is 8 bits, or one byte.

add $t0, $a1, $a0 # No need to scale a1 (mult by elt size) before adding it to a0.

lbu $v0, 0($t0) # Element size is one byte and unsigned ..

lbu $t1, 1($t0) # .. so load using lbu and use offset of 1.

jr $ra

add $v0, $v0, $t1
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(b) The statement below is based on a lack of understanding of how compilers work. Explain the misunder-
standing and otherwise correct the statement.

It takes a great deal of effort to write a correct and effective compiler optimizer. Therefore optimizers
are written for popular high-level languages such as C++11 but not for less popular languages such
as COBOL.

�The misunderstanding about compilers is:

. . . that optimization is performed on high-level code. In fact, optimization is mostly performed on an intermediate represen-
tation which typically is the same for all high-level languages the compiler can handle. So effort on optimizing the intermediate
representation would benefit all those high-level languages.

It is the compiler front end that translates high-level languages into the intermediate representation.

�How does that change the conclusion about which languages get better optimization?

The conclusion should be that improvements to a compiler’s optimizer benefit all high-level languages that the compiler supports.

(c) Chip A has five 4-way superscalar cores. Chip B has 20 scalar cores. The cores are similar to our pipelined
MIPS implementations. All cores use a 1GHz clock.

�Compute the peak execution rate in units of instructions per second of �Chip A and �Chip B.

Each chip can execute 20 instructions per cycle or 20 × 109 insn/s.

�Why would Chip A run faster on simple code, such as the routines used in the homework assignments?

It’s reasonable to assume that “simple” code is single-threaded (not parallelized) and so it will run on only one core. A Chip A core
executes at up to 4 IPC, ideally four times faster than a Chip B core which runs at just 1 IPC. Though in typical circumstances
Chip A won’t be 4 times faster, it will still be better than Chip B for single-thread code.

�Which chip might be less expensive? Explain.

Chip B. The number of ALU bypass paths (multiplexor inputs) for a w-way, five-stage implementation might be 4w2. The total
number of bypass paths for Chip A is 5× 4× 42 = 320 and the total number for Chip B is 20× 4× 12 = 80, which is a lot less.
What would you rather do, find the money to buy Chip A or parallelize your code so that it can run faster on Chip B? Of course,
the answer depends on the situation.
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(d) Answer the following questions about ISAs.

�Implementations of VLIW ISAs are supposed to be less costly and have higher performance than super-
scalar implementations of conventional ISAs. Is Intel Itanium a good example of that? Explain

No. Intel loaded Itanium with costly features, such as a large number of registers with rotating windows (for use in software pipelining),
so there was no apparent cost benefit. The performance was not spectacular either, some blamed contemporary compilers for not
being able to properly exploit those costly features.

�What important concept came out of the development IBM System/360?

That of an “Instruction Set Architecture (ISA)” (spoken using air-quotes) which would describe what the hardware would do, but
not how it would do it. The ISA was intended for implementations across a product line (low- to high-end) and for implementations
in the future, perhaps as long as 15 years.

They also made use of computers to prepare documentation. [I’m tempted to use my air quotes again for the phrase “word processing”
but I’m not sure it originated with the 360 project, and if I start looking into it now who knows when I’d get back to real work.]

�VAX is a good example of which ISA type?

CISC.

�True or false: IA-32 (a.k.a. x86) was widely adopted because of its elegant design? Explain.

False! The original ISA was not designed for a long life. It had many compromise features such as requiring a pair of registers to
specify a 32-bit memory address.

16
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(e) The SPECcpu benchmarks can be run at two tuning levels, base and peak. Base scores are useful to
those running software developed using typical practices.

�What kind of computer buyers should use peak scores?

Buyers who intend to develop or buy code highly tuned for the machine it will run on. Such buyers don’t mind spending lots of money
or effort to achieve 5% higher performance than those other guys get using standard development practices.

�How do the SPEC rules for preparing base and peak runs differ?

The base rules dictate that all benchmarks using the same language shall use the same optimization flags. This might reflect the
practice of an experienced programmer having a good set of flags (and for most, that would be -O3) that would be used from project
to project. The peak rules allow each benchmark to use different optimization flags. That might reflect the practice of a programmer
obsessively tweaking flags to get the best performance. (Most programmers in that situation should look to their own code first to
find opportunities for improving performance.)
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Problem 1: [25 pts] Appearing below is the solution to Homework 4, in which additional control logic is
added for the 12-bit bypass paths. The illustrated hardware generates stall signals for a load/use dependence
and for cases in which the value that needs to be bypassed is unknown or too wide for the 12-bit bypass
paths.

USE NEXT PAGE FOR SOLUTION

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

imm

NPC

ALU
Addr

Data

Data

Addr D In
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dst
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dstdst

 

is Type R
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Dest

=' ='rt 20:16

ByME

rtv

ByWB

imm

ByME

ByWB

00

11

2'b0

msb lsb

31:11

31:11

S
T
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L
L

abig

=

format
immed

15:0

= lb 

= lh 

= lw 

is Type I

='
='rs 25:21

lb
lwh

lb
lwh

= sb 

= sh 

= sw 

USE NEXT PAGE FOR SOLUTION

(a) Suppose, on further consideration, it was decided that full-sized, 32-bit bypass paths to the upper ALU
mux were needed. Elsewhere 12-bit bypass paths would be retained. Modify the hardware so that a stall
signal would no longer be generated for such too-big values to the upper ALU mux. Do so without affecting
stalls for the 12-bit bypass paths to the lower ALU mux and without affecting stalls for load/use dependencies.

# Should not stall anymore, regardless of size of r1.

add $r1, $r2, $r3

lw $r4, 0($r1)

# Should still stall.

lw $r5, 0($r6)

addi $r7, $r5, 9

# Should still stall if r1 too big for 12-bit bypasses.

add $r1, $r2, $r3

sub $r5, $r6, $r1
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�Remove hardware generating stall due to values too large for upper ALU bypass paths.

�Do not change stalls for load/use cases and bypasses to lower ALU mux.
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15:0
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is Type I

='
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= sh 

= sw 

Remove too-big

condition from

rs-can't-bypass-

from-ME

AND gate.

Completely remove

rs-can't-bypass-

from-WB AND gate.

Solution appears above in orange.
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Problem 1, continued:

(b) Suppose that the bypass paths to the EX-stage rtv mux were also just 12 bits wide. Modify the control
logic on the next page so that a stall signal would be generated when appropriate for store instructions.

Note that a lb produces a value small enough for the 12-bit bypass paths and that the store value needed
by a sb is always small enough for the 12-bit bypass paths. See the examples below.

USE NEXT PAGE FOR SOLUTION
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20:16

IF ID EX WBME
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15:0
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= lh 

= lw 

is Type I

='
='rs 25:21

lb
lwh

lb
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= sb 

= sh 

= sw 

USE NEXT PAGE FOR SOLUTION

# sb should not stall for this dependency.

add $r1, $r2, $r3 IF ID EX ME WB

sb $r1, 0($r4) IF ID EX ME WB

# sw should stall for one cycle.

lb $r1, 0($r5) IF ID EX ME WB

sw $r1, 0($r4) IF ID -> EX ME WB

# sh should stall only if r1 is too large.

add $r1, $r2, $r3 IF ID EX ME WB

sh $r1, 0($r4) IF ID ----> EX ME WB
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�Generate stall for unbypassable value from prior instructions to store value (not store address). �Consider
store size and any load size. (See examples on previous page.)

IR
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IF ID EX WBME
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is Type I
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lb
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= sb 
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= sw 

For purposes of rt-register stalls, treat sh and sw

in the same way as Type R instructions.

A sb now only stalls due

to a dependence with

a load in EX.

Solution appears above in orange.

5

← → Spring 2018 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4720/2018/mt_sol.pdf


Problem 2: [20 pts] Answer the following questions about two versions of our bypassed MIPS implemen-
tation.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM
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Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=
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29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

(a) Show the execution of the code below on the implementation illustrated above when the branch is taken.

� Show Execution.

�Check the code for dependencies.

# SOLUTION

# Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

lw r2, 0(r4) IF ID EX ME WB

addi r1, r2, 3 IF ID -> EX ME WB

bne r1, r3 TARG IF -> ID ----> EX ME WB

ori r1, r9, 10 IF ----> ID EX ME WB

andi r11, r1, 14

# Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TARG:

xor r20, r11, r1 IF ID EX ME WB

6
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(b) Each mux in the implementation below is labeled with a circled letter, and mux inputs are numbered.
Some wires are colored to make them easier to follow. Write code sequences that use the mux inputs as
requested below. Some code sequences may consist of a single instruction.

format
immed
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20:16
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F

�Use C0 to carry r1, elsewhere r1 not used.

# Cycle 0 1 2 3 4 5 SAMPLE SOLUTION

add r1, r2, r3 IF ID EX ME WB

sub r4, r1, r5 IF ID EX ME WB

�Use D3 to carry r1, elsewhere r1 not used.

Solution appears below. Note that the D mux is used to bypass an rt value and so r1 had to be the rt source of the or instruction.
In other words or r7, r1, r8 WOULD BE WRONG.

# Cycle 0 1 2 3 4 5 6 SOLUTION - D3 used in cycle 4.

add r1, r2, r3 IF ID EX ME WB

sub r4, r5, r6 IF ID EX ME WB

or r7, r8, r1 IF ID EX ME WB

�Use E0 to carry r1, elsewhere r1 not used.

Solution appears below. Note that the E mux is only used by store instructions, and that rtv is the store value, not the address.

# Cycle 0 1 2 3 4 5 SOLUTION - E0 used in cycle 3.

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r2) IF ID EX ME WB
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format
immed
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�Use A1.

Solution appears below. Only a branch uses the ID-stage adder and so the instruction must be some kind of a branch.

# Cycle 0 1 2 3 4 SOLUTION - A1 used in cycle 1.

beq r0, r0, TARG IF ID EX ME WB

�Use B0.

Solution appears below. B1 carries the rsv to the PC, and so this could only be used by a jr or jalr instruction. B0 carries a
value from the ALU to the PC, which could only reasonably be a bypassed value needed by a jr or jalr instruction. The existing
connections to the ALU would allow it to compute the branch target, but there’s already an ID-stage adder and so there is no need
to do so.

# Cycle 0 1 2 3 4 5 6 SOLUTION - B0 used in cycle 3.

addi r1, r1, 4 IF ID EX ME WB

sub r2, r3, r4 IF ID EX ME WB

jr r1 IF ID EX ME WB

�Use C1.

Solution appears below. The only instructions that would save the NPC would be a jal or a jalr. (There is already an ID-stage
adder for the branch, so a branch would not use NPC.)

# Cycle 0 1 2 3 4 SOLUTION - C1 used in cycle 2.

jal SOMEWHERE IF ID EX ME WB

8
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Problem 3: [15 pts] The floating point code fragment below computes f2 = f3 * f0 + f1, where f3 is
a call argument and f0 and f1 are loaded from a table. A total of eight instructions are used to load the
constants into f0 and f1. Re-write the code so that fewer instructions are used. It is possible to load both
registers using a total of two instructions.

�Load constants into f0 and f1 using two or three instructions.

�The constants must be loaded from the table.

.data

famous_constants: # 0x10010300

.float 2.718282818

.float 3.141592654

.text

pie:
# Load f0 with first element of table.

lui $t0, 0x1001

ori $t0, $t0, 0x300

lw $t1, 0($t0)

mtc1 $t1, $f0

# Load f1 with second element of table.

lui $t0, 0x1001

ori $t0, $t0, 0x304

lw $t1, 0($t0)

mtc1 $t1, $f1

# Don’t modify the code below this line.

mul.s $f2, $f3, $f0

add.s $f2, $f2, $f1

Solution on next page.

10
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Two solutions appear below, A and B. In both solutions mtc1 instructions are avoided by loading directly into floating-point registers.
The ori instructions are avoided by using the load offset to add on the lower 16 bits of the famous constants table address. In
Solution A a ldc1 instruction is used to load both of the floating-point registers with just one instruction. Solution B uses two
instructions.

Grading Note: The idea of using a ldc1 to load both registers was from a student’s solution, my best solution was the three-
instruction version.

.data

famous_constants: # 0x10010300

.float 2.718282818

.float 3.141592654

.text

pie:
# SOLUTION A -- Two Instructions

lui $t0, 0x1001

ldc1 $f0, 0x300($t0) # Note: loads both f0 and f1.

# SOLUTION B -- Three Instructions

lui $t0, 0x1001

lwc1 $f0, 0x300($t0)

lwc1 $f1, 0x304($t0)

# Don’t modify the code below this line.

mul.s $f2, $f3, $f0

add.s $f2, $f2, $f1

11
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Problem 4: [40 pts] Answer each question below.

(a) In class we said that MIPS-I lacks an instruction like bgt (branch greater-than) because the magnitude
comparison would take a little too long. MIPS-I does have beq and bne instructions that compare two
registers. However, SPARC v8 has a bgt instruction, but it is done in such a way that here is no risk of
critical path impact.

�How is the actual SPARC bgt different than a hypothetical MIPS bgt?

The SPARC bgt uses the condition code register to determine if the branch should be taken, whereas the MIPS bgt would compare
the contents of two registers.

�How does that difference avoid critical path impact in resolve-in-ID implementations?

Short Answer: The branch condition is computed in SPARC using a 4-bit condition code register rather than retrieving and then
examining 2 × 32 = 64 bits of the two registers, which would take longer.

Explanation: The integer condition code register, icc, is only four bits and so checking for a particular bit configuration won’t
take much time. For bgt the hardware would check that the N (negative) and Z (zero) bits are both zero (meaning that the last
cc operation produced a value that was positive). Further, there is no need to retrieve icc from anywhere. In contrast, for an
instruction like bgt r1, r2, TARG the contents of registers r1 and r2 would first have to be retrieved, which would take some
time, and then a magnitude comparison would have to be made.

�Explain why a bgt r1, r2, TARG would not have a big critical path impact if it were resolved in EX.

Because the r1 and r2 values would be available at the beginning of the clock cycle, rather than the middle as they would be in ID.

12
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(b) In the MIPS add instruction the sa field must have a value of zero. Consider a future version of MIPS
in which the sa field would hold a scale factor, s. The result of the add would be rsv + rtv * s. Suppose
that analysis of users’ programs found that such an instruction would be very useful and that it could easily
be implemented in hardware. Should the add be extended in that way? If not, suggest another way of
providing the scaled add.

� Should add be extended to compute rsv + rtv*s?

No. No! Noooo!!!!!

�Explain a possible objection and suggest an alternative way of including the instruction.

Since the sa field must be zero in MIPS-I instructions add instructions written for MIPS-I would produce the wrong answer on
implementations with the scaled add. An alternative would be to define the instruction result as rsv + rtv * ( sa + 1 ), so
that when sa is zero the instruction behaves like the original add. The scaling feature is still available (and can reach 32 instead of
31). The assembly language format for the instruction could be defined something like add rd, rs, rt, s with sa = s - 1 .

Grading Note: Many solutions argued that the scaled add would be cumbersome to implement. Ordinarily, that would be a good
point, but the problem said to suppose that the hardware would be easy to implement. In the original exam boldface was not used
for emphasis.

(c) The MIPS-I assembly instruction below is invalid. Explain why and replace it with one that correctly
adds two double-precision values.

add.d $f0, $f1, $f2

Double precision instructions must use even numbered registers. A correct version appears below.

add.d $f0, $f10, $f2 # SOLUTION

13
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(d) What is the difference between a dependency and a hazard?

�The difference between a dependency and a hazard is:

A dependency describes a relationship between instructions in a program, while a hazard describes a potential problem an implemen-
tation can have executing instructions.

(e) Identify the type of dependence between each pair of instructions below, and indicate the corresponding
hazard.

�The type of dependence is: Output . The corresponding hazard is: WAW

add r1, r2, r3

sub r1, r5, r6

�The type of dependence is: True . The corresponding hazard is: RAW

add r1, r2, r3

sub r4, r1, r6

Note: The dependency above is known by three names: true, data, and flow. Full credit would be given for any of those names.

�The type of dependence is: Anti . The corresponding hazard is: WAR

add r1, r4, r3

sub r4, r2, r6

14
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(f) In class we said that the lifetime of an ISA can be decades and so it must be carefully designed to take
into account current and future implementation technologies. Is IA-32 (80x86) a good example of this rule?
Explain.

� IA-32 © is ×© is not a good example of this rule because . . ..

Short Answer: . . . because despite being designed to fit on small chips of the time, it has been implemented in successively larger
chips, and done so in a way that overcomes shortcomings (such as a limited number of registers and segmented addressing) to the
point where IA-32 implementations were faster than implementations of much well-designed RISC ISAs. If the rule were always correct
IA-32 implementations would be slower.

Details: The earliest ISA that could be called IA-32, implemented by the Intel 8086 and less costly 8088, was limited by the number
of transistors that could fit on chips of the time. The ISA was never designed to last decades and to host a robust operating system.
It was IBM’s second choice for CPU in their initial entry into the personal computer market, the IBM PC. Their first choice was
the Motorola 68000, but Motorola could not make enough of them for IBM’s initial order and so the 8088 it was. The IBM PC
was spectacularly successful, spawning a large market for IBM-compatible (and so 8088-compatible) software. Switching ISAs in the
IBM PC, say to 68000 (which had problems of its own), would risk alienating customers, so IBM continued using the 8088 and its
descendants. Intel deftly made improved implementations of IA-32 (or pre IA-32), overcoming its various weaknesses. Early RISC
implementations would easily outperform IA-32 implementations, but some time in the aughts IA-32 implementations took the top
spot, at least in the SPECcpu benchmarks. The ISA too was extended from the original 8088, to the first “real” IA-32, implemented
in the 80386, up until the present. Currently IA-32 is sort of a subset of Intel 64. Adding features to an ISA does not change what’s
already there and that just made implementations that much harder. Many Intel 64 implementations work by cracking Intel 64 (or
IA-32) instructions into micro-ops. Micro-ops are kind of like RISC instructions, and they are executed by something kind of like a
RISC implementation. RISC implementations don’t have to crack instructions, making implementations less expensive and easier to
design.

IA-32 was not designed to last decades. According to the rule it should not have been a long-term success because future implementa-
tions would be hobbled by shortsighted ISA features. But that didn’t happen and so IA-32 is not a good example of the rule. (Future
implementations weren’t hobbled because Intel could afford to put a large number of engineers on the design team to work around
the ISA shortcomings.)

(g) Indicate the most appropriate ISA family for each ISA below.

� Intel 64 is considered © RISC ×© CISC © VLIW

� Itanium is considered © RISC © CISC ×© VLIW

�MIPS is considered ×© RISC © CISC © VLIW

� SPARC is considered ×© RISC © CISC © VLIW

�VAX is considered © RISC ×© CISC © VLIW

15
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Problem 1: (15 pts) Appearing below is the 2-way superscalar implementation used in class. As we usually
assume, fetch groups are aligned and stalls must keep instructions within a stage in order.

Immed
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(a) Show the execution of the code below on the implementation above.

�Show execution. �Check for dependencies!!

Solution appears below. The lw r3 stalls two cycles because of the dependency with the lw r1. The sw r5 stalls two cycles
because of the dependency with the lw r5 and because there is no way to bypass a value to the path to the memory port D
In connection in the illustrated implementation. (In some of the implementations used in class there are bypass paths leading to
ME.rtv.) A common mistake was to overlook the fact that there is no bypass path for the store value.

LINE1: # Address of the first lw insn below is 0x1000

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10

0x1000: lw r1, 0(r2) IF ID EX ME WB

0x1004: lw r3, 0(r1) IF ID ----> EX ME WB

0x1008: lw r4, 4(r1) IF ----> ID EX ME WB

0x100c: lw r5, 8(r1) IF ----> ID EX ME WB

0x1010: sw r5, 12(r1) IF ID ----> EX ME WB

0x1014: sw r4, 16(r1) IF ID ----> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10

2
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(b) Show the execution of the code fragment below on the illustrated implementation.

�Show execution and �check for dependencies here too.

�Don’t overlook the fact that the branch is taken.

�Pay attention to fetch groups and the aligned fetch restriction.

Solution appears below. The lw is fetched in the cycle after the beq because it is not in the same fetch group as the beq. (The
first instruction in a fetch group on a 2-way superscalar has and address that’s a multiple of 8, and so the least significant hex digit
must be 0 or 8.) The sw is the second instruction in the fetch group and so gets fetched along with the lw. Since the branch is
taken the sw is squashed. Fortunately, the branch target, 0x2008, is a multiple of 8 and so we fetch two good instructions (the two
andi instructions). But dependencies stall execution.

# Address of beq is 0x1004 SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9

0x1004: beq r1, r1, SKIP1 IF ID EX ME WB

0x1008: lw r2, 0(r3) IF ID EX ME WB

0x100c: sw r4, 0(r3) IFx

0x1010: addi r3, r3, 4

# Cycle 0 1 2 3 4 5 6 7 8 9

SKIP1: # Address of andi is 0x2008

0x2008: andi r2, r2, 0xfff IF ID -> EX ME WB

0x200c: andi r6, r2, 0xff0 IF ID ----> EX ME WB

0x2010: add r7, r2, r6 IF ----> ID EX ME WB

0x2014: sub r8, r2, r6 IF ----> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9

3
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(c) Appearing below is again our 2-way superscalar MIPS. Notice that the branch hardware shown can only
provide the target for a branch in slot 1. Add hardware for providing the branch target of a branch in slot
0. Do not add hardware for checking the branch condition. Do not add control logic.

�Add hardware for a slot-0 branch.

�Pay attention to cost.

�Be sure the hardware computes the correct target address.

Two solutions appear below (on the following pages). The first one is correct, and would receive full credit, but it’s more expensive
than it needs to be because of the additional adder. The second one does not use an additional adder.

In both solutions the PC, rather than the NPC (next program counter) is passed to ID. The PC is the address of the slot-0 instruction
so it is labeled pc0 in the diagram. If the branch is in slot 0 then the branch target is computed in the usual way, pc0 + 4 +

imm*4. If the branch is in slot 1 then 8 rather than 4 is added: TARG = pc0 + 8 + imm*4. The two code executions below
show the target address computed this way. In the first example the branch is in slot 0, in the second it is in slot 1.

# Example: Branch in slot 0. Target is TARG = slot_0_pc + 4 + imm0 * 4 = 0x1814

# Cycle 0 1 2 3 4 5 6

0x1000: beq r1, r2, TARG IF ID EX ME WB # slot 0 pc = 0x1000

0x1004: add r4, r5, r6 IF ID EX ME WB # imm = ( 0x1814 - 0x1004 ) / 4

0x1008: sub r7, r8, r9 IFx # = 0x810 / 4 = 0x204

0x100c: or r10, r11, r12 IFx # TARG = 0x1000 + imm*4 + 4

# Cycle 0 1 2 3 4 5 6 # = 0x1000 + 0x204*4 + 4

TARG: # = 0x1000 + 0x810 + 4

0x1814: lw r10, 0(r11) IF ID EX ME WB # = 0x1814

# Example: Branch in slot 1. Target is TARG = slot_0_pc + 8 + imm1 * 4 = 0x1814

# Cycle 0 1 2 3 4 5 6

0x1000: xori r14, r14, 5 IF ID EX ME WB # slot 0 pc = 0x1000

0x1004: beq r1, r2, TARG IF ID EX ME WB # imm = ( 0x1814 - 0x1008 ) / 4

0x1008: add r4, r5, r6 IF ID EX ME WB # = 0x80c / 4 = 0x203

0x1008: sub r7, r8, r9 IFx # TARG = 0x1000 + imm*4 + 8

# Cycle 0 1 2 3 4 5 6 # = 0x1000 + 0x203*4 + 8

TARG: # = 0x1000 + 0x80c + 8

0x1814: lw r10, 0(r11) IF ID EX ME WB # = 0x1814

Solution continued on next page.
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A simple version of the solution appears below. The is branch hardware checks whether there is a branch in slot 1. If there is not a
branch in slot 1 the hardware will assume that there is a branch in slot 0. That’s okay, because if neither slot has a branch then the
branch target is ignored. The is branch signal selects the appropriate immediate and also the constant to add to the immediate, 4
or 8. The selected immediate is multiplied by four by prepending two zeros to the least-significant side.
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PC of instruction in slot 0.

imm × 4

Simple, unoptimized solution.

The cost of the solution above can be reduced by eliminating the adder above the imm× 4 label. Notice that the upper input to this
adder is either a 4 or an 8. Also notice that pc0 must be a multiple of 8. Based on these we can eliminate the adder, and instead
use the carry-in input to the remaining adder to perform the +4 or +8.

Solution continued on next page.
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The more efficient solution appears below, with changes in blue. The solution below is more efficient because it uses one less adder
than the one above. The adder is eliminated by using separate hardware to compute bit 2 of the target. (Bits 0 and 1 of the target
are always zero.) Bit 2 is not computed using pc0 because pc0 is a multiple of 8.

Common mistake: not accounting for the fact that ID.NPC is for the instruction in slot 1.
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Problem 2: (10 pts) Appearing below is the execution of a bit more than two iterations of a loop on the
illustrated MIPS implementation. The execution shows the use of a two-stage FP compare unit, C1-C2, by
the c.lt.s instruction, but the unit isn’t shown.
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immed

15:0

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

mul.s f1, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, f3 IF ID -------------> C1 C2 WF

bc1f LOOP IF -------------> ID ----> EX ME WB

add.s f1, f1, f4 IF ----> ID A1 A2 A3 A4 WF

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

mul.s f1, f1, f2 IF ID -------> M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, f3 IF -------> ID -------------> C1 C2 WF

bc1f LOOP IF -------------> ID ----> EX ME WB

add.s f1, f1, f4 IF ----> ID A1 A2 A3 A4 WF

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

mul.s f1, f1, f2 IF ID -------> M1 M2 M3 M4 M5 M6 WF

# SOLUTION: ! <--- 2nd Iter ------------------------> ! <-- 3rd Iter ..
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(a) Compute the CPI of the execution of the loop above for a large number of iterations.

�Compute the CPI.

�Clearly show how the time for an iteration was determined, perhaps using the pipeline diagram.

The CPI is 25−11
4 = 14

4 = 3.5.

The time for the second iteration is shown on the diagram, as well as the start of the third. The second iteration takes 25−11 = 14
cycles. We expect the third and subsequent iterations to also take 14 cycles each because the state of the pipeline at the start of the
2nd and 3rd iterations is identical: mul.s in IF, add.s in ID, and bc1f in EX.

(b) Reschedule the instructions to reduce the time needed to execute a large number of iterations of the loop.
Add a nop if that helps. A correct solution will still have many stalls.

�Re-schedule to improve performance.

�Don’t change what the loop is computing.

# SOLUTION

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

mul.s f1, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, f3 IF ID -------------> C1 C2 WF

add.s f1, f1, f4 IF -------------> ID A1 A2 A3 A4 WF

bc1f LOOP IF ID -> EX ME WB

nop IF -> ID EX ME WB

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

mul.s f1, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, f3 IF ID -------------> C1 C2 WF

add.s f1, f1, f4 IF -------------> ID A1 A2 A3 A4 WF

bc1f LOOP IF ID -> EX ME WB

nop IF -> ID EX ME WB

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

mul.s f1, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

# ALT SOLUTION (Student)

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

c.lt.s f1, f3 IF ID C1 C2 WF

add.s f1, f1, f4 IF ID A1 A2 A3 A4 WF

bc1f LOOP IF ID -> EX ME WB

mul.s f1, f1, f2 IF -> ID -> M1 M2 M3 M4 M5 M6 WF

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

c.lt.s f1, f3 IF -> ID -------------> C1 C2 WF

add.s f1, f1, f4 IF -------------> ID A1 A2 A3 A4 WF

bc1f LOOP IF ID -> EX ME WB

mul.s f1, f1, f2 IF -> ID -> M1 M2 M3 M4 M5 M6 WF

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

c.lt.s f1, f3 IF -> ID -------------> C1 C2 WF

8

← → Spring 2018 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2018/fe_sol.pdf


Problem 3: (20 pts) The MIPS implementation on the next page shows the two stages of the comparison
units, C1 and C2, but they are not connected to anything. The illustration also shows an FCC register that
will hold the floating-point condition code value computed by compare instructions such as c.lt.s. Connect
the comparison units and the FCC register so that they operate correctly and as described by the check items
below. Notice that logic to detect FP branch instructions and FP compare instructions has been added to
the ID stage near the bottom.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

mul.s f1, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, f3 IF ID -------------> C1 C2 WF

bc1f LOOP IF -------------> ID ----> EX ME WB

add.s f1, f1, f4 IF ----> ID A1 A2 A3 A4 WF

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

�Provide connections to C1, C2, and the two FCC inputs so that the code above executes as shown.

�Modify the control logic so that a compare does not arrive in WF in the same cycle as other FP instructions.
(This is despite the fact that compares do not write the FP register file.)

�Modify the control logic so that the Stall ID signal is asserted for dependencies from compare to
branches, such as occurs above with the bc1f.

�As always, pay attention to cost and performance and �don’t break existing functionality.

Solution appears below. The connections from the C1 and C2 units to the FCC are shown in blue. Of course, pipeline latches are
added so that each unit has the better part of a cycle to compute its result. The logic preventing a compare from arriving in WF

at the same cycle as another instruction appears in green. Note that unlike other instructions that enter the pipeline at A2/M4,
compare instructions do not inject we nor fd signals into the pipeline because compare instructions don’t write the FP register file.
Finally, logic to stall a branch dependent on a compare appears in purple.

Common Mistakes: Using the we (write enable) signal for the FP register file as the we for FCC. That won’t work because we don’t
want instructions like add.s, which write the FP register file, to change the FCC and we don’t want compare instructions to change
the FP register file.

Another common mistake is putting logic in the wrong stage. Control logic that checks for things like stall conditions must connect
to those stages holding the instructions that are involved. Use a pipeline execution diagram to determine those stages. For example,
consider the c.lt.s/bc1f stall from the example above. The stall occurs when the bc1f is in ID and the c.lt.s is in stages
C1 or C2. A common mistake was forgetting about C2.

9
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Problem 4: (16 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on two systems, each with a different branch
predictor. All systems use a 212 entry BHT. One system has a bimodal predictor and one system has a local
predictor with an 8-outcome local history.

Branch B2 starts with a random outcome, then repeats that same outcome two more times, followed by
another random outcome followed by two more repeats of that. The random outcome is T with probability
.3 and is independent of other outcomes. The following are possible B2 outcome sequences: TTT NNN NNN

TTT TTT. Note that the number of consecutive T’s or N’s must be a multiple of 3 and so the following is not
a possible sequence of outcomes for B2: TT NN T NNNN T.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: T T N T T T N N T T N T T T N N ...

B2: r r r q q q s s s ...

�What is the accuracy of the bimodal predictor on branch B1?

Based on the work shown below, the accuracy is 4
8 . The accuracy is based on the second repeat of the pattern because the 2-bit

counter was the same value at the beginning and end, 1. In contrast, the counter was 0 at the start of the first occurrence of the
pattern and 1 at the end, so whatever happened for those first 8 outcomes can’t be used to predict accuracy.

0 1 2 1 2 3 3 2 1 2 3 2 3 3 3 2 1 <-- 2-bit counter

B1: T T N T T T N N T T N T T T N N ...

x x x x x x x x x x <-- Pred Outcome

------------------------ <-- repeating

�What is the accuracy of the bimodal predictor on branch B2?

There are two ways to start a 3-outcome sequence, T or N of course. To determine the number of correct predictions we need to know
what preceded the sequence, which could be 3 T’s or 3 N’s. The four cases are shown in the table below. The Freq column value
indicates how frequently the case occurs. The Correct column value indicates the number of correct predictions in the last 3
outcomes. Note that we can’t determine the number of predictions in the first three outcomes because we don’t know what preceded
them. Acc is the accuracy, and Weighted is the accuracy weighted by frequency. Totaling the last column gives the prediction
accuracy, .72 or 72%.

Freq Correct Acc Weighted

TTT.TTT: .09 3 1 .09

NNN.TTT: .21 1 1/3 .07

NNN.NNN: .49 3 1 .49

TTT.NNN: .21 1 1/3 .07

--------------------------------

.72

�What is the accuracy of the local predictor on branch B1?

Since the pattern for branch B1 is less than the local history and it repeats perfectly and because we are assuming no collisions in
the predictor, the local predictor accuracy is 100%.

11
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�What is the accuracy of the local predictor on branch B2?

Because there are always length-three sequences and because we are assuming no interference, the local predictor will always predict
the second and third occurrence with 100% accuracy. We expect that the 2-bit counter for the first occurrence will predict N since that
is the more common outcome. Assuming that it always predicts N the prediction accuracy for the first occurrence is 70%. Combining
these yields .7+2

3 = 90%.

Freq Corr Wht

T.T: .09 2 .18

N.T: .21 2 .42

N.N: .49 3 1.47

T.N: .21 3 .63

---------------------

2.70 / 3
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(b) Appearing below is a diagram of a local predictor, showing in detail the logic for predicting the instruction
in IF and for updating the predictor for the resolving branch. Modify the diagram so that it is a global
predictor with an 8-outcome global history.

�Modify so that it is a global predictor.

�Remove hardware that’s no longer needed.

�Be sure to show the GHR (global history register).

Solution appears below, added hardware appears in blue and red exes mark removed hardware, cut wires, etc. The BHT no longer
stores local branch history (nor any other kind of history), instead the GHR is used to store global branch history. In this solution
the GHR is not updated until the branch resolves. (In dynamically scheduled systems the GHR might be updated in IF using the
predicted direction, when the branch resolves the GHR is updated again only when the prediction turns out to be wrong. This is
important in dynamically scheduled systems because there can be many branches in flight.)
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Problem 5: (10 pts) The diagram below is for a 64MiB, 4-way set-associative cache with a line size of
256B, a bus width (w) of 8B, for a 64 b address space. Helpful facts: 64MiB = 64 × 220 B = 226 B and
256 = 28.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

CPU

Addr

Data In

logic

hit

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

8B

64 b

63:24

23:3

63:24

23:8 23:8

23:3

�Complete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Address:

Tag

63 24

Index

23 8

Offset

7 3 2 0

�Memory Needed to Implement �Indicate Unit!!:

It’s the cache capacity, 64MiB, plus 4 × 224−8 (64 − 24 + 1) b = 10747904 b.

�Show the bit categorization for a direct-mapped cache with the same line size and capacity as the cache
above.

The cache above is 64MiB and 4-way set associative. In a direct mapped cache there is just one way with four times the storage
of a way in the cache above. To get four times the number of entries the number of index bits is increased by two, and so the index
bits will start at position 26 instead of 24. The other bit positions remain the same.

Address:

Tag

63 26

Index

25 8

Offset

7 3 2 0

14
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The problem on this page is not based on the cache from Part a. The code in the problem belows run on
a cache with a line size of 256B (which is 28 B). Each code fragment starts with the cache empty; consider
only accesses to the arrays.

(b) Find the hit ratio executing the code below.

int sum = 0;

short *a = 0x2000000; // sizeof(short) == 2

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

�What is the hit ratio running the code above? Show formula and briefly justify.

The line size of 28 = 256 bytes is given. The size of an array element, which is of type short, is 2 = 21 B, and so there are
28/21 = 28−1 = 27 = 128 elements per line. The first access, at i=0, will miss but bring in a line with 27 elements, and so the
next 27 − 1 = 127 accesses will be to data on the line, hits. The access at i=128 will miss and the process will repeat. Therefore

the hit ratio is 127
128 .

15
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Problem 6: (8 pts) Appearing below is a MIPS implementation that includes hardware for interrupts
(hardware interrupts, exceptions, and traps). An exception code, exc, is collected and passed down the
pipeline. Its value indicates the type of hardware interrupt, exception, or trap that has been encountered, a
value of 0 indicates no interrupt of any kind.

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

DIn

Mem
Port

Out
rtv

ALU

MD

dst
decode

NPC

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D  

dst
dst

 

msb lsb

msb

lsb

decode

exception

1���bfc0
1����2�

1���a000

lsb

msb

1���100

1���2��

msb

exc

exc

msb

exc

msb

exc

decode

exc

mop

m
o
p

mop nop

E����	
�� ��c� �� ���� e�� �� ���eption.

E����	
�� handler

address, e�� �� ����

��0e���2�0.

U���� �� bits and

��l�� �� 0
	� of

M���� ����c��ned

handler locations.

5��0

msb

Hardware interrupt code

(�� ����o e��� ��	��nal

devices.

PSR

priv

p
riv

priv

priv
priv

p
ri

v

p
ri

v

format

immed

=

��! "# $"$%&')" '*+',-."$ code is always 1.

P
ro

c
e
s
s
o
r 

S
ta

tu
s
 R

e
g
is

te
r
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(a) Notice that the decode exc logic in the ID stage examines the opcode of the instruction in ID as well
as the value of ID.priv. Hint: priv is an abbreviation for privileged. Some opcode values raise exceptions
only when ID.priv is zero, others raise exceptions whether or not ID.priv is zero.

�Describe an instruction that raises an exception in ID only if ID.priv is zero.

Any privileged instruction, for example mtc0, move to co-processor zero.

�Why is it important that such an instruction raise an exception?

It is important that such instructions raise exceptions so that restrictions can be placed on user-mode code (for which ID.priv is
zero), for example, preventing user-mode code from unfettered access to I/O devices. Privileged instructions can control access to
such devices.

Common Mistake: An incorrect answer would be a load instruction that accesses a privileged address. Yes, such an
instruction would raise an exception, but it would do so in the ME stage. The ID stage is too early because the address would not
have been computed, and the hardware for looking up permissions is in the memory port.

�Describe an instruction that raises an exception in ID whether or not ID.priv is zero.

An instruction with an unrecognized opcode. This might be a nonexistent opcode. In classroom examples we use the mnemonic ant
for such instructions. An unrecognized opcode might be an opcode defined by the ISA but not implemented in the hardware. Many
ISAs allow implementations to not implement certain instructions with the expectation that the OS would emulate these in software
when they raise exceptions. For example, SPARC has quad-precision floating point instructions which are rarely implemented. When
an instruction like faddq f0, f4, f8 tries to execute it raises an exception and the exception handler would compute the
quad-precision result, place it in registers f0-f3, and then return execution to the instruction after faddq.

Common Mistake: An incorrect answer would be a divide instruction with a zero divisor. Yes, such an instruction raises an
exception regardless of privilege level, but it does so in the FP pipeline, not in ID.

(b) The illustrated hardware squashes the faulting instruction in ME, but no hardware is shown to squash any
instructions that may be in the stages before ME nor for the stage after ME. That hardware may have been
omitted for simplicity (the same reason that control logic is omitted) or because it is not needed.

�To implement precise exceptions should the instructions in the stages before ME be squashed? �Explain
in terms of the handler and what would go wrong if instructions were not treated the right way.

Yes, they should be squashed because they come after the faulting instruction and for the exception to be precise no instruction after
the faulting instruction should complete execution (write a register value, change a memory location, etc). Suppose the instruction
in EX writes r2 and was allowed to complete, and suppose the faulting instruction uses r2 as a source. Then the handler would not
be able to re-try the faulting instruction because r2 has the wrong value.

A common mistake was to describe the stages before ME as carrying instructions before (should be after) the instruction in ME and WB
as carrying the instruction after (should be before) the one in ME. For those prone to confusion in rushed situations, just remember
that those before you on line at the sandwich shop arrived after you did.

�To implement precise exceptions should the instructions in the stage after ME be squashed? �Explain
in terms of the handler and what would go wrong if instructions were not treated the right way.

No. For the exception to be precise all instructions before the faulting instruction must execute normally. Suppose the instruction
in WB is to write r3 but was squashed before it could do so. Further, suppose the faulting instruction uses r3 as a source. If the
handler tries to re-execute the faulting instruction it won’t execute correctly because r3 was not written.
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Problem 7: (21 pts) Answer each question below.

(a) Show the encoding of the following MIPS instructions. Write the instruction name in opcode or func
field values that cannot be determined.

0x1000: beq r10, r11, TARG

0x1004: add r7, r8, r9

TARG:

0x1034: lw r12, 14(r15)

�Encoding for beq from code fragment above. �Pay attention to the branch target.

The solution appears below. The immediate field is encoded with the displacement from the delay slot to the target in units of
instructions. That is, the immediate value is: 103416−100416

4 = 3016
4 = C16.

A common mistake was to forget to divide by four.

MIPS I:

Opcode

beq = 0x4

31 26

RS

2

25 21

RT

3

20 16

Immed

0xC

15 0

�Encoding for add from code fragment above:

MIPS R:

Opcode

0

31 26

RS

8

25 21

RT

9

20 16

RD

7

15 11

SA

0

10 6

Function

add = 0x20

4 0

�Encoding for lw from code fragment above:

MIPS I:

Opcode

lw = 0x23

31 26

RS

15

25 21

RT

12

20 16

Immed

14

15 0

(b) MIPS has one kind of memory addressing for all load and store instructions, such as in lw r1, 2(r3)

where the immediate, 2, is added to the value in r3. A CISC ISA might have two versions of the load, lw
r1, (r3), which lacks an immediate (the immediate would be zero in MIPS), and lwi r1, 2(r3) for when
an immediate is needed.

�What would be the benefit for the CISC ISA of having the no-immediate version of the lw?

The instruction would be shorter, saving instruction cache space and fetch bandwidth. If the CISC implementation were not pipelined
it might be able to execute the no-immediate instruction in one less cycle than the immediate version because it would not need a
cycle to add the immediate to the base. Note that modern CISC implementations operate by translating CISC instructions into RISC
instructions, so the execution time benefit would not be realized.

�Why would MIPS and other RISC ISAs not realize the same benefit?

Because all instructions are the same size and because all integer instructions, including loads, go through the same pipeline stages.

18
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(c) A design team is considering removing a bypass connection to the ALU and adding a bypass connection
to the branch resolve unit. This won’t change the cost, they hope it will improve performance. “Simulation
of this design change shows that performance drops by 5%,” a sad-faced engineer announces. “We forgot to
talk to the compiler people!,” another excitedly points out, splashing hope and excitement around the room.

�What should they ask the compiler people?

They should ask the compiler people to prepare a version of the compiler that will optimize for the new bypass locations. In particular,
instructions should be scheduled to avoid needing the removed bypass path and instructions writing a register needed by a branch can
be moved closer to the branch than they would in the current implementation.

Grading Note: Many students did not see the compiler as something that could and should be modified to fit the implementation.

(d) Someone preparing the SPECcpu benchmarks for their company’s next product (currently under de-
velopment) decides to replace one of the benchmark programs with an improved version, one which better
reflects that company’s customers. Note: the emphasis below was added after the original exam, as was the
phrase “not to market.”

�Should the company use the SPECcpu benchmarks in this way to develop (but not to market) their
product?

Yes. If they are using it internally SPEC rules don’t apply. As the problem states, the substituted benchmark improves the relevance
of the results.

With the substituted benchmark program the SPEC scores are higher (better). The company decides to
release these higher SPEC results without mentioning the substitution.

�How does the design of SPECcpu make it likely that they will get caught?

Short Answer: They must disclose a config file, which competitors will surely use to reproduce their result, and they won’t stay quiet
when the results don’t match.

They must provide and make public a config file that can be used to automatically run the benchmarks. Others attempting to run
SPECcpu with their config file (and using their computer) will quickly discover that the results don’t match because those others will
be running the original SPEC benchmarks, not the substituted one.

(e) Compiler optimization is more important for a supercalar implementation than a scalar implementation.

�Optimization is more important for superscalar than scalar because:

�The important optimization is:

It’s more important because there are more situations where results can’t be bypassed. For example, dependent instructions in the
same fetch group. A stall also has a larger relative impact on performance. The important optimization is instruction scheduling,
that’s needed to avoid stalls.

Grading Note: Many students used the term dependency where hazard should be used. This is the correct usage: because there
are multiple instructions in a stage there are more data hazards.
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Problem 1: [20 pts] Appearing below is our familiar MIPS implementation.

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

D

 

dstdst

 

msb lsb

msb

lsb 4:sw r4, 8(r1)

15:ori r5, r4, 7

13:lw r4, 16(r1)

4:sw r4, 8(r1)

=

format
immed

15:0

(a) Show pipeline execution diagrams for the code fragments below executing on the illustrated implemen-
tation and label as indicated.

� Show pipeline diagram. �Doublecheck dependencies.

�Label bypass paths used at mux inputs with C : I, where C is the cycle number (such as 2) and I is the
instruction consuming the bypassed value. Be sure to check for dependencies.

The pipeline diagram appears below and the labeled diagram appears above with the solution to this part in blue. The labels shown
above include the complete instruction, not just the instruction name which would have been sufficient for full credit.

# Cycle 0 1 2 3 4 5 6

add r1, r2, r3 IF ID EX ME WB

sub r4, r5, r6 IF ID EX ME WB

sw r4, 8(r1) IF ID EX ME WB

� Show pipeline diagram. �Doublecheck dependencies.

�Label bypass paths used at mux inputs with C : I, where C is the cycle number (such as 2) and I is the
instruction consuming the bypassed value. Be sure to check for dependencies.

The pipeline diagram appears below and the labeled diagram appears above with the solution to this part in green. The cycle numbers
start at 10 to avoid confusion with part a.

# Cycle 10 11 12 13 14 15 16 17

and r1, r2, r3 IF ID EX ME WB

lw r4, 16(r1) IF ID EX ME WB

ori r5, r4, 7 IF ID -> EX ME WB
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Problem 1, continued:

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

D

 

dstdst

 

msb lsb

msb

lsb

4:0x4014÷4 = 0x1005

4:0x4008÷4 = 0x1002

4:0xc÷4 = 0x3
imm

NPC

Target

=

format
immed

15:0

(b) Show a pipeline execution diagram for an execution of the code fragment below when the branch is taken.
Label the ID-stage unit as indicated.

� Show pipeline diagram. �Pay close attention to the branch.

Solution appears below. Note that the branch stalls due to a dependency carried by r1. Because there are no bypass paths to the
ID-stage comparison unit the bne must stall until addi reaches WB.

�Label the inputs and outputs of the ID-stage unit that computes the branch target. Label with c : v, where
c is the cycle number and v is the value on the input or output.

Solution appears above in blue. Note that IF.PC, ID.NPC, and EX.NPC are all 30 bits and hold bits 31:2 of an instruction address.
There’s no need to store bits 1:0 since they are zero due to the instruction alignment requirement imposed by MIPS. (That is, the
address of a MIPS instruction must be a multiple of 4.)

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10

0x4000: addi r1, r2, 3 IF ID EX ME WB

0x4004: bne r1, r2, TARG IF ID ----> EX ME WB

0x4008: lw r4, 0(r5) IF ----> ID EX ME WB

0x400c: addi r5, r5, 4

0x4010: xor r8, r9, r10

TARG:

0x4014: add r5, r4, r4 IF ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10
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Problem 2: [20 pts] Appearing below is a partial implementation of ARM A64 taken from the solution
to Homework 4. The WB-stage mux is crossed out because it’s wasteful to use a 64-bit mux when the same
functionality can be realized using less expensive logic in the ID stage. For reference, some A64 instructions
are shown below, the comments show which field registers are encoded in.

IR

addr

IF ID EX WBME

rnv

rmv

IMM

ALU
addr

data

data

addr
D

 I
n

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outmdin

ALU

MD

62 2
2'b0

PC

+

D

 

msb lsb

we

fmt

imm

dcd wr rd

dcd wr rn

register file
rn: 9:5

rm: 20:16

addr

rn

rd

rnwe

rdwe

4:0

9:5
rn

rd

rnwe

rdwe

rn

rd

rnwe

rdwe

addr
we

23:5

D
 I
n

is load

@ rd rn : Writes rd and rn

ldr x1, [x2], #8 @ x1 = Mem[x2]; x2 = x2 + 8

@ rd, rn, rm : Writes rd

add x3, x4, x1 @ x3 = x4 + x1

@ rd, rn : Writes rd

and x1, x2, #34 @ x1 = x2 & 34;

Complete the changes so that instructions such as the ones above can write back their results. Assume that
only the load instructions write the rn-field register.

Solution on next page.
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IR

addr

IF ID EX
WB

ME

rnv

rmv

IMM

ALU
addr

data

data

addr

D
 I
n

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outmdin

ALU

MD

2
2'b0
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+

D

 

lsb

we

fmt

imm

dcd wr rd

dcd wr rn

register file
rn: 9:5

rm: 20:16

addr

ralu
aluwe

mdwe

4:0

9:5

rn

rd

rnwe

rd

addr
we

23:5

D
 I
n

is load

rd

ralu
aluwe

ralu
aluwe

Can use

rn or rd, so

change

misleading 

names.M
o
v
e
 b

y
p
a
s
s
 p

a
th

fr
o
m

 W
B

.M
D

to
 W

B
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L
U
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w
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s
e
d
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o
re
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e
n
.

mdwe mdwe

R
e
g
 n

u
m

 a
n
d
 w

e

fo
r 

M
D

 w
ri

te
b
a
c
k
.

Register number and we for ALU writeback.

Re-connect WB.MD

to existing rd writeback.

is store

� In WB consider re-connecting wires broken by the removal of the mux.

The WB.MD latch is re-connected to the register file D In (which was connected to the mux output before it was removed), shown in
purple. The other input to the mux, WB.ALU, already has a path to the register file and because of the changes in ID that existing
path suffices.

� In ID make changes so that instruction results can be written back to the correct registers.

Previously, the black inputs to the register file were used for destinations specified in the instruction rd field (called rt in load
instructions), and the orange inputs were used for destinations specified in the rn field, which according to the problem, could only
be pre- and post-index memory instructions. Now, the black register file inputs will be used exclusively for WB.MD, which means load
instructions, and the orange inputs will be used for WB.ALU, which is used by a variety of instructions. The WB.MD can only be
written to rd (also called rt), so the pipeline latches carrying the register number, labeled rd, are unchanged. Because the black

register file input is only used by loads, the write enable signal is set to is load rather than dcd wr rd (the logic is near the red ×
in ID) and the pipeline latch labels have been changed from rdwe to mdwe.

The orange register file inputs can now be used to the register specified in the rd or rn field. The only instructions that can use
the rn field as a destination are load and store instructions. If there is a load or store instruction in ID, detected by the OR gate,
the rn field and dcd wr rn logic are used for the orange writeback signals, otherwise rd and dcd wr rd .

5

← → Spring 2017 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4720/2017/mt_sol.pdf


�Make the best use of the existing from-WB bypass path.

We would expect that there are more arithmetic instructions than load instructions, so the bypass path has been moved from the
WB.MD latch to the WB.ALU latch.

6
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Problem 3: [20 pts] Appearing below again is the partial implementation of ARM A64 taken from the
solution to Homework 4.

IR

addr

IF ID EX WBME

rnv

rmv

IMM

ALU
addr

data

data

addr

D
 I
n

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Out

ALU

MD

62 2
2'b0

PC

+

D

 

msb lsb

we

fmt

imm

dcd wr rd

dcd wr rn

register file
rn: 9:5

rm: 20:16

addr

rn

rd

rnwe

rdwe

4:0

9:5
rn

rd

rnwe

rdwe

rn

rd

rnwe

rdwe

addr
we

23:5

D
 I
n

is load

mdin

addr data
rd: 4:0

rdv

Re-connect

Addr input.-

file read port

for rd value

needed for str.

@ rd rn : Writes rd and rn. Post-index

ldr x1, [x2], #8 @ x1 = Mem[x2]; x2 = x2 + 8

@ rd rn : Writes rd and rn. Pre-index

ldr x1, [x2, #8]! @ x2 = x2 + 8; x1 = Mem[x2];

@ rd rn rm

str x1, [x2, x3] @ Mem[x2+x3] = x1

(a) Make changes needed to implement the store instruction, see the example above. Just show datapath,
not control logic.

�Changes for the store instruction.

Changes are in blue. The store instruction writes the value from the register specified in the rd (also called rt) field and so we need
to add a new read port to the register file. We can’t share the port currently used for rn or rm because some store instructions need
both of those values.

(b) Do we really need both pre-index and post-index addressing for loads and stores? Eliminating either of
them will reduce cost, but one’s elimination would reduce cost by more than the other’s. Indicate which
saves more and show the hardware that can be removed and other needed changes. Note: The phrase and
other needed changes was not in the original exam.

�Greater cost reduction by eliminating: © pre-index �© post-index (check exactly one).

� Show the hardware that’s not needed � and other needed changes.

See the red × above. The removed hardware disconnects the Mem Port Addr input, so that’s reconnected to ME.ALU.
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Problem 4: [20 pts] When MIPS routine coursei is called register a0 will hold an entry number, referring
to the table at label courses. Complete the routine so that when it returns register v0 will have the integer
representation of entry number a0 in the table. Note that the table itself holds floats. For example, when
called with a0=0 it should return with v0=2740, when called with a0=2 it should return with v0=3755, etc.

�Complete so v0 is integer representation of a0th table entry.

�Read the table as it is, don’t modify it or read a different table.

Solution appears below.

.data

courses:

.float 2740

.float 3750

.float 3755

.float 4755

.float 4720

.float 7722

.float 7725

.text

# CALL VALUE: $a0: Entry in table to look up.

# RETURN: $v0: Table entry #$a0 represented as an integer.

coursei:

la $t0, courses

## SOLUTION

#

sll $t1, $a0, 2 # Multiply by size of float, four bytes.

add $t2, $t0, $t1 # Compute address of table entry.

lwc1 $f0, 0($t2) # Load entry into a FP regiser.

cvt.w.s $f1, $f0 # Convert to an integer.

jr $ra

mfc1 $v0, $f1 # Move integer version of entry to result register.
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Problem 5: [20 pts] Answer each question below.

(a) What kind of implementations were RISC ISAs designed to simplify?

�Kinds of implementations that RISC designed to simplify:

Pipelined implementations.

(b) Describe how the features below simplify RISC ISA implementations.

�Fixed-size instructions.

Short Answer: Because the hardware for fetching the next instruction does not need to check the size of the current instruction
nor does it need shift and mask logic to extract the next instruction from the memory fetched in the current and previous cycles.

Detailed Answer: The address of the next instruction is always a constant distance (in many cases 4 bytes) from the address of
the current instruction, and so we can compute the next instruction address with an adder connected to the program counter. In
contrast, if instruction sizes varied the exact address of the next instruction could not be obtained until the current instruction was
decoded. An implementation would either have to wait for the exact address before fetching or it would have to conservatively guess
(adding only a small value to the address of the current instruction) and perhaps fetch a larger chunk of data than it would need,
and then in a subsequent stage, when the current instruction is decoded, it would have to extract next instruction from the chunk of
memory that was fetched.

�Avoiding arithmetic instructions that access memory.

Short Answer: There is no need for extra memory stages before the EX stage.

More Details: In RISC implementations instructions access the data memory port in a particular stage, ME in our five-stage MIPS
implementation. If the arguments to arithmetic instruction could come from memory then instructions might have to access a data
memory port both before and after they reach the EX stage. That would either require additional memory ports, which are costly, or
logic that would allow a single memory port to be accessed from multiple stages, which would add stalls and complicate control logic.

(c) The SPECcpu package contains the source code for the SPEC benchmarks and scripts to compile and
run them, but it does not come with compilers. The tester provides his or her own. Consider a SPECcpu+
package that comes with compilers, and the requirement that those compilers be used. Why would that
make SPECcpu+ less useful to computer engineers?

� SPECcpu+ less useful because:

Short Answer: SPECcpu+ cannot be used for the development of a new ISA since there is no way an existing compiler could
target the new ISA (otherwise it wouldn’t be a new ISA). For the same reason, it could not optimize for a new implementation.

More Details: If we are designing a brand new ISA then it could not possibly be one of the targets of SPEC’s compiler and so
we would have no way to run SPECcpu+ on our brand new system. If we are designing a new implementation of an existing ISA
that SPEC’s compiler can generate code for, then the optimizations performed by the compiler might not be right for our brand new
implementation. These are not problems if we provide our own compiler.

9
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(d) In class we described some optimizations as high-level, and some as low-level, performed by the back
end. What distinguishes high- and low-level optimizations? Provide an example of a low-level optimization
that could only be performed by the compiler back end.

�Difference between high- and low-level optimization.

A high-level optimization can be made without knowing the ISA, but low-level optimizations are made based on the ISA and also the
implementation.

�Example of an optimization that must be low-level (that can only be done in the back end).

Register assignment.

�Briefly explain why.

Because registers can’t be assigned if you don’t know how many there are, or for that matter, if you don’t know the exact instructions
that will be accessing those registers.

(e) MIPS I has instruction bgtz r1, TARG in which the branch is taken if r1>0 but it lacks an instruction
like bgt r1, r2, TARG that would branch if r1>r2. Why?

�Why does MIPS lack bgt r1, r2, TARG?

Because the magnitude comparison will take just a bit too long.

�What would be the impact on performance of including bgt r1, r2, TARG in MIPS on “our” five-stage
implementation?

It would lower the clock frequency slowing down all instructions.

The Good News: By including a bgt instruction we can eliminate slt (set less than) instructions, reducing the instruction count
for many programs by 2%.

The Bad News: By lengthening the critical path our clock frequency has been reduced by 5%, which affects all instructions.

10
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Problem 1: (20 pts) The diagram below, based on the solution to Homework 5, shows control logic that
generates a stall signal when the value to be bypassed is too large for 12-bit bypass paths. The logic only
works when the dependency is with the rt register of the consuming instruction and when the producing
instruction is not a load. Modify the control logic so that it will generate a stall signal for a dependency to
an rs register (first example below) and dependencies with loads. Pay attention to the load sizes.

# Dependency through rs register (r1 in the sub).

add r1, r2, r3

sub r4, r1, r5

# Producing instruction is a load word.

lw r1, 2(r3)

and r4, r5, r1

# Producing instruction is a load half.

lh r1, 2(r3)

and r4, r5, r1

# Producing instruction is a load byte.

lb r1, 2(r3)

and r4, r5, r1

Use next page for solution.
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Use next page for solution.
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�Modify the control logic so that it also generates the stall signal for dependencies through the rs register
that can’t use 12-bit bypasses.

�Modify the stall control logic for when loads lb, lh, and lw produce the value to bypass, �take into
account whether value can use the 12-bit bypasses and �whether the instructions are too close to bypass.

�Do not break existing control logic. As always �consider cost and performance.

Solution appears below. The logic for stalling due to dependencies through the rs register appears in blue, and the logic for
dependencies related to loads appears in purple.
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# Cycle 0 1 2 3 4 5 6 7

lw r1, 2(r3) IF ID EX ME WB

sub r4, r5, r1 IF ID ----> EX ME WB

# aa bb cc

# aa: Stall because lw would be in ME when sub is in EX, so can’t bypass.

# bb: Stall because don’t know if loaded value will fit in 12-bit bypass paths.

# cc: Don’t stall, loaded value now is available from register file.

# Cycle 0 1 2 3 4 5 6 7

lb r1, 2(r3) IF ID EX ME WB

sub r4, r5, r1 IF ID -> EX ME WB

# aa bb

# aa: Stall because lb would be in ME when sub is in EX, so can’t bypass.

# bb: Don’t stall, can bypass WB->EX and lb-loaded value can fit.
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Problem 2: (15 pts) Illustrated below is a superscalar implementation taken from the solution to last year’s
final exam and the subject of this semester’s Homework 7. Show the execution of the code sequences below
on the illustrated superscalar MIPS implementation. Don’t forget to check for dependencies.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

md

dst0Dest. reg

Addr
25:21

20:16

rsv0

rtv0Addr

Data

Data

+

15:0

31:2

15:0

alu0

rtv

 Addr
25:21

20:16

rsv1

rtv1Addr

Data

Data

A
d
d
r

D
��

dst1

imm0

imm1

64

15:0

alu1  

dst0

dst1

Register File

ir
0

ir
1

PC

npc

2'b0

Dest. reg

Data

Out

dst0

dst1

alu1

alu0

I����

Addr

� I�

Mem

Port

isMem

addr

isMem STA���	
��

mp1

D Out

(a) Show the execution of the code below on this implementation. Note that the address of the first instruction
is 0x1000.

�Show execution of the following code sequence. �Pay attention to ME in the diagram.

�Check for dependencies.

The solution appears below. The lw r3 stalls because the ME stage can only accommodate one memory instruction. The last add
stalls due to a dependence.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2) IF ID EX ME WB

lw r3, 4(r2) IF ID -> EX ME WB

lw r4, 8(r2) IF -> ID EX ME WB

add r5, r1, r5 IF -> ID EX ME WB

add r5, r3, r5 IF ID EX ME WB

add r5, r4, r5 IF ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8
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Problem 2, continued: The illustration below is the same as the one on the previous page.

Immed

IF ID EX WBME
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(b) Show the execution of the code below on the illustrated implementation when the branch is taken. Use
the classroom default assumption: fetches are aligned.

�Show execution of the following code sequence. �Check for dependencies.

�Show all instructions that enter the pipeline, even those that are squashed in IF or later.

�Pay attention to instruction addresses, such as 0x1000.

Solution appears below. Because the branch is resolved in ID the branch target is not fetched until the branch reaches EX, in cycle
2, and therefore two wrong-path instructions are fetched in cycle 1. Because the memory port in IF can only fetch aligned groups
(meaning that the address of the instruction in slot 0 must be a multiple of 8) the andi instruction is fetched and then squashed as
soon as it arrives. The sb stalls because of a dependency with or. Because there is no bypass into EX/ME.rtv the sb must stall
in ID until or reaches WB. (The implementation used in Problem 1 has a bypass that would eliminate this stall.)

# SOLUTION

# Branch is taken. Cycle 0 1 2 3 4 5 6 7 8 9

0x1000: bne r1, r4 TARG IF ID EX ME WB

0x1004: sub r5, r2, r7 IF ID EX ME WB

0x1008: xor r10, r11, r12 IFx

0x100c: lbu r9, 0(r5) IFx

0x1010: andi r8, r9, 12 IFx

# Cycle 0 1 2 3 4 5 6 7 8 9

TARG:

0x1014: or r11, r5, r12 IF ID EX ME WB

0x1018: sb r11, 0(r5) IF ID ----> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9
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Problem 2, continued: The illustration below is the same as on the previous page.

Immed

IF ID EX WBME
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(c) Appearing below is an execution of MIPS code on the illustrated superscalar implementation shown for
the first two iterations. Compute the CPI for a large number of iterations. If necessary extend the execution
diagram.

lw r1, 0(r2) IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10

add r1, r1, r4 IF ID -> EX ME WB # First Iteration

lw r1, 0(r2) IF ID -> EX ME WB

bne r2, r3 LOOP IF -> ID EX ME WB

addi r2, r2, 4 IF -> ID EX ME WB

??? IFx # Fallthrough insn.

??? IFx # Fallthrough insn.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10

add r1, r1, r4 IF ID EX ME WB # Second Iteration

lw r1, 0(r2) IF ID EX ME WB

bne r2, r3 LOOP IF ID EX ME WB

addi r2, r2, 4 IF ID EX ME WB

??? IFx # Fallthrough insn.

??? IFx # Fallthrough insn.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10

add r1, r1, r4 IF ID EX ME WB # Third Iteration

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

! 1st Itr ! 2nd Itr! 3rd Itr!

! 4 cyc ! 3 cyc ! 3 cyc !

�CPI for a large number of iterations.

To determine the number of cycles in an iteration we need to find a repeating pattern. The state of the pipeline at the start of the
first iteration, in cycle 1, is clearly different than the state at the start of the second iteration, in cycle 5. Therefore in the solution
above the start of a third iteration has been added. We can see that the third iteration starts in cycle 8. In both cycles 5 and 8
the pipeline contains: add in IF0, addi in EX1, bne in EX0, lw in ME1, and add in ME0. Since the states are identical we can
expect the third iteration to take the same time as the second.

The duration of iteration i is the time from when the first instruction of iteration i enters IF, to the time when the first instruction
of iteration i + 1 enters IF. That time is highlighted above for the second iteration, which has a duration of 8 − 5 = 3 cycles.

Therefore the CPI is 8−5
4 = 3

4 = 0.75CPI .
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Problem 3: (20 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on three systems, each with a different branch
predictor. All systems use a 212 entry BHT. One system has a bimodal predictor, one system has a local
predictor with a 8-outcome local history, and one system has a global predictor with a 8-outcome global
history. Branch B2 consists of a repeating pattern that starts with TNTT and is either followed by three
not-taken outcomes, nnn, or four taken outcomes, tttt. (They are shown in lower case for clarity.) The nnn

sequence occurs with probability .4, and is not correlated with anything.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

↓
B1: T N T T N T N T T N T N T T N

B2: T N T T n n n T N T T t t t t

�What is the accuracy of the bimodal predictor on branch B1?

The diagram below shows the counter values starting from an initial value of 0. A repeating pattern starts at the third group because

the counter value is the same, 2, at the beginning and end of the group. So based on that five-outcome group the accuracy is 3
5 .

0 1 0 1 2 1 2 1 2 3 2 3 2 3 3 2 <-- Counter

B1: T N T T N T N T T N T N T T N

x x x x x x x x x x <-- Pred. Outcome

8
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�What is the accuracy of the bimodal predictor on branch B2? �Account for the variable pattern length.

This is best analyzed by considering the four possible cases of the way the random sequence can occur before and after the fixed
sequence (TNTT). These are shown in the table below. For each case the number of mispredictions is computed starting at the
fixed sequence and continuing into the second random sequence. What makes this easy (relatively) is that when the fixed sequence
starts the counter will be either 0 or 3. Therefore we can compute an exact prediction ratio for each of the four cases. These are
shown under the Pred column. The Prob column is the probability that the fixed sequence will be surrounded with the particular
random outcomes. The numbers under the weight column give something like the space taken up by the particular case. These are
used to weight the prediction accuracies. In particular the value under Weight is the product of the value under Pred and the
value under Weight. The sums are shown at the bottom. The prediction accuracy is the weighted value divided by the weight:
4.92
7.6 = .647368 .

0 1 0 1 2 1 0 Pred Prob Weight Weighted

n n n T N T T n n n ---- ------- ----------- -----------

x x x x 3/7 .4 * .4 .4 * .4 * 7 .4 * .4 * 3

3 3 2 3 3 2 1

t t t t T N T T n n n

x x x 3/7 .6 * .4 .6 * .4 * 7 .6 * .4 * 3

0 1 0 1 2 3 3 3

n n n T N T T t t t t

x x x 5/8 .4 * .6 .4 * .6 * 8 .4 * .6 * 5

3 3 2 3 3 3 3 3

t t t t T N T T t t t t

x 7/8 .6 * .6 .6 * .6 * 8 .6 * .6 * 7

--- -------- ----------- -----------

1 7.6 4.92

�What is the accuracy of the local predictor on branch B2? �Account for the variable pattern length.

Short Answer: Assuming that it always predicts t for the outcome after TNTT, the accuracy will be

7 × .4 × 6
7 + 8 × .6 × 8

8

7 × .4 + 8 × .6
= .947368

where the prediction accuracy for TNTTnnn, 6
7 , and for TNTTtttt, 8

8 , have been weighted by the probability that a B2 outcome
is part of TNTTnnn, 7×.4

7×.4+8×.6 , or part of TNTTtttt, 8×.6
7×.4+8×.6 .

Long Answer: Because the local history length, 8, is long enough to identify the position within the pattern, the only outcome that
can’t be predicted with 100% accuracy is the first branch after the fixed sequence, TNTT. For example, consider TNTTnnn. It will
correctly predict the fixed-sequence outcomes, TNTT and it will correctly predict the last two ns because once it sees the first of the
three ns it will recognize that there will be two more. Or, to put it more precisely, when the local history contains tttTNTTn or
nnnTNTTn the corresponding PHT entries will hold a zero because each time either of the two local histories was encountered in the
past the B2 outcome would be n (that’s the second n) and so the PHT entry would be decremented. By the same logic the third
n would always be correctly predicted (after warmup) as would the second, third, and fourth t. When predicting the first outcome
after the fixed sequence the local history will be either TnnnTNTT or ttttTNTT. We know that 60% of the time the outcome is
t. As an approximation we can assume that the PHT entry would be 2 or 3 since 60% of the time it is incremented and 40% of the
time it is decremented. It is possible to compute an exact probability distribution for the counter values by constructing a four-state
Markov chain and solving the balanced flow equations api = (1 − a)pi+1 for 0 ≥ i ≤ 2, where a is the probability that the

branch is taken, a = .6 here. Solving these yields p0 =
a

1−a−1

( a
1−a )

4−1
and pi =

(
a

1−a

)i

p0. From this we get p0 = .123077 and
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the probability of a taken prediction p2 + p3 = .692308 and a not taken prediction is p0 + p1 = .307692. We can use these
numbers to compute an overall prediction accuracy

7 × .4 × 6.307692
7 + 8 × .6 × 7.692308

8

7 × .4 + 8 × .6
= .939271,

which is only slightly lower than the estimated accuracy.

�What is the minimum local history size for which branch B1 and B2 will not interfere with each other?�Explain.

Seven outcomes. With seven outcomes the B2 local history must contain either three consecutive ts or two consecutive ns, which
never occur in a B1 local history. This means that B1 and B2 will never use the same PHT entries and so won’t interfere with
each other with a seven-outcome local history. Now consider six outcomes. Local history nTNTTn could be for B1 and B2, and so
they would both use the same PHT entry. For B1 the next outcome would be T, but for B2 the next outcome would be n, and so
the shared PHT entry could not predict both branches accurately. (Remember that there’s no difference between n and N and no
difference between t and T, so a local history of nTNTTn is exactly the same as NTNTTN. Upper and lower case are only being used
to show which branch outcomes belong to the fixed part (upper case) and which belong to the repeating part (lower case).

�Note that an arrow (↓) points at an execution of B1. Show the value of the GHR at the time that that
execution is being predicted.

The local history will contain TTTTNnnn.

10
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Problem 3, continued:

(b) Appearing below is a diagram of a bimodal predictor, showing in detail the logic for predicting the
instruction in IF and for updating the predictor for the resolving branch. Modify the diagram so that it is
a local predictor with an 8-outcome local history.

�Show the PHT, and connections for �prediction and �update.

Solution appears below. The changes needed to predict the branch appear in blue. The BHT now stores local history, and that is
connected to a newly added PHT. The prediction comes from the 2-bit counter in the PHT rather than the BHT. Update hardware
appears in purple. Note that for update the original local history is used to index the PHT, but the updated local history is written
into the BHT.
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Problem 4: (15 pts) The diagram below is for a 32MiB (225 B) four-way set-associative cache with a line
size of 32B.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

C*+

Addr

,-.- /0

logic

h1.

Addr
Data
Out

Tag

Data

Addr
Data
Out

Tag

Valid

64

16 c

63:23

22:4

63:23

22:5 22:5

22:4

�Complete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Address:

Tag

63 23

Index

22 5

Offset

4 4 3 0

�Memory Needed to Implement �Indicate Unit!!:

It’s the cache capacity, 32MiB, plus 4 × 223−5 (64 − 23 + 1) bits.

�Show the bit categorization for a direct-mapped cache with the same line size and capacity as the cache
above.

The cache above is 32MiB and 4-way set associative. In a direct mapped cache there is just one way with four times the storage
of a way in the cache above. To get four times the number of entries the number of index bits is increased by two, and so the index
bits will start at position 24 instead of 22. The other bit positions remain the same.

Address:

Tag

63 25

Index

24 5

Offset

4 4 3 0

12

← → Spring 2017 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2017/fe_sol.pdf


Problem 4, continued: The problem on this page is not based on the cache from Part a. The code in the
problem belows run on a cache with a line size of 1024B (210 B). Each code fragment starts with the cache
empty; consider only accesses to the arrays.

(b) Find the hit ratio executing the code below.

int sum = 0;

int *a = 0x2000000; // sizeof(int) == 4

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

�What is the hit ratio running the code above? Show formula and briefly justify.

The line size of 210 = 1024 bytes is given. The size of an array element, which is of type int, is 4 = 22 B, and so there are
210/22 = 210−2 = 28 = 256 elements per line. The first access, at i=0, will miss but bring in a line with 28 elements, and
so the next 28 − 1 = 255 accesses will be to data on the line, hits. The access at i=256 will miss and the process will repeat.

Therefore the hit ratio is 255
256 .

13
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Problem 5: (30 pts) Answer each question below.

(a) Consider a 4-way superscalar system and a scalar system with a 4-lane vector unit. Both can compute
arithmetic at a rate of 4 operations per cycle. The vector system is cheaper but the superscalar system is
more flexible.

�Why is the vector system less costly?

The vector system only needs to fetch and decode one instruction per cycle, unlike four for the superscalar system and so the
superscalar system uses four times as much decode hardware. In a 4-way superscalar processor we expect there to be floating-point
bypass paths from each of 4 slots in WF to the two functional unit (A1/M1) inputs for each slot. That’s a total of 4 × 4 × 2 = 32
bypass multiplexor inputs. But in a system with a vector unit we don’t expect cross-lane bypasses. That is, there’s no bypass from
the lane-2 value of a result in WF to, say, the lane-1 input, though we do expect a bypass from the lane-2 value in WF to the lane-2
unit input. Each lane requires 2 multiplexor inputs for bypass (one input to each mux), therefore the number of bypass paths is just
2 × 4 = 8.

�Show something the superscalar system can do that the vector system cannot.

�Explain why vector system can’t execute equivalent vector code as efficiently.

Vector instructions must apply the same operation to each lane of its operands. A 4-way superscalar system could execute four
different operations, for example, the set of operations below.

# SOLUTION

add.d f0, f2, f4

sub.d f6, f8, f10

mul.d f12, f14, f16

add.s f18, f19, f20

(b) Unlike MIPS, ARM A64 has pre-index and post-index load and store instructions. Show two code
examples, one in A64 that uses a post-index load, and one in MIPS that does the same thing (but without
a post-index load). The exact syntax of the ARM instructions is not important, use comments to clarify
instructions.

�ARM code and �equivalent MIPS code.

@ SOLUTION

@ ARM A64

ldr x1, [x2], #8 @ x1 = Mem[x2]; x2 = x2 + 8

# MIPS

lw r1, 0(r2) # r1 = Mem[r2]

addi r2, r2, 4 # r2 = r2 + 4

(c) What substantial additional hardware is needed to implement ARM A64 pre- and post-index loads when
starting with something like our five-stage MIPS implementation. (Think about Homework 4.) Note: The
words “substantial” and “costly” were not included in the original exam.

�Costly additional hardware for pre- and post-index loads.

Both the pre- and post-index loads need a second write port to the register file. The post-index load might require an additional
pipeline latch so that both the unincremented value and incremented value can be passed from EX to ME, or a separate adder in the
ME stage to do the post-increment, or some other costly addition.

14
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(d) VLIW ISAs are supposed to do for superscalar implementations what RISC ISAs did for pipelined
implementations. The diagram below shows our 2-way superscalar MIPS. Show how a 2-slot-bundle VLIW
ISA (perhaps one a lot like MIPS) could simplify hardware in this implementation related to the sharing in
ME.

Immed
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�Modify the hardware above.

�Explain the bundle slot restrictions based on modified hardware.

Solution appears above. Unnecessary hardware is crossed out with red exes and where necessary wires reconnected in green.

A 2-slot bundle VLIW ISA designed for implementations like the one above in which there was one ME-stage memory port would
require that a memory (load or store) instruction be placed only one slot (slot 0 in the solution above). That is, a memory instruction
in slot 1 would be invalid and raise an illegal instruction exception. With that restriction the memory port D In input only needs a
connection to slot 0, and so the EX-stage mux providing a path from slot 1 can be removed. Similarly, other connections to or from
the memory port to slot 1 have been removed.

�Explain why the control logic driving STALL ID 1 would no longer be needed.

The bundle slot restrictions forbid two memory instructions in a bundle, and so there’s no need to check for it. (In fact, there can’t
be a memory instruction in slot 1 even without a memory instruction in slot 0.)
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(e) When an exception occurs (or a trap instruction is executed) the processor switches from user mode
into privileged mode (also called system mode). Explain how privileged mode affects instruction execution,
including loads, compared to user mode.

�Effect of privileged mode on instruction execution including �effect on load instruction execution.

In privileged mode all instructions can be executed, but in user mode only a subset of instructions can be executed. Similarly, in
privileged mode a load or store can access any valid memory address, in user mode loads and stores can only accesses addresses to
which they have been granted access.

(f) It’s hard to choose a line size that makes everyone happy. Explain how a long line size might slow down
some programs in a small cache in comparison to the right line size (for those programs).

�With a small cache large lines can slow some programs because:

Short Answer: because the S bytes of data (say) that some program needs cached won’t fit in a 4S byte cache because the program
only uses 1

8 of the data in a line. It would take an 8S-byte cache to hold the S bytes in such a case.

For example, consider a 64 kiB cache with a 1024B cache. Such a cache can hold 64 lines. Consider a program that frequently
needs to access 100 bytes of data where the address of byte i is 2000i, for 0 ≤ i < 100. Each line holds just one byte of the needed

data plus 1023 unneeded bytes. Now consider a cache with 32-byte lines, but also of 64 kiB. This cache can hold 64×210

32 = 2048
lines. That’s more than enough for the program.

�Describe the characteristics of code that works well with long lines.

Code that accesses data sequentially. For example, for (i=0; i<1000000; i++ ) sum += a[i]; . Here, the access to
data is sequential.
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Problem 1: [25 pts] Appearing below are what are supposed to be pipeline execution diagrams (PEDs) of
code fragments executing on the illustrated implementation. The PEDs are incorrect.

(a) Correct the PEDs.

format
immed
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�Correct the PED below.

add r1, r2, r3 IF ID EX ME WB

lw r3, 0(r1) IF ID -> EX ME WB

# SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r3, 0(r1) IF ID EX ME WB

Solution appears above. Note that the dependency can be bypassed and so there is no need to stall.

�Correct the PED below.

lw r3, 0(r1) IF ID EX ME WB

add r4, r3, r5 IF ID -> EX ME WB

sub r6, r7, r8 IF ID EX ME WB

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7

lw r3, 0(r1) IF ID EX ME WB

add r4, r3, r5 IF ID -> EX ME WB

sub r6, r7, r8 IF -> ID EX ME WB

The sub has to stall in cycle 3 since ID is occupied by the add.
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�Correct the PED below.

# Cycle 0 1 2 3 4 5 6 7

beq r1, r1 TARG IF ID EX ME WB # Branch is taken.

xor r5, r6, r7 IF IDx

add r8, r9, r10 IFx

TARG:

sub r2, r3, r4 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7

beq r1, r1 TARG IF ID EX ME WB # Branch is taken.

xor r5, r6, r7 IF ID EX ME WB

add r8, r9, r10

TARG:

sub r2, r3, r4 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

The delay-slot instruction should be executed, and the branch is resolved in ID so the target must be fetched when the branch is in
EX.
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(b) Appearing below are more PEDs which are not correct for the illustrated implementation. This time
modify the implementation so that the executions are correct. Only make necessary changes.

• Delete a bypass path by showing an × at the mux input where it ends.

• Do not delete or add more hardware than is necessary.
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�Modify the implementation so that the execution below is correct.

add r1, r2, r3 IF ID EX ME WB

sub r3, r1, r5 IF ID ----> EX ME WB

�Modify the implementation so that the execution below is correct.

lw r1, 0(r2) IF ID EX ME WB

sw r1, 0(r3) IF ID EX ME WB
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Problem 2: [25 pts] The implementation below is based on the solution to Homework 2 Problem 2 in
which a bypass was added for bltz instructions.

Use Next Page for Solution
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Use Next Page for Solution

(a) The implementation can only bypass values in EX to a bltz. Modify the implementation on the next

page so that values can be bypassed from both EX and ME. With these changes the two fragments below

should run without a stall and of course bypass the correct value.

# Example 1

add r1, r2, r3

sub r4, r5, r6

bltz r1, TARG

# Example 2.

add r1, r2, r3

sub r1, r1, r6

bltz r1, TARG

(b) A bypass from EX isn’t possible for the code fragment below, and a bypass from ME is problematic too.
On the next page add logic to generate a stall signal for these situations (load/bltz dependencies) and

connect it to the word STALL in the upper-right of the diagram. Notice that there is an is Load logic block
in ID.

lw r1, 0(r2)

bltz r1, TARG

(c) Explain why it would not be a good idea to bypass the load value to the bltz when the load is in ME.

�Bypassing load from ME not a good idea because:

Because data is available at the D Out output of the memory port very late in the clock cycle and so it can’t be used for anything
without increasing the clock period. That is, D Out is on the critical path.
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Problem 2, continued:

�Modify implementation so bltz can bypass from EX and ME.

The solution appears below in blue. Note that the multiplexor is positioned such that if there is a dependence both on the instruction
in EX and ME, the sign bit from the EX stage will be used. See Example 2 on the previous page.

�Logic to generate stall signal for bltz dependent on load.

Solution appears in green. Note that the stall is generated if the respective instructions are in the respective stages and if there’s a
dependence. A common mistake was to also check whether the “sign bit” was 1 (whether the branch is taken). That doesn’t make
sense because the sign bit isn’t really available, if it was we wouldn’t need to stall.

�Answer part c.

I remembered, but thanks for the reminder.
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Problem 3: [12 pts] Answer each question below.

(a) Each code fragment below writes register f30 with the sum f2 + 4720.

# Plan A

addi $t0, $0, 4720

mtc1 $t0, $f17

cvt.s.w $f16, $f17

add.s $f30, $f2, $f16

# Plan B

lui $t0, 0x4593

ori $t0, $t0, 0x8000

mtc1 $t0, $f16

add.s $f30, $f2, $f16

�What is the difference between mtc1 and cvt?

The mtc1 instruction moves a value from an integer register to a floating-point (co-processor 1) register. The cvt instruction
converts a value from one format to another, in the example above from integer to single-precision floating point. So the difference
is, mtc1 moves its operand from an integer to FP register, while cvt changes the value of its operand from an integer to FP value.

�Why doesn’t Plan B need a cvt?

Because the register contents is already in a FP format.

(b) All MIPS integer instructions have their source register numbers in the rs and, if needed, rt fields. But
the destination register number can be found in either the rt or rd fields.

�How does limiting integer sources to rs and rt reduce cost and improve performance?

It reduces cost because no mux is needed at the register file Addr inputs. It improves performance for the same reason, there is no
delay that there would be with a mux, which includes the logic generating the mux’s control signal.

�Why isn’t performance hurt by having the destination in either rt or rd?

Because the dst value is not needed until the end of ID (for the pipeline latch) and so the mux and its control logic are not on the
critical path.
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Problem 4: [28 pts] Answer each question below.

(a) The statement below omits an important reason why customers can be kept by companies that manage
an ISA and implementation as two different things.

By separating the ISA from the implementation we can keep our customers by offering them a faster
implementation when they are ready to buy a new system.

�What is the important reason that has been omitted?

Short Answer: . . ., that runs the software that they already have.

More details: Software compatibility. The newer, faster computer must be an implementation of the same ISA or a superset of it.
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(b) To use profiling to improve performance a program is compiled twice.

�What is done between the first and second compilation?

The program is run using typical input data, the run is called a training run. (Sorry about using the word run three times in one
sentence.)

�Why does the program need to be compiled a second time?

So that the compiler can read the results of the training run and use that to make better optimization decisions.

� Suppose that taken branches have a penalty. Show how profiling helps.

Suppose that in the first code fragment below the branch is mostly taken, meaning that the ELSEPART is frequently executed. When
the compiler learns this by reading the output of the training run it will rearrange code so that the branch is mostly not taken. It
will also move the less-frequently executed IF PART out of the way. In the optimized code zero control transfers are needed for the
frequent case.

# SOLUTION

# Before optimization. Either branch or jump always taken.

# Assume that branch is mostly taken.

add r1, r2, r3

beq r4, r5, ELSEPART

xor r6, r7, r8

IF_PART:

lw r8, 0(r9)

...

j ENDIF

add r10, r11, r12

ELSEPART:

lw r8, 0(r20)

...

ENDIF:

sw r21, 0(r22)

# After optimization. Now branch is mostly not taken.

add r1, r2, r3

bne r4, r5, IFPART

xor r6, r7, r8

ELSEPART:

lw r8, 0(r20)

...

ENDIF:

sw r21, 0(r22)

...

IF_PART:

lw r8, 0(r9)

...

j ENDIF

add r10, r11, r12

9
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Problem 4, continued:

(c) Consider an instruction such as add (r1), r2, 4(r3). What about it makes it unsuitable for a RISC
ISA? Explain why it would be difficult to implement in our pipelined design.

� add (r1), r2, 4(r3) unsuitable for RISC because:

� It would be difficult to implement because:

The instruction is unsuitable for RISC because it both performs arithmetic and accesses memory, a RISC no-no. This makes it hard
to implement in a pipelined microarchitecture because the instruction would need to access memory twice, once for the source, 4(r3)
and once to write the result, (r1), which would require extra memory ports, and that’s costly, or it would require some way of using
the memory port from different stages, which would greatly complicate the design.

(d) When we compared the un-optimized and optimized versions of the π program we found that the optimized
version had many fewer load and store instructions. Why?

�The optimized π program had fewer loads and stores because:

Without optimization, the compiler will emit code to load the value of a variable into a register each time it is used and to write the
value to memory each time it is changed. But if a variable is updated and used many times (say, in a loop body) then the value can
be loaded just once, into a register, before the loop and stored just once, after the loop. That was the case with the π program where
all loads and stores were eliminated from the loop body.

(e) A tester preparing a run of the SPECcpu suite is responsible for compiling the benchmarks. Why does
that make SPECcpu results interesting to computer engineers?

�Tester compilation makes SPECcpu interesting to computer engineers because:

Computer engineers can evaluate the performance of new microarchitectural features, such as bypass paths, by running the SPECcpu
benchmarks with a compiler back-end designed to take advantage of the new features. They also can run the benchmarks on new
ISAs. Note that the tester is the computer engineer.
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Problem 5: [10 pts] Answer the following questions about bypass paths.

(a) Consider the two statements below about bypasses in implementations like our five-stage MIPS running
typical programs.

A: Compiler scheduling makes bypass paths unnecessary.

�Explain why the statement above is wrong.

In typical programs the compiler cannot always schedule instructions to avoid stalls because it can’t always find enough instructions
to put between a dependent pair. The problem is exacerbated without bypass paths because dependent pairs must be farther apart.

B: Bypass paths make compiler scheduling unnecessary.

�Explain why the statement above is wrong.

Bypass paths don’t exist for every possible dependence, such as a lw followed by an add.

(b) Consider the two above statements (about bypass paths) again as it applies to our MIPS implementation,
but this time running a special set of programs. We plan to design an implementation for this set of
programs. For these programs the two statements are true! Note: The original exam did not mention the
new implementation, and it had an “or both” option below.

�For such programs should we eliminate bypass paths or should we eliminate compiler scheduling?

�Explain.

Bypass paths, because that would save money. Note that just because both statements are true does not mean that bypass paths and
compiler scheduling can be eliminated at the same time. Statement A implies that compiler scheduling is eliminating stalls without
the help of bypass paths. But if scheduling is also eliminated there can be stalls.
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Problem 1: (20 pts) Appearing below is our two-way superscalar MIPS implementation with a single,
unconnected memory port in the ME stage. Since there is only one memory port there will have to be a slot-1
ID-stage stall whenever ID contains two memory instructions, for example:

# Cycle 0 1 2 3 4 5

lw r1, 0(r2) IF ID EX ME WB

lw r3, 0(r4) IF ID -> EX ME WB

(a) On the next page add datapath to the implementation so that the memory port can be used by a load
or store instruction in either slot. Pay attention to the cost of pipeline latches.

(b) On the next page add control logic needed for the datapath changes. The control logic should be for any
multiplexors that you’ve added, don’t include control logic for the memory port itself.

(c) On the next page add control logic to generate a STALL_ID_1 signal when there are two memory instruc-
tions in ID, as occurs in cycle 1 to the lw r3 in the example above.

Use next page for solution.
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Use next page for solution.
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Problem 1, continued:

�Datapath so that memory port can be used by a � load or � store in either slot.

�Control logic for multiplexors that you’ve added. �Control logic to generate STALL ID 1.

�Pay attention to �pipeline latch cost and � the critical path.

Solution appears below. The added datapath is in blue, reconnected existing datapath is in purple, and control logic is in green. In EX
multiplexors have been added to select the address and store value from the appropriate slot. By putting the store value multiplexor
in EX we can eliminate the ME.rtv1 pipeline latch, shown exed out in red. A multiplexor and a new pipeline latch were added
for the store address in EX; putting the address multiplexor in ME was out of the question because of critical path and since we
don’t know whether the memory instruction will be in slot 0 or slot 1, we couldn’t just connect the mux to ME.alu0 (as we did
with the store value, to ME.rtv0). The memory port output is connected only to md0, the connection to slot 1 is made in the WB
stage, saving another pipeline latch. The non-memory-related alu0 and alu1 connections are reconnected, that’s shown in purple.

Control logic appears in green. The output of isMem is logic 1 if the instruction is any kind of load or store.
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(d) Notice that the two instructions in the code below load from adjacent addresses. The superscalar
implementation from the previous page would stall the lbu r3. But that might not be necessary because
the memory port retrieves 32 b of data. A properly designed alignment network could provide data for both
instructions, in some cases. Let’s call such nice situations, shared loads.

lbu r1, 0(r2)

lbu r3, 1(r2)

Only show ID-stage changes. Show control logic to detect possible shared loads in ID. Generate a signal
named SHARED_LOAD which is 1 if the instructions in ID could form a shared load, based on register numbers
and immediate values.

�Control logic to detect possible shared loads.

Solution appears below. The logic in blue checks that both instructions are lbu and that the rs register numbers of both instructions
are the same. The logic in green checks that the absolute value of the difference between the immediate values is less than four.
This is shown with a subtraction followed by simple gates. Full credit would have been given for a box labeled with something like
abs < 4 .

The logic from Parts a, b, and c are shown in black. The SHARED LOAD signal is used to suppress the two-loads stall.

�Explain why alignment and critical path make it impossible to know for sure in ID that a shared load
is possible.

Due to alignment restrictions both addresses must be identical in bits 31:2. If we assume that bits 1:0 of the base register (r2 in the
example) are 0 then all we need to do is check whether bits 15:2 of the two immediates are identical. But suppose bits 1:0 of the
register are 3. Then the two addresses in the example will not be in the same four-byte aligned chunk.

4
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Immed
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The following part was NOT on the final exam as given. It will be assigned as homework in 2017.

(e) Notice that the two instructions in the code below load from adjacent addresses. The superscalar
implementation from the previous page would stall the lbu r3. But that might not be necessary because
the memory port retrieves 32 b of data. A properly designed alignment network could provide data for both
instructions, in some cases. Let’s call such nice situations, shared loads.

lbu r1, 0(r2)

lbu r3, 1(r2)

Here’s the plan: In ID detect whether a shared load is possible. In EX check addresses. In ME have memory
port perform only one kind of load, 32 b (stores are unaffected). In WB have a separate alignment network
for each slot.

Show control logic to detect possible shared loads in ID. Generate a signal named SHARED_LOAD which is
1 if the instructions in ID could form a shared load, based on register numbers and immediate values. In
EX generate a STALL-EX-1-SL signal if the shared load cannot be performed. This will stall the pipeline
allowing the slot-0 load to proceed normally in the current cycle and the slot-1 load to be executed in the
next cycle. Show connections for the alignment units in the appropriate places.

�Control logic to detect possible shared loads.

Solution appears below in green and blue. The only difference with the changes in ID below and those from Part d is that below
the low three bits of the difference between the immediates is put in a pipeline latch, EX.di, shown in purple. Signal di (delta
immediates) is used in EX to check whether a shared load can actually be done.

�Explain why alignment and critical path make it impossible to know for sure in ID that a shared load
is possible.

See solution to Part d.

� EX-stage hardware to generate STALL-EX-1-SL if can’t do shared load based on addresses.

The difference imm0-imm1 is added to the low two bits of the address of the slot-1 load. If that sum is > 3 or < 0 then bits 31:2
of the two addresses must differ. That logic is shown in purple. The STALL-EX-1-SL signal is generated when the sum is out of
range and when there was possible shared load when the instruction was in ID.

For example, consider the two loads lbu r1, 0(r2) lbu r3, 1(r2). For these loads imm0-imm1 is −1 or 1112 as a 2’s
complement 3-bit number. Suppose r2 (rsv) is 0x1000. The slot-1 address will be 0x1001, the two least significant bits are 012.
Adding these two yields: 1112 + 012 = 0002. Bit 2 is zero so the shared load can go ahead. Next, suppose that r2 is 0x1003.
Now, the address for the slot-1 load is 0x1003+1=0x1004. The two least significant bits are 002. In the sum 1112+002 = 1112
the bit at position 2 (lsb is position 0) is 1, and so a shared load is not possible.

Note that the stall determination is made by logic that examines just 3 + 2 bits. Checking whether the high 30 bits of the two ALU
outputs were the same would be correct but would stretch the critical path.

�Add remaining ME- and WB-stage hardware.

The solution appears below in orange. Multiplexors select the appropriate 8 bits from the memory port output based on the two least
significant bits of the address.

6
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Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

md

dst
0

Dest. reg

Addr
25:21

20:16

rsv0

rtv0Addr

Data

Data

+

15:0

31:2

15:0

alu0

rtv
 

Addr
25:21

20:16

rsv1

rtv1Addr

Data

Data

A
d
d
r

D
 I
n

dst1

imm0

imm1

64

15:0

alu1  

dst0

dst1

Register File

ir
0

ir
1

PC

npc

2'b0

Dest. reg

Data

Out

dst0

dst1

alu1

alu0

Immed

Addr

Data

Out

D

In

Mem

Port

isMem

addr

isMem
STALL_ID_1

mp1

25:21

25:21

15:0

15:0

1
6

:2

1:0

OAD

rs registers match.

Absolute difference
between immediates < 4.

subtract
immediate

values
imm0-imm1

di +
1:0

2:0 STALL2:2

31:24

23:16

15:8

7��

31:24

23:16

15:8

7��

1:0

If 1, addresses are in different

words, i.e., bits 31:2 of 

addresses differ. This is

despite the fact 

that |imm0-imm1|<4.

7

← → Spring 2016 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2016/fe_sol.pdf


Problem 2: (20 pts) Show the execution of the code fragments below on the illustrated MIPS implemen-
tations. All branches are taken. Don’t forget to check for dependencies.

(a) Show executions.

mat
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

AL
Addr

Data

Data

Addr D In
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Mem
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+
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25:0

15:0

D

 

dstdst

 

m�� l��

m��

l��

�Show execution of this simple code sequence.

# SOLUTION

# Cycle 0 1 2 3 4 5

add r1, r2, r3 IF ID EX ME WB

sub r4, r1, r5 IF ID EX ME WB

�Show execution of the following code sequence.

# SOLUTION

# Cycle 0 1 2 3 4 5 6

beq r1, r1 TARG IF ID EX ME WB

or r2, r3, r4 IF ID EX ME WB

sub r5, r6, r7

xor r8, r9, r10

TARG:

lw r10, 0(r11) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6

8
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(b) Show the execution of the code sequences below on the illustrated MIPS implementation. Don’t forget
to check for dependencies.

FP Reg File
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Addr Data

D In

Addr

Addr

Data

fsv

ftv
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Int Reg File

format
immed

15:0

�Show execution of the following code sequence.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

mul.s f5, f6, f7 IF ID M1 M2 M3 M4 M5 M6 WF

add.s f1, f2, f3 IF ID A1 A2 A3 A4 WF

sub.s f4, f8, f5 IF ID ----------> A1 A2 A3 A4 WF

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
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(c) Add any datapath hardware needed to execute the code sequence below, and show its execution. (Control
logic is not needed.) Don’t forget to check for dependencies.
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immed

15:0

�Add hardware needed by, and � show execution of, the following code sequence.

�Consider both stores and, as always, avoid unnecessary costs.

Added hardware appears above in blue, and the execution appears below. The added hardware consists of a connection from the
M1/A1 stage to the mux leading to the memory port data in. For swc1 f1 the connection is used in cycle 3, carrying data from
the IF/ID.ftv pipeline latch. For swc1 f2 the connection is used in cycle 6, where it is carrying data bypassed from WF.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8

add.s f2, f3, f4 IF ID A1 A2 A3 A4 WF

swc1 f1, 0(r7) IF ID EX ME WB

swc1 f2, 4(r8) IF ID ----> EX ME WB

10
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Problem 3: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 214 entry BHT. One system has a bimodal predictor,
one system has a local predictor with a 10-outcome local history, and one system has a global predictor with
a 10-outcome global history.

(a) Branch behavior is shown below. Two repetitions of a repeating sequence are shown for branches B1 and
B2. Branch B2 generates the following repeating sequence: the eight outcomes TNTNTNTN followed by either
NN, probability .2, or TT, probability .8. These last two outcomes are shown below as r r and q q.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: N N T T T N T N N T T T N T · · ·

B2: T N T N T N T N r r T N T N T N T N q q · · ·

�What is the accuracy of the bimodal predictor on branch B1?

Branch B1 repeats every 7 outcomes. Based on the analysis below there are 4 mispredicts and 3 correct predictions, for

an accuracy of 3
7 = .4286 .

SOLUTION: Analysis of counter values and outcomes for branch B1.

! <--------------------------!<--- matching ctr

0 0 0 1 2 3 2 3 2 1 2 3 3 2 3 <- 2 bit counter

B1: N N T T T N T N N T T T N T · · ·
x x x x <- prediction outcome

B2: T N T N T N T N r r T N T N T N T N q q · · ·

11
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�What is the accuracy of the bimodal predictor on branch B2?

Short Answer: The counter must be either 0 or ≥ 2 at the start of TNTNTNTN yielding 4 correct predictions and ending with a value
of 0 (prob .2) or 2 (prob .8). Summing the weighted number of correct predictions of the next two outcomes yields .2 × .2 × 2 +
.2 × .8 × 0 + .8 × .2 × 1 + .8 × .8 × 2 = 1.52 correct predictions. That’s 4 + 1.52 correct predictions for 10 outcomes, or
5.52% prediction accuracy.

Long Answer: This problem is easy to solve by considering a twelve outcome sequence rrTNTNTNTNqq and computing the accuracy
based on the last 10 of these outcomes, TNTNTNTNqq. There are four cases to consider: rr=NN,qq=NN, rr=NN,qq=TT,
rr=TT,qq=NN, and rr=TT,qq=TT. First suppose rr=NN. The counter value after the second r must be zero (since there was an
N before the first r). With a counter value of zero the TNTNTNTN sequence yields four correct predictions and ends with a counter
value still of 0. If the qq sequence is NN there will be two more correct predictions, for a total of 6. The accuracy is 60% and the
probability of the twelve outcome sequence NN TNTNTNTN NN is .2 × .2 = .04. This analysis is shown in the first row of the
table below. The C columns show counter values. In the first column the counter values are shown as a range, from 0 to 2 (3 is
omitted because it cannot occur at that point because the preceding outcome is an N). The last column shows the prediction accuracy
weighted by the probability. The remaining three rows show the other three cases, and bottom line shows a sum of the weighted

probabilities, for an overall prediction accuracy of .552 .

C C C C Acc Prob Weighted Acc

---- --- - - --- ------------- ---------------

0-2 NN 0 TNTNTNTN 0 NN 0 60% .2 * .2 = .04 .6 * .04 = .024

x x x x

0-2 NN 0 TNTNTNTN 0 TT 2 40% .2 * .8 = .16 .4 * .16 = .064

x x x x xx

0-2 TT 2-3 TNTNTNTN 2 NN 0 50% .8 * .2 = .16 .5 * .16 = .08

x x x x x

0-2 TT 2-3 TNTNTNTN 2 TT 3 60% .8 * .8 = .64 .6 * .64 = .384

x x x x

---- --- - - --- ------------- ---------------

1.0 = .552

Grading Note: Most looked at cases starting with the TNTNTNTN part and just assumed without justification
a single counter value at the start this sequence.

�What is the accuracy of the local predictor on B2?

The local history size is ten outcomes, and so the local predictor can see where it is in this repeating sequence. The only outcome
it can’t predict is the first of the two random outcomes (the second always matches the first). Since that’s biased taken 80% of the
time we can estimate that it will be correctly predicted 80% of the time. The other 9 outcomes will be predicted every time for an

overall prediction accuracy of 9+.8
10 = .98 = 98% .

12
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�What is the minimum local history size needed to predict B1 with 100% accuracy?

The minimum local history size is three outcomes . Two outcomes would be too few. For example, if the local history were TT then
the next outcome could either be T or N. With three outcomes we’d have TTT which can only be followed by N in the pattern above.
The minimum local history size can be found methodically by constructing a tree in which an edge represents an outcome. The root
is a zero length history. Edges are labeled with N or T and the possible positions (see below) at which the N or T can occur. The tree
is constructed until all leaf nodes are connected to edges labeled with one position. The minimum local history size is the maximum
number of edges from the root to a leaf (the tree height).

0 1 2 3 4 5 6 Numbering of positions.

N N T T T N T

N @ 0,1,5 All length-1 histories N. (Three positions.)

N @ 1 All length-2 histories NN (One position.) Leaf

T @ 2,6 All length-2 histories NT (Two positions [of the T].)

N @ 0 All length-3 histories NTN (One position.) Leaf

T @ 3

T @ 2,3,4,6

N @ 5,0

N @ 1

T @ 6

T @ 3,4

N @ 5

T @ 4

�What is the minimum local history size needed to predict B2 with maximum accuracy?

B2: TNTNTNTNrrTNTNTNTNqq

-------- Eight outcomes not enough. Look at q=T

-------- and r=N.

The local predictor needs to know where it is, in particular to identify the first and second random outcomes. That would require a
local history size of 9. See the diagram above.

13
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Problem 3, continued:

(b) The diagram below shows four branches. Branches B1 and B3 are loop branches, each in a 30-iteration
loop. Branches B2 and B4 are perfectly biased branches (B2 always taken, B4 never taken). Consider their
execution on the three variations of the global predictor shown below.

B1: TT · · · TN TT · · · TN TT · · · TN

B2: T T T

B3: TT · · · TN TT · · · TN

B4: N N

a d
12

2

d
12

2

PC

or a d
12

2

PC

or

13:2

a d
12

2

PC

a d
12

2

PC

6

Pred A

Pr

Pred C

12

�Which variation ( A , B, or C) will predict B2 or
B4 poorly?

�Why does the variation do poorly on one or both
of these simple to predict branches?

In A the PHT is indexed only by the GHR. The GHR value present
when predicting B2 will be TTTTTTTTTTTN, the GHR value when
predicting B4 will also be TTTTTTTTTTTN, and so they will share
a PHT entry. Since they have a different bias the branch will be
mispredicted.

�Which variation (A, B , or C) is best for B2 and
B4 and also for branches with repeating patterns?

� Show an example that one variation predicts ac-
curately that the other can not.

If a branch has repeating patterns then to be predicted accurately the history needs to be large enough to hold the branch’s outcomes.
Predictor B uses 12 bits of history, whereas Predictor C uses only 6 bits, and so Predictor B is better. Based on the first answer we
know that Predictor A will not work well on B2 and B4.

Note: Predictor A is the global predictor, Predictor B is the gshare predictor, and Predictor C is called the gselect predictor.
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Problem 4: (20 pts) The diagram below is for a three-way set-associative cache. Hints about the cache are
provided in the diagram.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data

Addr
Data
Out

Tag

alid

Addr

Data In

logic

Addr
Data
Out

Tag

Data

Addr
Data
Out

Tag

alid

64

8 c

63:21

20:3

63:21

20:6 20:6

20:3

�Complete the address bit categorization. Label the sections appropriately. (Index, Offset, Tag.)

Address:

Tag

63 21

Index

20 6

Offset

5 3 2 0

�Cache Capacity � Indicate Unit!!:

The cache capacity can be determined from the following pieces of information: The lowest tag bit position is 21, which means
that the size of the combined index and offset is 21 bits, and so each data store holds 221 characters. Nothing was said about the
character size and so we can assume that it is 8 bits, which everyone alive today calls a byte. We were told that the cache is 3-way

set associative, and so there are 3 data stores, and so the cache capacity is 3 × 221 = 6MiB.

�Memory Needed to Implement � Indicate Unit!!:

It’s the cache capacity, 6MiB, plus 3 × 221−6 (64 − 21 + 1) bits.

�Line Size � Indicate Unit!!:

Lower bit position of the address going into the tag store gives the line size, 26 = 64 characters.

15
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�Show the bit categorization for the smallest direct mapped cache with the same line size and which can
hold at least as much data as the cache above.

The cache above is 6MiB, which is not a power of two. Since a direct-mapped cache must be a power of two we’ll make it
8MiB = 223 B. To achieve that in a direct-mapped cache of the same line size the low tag bit position must be 23, the other bit
positions remain the same.

Address:

Tag

63 23

Index

22 6

Offset

5 3 2 0

16

← → Spring 2016 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2016/fe_sol.pdf


Problem 4, continued: The problems on the following pages are not based on the cache from Part a.
The code in the problems below run on a 16MiB (224 byte) two-way set-associative cache with a line size of
28 = 256 bytes. Each code fragment starts with the cache empty; consider only accesses to the arrays.

(b) Find the hit ratio executing the code below.

long double sum = 0;

long double *a = 0x2000000; // sizeof(long double) == 16

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

�What is the hit ratio running the code above? Show formula and briefly justify.

The line size of 28 = 256 bytes is given. The size of an array element, which is of type long double, is 16 = 24 B, and so there are
28/24 = 28−4 = 24 = 16 elements per line. The first access, at i=0, will miss but bring in a line with 24 elements, and so the
next 24 − 1 = 15 accesses will be to data on the line, hits. The access at i=16 will miss and the process will repeat. Therefore

the hit ratio is 15
16 .
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Problem 4, continued: The code in the problem below runs on a 16MiB (224 byte) two-way set-associative
cache with a line size of 28 = 256 bytes. Each code fragment starts with the cache empty; consider only
accesses to the arrays.

(c) The code below scans through an array (or arrays) twice, once in the First Loop and a second time in
the Second Loop. Three different variations are shown, Plan A, Plan C, and Plan D. For each Plan, find
the largest value of BSIZE for which the second loop will have a 100% hit ratio.

// Note: sizeof(double) == 8

// Plan A

struct Some_Struct { double val, norm_val; double stuff[14]; };

// Plan C

struct Some_Struct { double val, norm_val; };

struct Some_Struct_2 { double stuff[14];};

// Plan D

double *vals, *norm_vals;

struct Some_Struct_2 { double stuff[14]; };

// Plan A and Plan C

Some_Struct *b;

for ( int i = 0; i < BSIZE; i++ ) sum += b[i].val + b[i].norm_val; // First Loop.

for ( int i = 0; i < BSIZE; i++ ) b[i].norm_val = b[i].val / sum; // Second Loop.

// Plan D

for ( int i = 0; i < BSIZE; i++ ) sum += vals[i] + norm_vals[i]; // First Loop.

for ( int i = 0; i < BSIZE; i++ ) norm_vals[i] = vals[i] / sum; // Second Loop.

�Largest BSIZE for Plan A. �Show work or explain.

Each iteration loads one struct, size is (1 + 1 + 14)× 8 = 27 B. There are consecutive accesses to array b and so the cache used
efficiently (except for the fact that only 16 bytes of the 128-byte structure are used). Because the structure size is smaller than a
cache line the cache can hold 224/27 = 217 elements, which is what BSIZE should be.

�Largest BSIZE for Plan C. �Show work or explain.

Size of struct (the one we need) is now (1 + 1) × 8 = 24 B. So BSIZE is 224/24 = 220 . BSIZE is much larger because the
cache holds only what we need, val and norm val.

�Largest BSIZE for Plan D: �Show work or explain.

Each iteration loads one element from val and one from norm val. Total size is 24 B. Since the cache is two-way set-associative
we don’t need to worry about conflicts. So BSIZE is 224/24 = 220, the same as for Plan C.

(d) What’s wrong with the statement below:

In the first iteration of the First Loop under Plan C there will be one miss but with Plan D there will
be two misses. Therefore Plan C is better, at least for the First Loop.

�What’s wrong with the statement?

What’s wrong with the statement is that it is basing a conclusion about the entire First Loop on an analysis of only the first iteration
of the First Loop. Yes, with C there is one miss while with D there are two. But with C there will be hits in the next 15 iterations,
(line size divided by struct size) while with D there will be hits for the next 31 iterations. Overall, the number of misses is the same.

18
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Problem 5: (20 pts) Answer each question below.

(a) Suppose that a new ISA is being designed. Rather than requiring implementations to include control
logic to detect dependencies the ISA will require that dependent instructions be separated by at least six
instructions. As a result, less hardware will be used in the first implementation.

�Explain why this is considered the wrong approach for most ISAs.

Short Answer: Because ISA features should be tied as little as possible to implementation features. The separation requirement
in the new ISA is based on a particular implementation, one with five or six stages and that lacks dependency checking.

Long Answer: An ISA should be designed to enable good implementations over a range of cost and performance goals. It
is reasonable to assume that low hardware cost was a goal of the first implementation and, as stated in the problem, the ISA’s
separation requirement helped achieve that goal. So the separation requirement would be a good idea if there was only going to
be one implementation or if cost constraints and technology wouldn’t change. However, ISAs are usually designed
for a wide product line and a long lifetime. The separation requirement would become a burden if in the future a higher-performance,
higher-cost implementation was needed.

�What is the disadvantage of imposing this separation requirement?

Short Answer: It would make a higher-performance implementation that included bypass paths pointless since the compiler would
be forced to separate dependent instructions, possibly by inserting nops, and so the bypass paths would never be used.

Long Answer: Call the ISA with the separation requirement, ISA S (strict), and one that lacked the separation requirement but was
otherwise identical, ISA N (normal). Consider a low-cost implementation of each ISA. Neither implementation would include bypass
paths but the implementation of ISA N would need to check for dependencies and stall if any were found, making the cost slightly
higher than that of the implementation if ISA S. Now consider a code fragment compiled for both ISAs in which the version for ISA
S requires nops to meet the separation requirement. (The version for ISA N has fewer instructions.) Now consider their execution
on their respective implementations. The execution times should be the same because for each nop in the ISA S implementation
there will be a stall in the ISA N implementation.

So the performance of the low-cost implementations of the ISAs are about the same, but the cost of the ISA N version is slightly
higher. (Note that the hardware for checking dependencies is of relatively low cost since it operates on register numbers, 5 bits each
in many ISAs. That is in contrast to the cost of the hardware for bypasses, which are 32 or 64 bits wide and include multiplexors.)

Next, consider high-performance implementations. For ISA N we can add bypass paths, as we’ve done in class. As a result, some
instructions that would stall in the low-cost implementation would not stall in the high-performance implementation, and so code
would run faster. In contrast, code for ISA S would still have nop instructions since the ISA itself imposes the instruction separation
requirement. That would make it much harder to design higher performance implementations.

Therefore, the disadvantage of the instruction separation requirement is that it leads to much higher-cost high-performance imple-
mentations with only a small cost benefit for the low-cost implementation.

Grading Note: Several students incorrectly answered that a disadvantage of the separation requirement is that it would be tedious
and error prone for hand (human) coding, and that it would require that the compiler schedule instructions rather than having the
hardware check for dependencies and stall when necessary.

It is 100% true that hand-coding assembly language with such a requirement would be tedious, especially considering branch targets.
However, an ISA is designed to facilitate efficient implementations, not to improve assembly language programmers’ productivity. (An
assembler can still be helpful by pointing out likely separation issues.) Also, if something can be done equally well in the compiler
and in hardware, it should be done in the compiler because the cost of compiling is borne beforehand, by the developer. In contrast,
the higher cost of the hardware is payed by every customer and the energy of execution is expended each time the program is run.
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(b) In the execution below the add.s instruction encounters an arithmetic overflow when in the A4 stage and
as a result raises an exception in cycle 6.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add.s f1, f2, f3 IF ID A1 A2 A3 A* WFx

lwc1 f3, 0(r2) IF ID EX ME WB

lw r4, 0(r5) IF ID EX ME WBx

add r6, r7, r8 IF ID EX MEx

HANDLER:

sw IF ID ..

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

�Explain why this exception can’t be precise.

Because the lwc1 wasn’t squashed and it wrote a register. To be precise nothing after the faulting instruction (add.s) can modify
registers or memory.

�Describe something the handler could do if the exception were precise.

If the exception were precise then after the handler was finished it could return to the add.s giving it a second chance to execute.
It can’t return to the add.s in the imprecise execution shown above because the value of f3 was overwritten by the lwc1.

20
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(c) Chip A has 60 2-way superscalar cores and Chip B has 20 4-way superscalar cores. Both chips run at
3GHz, and so Chip A has a higher peak instruction throughput. The cost and power consumption of the
two chips are identical. Why might someone prefer Chip B over Chip A?

�Chip B preferred, despite lower peak throughput, because:

Because their workload consists of one single-threaded program. (Or maybe a program that has no more than 20 threads.) It will
run faster on Chip B.

(d) The SPECcpu suite is used to test new chips that might have cost hundreds of millions of dollars to
develop, and test results are closely watched.

� Why might we trust the SPECcpu selection of benchmarks and rules for building and running the
benchmarks?

Because major chip makers are members of SPEC. Company X would not be a member of SPEC if Company Y twisted the benchmark
selection and rules in favor of Company Y’s products.

�Why might we trust the SPECcpu scores that Company X publishes?

Because any published score is part of a disclosure that includes a config file. With the config file anyone can run the test in exactly
the same way as Company X does. Anything used in the test must be publicly available.
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Problem 1: [25 pts] Appearing on the next page is the HW 3 Implementation, one of the solutions to
Homework 3, Problem 2, in which the bgt instruction resolves in EX. In the HW 3 Implementation there is
a 1-cycle branch penalty when bgt is taken. (The branch penalty is the number of squashed instructions.)
Suppose that based on benchmark analyses we find that bgt is mostly taken. For that we would like a New
Implementation [tm] in which there is no penalty when bgt is taken, and a 1-cycle penalty when it’s not
taken. The PEDs below show execution examples for the HW3 and New implementations.

# Cycle 0 1 2 3 4 5 6 7 HW 3 Impl, bgt taken, 1-cyc penalty

bgt r1, r2 TARG IF ID EX ME WB

xor r3, r4, r5 IF ID EX ME WB

or r6, r7, r8 IF IDx

TARG:

and r9, r10, r11 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 HW 3 Impl, bgt not taken, no penalty

bgt r1, r2 TARG IF ID EX ME WB

xor r3, r4, r5 IF ID EX ME WB

or r6, r7, r8 IF ID EX ME WB

TARG:

and r9, r10, r11

# Cycle 0 1 2 3 4 5 6 7 New Impl, bgt taken, no penalty

bgt r1, r2 TARG IF ID EX ME WB

xor r3, r4, r5 IF ID EX ME WB

or r6, r7, r8

TARG:

and r9, r10, r11 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 New Impl, bgt not taken, 1-cyc penalty.

bgt r1, r2 TARG IF ID EX ME WB

xor r3, r4, r5 IF ID EX ME WB

or r6, r7, r8 IF ID EX ME WB

TARG:

and r9, r10, r11 IF IDx

# Cycle 0 1 2 3 4 5 6 7
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Problem 1, continued: Convert the HW 3 Implementation below into the New Implementation. Hint:
Calm down! A correct solution only requires three minor changes, one of those changes is substituting a mux
input with a constant.

� ID changes: bgt acts like it’s always taken.

� EX changes: if bgt resolves not taken, fetch insn after delay slot insn.

Solution appears below.

format
immed

IR

Addr
25:21

20:16

IF
ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+ 15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

is J

is BEQ

is BNE

is BGTZ

is BGEZ

opc 31:26

rt 20:16

=0

31:31 lsb

msb

10

01

jmp

t-br

10 jmp

00 inc

msb lsb

msb

lsb

01 t-br

is BGT

0:0

 

t-br-ex

SQ

t-br-id

16'd1

When bgt in ID assume

it is taken.

When bgt in EX take corrective

action if it is not taken.

In EX, when bgt not taken

squash target and

resume at fall-through address.

nt-br-ex
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Problem 2: [25 pts] In the implementation below several multiplexor inputs are labeled. For each labeled
input write a program that uses it. A sample solution is provided for A.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

A

B

C

D

E

F

�Write a code fragment for mux input A. �Mux input used in cycle 3 , � for register r1 .

# SAMPLE SOLUTION -- Mux input A.

# Cycle 0 1 2 3 4 5

add r1, r2, r3 IF ID EX ME WB

sub r4, r1, r5 IF ID EX ME WB

�Write a code fragment for mux input B. �Mux input used in cycle 2 , � for register r2 .

# SOLUTION

# Cycle 0 1 2 3 4

add r1, r2, r3 IF ID EX ME WB

�Write a code fragment for mux input C. �Mux input used in cycle 4 , � for register r1 .

# SOLUTION

# Cycle 0 1 2 3 4 5 6

add r1, r2, r3 IF ID EX ME WB

sub r4, r5, r6 IF ID EX ME WB

or r7, r8, r1 IF ID EX ME WB

Note: To be correct, the r1 register must be the second source operand of the or instruction.

4
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Problem 2, continued:

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

A

B

C

D

E

F

�Write a code fragment for mux input D. �Mux input used in cycle 3 , � for register r1 .

# SOLUTION

# Cycle 0 1 2 3 4 5

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID EX ME WB

�Write a code fragment for mux input E. �Mux input used in cycle 4 , � for register r1 .

# SOLUTION

# Cycle 0 1 2 3 4

lw r1, 0(r2) IF ID EX ME WB

�Write a code fragment for mux input F. �Mux input used in cycle 1 .

# SOLUTION

# Cycle 0 1 2 3 4

j FORJOY IF ID EX ME WB

5
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Problem 3: [15 pts] Answer each question below.

(a) Show the encoding of the MIPS instructions below. The opcode for beq is 0x4 and the opcode for lw is
0x23. Hint: For the fields’ bit positions see the implementation diagrams in previous problems.

TARG:

lw r1, 2(r3)

beq r4, r5, TARG

�Encoding of lw r1, 2(r3):

Solution:

opc

0x23

31 26

rs

3

25 21

rt

1

20 16

immed

2

15 0

�Encoding of the beq above �with the correct immediate field value.

The solution appears below. The immediate field contains the number of instructions to skip, starting at the delay slot instruction.
To jump up to the lw we need to skip -2 instructions.

opc

0x4

31 26

rs

4

25 21

rt

5

20 16

immed

-2

15 0

(b) Many MIPS Format-R instructions, such as add and sub, have an opcode value of 0. Explain why they
don’t have their own opcode field values, such as 0x11 for add and 0x12 for sub.

�R-format instructions have opcode 0 because . . .

. . . they have enough space for an extension of the opcode field, called the func field. Assigning opcode 0 to type R instructions
leaves lots of opcodes for format-I and -J instructions.

� If R-format instructions each had their own opcodes that would be a problem because . . .

. . . there would not be enough opcodes available for format-I and -J instructions. These instructions have immediate fields, the larger
the immediate the better, and so it’s better to omit any kind of opcode extension field.

6
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Problem 4: [10 pts] Answer each question below.

(a) Describe what the dead-code elimination optimization is and provide an example.

�Description of dead-code elimination.

In dead code elimination statements (or instructions) are eliminated if they write variables (or registers) that are never used.

�Example.

In the example below line L1 is eliminated because the value of x that it writes is never used, we know that because it is overwritten
by L2.

// SOLUTION EXAMPLE

L1: x = a + b; // This line is eliminated.

L2: x = c + d;

L3: my_procedure(x);

Grading Note: Many examples were much longer than they had to be, for example, showing the π program with π not actually begin
printed.

(b) For instruction scheduling optimizations is it necessary or just helpful for the the compiler to know the
implementation?

� Implementation: Necessary, important , not needed. �Circle one � and explain.

Instruction scheduling is rearranging instructions in order to avoid stalls. The amount by which to separate two true-dependent
instructions depends on the bypass paths that are available and (which was not quite covered before the test) the latency of the
functional unit. A compiler can make assumptions about which instructions have longer latency and which bypass paths are available.
If the assumptions are reasonable then scheduling based on them will be better than not scheduling at all.

7
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Problem 5: [10 pts] Answer each question below.

(a) A CISC ISA might have an instruction like add (r1), r2, 8(r3), in which the source and destination
come from memory.

�Explain why such an instruction is not suitable for a RISC ISA, � refer to RISC goals in your answer.

A goal of a RISC ISA is to enable simple, low-cost pipelined implementations. The instruction above accesses memory twice, once to
fetch an operand and once to write the result. It also does arithmetic twice, once to compute the second source operand address, and
to add the two operands together. A pipelined implementation would need to adders and worse two data memory ports to execute
that instruction, which is too costly for RISC goals. Alternatively an implementation can use a single data memory twice, but such
an implementation would not be pipelined. Either way it’s not RISC.

(b) Describe a feature and goal of VLIW ISAs.

�VLIW feature:

Instructions managed in groups called bundles. Dependency info placed in template fields.

�VLIW goal:

Low-cost implementations that can execute more than one instruction per cycle.

8
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Problem 6: [15 pts] Answer each question below.

(a) SPECcpu benchmark results have two levels of tuning, peak and base. In one of these tuning levels the
same optimization flags must be used for all benchmarks of the same language.

�Which tuning level is this for?

Base.

�What is the purpose for requiring the same flags?

The base tuning level is supposed to reflect the amount of tuning performed by a conscientious and skilled programmer for whom
performance is one of many things to do. In other words, the programmer also needs to add features and fix bugs, and so cannot
waste time getting an extra 0.001% performance. It is assumed that such a programmer will come up with a good set of flags and
then use that same set consistently on the different programs he or she compiles.

Note: In class we discussed what might be a better base rule: just have one optimization flag, such as -O3 or -fast.

(b) Explain how the following corruptions of SPECcpu would be (we hope) prevented.

�The suite excludes benchmarks that perform poorly on Evil Company’s products. This won’t happen be-
cause . . .

. . . Evil Company’s competitors are also members of SPEC, and they won’t sit idly while Evil Company stacks the deck against
them. Either they will veto Evil Company’s efforts, or else they will quit SPEC and make sure that their names are removed from
the list of SPEC members.

Grading Note: Many students misunderstood the question. The question is asking about the design of the SPECcpu suite, it is not
asking about a tester running the suite.

�The SPECcpu results for Evil Company’s System X are just made-up numbers. This won’t happen be-
cause . . .

. . . the SPEC results disclosure must include a config file that would allow anyone to duplicate the test. If the numbers are made up
they will quickly be caught and few will believe anything they say in the future.

9
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Problem 1: (20 pts) The instruction sequence below performs the calculation r2+3+r5 and requires two
MIPS instructions to do so. If these two instructions were in the same fetch group in a two-way superscalar
processor then the second one would stall, this is shown in the execution below.

addi r1, r2, 3 IF ID EX ME WB

add r4, r1, r5 IF ID -> EX ME WB

An FA-ALU has two regular inputs, and a third input reserved for small quantities, here for values < 16,
and it can produce a result in the same time as an ordinary two-input ALU. An FA-ALU can be used to
execute instruction pairs like the one above without a stall, call such an execution a fused add.

Illustrated below is a 2-way superscalar implementation with an FA-ALU. Most bypass paths have been
removed to provide space for the solution to this problem. In addition to a 4-bit input for the third operand,
the FA-ALU has a control input, FA, which should be set to 1 when the third input is to be used.

Use next page for solution.
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FA

4

Use next page for solution.

(a) Add datapath connections to this implementation so that the FA-ALU can be used for fused adds. Hint:
The datapath changes are not just for that new FA-ALU input.

�Add datapath so that the correct operands are delivered to the FA-ALU for fused adds.

�Non-fusable sequences must still execute correctly. (Don’t break existing functionality.)

�Make reasonable cost and clock frequency tradeoffs.

(b) Add control logic.

�Design logic to generate the FA signal for the FA-ALU and deliver it in the correct cycle.

�Consider � instruction type, �dependencies, and � operand size.

�Add control signals for the datapath added in the previous part.

�Make reasonable cost and clock frequency tradeoffs.
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Problem 1, continued: You can use logic blocks such as isADD and isADDI in your solution.
addi r1, r2, 3 # Sample fusable sequence.

add r4, r1, r5

Solution appears below. The datapath is in blue and control logic is in green, and an alternative solution appears in purple.

The datapath needs to be changed so that the immediate and rs register value from the slot 0 (addi) instruction are fed to the slot
1 FA-ALU. Connecting the immediate is straightforward. Two solutions are shown for the rs register value. In the Plan A solution
the slot 1 rs register number is switched to the slot 0 rs register number. That requires just a 5-bit mux. In the not-as-good Plan
B solution the value is moved, require an additional 32-bit mux input. Notice that the value is taken at the output of the upper ALU
mux, this way a bypassed value can be used. That’s possible in the Plan A solution is the output of the ID-stage mux is used for the
bypass control logic (which isn’t shown).

The control logic, in green, needs to check for three things: the presence of the two instructions, whether there is a dependence, and
whether the immediate will fit in four bits. The solution only works for the arrangement of instructions shown above, and that’s all
that was needed for full credit. In real life one might want this trick to work for similar sequences, for example if the dependence
were carried into the rt rather than the rs register.
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Plan A: Inexpensive solution: For fused pair replace

slot 1's rs register with slot 0's rs register. (For pairs

in which the dependence is with slot 1's rs register.)

Connection to 4 low bits of slot-1 immediate.

Plan B: Expensive Solution: Add connection

for value in EX (rather than register number

in ID as is done for Plan A).
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Problem 2: (20 pts) Show the execution of the code fragments below on the illustrated MIPS implemen-
tations. All branches are taken.

(a) Show the execution of the code below on the following implementation. The branch is taken.

format
immed

IR

Addr
25:21

20:16

IF WB

Addr

Addr

+1

ort

Addr

Addr

In

ort

dstdest. reg

=

30 2
2'b0

+
15:0

25:0

15:0

 

dstdst

 

m�� l��

m��

l��

�Show execution. �Doublecheck for dependencies.

Solution appears below.

Common mistakes: squashing the delay slot instruction (the and); not noticing that the branch depends on the sub.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

add r4, r2, r3 IF ID EX ME WB

lw r6, 8(r4) IF ID EX ME WB

sub r1, r6, r5 IF ID -> EX ME WB

beq r7, r1 TARG IF -> ID ----> EX ME WB

and r8, r7, r10 IF ----> ID EX ME WB

or r11, r12, r13

xor r14, r11, r8

TARG:

sw r1, 0(r2) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

4
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(b) Show the execution of the MIPS FP code below on the following implementation. Assume that there is
a bypass from WF to M1 and A1.

eg F

fd
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Addr

Addr

Addr

f

15:11

20:16

A4A2A1
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w�
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format
immed
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Int Reg F

ID-stage signals

shown in purple.

�Show code execution. �Doublecheck for dependencies.

Solution appears below. Common mistakes: Not realizing that the lwc1 uses WF (not WB) and therefore it must stall to avoid the
structural hazard. Another common mistake is stalling in a stage other than ID.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

add.s f6, f2, f3 IF ID A1 A2 A3 A4 WF

add.s f1, f7, f8 IF ID A1 A2 A3 A4 WF

lwc1 f9, 0(r10) IF ID ----> EX ME WF

mul.s f4, f1, f9 IF ----> ID -> M1 M2 M3 M4 M5 M6 WF

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 n12 13 14
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(c) Show the execution of the MIPS code below on the following 2-way superscalar implementation. The
branch is taken. Fetch groups in this implementation must be 8-byte-aligned.
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�Show code execution. �Show squashed instructions with an x.

�Doublecheck for dependencies. �Account for aligned fetch groups.

Solution appears below. Note that the sll is fetched only because the fetch unit can only fetch an address that’s a multiple of 8,
but it is squashed as soon as it arrives.

START: Instruction address of add is 0x1000

# Cycle 0 1 2 3 4 5 6 7 8 9

add r4, r2, r3 IF ID EX ME WB

lw r6, 8(r4) IF ID -> EX ME WB

sub r1, r6, r5 IF -> ID -> EX ME WB

beq r7, r15 TARG IF -> ID -> EX ME WB

and r8, r7, r10 IF -> ID EX ME WB

or r11, r12, r13 IFx

xor r14, r11, r8

sll r16, r17, 8 IFx

TARG: Instruction address of sw is 0x2004

sw r1, 0(r2) IF ID -> EX ME WB

lui r15, 0x1234 IF -> ID EX ME

# Cycle 0 1 2 3 4 5 6 7 8 9 10
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Problem 3: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 230 entry BHT. One system has a bimodal predictor,
one system has a local predictor with a 12-outcome local history, and one system has a global predictor with
a 12-outcome global history.

(a) Branch behavior is shown below. Branch B2 consists of a pattern in which there will be either 2, 4, or 6
T outcomes followed by exactly four N outcomes. After the fourth N the probability of exactly two Ts is 1

3
and the probability of exactly four Ts is 1

3 .

Answer each question below, the answers should be for predictors that have already warmed up.

B1: N T T N N N N T T N N N ...

B2: T{2,4,6} N N N N T{2,4,6} N N N N ...

B3: T T T T T T T T T T T T ...

�What is the accuracy of the bimodal predictor on branch B1?

The accuracy is 3
6 . The work to compute this result is shown below, in which the counter was assumed to start at 3. (Any assumed

start value is correct.) The prediction accuracy is based on the second pattern repetition because the counter value at the start of
the pattern and the end of that pattern is the same, 0. (In contrast, the counter value at the start of the first repetition is 3 and at
the end it is 0, so we can’t use the first six outcomes of B1 to compute an accuracy, though by coincidence it would be correct.)

# SOLUTION Work

3 2 3 3 2 1 0 0 1 2 1 0 0 <- Counter values.

B1: N T T N N N N T T N N N ...

x x x x x x <- Mispred location.

--------------------------- <- Repeating pattern.

�What is the accuracy of the bimodal predictor on branch B2? �Explain.

To answer this question consider each number of Ts separately. First, TTNNNN. When this pattern starts the counter will be zero
(because every repetition ends with four Ns). So the two Ts will be mispredicted, bringing the counter to 2, and the first N will be
mispredicted. The number of correct predictions is 6 − 3 = 3 and the accuracy is 1

2 . Next consider TTTTNNNN. Here the first two
Ts will be mispredicted as will the first two Ns. The number of correct predictions is 8− 4 = 4 and the accuracy is also 1

2 . Finally,
in TTTTTTNNNN the first two Ts and Ns will be mispredicted. The number of correct predictions is 10 − 4 = 6 and the accuracy
is .6.

For an overall prediction accuracy we need to combine these numbers. Since they are all equally likely we will consider one pattern of

each length, 6, 8, and 10 together as a group. The correct prediction ratio is 3+4+6
6+8+10 = 13

24 = .541667 . If we wanted to take a
weighted average of the prediction accuracies we would have to weight by both the probability of occurrence and the length. In other
words if we computed 1

3
3
6 + 1

3
4
8 + 1

3
6
10 = 8

15 we would have given the 6
10 accuracy too low a weight. Yes, it happens one third the

time, but its length, 10 outcomes, is longer than the other two so it has a larger overall impact on execution time.

�What is the minimum local history size needed to predict B1 with 100% accuracy?

Four outcomes are sufficient. With three outcomes a local history of NNN could appear before an N or a T.

�What is the accuracy of the local predictor on branch B2, after warmup. �Explain.

Because there is randomness the local predictor won’t be right 100% of the time. Notice that we always have four consecutive N’s
followed by two T’s. That means if the most-recent four outcomes in the local history are N then a T is certainly the next outcome
(and so the corresponding PHT entry will have warmed up to 3). Similarly. if the most recent PHT outcomes are a T followed by
one, two, or three Ns the next outcome is certainly an N. The table below shows some possible local history values, the next outcome,
and how often that outcome will be encountered. Stars indicate either a T or N.
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Local Next Outcome

History Frequency

-------------- - ----------

**TTN N Every Time

**TTNN N Every Time

**TTNNN N Every Time

**TTNNNN T Every Time

**TTNNNNT T Every Time

**TTNNNNTT T 2/3 of the time

**TTNNNNTT N 1/3 of the time

**TTNNNNTTT T Every Time

**TTNNNNTTTT T 1/2 of the time.

**TTNNNNTTTT N 1/2 of the time.

TTNNNNTTTTTT N Every time.

First consider TTNNNN. The Ts will always be predicted correctly because at least two Ts always follow the four Ns. The first N can
be mispredicted because 2

3 of the time the run of Ts is larger than 2. First, lets assume that the N is always mispredicted. Later,
in an advanced solution, we’ll use a better misprediction probability.

The following three Ns will be correctly predicted. So for the first pattern we have 5 correct predictions and one misprediction.

Next, consider TTTTNNNN. The first four Ts will likely be predicted correctly because after the first two Ts a third T is more likely
than an N. Given that we have four Ts, the probability of a fifth one is 1

2 . Since the bias is even the 2-bit counter can predict either
direction with equal likelihood. So the first N is mispredicted half the time for this pattern, and similarly the fifth T is mispredicted
half the time for the 6 T pattern. Considering a set of all three patterns, the expected total number of mispredicts is just 2, so the

accuracy is (5+7.5+9.5)
(6+8+10) = 11

12 = .91666 .

Advanced Solution: The solution above ignores the fact that for pattern TTNNNN there is a chance that the first N is correctly
predicted. That would occur if the local predictor saw at least two consecutive TTNNNN patterns before predicting a third consecutive
TTNNNN. Here saw means that the local histories were the name for all three patterns when predicting the first N. A simple Markov
chain can be used to determine the probability of the counter value for local history *NNNNTT (the local history used when predicting
the first N). Let p0 denote the probability that the counter value is 0, p1 denote the probability that the counter value is 1, and
so on. The problem states that the T probability is 2/3 in this case. Based on this we can write a balanced flow equation:
ap0 = (1− a)p1, where a is the T probability. Solving we get p1 = a

1−ap0. Between p1 and p2 we can write ap1 = (1− a)p2

and get p2 =
(

a
1−a

)2

p0. Skipping a few steps we get p0 = ω−1
ω4−1 where ω = a

1−a . Using a = 2
3 we find p0 = 1

15 and

p1 = 2
15 and so the probability of correctly predicting the first N for the T2 case is 3

15 = 1
5 . The number of correct predictions for

T2 is 5 + 1
5 or an accuracy of 13

15 = .8667. Similarly, the number for T4 is 6 + 4
5 + 1

2 or an accuracy of 73
80 = .9125 and for T6

is 8 + 4
5 + 1

2 or an accuracy of 93
100 . The overall correct prediction accuracy is 109

120 = .9083.

�What is the minimum GHR size to predict B1 with about 100% accuracy. �Explain, and state any
assumption about B2’s behavior.

Based on the answer to the minimum-local-history-size question above, the minimum local history needed to predict B1 with 100%
accuracy is four outcomes. But here we are dealing with a global history, which contains the outcomes of the most recently executed
branches, which in this case is B1, B2, and B3. In the illustration below the outcomes of B1 have been made lower case, and the
value of a six-outcome GHR is shown at time X (see the diagram) when we are about to predict B1.

Time-> X

B1: n t t n n n n t t n n n ...

B2: T{2,4,6} N N N N T{2,4,6} N N N N ...

B3: T T T T T T T T T T T T ...

----------X

tNT nNT <--- Value of 6-outcome GHR at time X.
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Notice that this six-outcome GHR includes two outcomes of B1. Since we need four outcomes of B1 to predict with 100% accuracy

we would need a GHR size of 4 × 3 = 12 for the global predictor to predict B1 with 100% accuracy.

The analysis above assumes that there is always one occurrence of B2 between B1 and B3. The diagram makes that clear for the N
outcomes of B2 but it’s not clear for the T outcomes. In other words, from the diagram above one might conclude that there are 2,
4, or 6 T outcomes between B1 and B3. Since we were invited to make an assumption, lets make the easy one: that in all cases, N
and T B2 outcomes, there is exactly one occurrence of B2 between B1 and B3.

9
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Problem 3, continued:

In this part consider the same predictors as on the previous page, except this time the BHT has 214 entries.

Branch B1 below is perfectly biased not taken. It executes r1 times over a short time interval, followed by
a big time gap before its next bunch of r1 executions. Branch B2 behaves similarly, except that it is biased
taken and executes in bunches of length r2 executions.

0xee4720 B1: N..N r1 N..N r1
# ...

B2: T..T r2 T..T r2

(b) Choose an address for branch B2 that will result in a BHT collision with branch B1. (Branch B1 is at
address 0xee4720.)

�Address for B2 that results in a collision.

Branch B1 will collide with B3 in a BHT lookup if the bit values used to index the BHT for the two branches are the same. Since
the BHT has 214 entries and because MIPS instructions are 4-byte aligned we will use bits 15:2 of the branch address to index (to
use as a lookup address for) the BHT. The value of those bits for B1 is 0x4720 >> 2 or 0x11c8 but for simplicity think of the
bits as 0x4720. (Note that each hex digit spans four bits). For B2 to use the same entry the four least significant hex digits must

match. One such address is 0xaa4720 .

(c) Assume that branch B1 and B2 collide in the BHT. For what positive values of r1 and r2 will this collision
be most harmful? For what range of positive values of r1 and r2 will collisions be least harmful?

�Worst values of r1 and r2 for collision. �Explain.

The worst values are r1 = 1 and r2 = 1. For those values the predictor will see one occurrence of B1 followed by one of B2, then
one of B1 and so on. The 2-bit counter will not saturate at any value. In the worst case all predictions will be wrong.

�Favorable range of positive values of r1 and r2 for collision. �Explain.

Large values for r1, r2 or both. When execution switches from one branch to the other there will be two mispredictions (assuming

both r1 ≥ 2 and r2 ≥ 2). The accuracy would be r1−2+r2−2
r1+r2

, so with the sum large the accuracy will be close to 100%.

(d) A tag can be placed in the BHT to detect collisions. Which branch will this help?

�Branch that would benefit from tag: B1 or B2. �Explain.

Branch B1 . If there is a collision when predicting B1 we will predict B1 taken (because of B2’s history). A branch predictor that
does not use a tag has no way of knowing that there’s been a collision and so when predicting B1 it will jump to the target of B2
(not the target of B1). In the predictor with a tag the collision will be detected (by comparing the stored tag to the tag of the
address of the branch being predicted). Since a collision means that the target address is wrong, the predictor will ignore the two-bit
counter (which would be 3 in this example) and instead predict not taken, which has a chance of being correct. (When a collision has
been detected you wouldn’t predict taken because the target address is for some other branch sharing the entry, and so it won’t be
correct.) Predicting not taken for B2 is wrong, but that’s what we’d do with or without a tag.

10
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Problem 4: (20 pts) The diagram below is for a 4 MiB (222 B) set-associative cache with a line size of 128
bytes. Hints about the cache are provided in the diagram.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

Addr
Data

ag

Data

Addr
Data

=ag

Addr

Data In

	
��

Addr
Data

ag

Data

Addr
Data

=ag

36

128 b

35:18

17:4

35:18

17:7 17:7

17:4

�Complete the address bit categorization. Label the sections appropriately. (Index, Offset, Tag.)

Address:

Tag

35 18

Index

17 7

Offset

6 4 3 0

�Associativity:

The associativity is 16 . The associativity is determined based on the given cache capacity, 222 bytes, and the capacity of an

individual data store, 218 bytes. Since the cache capacity is the sum of the data store sizes, the associativity must be 222

218 =
222−18 = 16.

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity, 4 MiB, plus 16 × 218−7 (36 − 18 + 1) bits.

11
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�Show the bit categorization for a direct mapped cache with the same capacity and line size.

In a direct-mapped there is just one data store, which here must be 222 bits, and so the low tag bit position must be 18 + 4 = 22.
The other bit positions remain the same.

Address:

Tag

35 22

Index

21 7

Offset

6 4 3 0

12
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Problem 4, continued: The problems on this page are not based on the cache from the previous page.
The code in the problems below run on a 4 MiB (222 byte) 4-way set-associative cache with a line size of 64
bytes. Each code fragment starts with the cache empty; consider only accesses to the arrays.

(b) Find the hit ratio executing the code below.

int sum = 0;

half *a = 0x2000000; // sizeof(half) == 2

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

�What is the hit ratio running the code above? Show formula and briefly justify.

The line size of 26 = 64 bytes is given. The size of an array element, which is of type half, is 2 = 21 characters, and so there are
26/2 = 26−1 = 25 = 32 elements per line. The first access, at i=0, will miss but bring in a line with 25 elements, and so the
next 25 − 1 = 31 accesses will be to data on the line, hits. The access at i=32 will miss and the process will repeat. Therefore

the hit ratio is 31
32 .

(c) The code appearing below is the same as the code from the 2014 Final Exam and 2015 Homework 6,
except that two possibilities for Some_Struct are shown, Plan A, and Plan B. The caches too are identical
except that here the line size is 64 bytes whereas in the prior problems it was 128 bytes. The value of BSIZE
has been chosen to the largest value for which the hit ratio of the second loop will be 100% when using the
Plan B struct. Note: In the original exam norm_val was omitted from the first loop.

struct Some_Struct { // Plan A

double val; // sizeof(double) = 8

double norm_val;

double a1[14]; };

struct Some_Struct { // Plan B

double val; // sizeof(double) = 8

double a1[7];

double norm_val;

double a2[7]; };

const int BSIZE = 1 << 15;

Some_Struct *b;

for ( int i = 0; i < BSIZE; i++ ) sum += b[i].val + b[i].norm_val; // First loop.

for ( int i = 0; i < BSIZE; i++ ) b[i].norm_val = b[i].val / sum; // Second loop.

�Explain why the Plan A struct will result in better performance on the first loop than the Plan B struct.

Short Answer: With Plan A a miss to b[i].val also brings in b[i].norm val, with Plan B there would be two misses (per
iteration) and so Plan A is faster.

Detailed Answer: Notice that the first loop accesses members val and norm val. In the Plan A struct these members are close to
each other, and so the line containing val also contains norm val. Each iteration of the first loop misses on the access to val
and because they are close together hits on the access to norm val. The val member is at the beginning of the Plan B struct, but
norm val is 8 × 8 = 64 B from the beginning. A miss that brings in b[i].val will not bring in b[i].norm val because
they both can’t fit on the same 64 B line. Both the Plan A struct and Plan B struct are 16 × 8 = 128 B. When using the Plan
A struct the first loop will encounter BSIZE misses, but when using the Plan B struct there will be 2*BSIZE misses, and so better
performance is achieved with the Plan A struct.

13

← → Spring 2015 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2015/fe_sol.pdf


� Suppose that the value of BSIZE is to be chosen based on the Plan A struct, to a maximum value for
which the second loop enjoys a 100% hit ratio. Explain why that value is the same as for Plan B.

Short Answer: Because with Plan A the least significant index bit is always zero or always one and so half the cache is used.

As explained in the previous answer, when using the Plan A struct we only need one line per iteration, whereas with the Plan B struct
we need two lines per iteration. So you’d think that with Plan B we’d need to make BSIZE half the size to avoid cache misses. But
no.

FINISH

14
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Problem 5: (20 pts) Answer each question below.

(a) Which kind of implementations were RISC ISAs originally designed to simplify? Explain how a RISC
ISA feature achieves this goal.

�Type of implementation RISC designed to simplify.

Pipelined implementations.

�Choose a feature and � explain how it achieves the goal.

One RISC feature is that the arguments of arithmetic instructions must be either immediates or registers, they cannot come from or
be written to memory. If source and destination arguments could come from memory then either there would need to be a memory
port before and after the EX stage, which would be expensive, or such instructions would have to pass through the pipeline multiple
times, stalling prior instructions and complicating the design.

(b) What is the difference between a trap instruction and an instruction that raises an exception? Give an
example of how each is used in a system with bug-free code.

�Difference between trap and exception.

A trap always causes an interrupt, that’s its purpose, whereas in an instruction that raised an exception something went wrong.

�Example of what trap instruction used for.

A trap instruction can be used by user code to request a service from an operating system, for example, to read data from a file. In a
typical system user code cannot itself, for example, read data from a file since it is not allowed to access those memory location that
control the disk drive. It is not allowed access so that filesystem access policies can be enforced, for example.

�Example of what instruction exception used for.

Load and store instructions raise exceptions when they attempt to accesses invalid memory addresses, which might happen in buggy
code. In bug-free code load and store instructions can still raise exceptions. This would happen for cases where the OS needs to
adjust the memory system. For example, a load instruction encountering a TLB miss will raise an exception. The OS (acting as the
exception handler) will read the page tables, update the TLB, and re-start the load.

15
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Problem 5, continued:

(c) Consider a 5n-stage scalar implementation and an n-way superscalar implementation, both derived from
our 5-stage design with the goal of improving performance by as much as n×. As n increases the clock fre-
quency of the 5n-stage implementation increases but the frequency of the n-way superscalar implementation
decreases. Explain why. Assume that both types of system are well designed.

�Clock increases in the 5n-stage system because . . .

. . . the critical path in each stage is shorter as n increases and so the clock frequency can be increased. (In the 5n−stage system
each stage in the 5-stage system is divided into n stages each taking 1

n the amount of time, ideally.) Ignoring latch setup time and
assuming stages can be perfectly divided, the clock frequency would be nφ, where φ is the clock frequency of the 5-stage system.
Accounting for a latch setup time of tL, the clock frequency would be nφ

tLφ(n−1)+1 . It is this increase in clock frequency that results
in higher performance.

�Clock decreases in the n-way system because . . .

The design is becoming larger and so physical distances increase. A stage can have n× as much hardware, one set of hardware for
each of n slots. However signals only go through one set of hardware, so there is no need for a reduction in clock frequency by a
factor of n. The problem is that physical distances are increasing, forcing paths to be longer.

(d) A company is preparing a run of the SPEC benchmarks for their new system. While trying to tweak
compiler flags to get the best performance they discover a new optimization technique and implement it in
their compiler. They re-test with that compiler and disclose the test results. When is the use of the modified
compiler allowed under SPEC rules? When isn’t that allowed under SPEC rules?

�Modified compiler allowed provided that . . .

�This is a beneficial because . . .

. . . provided that the compiler is seriously made available to the public. This is beneficial because the modified compiler generates
better code than the old one.

�Modified compiler isn’t allowed if . . .

�The modified compiler is not beneficial because . . .

. . . isn’t allowed if the compiler is not made public, or not seriously marketed as a product. (For example, if the compiler has a
product number but does not appear in any catalog or promotional material.) Ordinarily a company would be happy to market a
better compiler. If they are not doing so it might be because the compiler generates buggy code when using the new optimizations.
So it is not beneficial because the compiler, though it works on the SPEC benchmarks, would generate buggy code when compiling
anything else. That means that the performance numbers obtained on SPEC code do not reflect what a user might obtain on other
code.

16
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Problem 1: [20 pts] The MIPS code fragment below executes on our familiar five-stage scalar MIPS
implementation.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
0 1

dstdst

0
1

2 0
1

2
3

0
1

2

(a) Show the execution of the code for enough iterations to determine CPI, and determine the CPI assuming
a large number of iterations.

(b) There are five labels in the diagram, labels A through D point at multiplexor control inputs and label
E points at the output of the EX.dst pipeline latch. Show the values of these signals up until the second
execution of lw r1. For A show only values 6= 2, for E show only values 6= 0, for the others only show values
at cycles in which the multiplexor is in use.

USE NEXT PAGE FOR SOLUTION

LOOP: Cycle 0

A 2

B

C

D

E 0

lw r2, 0(r5) IF

LOOP:

lw r1, 0(r2)

sh r1, 16(r2)

bne r1, r0, LOOP

add r2, r2, r3

xor r4, r5, r2

USE NEXT PAGE FOR SOLUTION
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Problem 1, continued:

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
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dstdst

0
1

2 0
1

2
3

0
1

2

�Check code for depen-
dencies.

� Show pipeline execu-
tion diagram for enough
iterations to determine
CPI.

�Determine the CPI.

� Show values for A through
E.

Solution appears below. The pipeline execution diagram is straightforward. Don’t forget that for the sh r1, 16(r2) instruction
both r1 and r2 are source registers, and that there is no destination register. Also notice that lw r1 only stalls in the first iteration.
In the row for signal A, non-default values are present when a branch instruction is in ID, this is in cycles 6 and 11, the value is 0,
picking up the output of the adder. Signal B is the upper ALU mux. A value of 2 indicates that the value from the register file is
used (not a bypassed one). The lw r2, 0(r5) and add r2,r2,r3 instructions use this value. A value of 0 indicates a bypass
from ME, this occurs in cycle 9 when the lw r1 picks up r2 from the add. In cycle 4 the lw bypasses from WB. Signal C is for the
write value of store instructions (register r1 in this case), D picks which to write back, an ALU output or a memory output. Signal
E is the destination register number of the instruction in EX.

The CPI is computed using execution between cycles 12 and 7, in which the iterations start identically. The value is 12−7
4 = 1.25.

# SOLUTION

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A 2 0 0 Blanks = 2

B 2 3 2 2 0

C 2 2

D 0 0 1 0

E 0 2 1 2 1 2 Blanks = 0

lw r2, 0(r5) IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r1, 0(r2) IF ID -> EX ME WB

sh r1, 16(r2) IF -> ID -> EX ME WB

bne r1, r0, LOOP IF -> ID EX ME WB

add r2, r2, r3 IF ID EX ME WB

xor r4, r5, r2

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r1, 0(r2) IF ID EX ME WB

sh r1, 16(r2) IF ID -> EX ME WB

bne r1, r0, LOOP IF -> ID EX ME WB

add r2, r2, r3 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r1, 0(r2) IF ID EX ME WB

3
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Problem 2: [20 pts] The pipeline execution diagram below shows the incorrect execution of the MIPS
code for the illustrated pipeline. That is, in the pipeline below the stall to avoid the structural hazard would
have occurred when lwc1 was in the ID stage.

# Cycle 0 1 2 3 4 5 6 7

add.s f1, f2, f3 IF ID A1 A2 A3 A4 WF

addi r1, r1, 4 IF ID EX ME WB

lwc1 f4, 0(r1) IF ID EX ME -> WF

USE NEXT PAGE FOR SOLUTION

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16
M6

we

Decode
dest. reg

A4A3A2A1

M3 M4 M5

fd

we

xw

M2

M

1

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU
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dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

29:0

15:0

D
0 1

dstdst

Stall

ME

USE NEXT PAGE FOR SOLUTION

As described below, modify the pipeline so that FP load instructions, such as lwc1, will stall when they are
in ME rather than ID to avoid a WF structural hazard.

(a) Show logic to generate a signal Stall ME in the correct cycle. When Stall ME is logic 1 stages ME and
earlier will stall.

(b) Cross out the logic generating the Stall ID for the lwc1 that is no longer needed.

(c) Make other changes, including control logic, so that the correct destination register number, destination
value, and write-enable signal are delivered to the FP register file. Hint: Some solutions are simpler than
others.
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Problem 2, continued:

�Generate Stall ME to avoid lwc1 WF structural hazard. �Make sure signal is 1 in the right cycle.

�Cross out Stall ID logic for FP loads, but leave logic for other instructions.

�Make sure that correct fd, we, and value delivered to FP register file.

The solution appears below, see the next page for more explanation.

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16
M6

we

Decode
dest. reg

A4A3A2A1

M3 M4 M5

fd

we

xw

M2

M

1

fd

we

uses FP mul

uses FP add

FP load

Stall
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"0"
"2"
"1"

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data

Out

Addr

D
In

Mem
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Outrtv

ALU

MD

dstDecode
dest. reg
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=

30 2
2'b0

PC

+
15:0

29:0

15:0

D
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dstdst

Stall

ME

fd

wl wl

fd fd

wl

"0"

Part (a): generate

Stall ME when lwc1

in ME and some other

insn will be in WF in

the next cycle.

Part (c): FP dst and we signals can now come

from either FP or integer pipeline. Ditto for WF mux.

Part (c): remove unneeded xw/we/fd injection logic,

also show connections that remain.

Part (b): lwc1 no longer stalls in ID, so remove lwc1's contribution to this signal.
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The solution appears on the previous page. Looking at the code execution example, notice that in the original pipeline (see the
previous page) at cycle 3 the load instruction must be placing its we and fd values in the A2 stage, but that would replace (clobber)
the corresponding values for the add.s instruction which are also in that stage. Since the destination for the add.s is lost, there
is no way it can execute correctly.

The solution is to place the write enable and FP destination for FP load instructions in the integer pipeline, using new pipeline latch
segments wl (write-enable FP load) and fd. This keeps them separate from those of the add or multiply instructions, and it ensures
that the Stall ME signal will stall the lwc1 without affecting instructions in the FP pipeline.

The logic to generate the Stall ME signal appears in green. We want to stall ME when the lwc1 instruction is in ME and when
there is some instruction in A4/M6, this is detected by the green AND gate.

For part b, the logic generating Stall ID for load instructions is crossed out, shown in red along the bottom.

For part c we must make sure that the write enable and destination that we put in the integer pipeline reach the FP register file, we
also want to make sure the WF mux is set correctly. That’s shown in blue. The fd values from the two pipelines enter a new mux,
the control signal is just wl (write-enable FP load). For the write enable we just use an OR gate (we could have used a mux, but an
OR gate achieves the same result). The zero value for the WF mux is inserted using a new mux.

Also for part c we must remove the old logic inserting fd, we, and xw for the load instruction, that’s shown in red with the surviving
connections shown in purple.

6
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Problem 3: [18 pts] Answer each question below.

(a) Re-write the SPARC code fragment below in MIPS. Pay attention to the load instruction and the
instructions related to the branch. Don’t forget that in SPARC assembly language the last register is the
destination.

!

addcc %g1, %g2, %g3

ld [%g5+%g3], %g4

bg TARGET ! Branch greater than zero.

add %g5, 22, %g6 ! g6 = g5 + 22

�MIPS equivalent of SPARC code. �Pay attention to load and branch-related insn.

The solution appears below.

Grading Note: Many students incorrectly assumed that the condition for the bg instruction was taken from
the ld instruction. SPARC condition codes are set explicitly: by instructions ending with cc. In this case
the addcc instruction sets the condition codes.

# SOLUTION

add r3, r1, r2

add r10, r3, r5

lw r4, 0(r10)

bgtz r3 TARGET

addi r6, r5, 22

(b) Show a MIPS equivalent of the ARM A32 code below. The MIPS code will use more than one instruction.
(This is based on Homework 3.) Note: A32 added in 2017 to avoid confusion with the A64 instruction set.

add r1, r2, r3, LSL #4

�MIPS equivalent of ARM code above.

# SOLUTION

sll r1, r3, 4

add r1, r1, r2

(c) Explain why the MIPS code fragment below is certain to execute with an error.

lw r1, 0(r2)

lw r3, 1(r2)

�Error is certain because:

In MIPS lw memory addresses must be a multiple of 4, this rule is called an alignment restriction. The memory addresses used
are r2+0 and r2+1. They can’t both be a multiple of 4. Note that it is possible that r2+1 is a multiple of 4, there is no reason
why the offset itself (1 in this case) must be a multiple of 4.

7
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Problem 4: [12 pts] Answer each question below.

(a) In the execution below the ant instruction raises an illegal instruction exception and the handler is
fetched, note that the handler starts execution in cycle 4. Explain why this exception (as executed) cannot
be precise and show how execution should proceed for our five-stage pipeline.

# Cycle 0 1 2 3 4 5 6

add r10, r11, r12 IF ID EX ME WB

sw r3, 4(r5) IF ID EX x

ant r1, r2, r5 IF*ID*x

or r5, r6, r7 IF x

HANDLER:

sw IF ID ..

�Reason why this execution not for a precise exception.

It is not precise because the sw did not finish executing. In a precise exception code should execute correctly up to the instruction
just before the faulting instruction, the faulting instruction and those after it cannot modify registers or memory.

� Show execution that could be precise when ID stage discovers the bad ant opcode.

Solution appears below. Note that the exception is not acted upon until the faulting instruction reaches the ME stage. We need to
wait that long to make sure that the sw instruction does not raise an exception, if it did we’d want to handle that exception first and
leave the ant for later.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7

add r10, r11, r12 IF ID EX ME WB

sw r3, 4(r5) IF ID EX ME WB

ant r1, r2, r5 IF*ID*EX MEx

or r5, r6, r7 IF ID EXx

HANDLER:

sw IF ID ..

# Cycle 0 1 2 3 4 5 6 7

(b) An interrupt mechanism will switch the processor from user mode to privileged mode when the handler
starts. What is the difference between user and privileged mode and why are they necessary to implement
an operating system?

�Difference between user and privileged mode? � Importance for OS?

In privileged mode the system can execute any instruction and access any memory location. In user mode an attempt to access a
system memory address or execute a system instruction will result in an exception.

By preventing user programs from touching or even reading certain memory locations, the OS can implement controls over what
programs do. For example, preventing a program from making arbitrary disk accesses by mapping the disk hardware control registers
to memory locations in system space.

8
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Problem 5: [6 pts] In class we described three broad families of ISAs: CISC, RISC, and VLIW.

(a) In which ISA family is it easy to have instructions with long (say, 32 bit) immediates? Explain how.

� ISA family with long immediates is:

�What about the ISA family enables this?

CISC ISAs have instructions with long immediates. They can accommodate them because of CISC’s variable instruction size. If you
need a big immediate, just use a big instruction.

(b) In which ISA family are dependencies between instructions explicitly given? How is the dependence
information supposed to help?

� ISA family in which dependence information is part of program is:

�Reason for providing dependence information.

Dependence info is part of the program in VLIW ISAs. This information is intended to simplify the design of the hardware by providing
it information a little sooner than it would otherwise obtain it. (A little sooner because it does not need to look at instructions’
register operands.)

(c) Which ISA family tends to have the most compact programs? (That is, the size in bytes of the program
is smallest.) What makes them compact?

� ISA family with most compact programs is:

�Program sizes are small because.

CISC ISAs have the most compact programs, that is because of their variable instruction sizes. All RISC instructions must be 32
bits, in some cases wasting space. Also, CISC instructions can do the work of several RISC instructions, saving space. Since VLIW
ISAs bundle RISC-like instructions, they suffer the same program size issues as RISC programs.

9
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Problem 6: [12 pts] Answer each question below.

(a) Consider a 2-way superscalar implementation and a 10-stage implementation, both derived from our
5-stage MIPS used in class. All implementations include reasonable bypass paths.

Explain how the instruction sequence below would always result in a stall on the 10-stage pipeline but might
not result in a stall on the 2-way system. (The compiler cannot separate the two instructions.) Illustrate
your answer with a pipeline execution diagram.

add r1, r2, r3

sub r4, r1, r5

�Reason for maybe stall on superscalar and certain stall on 10-stage.

� Illustrate using a pipeline diagram.

The different executions are shown below. The 10-stage implementation must stall because there is no way the sum from the add
can be ready in the next cycle. But for the superscalar system there is no need to stall if the add and sub are in different fetch
groups. In the first superscalar example below they are in the same fetch group, and there is a stall, but in the second they are in
different groups and so there is no stall.

Though the superscalar system might seem to have the advantage, when it does stall it costs two instructions, whereas for the 10-stage
system only one instruction execution opportunity is lost.

# SOLUTION - Unavoidable stall in pipeline.

add r1, r2, r3 IF1 IF2 ID1 ID2 EX1 EX2 ME1 ME2 WB1 WB2

sub r4, r1, r5 IF1 IF2 ID1 ID2 --> EX1 EX2 ME1 ME2 WB1 WB2

# SOLUTION Stall in 2-way Superscalar

0x1000 add r1, r2, r3 IF1 ID1 EX1 ME1 WB1

0x1004 sub r4, r1, r5 IF2 ID2 --> EX2 ME2 WB2

0x1008 xor IF1 --> ID1 EX1 ME1 WB1

0x100c lw IF2 --> ID2 EX2 ME2 WB2

# SOLUTION No stall in 2-way Superscalar

0x1004 add r1, r2, r3 IF2 ID2 EX2 ME2 WB2

0x1008 sub r4, r1, r5 IF1 ID1 EX1 ME1 WB1

0x100c xor IF2 ID2 EX2 ME2 WB2

0x1010 lw IF1 ID1 EX1 ME1 WB1

(b) Consider two MIPS implementation, one is an n-way superscalar of MIPS-I, with n sets of FP units,
the other is a scalar implementation of a hypothetical MIPS-I-vec, which includes an n-lane vector unit for
the vector instructions in MIPS-I-vec. Both the superscalar and vector MIPS implementations can sustain
execution at n FP operations per cycle. Note: The phrase “In terms of n” did not appear in the original
exam.

� In terms of n how does the cost of bypass paths compare in the two systems?

For the scalar 5-stage implementation the value computed by the ALU is bypassed back to the EX stage when it is in the ME and WB
stages. Since there are two ALU inputs the number of connections is 2× 2 = 4. In the superscalar design there are n ALUs and so
n values, these must be bypassed back to the two inputs in each of n ALUs, for a total of 2n× 2n = 4n2 connections.

For the n-lane vector unit, we would expect that the value produced by an ALU in a lane would only be bypassed back to the ALU
in that lane. So the number of connections is n times that in a scalar processor, or 4n connections.

10
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� In terms of n how does the cost of registers compare in the two systems?

Short Answer: For the superscalar system the cost is constant (does not change with n). For the n-lane vector unit the cost is
proportional to n.

Long Answer: A n-way statically scheduled superscalar processor has the same number registers regardless of n. (Things will be
different when we consider dynamic scheduling later in the semester.) An ISA with vector instructions also has vector registers. If
those instructions are for an n-lane unit the registers will have space for n operands.

11
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Problem 7: [12 pts] Answer each question below.

(a) The SPECcpu benchmarks are designed to evaluate the CPU and memory system in new implementations
and ISAs. To realize this testers are responsible for providing a compiler and for compiling the benchmarks.

Suppose SPEC required testers to use a compiler that they provide. How much would this impact the goal
of testing new ISAs? New implementations of existing ISas?

�Degree of impact of SPEC-provided compilers for testing new ISAs. �Explain.

If SPEC is supplying the compiler and the ISA is new, then SPEC would need a new compiler back-end for the new ISA. That would
take a lot of time and effort for SPEC to develop and so there would be a long delay before SPECcpu scores could be obtained on the
new ISA, and so the degree of impact would be large. Note that existing SPEC compilers could not be used for the new ISA, since
they don’t know how to generate instructions for the ISA (since its new).

�Degree of impact of SPEC-provided compilers for testing new implementations of old ISAs. �Explain.

When a new implementation is developed compiler optimizations are adjusted or developed for the new implementation. In many
cases the improvements are small. For this reason, using an old compiler on a new implementation would have a small impact on the
results.

Though the impact would be small, it’s still not a good thing to do because in many cases the compiler back end is developed by the
same people developing the implementation, and there is no reason why the two (compiler and chip) should not be tested as a unit.

(b) A company releases a SPEC disclosure in which they have substituted the bzip2 benchmark with another
version of bzip2 which does the same thing but runs faster. Since it does the same thing it provides the
correct output to the SPEC verification script. As a result they get very good scores. How will they get
caught? How is it against the goal of SPECcpu?

�How will the benchmark substitution get caught?

Anyone disclosing a SPECcpu score must provide a “config” file with all of the settings, and any software (such as compilers) needed
to build the benchmarks must be publicly available (though not necessarily free). Therefore, it is easy for a 3rd party to re-run the
test and they will discover the discrepancy.

�How does the substitution undermine what SPECcpu is supposed to measure?

The obvious answer is that if people don’t know your substituting benchmarks then they’ll attribute the better scores to the computer
(until the substitution is discovered).
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Problem 1: (15 pts) Illustrated below is the stall-in-ME version of our MIPS implementation, taken from
the solution to the midterm exam.
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(a) Show a pipeline execution diagram of the code below on this pipeline.

(b) Wires in the diagram are labeled A, B, C, and D. Under your pipeline execution diagram show the values
on those wires when they are in use.

�Show pipeline execution diagram. �Show values of A, B, C, and D.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8

add.s f4,f5,f6 IF ID A1 A2 A3 A4 WF

sub.s f7,f8,f9 IF ID A1 A2 A3 A4 WF

lwc1 f1, 0(r2) IF ID EX ME ----> WF

A 1 1 1

B 4 7

C 1 1 0

D 1

# Cycle 0 1 2 3 4 5 6 7 8

Solution appears above. Values on A are only used by the FP load instructions, in this case, lwc1, and so in the table above the
values are only shown in cycles 5, 6, and 7. That said, in cycle 3 A would have a 4 and in cycle 4 it would hold a 7.
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Values on B are used for destination of all other instructions that write the floating-point register file, for the code above the add.s
and sub.s instructions. Notice that the value shown for B is for the instruction in the A3 stage.

Values on C control which source will be written back to the FP register file.

The value on D is 1 when a FP load is in the EX stage.

3
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Problem 2: (15 pts) Illustrated below is a 2-way superscalar MIPS implementation. Design the hardware
described below. You can use the following logic blocks (with appropriate inputs) in your solution: The

output of logic block isALU is 1 if the instruction’s result is computed by the integer ALU. The output of

logic block rtSrc is 1 if the instruction uses the rt register as a source. The output of logic block isStore
is 1 if the instruction is a store.
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(a) Design logic to generate a signal named STALL, which should be 1 when there is a true (also called data
or flow) dependence between the two instructions in ID.

�Control logic to detect true dependence in ID and assign STALL.

Solution appears above in blue. The stall signal for this part is the output of the OR gate. To help understand what’s going on the
IR (instruction register) for slot 0 is shown in purple and the IR for slot 1 is shown in gold. The logic compares the destination of
the instruction in ID slot 0 with the two sources of the instruction in slot 1. If either matches, the stall signal is generated (which

before part b would be the output of the OR gate). The rtSrc logic is needed because the rt field might hold a destination register
number, and we would not want to stall for that.

(b) The code fragment below should generate a stall in our two-way superscalar implementation when the
two instructions are in the same fetch group. However this particular instruction pair is a special case in
which the stall is not necessary when the right bypass path(s) and control logic are provided. Note: There
was a similar-sounding problem in last year’s final, but the solutions are different.

0x1000: add r1, r2, r3

0x1004: sw r1, 0(r5)

4
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�Add the bypass path(s) needed so that the code executes without a stall.

�Add control logic to detect this special case and use it to suppress the stall signal from the first part.

Solution appears in green.

The special case here that makes a stall unnecessary is that the sw does not need the result of the add until the end of the EX stage
(or the beginning of ME). Therefore the result can be bypassed from the output of the slot-0 ALU to the input of the EX/ME.rtv1
pipeline latch. The logic for this bypass path is in the EX stage, shown in green. (It would also be correct to put the bypass in the
ME stage.)

The control logic for this special-case bypass is also shown in green. The three-input AND gate checks for a dependence between the
destination of the slot-0 instruction and the rt source of the slot-1 instruction (top input), whether the slot-0 instruction’s result is
produced by the ALU (middle input), and whether the slot-1 instruction is a store (bottom input). If all are true the bypass signal is
set to true. The bypass signal is used for the new ID/EX.by pipeline latch and for the AND gate suppressing the stall signal.

5
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Problem 3: (15 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 230 entry BHT. One system has a bimodal predictor,
one system has a local predictor with a 12-outcome local history, and one system has a global predictor with
a 12-outcome global history.

(a) Branch behavior is shown below. Notice that B2’s outcomes come in groups of three, such as 3 qs. The
first outcome of each group is random and is modeled by a Bernoulli random variable with p = .5 (taken
probability is .5). The second and third outcomes are the same as the first. For example, if the first q is T

the second and third q will also be T. If the first s is N, the second and third s will also be N. Answer each
question below, the answers should be for predictors that have already warmed up.

B1: T T T N N T T T N N ...

B2: r r r q q q s s s u ...

B3: T T T T T T T T T T ...

�What is the accuracy of the bimodal predictor on branch B1?

The accuracy is 2
5 . The work to compute this result is shown below. The prediction accuracy is based on the second pattern

repetition because the counter value at the start of the pattern and the end of the pattern is the same, 1. (In contrast, the counter
value at the start of the first repetition is 0 and at the end it is 1, so we can’t use the first five outcomes of B1 to compute an
accuracy.)

# SOLUTION Work

0 1 2 3 2 1 2 3 3 2 1 <- Counter values.

B1: T T T N N T T T N N ...

x x x x x x x <- Mispred location.

----------------------- <- Repeating pattern.

�What is the approximate accuracy of the bimodal predictor on branch B2? �Explain.

At the end of a group of three outcomes, call them r1, r2, and r3, the two-bit counter will be either 0 or 3. Consider two possible
cases: in Case 1 the next three outcomes, call them q1, q2, and q3, are the same as the r; in Case 2 the next three outcomes are
different. See the diagram below. The probability of a q1 falling into Case 1 is .5. Because the branch directions agree in Case 1 the
three qs will be predicted correctly. In Case 2, where r and q are different, q1 and q2 will be mispredicted, but q3 will be correctly
predicted. See counter values in the diagram below.

The overall prediction accuracy is the average of the two, 1
2

(
3
3 + 1

3

)
= 4

6 .

Case 1: r and q agree. Probability 0.5.

3 3 3 3 <- Counter value

B2: r r r q q q ...

B2: T T T T T T ... <- Let q = T and r = T.

<- Zero mispredictions of q.

Case 2: r and q disagree. Probability 0.5

3 2 1 0 <- Counter value

B2: r r r q q q ...

B2: T T T N N N <- Let q = T and r = N.

x x <- Two mispredictions of q.

�What is the minimum local history size needed to predict B1 with 100% accuracy?

Three outcomes are sufficient. With two outcomes a local history of TT could appear before the third T or the first N.

6
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�What is the accuracy of the local predictor on branch B2, after warmup. �Explain.

The local predictor will predict the first branch of a group of three with a 50% accuracy. (No predictor can do better or worse.) The
second and third outcomes will be predicted with 100% accuracy after warmup. That’s because the PHT entries corresponding to
local histories ending with an N will saturate down to a zero, and those ending with T will saturate up to 3. (See the next part.) The

overall accuracy is 1
3
1
2 + 2

3
2
2 = 5

6 .

�What is the best local history size for branch B2, taking warmup into consideration. �Explain.

For any local history size greater than zero the prediction accuracy will be 5
6 after warmup. The longer the local history size is the

longer the warmup time is. The minimum local history size needed is just one outcome. The local predictor will predict the same
outcome as the most recent occurrence.

�How many different GHR values will there be when predicting B3?

Let 312 312 312 312 indicate the state of the 12-bit GHR when predicting B3. Each digit indicates the branch affecting the
corresponding bit position in the GHR. For example, branch B2 affects the rightmost bit and three other bits. Because B3 is perfectly
biased we know that all the 3’s must be T. The four 1s together can have five possible values, TTTN, TTNN, TNNT, NNTT, and
NTTT. Considering just B1 and B3 there are 1 × 5 = 5 possible GHR values. To compute the number of possible patterns for
branch B2 we need to consider three cases for the first 1 position: that it corresponds to a q1 (first of a group of three), a q2, or a
q3. In each of those cases there are four distinct patterns. For example, in case 1 the first three 1’s are from one group of three and
the last 1 is from a different group of three. There are two possible outcomes for each group. For each case, one of the four patterns
is all Ts and one is all Ns. The number of distinct patterns due to branch B2 is 3 × 2 + 2 = 8. The patterns due to B1 repeat
every 5 occurrences of B3, while the patterns due to B2 sort of repeat every 3. Because 3 and 5 don’t share a common factor > 1

the total number of patterns in the GHR is the product of the number of patterns due to B1 and B2. The total is 5 × 8 = 40 .

Grading Note: For full credit one only needs to show an approach that will lead to the correct answer. The
key insight that needs to appear is multiplying the five patterns of B1 by something like a2b, or some diagram
that can be used to find the different GHR patterns.

7
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Problem 3, continued:

In this part consider the same predictors as on the previous page, except this time the BHT has 214 entries.
Also, consider the same branch patterns, they are repeated below, along with the address of branches B1

and B2. The branch predictors are part of a MIPS implementation.

0x1234: B1: T T T N N T T T N N ...

0x1242: B2: r r r q q q s s s u ...

B3: T T T T T T T T T T ...

(b) Choose an address for branch B3 that will result in a BHT collision with branch B1.

�Address for B3 that results in a collision.

Branch B1 will collide with B3 in a BHT lookup if the bit values used to index the BHT for the two branches are the same. Since
the BHT has 214 entries and because MIPS instructions are 4-byte aligned we will use bits 15:2 of the branch address to index (to
use as a lookup address for) the BHT. The value of those bits for B1 is 0x1234 (note that each hex digit spans four bits). For B3

to use the same entry the four least significant hex digits should match. One such address is 0x11234 .

(c) How does the collision change the prediction accuracy of the bimodal predictor on the two branches?

�Change in B1 and �Change in B3.

For this particular case the accuracy of B1 will improve because B3 will keep the 2-bit counter from falling below 2. This will improve
B1s accuracy to 3

5 . The accuracy of B3 won’t change. The Ns in B1 will never decrement the counter twice in a row (because of
B3’s outcome) and so the counter will never go below 2.

(d) (The answer to the following question does not depend on the sample branch patterns above.) Suppose
we detect a BHT collision (perhaps by using tags). Why should we predict not taken?

�Reason for predicting not-taken for a collision.

Because a collision indicates that the BHT entry we found is not for the branch we are trying to predict. Since it’s for a different
branch the target, which can be stored in the BHT, would very likely be wrong. So even though there’s a .5 probability that a taken
prediction is correct there is a much smaller chance that the target is correct.

8
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Problem 4: (15 pts) The diagram below is for a 256 kiB (218 B) set-associative cache. Hints about the
cache are provided in the diagram.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

CPU

Addr

Data In

logic

hit

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

32 b

64 b

31:17

16:3

31:17

16 :6 16:6

16:3

�Complete the address bit categorization. Label the sections appropriately. (Index, Offset, Tag.)

Address:

Tag

31 17

Index

16 6

Offset

5 3 2 0

�Associativity:

The associativity is 2 . From the diagram we can see that there are two ways. Notice that there’s no ellipsis between the ways, as
there would be on a diagram in which not all the ways are shown.

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity, 256 kiB bytes, plus 2 × 217−6 (32 − 17 + 1) bits.

�Line Size (Indicate Unit!!):

Lower bit position of the address going into the tag store gives the line size, 26 = 64 characters.

9
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�Show the bit categorization for a fully associative cache with the same capacity and line size.

Because the cache is fully associative the number of index bits is zero. The line size doesn’t change so we don’t change the offset bit
positions. Instead we increase the size of the tag. The bit categorization appears below.

Address:

Tag

31 6

Index—zero bits wide Offset

5 3 2 0

10
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Problem 4, continued: The problems on this page are not based on the cache from the previous page.
The code in the problems below run on a 4MiB (222 byte) 4-way set-associative cache with a line size of 128
bytes.

Each code fragment starts with the cache empty; consider only accesses to the arrays.

(b) Find the hit ratio executing the code below.

double sum = 0;

double *a = 0x2000000; // sizeof(double) == 8

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

�What is the hit ratio running the code above? Show formula and briefly justify.

The line size of 27 = 128 bytes is given. The size of an array element, which is of type double, is 8 = 23 characters, and so there
are 27/8 = 27−3 = 24 = 16 elements per line. The first access, at i=0, will miss but bring in a line with 24 elements, and so
the next 24− 1 = 15 accesses will be to data on the line, hits. The access at i=16 will miss and the process will repeat. Therefore

the hit ratio is 15
16 .

(c) Find the largest value for BSIZE for which the second for loop will enjoy a 100% hit ratio.

struct Some_Struct {

double val; // sizeof(double) = 8

double norm_val;

double a[14];

};

const int BSIZE = 1 << 15; ; // <- FILL IN

Some_Struct *b;

for ( int i = 0; i < BSIZE; i++ ) sum += b[i].val;

for ( int i = 0; i < BSIZE; i++ ) b[i].norm_val = b[i].val / sum;

A key fact to understand when solving this problem is that two consecutive elements, say b[0] and b[1], will be on two consecutive
lines. (That’s because each element, Some struct, is the size of a line. Some struct contains 16 doubles [14 doubles in the
array, a] and the size of 16 doubles is 16 × 8 = 128B which is the line size.)

The size of the cache is 4MiB which works out to 4MiB
128B = 222−7 = 215 lines. A hasty student might assume the problem solved

at this point, and write BSIZE=215 , or as is shown in the solution as the equivalent C expression, 1 << 15. In this case, haste

is not being punished, that’s the right answer. It’s hasty because of the assumption that all 215 lines could co-exist in the cache.

To determine whether they really can all be in the cache at the same time, consider the sequence of addresses broken into tag, index,
and offset parts. Because the size of Some struct is the same size as the cache line, we know that if the index of &b[i].val
were x then the index of &b[i+1].val would be x + 1. Because the cache is 4-way set-associative the number of lines per way
is 215/4 = 213. That means the indices run from 0 to 213 − 1 = 8191. So when is BSIZE=213 we will encounter each index
exactly once, and may completely fill each way. If BSIZE=214 then we would encounter each index twice, say for i=0 and i=32768.
Element b[0] might be placed in way 0 and element b[32768] might be placed in way 1. No problem. Since the cache is 4-way
we can make BSIZE 215 without a problem. If BSIZE were 215 + 1 then we would be using an index five times. The fifth time we
use an index we would evict the data for element i = 0.

Bonus problem: What would happen if the array a were 30 elements? In that case the size of an element would be two lines, and if
the index for element b[i] were x, the index for element b[i+ 1] would be x+ 2. In that case half the cache would go unused, and
so BSIZE would have to be made half as large.

11

← → Spring 2014 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2014/fe_sol.pdf


Problem 5: (5 pts) The displacement in MIPS branches is 16 bits. Consider a new MIPS branch instruction,
bfeq rsn, rtn (branch far), where rsn and rtn are 2-bit fields that refer to registers 4-7. As with beq,
branch bfeq is taken if the contents of registers rsn and rtn are equal. With six extra bits bfeq can branch
64 times as far.

(a) Show an encoding for this instruction which requires as few changes to existing hardware as possible.

�Encoding for bfeq. �Explain how minimizes changes.

The encoding for bfeq is shown below. The 22-bit displacement is is3,it3,Immed (in Verilog notation).

Encoding for bfeq:

Opcode

31 26

is3

25 23

rs2

22 21

it3

20 18

rt2

17 16

Immed

15 0

In the encoding above the rs and rt register fields each have been shortened from five to two bits. (The original format I encoding
is shown below.) Since the fields have been shortened but not moved the four remaining bits can be connected directly to the register
file. (See the solution to the next part.)

MIPS I:

Opcode

31 26

rs

25 21

rt

20 16

Immed

15 0

The encoding below, which would receive partial credit, would result in more costly implementations. This inferior encoding is
certainly more organized with rs2 and rt2 next to each other and with the immediate occupying 22 contiguous bits. However the
multiplexors at the register file inputs would need to be five bits instead of three bits. Notice that it does not make a difference
whether or not the immediate bits are contiguous, as they are below, or split, as they are in the solution above.

Inferior bfeq:

Opcode

31 26

rs2

25 24

rt2

23 22

imm22

21 0
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(b) Modify the pipeline below to implement the new instruction. Use as little hardware as possible.

�Briefly show changes.

Changes appear below. At the register file address inputs, shown in blue, the high three bits of each register number is determined by
a multiplexor. If a bfeq is present the upper inputs are used, making the upper three bits of each register number 0012, otherwise
the upper bits come from the instruction. The lower two bits are taken from the instruction regardless of whether bfeq is present.

If a bfeq is present the displacement includes the extra six bits, these changes are shown in green.

format
immed
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Addr

IF ID EX WBME
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Data
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17:16

3'b1
20:18

25:23

20:18
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Six extra bits of branch displacement.

Replace high 3 bits of reg num with 0012

msb

lsb

msb lsb
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Problem 6: (10 pts) Illustrated below is a dynamically scheduled four-way superscalar MIPS implementa-
tion and the execution of code on that implementation.
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LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lwc1 f2, 0(r1) IF ID Q RR EA ME WB C
add.s f4, f4, f2 IF ID Q RR A1 A2 A3 A4 WB C
bne r1, r2, LOOP IF ID Q RR B WB C
addi r1, r1, 4 IF ID Q RR EX WB C
LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lwc1 f2, 0(r1) IF ID Q RR EA ME WB C
add.s f4, f4, f2 IF ID Q RR A1 A2 A3 A4 WB C
bne r1, r2, LOOP IF ID Q RR B WB C
addi r1, r1, 4 IF ID Q RR EX WB C
# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) On the diagram above indicate when each instruction will commit.

�Show commits on diagram above.

Commits shown above (they are indicated with a C). Note that commits must occur in program order and that there cannot be more
than four commits per cycle. (Program order means that a commit for an instruction cannot occur before the commit for a preceding
instruction.)

(b) What is the execution rate, IPC, for the code above for a large number of iterations assuming perfect
branch prediction. Note that the system is dynamically scheduled.

� IPC for code above for large number of iterations.

Short answer: the code will execute at just 1 insn/cycle due to the add.s.

Longer answer: Notice that one source of the add.s instruction, f4, is the result of the add.s instruction in the prior iteration.
This means that execution can go no faster than four cycles per iteration. The sample execution (the one in the unsolved problem,
not just the solution) shows that there are bypass paths so the second iteration add.s can start as soon as the first iteration add.s
result is ready. This suggests that four cycles per iteration is possible. Instruction fetch and decode goes much faster, one cycle per
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iteration. Eventually though the ROB will fill causing IF to periodically stall. On average each iteration will take four cycles and
each iteration consists of four instructions, for an IPC of 4

4 = 1.

(c) On the next page there is a table showing the values of selected signals during the execution of the code,
the signals are related to register renaming. Show values where indicated on the table. Note that ID:incmb
is already shown in cycle 1, show its values for later cycle(s).
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25:21
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�Show values where indicated.

SOLUTION shown in blue.

LOOP: Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lwc1 f2, 0(r1) IF ID Q RR EA ME WB C
add.s f4, f4, f2 IF ID Q RR A1 A2 A3 A4 WB C
bne r1, r2, LOOP IF ID Q RR B WB C
addi r1, r1, 4 IF ID Q RR EX WB C
LOOP: Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lwc1 f2, 0(r1) IF ID Q RR EA ME WB C
add.s f4, f4, f2 IF ID Q RR A1 A2 A3 A4 WB C
bne r1, r2, LOOP IF ID Q RR B WB C
addi r1, r1, 4 IF ID Q RR EX WB C
# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID:dstPR 0 (lwc1) 65 62 for register f2
ID:dstPR 1 (add.s) 97 69 for register f4
ID:dstPR 3 (addi) 60 79 for register r1
# Show values for signals below, including incmb.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID:incmb 0 (lwc1) 83 65
ID:incmb 1 (add.s) 20 97
ID:incmb 3 (addi) 67 60

ID:rsPR 0 (lwc1) 67 60

ID:rsPR 1 (add.s) 20 97

ID:rsPR 3 (addi) 67 60

ID:rtPR 1 (add.s) 65 62 <- rt, not rs

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

WB:dstPR 0 (lwc1) 65 62
WB:dstPR 1 (add.s) 97 69
WB:dstPR 3 (addi) 60 79
# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Problem 7: (25 pts) Answer each question below.

(a) Describe how cost and performance limit the practical largest value of width (value of n) in an n-way
superscalar implementation.

�Cost limiter.

Bypass paths become a major element when n is large. Consider an n-way superscalar design derived from the 5-stage statically
scheduled MIPS implementation used in class. The EX stage will have n 2-input ALUs, requiring a set of bypass paths for each of the
2n inputs. The ME and WB stage will each hold n results. The number of multiplexor inputs needed to provide bypass paths from
those 2n results to the 2n inputs is 4n2. At 32- or 64 bits each, that will quickly dominate cost.

�Performance limiter.

There will be several performance limiters. One major limiter is the lack of sufficient instructions to execute in parallel. In a statically
scheduled n-way superscalar design there cannot be true dependencies between the n instructions in a group to avoid stalls. If there
are dependencies then the group will spend two or more cycles in ID, reducing performance. The larger n is the more frequently
such dependencies will occur. Dynamic scheduling helps but does not eliminate the problem.

Another major performance limiter with large n are branches. Branches occur frequently in integer code, perhaps once every five or
six instructions. In practical designs execution could only reach up to the first taken branch in a group. (In impractical [academic]
designs multiple branches can be predicted per cycle and instructions can be fetched from multiple non-adjacent areas per cycle).

(b) What is the most important factor in determining the size of a level 1 cache?

�Most important factor in L1 cache size.

Clock frequency and load latency. The amount of time it takes to retrieve data from a memory is a function of its size, the larger
the slower. Typically designers would set a target for the clock frequency and for the number of cycles it would take to retrieve data
from the L1 cache. The largest L1 size that can meet these requirements would be chosen. For example, suppose we chose two cycles
for an L1 hit (the pipeline might have two memory stages, ME1 and ME2), and suppose we chose a clock period of 0.7 ns. That
would give us 1.4 ns to retrieve data from the cache. We would choose the largest L1 size that could provide the data in 1.4 ns.
The remaining chip area might be used for an L2 cache.
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(c) Suppose the 16-bit offset in MIPS lw instructions was not large enough. Consider two alternatives. In
alternative 1 the offset in the existing lw instruction is the immediate value times 4. So, for example, to
encode instruction lw r1, 32(r2) the immediate would be 8. In alternative 2 the behavior of the existing
lw is not changed but there is a new load lws r1, 32(r2), in which the immediate is multiplied by 4. Note
that alternative 2 requires a new opcode. Which instruction should be added to a future version of MIPS?

�Should choose alternative 1 or alternative 2? �Explain.

Alternative 2, lws, should be chosen so that existing software continues to run correctly.

(d) The SPECcpu suite comes with the source code for the benchmark programs. How does that help with
the goal of measuring new ISAs and implementations?

�Source code helps with testing new implementations because:

Since we have the source code we can compile the benchmarks ourselves. In fact, for SPECcpu testers are required to compile the
code for themselves, using the compiler of their choosing (within reason). If we are testing a new implementation then we would want
to use a compiler that can optimize for that implementation. If we are testing a new ISA then there would be no choice but to use a
new compiler, since old compiler would not be able to generate code for it.

(e) What’s the difference between a 4-way superscalar implementation (of say MIPS) and a VLIW system
with a 4-slot bundle?

�Difference between superscalar and VLIW.

The superscalar implementation must be able to find and handle dependencies between any pair of instructions in a group (the group
of 4 instructions traveling together through ID and beyond) and must be able to handle any instruction in any slot within a group.
In contrast, the VLIW implementation need only handle a subset of possible instruction in each slot. For example, slot 0 might never
have branch instruction and slot 3 might never have a memory instruction. Furthermore, dependencies between instructions in a
bundle might be forbidden. The expectation is (was) that these differences would enable less expensive or higher performance VLIW
implementations.
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Problem 1: (20 pts) The MIPS implementation below includes a two-stage integer multiply unit (Y1 and
Y2) for the mult instructions, similar to the MIPS implementation covered in Homework 4. Some wires are

labeled with cycle numbers and values that will then be present. For example, c5:14 indicates that at cycle
5 the pointed-at wire will hold a 14. Other wires just have cycle numbers, indicating that they are used in
that cycle. Note that instruction addresses are provided.

�Write a program consistent with these labels.

�All register numbers and immediate values can be determined.

�Fill in this block (labeled Fill) →

IR

Addr
25:21

20:16

IF
ID

EX WBME

rsv

rtv

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem
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Addr
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Addr

D
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Mem
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Outrtv

ALU

MD

dst dst dstdest. reg

NPC

=

30 2
2'b0

+
15:0

25:0

29:26

29:0

15:0

D
0 1

lo

Y1 Y2

63:32

31:0

31:0

format

immed ihl

hi
c5:47

c5:12

c5:14

c6

c2

c4

c6c1:0

c5:16

c1:19

c3:11

c1: FILL IN

c7:0x9001

c1: 0010 0010 0010 1100 0000 0000 0001 0010

THIS ONE IS IMPORTANT
0x40

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x1000: beq r0, r19 TARG IF ID EX ME WB

0x1004: addi r12, r17, 18 IF ID EX ME WB

0x1104: mult r12, r11 IF ID EX ME WB

0x1108: mflo r14 IF ID EX ME WB

0x110c: sb r14, 47(r16) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Easy Source Registers: In ID the c1:0 tells us that in cycle 1 the instruction in ID (the one with address 0x1000) uses r0 as an

rs source register. Similarly c5:16 tells us that the instruction at 0x110c uses r16 as a source. The c1:19 and c3:11 provide
the rt registers for the instructions at 0x1000 and 0x1104.

Easy Destination Registers: In EX the c5:14 tells us that the destination of the instruction at 0x1108 is r14. In WB (but appearing

at the bottom of ID) the c5:12 tells us the instruction at 0x1004 has a destination of r12.

Easy Immediate: In ID the c5:47 tells at that the instruction at 0x110c uses an immediate and that it is 47.
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Easy Dependencies: The c4 in EX tells us that the first source of the instruction in EX, 0x1104, uses the result of the instruction

in ME, 0x1004. Therefore, the first source of 0x1104 must be r12. Similarly the c6 in EX tells us that the rt source of 0x110c
is produced by 0x1108; it also tells us that 0x110c is a store instruction, the store value must come from r14.

Less-Common Dependency: The c6 in ME tells us that 0x1108 uses a result from an instruction in WB, 0x1004 (this bypass path
can only bypass values that are to be written to the lo register). The lo register is the destination of 0x1104, which must be a
mult because no other instruction uses the Y units, and the source of 0x1108, which must be a mflo because that is the only
instruction that uses the lo register as a source. Note that the lo register is not shown in assembly language.

Parsing: The c2 in ID tells us that 0x1004 is a type I instruction. We have the encoded form of the instruction in IF:

c1: 0010 0010 0010 1100 0000 0000 0000 0001 0010 . From this we can parse out the rs and rt registers (r17 and r12), as
well as the immediate (18). We can also parse the opcode, 8, but one did not have to know that the opcode was for an addi
instruction.

The Store Instruction: As mentioned earlier the c6 in EX reveals that 0x110c is some kind of store instruction. The c7:0x9001
tells us that it cannot be a sw because the address of a sw must be a multiple of 4, similarly it can’t be a sh. The only common
store remaining is sb (store byte).

The mult and mflo Instructions: See the less-common dependencies paragraph above.

The Branch: The pattern of instruction addresses tells us that the instruction at 0x1000 must be some kind of delayed control

transfer (branch, jump, call). The c1: FILL IN in ID tells us it must be a branch. Let i denote the immediate field value (which
is what is needed for the fill-in box. The branch target is computed by adding 4× the immediate to the delay slot address, that is:
0x1104 = 0x1004 + 4i. From that we get i = 4016 (or 0x40).

3
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Problem 2: (15 pts) Illustrated below is a 2-way superscalar MIPS implementation. Design the hardware
described below. You can use the following logic blocks (with appropriate inputs) in your solution: The

output of logic block isALU is 1 if the instruction’s result is computed by the integer ALU. The output of

logic block rtSrc is 1 if the instruction uses the rt register as a source. The output of logic block isLoad
is 1 if the instruction is a load.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem

Port

Addr

Data
Out

Addr

D
In

Mem
Port

Out
md

0

dst0Dest. reg

Addr
25:21

20:16
rsv0

rtv0Addr

Data

Data

+

15:0

31:2

15:0

D

alu0

rtv0

rtv1

Addr
25:21

20:16
rsv1

rtv1Addr

Data

Data

A
d
d
r

D
 I
n

dst1

imm0

imm1Immed

Dest. reg64

15:0

alu1

alu0

Addr

D
In

Mem
Port

Out
D

md
1

dst0

dst1
dst0

dst1

alu1

Register File

ir0

ir1

pc

npc

2`b0

='

='

rtSrc

isLoad

isALU
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Special-case
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by

ir0

ir1 15:0

25:21

20:16 STALL
(part a)

(a) Design logic to generate a signal named STALL, which should be 1 when there is a true (also called data
or flow) dependence between the two instructions in ID.

�Control logic to detect true dependence in ID and assign STALL.

Solution appears above in blue. The stall signal for this part is the output of the OR gate. To help understand what’s going on the
IR (instruction register) for slot 0 is shown in purple and the IR for slot 1 is shown in gold. The logic compares the destination of
the instruction in ID slot 0 with the two sources of the instruction in slot 1. If either matches, the stall signal is generated (which

before part b would be the output of the OR gate). The rtSrc logic is needed because the rt field might hold a destination register
number, and we would not want to stall for that.
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(b) The code fragment below should generate a stall in our two-way superscalar implementation when the
two instructions are in the same fetch group. However this particular arithmetic/load pair is a special case
in which the stall is not necessary when the right bypass path(s) and control logic are provided. Hint:
Something about the lw makes it a special case.

0x1000: add r1, r2, r3

0x1004: lw r4, 0(r1)

�Add the bypass path(s) needed so that the code executes without a stall.

The bypass path appears at the output of the slot-1 ALU. The slot 0 ALU computes the add (for the example above) and the slot 1
ALU computes r1 + 0. For this special case, where the immediate is zero and we are using the destination of the slot-0 instruction,
we can bypass.

�Add control logic to detect this special case and use it to suppress the stall signal from the first part.

The control logic appears in green. The logic checks for an ALU instruction in slot 0, a load with a zero immediate in slot 1, and a
dependence between the slot-0 and -1 instructions. If all are true the special-case-bypass signal is 1, and that is used to control the
new bypass multiplexor and to suppress the stall signal.

Note that the bypass signal must go through the pipeline latch, if it were connected directly to the green EX-stage mux it would be
affecting the wrong instructions.

5
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Problem 3: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 214 entry BHT. One system has a bimodal predictor,
one system has a local predictor with a 12-outcome local history, and one system has a global predictor with
a 12-outcome global history.

(a) Branch behavior is shown below. The r outcomes for branch B2 are random and are modeled by a
Bernoulli random variable with p = .25 (taken probability is .25). Answer each question below, the answers
should be for predictors that have already warmed up.

B1: T N T T T N T N T T T N ...

B2: T N T r T N T N T r T N ...

B3: T T T T T T T T T T T T ...

�What is the accuracy of the bimodal predictor on branch B1?

By straightforward analysis (see work below) the accuarcy is 4
6 = 2

3 . Note that the accuracy is based on a repeating pattern (the
part under the dashes). The pattern of outcomes repeat, and the counter value is the same, 2, at the beginning and the end of the
repeating part.

SOLUTION WORK

Repeating pattern: -------------------------------

Ctr:0 1 0 1 2 3 2 3 2 3 3 3 2

B1: T N T T T N T N T T T N ...

Mispred: x x

�What is the approximate accuracy of the bimodal predictor on branch B2? �Explain.

Short answer: The 2-bit counter value will be 2 or 3, and so all the taken branches will be correctly predicted, for a

prediction ratio of 3+0.25
6 .

Explanation: Notice that there never will be more than one consecutive not-taken outcome and that sometimes there are three
consecutive taken outcomes (when r is taken). For that reason the 2-bit counter cannot be lower than 2 (after reaching a 3 during
warmup). With a value of 2 or 3 it will always predict taken, that is the correct prediction for the three T outcomes and is correct
for r 25% of the time. The total accuracy is then 3+0.25

6 .

�What is the minimum local history size needed to predict B1 with 100% accuracy? Ignore branch B2

for this question.

The minimum history size is 4 outcomes . To see why consider the six possible local histories (sorted) below. Suppose the local
history size were just two outcomes, and consider the first two patterns below. If the local history were NT the next outcome might
be N or T, and so the branch could not be predicted. Similarly three outcomes are insufficient, consider local history TNT. But four
are sufficient, that’s easy to tell in this case because every four-outcome history for this branch is different (look at the first four
columns of the table below).

NTNTTTNT

NTTTNTNT

TNTNTTTN

TNTTTNTN

TTNTNTTT

TTTNTNTT

�What is the accuracy of the local predictor on branch B2, ignoring the effect of B1? �Explain.

The local predictor will predict the non-r outcomes with 100% accuracy because the pattern repeats and there is enough local
history. The r outcomes add to the number of patterns, but other than increasing warmup time they don’t affect accuracy of the

6
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non-r outcomes. Since r is biased not-taken the counter for the r outcomes will usually be 0 or 1. Assuming it is always 0 or

1, the accuracy or the r outcomes would be 75%. The overall accuracy under this assumption is 5+0.75
6 . It’s easy to find the

actual probability of each counter value by solving a simple Markov chain. The probability of a counter value of i is ω−1
ω4−1ω

i where

ω = 0.25
1−0.25 . The probability of a zero count is .675 and a one count is .225, so the probability of predicting not-taken is .9. The

probability of a correct prediction for the r outcome is 0.9 × 0.75 + 0.1 × 0.25 = .7, slightly lower than the .75 we estimated.

� Describe a situation in which branch B2 is mispredicted using the local predictor due to the effect of
B1. The low bits of the address of B1 and B2 are different so there is no chance of a BHT collision. How
frequently do such mispredictions occur? Grading Note: The original exam and the Spring 2014 homework
question did not include the statement about the low address bits.

This happens when the r outcome is t two times in a row, and then is n. When we predict the T outcome (the third r outcome)
the local history for B2, tTNTNTtTNTNT, matches a possible local history for B1. B1 will have warmed up the corresponding PHT
entry to 3, but for branch B2 the predicted outcome should be not taken. The chance of this happening is 1

4
1
4
3
4 = 3

64 .

Thank you to EE 4720 student Payon Huskins for providing a correction to the solution above on 4 May
2015. (The version above has the correction applied.)

The original exam and the Spring 2014 homework assignment did not have the statement about the low
address bits. The following explains why a BHT collision could not cause a misprediction, meaning that the
only the answer above is correct, with or without the low-address-bits statement.

If bits 15:2 of B1 and B2 were identical the two branches would share a BHT entry and so their local histories would be intermingled
(in the same way local histories are intermingled in the GHR). The positions of the N’s in the local history would ensure that different
PHT entries were used for the two branches, and so there is no chance of B1 affecting B2. Even with the intermingling there would
be enough local history to predict B1 and B2 with their respective maximum accuracies.

�How many possible GHR values will be present when predicting branch B3? It’s okay to show patterns
that include r’s, but indicate how many of each pattern there are.

Consider the following global history when predicting B3: TttTtrTttTnn. The upper-case outcomes are B3, the lower-case
outcomes are B1 and B2. Because there is an r this pattern represents two possible global histories. Pattern B1 can be in six
possible rotations, for four of them the r is in the global history, so the total number of global histories when predicting B3 is

2 × 4 + 2 = 10 .

7
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Problem 3, continued: Recall that the local predictor uses a 12-outcome local history and a 214-entry
BHT.

(b) Draw a diagram of the local predictor hardware used for making a prediction but omit the hardware for
updating the predictor. The input to your hardware should be PC, and output should be a 1-bit quantity (0
for not-taken, 1 for taken).

• Be sure to show the BHT and PHT.

• Assume that PC is the address of a branch. (That is, don’t worry about detecting non-branch
instructions.)

• Don’t predict the target, just the direction (taken or not-taken).

�Local predictor hardware for predicting branch direction.

�Label wires with bit ranges (e.g. 31:26) or number of bits, as appropriate.

Solution appears below.

BHT

PC

a d a d

local

history

other

info 2-bit

counter

PHT P
re
d
ic
tio

n

1:1

15:2 12 2

(c) How much memory is needed to implement the local predictor. Only include storage for predicting the
branch direction, do not include storage for predicting the branch target.

�Storage needed to implement local predictor. � Indicate unit.

In real life [tm] a BHT entry for a local predictor might have a field for identifying the type of instruction (branch, jump, non-CTI,
etc.), a tag, the CTI target, and of course the local history. As requested, we will only look at the local history. The size of the local
history is 12 bits, and there are 214 entries. The PHT has 212 entries (one for each possible local history) and each entry is 2 bits.

The total storage is thus 214 × 12 + 212 × 2 bits .

8
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Problem 4: (20 pts) The diagram below is for an 8-way set-associative cache. Hints about the cache are
provided in the diagram and also in the address bit categorization just below the diagram.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

CPU

Addr

Data In

logic

hit

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

40 b

128 b

39:20

19:4

39:20

19:5 19:5

19:4

�Complete the address bit categorization. Label the sections appropriately. (Index, Offset, Tag.)

Address:

Tag

39 20

Index

19 5

Offset

4 4 3 0

�Cache Capacity (Indicate Unit!!):

The cache capacity can be determined from the following pieces of information: The lowest tag bit position is 20, which means that
the size of the combined index and offset is 20 bits, and so each data store holds 220 characters. Nothing was said about the character
size and so we can assume that it is 8 bits, which we will call a byte. We were told that the cache is 8-way set associative, and so

there are 8 data stores, and so the cache capacity is 8 × 220 = 8MiB.

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity, 223 bytes, plus 8 × 220−5 (40 − 20 + 1) bits.

�Line Size (Indicate Unit!!):

Lower bit position of the address going into the tag store gives the line size, 25 = 32 characters.

9
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�Show the bit categorization for a fully associative cache with the same capacity and line size.

Because the cache is fully associative the number of index bits is zero. The line size doesn’t change so we don’t change the offset bit
positions, instead we increase the size of the tag. The bit categorization appears below.

Address:

Tag

39 5

Index—zero bits wide Offset

4 4 3 0

10
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Problem 4, continued: The problems on this page are not necessarily based on the cache from the
previous page. The code in the problems below run on a 4MiB (222 byte) 4-way set-associative cache with
a line size of 256 bytes.

Each code fragment starts with the cache empty; consider only accesses to the arrays.

(b) Find the hit ratio executing the code below.

Complex sum = {0,0};

Complex *a = 0x2000000; // sizeof(Complex) == 16 Each element loaded with 1 load insn.

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

�What is the hit ratio running the code above? Show formula and briefly justify.

The line size of 28 = 256 bytes is given. The size of an array element, of type complex, is 16 = 24 characters, and so there are
28/16 = 28−4 = 24 = 16 elements per line. The first access, at i=0, will miss but bring in a line with 24 elements, and so the
next 24 − 1 = 15 accesses will be to data on the line, hits. The access at i=16 will miss and the process will repeat. Therefore

the hit ratio is 15
16 .

(c) Find the smallest value for ASIZE that will minimize the hit ratio (make things as bad as they can get)
of the code below.

struct Some_Struct {

double val; // sizeof(double) = 8

double norm_val;

double a[ASIZE]; };

const int BSIZE = 1 << 10;

Some_Struct *b;

for ( int i = 0; i < BSIZE; i++ ) sum += b[i].val;

for ( int i = 0; i < BSIZE; i++ ) b[i].norm_val = b[i].val / sum;

�Smallest value of ASIZE to minimize hit ratio:

This problem requires some thought.

When ASIZE is zero the element size is 16 and a 256-byte line can hold 16 elements. The first for loop will enjoy a 15
16 hit ratio (see

the previous part). The second loop, because the cache size is 4MiB, will have a 100% hit ratio. As we increase ASIZE from 0 the
hit ratio first drops due to the loss of spatial locality. The drop in hit ratio will temporarily level off when sizeof(Some Struct)

is equal to the line size. That occurs when (2 + s)8 = 256, where s is ASIZE, the value is 30. With this value the hit ratio in the
first for loop is zero, but the hit ratio in the second for loop is still 100%. This answer, ASIZE=30, would only get partial credit
because a smaller hit ratio is possible.

Increasing ASIZE to, say, 40, won’t reduce the hit ratio from its ASIZE=30 value, but there is a point where it will start dropping
again. If ASIZE were 217 − 2 then the structure size would be (2 + 217 − 2)8 = 220 bytes. For this cache two consecutive
elements of the structure would have the same index but different tags. Since the cache is 4-way it could only hold no more than four
elements, which means the second for loop would have a hit ratio of only 50% (it’s not zero because a miss to the val member
brings in the data for the norm val member). This answer, ASIZE= 217 − 2 would only get partial credit because it’s possible to
get the same hit ratio with a smaller value of ASIZE.

With ASIZE set to 217 − 2 the cache can only hold four elements (the part with val and norm val). Suppose the cache could
only hold BSIZE/2 elements (or for that matter, BSIZE-1 elements). Then the hit ratio of the second for loop would be just
50%, the minimum value. The minimum ASIZE is for the case where eight elements have the same tag: if more than eight elements
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have the same tag (as in the previous paragraph) then ASIZE is larger than it has to be. If fewer than eight (four is the next smaller
value) have the same tag then there will be no misses in the second for loop. If eight elements have the same tag then there must
be BSIZE/8=128 different indices. That means 128(s + 2)8 = 220. Solving yields s = 210 − 2 = 1022, the full-credit value
of ASIZE.
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Problem 5: (25 pts) Answer each question below.

(a) Indicate whether each feature below is a feature of an ISA or the feature of an implementation.

�Number of stages in pipeline. Circle One: ISA or Implementation

�Number of integer registers. Circle One: ISA or Implementation

�Number of bits in an integer register. Circle One: ISA or Implementation

�Whether an adjacent pair of instructions, such as add r1,r2,r3; sub r4,r1,r2 will generate a stall.

Circle One: ISA or Implementation

(b) Describe the problem with each of the following MIPS code fragments.

�Problem with fragment below:

addi r1, r2, 0x123456

The immediate value is too large, it must be limited to 16 bits. Fixed code appears below:

# SOLUTION

lui r1, 0x12

ori r1, r1, 0x3456

add r1, r2, r1

�Problem with code execution on our FP pipeline.

add.s f1, f2, f3 IF ID A1 A2 A3 A4 WF

sub.s f4, f1, f5 IF ID A1 A2 A3 A4 WF

There is a dependency carried by f1, the sub.s should have stalled. The correct execution appears below.

# SOLUTION

add.s f1, f2, f3 IF ID A1 A2 A3 A4 WF

sub.s f4, f1, f5 IF ID -------> A1 A2 A3 A4 WF

�Problem with code execution on our 5-stage pipeline.

lw r1, 2(r3) IF ID EX ME WB

beq r1, r4 TARG IF ID EX ME WB

xor r6, r7, r8 IF ID EX ME WB

TARG:

add r9, r10, r11 IF ID EX ME WB

There is a dependence between the lw and beq carried by r1, the branch should stall.
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(c) Consider the following two equal-cost design options:

A dual-core chip, each core is 4-way superscalar and dynamically scheduled.

A 16-core chip, each core is 2-way superscalar and statically scheduled.

Both have the same clock frequency.

�What is the peak execution rate of each chip, in IPC?

For the dual core the rate is 2 × 4 = 8 insn/cycle.

For the 16-core chip the rate is 16 × 2 = 32 insn/cycle.

�Describe a situation in which the dual-core chip is a better choice than the 16-core chip.

If we are running code with only one thread the dual core can execute it at up to 4 insn/cycle, but the second can only reach a
peak of 2 insn/cycle.

�Describe a situation in which the 16-core chip is a better choice than the dual-core chip.

If a program had 16 threads, and there were at most minor inefficiencies due to parallelization, the 16-core chip would be the better
choice. Or, you needed to run 16 different programs at the same time. Either way, the 16-core chip is better because of its higher
peak.

(d) Consider a 5n-stage implementation created by splitting each stage of a 5-stage implementation into n
pieces.

�How important is it to have a higher clock frequency in the 5n-stage design (compared to the 5-stage
design)? �Explain.

It’s very important. Both the original and 5n stage pipeline have a peak execution rate of 1 insn/cycle, so if the clock frequency
isn’t higher there is no gain in performance.

(e) When an instruction raises an exception execution will switch to a trap handler.

�How is the trap handler address determined for MIPS?

The MIPS ISA specifies a handler address for each category of interrupt.

�How is the trap handler address determined for SPARC?

SPARC has a special register called the Trap Base Register (TBR). The TBR has the address of the start of what’s called a trap
table. Hardware will generate a trap type, the value of the trap type is determined by the kind of exception. The trap type is
combined with the value in the TBR to form the handler address.
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Problem 1: [20 pts] The MIPS code below executes on the illustrated seemingly familiar implementation.
If you look closely you’ll notice that certain bypass paths that are present in the five-stage implementation
usually used in class are missing from the diagram below.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2'b0

+
15:0

25:0

29:26

29:0

15:0

D
0 1

(a) Show the execution of the code below on the illustrated implementation for enough iterations to determine
CPI. Determine the CPI.

�Execution diagram.

�Double-check for bypass paths, stall when necessary.

�Compute CPI.

The pipeline execution diagram appears below.

Note the following close dependencies: lw/add through r2, add/sw through r1, and addi/lw (in the 2nd iteration) through r4.

The add stalls two cycles (2 and 3) due to the lw/add dependence, so that when the add can read the value of r2 when it is in
ID (bypassed through the register file). In the bypassed implementation used in class the add would only stall one cycle, since the
value of r2 could be bypassed from WB to EX, but in the implementation above there is no bypass from the WB stage to the upper
input to the ALU, where the rs value is needed.

Due to the add/sw dependence the sw stalls one cycle (5), because the ME-to-EX bypass to the store value multiplexor (the one
connecting to EX/ME.rtv) is missing. With that one-cycle stall the add is in WB while the sw is in EX, where the WB-to-EX bypass
to the store value multiplexor can be used. In the bypassed implementation used in the class notes there would be no stall here.

The addi/lw dependence does not cause a stall because there is a bypass from ME to EX going to the upper ALU mux.

Common Mistakes: Often beginners forget that the store value, r1 in this case, is a source value. In this case it doesn’t matter,
but another common mistake is forgetting that the branch operands are sources, and that these sources cannot be bypassed to in
most of the implementations used in class. People in a hurry sometimes mistake the first branch operand as an output.

To compute the CPI, divide the iteration time by the number of instructions. The first iteration starts at cycle 0 (the iteration starts
when the first instruction of the loop body is in IF), the second at cycle 8, and so the first iteration takes 8 cycles. Since the first
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and second iterations will have the same stalls we can conclude that all subsequent iterations will take 8 cycles. An iteration has five
instructions, so the CPI is 8

5 = 1.6 CPI.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r3 IF ID ----> EX ME WB

sw r1, 4(r4) IF ----> ID -> EX ME WB

bne r4, r5 LOOP IF -> ID EX ME WB

addi r4, r4, 8 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r2, 0(r4) IF ID EX ME WB
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Problem 1, continued:

(b) The code above should have encountered at least one of the missing bypass paths. Choose one of those
missing bypass paths and design control logic for it. The ID-stage control logic should generate a 1-bit signal
STALL that will be logic 1 when the instruction in ID will have to stall because of the missing bypass path.

� Show which missing bypass path the control logic is for.

�Control logic for missing bypass.

Solution appears below, and includes logic for both bypass paths. The logic for the lw/add dependence appears in green, and logic
for the add/sw dependence appears in blue. The stall signal appears in maroon.

The logic for the lw/add dependence will stall for any instruction that needs a value bypassed from the WB stage to the upper ALU
input. For the lw/add case, this logic will generate the stall signal in cycle 3, but not in cycle 2. We assume that some other logic
generates the cycle-2 stall. This logic assumes that every instruction uses an rs source (and most do).

The logic for the add/sw dependence will stall for any instruction that needs a value bypassed from the ME stage for the lower ALU
input. The logic detects an instruction that uses the rs value as a source, assuming any Type R instruction and store instructions.
The stall is generated if such an instruction is present in ID and if the instruction in EX writes the same register as the ID instruction’s
rt source.

format
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Problem 2: [15 pts] Consider a MIPS implementation in which the memory port is split into two stages,
Ma and Mb. With this change the clock frequency can increase from 1 GHz to 1.2 GHz; with this added stage
our implementation is now six stages. A sample execution appears below.

add r2, r3, r4 IF ID EX Ma Mb WB

lw r1, 4(r2) IF ID EX Ma Mb WB

(a) Ignoring the cost of Ma and Mb, how is the cost of the pipeline changed in this design? Consider bypass
paths.

�Cost change, ignore Ma and Mb, consider bypass, etc.

There is another pipeline latch, which includes an ALU register (32 bits) and a dst register, 5 bits, plus control bits. The ALU value
needs to be bypassed to the EX stage, the cost of that is 32 bits times three mux inputs (the two at the ALU inputs, and the one for
the store value).

(b) Provide an example of a code fragment which will execute more slowly with the six-stage pipeline. Assume
that all reasonable bypass paths are provided.

�Code fragment that will run more slowly.

The code fragment below runs more slowly, that’s because of the dependence of the add on the lw, called a load/use pair.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2) IF ID EX Ma Mb WB

add r3, r1, r3 IF ID ----> EX Ma Mb WB

(c) Provide an argument that this change is good.

�This change is good because:

The change will add one stall cycle to a load/use pair, as in the example above. Suppose 1 out of every 3 instructions was a load
followed by an instruction that uses the loaded value, also suppose that there are no other stalls. The ideal execution time for 300
million instructions is 300 million cycles. If 1 out of 3 is a load/use, then there are 100 million load/uses which will add 100 million
stall cycles on the five-stage implementation and 200 million stall cycles on the six-stage implementation. Then the execution time
for 300 million instructions would increase from 400 million cycles 400 × 106 1

1GHz = 400 ms to 500 million cycles which is
500 × 106 1

1.2GHz = 416 ms, which is slower.

But, it’s likely that far fewer than 1 out of 3 instructions will be the annoying load/use case, suppose it is 1 out of 10. Then with
the ordinary ME stage execution is 330 × 106 1

1GHz = 330 ms and with the split stage 360 × 106 1
1.2GHz = 300 ms which is

faster.

Note that the extra stage does not slow things down when there is no stall, as in the example below.

# Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2) IF ID EX Ma Mb WB

addi r2, r2, 4 IF ID EX Ma Mb WB

xor r5, r6, r7 IF ID EX Ma Mb WB

add r3, r1, r3 IF ID EX Ma Mb WB
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Problem 3: [15 pts] Answer the following questions about a blt instruction.

(a) MIPS lacks an instruction such as blt r1, r2 TARG (branch if r1 less than r2). For the questions below,
which ask about the suitability of such an instruction, consider implementations similar to the five-stage
pipeline covered in class.

�Explain why adding such an instruction would slow such implementations even though beq r1,r2 TARG is
okay.

Because of the time needed to do a magnitude comparison, which starts only after register values are retrieved.

�Using a PED, explain why there would be no problem adding a blt instruction if the ISA had two delay
slots.

Because then the branch could be resolved in EX without penalty, that would give plenty of time for the magnitude comparison. For
example, consider the execution of the two code fragments below. The first is for a one-delay–slot MIPS, with a blt instruction
added. If we want to avoid squashing or stalling for a taken branch, the branch target must be at the input to the PC when the branch
is in ID, the end of cycle 2 below. That leaves only one cycle to retrieve r1 and r2 from the register file and perform a magnitude
comparison. The second code fragment is for a hypothetical two-delay-slot MIPS also with the blt instruction. Because there are
two delay slots the branch target address does not need to be at the input of the PC until the end of the cycle when the branch is in
EX, cycle 2 in the example. That gives the implementation two cycles to retrieve the register values and perform the comparison.

Note that in the example below the second delay slot is filled with a useful instruction. That won’t happen all the time for real code.

# SOLUTION - Execution on a one-delay-slot MIPS that includes blt.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

addi r8, r8, 1 IF ID EX ME WB

blt r1, r2 TARG IF ID EX ME WB

add r4, r5, r6 IF ID EX ME WB

lw r10, 4(r12)

TARG:

xor r7, r8, r9 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

# SOLUTION - Execution on a hypothetical two-delay-slot MIPS.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

blt r1, r2 TARG IF ID EX ME WB

add r4, r5, r6 IF ID EX ME WB

addi r8, r8, 1 IF ID EX ME WB

lw r10, 4(r12)

TARG:

xor r7, r8, r9 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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(b) The code fragment below includes the hypothetical MIPS instruction, blt.

# Hypothetical MIPS Instruction

blt r1, r2, targ

xor r4, r5, r6

� Show an equivalent MIPS code fragment without using blt.

Solution appears below, in which a slt instruction is used to perform the magnitude the was performed by the blt.

# SOLUTION

slt r3, r1, r2

bne r4, r0, targ

xor f4, r5, 46

� Show an equivalent SPARC V8 code fragment.

Solution appears below. SPARC branch instructions use the value of the integer condition code register, icc, to determine whether
to take the branch. The icc is written by cc versions arithmetic and logical instructions, their mnemonics end with cc, a common
example is subcc.

# SOLUTION

subcc r1, r2, g0 # g0 = r1 - r2; icc bits (Negative,oVerflow,Zero,Carry) also set

blt targ # Branch if negative.

xor r5, r6, r4

7
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Problem 4: [20 pts] For the ISA design tradeoff questions below consider the following data: A typical
program executes 1010 dynamic instructions, of these 1.38 × 109 are branches (half of which are taken),
9.12 × 107 are indirect jumps (jr and jalr), 2.22 × 108 are direct jumps (j and jal).

Consider a debate by those developing the MIPS ISA: don’t include format J, which means no j and no jal

instructions.

(a) Which MIPS instructions can be used to replace j and jal in the code below, paying attention to the
hints in the target names?

�Replacement for j and jal in code below, paying attention to target names.

The solution appears below. The j can be replaced by a beq instruction that uses a condition that will always be true. The use of a
branch was possible because the target of the j was not every far away, and so the displacement would fit within the branch’s 16-bit
displacement (immediate) field.

A branch is not a suitable replacement for the jal for two reasons: the jal needs to save a return address and because the target
is too far away (the jump uses a 26-bit field to store the target, which could be too distant for the branch’s 16-bit field). For that
reason a jalr instruction is used, along with two instructions to load the target address. The upper half and lower half

assembler macros (made up) return the corresponding parts of the target address. MIPS assembler programs can use the synthetic
la instruction to replace the lui and ori instructions.

# SOLUTION

beq r0, r0, NOT_TOO_FAR_AWAY

xor r1, r2, r3

lui r4, upper_half(A_FAR_AWAY_PROCEDURE)

ori r4, r4, %lower_half(A_FAR_AWAY_PROCEDURE)

jalr r4

xor r1, r2, r3

(b) Determine how much longer (as a percentage or absolute time) it would take to run the typical program
described above without the format J instructions. Assume execution is always at 1 CPI. (A formula is
okay.)

�Percent increase in execution time without format J:

Assume that 25% of the direct jumps are j instructions that can be replaced by a single branch. The remainder of the direct branches
must be replaced by a set of three instructions. No changes are made to indirect jumps or branches. The increase in the number of

cycles will be 2 × 0.25 × 2.22 × 108 = 1.11 × 108. Expressed as a percentage, that is 100 1.11×108

1010 = 1.11%.

(c) What parts of out implementation would be unnecessary without format J? Approximately how many
bypass paths could you add with the cost saved by not having the format J instructions?

�What parts would be eliminated?

�How many bypass paths could be added with cost savings?

The connection from the ii field, which goes to the IF-stage mux.
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Problem 5: [15 pts] Answer the following ISA design questions.

(a) Suppose that one of the first modern computer designers, working in the 1940s, made the following
statement: “Let’s define an ‘Instruction Set Architecture’ [the last three words spoken slowly, for emphasis]
and then later design some hardware ‘im-ple-men-ta-tions’ of that architecture.” Would that be a good idea?
Explain. Hint: Pay attention to the slanted words.

� ISA before implementation in 1940s, good or bad? Explain.

No, because computer engineers did not have enough experience to complete the final design of an ISA before working on its imple-
mentation. Lacking this experience, they might have included features in the ISA which would not be practical to build.

Grading note: Many answers gave the usual benefits for separating ISA design from implementation. Some
tried to use features of 1940’s technology in their answers, such as costliness. Cost is always an issue. The
key difference is in the amount of computer design experience of the first computer engineers.

(b) CISC ISAs have variable-length instructions.

�Benefit of variable-length instructions for CISC.

Allows for small programs. Allows for instructions with long immediates.

�Benefit of fixed-length instructions for RISC.

The logic needed to fetch and decode instructions is simple because the address of the next instruction is the current instruction plus
(usually) four. Branch displacements can be in units of instructions giving them a four-times longer reach, per bit.

9
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Problem 6: [15 pts] Answer each question below.

(a) In our π program demo we found that turning optimization on reduced execution time by half (yay!)
but reduced the instruction count even further, from 325 million to 100 million dynamic instructions. This
means that optimization increased (made worse) CPI from 2.77 to 4.93. Note: The data is from an earlier
semester, so the numbers won’t exactly match.

�Optimization is supposed to eliminate stalls, why did the CPI go up?

The divide instructions by far had the longest latency and were responsible for the most stalls. The optimized code had the same
number of divides as the unoptimized code, but many fewer instructions overall, and so CPI went up.

�What category of instruction was completely eliminated from the loop body of the π program by optimization.

Loads and stores. They were unnecessary because there were enough registers for the values that were being loaded and stored.

(b) SPECcpu currently has two sets of results, base and peak. Consider a third set, shrink-wrap, for people
who buy mass-marketed software (say, buying a word processor at an office supply store).

�Who should use the peak numbers and who should use the base numbers?

Base: Those who plan to use code in which an ordinary effort at optimization will be made. Peak: Those using code developed with
a heroic effort put into optimization.

Grading Note: Many answers implied that it was the buyers of software who were responsible for setting
up the compile switches. The answers should have indicated that it was those developing software for such
buyers who would have to choose compiler switches.

�Explain how the run and reporting rules might be modified for the new shrink-wrap results.

The key difference is that shrink-wrap software cannot be custom compiled for your particular implementation (unless you are a really
important person, if so send LSU lots of money and we’ll be happy to name something after you). Therefore the rules would have to
forbid setting switches for the particular implementation on which the benchmarks will be run. Writing a rule to that effect would be
tricky, perhaps: The compile switches shall not identify the system being tested for purposes of optimization and the compiler shall
not generate the same code as would be generated when specifically targeting the implementation.
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Problem 1: (15 pts) Consider the following method for implementing the MIPS32 integer multiply in-
struction mul (the one that writes ordinary registers, not to be confused with mult) on the implementation
below. The full set of stages M1 to M6 perform floating point multiply, but stages M2 to M4 perform integer
multiplication. The integer multiply mul will read and write registers from the integer register file but will
use M2 to M4 to perform the multiplication. A sample execution appears below. Grading Note: In the original
exam there was an ID-stage stall in cycle 6, implying that there was no WB to EX bypass for the mul.

# Cycle 0 1 2 3 4 5 6 7 8

add r1, r2, r3 IF ID EX ME WB

mul r4, r1, r5 IF ID M2 M3 M4 WB

xor r9, r10, r11 IF ID -> EX ME WB

sub r6, r4, r7 IF -> ID EX ME WB

USE NEXT PAGE FOR SOLUTION

format
immed

IR

Addr
25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw

USE NEXT PAGE FOR SOLUTION

CONTINUED ON NEXT PAGE
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(a) Modify the implementation below so that mul uses M2 to M4. Provide any necessary bypass paths so that
the code above executes as shown. For this part do not consider control logic. Hint: Pay attention to source
and destination registers.

�Non-control logic modifications for integer mul.

format
immed

IR

Addr25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data

In

Mem
Port

Data

Outrtv

ALU

MD

dst dst dst

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw

dst
im im im im

= 0
Stall, WB structural hazard.

='

decode dest reg

uses int mul ='

='

='

25:21

20:16

rs

rt

rt

rs

Stall, M2 structural hazard.

Stall,

depend.

Solution appears in blue above. Connections for the integer multiply source values have been added from the ALU inputs to the
inputs of M2. A connection for the result value has been added from the M4/M5 pipeline latch to the WB-stage multiplexor. A new
pipeline latch has been added to hold the destination register number (dst), creating a sixth stage in the integer pipeline which is
only used by the integer multiply instruction. A new mux selects the destination register in the fifth or sixth stage.

Starting the source value connection at the output of the ALU multiplexor provides access not just to the rsv and rtv values, but
also to values bypassed from ME and WB. In this solution source values must pass through two multiplexors before reaching M2. A
higher-cost, but potentially faster, solution would take the source values from EX.rsv and EX.rtv, but the M2 multiplexors would
need additional inputs for bypassed values. Either solution would get full credit.
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The destination value is taken from the output of the M4/M5 pipeline, where it will be available at the beginning of the cycle, to
give sufficient time for the register to write back the value. Credit was deducted for solutions that took the value directly from the
output of M4 to the WB multiplexor, because this would likely increase the critical path length and so lower clock frequency.

(b) Add control logic related to this implementation of mul to detect the structural hazard on M2 and on WB.
Also add control logic needed for a data dependence between mul and an immediately following instruction.

All those signals should connect to the existing Stall ID signal and use a new uses int mul logic block.

�Control logic for WB structural hazard, � M2 structural hazard, � and the data dependence.

The control logic for the structural hazards appears in maroon and the control logic for the dependence appears in green.

A stall for the WB structural hazard is generated when there is an integer multiply instruction in EX and there is an instruction in
ID, except integer multiply, that needs to write back an integer register (in which case the destination register would be nonzero).
See the logic generating the signal labeled Stall, WB structural hazard. Such a stall occurs in cycle 2 in Example S1 below.

The stall for the M2 structural hazard is generated when there is an integer multiply in ID and a floating-point multiply in M1, this
is detected with the AND gate whose output is labeled Stall, M2 structural hazard. See cycle 2 in Example S2 below.

# SOLUTION -- Example S1, for the WB structural hazard.

# Cycle 0 1 2 3 4 5 6

mul r1, r2, r3 IF ID M2 M3 M4 WB

add r4, r5, r6 IF ID -> EX ME WB

# SOLUTION -- Example S2, for the M2 structural hazard.

# Cycle 0 1 2 3 4 5 6 7 8

mul.s f4, f5, f6 IF ID M1 M2 M3 M4 M5 M6 WF

mul r1, r2, r3 IF ID -> M2 M3 M4 WB

The dependence control logic, shown in green, checks whether the source register numbers of the instruction in ID matches the
destination register numbers of the instructions in EX and ME, and the instruction is an integer multiply. The logic ignores the
ME-stage destination register if there is already a dependence with the EX-stage destination register (because of the WB structural
hazard this particular situation can’t happen for the mul but might occur for instructions that write back normally).

In example D1 below the add stalls two cycles due to a dependence with the integer mul. In cycle 2 the rs register of the instruction
in ID, the add, matches the destination of the instruction in EX, the mul, and so there is a stall. (For the mul, EX and M2 are
the same stages.) In cycle 3 the add is still in ID but the mul has moved to ME (equivalent to M3). The logic again detects the
dependence and so there is another stall.

Notice that in cycle 2 there are two reasons for the stall, the dependence discussed immediately above, but also the WB structural
hazard. If the WB structural hazard stall always occurred when a mul instruction were in EX then there would be no reason to check
for a dependence with the EX-stage instruction. But the WB structural hazard stall is not generated if the instruction in ID does not
write a register, and for those cases the EX stage must be checked for a dependence. See example D2.

In example D2 the add is replaced by a sw. The stall in cycle 2 is due only to the dependence through register r1, there is no
structural hazard. The stall in cycle 3 is also due to the dependence.

# SOLUTION - Example D1, mul dependence with next instruction.

# Cycle 0 1 2 3 4 5 6 7

mul r1, r2, r3 IF ID M2 M3 M4 WB

add r3, r1, r4 IF ID ----> EX ME WB

# SOLUTION - Example D2, mul dependence with next instruction.

# Cycle 0 1 2 3 4 5 6 7

mul r1, r2, r3 IF ID M2 M3 M4 WB

sw r1, 0(r4) IF ID ----> EX ME WB

4
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format
immed

IR

Addr25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data

In

Mem
Port

Data

Out
rtv

ALU

MD

dst dst dst

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw

dst
im im im im

= 0
Stall, WB structural hazard.

='

decode dest reg

uses int mul ='

='

='

25:21

20:16

rs

rt

rt

rs

Stall, M2 structural hazard.

Stall,

depend.
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Problem 2: (10 pts) Show the execution of the instructions below on the illustrated implementation. Add
any needed datapath and reasonable bypass paths.

Bypass

from

mul

to swc1

format
immed

IR

Addr
25:21

20:16

IF EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data

In

Mem
Port

Data

Out
rtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4A3A2A1

M3 M4 M5

fd

we

xw

M2
M
1

xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw

�Show execution. �Add datapath and reasonable bypass paths. �Double-check for dependencies.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

add.s f2, f4, f6 IF ID A1 A2 A3 A4 WF

sub.s f8, f10, f12 IF ID A1 A2 A3 A4 WF

add r1, r2, r3 IF ID EX ME WB

mul.s f14, f2, f8 IF ID ----> M1 M2 M3 M4 M5 M6 WF

swc1 f14, 0(r1) IF ----> ID -------------> ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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The added bypass appears above in blue. A bypass path from WF to M1 (and A1 too) has been added for the sub.s to mul.s

dependence. For the given code example only the lower multiplexor is needed since the dependence is through the second source
operand of mul.s (through the ft field, set to f8 in the example).

For the mul.s to swc1 dependence a bypass path has been added from the end of M6 to EX. A lower-performance option would be
to bypass from WF to ME, this is lower performance under the assumption that the memory ports are always on the critical path and
so inserting a multiplexor between ME.rtv and the memory port Data In connection would lower the clock frequency.

Grading Note: Many solutions had the add instruction stall until after the sub.d wrote back.
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Problem 3: (10 pts) The code fragments below execute on several different MIPS implementations. In all
cases the loop iterates many times. A five-stage scalar system is shown for reference.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

(a) Show the execution of the code below on our familiar scalar pipeline, above. Show enough iterations to
compute the CPI, and compute the CPI.

�Execution for enough iterations to determine CPI.

See solution below. The first iteration starts in cycle 1 (by definition, when the first instruction of the loop body is in IF), the second
iteration starts in cycle 8, and the third in cycle 14. We know we have enough iterations when the state of the pipeline is identical
at the start of two consecutive iterations; we can use one of those iterations to compute CPI. The second and third iterations start
identically: with lw in IF, add in ID, and bne in EX. So we know that the third iteration (for which only the lw is shown) will be
identical to the second and so there is no need to show any more.

�Find the CPI.

�Doublecheck for dependencies.

�Note that the first instruction in not part of the loop body.

The second iteration is 14 − 8 = 6 cycles, and contains 4 instructions, and so the CPI is 6/4 = 1.5.

# SOLUTION

lw r2, 0(r10) IF ID EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

lw r1, 0(r2) IF ID -> EX ME WB

addi r2, r2, 4 IF -> ID EX ME WB

bne r2, r4 LOOP IF ID ----> EX ME WB

add r5, r5, r1 IF ----> ID EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

lw r1, 0(r2) IF ID EX ME WB

addi r2, r2, 4 IF ID EX ME WB

bne r2, r4 LOOP IF ID ----> EX ME WB

add r5, r5, r1 IF ----> ID EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

lw r1, 0(r2) IF ID EX ME WB

8
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Problem 3, continued:

(b) Show the execution of the code below on a 4-way superscalar statically scheduled system without branch
prediction. The superscalar system has five stages, aligned fetch, and can bypass between the same stages
as can our scalar system. This means there are no bypass paths to the branch condition. Compute the CPI.

�Execution for enough iterations to determine CPI.

Solution appears below. None of the instructions stall in the first iteration, but in the second iteration the branch stalls due to a
dependency with addi (remember that there are no bypass paths to the branch condition hardware).

Note that because fetch is aligned and because the first instruction of the loop body (add) has an aligned address (the address is a
multiple of 16 [superscalar width of 4 times instruction size of 4 bytes]), all four instructions of the loop body are fetched at the same
time.

�Find the CPI.

�The code below is different than the previous part.

�Doublecheck for dependencies.

�Note that first instruction not part of loop body.

The CPI is (9 − 6)/4 = 0.75 or 4
3 IPC, less than half the 4 IPC potential of the hardware.

# SOLUTION

addi r1, r0, 0 IF ID EX ME WB

# Note: Address of insn below is 0x1000

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF ID EX ME WB

lw r1, 0(r2) IF ID EX ME WB

bne r2, r4 LOOP IF ID EX ME WB

addi r2, r2, 4 IF ID EX ME WB

IFx

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF ID EX ME WB

lw r1, 0(r2) IF ID EX ME WB

bne r2, r4 LOOP IF ID -> EX ME WB

addi r2, r2, 4 IF ID -> EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

IF ->x

add r5, r5, r1 IF ID EX ME WB

lw r1, 0(r2) IF ID EX ME WB

bne r2, r4 LOOP IF ID -> EX ME WB

addi r2, r2, 4 IF ID -> EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

IF ->x

add r5, r5, r1 IF ID EX ME WB

9
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(c) Show the execution of the code below on a four-way superscalar system with perfect branch prediction.

�Execution for enough iterations to determine CPI.

Because there is a branch predictor the branch does not need to be resolved in ID. Instead it will be resolved in EX where it can use
the ALU to compute the condition, and where it can benefit from the existing ALU bypass paths. Therefore the branch instruction
does not stall at all because the value of r2 that the branch needs is bypassable starting when addi is in ME (such as in cycle 4 and
6). (Note that the stalls in cycle 4, 6, 8, etc are due to the dependence between the lw and the add.)

�Find the CPI.

�The code below is different than the first part.

�Doublecheck for dependencies.

�Note that first instruction not part of loop body.

The CPI is (5 − 3)/4 = 0.5 or 2 IPC, still half the full potential, due to the load-use dependence.

# SOLUTION

addi r1, r0, 0 IF ID EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF ID EX ME WB

lw r1, 0(r2) IF ID EX ME WB

bne r2, r4 LOOP IF ID EX ME WB

addi r2, r2, 4 IF ID EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF ID -> EX ME WB

lw r1, 0(r2) IF ID -> EX ME WB

bne r2, r4 LOOP IF ID -> EX ME WB

addi r2, r2, 4 IF ID -> EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF -> ID -> EX ME WB

lw r1, 0(r2) IF -> ID -> EX ME WB

bne r2, r4 LOOP IF -> ID -> EX ME WB

addi r2, r2, 4 IF -> ID -> EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF -> ID -> EX ME WB

lw r1, 0(r2) IF -> ID -> EX ME WB

bne r2, r4 LOOP IF -> ID -> EX ME WB

addi r2, r2, 4 IF -> ID -> EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add r5, r5, r1 IF -> ID -> EX ME WB
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Problem 4: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 210-entry BHT. One system uses a bimodal predictor,
one system uses a local predictor with a 12-outcome local history, and one system uses a global predictor
with a 12-outcome global history.

Insn Branch

Addr Outcomes

0x1000: B1 r r r r r r r r r r r r r r r r

0x1010: B2 T N N N N T N N T N N N N T N N

0x1020: B3 R R R R R R R R R R R R R R R R

0x2000: B4 T T T T T T T T T T T T T T T T

Branch B1 is random, and can be described by a Bernoulli random variable with p = .5 (models a fair coin
toss). The outcome of branch B3 is the same as the most recent execution of B1 (perhaps they are testing
the same condition). For the questions below accuracy is after warmup.

�What is the accuracy of the bimodal predictor on B2?

In the diagram below the value of the bimodal predictor’s 2-bit counter corresponding to B2 is shown before each execution of the
branch. Counter values are shown only for one pass through the TNNNNTNN pattern. At the start of the second pass the counter
has the same value, 0, as it had at the start of the first and so there is no need to continue (because we know the counter values
will repeat). The bimodal predictor will predict not-taken when the counter value is 0 or 1, and so all predictions will be not-taken,

resulting in an accuracy of 6/8 .

Solution Tips: Be sure to base your answer on a repeating pattern. Obviously it would be wrong to base the accuracy only on the
N outcomes (that would be 100% accuracy), but basing a solution on ten outcomes or twelve outcomes would also be wrong. Another
thing to look out for is making sure the pattern repeats. Here we only needed to work out the counter values for one iteration to find
a repeating pattern. If we used an initial counter value of 3 then we’d need to work counter values out for two passes through the
TNNNNTNN pattern, and we’d need to base the prediction accuracy only on the second pass.

SOLUTION: Diagram to work out the values of the bimodal 2-bit counter.

BIMODAL COUNTER: 0 1 0 0 0 0 1 0 0

0x1010: B2 T N N N N T N N T N N N N T N N

PRED RESULT: x x

�What is the accuracy of the bimodal predictor on B3?

The 2-bit counter used to predict B3 is not affected by B1. Because the probability that B3 is taken is .5 the accuracy is .5 .

�Considering BHT size, what is the approximate accuracy of the bimodal predictor on B4? �Explain.

Since the predictor has 210 entries it will be indexed by bits 11 : 2 of the address of the branch being predicted. Notice that those
bits are all zero for both branches B4 (its address is 0x1000) and B1 (its address is 0x2000), and so they will share an entry.
Since both branches occur at the same frequency and B4 is always taken, there will be no way for the counter to be decremented.

It will change between 3 and 4 and so B4 will be predicted with 100% accuracy . Grading Note: The problem would have
been more interesting if p < 0.5 or if B1 were executed more frequently than B4.

�What is the accuracy of the local predictor on B2?

The pattern length of B2, 8, easily fits in the local history of 12 and so the accuracy is 100% .

�What is the minimum local history size needed to predict B2 with 100% accuracy?

Six outcomes.

Five is insufficient, for example, pattern NNTNN occurs twice, once followed by a N and once by a T.
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�What is the accuracy of the global predictor B3? �Explain

The 12-bit global history is long enough so that B3 can “see” B1’s most recent outcome. The PHT entries will eventually warm up

and predict B3 with 100% accuracy .

�How many PHT entries are used by the global predictor to predict B2?

To answer this question we need a way to represent the GHR contents. Lets use r, R, and T for branches B1, B3, and B4, respectively.
For B2 use a 2. A GHR value pattern is then 2RTr2RTr2RTr. Each R can have two values, so for all three there are 23 = 8
possibilities. The first two r’s each match one of the R’s and so don’t contribute additional patterns. The last (rightmost or most
recent) r does not correlate with any Rs in the pattern so there are two more possibilities for a total so far of 8 × 2 = 16. The
three 2’s are for branch B2. Those three outcomes can have four possible values, TNN, NNN, NNT, and NTN. (For example, three

consecutive outcomes of B2 can never be TTT.) The total number of patterns now is 8 × 2 × 4 = 64. Therefore, 64 entries are
used to predict B2.
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Problem 5: (15 pts) The diagram below is for an eight-way set-associative cache. The size of a tag is 42
bits and the size of a line is 128 = 27 bytes.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

64 b

32b

63:22

21:2

63:2221:7

21:7

21:2

�Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

63 22

Index

21 7

Offset

6 2 1 0

�Cache Capacity (Indicate Unit!!):

The cache capacity can be determined from the following pieces of information: the 42-bit tag (given explicitly in the first paragraph),
the 8-way associativity (also given explicitly), and the 64-bit address space (from the number of address bits shown in the diagram
near the upper-left). From the 42-bit tag and 64-bit address space we know that the low tag bit is 64 − 42 = 22, and so the

capacity of a way is 222 bytes or 4MiB. Since the cache is 8-way the total capacity is 222 × 8 = 225 bytes or 32MiB .

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity, 225 bytes, plus 8 × 222−6 (64 − 22 + 1) bits.

�Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

63 25

Index

24 7

Offset

6 2 1 0
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Problem 5, continued: The problems on this page are not based on the cache from the previous page.
The code fragments below run on a 32MiB (225 byte) direct-mapped cache with a 128-byte line size. Each
code fragment starts with the cache empty; consider only accesses to the array, a.

(b) Find the hit ratio executing the code below.

�What is the hit ratio running the code below? Show formula and briefly justify.

int sum = 0;

half *a = 0x2000000; // sizeof(half) == 2

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

The line size of 27 = 128 bytes is given, the size of an array element, of type half, is 2 = 21 characters, and so there are
27/2 = 27−1 = 26 = 64 elements per line. The first access, at i=0, will miss but bring in a line with 26 elements, and so
the next 26 − 1 accesses will be to data on the line. The access at i=64 will miss and the process will repeat. Therefore the

hit ratio is 63
64 .

(c) Find the minimum positive value of OFFSET needed so that the code below experiences a hit ratio of 0%
on accesses to a. Explain.

�Minimum positive OFFSET to achieve 0% hit ratio. �Explanation.

int sum = 0;

half *a = 0x2000000; // sizeof(half) == 2

int i;

int ILIMIT = 1 << 11;

int OFFSET = 1 << 24; // <----------------------------- SOLUTION

for ( i=0; i<ILIMIT; i++ ) sum += a[ i ] + a [ i + OFFSET ];

To achieve a zero percent hit ratio each line brought into the cache must be evicted before it is used again. The code above accesses
a sequentially at two different places: at i and at i+OFFSET. Sequential accesses of two-byte elements should yield a hit ratio of 63

64
on this cache, as computed in the previous part. To reduce that to zero one must choose OFFSET so that a[i] and a[i+OFFSET]
fall in the same set, meaning that their addresses have the same index and different tags. Since it’s a direct-mapped cache there
cannot be two different lines with the same index in the cache at the same time. The index bits are at positions 24:7. Let x be
some memory address. Address y will have the same index as x if y = x + 225 (note that adding 1 to the 25th bit position won’t
affect the index bit positions). For our particular problem we need to choose OFFSET such that the difference between a[i] and
a[i+OFFSET] is 225. Since the size of an element of a is two bytes, that means OFFSET must be 225−1 = 224 =1<<24.
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Problem 6: (30 pts) Answer each question below.

(a) For the SPECcpu benchmark suite results can be reported using two tuning levels, base and peak.
Consider a new level, no-opt in which the code is compiled without optimization. How valuable would no-
opt tuning scores be to the people that care about SPECcpu scores? How different is no-opt tuning from
base tuning?

�Value of no-opt tuning level?

No-opt tuning would not be of much value because it reflects the performance of a system running improperly prepared software.
In other words, no-opt tuning would be useful to people who care about performance but for some silly reason don’t compile with
optimization turned on, or they get software from developers that don’t turn optimization on.

Grading Notes: Some answered that the performance on unoptimized code might help predict the performance on optimized code,
and for that reason no-opt is useful. That’s wrong for two reasons. First, there are many reasons why system A can be faster than
B on unoptimized code but B can be faster than A with optimization on. Second, peak and base both measure system performance
on optimized code, so there is no need to have a third tuning level just to predict the first two.

�Difference between no-opt tuning and base tuning?

Programs prepared under the base tuning rules are optimized using normal effort by an experienced programmer. Such a program
would at least use a no-brainer flag like -O3 or -fast. That’s far from no optimization.

(b) The lw below will experience a TLB miss exception when it first executes, remember that this exception
is considered routine and is not due to any kind of error. The word in memory at location 0x12345678 is
0x222. Show the execution of this code on our five-stage static pipeline until the add instruction reaches
writeback, and show the value in register r1 when the handler starts (see code).

�Show execution from lui to when add reaches WB.

� FILL IN the value that will be in r1 when the handler starts.

# SOLUTION

# Cycles 0 1 2 3 4 5 6 7 8 9 1010 11 12 13 14 15 16

lui r1, 0x1234 IF ID EX ME WB

lw r1, 0x5678(r1) IF ID EX ME* IF ID EX ME WB

add r2, r2, r1 IF ID EX* IF ID EX ME WB

HANDLER:

# Cycles 0 1 2 3 4 5 6 7 8 9 1010 11 12 13 14 15 16

# Value of r1 is 0x12340000 <- SOLUTION

sw ... IF ID EX ME WB

...

eret IF ID EX ME WB

Solution appears above. The value of r1 reflects correct execution up to but not including lw. The handler ends by executing an
eret (exception return) instruction which jumps to the lw, which executes completely this second time around.
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(c) The instruction below is not a good candidate for a RISC ISA. Explain why in terms of hardware, not
just in terms of a rule the instruction would violate. add (r1), r2, (r3)

� Instruction above unsuitable for RISC because the implementation . . .

. . . would either need two memory ports (memory ports are expensive) or else would require this add instruction to use the ME stage
twice, which would make the control logic far more complex. The former implementation would be too expensive, the later would go
against the goal of simple pipelined implementations.

�Provide a quick sketch to illustrate your answer.

See the diagram below in which the added hardware is in blue and in which bypass paths have been omitted for clarity. Assuming that
memory addresses for the source and destination operands are just register values (no offsets added), then a sixth memory source
stage could be added between ID and EX to fetch a source operand that comes from memory, see stage MS the pipeline diagram
below. The existing ME stage can write the result, though additional multiplexors were added so the rd register value can be used
as a memory address and the ALU output can be used for the write data.

# Execution with new memory source stage added.

add (r1), r2, (r3) IF ID Ms EX ME WB
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(d) With the aid of a diagram, explain why a 5n-stage pipeline would need fewer bypass paths than a 5-stage,
n-way superscalar implementation. (Both implementations are statically scheduled.)

�Diagram showing why there are fewer bypass paths in 5n-stage pipeline than 5-way superscalar.

Both systems would have 2n results that could be bypassed (from the original ME and WB stages). However the superscalar would
have n instructions in EX to which a result could be bypassed, while the deeply pipelined would have just 1. (There are two ALU
inputs for each instruction.)
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(e) Why is it more important to have a good compiler for a superscalar statically scheduled system than a
scalar statically scheduled system?

�Compiler more important for superscalar because . . .

. . . dependent instructions must be further apart to avoid a stall and so the compiler must be better at scheduling (finding instructions
to put between dependent pairs). In the scalar system there is no need to stall even for adjacent dependent ALU instructions (thanks
to the bypass paths). In an n-way superscalar system there must be up to n− 1 instructions between dependent ALU instructions
to avoid a stall, and so the compiler must be good at finding instructions to put between such dependent pairs.

(f) Consider the executions of the MIPS code below on a 4-way superscalar dynamically scheduled system
of the type discussed in class (method 3). The first execution is correct, the others, though they would run
the program correctly, have problems. Describe the problems by completing the statements below.

lw r1, 0(r2) IF ID Q RR EA ME WB C

add r3, r1, r4 IF ID Q RR EX WB C

lh r1, 0(r6) IF ID Q RR EA ME WB C

sub r7, r1, r3 IF ID Q RR EX WB C

�The one-commit-per-cycle execution below is silly because . . .

. . . it will execute at a maximum rate of one instruction per cycle, and yet it has enough fetch, decode, and presumably execute
hardware to sustain 4-instruction-per-cycle execution. The reasonable thing to do is to allow 4 IPC commit.

lw r1, 0(r2) IF ID Q RR EA ME WB C

add r3, r1, r4 IF ID Q RR EX WB C

lh r1, 0(r6) IF ID Q RR EA ME WB C

sub r7, r1, r3 IF ID Q RR EX WB C

�The stalls shown below would be necessary on a statically scheduled pipeline because . . .

. . . there is a single pipeline and instructions must remain in program order within the pipeline. If one instruction must wait, so must
the unlucky instructions ahead of it.

� . . . but should not occur on a dynamically scheduled one because . . .

. . . it is designed to execute instructions out of program order. The IF/ID/Q and RR/EX/WB are each separate pipelines, and so
the add instruction waits for the lw in buffers, not in pipelines, allowing the lh to proceed without delay.

lw r1, 0(r2) IF ID Q RR EA ME WB C

add r3, r1, r4 IF ID Q ----> RR EX WB C

lh r1, 0(r6) IF ID Q ----> RR EA ME WB C

sub r7, r1, r3 IF ID Q ----------> RR EX WB C
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Problem 1: [15 pts] The MIPS code below executes on the illustrated hopefully familiar implementation.
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# SOLUTION

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lh r1, 0(r2) IF ID EX ME WB First Iteration

addi r4, r4, 4 IF ID EX ME WB

andi r3, r1, 0xf0f0 IF ID EX ME WB

bne r3, r0, LOOP IF ID ----> EX ME WB

lw r2, 4(r2) IF ----> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lh r1, 0(r2) Second Iteration IF ID -> EX ME WB

addi r4, r4, 4 IF -> ID EX ME WB

andi r3, r1, 0xf0f0 IF ID EX ME WB

bne r3, r0, LOOP IF ID ----> EX ME WB

lw r2, 4(r2) IF ----> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lh r1, 0(r2) Third Iteration IF ID -> EX

(a) Show a pipeline execution diagram for the code below running on the illustrated MIPS implementation
for enough iterations to determine CPI.

� Show a pipeline execution diagram.

Diagram appears above.

(b) Determine the CPI.

�Find the CPI.

The state of the second and third iterations are identical when they start, in cycles 7 and 15, respectively. (At both cycles 7 and
15 there is an lh in IF, lw in ID, and a bne in EX, the other stages are empty. Therefore the third iteration will be just like the
second, and so on. The time for the second iteration is 15−7 = 8 cycles (using the IF of the first instruction as a reference point),
and so the CPI is 15−7

5 = 1.6 CPI.
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Problem 2: [20 pts] In the implementation below the datapath for the jalr and jr instructions is not
shown.

format
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(a) Add datapath (but not control logic) needed for the jr instruction to the diagram above.

�Add datapath (but not control logic) for jr.

Change appear in blue. All that’s needed is a path from the register file output for rsv to the IF-stage mux. Note that the register
values are available early enough to avoid the risk of lengthening the critical path.

(b) Show the execution of the code below based upon the answer above. Show execution starting from the
first instruction (as usual) and continue until ori executes or eight instructions have executed whichever is
longer. (In the correct answer ori is the eighth instruction to execute.) Note that the jalr will jump to
ROUTINE the first time it executes.

� Show execution consistent with previous answer.

Solution appears below. Notice that the jalr must stall two cycles since it can only get the source register from the register file.

# SOLUTION

# Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

addi r1, r1, 16 IF ID EX ME WB

jalr r31, r1 IF ID ----> EX ME WB

addi r4, r31, -8 IF ----> ID EX ME WB

ori r6, r6, 0xff

# Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ROUTINE:

addi r4, r4, 4 IF ID EX ME WB

jr r4 IF ID ----> EX ME WB

lw r31, 0(r7) IF ----> ID EX ME WB
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# Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

# NOTE: These are the instructions that follow the jalr.

addi r4, r31, -8 IF ID -> EX ME WB

ori r6, r6, 0xff IF -> ID EX ME WB

(c) If your answer to the previous part was correct the code above would suffer stall(s). Add bypasses to
avoid as many of the stalls as possible without significant critical path impact.

�Bypass paths to eliminate stalls.

The solution has to balance “as many as possible” with “significant impact.” The value at the output of the ALU would not be
available until close to the end of the clock cycle, so connecting it to the IF-stage mux would likely increase the critical path by a
small amount. Instead, an ME-stage bypass is used. There will still be one stall cycle but the clock frequency will be untouched. That
stall cycle is only suffered when a jr or jalr instruction immediately follows the instruction writing the target register, and that
won’t happen very often.

The changes appear in green on the diagram.
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Problem 3: [15 pts] In the code fragment below the lw raises an exception due to a TLB miss. Remember
that a TLB miss is something that happens all the time to almost any load.

Solution omitted.

# Cycle 0 1 2 3 4 5 6 7

lw r1, 0(r2) IF

add r3, r5, r6

xor r4, r3, r9

...

HANDLER:

sw r10, ..

(a) Based on the exception hardware presented in class, at which cycle will the first instruction of the handler
be in IF?

�Handler in IF in cycle:

For the next parts of this problem don’t consider the exception hardware presented in class, instead the lw

will trigger a deferred exception. That is, the lw will raise a TLB miss exception but add will successfully
complete WB before the handler is called. Register r1 will have some garbage value but the add will execute
correctly.

(b) This is not a good example for why precise exceptions are needed for loads. Why not?

�Not a good example because:

(c) Modify the code after the lw so that this is a good example of why precise exceptions are needed. Briefly
explain why.

�Modify code.

�Explain why it is a better example.
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Problem 4: [10 pts] Show the execution of the MIPS code below on the illustrated implementation.
Assume that all needed bypass paths are available.
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�Execution of code.

Solution omitted.

add.d f2, f4, f6

sub.d f8, f4, f10

mul.d f12, f2, f14

addi r1, r1, 8
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Problem 5: [10 pts] Answer each question about the SPECcpu suite.

(a) With SPECcpu the tester is responsible for providing compilation tools and choosing optimization
switches. Which feature or goal of the SPEC benchmarks does that support?

�Compilation tools and optimization choices supports:

Test the full potential of the newest implementations and ISAs.

(b) Part of the SPEC rules requires that compilation tools be actively marketed as products, not just available
to someone who knows exactly how to ask for them. What sort of abuse does that prevent?

�Actively marketed compilation tools prevents:

It prevents compiling the suite using a compiler with optimizations that are really fast but which in many cases will generate incorrect
code. Specific compiler bugs encountered when building the SPECcpu code might be fixed, but other compiler bugs might remain. A
company would not want to hurt its reputation by marketing a buggy compiler, and so the rule helps avoid this abuse.
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Problem 6: [15 pts] Answer each question below.

(a) ISAs are frequently updated, examples mentioned in class include MIPS I, MIPS II, SPARC v8, SPARC
v9, and the multimedia extensions such as MMX, SSE, SSE 2, etc. for IA-32. With all these updates it
sounds like an ISA is not really frozen for All Time. Does that mean the main advantage in separating ISA
design from implementation design has been lost?

�Has main advantage of ISA/implementation separation been lost? Explain.

No. The main advantage is that code written for an ISA will run correctly on any of the ISA’s implementations. ISA updates and
extensions are done in such a way that code written for an earlier version will run on an implementation of a later version. For
example, code written for the SPARC v8 ISA will run correctly on an implementation of the SPARC v9 ISA.

(b) Why is the typical RISC program larger than an equivalent CISC program?

�RISC larger than CISC because:

Because RISC instruction sizes are all the same, meaning that some instructions take up more space than the equivalent CISC
instruction.

(c) Explain how the approaches to encoding immediate arithmetic instructions differ in the SPARC and
MIPS ISAs.

�How approaches differ.

In MIPS integer instructions that require an immediate, such as addi, use a different opcode and encoding than their two-source-
register counterparts, such as add. In contrast, many instructions that use an immediate, such as add, use the same opcode and
opcode extension, op3, for their immediate and two-source-register forms; one bit in the encoding, i, distinguishes the two.
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Problem 7: [15 pts] Answer each question below.

(a) Provide the following optimization examples:

�An optimization that can be performed well without knowing the particular implementation being targeted.

Dead code elimination.

�An optimization that can be performed well only if the compiler knows the particular implementation being
targeted.

Scheduling to avoid stalls.
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(b) In an alternate universe, when designing the ALT-MIPS ISA, computer engineers insisted, perhaps for
cost reasons, that the data memory port and ALU had to be in the same stage (that is, the EX and ME stages
would be combined), resulting in a four-stage pipeline. How would the matching ALT-MIPS be different
from our MIPS ISA? Note that elegance and performance are important for both ALT-MIPS and MIPS.
Provide two code samples, one for which the four-stage ALT-MIPS is better and one for which the five-stage
MIPS is better.

�ALT-MIPS differences with MIPS.

Because there is no time to add an immediate to a base register, load and store instructions in ALT-MIPS would not have an offset.

�Code sample better for ALT-MIPS.

�Explain.

Because the memory port and ALU are in the same stage it is possible to bypass a value from a load instruction to an arithmetic
instruction. The example below has such a pair of instructions. Note that the load instruction does not have an offset, making it
appropriate for ALT-MIPS. The combined EX and ME stages are called EM. In cycle 3 the value loaded by the lw is being bypassed
to the add.

# SOLUTION 0 1 2 3 4 5

lw r1, (r2) IF ID EM WB

add r3, r1, r3 IF ID EM WB

�Code sample better for MIPS.

�Explain.

In the first code fragment below, for MIPS, the lh has an offset, and so it could not execute on ALT-MIPS. The ALT-MIPS version
follows, an addi had to be inserted to compute the load address.

# SOLUTION MIPS Code (could not run on ALT-MIPS)

lw r1, 0(r2)

lh r3, 4(r2)

# The corresponding ALT-MIPS code.

lw r1, (r2)

addi r2, r2, 4

lh r3, (r2)
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Problem 1: (20 pts) The MIPS implementation below is similar to the one frequently used in class, except
that it has bypass paths to the branch condition comparison unit.
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(a) Show the execution of the code fragments below on the illustrated implementation up until the fetch of
the first instruction of the second iteration. Be sure to account for the dependence on the branch condition.

�Pipeline execution diagram of code below.

# SOLUTION

LOOP1: # Cycle 0 1 2 3 4 5 6 7 8 9

lw r1, 0(r2) IF ID EX ME WB

addi r2, r2, 4 IF ID EX ME WB

bne r2, r3 LOOP1 IF ID -> EX ME WB

add r4, r4, r1 IF -> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9

lw r1, 0(r2) IF ID EX ME WB

The solution appears above. Note that because of the dependence with the addi instruction the branch must stall one cycle, until
cycle 4, at which time the branch can use the bypass from ME to ID.

�Pipeline execution diagram of code below.

# SOLUTION

LOOP2: # Cycle 0 1 2 3 4 5 6 7 8 9 10

lw r1, 0(r2) IF ID EX ME WB

lw r2, 4(r2) IF ID EX ME WB

bne r2, r0 LOOP2 IF ID ----> EX ME WB

add r4, r4, r1 IF ----> ID EX ME WB

# # Cycle 0 1 2 3 4 5 6 7 8 9 10

lw r1, 0(r2) IF ID EX ME WB

Solution appears above. Because the branch is dependent on a load, the lw r2, the bypass doesn’t help and so the branch must
stall until lw r2 reaches WB, in cycle 5. At that time the load value will be passed through the register file to the branch condition
comparison unit (the circled equal sign).
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(b) The implementation below has hardware in IF (not shown) to predict branches. Since it has prediction
hardware the branch resolution hardware (the hardware that computes the branch condition and branch
target) could be moved to the ME stage. Move the branch resolution hardware. Note that the resolution
hardware will be used only if the branch is mispredicted.
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�Move resolution hardware to the ME stage.

�Add any bypasses to resolution hardware needed by code samples in this problem.

�Cross out unused hardware in ID.

�Avoid adding unnecessary hardware.

Solution appears above.

The comparison unit has been moved to the ME stage, where it gets inputs from an added ME.rsv latch and the existing ME.rtv
latch. In the figure the old comparison unit is crossed out and the new (or moved) comparison unit and new connections for it
appear in blue. Those connections provide bypasses of values from the two preceding instructions, but won’t work if the immediately
preceding instruction is a load. For that a bypass has been added from the WB.MD latch. (The output of the WB-stage mux could
also be used, but any value in WB.ALU could also have been bypassed when the branch was in EX.

The ID-stage adder for computing the branch target has been removed. Instead, the ALU will compute the branch target using the
existing EX.NPC and EX.IMM inputs. A new connection from ME to the IF-stage mux has been added so the branch target can
reach the PC, that appears in green.
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Problem 1, continued: Consider the implementation from the previous part.

(c) Resolving the branch in ME with prediction can hurt performance with the code below compared to
resolving in ID with prediction when the branch is hard to predict. By how much will it hurt performance?
Note: An exact number was not required on the original exam. Explain, use a diagram if necessary. Hint:
Resolve is where recovery starts for a misprediction. Another hint: pay attention to dependencies on the
branch condition.

# SOLUTION

LOOP1: # Cycle 0 1 2 3 4 5 6 7 8 9

lw r1, 0(r2) IF ID EX ME WB

addi r2, r2, 4 IF ID EX ME WB

bne r2, r3 LOOP1 IF ID EX ME WB

add r4, r4, r1 IF ID EX ME WB

xor IF IDx

or IFx

# Cycle 0 1 2 3 4 5 6 7 8 9

lw r1, 0(r2) IF ID EX ME WB

�Resolving in ME hurts performance here by 1 cycles.

�Explanation.

Because the branch resolution hardware is in ME, when there is a misprediction the correct path instruction will only reach IF when
the branch is in WB (the cycle after ME). For the code fragment above this occurs in cycle 6. Compare this to the execution of the
code in part (a) of this problem, in which the branch target is fetched in cycle 5. So performance is hurt by one cycle.

Note that though on a misprediction execution takes one cycle longer, when there is not a misprediction execution takes one cycle
less since the dependence stall is avoided. See the next part for an example of that.

(d) Resolving the branch in ME with prediction should help performance with the code below compared to
resolving in ID with prediction. Explain why, preferably with an execution diagram. Hint: Same hints as
previous part.

# SOLUTION

LOOP2: # Cycle 0 1 2 3 4 5 6 7 8 9 10

lw r1, 0(r2) IF ID EX ME WB

lw r2, 4(r2) IF ID EX ME WB

bne r2, r0 LOOP2 IF ID EX ME WB

add r4, r4, r1 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10

lw r1, 0(r2) IF ID EX ME WB

�Resolving in ME helps performance because...

. . . because we can bypass the load value, in cycle 5 for the example, and so avoid stalls. Contrast this with the execution of the
fragment in part (a) in which there is a two cycle stall every iteration. With prediction there is never a dependence stall for the
branch, and two-instruction squashes only occur when the branch is mispredicted.
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Problem 2: (10 pts) The diagrams below show the execution of code on two-way superscalar dynamically
scheduled systems of the type described in class. Each diagram has mistakes. Identify and fix them. Also
explain why code should not execute as illustrated. The answer should specify what would go wrong, or why
the system would be particularly inefficient, as appropriate.

(a) Find and fix the two problems with commit in the execution below, and explain why execution would be
incorrect or inefficient.

# Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2) IF ID Q RR EA ME WB C

sub r4, r5, r6 IF ID Q RR EX WB C

or r7, r4, r8 IF ID Q RR EX WB C

# Cycle 0 1 2 3 4 5 6 7 8

# SOLUTION BELOW, UNFIXED PROBLEM ABOVE.

# Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2) IF ID Q RR EA ME WB C

sub r4, r5, r6 IF ID Q RR EX WB C

or r7, r4, r8 IF ID Q RR EX WB C

# Cycle 0 1 2 3 4 5 6 7 8

�Fix the two problems above.

�Describe one error or inefficiency with execution.

Commit is supposed occur in program order, but sub commits before the lw. That’s fixed in the solution. If commit did occur out
of order it might not be possible to recover the correct register values (in particular the register mappings) should an instruction raise
an exception. For example, if some instruction raised an exception in cycle 6 it would be too late to stop the sub.

�Describe another error or inefficiency with execution.

The code is committing at a rate of one per cycle, but since it’s two-way superscalar it should be able to commit at a rate of two per
cycle. (If it could only commit at one per cycle then there would be little point in having hardware to fetch, decode, and execute two
per cycle.) That is also fixed in the solution.
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(b) Find and fix the problem with the code below. Note that the processor has two FP adders, named A
and B. Hint: Check dependencies.

add.d f0, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

sub.d f6, f0, f8 IF ID Q RR A1 A2 A3 A4 WB C

add.d f10, f11, f12 IF ID Q RR B1 B2 B3 B4 WB C

addi r1, r1, 4 IF ID Q RR EX WB C

# SOLUTION BELOW, UNFIXED PROBLEM ABOVE.

add.d f0, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

sub.d f6, f0, f8 IF ID Q RR A1 A2 A3 A4 WB C

add.d f10, f11, f12 IF ID Q RR B1 B2 B3 B4 WB C

addi r1, r1, 4 IF ID Q RR EX WB C

�Fix the problem above.

�Describe one error or inefficiency with execution.

The addi and the second add.d start execution later than they need to. Because neither of these instructions has dependencies
with the others they can start execution without delay. That is shown in the solution above. Note that in this example there is
no impact on execution time but if the second add.d were instead a divide instruction then the delayed start would slow down
execution.

6
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Problem 3: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 214-entry BHT. One system uses a bimodal predictor,
one system uses a local predictor with a 10-outcome local history, and one system uses a global predictor
with a 10-outcome global history. The outcomes of branch B1 form a repeating pattern, the outcome of B2
can be modeled by a Bernoulli random variable with p = .7 (the branch is taken with probability .7), and
B3 is always taken.

0 0 1 2 3 3 3 2 1 0 1 2 3 3 3 2 1 <- Bimo Ctr

B1: N T T T T T N N N T T T T T N N

x x x x x x x x <- Bimo pred outc

B2: R R R R R R R R R R R R R R R R

B3: T T T T T T T T T T T T T T T T

For the questions below accuracy is after warmup.

�What is the accuracy of the bimodal predictor on B1?

The counter used to predict B1, and the outcome of those predictions is shown in the diagram above. (The counter is labeled Bimo

Ctr.) Based on these outcomes the accuracy is 4
8 = .5 = 50% .

�What is the approximate accuracy of the bimodal predictor on B2? Explain. Hint: A correct answer
would be slightly more or less (pick one) than. . .. For the exact answer one would need the state probability
formula for a Markov chain.

If the counter for B2 were always 2 or 3, the accuracy would be .7. However two consecutive not-taken outcomes are far from
impossible, and that would switch the prediction to not taken. Therefore the accuracy is less than .7. The exact probability that the
counter value is i is pi = ω−1

ω4−1ω
i, where ω = .7

.3 . The probability of a correct prediction is p2 +p3 = .844828. The probability
of a correct prediction is then 0.7(p2 + p3) + 0.3(p0 + p1) = 0.5914 + 0.0466 = 0.638.

�What is the accuracy of the local predictor on branch B1?

The branch B1 pattern has a length of 8, which easily fits in the 10-outcome local history, and so the accuracy is 100% .

�What is the warmup time of the global predictor on branch B1? Be sure to consider the effect of B2.

First, find the possible GHR values used to predict B1. The GHR patterns are: tTrtTrtTrt, tTrtTrtNrt, tTrtNrtNrt,
tNrtNrtNrt, tNrtNrtTrt, tNrtTrtTrt. The lower-case ts are an outcome of B3, the rs are the outcomes of B2, and the
upper-case letters are outcomes of B1; the rightmost outcome is the most recent. The reason these are referred to as patterns and
not actual GHR values is because the outcome of branch B2 is shown as an r, which can be either a t or n. Therefore for a pattern
such as tTrtTrtNrt there are 23 = 8 actual GHR values. Branch B1 needs to be executed twice to warm up the GHR, and each
subsequent GHR value needs to be seen three times to warm up the PHT entries. So the total warmup time is 3+6× 23× 2 = 99
outcomes.

�What is the minimum local history size needed for a local predictor to predict B1 with 100% accuracy?

Five outcomes.

If it were four outcomes the local history TTTT would occur before both a taken and not-taken outcome.

�What is the accuracy of a global predictor with a three-outcome global history on branch B1?

Branch B1 can only be predicted using its own prior outcomes. With a global history length of 3 all B1 can see is one of its prior
outcome. If that prior outcome is N (making pattern Nrt) then the outcome will be N 2 out of 3 times (over a repetition of the

7
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length-8 pattern). If that prior outcome were T the outcome would be T 4 out of 5 times. The PHT entries would predict the more
common outcomes, so the accuracy would be 2+4

3+5 = 0.75.

�What is the minimum global history size needed for a global predictor to predict B1 with 100% accuracy?

Branch B1 must see 5 prior outcomes to be predicted perfectly. That would require a global history length of 5 × 3 = 15.
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Problem 4: (20 pts) The diagram below is for a set-associative cache with a capacity of 16 MiB (224

bytes), and a line size of 64 bytes. The system has the usual 8-bit characters. Each data store below has a
capacity of 220 bytes.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

64 b

64 b

63:20

19:3

63:2019:6

19:6

19:3

�Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

63 20

Index

19 6

Offset

5 3 2 0

�Associativity:

The associativity is 16 . The associativity is determined based on the given cache capacity, 224 bytes, and the given capacity of an

individual data store, 220 bytes. There must be 16 data stores for the given cache capacity.

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity, 224 characters, plus 16 × 220−6 (64 − 20 + 1) bits.

�Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

63 24

Index

23 6

Offset

5 3 2 0

9
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Problem 4, continued: The problems on this page are not based on the cache from the previous page.
The code fragments below run on a 32MiB (225 byte) direct-mapped cache with a 256-byte line size. Each
code fragment starts with the cache empty; consider only accesses to the arrays, a, ax, and ay.

(b) Find the hit ratio executing the code below.

�What is the hit ratio running the code below? Explain

double sum = 0.0;

double *a = 0x2000000; // sizeof(double) == 8

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

The line size of 28 characters is given, the size of an array element is 8 = 23 characters, and so there are 28−3 = 25 elements per
line. The first access, at i=0, will miss but bring in a line with 25 elements, and so the next 25 − 1 accesses will be to data on the
line. The access at i=32 will miss and the process will repeat. Therefore the hit ratio is 31

32 .

(c) The two code fragments below, labeled Method 1 and Method 2, perform the same computation but
organize the data differently.

// Method 1

struct Our_Struct { int x; int y; };

Our_Struct a[SIZE];

for (int i=0; i<SIZE; i++) sum += a[ i ].x;

for (int i=0; i<SIZE; i++) myfunc(sum,a[ i ].y);

// Method 2

int ax[SIZE];

int ay[SIZE];

for (int i=0; i<SIZE; i++) sum += ax[ i ];

for (int i=0; i<SIZE; i++) myfunc(sum,ay[ i ]);

�Which method has a higher hit ratio if the cache is small (or SIZE is large)? Explain

On each miss a line’s worth of data is brought into the cache. With Method 1, because the data is organized into structures, a miss
will bring in data which is not soon needed (the y values for the first loop and the x values for the second loop). When the cache
is small those not-soon-needed values will be evicted from the cache before they are needed. Suppose the line size is 256 bytes and
the integer sizes are 4 bytes each. A line with Method 1 holds 256/8 = 32 elements, but a line using Method 2 holds 256/4 = 64
elements. Therefore the hit ratio will be higher on the code above with Method 2 when the cache is small. If the cache were larger
Method 1 would have about the same performance as Method 2 because the cache would be large enough to hold the not-soon-needed
values long enough for the second loop.

10
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Problem 5: (30 pts) Answer each question below.

(a) Eliminating bypass paths from an n-way superscalar statically scheduled processor would have a much
larger effect than eliminating them from a scalar statically scheduled processor (like our 5-stage MIPS
implementation).

�Describe a positive benefit of eliminating the bypass paths that’s much larger for the n-way superscalar.

Full-Credit Answer: The cost of bypass paths in a superscalar processor is ∝ n2, much larger than their cost in a scalar processor,
and much larger than an acceptable n-times higher cost.

Long Explanation: In an n-way, 5-stage superscalar processor derived from our familiar 5-stage MIPS implementation there would be
bypasses from each of n ALU results in the ME stage and n writeback values in the WB stage, to both inputs to each of n ALU’s in
the EX stage, for a total of 4n2 multiplexer inputs. The cost of these bypass paths is much larger in the superscalar processor, even
after taking into account the expected n times higher cost.

� Describe a disadvantage of eliminating the bypass paths that’s a much bigger disadvantage for the
n-way superscalar.

No bypass is needed in the scalar processor if dependent instructions are separated by two instructions (see diagram below), but
in an n-way superscalar the separation must be at least 2n instructions. Therefore there would be many more added stalls in the
superscalar processor.

add r1, r2, r3 IF ID EX ME WB

or r6, r7, r8 IF ID EX ME WB

and r9, r7, r8 IF ID EX ME WB

sub r4, r1, r5 IF ID EX ME WB

(b) Consider a deeply pipelined system with 5n stages without bypass paths and that runs programs in which
dependent instructions are far apart. Name two factors that will limit clock frequency for larger values of n.
Note: bypass paths were not mentioned in the original exam.

�One frequency limiter.

The clock period includes time for the logic within a stage and time for the latch itself. Ideally, the time for the logic is reduced by
n, but the time for the latch remains constant. So the clock period can be no lower than the latch time.

�Another frequency limiter.

In the 5n-stage system logic within each stage in the original 5-stage system must be split into n pieces. If that is done ideally the
time for that logic would be tl/n, where tl is the logic time in a stage in the 5-stage system. But because logic cannot be perfectly
divided some stages might take longer.

11
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(c) Consider the BHT of a bimodal branch predictor. An entry would contain a CTI type, a two-bit counter,
a branch target, and perhaps a tag. The tag would be used like a cache tag, but does not need to be as
large. For this problem only consider branches.

�How large would the target need to be to predict MIPS branches? Hint: The answer is not 32 bits.

Since the address of the branch is known, the target field need only hold the displacement. The predictor hardware can then compute
PC + 4 + 4 * DISP. So the target field size would be 16 bits .

�Explain what the predictor can do with the tag to improve prediction accuracy.

If the tag doesn’t match then the target will very likely be wrong, in fact, the instruction being fetched might not be a branch (or
other CTI) at all. So when the tag doesn’t match predict not taken, which is correct for non-CTIs and about half the branches.

(d) A four-way statically scheduled processor is much less expensive than a four-way dynamically scheduled
processor. Why would the dynamically scheduled processor run some code faster than the statically processor
even when the code was compiled with a good compiler that targeted the specific four-way implementation?

�Specific advantage of dynamically scheduled processor for some code.

The compiler can schedule for fixed (always the same) latencies, such as those for floating point instructions, but the latency of load
instructions depends upon where the data is found (e.g., L1 cache, L2 cache, memory). In a region of code containing several loads, a
compiler might be able to schedule one of those loads assuming an L2 cache hit (an L1 miss), but it would be difficult to find enough
non-dependent instructions to schedule assuming all loads missed the cache. In contrast the dynamically scheduled processor could
execute non-dependent instructions following any load that missed. Note: An L2 hit has on the order of a 15 cycle latency.

Another advantage is for branches. The compiler has most freedom to schedule within basic blocks, but in many types of programs
they are small, about 10 instructions. Though a compiler can draw instructions from before and after a basic block this can slow
code down because some of those boosted instructions will not need to be executed for some branch outcomes. In contrast the
dynamically scheduled processor works with the actual path taken (actual branch outcomes) and so is not affected by branches.

�Describe properties of code that would run at the same rate on the two processors.

Code that has large basic blocks, loads that always hit the L1 cache, and that has large distances between dependent instructions. A
compiler can do a good job scheduling this kind of code, and so the dynamically scheduled processor’s advantages are won’t apply.

12
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(e) In many VLIW ISAs the bundle size is 3 slots. Describe a disadvantage of making a VLIW ISA with a
larger bundle size.

�Disadvantage of larger bundle size.

Branch targets in VLIW ISA’s must be at the start of a bundle. So if the bundle size were larger the compiler might need to insert
more nop instructions at the end of a bundle to push a branch target to the beginning of a bundle.

(f) A tester measuring the performance of a system using SPECcpu has the source code to SPECcpu programs.
Why is that important to the goals of the suite?

�Source code important to SPECcpu goals?

A goal of SPECcpu is to measure the performance potential of new implementations and new ISA’s. For the performance potential
of a new implementation of an existing ISA to be reached the code has to be compiled for that implementation. This can be done
by the tester using the source code. (With the alternative of having SPECcpu distribute binaries [compiled code] the code might be
compiled for some older implementation.) The source code is completely necessary new ISA’s (say, if the tester had the very first
system with this new ISA), since there would be no way for the binary to be packaged with SPECcpu.
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Problem 1: Show the execution of the following code fragments on the illustrated MIPS implementations.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

0 1

15:0

(a) [20 pts] The code below executes for many iterations. Show a pipeline execution diagram for the execution
of the code on the implementation above for enough iterations to determine the CPI, and determine the
CPI.

�Pipeline diagram of execution. Don’t forget to check for dependencies!

# SOLUTION

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

lw r1, 0(r2) IF ID EX ME WB First Iteration

lw r3, 0(r1) IF ID -> EX ME WB

bne r3, r4 IF -> ID ----> EX ME WB

lw r2, 8(r1) IF ----> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

lw r1, 0(r2) IF ID -> EX ME WB Second Iteration

lw r3, 0(r1) IF -> ID -> EX ME WB

bne r3, r4 IF -> ID ----> EX ME WB

lw r2, 8(r1) IF ----> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

lw r1, 0(r2) Third Iteration IF ID -> EX ME WB

�CPI for a large number of iterations.

The first iteration starts in cycle 0, the second in cycle 7, the third in cycle 15. The state of the pipeline at the beginning of the second
and third iterations is identical: lw r1 in IF, lw r2 in ID, and bne in EX. Therefore the third iteration will execute identically

to the second and the time for the second iteration, 15 − 7 = 8 cycles, will be the same as the third, etc. The CPI is 8
4 = 2 .
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Problem 1, continued:

format

immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M

1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

(b) [10 pts] Show the execution of the code below on the implementation above.

�Pipeline diagram of execution.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

mul.s f1, f2, f3 IF ID M1 M2 M3 M4 M5 M6 WF

add.s f4, f5, f6 IF ID A1 A2 A3 A4 WF

add.s f7, f8, f9 IF ID -> A1 A2 A3 A4 WF

lwc1 f10, 0(r1) IF -> ID ----> EX ME WF
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Problem 2: The MIPS implementation below includes the shift unit (taken from the Homework 3 solution).
Notice that it is not possible to bypass a shift result to the EX stage. For that reason the add in the code
below stalls:

# Cycle 0 1 2 3 4 5 6

sll r1, r2, r3 IF ID EX ME WB

add r4, r1, r5 IF ID -> EX ME WB

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

0 1

15:0

VIN

VOUT
SIN

AMT

DIR

s

a

mx
d

10:6

4:0

is Shift

0:0

2:2

1:1

31:31
shf

mx

=’

rt src
=’

rs

25:21

20:16

rt
STALL

(a) [10 pts] Design control logic to generate a signal named STALL which will be logic 1 when a stall is
needed due to a shift result that cannot be bypassed, as in the example above. (Generate the signal, but
don’t do anything with it.)

�Logic to generate stall signal.

Solution appears above in blue, on the bottom of the diagram. (Ignore for now the changes appearing in red at the top of the diagram.)
Consider the state of the pipeline in cycle 2 in the example above, this is the cycle that the pipeline stalls. The two comparison
units, =’ , compare the destination of the instruction in EX, r1 in the example, with the sources of the instruction in ID, r1 and
r5 in the example. The rs register is always compared (which isn’t 100% right), but the rt register comparison is set to false if
the instruction in ID does not use the rt register as a source. The stall signal should only be generated if the instruction in EX is a
shift, that is the purpose of the last AND gate.

(b) [5 pts] The stall above can be avoided by disconnecting the ME-to-EX bypass from the EX/ME.ALU latch
and instead connecting it to the output of the ME-stage mux. What was the reason for not doing something
like that in Homework 3.

�Problem with ME-to-EX bypass for shift results.

The connection appears on the top of the diagram, in red. Note that the parallel red lines indicate that the wire is broken. In
Homework 3 the shifter was to be added to two different systems, one in which the ALU was not on the critical path, and one in which
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it was. If the ALU is on the critical path then adding logic between the pipeline latch outputs and the input to the EX/ME.ALU
latch will, by definition of a critical path, slow things down. The change shown in red adds the ME-stage mux to the ALU critical
path, which was the reason for not doing it.
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Problem 3: Answer the following questions about interrupts.

(a) [7 pts] An important part of an ISA’s interrupt mechanism is a separate privileged mode (also called
system or supervisor mode) and user mode.

�Why is it necessary to have these two modes?

Acceptable answer on test: So that an OS (which runs in privileged mode) can control access to resources such as disk I/O that are
requested by user code (in user mode).

Longer description: These modes enable one to set up one group of software that manages certain resources and another group of
software that can only get access to the resources by requesting them from the first group. A common example of the first group
is the operating system kernel and the second group might be a computer science homework assignment, or your word processing
program, etc.

Examples of resources at a higher level are disk (or filesystem) access, memory, and CPU time.

�Explain the difference between privileged and user mode in how the CPU operates.

Under privileged mode any valid memory address can be accessed. Under user mode only certain memory address can be accessed, an
attempt to access other addresses would cause an exception. Under privileged any instruction can be executed, such as instructions
to manage the memory system. Under user mode such instructions cannot be executed.

(b) [8 pts] In class our 5-stage implementations resolved exceptions only in ME, and by doing so all integer-
pipeline exceptions were precise. Note: In the original exam the phrase “and by doing so. . .” was not present.
Suppose instead we resolved exceptions in WB. Show a code fragment in which an exception could not be
precise on such a system.

� Simple code fragment.

# SOLUTION

# Cycle 0 1 2 3 4 5

lw r3, 0(r4) IF ID EX ME WB

sw r1, 0(r2) IF ID EX MEx Too late to stop store.

In the code fragment above, the lw raises an exception in ME but because it is not resolved until WB, the store initiated by the next
instruction cannot be stopped.

�What can’t the handler do, and why can’t it do it?

The handler cannot see the state of the program as it would be before the lw because the sw has written memory.

6
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Problem 4: Answer each question below.

(a) [8 pts] Consider the distinction between an ISA and its implementation.

�What was to be achieved by separating computer design into separate ISA design and implementation design?

Software compatibility between the first implementation and implementations done years later. This avoids the effort needed to port
code to a newer design, and the risk of having customers switch vendors.

When designing the ISA separately features are chosen not just based on what can be done with the current implementation, but
what would be easy or hard on future implementations.

Grading Note: Surprisingly few answers explicitly mentioned software compatibility.

�Provide a reason not to have separate ISA and implementation design, consider the point of view of a
conservative computer engineer from the 1960s.

When designing an ISA for longevity one might make decisions that hobble the first implementation. An engineer accustomed to
designing implementations for a particular purpose (perhaps considering a few benchmark programs) would consider the need to provide
for a large address space or have “unnecessary” instructions wasteful of time and vacuum tubes (or those newfangled transistors).

(b) [8 pts] One reason to not compile a program with optimization turned on is because you plan to debug
the program. Explain why stepping through a program in a debugger can be confusing when the code has
been optimized.

�Debugging optimized code is confusing because . . .

. . . when single-stepping through a program execution will not be in the same order as the high-level code specifies. In fact, certain
lines of code might not be executed at all and the value of certain variables cannot be printed.

�Name a particular type of optimization and explain how it can cause confusing results when single stepping
through a program.

Instruction Scheduling: Can cause high-level statements to be executed out of order.

Dead-Code Elimination: A line of dead code will not executed, and a variable that the line may write cannot be printed.

The following answers are wrong in the sense that they would not make debugging difficult. Points were not deducted because they
are legitimate optimizations.

Profiling / Code Layout: First profile to determine more likely branch directions, then layout code so that the more likely direction
is not taken. This won’t by itself make debugging more difficult because it does not change the order in which high level statements
are executed. (Location in memory is not the same as execution order.)

Operation Substitution: For example, replacing a multiply by a small constant by a sequence of shifts and adds. Another example
is replacing multiplication, division, and modulus operations with power-of-two operands by shifts or ANDs, and then reporting the
user to the Bad Programmer Registry. This is wrong because it does not change execution order nor does it affect values of variables.
The person using the debugger can’t tell whether it was a real multiply (or divide or modulus) or something else. (Unless the person
prints the assembly code or is using really slow CPU.)
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(c) [7 pts] Do you agree or disagree with the statement below regarding the rules for building the SPECcpu
benchmarks? Answer with respect to the goals for the SPECcpu benchmarks.

“Testers should not be allowed to use their own compilers because the SPECcpu benchmarks are supposed
to test CPUs, not compilers. All testers of a particular ISA should use the same compiler.” Grading note:
the phrase “of a particular ISA” was not in the original exam.

�Agree or disagree? Explain.

Note: the key phrase is “are supposed to test CPUs, not compilers.”

Disagree. When used properly the compiler will optimize code for a particular implementation, for example, scheduling code to
avoid stalls. Certain implementation features may have been designed hand-in-hand with the compiler optimizations needed to fully
exploit them. In a sense, the compiler back end is part of the implementation. So to not test the compiler is to not fully test the
implementation.
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Problem 5: [10 pts] CISC programs generally are smaller than RISC programs.

(a) Show how the instruction below is encoded in MIPS and in VAX. For MIPS the name and bit position
of each field should be known, and the value of all but one field should be known. For VAX one should know
the fields and their sizes, but not every field value needs to be known. Hint: VAX has 16 general-purpose
registers. The size of the two instructions should be the same.

add r1, r2, r3

�Encoding in MIPS.

SOLUTION:

_________________________________________________________________

! opcode ! rs ! rt ! rd ! sa ! function !

! 0 ! 2 ! 3 ! 1 ! 0 ! 0x20 !

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

�Encoding in VAX.

SOLUTION:

Note: Encoding is for VAX instruction addl3 r1, r2, r3

! Opcode ! ! Source 1 ! ! Source 2 ! ! Destination !

! ! ! Mode ! Rn ! ! Mode ! Rn ! ! Mode ! Rn !

! 0xc1 ! ! 5 ! 2 ! ! 5 ! 3 ! ! 5 ! 1 !

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

(b) Identify unused field(s) in the MIPS instruction.

�Unused MIPS field.

The sa (shift amount) field.

(c) Since VAX instruction sizes can vary they should be able to use space more efficiently. Yet even though
the MIPS instruction has unused field(s) the two instructions are the same size. Explain why the VAX
instruction is larger than one might expect and explain what advantage that provides.

�Why is VAX larger than one might expect?

Because each operand has an 4-bit field specifying the addressing mode, whereas in MIPS the addressing mode is: part of the opcode,
the same for all three operands, and for integer add instructions there are only two choices (the second source is either a register or
an immediate).

In more detail: MIPS Opcode: 6 + 6 = 12 bits. MIPS register numbers 3 × 5 = 15 bits. Unused 5 bits (5 more than VAX). VAX
Opcode, including operand specifiers: 8+3×4 = 20 bits (8 more than MIPS). Register numbers: 3×4 = 12 (3 less than MIPS).

�What advantage does this larger size provide?

A large variety of addressing modes. That can reduce the total instruction count (compared to MIPS) by eliminating loads, stores,
initializing large constants, etc.
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Problem 6: Answer each question below.

(a) [7 pts] Unlike MIPS, SPARC integer branches use condition codes.

�Why might this allow SPARC branch targets to be further away than MIPS branch targets?

Because in MIPS one needs two register fields to indicate the registers to compare, that takes ten bits. In SPARC V8 integer
instructions there is just one set of condition codes and so zero bits are needed for them (and in V9 there are just two, taking 1 bit).
The space saved for the register numbers in SPARC can be used for a larger displacement.

�Why might this enable certain SPARC implementations to have a higher clock frequency than comparable
MIPS implementations?

Because in MIPS I one needs to compare up to two 32-bit registers. For resolve-in-ID implementations (such as the one used in class)
the register values are not available until partway through the cycle, likely forcing the branch direction logic to be on the critical path.
In SPARC one just needs to look at a single 4-bit condition code register, and so the logic would be faster.
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Problem 1: (10 pts) The diagram below shows a 5-stage pipeline that looks alot like our familiar MIPS
implementation but it’s actually an implementation of ISA X. (The diagram is based on the solution to
Homework 3, in which a shift unit was added to MIPS.)

format

immed

IR

Addr
20:16

9:5

IF ID EX WBME

rs1v

rs2v

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst

NPC

=

30 2
2’b0

+
25:0

29:26

29:0

01

VIN

VOUT
sign in

AMT

DIR (1=left)

s

a

mx
d

4:0

4:0

is Shift

10:10

12:12

11:11

31:31

shf

mx

im5

5b0

5b31

25:21

31:26

15:10

(a) ISA X instruction format T encodes the shift instructions and others, it is the equivalent of format R in
MIPS. Based on the diagram above show the encoding for ISA X format T.

�Format T encoding, including bit positions and field names.

Solution appears below. The source registers are named rs1 and rs2, those names are taken from the ID/EX pipeline latches, the

bit positions at the input to the register file provide their place in the instruction encoding. The input to the is Shift unit provide
the location of the opcode fields. Through its connection to the shifter one finds that bits 4:0 are the equivalent of the MIPS sa

field. The mux at the input to the dst pipeline latch provides the destination register field bits, 25:21.

Encoding:

Opc

31 26

rd

25 21

rs1

20 16

opT

15 10

rs2

9 5

im5

4 0

(b) Consider the shift instructions sll, sllv, srl, srlv, sra, and srav. Suppose that the encoding of one
of these instructions is zero (meaning that every field value is zero). Show the opcode field value(s) for each
of these instructions based on the diagram above. Hint: The control signal for each top mux input is 0, etc.

�Opcode field value(s) for: sll, sllv, srl, srlv, sra, and srav.

From inspection of the diagram we see that bit 10 determines whether the shift is arithmetic (signed) (bit 10 is 1) or logical (unsigned)
(bit 10 is 0). From inspection of the diagram we see that bit 11 determines whether the shift amount is obtained from the rs1
register (possibly bypassed) or if bit 11 is 1 whether the shift amount is obtained from the im5 field. From inspection of the diagram
we see that bit 12 indicates the direction, with 1 for a left shift. Since one of the shift instructions has a zero opcode, the opc field
must be zeros and bits 15:13 of opT must be zero. Putting these bits together we get the opT values shown below:

Solution:

sll sllv srl srlv sra srav

110 100 010 000 011 001 <- Bits 12, 11, and 10

000110 000100 000010 000000 000011 000001 <- Full opT value.
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(c) Explain why the implementation of instructions such as sw r1,2(r3) and beq r1, r2 TARG would be
less elegant for ISA X than for MIPS. Hint: It has something to do with registers.

� sw and beq less elegant because...

Consider instructions lw r1,2(r3) and sw r1,2(r3). In MIPS these can use the same format because the rt field can be
either a destination (as its used for lw) or as a source (as its used for sw). But in ISA X , based upon the diagram above, there is
only one destination field. So the lw encoding might be in a format where the rs2 field is omitted (and so bits 9:5 can be part of
the immediate) while the sw instruction would be in a format where rd was omitted. As a result the format immed unit needs
to pick different sets of bits based on format.
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Problem 2: (14 pts) Answer the questions below.

(a) Complete the execution diagram for the MIPS code below on a two-way superscalar statically scheduled
implementation of the type described in class.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8

add r1, r2, r3 IF ID EX ME WB

add r4, r5, r6 IF ID EX ME WB

add r7, r4, r8 IF ID EX ME WB

lw r9, 0(r7) IF ID -> EX ME WB

addi r1, r9, 3 IF -> ID -> EX ME WB

xor r10, r11, r12 IF -> ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8

�Complete the diagram above.

The solution appears above. The lw stalls due to a dependence on the preceding add. Notice that the stall affects all following
instructions. That is, though in cycle 3 the lw is stalled in ID1 the ID0 stage is empty. It would be possible to design the pipeline
so that the addi could move into ID0 in cycle 3, however that would greatly complicate control logic since instructions would be
out of order. (The instruction in ID0 would come after the one in ID1 in program order, whereas usually the instruction in ID0 is
before the one in ID1.) So to keep instructions in order the addi must stall.

(b) Show the execution of the code below on an 8-way superscalar statically scheduled processor of the type
described in class. Branches are not predicted. Find the CPI for a large number of iterations.

# SOLUTION

LOOP: # Cyc 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

and r1, r1, r5 IF ID EX ME WB

add r3, r3, r1 IF ID -> EX ME WB

lw r1, 0(r2) IF ID -> EX ME WB

bne r2, r4 LOOP IF ID -> EX ME WB

addi r2, r2, 4 IF ID -> EX ME WB

or IF ID -> x

or IF ID -> x

or IF ID -> x

xor IF -> x

xor IF -> x # Six more instructions squashed.

LOOP: # Cyc 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

and r1, r1, r5 IF ID EX ME WB

add r3, r3, r1 IF ID -> EX ME WB

lw r1, 0(r2) IF ID -> EX ME WB

bne r2, r4 LOOP IF ID -> EX ME WB

addi r2, r2, 4 IF ID -> EX ME WB

or IF ID -> x

or IF ID -> x

or IF ID -> x

xor IF -> x

xor IF -> x # Six more instructions squashed.

LOOP: # Cyc 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

and r1, r1, r5 IF ID EX ME WB

4
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�Complete diagram above for enough iterations to determine CPI.

The solution appears above.

�Find the CPI for a large number of iterations.

The third iteration starts, in cycle 6, with the pipeline in the same state as the start of the second iteration, in cycle 3. (The pipeline
state is and in ME, add, lw, bne, and addi are all in EX, etc.) Therefore the time for the second iteration, 6− 3 = 3 cycles will

be the same as the time of the third. The CPI is then 6−3
5 CPI .
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(c) Complete the execution diagram for the MIPS code below on a two-way superscalar dynamically scheduled
implementation of the type described in class. The execution of the first instruction is shown. The lw

instruction uses stages EA and ME in place of EX.

# Solution

LOOP: # Cyc 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

add r1, r2, r3 IF ID Q RR EX WB C

add r4, r5, r6 IF ID Q RR EX WB C

add r7, r4, r8 IF ID Q RR EX WB C

lw r9, 0(r7) IF ID Q RR EA ME WB C

addi r1, r9, 3 IF ID Q RR EX WB C

xor r10, r11, r12 IF ID Q RR EX WB C

LOOP: # Cyc 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

�Complete diagram above.

Solution appears above. Notice that the dependence chain from the add r4 through the lw and addi does not affect when the
xor executes, though it does delay its commit.

Some important things to remember: Commit must occur in program order. Since the processor is 2-way superscalar at most two
instructions per cycle can commit (by default for classroom examples).
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Problem 3: (14 pts) A deeply pipelined MIPS implementation can be constructed by dividing some stages
of our familiar 5-stage statically scheduled scalar implementation (shown below) into two or more parts. In
this problem the technique is applied to construct several 8-stage implementations. All have just one ID and
WB stage, and in all implementations it takes 4.4 ns for an instruction to pass through all 8 stages, from the
beginning of IF1 to end of WB1. The stages are divided without changing what they do. For example, if an
“original” MIPS stage, say EX, is divided into multiple stages, say EX1 EX2 ... EXn, then all values from
ID and bypass paths are needed when EX1 starts, and values reach ME in the cycle after EXn. Our familiar
5-stage implementation is shown below for reference:

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data
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D In

+1
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Port

Addr

Data
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Addr

Data

In

Mem

Port

Data

Outrtv

ALU
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dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

(a) Consider the 8-stage baseline implementation below (indicated by the stage labels). What is the execu-
tion rate of a friendly program (one written to maximize performance) on the implementation, in units of
instructions per second? The answer can be given as a formula of constants (as opposed to putting down
just x as an answer).
Baseline Implementation: IF1 IF2 ID1 EX1 EX2 ME1 ME2 WB1

�Execution rate in instructions per second.

If it takes 4.4 ns to pass through 8 stages then the clock frequency must be 8
4.4 ns = 1.82GHz. So the execution rate is 1.82

billion insn per second.
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(b) Call a program favorable for an implementation if it runs faster on the implementation than on the
baseline (repeated below). If it runs slower, call it unfavorable. For each implementation below write a two-
or three-instruction favorable program and a two- or three-instruction unfavorable program. Also provide a
concise but clear explanation of what it is about the program and implementation that makes it favorable or
unfavorable. If a program is favorable on one implementation and unfavorable on another write it once, but
provide an explanation for each. Hint: The three implementations differ in how they are affected by certain
dependencies.

Baseline Impl.: IF1 IF2 ID1 EX1 EX2 ME1 ME2 WB1

Implementation 1: IF1 IF2 IF3 ID1 EX1 ME1 ME2 WB1

�Favorable program. �Explanation.

�Unfavorable program. �Explanation.

In Implementation 1 there is one more IF stage than the baseline but one less EX stage. A favorable program would have a close
dependence from ALU output to ALU input. An unfavorable program would have a dependence from anywhere to the IF input,
which would be a control transfer, including a branch. From the pipeline diagram below for the unfavorable program one can see
that because of the extra IF stage the target is fetched one cycle later and so one more instruction is squashed than would be in the
baseline. Without a branch predictor these squashes would occur for every taken branch, with a branch predictor they would only
happen when the branch is mispredicted, but that’s still worse than the Baseline.

# SOLUTION

# Favorable for 1: Second instruction has true dep with first, both are ALU.

add r1, r2, r3

sub r4, r1, r5

# Unfavorable for 1: Taken branch

beq r1, r2 TARG IF1 IF2 IF3 ID1 EX1 ME1 ME2 WB1

and IF1 IF2 IF3 ID1 EX1 ME1 ME2 WB1

or IF1 IF2x

sub IF1x

TARG:

xor IF1 IF2 IF3 ID1 EX1 ME1 ME2 WB1

Baseline Impl.: IF1 IF2 ID1 EX1 EX2 ME1 ME2 WB1

Implementation 2: IF1 ID1 EX1 EX2 EX3 ME1 ME2 WB1

�Favorable program. �Explanation.

�Unfavorable program. �Explanation.

Implementation 2 has one fewer IF stage, but one more EX stage. So the favorable program from the last part is unfavorable here,
and the unfavorable program from the last part is favorable here.

Baseline Impl.: IF1 IF2 ID1 EX1 EX2 ME1 ME2 WB1

Implementation 3: IF1 ID1 EX1 EX2 ME1 ME2 ME3 WB1

�Favorable program. �Explanation.

�Unfavorable program. �Explanation.

8
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Implementation 3 also has one fewer IF than the baseline, but it has one more ME than the baseline. So the favorable program is the
same as the favorable program from the last part. The unfavorable program has a dependence through memory.

# SOLUTION - Unfavorable Program

lw r1, 0(r2) IF1 ID1 EX1 EX2 ME1 ME2 ME3 WB1

add r3, r1, r4 IF1 ID1 --------------> EX1 EX2 ME1 ME2 ME3 WB1

9
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Problem 4: (14 pts) Answer the following branch predictor questions.

(a) Code producing the branch patterns shown below is to run on three systems, each with a different branch
predictor. All systems use a 214-entry BHT. One system uses a bimodal predictor, one system uses a local
predictor with a 16-outcome local history, and one system uses a global predictor with a 16-outcome global
history.
0x1000: B1: T N T T N T T T N T N T T N T T T N ...

0x1010: B2: T T N T T N ...

0x1020: B3: T T ...

For the questions below accuracy is after warmup.

�What is the accuracy of the bimodal predictor on B1?

The accuracy is 6
9 .

�What is the accuracy of the local predictor on branch B1?

The branch B1 pattern has a length of 9, which easily fits in the 16-outcome local history, and so the accuracy is 100% .

�What is the warmup time of the local predictor on branch B1?

The branch must first be seen 16 times to warm up the local history, then it must be seen 2 × 9 times to warm up each of the 9

entries that it uses. The warmup time is 16 + 2 × 9 executions .

�What is the minimum local history size needed for a local predictor to predict B1 with 100% accuracy?

Five outcomes.

If it were four outcomes the local history TTNT would occur before both a taken and not-taken outcome.

�What is the accuracy of a global predictor with a three-outcome global history on branch B2 (not B1)?

Two global histories are possible: TTN and NTN. the NTN global history is always followed by a taken outcome. The TTN global
history can be followed by both a taken and a not taken outcome. The patterns occur in the following repeating sequence TTN.N,

TTN.T, NTN.T, TTN.N, TTN.T, NTN.T,. . .. Assuming one of the two TTN patterns mispredicts the accuracy would be 2
3 . It

is also possible that both TTN occurrences mispredicts, in that case the accuracy would be 1
3 .

�What is the minimum global history size needed for a global predictor to predict B2 (not B1) with 100%
accuracy?

Five outcomes.
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Problem 4, continued:

(b) Consider code producing the patterns below running on two systems, one using a global predictor and
the other using a gshare predictor. Both systems use a 216-entry BHT and a 12-outcome global history. The
hexadecimal numbers indicate the address of the branch instruction. For example, B5: 0x1100 indicates
that the instruction we call B5 is at address 0x1100.

Pattern L: T T T ... N (A hundred iteration loop.)

B5: 0x1100: L L L L

B6: 0x1110: N N N N

B7: 0x1200: L L L L

B8: 0x1210: T T T T

�Why is the accuracy of the gshare predictor so much better than the global predictor on this example?

The difference is on branches B6 and B8. Branch B6 is highly biased not taken and B8 is highly biased taken, a bimodal predictor
could easily predict each of these branches accurately since it uses the branch address to find a two-bit counter. In contrast the global
predictor uses the global history for an address in the PHT to retrieve a two-bit counter. The global history for both branches will
be TTTTTTTTTTTN, because branches B5 and B7 have the same long pattern. Therefore branches B6 and B8 will share an entry
and so be predicted inaccurately. The gshare predictor uses the global history exclusive-ored with the branch address as an address
in the PHT. Because the PC is used branches B6 and B8 will use different entries and so be predicted accurately.

�What is the minimum number of BHT entries for which the gshare predictor will outperform global on
this code? Hint: Look at the branch addresses.

The minimum number is 27 entries. If there are any fewer than address B7 and B6 will map to the same entry because the lower
6 + 2 = 8 bits of their addresses are identical. (The +2 is needed because the two least significant bits, which are always zero, are
not used in computing the PHT address.)

11
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Problem 5: (15 pts) The diagram below is for a 4-way set-associative cache with a capacity of 8 MiB (223

bytes). The system has the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

64 b

128 b

63:21

20:4

63:2120:8

20:8

20:4

�Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

63 21

Index

20 8

Offset

7 4 3 0

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity, 223 characters, plus 4 × 221−8 (64 − 21 + 1) bits.

�Line Size (Indicate Unit!!):

Line size is 28 = 256 characters.

�Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

63 23

Index

22 8

Offset

7 4 3 0

12
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Problem 5, continued: The problems on this page are not based on the cache from the previous page.
The code fragments below run on a 32MiB (225 byte) direct-mapped cache with a 64-byte line size. Each
code fragment starts with the cache empty; consider only accesses to the array, a.

(b) Find the hit ratio executing the code below.

�What is the hit ratio running the code below? Explain

float sum = 0.0;

float *a = 0x2000000; // sizeof(float) == 4

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

The line size of 26 characters is given, the size of an array element is 4 = 22 characters, and so there are 26−2 = 24 elements per
line. The first access, at i=0, will miss but bring in a line with 24 elements, the next 24 − 1 accesses will be to data on the line,
but sixteenth access after the miss will miss again. Therefore the hit ratio is 15

16 .

(c) Find the smallest value of STRIDE for which the cache hit ratio in the program below will be zero.

�Fill in smallest value for STRIDE for which hit ratio 0.

�Briefly explain.

The value of STRIDE should be chosen so that the index of a[i] and a[i+STRIDE] are the same (but of course their tags will
be different). We want the difference in addresses to be 225. Since an array element is 4 bytes that means that STRIDE must be
225

4 = 223.

float sum = 0.0;

float *a = 0x2000000; // sizeof(float) == 4

int i;

int ILIMIT = 1 << 11; // = 211

int STRIDE = 1 << 23; // <-- FILL IN. SOLUTION FILLED IN.

for (i=0; i<ILIMIT; i++) sum += a[ i ] + a[ i + STRIDE ];

13
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Problem 6: (15 pts) Answer each question below.

(a) What is the difference between instruction-level parallelism (ILP) and explicit parallelism?

� ILP and explicit parallelism difference.

Short answer, sufficient to get full credit: ILP is a property of machine language code that is written for a serial system, it is a
measure of how many instructions can execute at the same time. Explicit parallelism is something specified by a programmer or
compiler.

More detailed explanation: Explicit parallelism is something specified by the programmer, perhaps using a special language or more
often an API such as pthreads, OpenMP, or MPI to specify how parts of the program should execute in parallel. Explicit parallelism
might also be specified by a parallelizing compiler. In contrast, instruction level parallelism is something that is present in serial
(non-parallel) programs at the machine-language level. It is a measure of how many instructions can execute at the same time.
Programs with lots of ILP execute well on superscalar processors.

(b) A company has a large customer base for its ISA Y products, the most advanced of which is a 4-
way superscalar dynamically scheduled implementation. The company is considering three possible next-
generation systems: Develop an 8-way superscalar dynamically implementation of ISA Y , develop a chip
with 16 scalar implementations of ISA Y , or develop a VLIW ISA and implementation. For each strategy
indicate how much effort it will take for customers to use the new system.

�Customer effort to use 8-way superscalar dynamically scheduled system. Explain.

The company’s current product is a 4-way superscalar chip. Code should run on the 8-way chip without any modification and so the
customer effort (in preparing the code) is zero.

�Customer effort to use chip with 16 scalar implementations. Explain.

Presumably the company’s customers have not parallelized their code. Since the chip has sixteen separate processors customers will
have to parallelize their code, otherwise the code will just run on one core and so run slowly (since its scalar). Parallelizing code is
hard, and so customer effort is high.

�Customer effort to use VLIW implementation.

The term VLIW refers to a style of ISA. To use the new chip customers will have to re-compile their code. That will require moderate
to low effort.

(c) Consider the three systems from the previous part. For each system indicate an advantage over the
others. The advantage should specify an assumed workload, an answer might start “The advantage, those
customers that run programs that are , is . . ..

�Advantage of 8-way superscalar dynamically scheduled system.

It can run existing code without modification. Dynamic scheduling is well suited to typical “integer” workload, with its many medium
difficulty branches and irregular data access patterns.

�Advantage of 16 scalar system chip.

Because the processors are simple, many can fit on a chip. Workload that can be efficiently parallelized will run fastest on this system.

�Advantage of VLIW implementation.

The intended advantage of VLIW is simpler implementations compared to superscalar techniques. So far this has only achieved success
in DSP (digital signal processing) chips. So lets assume the workload consists of DSP programs.

14
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Problem 7: (18 pts) Answer each question below.

(a) Why might a 1% change in branch prediction accuracy have a larger impact on the performance of a
4-way superscalar processor than on a 2-way superscalar system?

�Larger impact on 4-way over 2-way because...

Because the 4-way system will fetch twice as many instructions per cycle. Since the time to resolve the branch will likely be the same
on the two systems, the 4-way system will waste more of its execution potential. For example, suppose that the 4-way system takes
10 seconds to execute a program and the 2-way system takes 15 seconds. Suppose that the time to resolve mispredicted branches on
both systems (in total) is 3 seconds. That 3 seconds is a bigger percentage of 10 than 15, so the 1% improvement will have a bigger
impact on the 4-way system.

(b) Dynamically scheduled systems use a technique called register renaming in which an instruction’s archi-
tected registers are renamed into physical ones. Provide a brief example illustrating why register renaming
is necessary.

�Example illustrating need for register renaming and explanation.

# Example for solution.

mul.s f0, f1, f2 IF ID Q RR M1 M2 M3 M4 M5 M6 WB C

add.s f3, f0, f5 IF ID Q RR A1 A2 ..

lwc1 f0, 0(r1) IF ID Q EA ME WB

sub.s f6, f0, f7 IF ID Q RR A1 A2

In the example above the lw writes back before the mul. Without register renaming the value in the f0 register would be wrong after
the mul.s writes back. Any later instruction would get the mul.s result, not the lwc1 result which is correct.

15
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(c) The SPECcpu rules require that the compilers used to prepare a run of the suite be real products that
the company (or some other company) makes an honest effort to sell (or give away). Explain how the
SPECcpu scores might be inflated if the compilers could be products in a technical sense, but not something
the company is trying to put in customer hands.

�Scores inflated by unmarketed compilers because...

The compilers might include buggy optimizations which work for the SPECcpu benchmarks, because those specific problems have
been fixed, but would still be buggy for other code. Actual users would be reluctant to use a buggy compiler, even if avoiding the
bugs would yield a performance benefit.

� If the compilers produce faster programs, why not promote them?

Based on the answer above, because that would alienate customers.

(d) What is the difference between a trap and an exception?

�Difference between trap and exception.

A trap is an instruction which is intended to start a handler. It’s usually used to implement the interface to an operating system,
among other purposes. The programmer might insert a trap instruction to request that the operating system, say, open a file. An
exception is the response of the system to something going wrong with an instruction, for example, a bad opcode or memory address.
As with a trap the handler is called, but unlike a trap an exception can happen to most any instruction.
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Problem 1: [40 pts] In the MIPS implementation below some wires are labeled with cycle numbers and

values that will then be present. For example, c5:6 indicates that at cycle 5 the wire will hold a 6. Other
wires are labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any
labeled wire is changed the code would execute incorrectly. Write a program consistent with these labels.

�All register numbers and immediate values can be determined.

�The first instruction address has been provided, show the addresses of the remaining four instructions.

�The third instruction is an addi, don’t forget to show its registers and immediates.

� If an instruction is a load or store, show all possible size and sign possibilities. For example, (lw,lh)

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

C2:2

C3:2

C5:2

C1

C5:6 C3:1
C5:0

C3:8 C5:3

C6

C5

C3:16

C5

C5:0xabcd1234

C0: 0001 0001 1001 0100 0000 0000 0010 0000

# SOLUTION

#

# Cycle 0 1 2 3 4 5 6 7 8

0x1000 beq r12, r20 TA IF ID EX ME WB

0x1004 lw r8, 16(r2) IF ID EX ME WB

TA:0x1084 addi r3, r2, 1 IF ID EX ME WB

0x1088 sb r3, 0(r3) IF ID EX ME WB

0x108c sh (or sb) r3, 6(r2) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8

Easy Stuff: The destination for second instruction, r8, and the third instruction, r3, can be read off the ID/EX.dst and
EX/ME.dst pipeline latches. Similarly, the first source register of several instructions can be read directly at the input to the
register file in ID. Three immediate values are directly provided on both sides of the ID/EX.IMM pipeline latch. If this doesn’t seem
obvious within five minutes, please please please see the Statically Scheduled System Study Guide for tips and other sample problems,
also consider asking for help. Don’t bother reading the next paragraphs until everything above is easy.
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Dependencies: The use of bypass paths shown by the two C5 bubbles and C6 bubble in EX reveals three dependencies. For

example, the upper C5 means that the rs source of the fourth instruction is the same as the destination of the third (otherwise
the bypass path would not be used). In this particular problem the result of the third instruction is bypassed to three places, two in
the fourth and one in the fifth instruction. The destination register of the third instruction, r3, was directly determined; with the
dependencies we just found we see that the three source registers must all be r3.

Rough Instruction Identities: Only store instructions can use the EX/ME.rtv latch, so we know that the fourth and fifth
instructions must be stores. Only load instructions use the ME/WB.MD latch, and so the second instruction must be a load. Only
branches use the = in the ID stage, and so the first instruction must be a branch.

The lower ALU input: At this point we know that the instruction in EX in cycle 3 is some kind of load, and so the C3:16
must be its immediate value.

Load and Store Data Sizes: Since the Mem Port sign-extends or pads the loaded value, the C5:0xabcd1234 could only be
from a lw. (If it were a lh, which loads 16 bits, the upper 16 bits, instead of being 0xabcd, would have to be either 0 or 0xffff.)
MIPS’ load and store addresses must be aligned, meaning, they must be a multiple of the data size (in characters [popularly called
bytes]). One does not need to be an expert on number theory to figure out that in that case the contents of register r2 must be a
multiple of 4 (given that r2 + 16 is a multiple of 4). We should also be able to figure out that r3, after the addi, cannot be a
multiple of 4 or of a 2. Therefore the fourth instruction can only a sb. The fifth instruction can be a sb or a sh.

That long thing in IF: The bubble in IF provides the entire first instruction. Test takers were not expected to memorize
opcodes, but were expected to know the instruction formats. Since we already know it’s a branch we should know it uses a type I
format. Parsing that we find that rs is 12, rt is 20, and the immediate is 0x20. The immediate is used to find the branch target:
100016 + 4 + 4 × 2016 = 108416. The solution is written as though the branch was taken, but there is not enough information
to tell whether it was taken or not and so a solution with the third instruction at the fall-through address, 0x1008, would also be
correct.

3
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Problem 2: [12 pts] Consider the following cost-reducing design options for the MIPS implementation
shown below. Performance is still important, and a compiler will be able to optimize for this lower-cost
implementation, but even with skillful optimization there may be some performance loss.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

(a) Suppose one had to choose between eliminating all upper-ALU-input bypass paths or all lower-ALU-input
bypass paths. Which would you choose? Note: The following sentence did not appear on the original exam.
(Only bypass paths are eliminated, other mux inputs remain.)

�Eliminate: upper or lower. (Circle one.)

�Briefly explain why.

Eliminate bypasses in lower mux. If upper mux bypasses were eliminated then we could not bypass any type I instructions. With the
lower-mux inputs eliminated the compiler could accommodate at least some type R instructions that would have needed the lower
mux by switching the rs and rt operands. (That would only work for commutative operations.)

(b) Suppose one had to choose between eliminating all upper-ALU-input bypass paths or all rtv (not to the
ALU) bypass paths. Which would you choose (Note: Only bypass paths are eliminated, other mux inputs
remain.)

�Eliminate: upper or rtv. (Circle one.)

�Briefly explain why.

This is an easy choice: Eliminate rtv bypasses. Stores are less frequent than type R instructions. Grading Note: The opposite
argument would get partial credit.

(c) Suppose that the mux in the WB stage was moved to the ME stage.

�How would that reduce cost?

There would be one fewer ME/WB pipeline latch.

�How might that affect performance?

4
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It would likely hurt performance because the memory port is most likely on the critical path. The clock frequency would have to be
slowed to give time for the signal to propagate through the mux.

5
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Problem 3: [14 pts] The branch delay slot ISA feature eliminates the need for the stall or squash following
a branch that occurs in implementations such as our 5-stage pipeline.

(a) The two MIPS code fragments below do not exactly make a strong case for delay slots. In both cases
there is no squash or stall, which sounds good. For each code fragment indicate whether performance is
slower, equal to, or faster than corresponding non-delay-slot ISA code on a corresponding implementation
(one that will suffer a squash after every branch). If faster indicate if the improvement is full (based on the
eliminated squash) or partial. Hint: it won’t be full.

# -------------------- Code Fragment 1 --------------------

beq r1, r2, TARG

nop

lw r3, 0(r1)

�Delay slot in code above results in: slower, equal, partial improvement, full improvement. (CIRCLE ONE).

�Explain.

# SOLUTION

# Execution with branch not taken.

# Delay Slot ISA 0 1 2 3 4 5 6 # Non Delay Slot ISA 0 1 2 3 4 5

beq r1, r2, TARG IF ID EX ME WB beq r1, r2, TARG IF ID EX ME WB

nop IF ID EX ME WB lw r3, 0(r1) IF ID EX ME WB

lw r3, 0(r1) IF ID EX ME WB

# Execution with branch taken.

# Delay Slot ISA 0 1 2 3 4 5 6 # Non Delay Slot ISA 0 1 2 3 4 5

beq r1, r2, TARG IF ID EX ME WB beq r1, r2, TARG IF ID EX ME WB

nop IF ID EX ME WB lw r3, 0(r1) IFx

lw r3, 0(r1)

...

TARG: xor r4, r3, r5 IF ID EX ME WB TARG: xor r4, r3, r5 IF ID EX ME WB

Slower performance.

Brief explanation that would get full credit: In the delay-slot ISA code the nop guarantees that nothing is useful is done after the
branch, but in the non-delay-slot code the lw would do something useful if the branch were not taken.

Longer explanation: Two executions of the given code fragment are shown above on the left-hand side, in the first the branch is not
taken, in the second it is taken (with an added target instruction). On the right-hand side a version of the code is shown for an ISA
without delay slots; it too is shown executing both with the branch not taken, and taken.

In the not-taken case the lw is the first instruction after the branch doing something useful. That is executed one cycle earlier in the
non-delay-slot code. In the taken case the xor instruction (added for this explanation) does useful work. That is executed at the
same time (cycle 4) for both ISAs.

Therefore the delay-slot code is slower (with the reasonable assumption that the branch is sometimes not taken).

6
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# -------------------- Code Fragment 2 --------------------

beq r1, r2 SKIP

add r9, r4, r5

or r6, r9, r8

SKIP:

sub r3, r6, r5

lw r9, 0(r3)

�Delay slot in code above results in: slower, equal, partial improvement, full improvement. (CIRCLE ONE).

�Explain.
# SOLUTION

# Execution with branch not taken.

# Delay Slot ISA Non Delay Slot ISA

# Cycle 0 1 2 3 4 5 6 0 1 2 3 4 5 6

beq r1, r2 SKIP IF ID EX ME WB IF ID EX ME WB

add r9, r4, r5 IF ID EX ME WB IF ID EX ME WB

or r6, r9, r8 IF ID EX ME WB IF ID EX ME WB

SKIP:

sub r3, r6, r5

lw r9, 0(r3)

# Execution with branch taken.

# Delay Slot ISA Non Delay Slot ISA

# Cycle 0 1 2 3 4 5 6 0 1 2 3 4

beq r1, r2 SKIP IF ID EX ME WB IF ID EX ME WB

add r9, r4, r5 IF ID EX ME WB IFx

or r6, r9, r8

SKIP:

sub r3, r6, r5 IF ID EX ME WB IF ID EX ME WB

lw r9, 0(r3) IF ID EX ME WB IF ID EX ME WB

Equal performance.

The add instruction in the delay slot is only useful if the branch is not taken. So when the branch is taken the delay-slot version of
the code executes the add instruction but ignores the result (r9 is overwritten by the lw before being read), while the non-delay-slot
version fetches but then squashes the add instruction. Either way the first useful instruction after the branch is executed at the same
time in both ISAs (cycle 3 if the branch is not taken, and cycle 4 if the branch is taken).

7
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(b) How can Code Fragment 2 (above) be improved by profiling? Show the optimized fragment and how
profiling led to the optimized fragment.

�Optimized version of Code Fragment 2

# SOLUTION

# Code identical for both ISAs.

# Execution shown for delay-slot ISA.

# Cycle 0 1 2 3 4 5 6 7 8 9

bne r1, r2 LINEX IF ID EX ME WB

SKIP:

sub r3, r6, r5 IF ID EX ME WB

IF ID EX ME WB (Second execution of sub).

lw r9, 0(r3) IF ID EX ME WB

...

LINEX:

J SKIP: IF ID EX ME WB

or r6, r9, r8 IF ID EX ME WB

� Specifically, how did profiling help?

Brief answer that would get full credit: Profiling told us which branch outcome is more likely, and so we could re-arrange the code so
that the more-likely outcome is not taken, resulting in fewer wasted or squashed instructions.

Longer answer: The code above works best on both systems if the branch is not taken. Assume that with profiling we find that the
branch is mostly taken. In the code above the beq was changed to a bne and the following code was re-arranged, so now the branch
is mostly not taken. In the original code the add would be executed unnecessarily (or squashed) when the branch is taken. In the
profile-optimized code above the sub is executed one extra time if the branch is taken.

8
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Problem 4: [10 pts] The SPECcpu2006 integer suite has 12 benchmarks. Suppose instead it included only
four benchmarks, but those benchmarks were chosen fairly, given that only four could be chosen.

(a) Considering just the base score (or ignoring the base/peak distinction altogether), what is the disadvan-
tage of having just four benchmarks?

�Disadvantage of having four benchmarks.

Four is not enough to represent the broad range of characteristics found CPU and memory bound applications.

(b) Suppose that with this smaller set of benchmarks the difference between the base and peak scores was
smaller than if 12 benchmarks were used. Assume that in both cases the testers were skilled and followed
the rules. Also assume that the base score values were about the same with 4 or 12 benchmarks.

�Give a reason for the smaller difference that has to do with the different rules for base and peak tests.

In base tuning the same optimization switches must be used to prepare all benchmarks sharing a language. In peak, each benchmark
can have its own set of optimization switches. Base rules are designed so that testers do not perform time-consuming per-benchmark
tuning.

There are some optimizations that are good for a few benchmarks but bad for some others. Suppose such a switch helps 1% of the
benchmarks and hurts 20%, and has no effect on the remaining 79%. With twelve benchmarks testers are more likely to leave out such
switches because they might help just one benchmark but hurt several others. But with only four benchmarks there is a lower chance
that a switch that helps one benchmark would hurt the other three. Therefore testers would spend lots of time tuning benchmarks
under base tuning, which is not what the base tuning is supposed to measure.

Grading Note: Nobody got this right, nor did anyone mention the common-switch rule for base that was the
key to answering this question.

�Does the smaller difference indicate that base and peak are not measuring what they should?

Yes, they are not measuring what they should because base is supposed to indicate normal compiling effort, but with so few benchmarks
testers could still get away with per-benchmark tuning (see previous answer).

9
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Problem 5: Answer the questions below.

(a) [14 pts] Write the following MIPS code fragments with the minimum number of instructions. If you
don’t know the exact mnemonic, such as mtc1 or cvt.w.f, make up something that sounds right.

�Put constant 0x12345678 into register r1.

# Solution

lui r1, 0x1234

ori r1, r1, 0x5678

� Jump to address 0x72345678 from address 0x1000.

# Solution

lui r1, 0x7234

ori r1, r1, 0x5678

jr r1

� Jump to address 0x72345678 from address 0x1000 using a SPARC-like jmpl (but in MIPS, like Homework
2).

# Solution

lui r1, 0x7234

jmpli r0, r1, 0x5678

�Registers r1 and r2 contain integers. Write register f4 with the sum as a single-precision floating point
number.

# Solution

add r3, r1, r2

mtc1 f2, r3

cvt.w.s f4, r2

10
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(b) [10 pts] Typical CISC ISAs have a range of immediate sizes for use in ALU instructions, up to the data
size limit. (Say, 8, 16, 24, and 32 bits). MIPS, and other RISC ISAs, have just one immediate size for ALU
instructions.

�Why can’t MIPS have a 32-bit immediate?

Because the entire instruction is 32 bits, there would be no place to put it.

�Why can a CISC ISA have a 32-bit immediate?

CISC ISAs have variable-size instructions, and so the instruction size can be adjusted to accommodate whatever immediate size is
needed.

�Why would there be no benefit for MIPS to have both 8- and 16-bit immediate sizes for arithmetic instruc-
tions?

�What is the benefit for CISC ISAs in having 8-, 16-bit, (and more) immediate sizes for arithmetic instruc-
tions?

The instructions would be smaller, and then so would the programs. On modern general purpose systems the benefit would be a
smaller instruction cache (not yet covered).

11
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Problem 1: (15 pts) The statically scheduled MIPS implementation including the floating-point pipeline
is illustrated below.

format

immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M

1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

MTC1

(a) Consider the instruction mtc1 f2, r4. On the diagram above show the path taken by the data on its
trip from r4 to f2.

�Show path taken by value using a squiggly line on the diagram above.

The path is highlighted in red with dashes instead of squiggles. Note that mtc1 uses the rt field for the integer register. The ALU
will set its output to the value at its lower input.

(b) The control logic for the FP pipeline needs only a small change to handle mtc1. Make that change above.
(This has nothing to do with the bypass problem below.)

�Control logic for mtc1 in diagram above. (Ignore bypasses.)

Change appears in green. Both the lwc1 and mtc1 instructions take a value from the integer pipeline and write it to the FP register
file in the integer WB stage. So for detecting WF structural hazards the same logic can be used with the addition of a box for detecting
the mtc1 opcode.

2
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(c) Add the hardware needed to implement swc1. Add only datapath, not control logic.

�Datapath for swc1.

The added hardware will provide a way for a value read from the FP register file to hop over to the “Data In” connection on the
ME-stage memory port. The EX stage is the critical-path friendly place to do that, the change appears in blue.

3
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Problem 1, continued:

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

lui r1, 0x4593 IF ID EX ME WB

ori r1, r1, 0x819c IF ID EX ME WB

mtc1 f1, r1 IF ID EX ME WF

add.s f2, f2, f1 IF ID A1 A2 A3 A4 WF

mtc1 f4, r4 IF ID EX ME WF

sub.s f6, f4, f1 IF ID A1 A2 A3 A4 WF

swc1 f6, 0(r5) IF ID -------> EX ME WF

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

(d) The code fragment execution (pipeline diagram) above could not occur on the pipeline above because
certain bypass paths are needed.

�Add those bypass paths for the code above.

The bypass paths appear in blue in the diagram below.

�Show the cycle in which each added bypass path is used by the code above.

See the blue circles in the diagram below.

(e) Add control logic needed to detect the bypass used from mtc1 to sub.s. The logic should deliver a signal,
BYPASS, to the stage containing the bypass multiplexors. The BYPASS signal should be true if the bypass is
needed.

�Logic generating mtc1 to sub.s bypass signal.

Solution appears in red below; the green changes are from part (b). The dependence is detected by the = box, comparing the fs
source of the instruction in ID (register f4 of the sub.s, compared in cycle 6) to the destination of whatever instruction is two
stages from WF, that would be the mtc1 in the example (also during cycle 6). The comparison unit output is connected to an AND
gate which makes sure that there is an mtc1 two stages from WF. (Just checking we would tell us that something is two stages from
WF, but for our purposes we need to know whether it’s an mtc1 because that is the only instruction that can use the bypass path.)
The problem just asked for a signal named BYPASS, not that it be connected to anything, but the solution goes a bit further showing
that BYPASS is connected to the ID/EX latch. Connecting BYPASS directly to the added fsv multiplexor would be wrong.

Diagram on next page.
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format

immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
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dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M

1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

5

7

11

is mtc1

mt

=
15:11

fs

BYPASS
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Problem 2: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 214-entry BHT. One system uses a bimodal predictor,
one system uses a local predictor with a 16-outcome local history, and one system uses a global predictor
with a 16-outcome global history.

Branch B1 is random, and can be described by a Bernoulli random variable with p = .5. The outcome of
branch B3 will always be the same as the most recent outcome of branch B1. (That is, if an execution of B1
is taken, the next execution of B3 will be taken.) Branch B2 has a repeating pattern, it repeats twice below.

B1: r r r r r r r r

B2: T N T N N T N N N T T N T N N T N N N T

B3: R R R R R R R R

For the questions below accuracy is after warmup.

�What is the accuracy of the bimodal predictor on B2?

The 2-bit counter values are shown below. Note that the same counter value is present at the beginning and end, so the first occurrence

of the pattern can be used to compute the prediction ratio. That would be an unimpressive 4
10 = .4 (40%).

# SOLUTION Work

1 2 1 2 1 0 1 0 0 0 1 <-- Counter values

B2: T N T N N T N N N T T N T N N T N N N T

x x x x x x <-- Prediction outcome.

�What is the accuracy of the bimodal predictor on B3?

The branch is random and uncorrelated with itself so there is no way prediction accuracy can be anything other than .5 .

�What is the accuracy of the local predictor on B2?

The pattern length is ten outcomes, which can easily fit within the 16-outcome local history, and so the accuracy will be 1 .

�How small can the local history size be made without affecting the accuracy of branch B2? Explain.

The local history can be as small as 5 outcomes . A local history size of four would be too small, in that case local history pattern
NTNN could be followed by both a T or N outcome, precluding 100% accuracy. The table below shows all of the five-outcome patterns
that are possible (sorted and original order), followed by the outcome. We know that five are sufficient because each distinct history
is followed by only one possible outcome.

---Sorted----- -- Original Order--

Hist Outcome Hist Outcome

NNNTT N TNTNN T

NNTNN N NTNNT N

NNTTN T TNNTN N

NTNNN T NNTNN N

NTNNT N NTNNN T

NTTNT N TNNNT T

TNNNT T NNNTT N

TNNTN N NNTTN T

TNTNN T NTTNT N

TNTNN T TTNTN N

TTNTN N TNTNN T

�What is the accuracy of the local predictor on B3?
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The local predictor can only “see” B3 and so is just as helpless as the bimodal predictor, the accuracy will be .5 .

�What is the accuracy of the global predictor on B3?

Branch B3 is perfectly correlated with B1, and the global predictor can “see” B1, thanks to the generous 16-outcome global history

register. So after warmup accuracy will be 100% .

�How small can the global history size be made without affecting the accuracy of branch B3? Explain.

Five outcomes.

Five is the size needed to hold the r N N N T pattern, which has the longest separation between B1 and B2.

�How many PHT entries are used by B2 in the system using the local predictor?

Not counting warmup, ten entries . During warmup up to 15 additional patterns would be used for the first 15 times branch B2

was encountered. What those 15 patterns are is determined by the contents of the local history field in the BHT entry for B2 before
B2 was first executed. That local history field might contain the outcomes for some aliased branch, or else whatever values were set
when the power was turned on (random, or perhaps intentionally initialized to 0).

�What is the warmup time of the global predictor on branch B3?

There are four patterns of GHR value that will be present when predicting B3, for example, TRrNTRrNNTRrNNNT. The r and R in
this pattern can be T or N. If B1 and B3 were not correlated then the six arrs could have 26 = 64 possible values. But they are and
so the big R will always have the same outcome of the little r to its left. There are two such pairs in the pattern, and two unpaired
ars to the total number of instances of this pattern is 24 = 16. Now, assuming that there are 16 instances of each of the remaining
three patterns there would be a total of 64 possible GHR values and so 64 PHT entries would be used, each of which requires two
updates to warm up in the worst case. The warmup time would then be at least 128 executions of B3.

7
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Problem 3: (10 pts) Suppose that in a MIPS-I system using a bimodal predictor there were BHT collisions
on 5% of the predictions. (A BHT collision occurs when two branches use the same BHT entry.) A BHT
entry stores both a 2-bit counter and the branch’s 16-bit displacement. Grading Note: The contents of a
BHT entry was not in the original exam.

Consider a design alternative in which a tag were used to detect BHT collisions, in the same way a cache
uses a tag to detect hits (or misses).

(a) How large would the tag have to be to perfectly detect misses on a MIPS-I system using a 214-entry
BHT?

�Tag size needed, reason:

The BHT is indexed using the low bits of the branch PC, omitting alignment bits of course. That would be bits 15:2 in this case.
The higher bits, 31:16 would form the tag, and so that tag size would be 16 bits .

(b) Suppose that the storage budget for the BHT was fixed at the number of bits in a 214-entry BHT without
tags.

�About how many entries would there be in a BHT with tags?

Two solutions appear below. One is for a BHT entry that only stores a 2-bit counter. That was what the original question implied.
The second is for a BHT that stores the branch displacement.

Solution Ignoring Displacement: The existing BHT uses 214 × 2 = 215 bits. If the BHT held the tag, not just the two
bit counter, its capacity would be 2x × 18 ≈= 2x+4 bits, where 2x is the number of BHT entries. Solving 2x+4 = 215 for

x yields x = 11, so the tagged BHT would have 2048 entries , one eighth its original size. The net result would be an increase
in collisions, but now at least we can detect those collisions. Note: That last sentence needs to be read with an air of
foolish confidence.

Solution Using Displacement: An existing BHT entry requires 18 bits, 16 for the displacement and 2 for the counter. Also
including the tag would nearly double the size. To keep the costs equal the number of entries in the tagged BHT would have to be

halved. Therefore, The tagged BHT would have 213 = 8192 entries.

(c) Based on the answer to the previous part, could we use a tagged BHT if the benefit of detecting collisions
were small, moderate, or large?

�Benefit needs to be small, medium, or large. Explain.

Solution Ignoring Displacement: With a factor of eight reduction in BHT size the benefit of detecting a collision needs to be
large. Extra large, maybe.

Solution Using Displacement: Since the BHT is half the size we would expect more collisions, exactly how much more is hard
to say. Therefore there would have to be at least a moderate benefit in doing so.

(d) What is the benefit of detecting BHT collisions on a four-way superscalar statically scheduled MIPS
implementation?

�Benefit for 4-way MIPS:

Solution Ignoring Displacement: Here we are assuming that a correct branch target is available despite the BHT collision.
There is no benefit at all because knowing that there is a collision does not help in making a prediction. It’s better to use an unreliable
prediction that might be right than to stall the pipeline until the branch resolves (thereby guaranteeing performance loss).

Solution Using Displacement: If there is a BHT collision then the branch displacement is likely wrong. Therefore, predicting
the branch taken is likely going to result in a target misprediction. Therefore, on a collision we should predict the branch not taken,
which might have just a .5 chance of being correct, but that’s better than predicting taken and having a nearly certain chance of
getting the target wrong.

8
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Problem 4: (15 pts) The diagram below is for a set-associative cache with a line size of 64 bytes and a
tag size of 11 bits. The system has the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32 b

32 b

31:21

20:2

31:2120:6

20:6

20:2

�Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 21

Index

20 6

Offset

5 2 1 0

�Cache Capacity (Indicate Unit!!):

The cache capacity can be determined from the following pieces of information: the 11-bit tag (given explicitly in the first paragraph),
the 2-way associativity (by noting the diagram has 2 “ways”), and the 32-bit address space (from the number of address bits shown in
the diagram near the upper-left). From the 11-bit tag and 32-bit address space we know that the low tag bit is 32−11 = 21, and so

the capacity of a way is 221 bytes or 2MiB. Since the cache is 2-way the total capacity is 221 × 2 = 222 characters or 4MiB .

�Associativity:

Associativity is 2

by inspection of the diagram.

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity, 222 characters, plus 2 × 221−6 (32 − 21 + 1) bits.

�Show the bit categorization for a direct mapped cache with the same capacity and line size.

9
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Address:

Tag

31 22

Index

21 6

Offset

5 2 1 0

10
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Problem 4, continued:

(b) The code below runs on a 32MiB direct-mapped cache with a 256-byte line size. Initially the cache is
empty; consider only accesses to the array.

�What is the hit ratio running the code below? Explain

double sum = 0.0;

double *a = 0x2000000; // sizeof(double) == 8

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ 4 * i ];

The line size of 28 characters is given, the size of an array element is 8 = 23 characters, and so there are 28−3 = 25 elements per
line. However, because the array index is multiplied by four only every fourth element is read, or 25/4 = 23 elements per line. The
first access, at i=0, will miss but bring in a line with 25 elements, the next 23 − 1 accesses will be to data on the line, but eighth
access after the miss will miss again. Therefore the hit ratio is 7

8 .
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Problem 5: (15 pts) Several possible new MIPS instructions appear below. Show how each instruction can
be encoded and show datapath changes needed to implement the instruction.

• The changes cannot break existing instructions.

• The changes can not have a large impact on clock frequency.

• A shift unit is present, but not shown.

Note: The original exam only asked for a summary of datapath changes, and did not mention the shift unit
or clock frequency.

Also indicate the relative difficulty of implementing the instruction. If an instruction is deemed moderate or
difficult indicate the most important reasons why.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

Continued on next page.
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(a) The sllii instruction is like an lui except it can shift the immediate by any amount. For example,
sllii r1, 0x1234,16 would be equivalent to an lui r1, 0x1234.

sllii r1, 0x1234, 6 ! r1 = 0x1234 << 6

�Show possible encoding (instruction format (R, I, etc) and field (rs, rt, etc) usage):

Because it has an immediate and register it would have to be format I. The rs field will be used to hold the shift amount, leaving
the role of the rt field unchanged.

Format I :

Opcode

sllii

31 26

rs

6

25 21

rt

1

20 16

immed

0x1234

15 0

�Easy, moderate, or difficult to implement:

�Show datapath changes.

This should be easy because there already is a shift unit (for the sll and friends). For the new instruction the “shiftee” input to the
shift unit will also have to connect to the ID/EX.IMM latch, and the shift amount input would have to connect to a new ID/EX.rs

latch (not to be confused with ID/EX.rsv).

13
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Problem 5, continued:

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

(b) The adds (add scaled) can shift the second operand left by any amount.

adds r1, r2, r3, 4 ! r1 = r2 + ( r3 << 4 )

�Show possible encoding:

The encoding is easy, just put the shift amount in the sa field. In fact, there would be no reason to choose a new func field value
because add is ordinarily defined with an sa field value of 0.

Format R :

Opcode

0

31 26

rs

2

25 21

rt

3

20 16

rd

1

15 11

sa

4

10 6

func

5 0

�Easy, moderate, or difficult to implement:

�Show datapath changes.

This would be moderately difficult to implement because the shift needs to be performed before the ALU operation. Since arbitrary
shifts cannot be done quickly, a stage would have to be added between ID and EX.

14
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(c) The addsid instruction produces a sum like add but one operand is obtained from memory.

addsid r1, r2, (r3) ! r1 = r2 + Mem[r3]

�Show possible encoding:

The encoding here is also easy. Make the memory address register rt.

Format R :

Opcode

0

31 26

rs

2

25 21

rt

3

20 16

rd

1

15 11

sa

0

10 6

func

addsid

5 0

�Easy, moderate, or difficult to implement:

�Show datapath changes.

This is difficult because the memory port is in the stage after the ALU. There are no reasonable ways to get the value read from
memory back to the ALU. Here are some unreasonable ways:

Add a new stage between ID and EX, and put a memory port there. This isn’t a good idea because memory ports are expensive.

Add a new stage, call it MS (memory source). Unlike the solution above, the MS stage will share a memory port with ME. This will
require a multiplexor on the memory port address input, as well as control logic to detect the structural hazard. Further, it will likely
strain critical path since it’s the memory port that is hardest to squeeze into one cycle.

Add a new stage, EX2, after ME, the new stage will have an ALU to do any operations that could not be done in EX. Besides the
cost, there will be bypass issues with this solution.

15
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Problem 6: (10 pts) Consider a single four-way superscalar implementation and a chip with four scalar
implementations (like our five-stage MIPS). Both are statically scheduled and have similar features.

�Why might the clock frequency of the superscalar system be lower than the scalar systems?

Bypass paths are the main culprit in several ways. First, physical distances are larger and so there will be higher propagation delays.
Bypass multiplexors will also have more inputs, 2n inputs each for an n-way superscalar. If control logic is placed in ID then that
should not have an impact on clock frequency for something as small as a 4-way system.

�Why might the chip area (or cost) of the four scalar systems be less than the superscalar system?

An n-way, 5-stage superscalar might have about 2n2 bypass paths, whereas n scalar systems would just have 2n paths. For that
reason the scalar systems would cost less. There might be some savings with the superscalar systems, such as fewer memory ports or
floating-point units.

�How does the average program run less efficiently on the superscalar system than on one of the scalar
systems? (Less efficiently means more stalls and squashes.)

There are only a few instruction pairs that can cause the scalar system to stall, such as a load followed by an instruction that
uses the loaded value. There are no stalls for consecutive dependent arithmetic instructions, and no stalls or squashes for taken
branches (assuming the needed bypasses are present). In contrast, dependent instructions in the same group (fetched together) on
the superscalar system will cause a stall. For that reason, execution will be less efficient.

�Given the answers above, why does a typical chip have two four-way superscalar implementations rather
than eight scalar implementations? (Please do not confuse eight scalar implementations with one eight-way
superscalar system.)

Lets consider the simpler tradeoff of one 4-way superscalar vs. four scalar processors. If a program could be perfectly parallelized
(achieve linear speedup) then it would execute faster with four scalar processors because their clock frequency would be higher and
because there would be fewer stalls. However, writing parallel code is often difficult, for some classes of programs very very difficult.
The 4-way superscalar is faster for the programs you already have. (Beyond 4-way efficiency drops sharply, which is why chips have
several 4-way cores.)
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Problem 7: (15 pts) Answer each question below.

(a) One use for exceptions is to implement rare or specialized instructions in software (called emulation).
One example is the SPARC quad-precision arithmetic instructions, such as faddq f4, f8, f12 (floating-point
add quad). No existing SPARC implementation can execute these instructions in hardware.

�Why would faddq have to raise a precise exception in order to be emulated?

The emulation code will reproduce what the faddq was supposed to do, meaning it will read the source registers, compute a 128-bit
floating-point sum, and write that sum to the destination registers. It will then resume execution at the instruction following faddq.
To do that the exception handler (which calls the emulation code) must be reached as though execution jumped to the handler just
before the faddq (the precise exception definition). If the exception were not precise then execution might have reached several
instructions after faddq, perhaps overwriting one of its source registers, making it impossible to emulate, and anyway making it
impossible to return to the instruction after faddq (which would then execute a second time).

(b) Consider an implementation similar to our pipelined MIPS in which a floating-point overflow on a fmuld

did not raise a precise exception (because the hardware to do so would not be worth the trouble).

�Does that mean it would not be possible for the faddq to raise the precise exception needed for emulation?
Explain.

No, because the faddq would raise an illegal instruction exception, which is detected early enough to be precise.
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(c) Answer the following questions about the SPECcpu benchmarks.

�Why are branches in the FP suite easier to predict than branches in the integer suite?

Because many programs in the FP suite perform scientific calculations, which typically operate on large sets of uniform data. Loops
have many iterations, making them easier to predict.

�Why is it important that the source code is available for the SPECcpu benchmarks?

SPECcpu is intended to measure the potential of new ISAs and new implementations. The tester compiles the source code for the
particular implementation being tested, presumably in such a way that brings out the tested system’s full potential. If source code
were not included the suite would have to provide pre-built executables. These could not be used to test new ISAs since SPEC
wouldn’t have the tools to build code for them (because they are new). New implementation might benefit from new compilers, which
SPEC could also not be expected to have.

(d) Answer each ISA question below:

�Describe a feature of VLIW ISAs that distinguishes them from RISC and CISC ISAs.

Instructions are handled in groups called bundles. A bundle includes several (usually 3) instructions plus a field (sometimes called a
template) providing dependency and other information.

�Describe a feature of CISC that distinguishes it from RISC.

Instructions can vary in length. Memory access is not restricted to load and store instructions. For example, an arithmetic instruction
can load operands from memory and write a result to memory.
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Problem 1: [30 pts] The code below executes on the illustrated FP pipeline.

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M
1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0
1

2

LOOP:

ldc1 f0, 0(r1)

addi r1, r1, 8

mul.d f2, f0, f0

bneq r1, r2, LOOP

add.d f6, f6, f2

(a) Add reasonable bypass paths needed by the code above, for both the integer and FP pipelines.

�Add reasonable bypass paths. Don’t add unneeded bypass paths.

See discussion in the next part.
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(b) Analyze the performance of the code using your bypasses:

� Show a PED for the code above using your bypasses. (Use this page or next page.)

The PED appears below. Three additional bypasses are needed for the code below. In cycle 4 mul.d uses two bypasses, from WF to
M1, for the value loaded by ldc1. Also in cycle 4, bneq uses a bypass from ME to ID. In cycle 10 the add.d uses a bypass from
WF to A1 (this would be one of the bypasses to mul.d).

# SOLUTION

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ldc1 f0, 0(r1) IF ID EX ME WF

addi r1, r1, 8 IF ID EX ME WB

mul.d f2, f0, f0 IF ID M1 M2 M3 M4 M5 M6 WF

bneq r1, r2, LOOP IF ID EX ME WB

add.d f6, f6, f2 IF ID ----------> A1 A2 A3 A4 WF

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ldc1 f0, 0(r1) IF ----------> ID EX ME WF

addi r1, r1, 8 IF ID EX ME WB

mul.d f2, f0, f0 IF ID M1 M2 M3 M4 M5 M6 ..

bneq r1, r2, LOOP IF ID EX ME WB

add.d f6, f6, f2 IF ID ----------> ..

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ldc1 f0, 0(r1) IF ----------> ..

�Compute the CPI of the code for a large number of iterations.

The iteration starting at cycle 5 and 14 start with the pipeline in the same state (ldc1 in IF, add.d in ID, bneq in EX, etc.) and
so the iteration starting at cycle 5 will match future ones. The iteration starting at cycle 5 takes 14 − 5 = 9 cycles and uses five
instructions, so the average instruction execution time is 14−5

5=1.8CPI .
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Use this page for PED, if needed.

LOOP:

ldc1 f0, 0(r1)

addi r1, r1, 8

mul.d f2, f0, f0

bneq r1, r2, LOOP

add.d f6, f6, f2
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Problem 1, continued:

(c) A component failure in the MIPS implementation below has changed the circled OR gate into an AND
gate.

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M
1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0
1

2

� Is it still possible to perform a FP multiply? If yes, show how with PED, if no explain.

# Original Code. (For answer show modified code with PED.)

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

mul.d f0, f2, f4 IF ID M1 M2 M3 M4 M5 M6 WF

nop IF ID EX ME WB

nop IF ID EX ME WB

Yes. First consider the original code with two nops added, above. In cycle 3 the mul.d is in M2, the circled gate will have a 1

input from the M1/M2.we latch and a 0 input from the uses FP add logic, and so its output will be zero, snuffing out the mul.d
instruction.

Now consider the code execution below in which the second nop is changed to an add.d. In cycle 3 the mul.d in M2 will be
“helped” by the add.d in ID and so the output of the circled gate will be 1; with this help the mul.d will complete normally.

The add.d stalls in ID in cycle 3 (as it should) but in cycle 4 it suffers the same problem as the mul.d in the original code: the
we signal is 0 when it should be a 1. As a result the add.d will not finish completely. All other logic is working correctly so there
is no way to “fix” the add.d’s we signal in the later stages and so there is no way the add.d can finish.

# SOLUTION Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

mul.d f0, f2, f4 IF ID M1 M2 M3 M4 M5 M6 WF

nop IF ID EX ME WB <- Other insns would work.

add.d f8, f2, f4 IF ID -> A1 A2 A3 A4 WF <- Let mul go through.

� Is it still possible to perform a FP add? If yes, show how with PED, if no explain.
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# Original Code. (For answer show modified code with PED.)

add.d f0, f2, f4

No. See the solution to the previous part.
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Problem 2: [30 pts] The MIPS-A ISA is like MIPS-I except that load and store instructions use only the
rs register value for an address, they don’t add an offset (or anything else). As a result MIPS-A can be
implemented with a four-stage pipeline.

(a) Our familiar 5-stage MIPS-I implementation appears below with one of the pipeline latches missing.
Make additional changes so that this is a reasonable four-stage implementation of MIPS-A.

� Show all connections to the memory port.

�Cross out wires and other items that are not needed, add what is needed.

The memory port address input should be connected to the output of the upper ALU mux. The bypass connections that used to be
from ME should be removed. Ask for a diagram if needed!

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

Addr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Out

ALU

MD

dst dst
Decode
dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

0 1

15:0

(b) Describe two ways in which this MIPS-A implementation costs less than the five-stage MIPS-I.

�Two reasons for lower cost.

Reason 1: No ME to EX bypass connections (including the wires themselves, multiplexor inputs and control logic). Reason 2: No
EX/ME pipeline latches.

7

← → Spring 2009 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4720/2009/mt_sol.pdf


Problem 2, continued:

(c) The four-stage MIPS-A implementation may be faster or slower than the five-stage MIPS-I.

�Provide a pair of equivalent code fragments, one for MIPS-I that runs on the five-stage implementation and
one for MIPS-A that runs on the four-stage, in which the MIPS-A version is faster. Hint: The MIPS-I code
will have a familiar stall.

Because the memory port and ALU are in the same stage the MIPS-A implementation can bypass a load value to the next instruction,
avoiding a stall that occurs in MIPS-I. See the two code fragments. Note that the fact that WB occurs in four rather than five cycles
of IF is not in itself a performance advantage, the advantage is in avoiding the stall.

# SOLUTION

# MIPS-I

lw r1, 0(r2) IF ID EX ME WB

add r3, r1, r4 IF ID -> EX ME WB

# MIPS-A

lw r1, (r2) IF ID EM WB

add r3, r1, r4 IF ID EM WB

�Provide a pair of equivalent code fragments, one for MIPS-I that runs on the five-stage implementation and
one for MIPS-A that runs on the four-stage, in which the MIPS-A version is slower. Hint: Think about the
difference in the ISAs.

MIPS-A will have to perform additions to retrieve data at an offset (small distance) from some base address, something that MIPS-I
can avoid. See the examples below.

# SOLUTION

# MIPS-I

lw r3, 0(r2)

lw r4, 4(r2)

# MIPS-A

lw r3, (r2)

addi r2, r2, 4

lw r4, (r2)

(d) A company needs to decide whether to develop MIPS-I or MIPS-A. How does it decide? Assume that
at this point software compatibility is not an issue.

�How should company decide which to develop?

Benchmarks based on customers’ workloads should be analyzed to determine how often loads ands stores use non-zero offsets and
how often a load/use stall cannot be avoided. If there are more unavoidable load/use stalls than non-zero offsets then MIPS-A might
be better, otherwise MIPS-I might be better.

�Will having skilled compiler writers tilt the decision towards MIPS-A or MIPS-I? Explain.

MIPS-I, because the compiler can schedule to avoid load/use stalls, but there is little the compiler can do to avoid using offsets in
most cases.

8
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Problem 3: [10 pts] Answer the questions below.

(a) Why does MIPS have a beq but does not have a blt (branch less than), even though a blt instruction
would be frequently used?

�Why beq but no blt?

Because the magnitude comparison needed for blt would take more time than the equality comparison needed for beq, long enough
to lengthen the critical path.

(b) Explain why a branch delay slot can be though of as a short-sited feature in an ISA.

�Delay slots are good when...

The implementation has five stages and is scalar. Execution proceeds without a stall or squash whether or not a branch is taken
(assuming no difficult dependencies).

� ...but delay slots are bad when...

The implementation is superscalar or deeper than five stages (roughly). In that case more than one instruction will be fetched by the
time a branch is resolved and so instructions will have to be squashed. The benefit is smaller, but all of the complexity is still there.

9
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Problem 4: [20 pts] The doing-it-the-hard-way MIPS code below loads the constant 1
3 in IEEE 754

single-precision format, 0x3eaaaaab, into register f2.

addi r10, r0, 1

addi r20, r0, 3

mtc1 f12, r10

mtc1 f22, r20

cvt.s.w f14, f12

cvt.s.w f24, f22

div.s f2, f14, f24

(a) Describe what the mtc1 and cvt.s.w instructions do.

�Explain mtc1

Move to co-processor 1. This moves the value in r10 to f12. It only moves it, it does not do format conversion.

�Explain cvt.s.w

Convert word (32-bit integer) to single (IEEE 754 single-precision floating point).

(b) The code above uses more instructions than are necessary and also uses a wastefully time-consuming
instruction.

�What is the wastefully time-consuming instruction?

The divide, div.s. It’s time-consuming because it’s a divide, it’s wasteful because it’s computing something at run time that could
have been computed at compile (or assembler-writing) time. See the next part.

�Re-write the code so it uses fewer instructions without using load instructions. Hint: A correct answer uses
three instructions and a piece of information slipped into the first sentence of the problem.

Rather than computing it, just load the pre-computed FP value of 1
3 into a register:

# Solution

lui r10, 0x3eaa

ori r10, r10, 0xaaab

mtc1 f2, r10
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Problem 5: [10 pts] Answer the following SPECcpu questions.

(a) In the SPECcpu2000 suite profiling was allowed for both base and peak results but in SPECcpu2006
profiling is allowed for peak results but not for base results.

�Why isn’t profiling allowed for base results in SPECcpu2006? Your answer should say something about the
difference between base and peak.

The base results should reflect the performance attainable with normal effort. Profiling requires selecting a training set, compiling
the program with instrumentation on, running the code on the training set, then re-compiling. Most programmers don’t go to so
much trouble.

(b) Company A has a reputation for reliable compilers, company B has a reputation for buggy compilers.
Both companies and their customers are okay with this. (Think Italian sports cars.)

Optimization X results in a substantial improvement in SPECcpu base scores. Company B has it in their
shipping compilers (those sold to customers) but company A only has optimization X in their experimental
compilers (not available to customers), but they are working hard on it. The optimization achieves the same
results for company A and B. Company B’s compiler will not run on company A’s system (as though they’d
want to!). Grading Note: The last line was not in the original exam, but a student did see the possibility of
using B’s compiler for A’s spec run.

�Can Company A use optimization X to prepare SPECcpu2006? Explain.

No, because they do not sell the compiler as a product.

�Can Company B use optimization X to prepare SPECcpu2006? Explain.

Yes, because the compiler is a product.

�Your answers above should reflect the letter of SPEC’s rules. Do you think this achieves SPECcpu’s goals
or what you would like to see in benchmark results? Explain.

Yes, because SPECcpu does not claim to measure factors other than performance, such as cost, power consumption, or reliability.
A person deciding between Company A and Company B’s systems would balance the performance as measured by the SPECcpu
numbers against the companies’ reputations for quality. If A and B used the same compiler there would be no way to make this
judgment.
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Problem 1: (20 pts) The MIPS implementation below, taken from the solution to last semester’s final,
includes hardware to implement an exception test instruction.

Several wires on the diagram are broken with heavy solid lines and marked with Fx and a value (mostly 0).
These indicate potential fault locations. If there is no fault the wire acts normally, if there is a fault the wire
is broken at the heavy line and the free half takes on the indicated value. For example, if fault Fa is present
the bottom input to the OR gate is always zero however the ID/EX.we signal on the other side is unaffected.

format

immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data
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D In

+1

PC

Mem
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Data
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Mem

Port
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Outrtv
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dest. reg
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FP Reg File

fdfd
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D InWE
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Data

fsv

ftv

15:11

20:16 M6

we we

Decode

dest. reg
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A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M

1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0

1

2

is test

e

e

0

1

2

1’b0

t t

Changes to stall for test insn.

Logic to

suppress

WF if

exception

occurs

before test.

Fa
0

Fb
0

Fc1

The problem here is to detect which fault, if any, is present by running test programs. One test program,
and a pipeline diagram, appears below. A handler has been set up that will set a goodException variable
to 1 if register and memory values are as expected, otherwise it is set to -1. The goodException variable is
initialized to 0 before each test.

2

← → Spring 2009 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2009/fe_sol.pdf


Problem 1, continued:

# Test 1: The mul should raise a precise exception.

# Initial: f0 = 1; r1 = 20; Mem[r2] = 50; f2 * f4 = NaN

# Cycle 0 1 2 3 4 5 6 7 8 9

Many nops.

mul.s f0, f2, f4 IF ID M1 M2 M3 M4 M5 M6x

test IF ID -------> EX MEx

sw r1,0(r2) IF -------> ID EXx

(a) When a test is run the exception handler is called (because the tests intentionally raise an exception).
A handler is shown below, written in C, but the handler does not set goodException correctly (not even
close). Modify the code so that goodException is set correctly based on the information provided by the
Test 1 code and comments. That is, goodException is set to -1 if the exception could not be precise.

int handler_fp(Regs *regs){

// Code below wrong, but shows how to read registers and memory.

// SOLUTION BELOW (Including commented-out line.)

// if ( regs->f10 == regs->f12 && is_nan(f14) && MemW(regs->r31) == 0x1234 )

if ( regs->f0 == 1 && MemW(regs->r2) == 50 )

goodException = 1; else goodException = -1;

}

The exception raised by an instruction is precise if it appears that execution cleanly reached the instruction and then jumped to
the handler (without executing the instruction). The solution, above, checks for two problems that might occur when the exception
originates in Test 1 (or other routines specially written for this handler): the faulting instruction should not write a register (f0 in
this case) and no following instruction should change a register or memory. The regs->f0 == 1 condition makes sure the multiply
did not write back (it would have written back a non-numeric value) and the MewW(regs->rs) == 50 condition makes sure that
the store did not execute (it would have changed the memory location to 20).

(b) Suppose Test 1 is run and goodException is set to -1 (it would be 1 in the no-fault case). Which of the
faults (Fa, Fb, or Fc) could have been responsible for the goodException value?

�Faults that are definitely present. Explain.

None. Any of the faults could be present. If Fa or Fb were present then the multiply would stall one less cycle than necessary allowing
the sw to write memory. If Fc were present then the mul would write memory (assuming that the adder exception output was 0).

�Faults that could be present. Explain.

See solution above.

3
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Problem 1, continued:

(c) Develop tests to determine for certain whether each of the faults is present. Test 1 and each of your tests
will be run, and based on the goodException values from each test one can say for certain which faults are
present.

Assume that at most one of the faults is present. Your tests should look similar to Test 1.

�Tests (Code like Test 1)

# SOLUTION

#

# Test 2: Will only fail if Fc is present.

# The mul should raise a precise exception.

# Initial: f0 = 1; r1 = 20; Mem[r2] = 50; f2 * f4 = NaN

# Cycle 0 1 2 3 4 5 6 7 8 9

Many nops.

mul.s f0, f2, f4 IF ID M1 M2 M3 M4 M5 M6x

test IF ID -------> EX MEx

nop IF -------> ID EXx

# Test 3: Will only fail if Fb is present.

# The add should raise a precise exception.

# Initial: f0 = 1; r1 = 20; Mem[r2] = 50; f2 + f4 = NaN

# Cycle 0 1 2 3 4 5 6 7 8 9

Many nops.

add.s f0, f2, f4 IF ID A1 A2 A3 A4x

test IF ID -> EX MEx

sw r1,0(r2) IF -> ID EXx

Test 2 above is like Test 1 except there is no sw, so fault Fa and Fb won’t cause incorrect operation, but Fc still will. Note that
Test 2 would not be necessary if the handler could set a variable indicating the reason for failure (either the sw writing memory or
the faulting instruction writing f0).

�Which combination of goodException values conclude Fa for certain.

Fa is present if Test 1 fails (goodException=-1) and Tests 2 and 3 pass (goodException=1). See the discussion about the
Test programs.

�Which combination of goodException values conclude Fb for certain.

Test 3, goodException=-1. Test 3 can’t be affected by Fa because the add instruction never passes through the M1 stage and
it can’t be affected by Fc because the add uses input 1 to the multiplexor anyway.

�Which combination of goodException values conclude Fc for certain.

Test 2, goodException=-1. Since there is no sw after the test instruction it can’t fail because of there were not enough stalls,
the only possibility is Fc.

4
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Problem 2: (20 pts) Answer each question below. Be sure to check each code fragment carefully for
dependencies.

(a) The loop below runs on a statically scheduled 4-way superscalar MIPS implementation.

�Show a pipeline execution diagram.

# SOLUTION

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

addi r2, r2, 8 IF ID EX ME WB

lw r1, 0(r2) IF ID -> EX ME WB

add r3, r1, r4 IF ID -------> EX ME WB

bneq r2, r5 LOOP IF ID -------> EX ME WB

sw r3, 4(r2) IF -------> ID EX ME WB

(XXX)

addi r2, r2, 8 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

�Determine the IPC for a large number of iterations and assuming no cache misses.

Iterations start at cycle 0 and 5. There are no reasons why the second iteration would be any different than the first so the

execution rate is 5
5 IPC.

�Comment on the difference between the IPC and the potential IPC of the processor.

The potential is 4 but we only get 1. That’s very inefficient for code without cache misses.

�Schedule the code to improve execution time.

# First iteration + 0x8

addi r2, r2, 8

lw r1, 0(r2)

add r3, r1, r4

# Second iteration + 0x10

addi r2, r2, 8

lw r1, 0(r2)

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

sw r3, -4(r2) IF ID EX ME WB

add r3, r1, r4 IF ID EX ME WB

lw r1, 8(r2) IF ID EX ME WB

bneq r2, r5 LOOP IF ID EX ME WB

addi r2, r2, 8 IF ID EX ME WB

(xxx) # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

sw r3, -4(r2) IF ID EX ME WB

add r3, r1, r4 IF ID EX ME WB

lw r1, 8(r2) IF ID EX ME WB

bneq r2, r5 LOOP IF ID EX ME WB

addi r2, r2, 8 IF ID EX ME WB

5
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The scheduled code appears above. Execution is shown on an implementation that can bypass a value from EX to the branch condition
comparison unit in ID. Work that was done in a single iteration in the original code is spread out over three iterations in the scheduled
code above. For example, the value loaded by the lw in iteration 1 is used by the add in iteration 2 and the sum produced by the
add in iteration 2 is used by the sw in iteration 3. This technique is called software pipelining.

6
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Problem 2, continued:

(b) The code below (same as the previous problem) executes on a 4-way superscalar dynamically scheduled
machine. Assume that branch prediction on this machine is perfect. Load instructions use the EA and ME

stages, branch instructions use the B stage, store instruction only use EA (they write memory when they
commit).

Though the machine is 4-way, assume an unlimited number of WB, EX, and RR stages.

�Show a pipeline execution diagram for two iterations.

# SOLUTION

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11

addi r2, r2, 8 IF ID Q RR EX WB C

lw r1, 0(r2) IF ID Q RR EA ME WB C

add r3, r1, r4 IF ID Q RR EX WB C

bneq r2, r5 LOOP IF ID Q RR B WB C

sw r3, 4(r2) IF ID Q RR EA WB C

(XXX)

addi r2, r2, 8 IF ID Q RR EX WB C

lw r1, 0(r2) IF ID Q RR EA ME WB C

add r3, r1, r4 IF ID Q RR EX WB C

bneq r2, r5 LOOP IF ID Q RR B WB C

sw r3, 4(r2) IF ID Q RR EA WB C

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11

�Determine the IPC for a large number of iterations.

The execution rate is 5
2 = 2.5 IPC.

7
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Problem 3: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 214-entry BHT. One system has a bimodal predictor,
one system uses a local history predictor with a 10-outcome local history, and one system uses a global
predictor with a 10-outcome global history.

The code has three branches, B1, B2, and B3. The outcome of B1 is random, described by a Bernoulli random
variable with p = .5 and is independent of everything. Branch B2 has a simple j-iteration loop pattern (j−1
T’s and an N) and branch B3 is a repeating pattern of k N’s followed by k T’s (see diagram below). Also
from the diagram notice that B1 occurs just before B2 but that a set of j B1 and B2s occur between each B3,
(similar to a branch in the homework and last semester’s final).

A A A

------------------ ------------------ ------------------ ...

B1: R R R ... R R R R ... R R R R ... R

B2: T T T ...T N T T T ...T N T T T ...T N

!<--- j --->!

B1&2: A A A A

B3: N N N ... N T T T ... T N N N ... N T...

!<--- k Ns --->! !<--- k Ts ---->! !<--- k Ns --->! ...

For the questions below accuracy is after warmup.

�What is the accuracy of the bimodal on B1?

The branch is random and uncorrelated so there is no way prediction accuracy can be anything other than 0.5 .

�What is the accuracy of the bimodal on B2 in terms of j?

The Ts will all be correctly predicted the Ns will all be mispredicted, so the accuracy is j−1
j , for j = 5 that would be 4

5 = 0.8.

�What is the accuracy of the bimodal on B3 in terms of k?

When k > 2 there will be two mispredicts after each change from N to T or T to N. Therefore the accuracy is k−2
k . For k = 4

the accuracy is 0.5.

�What is the accuracy of the local predictor on B3 when k ≫ 10 and j < 5 in terms of j and k?

When j < 5 the patterns generated by B2 cannot match the patterns generated by B3. The only PHT entries that will result in
a misprediction of B3 are the all Ns, and all Ts, and they will only be wrong just at the N to T or T to N transition. Therefore

the accuracy is k−1
k .

�What is the accuracy of the local predictor on B3 when k ≫ 10 and j > 10 in terms of j and k?

With j > 10 both B2 and B3 will have local history TTTTTTTTTN. For B2 the next outcome is T, but for B3 the next outcome
is N. B2 will generate the local history far more frequently and so it will keep the respective PHT entry at 3. So now branch
B3 will mispredict at the transition (where its local history will be all Ns or all Ts) and at pattern TTTTTTTTTN. It’s overall

accuracy will be 2k−3
2k .

�What is the accuracy of the global predictor on B3 when j = 10 and k is very, very large, in terms of j
and k?

Because the local history size is 10 and j = 10 the GHR (global history register) contents seen when predicting B3 does not contain
any past outcomes of B3, it only contains B1 and B2 outcomes, neither of which are helpful. Therefore at each transition there will
be mispredicts until the PHT entries warmup, after which accuracy will be 1.0 until the next transition. If k is very very large we can
say that the accuracy will be very very close to 1.0 . Not satisfied? See the next problem.
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�What is the warmup time for B3 on the global predictor. (This warmup occurs whenever B3 switches
from Ns to Ts or Ts to Ns.) in terms of j and k?

The global history encountered when predicting B3 contains 5 B1 outcomes and 5 B2 outcomes. The GHR contents will be
rTrTrTrTrN, where r are the B1 outcomes and the other elements are B2 outcomes. Since B1 is random the r can be ei-
ther N or T. There are five of them and so there are 25 = 32 patterns of this form. Each corresponding PHT entry needs to warm

up on a B3 transition, which requires two occurrences. The warmup time is then 2 × 25 and the accuracy of the global predictor

is k−2×25

k .

9
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Problem 4: (20 pts) The diagram below is for a 32-MiB (225-character) set-associative cache with the
usual 8-bit characters and a 64-bit address space.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

22:6

64 b

63:23

22:3

63:23

22:6

22:3

�Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

63 23

Index

22 6

Offset

5 3 2 0

�Associativity:

From the given tag store address bits, 22:6, we know the data store has a capacity of 223 characters so for a cache capacity of 225

characters the associativity must be 225

223 = 4 .

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity, 225 characters, plus 4 × 223−6 (64 − 23 + 1) bits.

�Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

63 25

Index

24 6

Offset

5 3 2 0

10
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Problem 4, continued:

(b) The code below runs on the cache from the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

�What is the hit ratio running the code below? Explain

double sum = 0.0;

char *a = 0x2000000;

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

The line size of 26 characters is given, the size of an array element is 1 character, and so there are 26 elements per line. The first
access, at i=0, will miss but bring in a line with 26 elements, the next 26 − 1 accesses are to subsequent elements on the line and

so will hit, so the hit ratio to the first line is 26−1
26 .

(c) The code below runs on a direct-mapped cache unrelated to the one above. When the code starts running
the cache is cold, for the solution only count accesses to array.

struct My_Struct {

double val;

double something;

double relative;

double more_data[29];

}; // Total size: 32 * sizeof(double) = 256 bytes

const int SIZE = 1 << 12;

My_Struct array[SIZE]; // &array[0] = 0x1000000

void tri()

{

double sum = 0;

for ( int i=0; i<SIZE; i++ ) sum += array[i].val;

const double avg = sum / SIZE;

for ( int i=0; i<SIZE; i++ ) array[i].relative += array[i].val - avg;

}

�Determine the minimum cache and line size needed so that there are no misses in the second for loop.

The minimum line size is 32 characters , the minimum cache size 128 kiB .

�Explain your answer.

Both for loops iterate over the entire array, the first for loop only accesses the val member but the second for loop accesses
both the val and relative member. The line size will be chosen so that on a miss in the first for loop both members will be
on a line. If line size were not restricted to a power of two then a line size of 24 characters would be sufficient, but they are so the
minimum line size is 32 characters. Such a line can hold both val and relative, but whether it will depends on the alignment of
the structure. From the given address of array[0] (which is the address of array[0].val) the offset bits are obviously zero
(meaning it is at the beginning of a line). Since the struct size is a multiple of 32 array[i].val will also be on the beginning of
a line.

The number of lines needed to store the array is 212 and so the total cache size needed is 32 × 212 = 217 or 128 kiB.
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Problem 5: (20 pts) Answer each question below.

(a) In a dynamically scheduled machine one would like to be able to have a large number of instructions
in flight to, say, find something to do while waiting for data from memory. Which part of the dynamically
scheduled machine is most difficult to scale up to support a large number of in-flight instructions?

�Part that’s difficult to scale, and reason why.

The scheduler. It needs to monitor the status of the source registers of every instruction in the instruction queue so that it can find
instructions that are ready for execution. It does this each cycle based on the destination registers that will be written by the earlier
rounds of instructions. It is difficult to do this quickly for a large number of instructions.

(b) How might profiling improve the performance of the following C code:

if ( a > b ) { x = d / e; } else { y = q / f; }

�Explain how profiling is used.

First the code is compiled with a special profiling switch. It is then run on what is hoped to be typical input data, while running it
will record branch direction counts and other information to a profile file. The code will be compiled a second time using another
profiling switch. The compiler will read the profile file and use that information to make optimization decisions. See the next answer.

�Explain why this profiled code might be faster than code compiled without profile feedback.

A taken branch or jump slows execution more than a not-taken branch, even with correct prediction. Based on a profile run the
compiler might learn that in the if statement above the else part is rarely executed. It will organize the code so that two taken
branches are needed to execute the else part but zero branches (or jumps) are needed for the if part.

12
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(c) In the first implementation of a company’s ISA the integer multiply instruction was slow. An Engineer
working on the second implementation is deciding whether to speed up the multiply instruction. To decide
he plans to analyze some benchmark runs, but he can’t decide whether the code should be optimized. The
compiler was designed for the first implementation.

The engineer is trying to determine if the multiply instruction is used often enough to justify the effort to improve it. To do that
he runs benchmark programs using some kind of simulator that can tell him how many times a multiply was used while running the
code. If, say, the multiply accounts for less than 0.00001% of executed instructions then it’s not worth the effort.

�What is the disadvantage of counting multiply usage in code compiled with optimization?

Since the multiply was slow in the first implementation the compiler might have used it less often, perhaps substituting adds and
shifts. However, the compiler would only look for alternatives to a multiply if optimization were turned on. With optimization off the
compiler generates straightforward code without tricks.

Since the compiler is avoiding use of the multiply instruction the number of multiplies would be undercounted. That would be bad if
the compiler’s alternative were slower than the speeded-up multiply instruction in the second implementation.

�What is the disadvantage of counting multiply usage in code compiled without optimization?

Without optimization there might be too many multiplies. Techniques like dead-code elimination and constant folding would eliminate
multiplies no matter how fast the instruction is.

(d) A memory system that can fetch 2w chars of data is less expensive and faster if the data address is a
multiple of 2w. (That’s one reason for the alignment restriction.)

�How do VLIW ISAs take advantage of that?

Instruction bundle sizes are set to a power of two and control-transfer instructions can only jump to the beginning of a bundle.
Therefore the memory port used for instruction fetch can enjoy the cost and performance benefits of alignment.

(e) Compared to a RISC implementation, say the 5-stage MIPS, what additional logic does a CISC imple-
mentation require between the IF-stage memory port output and decode?

�Additional logic for CISC.

Since instruction length varies it will need logic to shift the instruction into position and logic to combine the bits fetched in one cycle
with a piece of the instruction fetched in an earlier cycle.

13
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Problem 1: In the MIPS implementation below some wires are labeled with cycle numbers and values that
will then be present. For example, c5:3 indicates that at cycle 5 the wire will hold a 3. Other wires are
labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any labeled
wire is changed the code would execute incorrectly. Instruction addresses and the first instruction have been
provided. [50 pts]

(a) Finish a program consistent with these labels.

�All register numbers and immediate values can be determined.

�Be sure to fill the three blocks marked PLEASE FILL IN.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst

Control
Logic

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

0 1

15:0

Shift sh

5’d16

amt

val

c5:3 c5:3

c2:12

c6

c5: right 6
c6: left

c3

c5

c5:31

c4:
0
1
2

smx

c1:
c4: 0
c5:

c5:0x03??????

dir
dir

PLEASE FILL IN

c7:4

0xb00c

6
2

1

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8

0xb0000 lui r2, 0xb IF ID EX ME WB

0xb0004 lw r31, 12(r2) IF ID EX ME WB

0xb0008 j TARG IF ID EX ME WB

0xb000c srl r3, r31, 6 IF ID EX ME WB

0xe0000 sllv r4, r3, r3 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8

Solution discussion on next page.
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0xb0004: The c4 item in ME indicates that this is a load or store, the c5:0x03?????? in WB reveals that it must be a load and

because of the size of the value, it must be a load word. The destination register is directly given (the c5:31 in WB), the bypass
with lui reveals the rs register. The address can be calculated using the known immediate values (12 from lw itself and 0xb from
lui). Note that the load address matches the address of the fourth instruction.

0xb0008: See the next part for a discussion of this instruction.

0xb000c: The identity of the instruction is revealed by the shifter control signals, the dependence with the fifth instruction reveals
the destination register.

0xedd900: The control signals reveal the type of instruction. The interesting part is determining the shift amount for the

C6:left... : The lw instruction loads the fourth instruction into r31. The fourth instruction shifts the value (itself) right by

six bits, putting the sa field into the least significant bits of r3. We know from c5:right 6 that the sa field of the fourth in-
struction is 6, so the least significant bits of r3 must be a 6, and that is what is used for the shift amount in this last instruction:
c6:left 6 .

Problem 1, continued: Continue referring to the implementation on the previous page.

(b) Explain whether each instruction below could be the instruction at address 0xb0008 (on the previous
page). If it could be the instruction write “Possible” otherwise write “Impossible because . . .” (The grade
will be based on the reason.)

� add

Could not be. Since the address of the fifth (and last) instruction, 0xedd900, is not the address of the fourth instruction, 0x0b000c,
plus 4 the third instruction must be some kind of a control transfer. Therefore it can’t be an add.

� j

It could be. As explained above, the third instruction has to be some kind of control transfer instruction, and there’s nothing to rule
out a j.

� jal

Could not be. The jal instruction always writes the return address to r31. A bypass path is used to send the value of r31 written
by the second instruction to the fourth instruction. If the third instruction also wrote r31 that bypass path would not be used, and
so the third instruction can’t be a jal.

� beq

Could not be. Yes, a beq is a control transfer, but its range is limited to ±215 instructions, so it could not reach address 0xedd900
from 0x0b0008.
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Problem 2: [10 pts] Based on the experience of preparing SPECcpu benchmark runs manufacturers A
and B each release a new compiler that improves their respective SPECcpu scores.

(a) In the course of preparing a SPECcpu benchmark run manufacturer A discovers a new optimization
technique that improves the performance of most of the SPECcpu programs, and other programs. This
optimization technique is added to the compiler for use at the -O1 and higher optimization levels. The
manufacturer sells the compiler, proudly boasting about the performance benefits.

� Is it in the spirit of the SPECcpu rules to use this new optimization technique for the base results? Explain.

Yes. The only difference between it and other optimizations is that it was invented in the process of running the SPECcpu benchmarks.

(b) To prepare a SPECcpu benchmark run manufacturer B has its best programmers prepare hand-written
assembly code for the most time consuming portion of each benchmark. The compiler will recognize each
benchmark based on the source code and substitute the hand-written routines where needed; the hand-
written code will only work for these benchmarks.

These optimizations are included in manufacturer B’s compiler and used at -O1 and higher levels. Manu-
facturer B sells this new compiler.

� Is it in the spirit of the SPECcpu rules to use this new optimization technique for the peak results? Explain.

It is not in the spirit of peak rules because the score does not reflect the performance that users can obtain on similar programs.
Re-writing benchmark code is against the SPECcpu rules and that is what this testing procedure effectively does. It is likely that
this technique might violate the letter of the rules too.

�Explain why it is not in the spirit of SPECcpu rules to use such optimizations for base results.

Since it’s not in the spirit of the peak rules it can’t be in the spirit of the stricter base rules either. One reason that applies to base
but not peak: The amount of effort needed to produce the hand-optimized code is well beyond base intent, and so it’s not in the
spirit of base rules.

�Assuming that the compiler can not be reverse engineered (there is no way to inspect the compiler itself)
and assuming that manufacturer B can keep secrets, how might this cheating be discovered?

The performance on similar programs would be disappointing in comparison to the SPECcpu benchmarks under peak rules. In fact,
one might change a few lines of the SPECcpu benchmarks and see a large performance drop.
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Problem 3: Answer the following ISA questions.

(a) [10 pts] A RISC advocate claims that by having fixed-length instructions and alignment restrictions a
branch can reach twice as far for a given displacement field size than would be possible in CISC ISAs.

�Explain why.

RISC instruction addresses (in most RISC ISAs) are multiples of 4 (since the size is four bytes and the alignment feature imposes
the multiple of 4 restriction). Therefore the displacement can be the number of instructions to skip. In variable-instruction-length
ISAs the displacement would have to be the number of bytes to skip and because most instructions are more than one byte a given
displacement size can not go as far.

A CISC advocate responds that branches in CISC programs would take less space anyway.

A primary feature of CISC ISAs is variable instruction size. Among other things this allows instructions’ immediate size to match
their needs. So, for a small displacement control-transfer there might be a branch instruction with a one-byte immediate field and for
a large displacement control transfer there might be a branch instruction with a four-byte immediate field.

�Provide a reason for small-displacement branches.

A small displacement branch instruction could be encoded in two bytes, half the size of any MIPS branch.

�Provide a reason for large-displacement branches.

Consider MIPS. A control transfer to a target more than 215 instructions away would have to be realized using three instructions:
two to put the target address in a register, and a jr to perform the jump. A fourth instruction would be needed for a conditional
control transfer. A CISC ISA might just use a five-byte instruction.

(b) [10 pts] Indicate whether each item below is usually an ISA feature or an implementation feature.

Grading Note: Easy. Maybe too easy.

�Number of bits in immediate.

ISA.

�Clock frequency.

Implementation.

�Number of branch delay slots (if any).

ISA, though chosen with certain implementations in mind.

�Floating-point format.

ISA.

�Minimum distance between load instruction and a dependent instruction to avoid a stall.

Implementation.
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Problem 4: Equivalent MIPS and SPARC code fragments appear below.

(a) [10 pts] Taking advantage of SPARC’s condition code features, modify the SPARC code to use one fewer
instruction (without changing what it does).

# MIPS Branch Example

addi $t1, $t1, -1

bne $t1, 0 LOOP

add $t2, $t2, $t3

...

! Equivalent SPARC Branch Example

add l1, -1, l1 ! l1 = l1 - 1

subcc l1, 0, g0 ! g0 = l1 - 0

bne LOOP

add l2, l3, l2

...

There is no need to use subcc to set the condition code bits since the add writes register l1 and it could also set the condition
code bits. Do that using an addcc instead of an add:

! SOLUTION: Modified SPARC code.

addcc l1, -1, l1 ! l1 = l1 - 1

bne LOOP

add l2, l3, l2

...

(b) [10 pts] For branch-in-ID implementations, why might it be possible to attain higher clock frequencies
for condition-code ISAs, like SPARC, than for register-test branche ISAs, like MIPS.

�Condition code performance advantage.

The branch logic in a SPARC implementation only needs to examine four bits (the condition code), in MIPS-32 implementations two
32-bit values need to be compared.

6

← → Fall 2008 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4720/2008f/mt_sol.pdf


Name Solution

Computer Architecture

EE 4720

Final Examination

9 December 2008, 17:30–19:30 CST

Alias ISA were, was I?

Problem 1 (10 pts)

Problem 2 (15 pts)

Problem 3 (20 pts)

Problem 4 (15 pts)

Problem 5 (20 pts)

Problem 6 (20 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2008 ← → Final Exam Exam Solution fe sol.pdf

http://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/2008f/fe_sol.pdf


Problem 1: (10 pts) Consider a new floating point instruction nin.d which uses a 5-stage computation
unit, N1 - N5 (in contrast to FP add’s A1-A4). The format and register usage for nin.d is the same as
the other FP arithmetic instructions. Modify the implementation below so that it can execute nin.d. Hint:
This is an easy question, nin.d is just like the FP add and multiply, except it’s 5 stages.

�Add the datapath components, including the functional unit stages (N1 to N5).

Solution appears below in blue.

� Add control logic for proper write-float and structural hazard detection (as is already present for add
and multiply). Be sure not to break existing instructions.

Solution appears below in green.

�The changes must fit in efficiently with what is already present.

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2
M
1

xw xw

fd

we
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Problem 2: (15 pts) With the MIPS implementation illustrated below floating-point add and multiply
instructions do not raise precise exceptions. If a programmer needs a precise exception for a particular FP
instruction he or she can follow it with a test (test for exception) instruction. In the code below test is
used to provide a precise exception for mul.d.

mul.d f2, f2, f6

test

sub.d f16, f14, f20

The test instruction will stall in ID for the minimum number of cycles necessary to ensure a precise exception
and will suppress a WF if necessary.

(a) Add hardware to implement the test instruction. The output of is test is 1 if a test instruction is
in ID. Assume there are A4 and M6 outputs that indicate whether an exception was raised. These can be
checked in the middle of the cycle.

�Add control logic to stall the pipeline using a new input to the Stall ID or gate. Hint: Very little logic
is needed.

Changes shown in blue on the next page. When a test instruction is in ID it will stall the pipeline until there is no FP instruction
more than three cycles from WF. That is achieved by simply ORing the we bits from stages that are more than three cycles from
WF. If an instruction three or less cycles from WF raises an exception there will be enough time to squash any instruction after the
test. (See part b.)

�Add logic to suppress WF when necessary.

Changes shown in green on the next page. The WF needs to be suppressed for a FP instruction that raises an exception and is
followed by a test instruction.

New “e” outputs were added to A4 and M6, these are logic 1 if there is an exception. The added multiplexer will select the e value
for the unit in use (or a 0). The instruction in A4/M6 will not be allowed to write back (its we bit will not be be propagated) if it
raises an exception and it is right before a test instruction. Note that an excepting instruction that doesn’t precede a test instruction
is allowed to write back, it would write back a NaN (not a number) or some other special value.

A much simpler solution would just AND the we with the negated e signal. That would suppress writeback for all instructions that
raised an exception, which is not the desired behavior.

�The hardware should work correctly for floating-point multiplies and adds.

3
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Problem 2, continued:

(b) Show an example in which, in a faulty implementation, the test instruction stalls one less than the
minimum number of cycles and as a result an exception is not precise.

�Example code and pipeline execution diagram, including fetch of first handler instruction.

# SOLUTION

#

# Cycle 0 1 2 3 4 5 6 7 8 9

mul.d f0,f2,f4 IF ID M1 M2 M3 M4 M5*M6*x

test IF ID ----> EX ME WBx

sw r6, 0(r7) IF ----> ID EX MEx

add IF ID EXx

or IF IDx

..

HANDLER:

xor IF ID ..

�Explain why the exception is not precise.

See the pipeline diagram above. The mul.d raises an exception in cycle 7, that’s too late to stop the sw from writing memory. (The
memory write started in the beginning of the cycle but the exception was detected later, in the middle of the cycle.)

As a result the handler, which starts fetch in cycle 7, will “see” the change the sw made to memory and that violates a requirement
for a precise exception.

If the test instruction had stalled one more cycle the sw could be squashed in time and the exception would have been precise.

5

← → Fall 2008 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2008f/fe_sol.pdf


Problem 3: (20 pts) The code below has two branches, branch B1 implements a 3-iteration loop with
outcome pattern T T N T T N· · ·. The outcome pattern for branch B2 is shown below. Note that B1 executes
three times for each execution of B2.

The code runs on three systems, the branch predictor on all systems uses a 214-entry BHT. One system
has a bimodal predictor, one system uses a local history predictor with a 10-outcome local history, and one
system uses a global predictor with a 10-outcome global history.

BIGLOOP: Note: B1 and B2 are the only branches in this code.

T1:

B1: bne r3, r4 T1 .. 3 iteration loop ..

# .. no CTIs ..

B2: beq r1, r2 T2 N N N T N N T N N N T N N T N N N T N N T N N N T N N T ...

T2:

j BIGLOOP

�What is the accuracy of the bimodal predictor on branch B2?

The prediction accuracy is 5
7 .

�What is the accuracy of the local predictor on branch B2?

The period-seven pattern can easily be captured in the local predictor’s ten-outcome history, and so the prediction accuracy is 100% .

�What is the size of the BHT and PHT, in bits, needed to implement the local predictor? Only take into
account the storage need for the branch predictor, omit things like CTI type.

The BHT size is 214 × 10 bits (each BHT entry holds a local history, which is 10 bits). The PHT size is 210 × 2 bits (there
is one entry for each possible outcome pattern, each entry is two bits).

�What is the minimum local history size needed to achieve 100% accuracy on branch B2 using the local
predictor? Explain.
Six outcomes.

A five-outcome pattern is too short, for example, NNTNN can be followed by an N or a T, but a six-outcome pattern is unambiguous.
See the table below in which all seven shifts of the pattern NNNTNNT are shown. None of the patterns match in the first six bits.
(That’s a sufficient, but not a necessary condition for 100% accuracy.)

123456 7

NNNTNN TN

NNTNNT NN

NTNNTN NN

TNNTNN NN

NNTNNN NT

NTNNNN TN

TNNNNT NN

NNNNTN NT

�What is the minimum global history size needed to achieve 100% accuracy on branch B2 using the global
predictor? Explain.

6
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Based on the answer above, the global predictor needs to “see” the last six outcomes of branch B2. However, after each outcome of

B2 is a set of 3 outcomes of B1, and so the global history size must be at least 4 × 6 = 24 outcomes long to hold six outcomes
of B2.

7
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Problem 4: (15 pts) Consider two alternatives for improving the performance of our familiar scalar 5-stage
implementation: an n-way superscalar implementation or a 5n-stage superpipelined implementation.

(a) Both systems can potentially reduce execution time by a factor of n. Explain how this is achieved for each
system in terms of CPI (cycles per instructions), clock frequency, and other relevant factors. The answers
might read, “Because of . . . the CPI is x2 times larger which causes . . . but . . . and so overall execution is n
times faster.”

�Explain how the superscalar system is potentially n times faster.

Because each stage has n copied of most hardware, the superscalar system will execute up to n instructions for each instruction
executed by the scalar system. The duplicated hardware might have only a small impact on clock frequency (if n is small), so IPC
numbers reflect performance.

�Explain how the superpipelined system is potentially n times faster.

Because each stage is carefully divided into n parts, the superpipelined system’s clock frequency can be n times faster (a bit lower
due to overheads). Though the execution rate expressed in IPC won’t go up, there are now n times more cycles per unit time.

(b) Bypass paths add substantially to the cost of sufficiently large superscalar systems. Provide expressions
in terms of n for the cost of bypass paths in both systems. Briefly justify your answers, using a diagram if
necessary.

�Expression for the cost of bypass paths in superscalar systems, with quick diagram and brief description.

The cost of bypass paths will be measured in multiplexor inputs needed. The EX stage has n ALUs, each with 2 inputs, for a total
of 2n bypass path destinations. The ME and WB stages together hold 2n destination values, so the number of bypass multiplexor

inputs needed is 4n2. One component of cost is thus 4n2 .

�Expression for the cost of bypass paths in superpipelined systems, with quick diagram and brief descrip-
tion.

The ALU gets its input values in the EX0 stage (the first part of the EX stage which was divided into n pieces), so the number of
bypass path destinations is 2. Each of the stages from ME0 to WBn-1 can hold one bypassable value, for a total of 2n values. The

total number of multiplexor inputs is thus 4n .

Note that the superpipelined system has fewer mux inputs because it is doing with time what the superscalar system does with space.

(c) Ideally the 5n-stage superpipelined system would have a speedup of n (the scalar system would take n
times longer than the superpipelined system to run a program). Consider a program that has no nearby
dependencies so that the superpipelined system does not have to stall.

�Explain why the speedup of the superpipelined system might be t0+t1
t0+

t1
n

, where the clock frequency of our

familiar scalar system is 1
t0+t1

.

The clock period is shown as a sum of two components, t0 and t1. This sum appears in the numerator of the speedup expression,
the denominator has the clock period of the superpipelined system. If stages were divide without overhead the superpipelined clock
period would be 1

n (t0 + t1) but instead it is t0 + t1
n , indicating that one component of the critical path is not being divided. A

likely candidate for that would be the setup time needed for the latches, something which is not split.

�Explain what t0 is likely to be.

See solution above.

8
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Problem 5: (20 pts) The diagram below is for a 4-MiB (222-character) set-associative cache with a line
size of 512 (29) characters, with the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32 b

64 b

31:21

20:3

31:2120:9

20:9

20:3

�Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 21

Index

20 9

Offset

8 3 2 0

�Associativity:

Based on the number of ways in the diagram (there is no ellipses), the associativity is 2 .

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity, 222 characters, plus 2 × 221−9 (32 − 21 + 1) bits.

�Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

31 22

Index

21 9

Offset

8 3 2 0

9
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Problem 5, continued:

(b) The code below runs on the cache from the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

�What is the hit ratio running the code below? Explain

double sum = 0.0;

short *a = 0x2000000; // sizeof(short) = 2 characters.

int i;

int ILIMIT = 1 << 10; // = 210

for (i=0; i<ILIMIT; i++) sum += a[ i ];

The line size of 29 characters is given, the size of an array element is 21 = 2 characters, and so there are 28 elements per line. The
first access, at i=0, will miss but bring in a line with 28 elements, the next 28 − 1 accesses are to subsequent elements on the line

and so will hit, so the hit ratio to the first line is 28−1
28 .

(c) The code below runs on a direct mapped (not set-associative) cache with a line size of 512 characters
and a capacity of 4 MiB. Grading note: The cache size was omitted from the original problem.

�Determine an address for b that will result in a 0% hit ratio when running the code below.

�Briefly explain.

If the index bits of a[i] and b[i] are identical then b[i] will evict the line holding a[i+1] (except when i is 255, 511, etc.).
The index bits are positions 22 to 9, so choose a b address in which those bits match a, the smallest possibility is 0x400000.

double sum = 0.0;

short *a = 0x2000000; // sizeof(short) = 2 characters.

short *b = 0x400000; // <--- SOLUTION

int i;

int ILIMIT = 1 << 10; // = 210

for (i=0; i<ILIMIT; i++) sum += a[ i ] + b[ i ];

10
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Problem 6: (20 pts) Answer each question below.

(a) Describe restrictions (or lack of) on instruction addresses and the placement of instructions that distin-
guish RISC, CISC, and VLIW ISAs.

�RISC address and placement restrictions.

�Reason for each restriction (if any).

Instruction addresses must be a multiple of four, beyond that there are no placement restrictions. The address restriction simplifies
instruction fetch since less shifting (or none at all) is needed to correctly position instructions. Also, the alignment restriction
quadruples the reach of CTIs that hold less than a full address.

�CISC address and placement restrictions.

�Reason for each restriction (if any).

There are no restrictions.

�VLIW address and placement restrictions.

�Reason for each restriction (if any).

Instruction bundle addresses must be aligned. There might be placement restrictions within a bundle, for example, one might not be
allowed to put a load instruction in the first slot.

The reason for the alignment restriction for VLIW is the same as RISC. Restrictions within a bundle can reduce the number of paths
to functional units. For example, if the first slot cannot hold a load there is no need to have a connection from the slot-0 position in
the memory stage to the memory port.

11
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(b) A feature of the SPECcpu benchmarks is that they come with source code and it is the tester’s re-
sponsibility to compile (and run) them. Note: “are these” in the questions below refers to source code and
compiling.

�Are these necessary, important, or irrelevant for testing an implementation of a new ISA? (This is not
a yes-or-no question.) Explain.

If source code is not provided then instead executable code must be provided. If the ISA is new then there is not likely to be an
executable compiled for it (especially if the new ISA is still being developed!). So, source code is necessary .

� Are these necessary, important, or irrelevant for testing a new implementation of an existing ISA?
Explain.

Source code is important, but not 100% necessary. Most new implementations will substantially improve the performance of code
compiled for an older implementation, which is a good thing for those upgrading their computers. So lack of source code is not
necessary. Source code will help show the full potential, and so it is important.

(c) A corrupt member of the committee choosing benchmarks for the next SPECcpu suite has successfully
bribed the other committee members so that the benchmarks that were selected favor the corrupt member’s
company.

�How might this be discovered? Indicate who would discover the problem and what public information
draw their suspicion?

Call the company providing the corrupt member company C , and let V be some other participating company that manufactures
computers. Experts from V are aware of characteristics of different benchmarks, especially those which their machines handle well
or poorly. They will become suspicious when none of the benchmarks that their machines run well are chosen, benchmarks that they
knew were nominated for the suite. Perhaps their suspicions will be raised when their SPEC representative arrives at work up in a
new luxury car.

�Can we expect those involved to be sufficiently motivated to correct the situation? Explain.

Buying decisions are influenced by benchmarks, so those from company V have a strong financial incentive to take action against
their own bribed employee and see to it that the benchmarks are re-chosen.

12
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Problem 1: In the MIPS implementation below some wires are labeled with cycle numbers and values that
will then be present. For example, c2:4 indicates that at cycle 2 the wire will hold a 4. Other wires are
labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any labeled wire
is changed the code would execute incorrectly. Note that instruction addresses have been provided. [50 pts]

�Finish a program consistent with these labels.

�All register numbers and immediate values can be determined.

�Be sure to fill the two blocks marked Fill In.

�Provide an explanation for the EX-stage fill-in block.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

0 1

15:0

5‘b0

=0

=movn

c2:4

c8:6 c5:4720

c4:1

c4:1

c5 c6c3:0x2000

c5

c3:3

c4:0x2011

c___:___

Fill in cycle number and
value.

c2:0x20a2000e = 0010 0000 1010 0010 0000 0000 0000 1110

c5:____

Fill in and explain:

c1:8

c1:8

0

1 12

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8

0x1000 beq r8, r8, 0x1034 IF ID EX ME WB

0x1004 lb r3, 0x11(r4) IF ID EX ME WB

0x1034 ADDi r2, r5, 14 IF ID EX ME WB

0x1038 movn r1, r2, r3 IF ID EX ME WB

0x103c ORi r6, r1, 4720 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8

Solution discussion on next page.
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Solution Discussion

0x1000: This has to be some kind of control transfer because of the break in consecutive addresses after the next instruction (the
address of the third instruction is 0x1034 instead of 0x1008). The ID-stage fill-in points at the dedicated adder, which is used
only for branches (not jumps or traps). Therefore this instruction must be a branch, the cycle number on the fill in must be 1 (when
this instruction is in ID), and the value must be the displacement which is 0x1034−0x1004

4 = 12. (The displacement is the number

of instructions to skip starting at the delay-slot instruction which in this case is at address 0x1004.) The c1:8 bubbles tell us
the registers to use for comparison and also that it must be a beq. It can’t be a bne because the branch is taken and it can’t be a
branch such as bgtz because those branches only read one register value.

0x1004: The c4:0x2011 tells us this is a memory operation that operates on byte-sized data (since the address is not a multiple

of 4 or 2). The c3:3 tells us that it writes a destination register so it must be a load. The c2:4 reveals the source register and

c3:3 in EX provides the destination. The displacement, 0x11, is determined using c3:0x2000 in EX and c4:0x2011 in ME.

0x1034: The bubble in IF provides the encoded form of this instruction. It can’t be a type-J instruction because the last instruction
follows the penultimate one, and so it is either type-R or type-I. Either way, the rs register is r5 and the rt register is r2. If it
were a type-R the rd register would be r0 but since, as the c5 at the upper ALU mux indicates, the result is bypassed to another
instruction and so it can’t be type-R because r0 would not be bypassed. Therefore it’s a type-I. Unless one memorized MIPS opcodes
there is no way to determine exactly which type I instruction it is so any arithmetic instruction would be considered correct. The
opcode is for an addi.

0x1038: The lower c4:1 in ID provides the destination register, r1, and the one above that shows that this is a movn instruction.

The ALU c5 provides the rs register number, r2 from 0x1034, the rtv mux c5 provides the rt register number, r3 from the
0x1004 lb.

If the c5: EX-stage fill-in is 0 then the movn instruction completes the move, otherwise the destination register remains unchanged.
The instruction at 0x103c bypasses the movn destination, r1. This would only be correct if the movn was to write r1 and therefore
the fill-in value must be 0. (If the value were 1 the movn would not change r1 but the instruction at 0x103c would read the value
of r2 rather than r1.)

0x103c: The c5:4720 in ID provides the immediate, indicating that this must be a type-I instruction. The c6 in EX gives the

rs register, r1 from the movn. The c8:6 gives the destination register, r6. This can be any arithmetic type I instruction, ori is
assumed.

3
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Problem 2: Answer the following questions about, or inspired by, ARM.

(a) [10 pts] MIPS lacks a counterpart to the ARM instruction shown below. Hint: This has nothing to do
with MIPS’ movn.

mov r1, #5 // Move the constant 5 to register r1.

�Explain how r0 makes such a MIPS instruction unnecessary.

You can use an addi instruction with r0 as the first source register.

� Show how to perform the same operation using MIPS instruction(s).

addi r1, r0, 5

(b) [5 pts] The ARM ISA states that the result of executing an instruction like str r15, [r1] is that either
PC+8 or PC+12 is stored in memory, depending on the implementation. (Remember that ARM r15 is an
alias for PC.)

�What is the benefit of making the result of the store implementation dependent?

Some implementations would be lower cost because they wouldn’t need to send a “correct” value of PC through the pipeline, instead
they would use the PC value of whatever instruction was being fetched when the store reached ME.

(c) [5 pts] Consider an ISA which stated that the number of branch delay slots could be either zero or one,
depending on the implementation.

�As an ISA feature, how does this delay-slot implementation dependence compare in practicality to ARM’s
store PC implementation dependent behavior?

The delay slot implementation dependence is a really bad idea because portable code (code that runs on any implementation of the
ISA) could not put anything other than a NOP in delay slots. Since branches are frequent the impact on performance would be large
(unless the code were compiled for a specific implementation). In contrast, the stored PC could always be added to a constant (-8 or
-12) to obtain the correct PC value. That would take a little extra time but storing the PC in memory using a store instruction is
not something programs need to do very often.

4
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Problem 3: In RISC ISAs instructions are of fixed size, that is, all instructions are the same size. For
example, in MIPS, all instructions are 32 bits. The character size in MIPS (and all ISAs mentioned in this
test) is 8 bits.

(a) [5 pts] Describe a benefit of having fixed-size instructions. (This answer can be mentioned in the next
answer’s explanation.)

�Fixed-size instruction benefit for RISC.

Benefits: Instruction fetch is simple because the PC is incremented by a constant amount and instructions are fetched already properly
aligned (because instruction addresses are required to be a multiple of four).

(b) [5 pts] In the Itanium VLIW ISA all instructions are 41 bits. Why would 41-bit instructions be difficult or
wasteful to implement in a RISC ISA, such as MIPS, but cause no difficulties in VLIW ISA implementations,
including Itanium implementations.

�Forty-one bit RISC instructions difficult or wasteful because:

An instruction would use six bytes of memory, that would either waste 7 bits or else require having the end of one instruction and
the beginning of the next instruction together in one memory location. Branch targets would be harder to compute since one would
have to multiply by 6 (and that’s the space-wasting alternative). A multiply by six is just an add of two shifted values, but that’s
still one more trouble than just shifting a displacement.

�Forty-one bit VLIW instructions not wasteful and make sense because:

Fetch operates on 3-instruction bundles, which are 128 bits (16 bytes), and there is no way to jump to a middle of a bundle. There
is no wasted space because 128 − 3 × 41 = 5 bits are used to store dependency information. It is easy to compute displacement,
just shift left by 4 bits.

5
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Problem 4: Answer the following compiler questions.

(a) [10 pts] A company is considering removing a bypass connection in a design of an implementation.
Analysis on good test programs shows that performance drops by 5% with the bypass removed (and no
other changes).

�What can compiler writers do about the performance drop?

They can re-do code scheduling so that the bypass is rarely used. For example, suppose the bypass is used when an sll uses the
result of a preceding lw. The compiler might place two (or whatever) instructions between the lw and sll.

(b) [10 pts] Dead-code elimination is a commonly used compiler optimization, while profiling is used less
often because it is a multi-step process.

�Using an example briefly describe dead-code elimination.

# Solution:

x = a + b; // The compiler would produce no code for this line ...

x = c + d; // ... because this line overwrites the first x before it’s used.

�Briefly describe the steps used in profiling.

First, compile the program using a profile switch. Second, run the program on what is expected to be typical input data. The program
will write profile information. Third, compile again, this time telling the compiler to read the profile information.

�Which is more likely to result in disappointing results that surprise the programmer? Explain.

Profiling is more likely to disappoint because the “typical input data” chosen for the profiling run may not match what most end-users
use closely enough to get good profiling results. This might happen because there are many different inputs in common use and the
compiler would optimize differently for different inputs so no profile run would result in good performance on all, or even most, inputs.
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Problem 1: (10 pts) The tables below show the state of a dynamically scheduled system using method 3
during the execution of a code fragment.

• The code is preceded by many nop instructions.

• Instructions use either a 4-stage FP multiply unit (M1-M4) or a 2-stage FP add unit (A1, A2).

• Assume that there are unlimited RR, WF and execute (A,M) units.

(a) Show a program and pipeline execution diagram consistent with these tables.

�Show program and all stages used.

�On the physical register file show where physical registers are removed from the free list, using a [, and
where they are put back in the free list, using a ].

�All destination registers can be determined exactly.

�The time for all stages can be determined exactly.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

add.s f20,f0,f1 IF ID Q RR A1 A2 WF C

mul.s f15, f20, f2 IF ID Q RR M1 M2 M3 M4 WF C

add.s f20, f3, f4 IF ID Q RR A1 A2 WF C

add.s f20, f20,f5 IF ID Q RR A1 A2 WF C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID Register Map

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

f15 9 39

f20 16 43 82 93

Commit Register Map

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

f15 9 39

f20 16 43 82 93

Physical Register File

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

9 11

16 22

39 33

43 44

82 55

93 66

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2
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Problem 1, continued: The implementation diagram is provided below for references. Don’t forget to
answer the question below.

25:21
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* Were called
L1 and L2.

(b) In the code fragment on the previous page only two true dependencies are possible.

�Show them (by connecting the destination and source with an arrow).

The only true dependencies are through f20. That is the second instruction depends on the first, and the fourth instruction depends
on the third. One can conclude that the second depends on the first because it waits until the first instruction’s result is bypassable,
the same for the fourth and third.

�Briefly explain why other dependencies are not possible.

The third instruction cannot depend on the second because it starts before the result from the second is available.

3
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Problem 2: (30 pts) Answer the following branch predictor questions.

(a) The code below runs on two branch predictors, a bimodal predictor with a 210 entry BHT and a local
predictor with a 210 entry BHT and a 9-outcome history.

The outcomes of branch B1 form a repeating pattern as shown below.

The outcome pattern for branch B2 can be constructed by tossing a fair coin, adding a N N N for heads or
a T T T for tails, then repeating. More precisely, outcome 3i is a Bernoulli random variable with p = .5 and
outcomes 3i + 1 and 3i + 2 match outcome 3i, for i = 0, 1, 2, . . .. For example, the following is a possible
pattern of outcomes for B2: N N N T T T T T T. The following is not possible for B2: N N N T T N T T T,
it’s not possible because the number of consecutive N’s or T’s must be a multiple of 3.

LOOP:

B1: N N N N T T T N N N N T T T N N N N T T T...

B2: N N N T T T T T T N N N T T T N N N (See text.)

j LOOP

nop

For the questions below assume all tables are initially zero. All accuracies are after warmup.

�What is the accuracy of the bimodal predictor on branch B1?

Accuracy is 3
7 .

�What is the accuracy of the local predictor on B1?

The accuracy is close to 100%.

The pattern of B1 outcomes repeats with a period of 7, which is shorter than the 9-element local history. Thee is possible interference
with B2, however in part because B2 is random those interfering patterns will rarely occur frequently enough to affect B1’s accuracy.

�What is the minimum local history size needed to predict B1 with 100% accuracy ignoring branch B2.
Briefly explain.
Four outcomes.

At three outcomes pattern NNN can appear before an N or T.

�What is the approximate accuracy of the bimodal predictor on branch B2? Explain.

Accuracy is ≈ 4
6 .

B2’s outcomes come in groups of 3 and after each group the counter will be saturated at either 0 (for N) or 3 (for T). If the next
group of outcomes is the same there will be 3 correct predictions, if the next group differs there will be 1 correct prediction. Since
each case is equally likely the accuracy is 3+1

6 .

�What is the approximate accuracy of the local predictor on branch B2 ignoring B1? Explain.

Accuracy is ≈ 5
6 .

Consider the local history NNNNNNNNT, in which the last outcome is taken. Since the next outcome will always be taken the PHT
entry, after warmup, will always provide the correct prediction. Lets call this a position 1 local history since the most recent branch
is the first in a sequence of 3. All predictions made with position 1 local histories are predicted correctly after warmup, the same
for position 2 local histories. For a position 3 local history, say, NNNNNNTTT, the accuracy will be 50% because the next outcome

is random. Considering position 1, 2, and 3 histories the accuracy is
1+1+ 1

2

3 = 5
6 . Finally, consider local histories NNNNNNNNN

and TTTTTTTTT. For these B2 can be at any position, if at 1 or 2 the outcome will be N for the first and T for the second, if at 3

4
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the outcome is random. Therefore the PHT entries will saturate to 0 or 1, respectively and offer correct predictions 2
3 of the time.

These patterns occur 2−3 to 2−4 of the time, and so their impact will be small.

�What is the approximate warmup time for the local predictor on B2? Note: This problem was alot more
difficult to get perfectly correct than originally intended.

A local history can span 4 groups of 3 outcomes (two complete, the oldest and the newest incomplete) or 3 groups of 3 outcomes. For
the first case there are 24 possible outcome sets, each in two different positions, say TTTTTNNNT and TTTTNNNTT. Thus there are
25 local histories for this case. For the 3 groups of 3 case there are 23 possible local histories, for a total of 25 + 23 local histories.
Each must be seen twice to warm up. The tricky part is determining how long this will take.

5
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Addr Data+
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(b) The predictor to the right is from
the solution to last semester’s final exam
(and this semester’s Homework 4). It
is similar to gshare except in how the
GHR is updated. Like global and gshare,
when a branch is predicted the pre-
dicted outcome is shifted into the GHR,
but when a jr is predicted four bits of
the target are shifted into the GHR.

The code fragment below is the one
used to justify the predictor, except
that now the code is in a four-iteration
loop. Important assembler code is shown
in the comments.

for ( iter=0; iter<4; iter++ ) {

int c = getchar(); // Unpredictable

switch (c) { // jr $t0 # Jump to correct case.

case ’a’: x = 3; j++; break; // addi $t1, $0, 3; j ENDSWITCH; addi $t2, $t2, 1

case ’b’: x = 7; break;

...

case ’z’: x = 1; i++; break;

} // ENDSWITCH:

if ( x < 5 ) foo(); else bar();

}

�Why might the prediction accuracy of the for loop branch be worse with the predictor above than an
ordinary gshare?

The for loop branch is the one after the test iter<4 (the branch itself is not shown). The for loop iterates four times, and so
can be predicted perfectly with just 3 outcomes of the for loop branch in the GHRusing a global or gshare predictor. Even with the
if branch present the GHR should still be large enough (though barely). However, if four bits of the jr target are shifted into the
GHR there will not be enough room for three outcomes of the for branch and so accuracy will suffer.

�Considering the assembler code above, why might it make more sense to shift in the PC of the jump (j)
instructions rather than the target of the jr? Hint: This would only be useful when the case statements had
branches.

Shifting jr bits into the GHR would not help branches in the case statements, and might hurt them. It would not help them because
the same bits would be shifted in every time (the address of the start of the case). It would hurt if the jr bits shifted in to the
GHR pushed out branch outcomes that were needed. For example, suppose a branch in the case statement has the same outcome as
the fourth previous branch (encountered before the switch was entered). Shifting in the jr bits would push out the outcome of that
branch and so accuracy would suffer.

Shifting the PC of the jump instructions would help the prediction of the x < 5 branch. Note that if the branch is reached via case
a or z it is always not taken (assuming foo is on the not-taken path) but if the branch is reached via case b it is always taken.
Suppose the PC of jump instructions (not the jump target) was shifted into the GHR, then when the x < 5 branch is reached the
value of the GHR would depend on the case statement and so for each case statement a different PHT entry would probably be used.
The PHT entries for case a and z would saturate at zero and the entry for b would saturate at 3, resulting in perfect predictions.

6
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Problem 3: (20 pts) The diagram below is for a 32-MiB (225-character) 4-way set-associative cache with
a line size of 4096 (212) characters, with the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out       :5

32 b

256 bits

31:23

22:

31:2322:12

22:12

22:5

�Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 23

Index

22 12

Offset

11 5 4 0

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity, 225 characters, plus 4 × 223−12 (32 − 23 + 1) bits.

�Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

31 25

Index

24 12

Offset

11 5 4 0

7
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Problem 3, continued:

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

�What is the hit ratio running the code below? Explain

double sum = 0.0;

long *a = 0x2000000; // sizeof(long) = 8 characters.

int i,j;

int ILIMIT = 1 << 10; // = 210

for (j=0; j<2; j++)

for (i=0; i<ILIMIT; i++) sum += a[ i ];

The line size of 212 characters is given, the size of an array element is 23 = 8 characters, and so there are 29 elements per line.
The first access, at i=0, will miss but bring in a line with 29 elements, the next 29 − 1 accesses are to subsequent elements on the

line and so will hit, so the hit ratio to the first line is 29−1
29 , and the same hit ratio will be achieved for all lines accessed with j=0.

Since ILIMIT * 8 is much smaller than the cache capacity every access on the second j iteration will hit. Therefore the overall

hit ratio will be 1
2
29−1
29 + 1

2 = 210−1
210 .

(c) The code below runs on a fully associative cache with 27-byte lines, not the same as the previous cache.
Let h denote the hit ratio of the code below for a cache size of 8 MiB (223 bytes). As always, assume the
cache is empty before the code starts.

void p4(double *a, double *b) {

// sizeof double = 8 characters.

double sum = 0;

int size = 1 << 8;

for ( int d=0; d<size; d++ )

for ( int col=0; col<size; col++ )

sum += b[ col * size + d ] * a[ d * size + col ];

}

�What is the minimum cache size for which the hit ratio is h? Explain.

The a array is accessed sequentially and each element is accessed once and since this is a fully-associative cache it only need have
two lines to keep a’s data safe from eviction. The b array is accessed at a stride of size * 8 characters. Call the line brought in
on the first miss to b, at d=0 and col=0, b[0]. Because size * sizeof(double) is larger than the line size the next access
to b, when col=1, will be on a different line. The b[0] line will not be accessed again until much later, when d=1 and col=0.

With a large cache the b[0] line will remain during its long wait, but with a smaller cache it might be evicted. For the cache to be
large enough it must be able to hold the b[0] line, plus all lines accessed until the b[0] is accessed a second time.

Recall that the line size is 27 bytes and size is 28. Since the access to a is sequential the number of lines due to a is
size×sizeof(double)

27 = 2823

27 = 24.

The number of lines due to b (including b[0]) is size, so the total number of lines needed is at least size + 24 = 28 + 24

which corresponds to a cache size of 27(28 + 24) characters.

Grading Note: No one came close to answering this.

8
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Problem 4: (15 pts) Answer each question below.

(a) Describe what’s wrong with each execution below.

�What’s wrong with this execution on our usual bypassed 5-stage MIPS implementation.

# Cycle 0 1 2 3 4 5

lw r1, 0(r2) IF ID EX ME WB

add r3, r1, r4 IF ID EX ME WB

Because the value for r1 created by lw is not available until the end of the ME stage, in cycle 3, there is no way to bypass its value
when needed, by the EX stage for the add, at the beginning of cycle 3.

�What are the two problems below with this execution on our usual scalar statically scheduled MIPS
implementation?

add.d f0, f1, f2 IF ID A1 A2 A3 A4 ME WF

The register numbers for an add.d instruction must be even (it uses pairs of registers for 64-bit operands). Also, the FP pipeline
does not have an ME stage.

�What’s wrong with this execution on a 2-way superscalar dynamically scheduled machine?

# Cycle 0 1 2 3 4 5 6 7 8 9

add r1,r2,r3 IF ID Q RR EX WB C

add r4,r1,r6 IF ID Q RR EX WB C

add r7,r8,r9 IF ID Q RR EX WB C

add r8,r2,r1 IF ID Q RR EX WB C

# Cycle 0 1 2 3 4 5 6 7 8 9

Because the processor is 2-way superscalar, the commit in cycle 8 should occur in cycle 7, otherwise execution would be limited to 1
instruction per cycle. Note that the last add instruction waits one cycle because there are only two execute pipelines (meaning two
RR, two EX, etc.)

9
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(b) Alas, it is unlikely that there will soon be 16-way, statically scheduled, superscalar implementations that
anyone would want to buy. Three reasons are started below, complete them.

� It would be too expensive because . . .

The cost of the bypass paths would be much too high, proportional to 162. The output of each of the 16 ALUs would have to bypass
to each of the 16 × 2 ALU inputs.

Note: The answer “because 16 copies of most parts are needed” is wrong because one should expect to pay 16 times as much as
long as there is the potential to get 16 times the performance.

�The clock frequency would be too low because . . .

To find dependencies, control logic would have to compare an instruction’s source registers to up to 15 other instructions in ID, plus
16 instructions per downstream stage (two in a 5-stage design). That would put a strain on critical path.

Having 16 copies of everything plus the necessary bypass to avoid stalls would require substantially more area than, say, a 4-way
processor. The increased physical distance would increase the propagation time of signals and so require a lower clock frequency.

�A few programs might realize the full potential of the processor, but most won’t because . . .

True dependencies within 16 instructions of each other could cause a stall, it would be hard for a compiler to avoid those with
scheduling.

10
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Problem 5: (15 pts) Answer each question below.

(a) In ARM the PC is a general purpose register, r15. It could have been defined in ways consistent with
ISA design principles, but it wasn’t.

�Describe how the use of r15 appears contrary to the usual goals of an ISA.

The value written when storing r15 or using it in a calculation depends upon the implementation. The point of separating an ISA
from an implementation is to avoid making the program dependent upon details of an implementation (thus loosing portability).

(b) The two code fragments below are supposed to do the same thing, the first is MIPS the second is
SPARC. In both a branch is taken if a less-than comparison is true. The code would work correctly if the
called subroutine returned immediately.

�Explain why the SPARC code may not execute as intended.

The SPARC branch tests a condition code. It’s possible that an instruction in some subroutine has overwritten the condition
codes to something else.

�Suggest a fix.

Move the subcc after the call (or re-execute it).

# MIPS Code

slt $s1, $s2, $s3 # Registers %s0-%s7 preserved.

jal some_subroutine

nop

bneq $s1, $0 SKIP1

...

! SPARC code

subcc %l2, %l3, %l1 ! Registers %l0-%l7 preserved.

call some_subroutine

nop

blt SKIP1

...

11
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Hint: The following two questions are really asking about exceptions.

(c) A compiler writer is wondering whether dead-code elimination should remove the first assignment to x
in the code fragment below (which sure looks dead, right?).

x = a / b;

x = a + c;

The guy down the hall wrote a program that included these two lines and that program would run differently
if dead-code elimination removed the first assignment (the one with the division). The difference has nothing
to do with timing or the size of the program.

�Why might the program have run differently?

The program might have used a signal handler to be run on a division by zero exception.

� The compiler writer wants to DTRT (do the right thing), how does he or she find out what the right
thing is?

It’s possible to argue that a signal handler can be useful. A stronger argument is that dead-code elimination is even more useful and
that most similar needs for a signal handler could be met by tricking the compiler into believing the code isn’t dead. (Say, by using
it in an if statement.)

However, the compiler must generate code that runs correctly as defined by the language specification. The writer then
must look at the language specification to see what the correct behavior should be. If the specification says nothing then see what
most other compilers do.

Answers which did not mention some kind of a language specification or common behavior were considered wrong.

(d) The code fragment below may have come from the code in the previous problem.

div.d f0, f2, f4

add.d f0, f2, f6

Designers of an implementation are considering whether to avoid WAW hazards like the one above by convert-
ing the div.d to a nop when the add.d reaches ID. This will work correctly under ordinary circumstances.

�Show a pipeline execution diagram illustrating the WAW hazard.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9

div.d f0, f2, f4 IF ID DI DI DI DI DI DI DI WF

add.d f0, f2, f6 IF ID A1 A2 A3 A4 WF

�Under what circumstances will this produce the wrong answer?

If the add.d raises an exception. In that case the signal handler won’t see the value written by the div.d because it was converted
to a nop.

12
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Problem 6: (10 pts) SPECcpu provides a separate set of training inputs to be used for feedback-directed
optimization (FDO) techniques, such as profiling.

�Why is a separate training input set needed?

Using the same input set to train and run will produce the best possible results, but it’s not something that can be used in real life
because input data changes with each run and there is usually no way to determine it in advance.

Profiling using the training set provides a better indication of the benefits of profiling than the inflated numbers obtained by using
the same data to profile and run.

�Why might an honest and good tester want to substitute a different training set?

There may be newer techniques for choosing good training sets, techniques that anyone can use. The SPEC training sets however
used older less-effective training set selection techniques. The tester would like the results to reflect the benefits of his new and
perfectly legitimate training selection methods.

The run and reporting rules don’t allow such a substitution.

�Why do you think the run and reporting rules don’t allow a training set substitution when they allow
so much flexibility on compilers, optimizations, and libraries?

The rule would have to say that the training set can’t be chosen based on an exact knowledge of the reference (data-collection run)
inputs. The problem is determining whether a tester’s training data violates this rule.

13
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Problem 1: In the MIPS implementation below some wires are labeled with cycle numbers and values that
will then be present. For example, c2:9 indicates that at cycle 2 the wire will hold a 9. Other wires are
labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any labeled wire
is changed the code would execute incorrectly. Note that the fourth instruction has been provided. [50 pts]

©Finish a program consistent with these labels.

©All register numbers and immediate values can be determined.

©Be sure to fill the block marked Fill In.

format
immed

IR

Addr25:21

20:16

IF

ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

=

30 2
2’b0

+
15:0

25:0

29:26

29:0

01

15:0

c1

c2:9c1:1

c3:-2

c2:4

c3

c4

c3:6

c6: FILL
IN

c6:0xaaaa

c6:8

c6

c5:10 c5:0x22

IM
PO

RT
AN

T

THAT’S MINUS
TWO

0x22

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8

0x1000 jalr r6, r1 IF ID EX ME WB

0x1004 ADDi r4, r9, 0xaaaa IF ID EX ME WB

0x2000 lhu r8,-2(r6) IF ID EX ME WB

0x2004 lb r3, 0xB(r1) IF ID EX ME WB

0x2008 sW r10, 0x22(r8) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8

Uppercase is used to indicate parts of an instruction that could vary. For example, the ADDi could have been a SUBi but it could
not have been an ADD.

To determine the value for the fill-in block, 0x22, one has to know that r1 holds the target address of the jalr. To determine the
immediate for the second instruction, ADDi, one has to know that jalr will write r6 with the return address.
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The last instruction has to be a store because no other instruction (extensively covered in class) uses an immediate, uses an rt register
value, and uses the EX stage.

3
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Problem 2: The VAX locc instruction (from Homework 3) appears below, along with its encoding (taken
from the Homework 3 solution).[20 pts]

locc #65, r2, (r3)

Instruction Encoding:

-opcode- -- 1st operand ---- -- 2nd op - -- 3rd op -

locc imm PC* immed reg r2 reg-d r3

mode value mode mode

0x3a 0x8 0xf 0x41 0x5 0x2 0x6 0x3 <- Encoded value.

7 0 7 4 3 0 7 0 7 4 3 0 7 4 3 0 <- Bit position.

(a) A MIPS implementation can easily retrieve its two source register values in one clock cycle.

©What about the VAX instruction formats makes one-cycle source register value retrieval more difficult in
a VAX implementation (without lowering clock frequency)? Consider instructions with at most two source
register operands.

In MIPS formats the source register fields are always in the same place so the corresponding instruction register bits can be hard
wired to the register file read ports. In VAX the position varies. In the example above the second source register field is in the fourth
byte, but if the first operand used register addressing the second source register field would be in the third byte. Therefore one has
to partially decode the instruction before one can determine where the register bits are, and so both the decode and the path through
the multiplexer add to the cycle time.

(b) The constant 65 (0x41) is encoded in immediate mode, taking a total of two bytes, rather than literal
mode, which would take only one byte if 65 were small enough for literal mode.

©Given the way VAX encodes operands one might expect the maximum literal size to be only four bits. Why?

Because the mode field is four bits, so there is only four bits remaining. (The four remaining bits are normally used for the register
number.)

© In fact, the maximum literal size is six bits. How is that accomplished? (If you don’t know or remember the
details then make up something reasonable.)

Literal mode is specified by setting the first two mode bits to zero. This consumes four modes but provides for a six-bit literal.

4
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Problem 3: Under SPECcpu2006 base rules at most four compiler optimization switches can be used per
language. [15 pts]

©What is the rationale for that restriction?

The base scores are supposed to reflect normal effort. It’s too vague to stipulate something like valid compiler optimization
switches shall be those that can be determined using normal effort. With such a rule there would be endless arguments
over whether the effort to determine a particular set of switches was normal or not. The four-switch rule, though arbitrary, is specific.

Suppose a tester would like to use five options:

cc -O4 --optimization-a --optimization-b --optimization-c --optimization-d

The tester modifies the compiler by combining options a and b, the modified compiler is made available as
a product. Now compilation can be done consistent with the rules:

cc -O4 --optimization-ab --optimization-c --optimization-d

© Should that be considered cheating? Explain why or why not.

It should be considered cheating because it renders the four-switch rule irrelevant. The impetus for combining the switches was to
get performance on SPECcpu benchmarks, so it’s probably not the kind of switch combination that would make sense for other uses
otherwise it would already be present.

5
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Problem 4: Answer each question below.[15 pts]

(a) In MIPS the branch instruction uses a 16-bit immediate to specify a displacement target, and the jal

instruction uses a 26-bit immediate. Why does it make sense to choose a coding for jal that has a larger
immediate?

Branches are typically used for loops and if/else constructs. In both cases the target will be within a procedure. The jal instruction
is usually used for a procedure call in which case the target will be in another procedure. Therefore jal jumps much further and so
a coding with a larger immediate makes sense.

Grading Note: The question originally asked Why does it make sense for jal to have a larger immediate? The answer
above would be considered correct for that question. The following answer is correct for the original question but not the one appearing
further above: Branch instructions can specify as many as two registers for a condition, so there is less space for an immediate.

(b) An ISA should be designed to support decades of implementations but invariably ISA designers are biased
towards a first implementation at the expense of later ones. A branch delay slot (as present in MIPS and
SPARC, for example) is a good example of such a phenomenon.

©Explain why the branch delay slot is a good example of a shortsighted ISA feature.

In the classic five-stage MIPS implementation a branch target and direction can be determined (resolved) in the cycle before they
are needed, this perfect timing is due to the delay slot. In superscalar implementations and those that are more deeply pipelined the
branch would be resolved after the target was needed and so the delay slot provides less of a benefit, while complicating the design.
That is, with a classic five-stage implementation there is no branch penalty because of a delay slot. In a superscalar or more deeply
pipelined implementation there is a branch penalty (the squashed wrong-path instructions) despite the delay slot, and because of the
delay slot control logic is more complex.
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Problem 1: (25 pts) Suppose it turns out that many mul.d instructions are executed with a 0 or 1 for one
of the operands, in that case the product could be computed in less than the six stages used in the class
implementation. The MIPS implementation below includes a new multiply fast unit, Mf, for such situations.

Mf has two inputs (unlabeled) and two outputs, valid and prod (they are not yet connected to anything).
As with A1 and M1, IEEE 754 doubles are expected at the inputs of Mf. If one of the inputs is 0 or 1 then the
valid output will be 1 (otherwise it is 0). If valid is 1 the prod output is the product of the two inputs;
both outputs are available by the end of the cycle.

Call a multiply fast if one of its operands is 0 or 1.
USE NEXT PAGE FOR SOLUTION!
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USE NEXT PAGE FOR SOLUTION!

(a) Add datapath and control logic for Mf meeting the requirements below:

�Add datapath so the Mf output will be written to the FP register file at the right time.

Datapath shown in blue on diagram on next page. The solution has the fast-multiply product pass through an extra stage so that WF
is fifth stage, to avoid the special case of a fast multiply being the only four-stage instruction (making it hard to squash in certain
circumstances).

� In order of decreasing priority: the added datapath must be correct, must not increase critical paths,
and should use as little new hardware as possible.

The datapath does not add multiplexors at the inputs or outputs of any functional unit (such as A4), so it does not strain critical
path. If hardware savings were more important than critical path the fast multiply product might have been muxed in after A3 or
A4.

�The control logic must detect and handle the new WF structural hazard with preceding instructions that’s
possible when writing a fast product.

The control logic appears in green on the next page. The logic labelled Control logic to insert fast multiply in the diagram detects
and handles the new structural hazard. If one exists the fast multiply path is not taken. (The alternative would be to stall.)

� If Mf is used then the mul.d’s usual WF slot should be available for other instructions. For example,
suppose the second instruction after mul.d is an add.d. If the multiply is normal the add.d would stall, if
the multiply is fast the add.d shouldn’t stall (at least for the WF conflict with mul.d).

The logic labelled Control to stop mult at M2 makes the multiply’s WF slot available to other instructions by setting we to 0 if
the fast multiply will use WF.
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(b) Add bypass hardware and control logic so that the code below executes without a stall if the mul.d turns
out to be fast. For this part assume that multiplexors at FP unit inputs won’t add to critical path.

# Cycle 0 1 2 3 4 5 6 7

mul.d f2, f4, f6 IF ID MF Mx WF

add.d f8, f2, f10 IF ID A1 A2 A3 A4 WF

�Bypass hardware for case above.

The bypass logic appears in red. See the pipeline diagram above for stage abbreviations. Note that the bypass logic is in Mf because
the add.d must make a stall decision when it is in ID and so it can’t be done any later.

The logic for selecting the WF stage is computed when the mul.d is in Mx because that logic is more elaborate and would add to
the critical path if it were in Mf (there is less time pressure in Mx).

Note that the add.d can bypass a fast multiply result even if the fast multiply won’t write back.

fmt imm

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC
Int Reg File

FP Reg File

fdfd

WF
Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16

M
6

we we

Decode
dest. reg

ID

A
4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2M
1

xw xw

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0
1

2

Mf
valid
prod

val
prd

3

"3"

=

by

Control logic for generating bypass from fast multiply
result.

Datapath for fast multiply result.

Control to stop mult at M2.

Control logic to insert fast multiply.

15:11

0
1

3

← → Fall 2007 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2007f/fe_sol.pdf


Problem 2: (25 pts) Answer the following predictor questions.

(a) The code below executes on three systems, one uses a bimodal predictor with a 214-entry BHT, one uses
a local predictor with a 214-entry BHT and a 7-outcome local history, and one uses a global predictor with
a 7-outcome global history. Consider the execution of the code below, all branches are shown.

BIGLOOP:

...

B1: beq r1, r2, SKIP1 T T T T N T T T T N T T T T N T T T T N ...

...

SKIP1:

...

B2: bne r3,r4 SKIP2 T T T N N N T T T N N N T T T N N N T T T N N N ...

...

SKIP2:

...

j BIGLOOP

nop

For partial credit show work, not just answer.

�Accuracy of bimodal predictor on B1 after warmup:

Accuracy is 4
5 = 80%.

�Accuracy of bimodal predictor on B2 after warmup:

Accuracy is 2
6 ≈ 33.3%.

�Accuracy of local predictor on B2 after warmup:

Accuracy is 100%

�Warmup time of local predictor on B2:

Warmup time is 6 + 6 × 2 = 19 executions of B2.

� Minimum local history size for 100% accuracy of local predictor on B2 (without ignoring B1) (show
work):

Minimum size is 5 outcomes. Four outcomes are not enough because pattern TTTN would occur in both B1 and B2 and the next
outcomes would disagree: T for B1 and N for B2.

�Accuracy of global predictor on B2 after warmup:

Accuracy is 30−2
30 ≈ 93.3%. There are 5 × 6 = 30 possible GHR values (patterns). Twenty four of these will only occur when

predicting B1 or predicting B2 (but not both). For example, pattern tTnTnNn can only occur when predicting B1 (because B1 never
has 3 (or 2) consecutive n outcomes). (The upper-case letters are the outcomes of the branch being predicted, the lower-case letters
are outcomes of the other branch.) Those 24 will be followed by correct predictions. There are two shared patterns in which the
outcomes agree by happy coincidence: tNtTtTn and nNtTtTt. Pattern tTtTtTn is used twice by B1 with differing outcomes so
the impact on the PHT entry cancels out, it is also used once by B2 and so the entry reaches a value suitable for B2, 0; the same with
pattern nTtTtTt. For all patterns discussed so far correct predictions are made for B2. There are two in which B2 is incorrectly
predicted: tTtTtNn and nTtTtTt. It is used once per unit by both B1 and B2, since B1 is more frequent the PHT entry reflects
B1’s next outcome: T. Summing it up, correct predictions will be made for B2 on 28 out of 30 patterns.

�Warmup time of global predictor on B2 (explain):

Warmup time is 6 + 5 × 6 × 2 = 66 executions of B2. Based on number of distinct GHR patterns.

4
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Problem 2, continued: Consider the execution of the code fragment below on a system using branch
prediction. The value of c used in the switch statement is random, uniformly distributed over a to z, and
outcomes are independent (like a 26-sided die). The branch implementing the if ( x < 5 ) statement,
which will be called the if branch, is taken 50% of the time.

int c = getchar(); // Unpredictable

switch (c) {

case ’a’: x = 3; j++; break;

case ’b’: x = 7; break;

...

case ’z’: x = 1; i++; break;

}

if ( x < 5 ) foo(); else bar();

As shown below, the switch construct is implemented using a dispatch table and a jr, and other jumps.
The switch construct itself and the case blocks use no branches.

# Part of code implementing switch construct.

# Value in register $t1 has been computed using variable c.

lw $t0, 0($t1) # Load the address of the case statement corresponding to c.

jr $t0 # Jump to case statement.

nop

# Case ’a’

addi $t5, $0, 3 # x = 3;

j endswitch

addi $t7, $t7, 1 # j++

...

(b) The predictors covered in class would all achieve just a 50% prediction accuracy on the if branch. Explain
why they might do better if the case statements contained branches, but the values assigned to x are the
same as the example above and the if branch is the same. Note: The original exam did not have this part.

�Why predictors might do better on if branch when cases have branches.

They might be able to tell which case statement was executed by the pattern of recent branch outcomes.

5
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(c) Modify one of the predictors used in class so that it does better than 50% on the if branch. The predictor
should also work well on similar switch statements and on predict well on code not having switch statements.
Don’t design a predictor for exactly the code above. For example, the predictor shouldn’t somehow find or
guess the value of x. Hint: Think about the answer to the previous part. A correct solution requires just a
small modification of one of the predictors shown in class.

�Briefly explain the idea behind your predictor.

If the predictor could determine which case statement was executed then it could better, or maybe perfectly, predict the branch. A
global or gshare predictor “knows” the outcome of prior branches (they are in the GHR) and uses that to make a prediction. Here the
predictor needs to know which case statement was executed, or equivalently what the target of the jr instruction was. So a predictor
for the code above would shift jr target addresses in the GHR, just as branch outcomes are shifted into the GHR. The entire target
address would be too large, but the lower order bits, say 4 of them, might do.

�Draw a diagram of the predictor.

�Show tables such as BHT and PHT.

The diagram below is a gshare predictor modified so that it would accurately predict the branch. The material in blue shows changes
specific to this problem. The size of the BHT and the size of the local history match the first part of this problem.

In a more realistic predictor the BHT would just store a branch displacement (16 bits) and a separate jump target buffer (JTB) would
hold 30-bit addresses (or maybe just the other 14 bits) for jumps.

PC
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is jr
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Problem 3: (20 pts) The diagram below is for a 256-MiB (228-character) set-associative cache with a line
size of 64 characters on a system with the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out 23:

64 b

32 b

31:24

23:3

31:2423:6

23:6

23:3

�Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 24

Index

23 6

Offset

5 3 2 0

�Associativity:

Based on the high bit position used for the data store, 23, the data store size is 224 characters. Since the total cache capacity is 228

characters the cache must be 228

224 = 16-way set associative .

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity plus 16 × 224−6 (32 − 24 + 1) bits.

�Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

31 28

Index

27 6

Offset

5 3 2 0
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Problem 3, continued:

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

�What is the hit ratio running the code below? Explain

double sum = 0.0;

long *a = 0x2000000; // sizeof(long) = 8 characters.

int i;

int ILIMIT = 1 << 10; // = 210

for(i=0; i<ILIMIT; i++) sum += a[ i ];

The line size of 64 characters is given, the size of an array element is 8 characters. The miss on the first iteration will bring in a line
which is 64 characters or 8 longs, the first long will be accessed. The second iteration will access the second long on this line.

The line will be “used up” at i = 64
8 = 8, and so for each miss there are 7 hits. The hit ratio is 7

8 . .

8
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(c) Consider a 1 MiB (220 byte) direct mapped cache with a line size of 256 characters (not the same as
the one from parts a and b) for a system with a 32-bit address space. Suppose this cache has the following
defect: a particular bit position in the tag comparison unit will match even if the tags differ. That is, if the
bad bit position were 2 then tags 0x5 and 0x1 would match. Other cache hardware functions correctly. The
cache is write through and write around.

�Complete the program below so that it finds the bad bit position in a small amount of time and assigns
it to badbit.

�For maximum partial credit briefly describe your strategy.

• The cache is empty when the program starts.

• Assume that any address can be read or written.

char *a = 0x1000;

int bad_bit = -1; // At end should be set to position of bad tag bit.

// SOLUTION

unsigned int i;

// Initialize elements to zero.

// Since cache is write-around these initialized elements won’t be cached.

// Tag values are: 1, 2, 4, ..., 4096

//

for ( i=20; i<32; i++ ) a[ 1 << i ] = 0;

// Initialize this element to 1.

// Tag value is 0.

a[0] = 4720;

int dummy = a[0]; // Make sure a[0] is in cache.

// Each element fetch should miss the cache and find a zero. If

// the tag comparison is wrong then it will hit and find the 4720.

for ( i=20; i<32; i++ )

if ( a[ 1 << i ] == 4720 ) break;

if ( i != 32 ) bad_bit = i - 20;

9
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Problem 4: Answer each question below.

(a) (6 pts) A trap instruction is sort of like a procedure call (e.g., jal) to the operating system.

�Describe a difference between a trap and jal in how the target address is specified.

A jal specifies the low bits of the target address. A trap does not specify any address at all, the target address is a particular entry
in the trap table, and the trap table address is defined by the MIPS ISA and built into the hardware.

�Describe another important difference between a trap and a jal.

A trap switches the processor to privileged mode.

(b) (6 pts) A log (logarithm) instruction is to be added to an ISA. Group E wants to define the log

instruction as producing the IEEE 754 double representation that is closest to the exact result. Group A
would define log as producing any result within a certain number of bits of the exact result. Group A argues
that the precision of an exact result is not needed and their approximate result is sufficient. Group E agrees
with this, they want an exact result for other reasons. Hint: Think about the reasons for separating ISA and
implementation.

�Why might group A want an approximate result?

It can be computed faster than an exact result.

�Why might group E want an exact result?

Code would run exactly the same way on different implementations. (Note that the A-group definition of log would allow to
implementations to produce different results, so long as they were close enough to an exact result.)

10
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(c) (6 pts) Consider two scalar MIPS implementations, implementation A is similar to the one covered in
class with the familiar stages IF ID EX ME WB while implementation B has stages IF I1 I2 I3 I4 EX ME

WB. The two implementations run at the same clock frequency and are similar in other ways.

� Explain why implementation A does not need a branch predictor, or at best would only gain a small
amount of performance.

Because the branch target and direction are available in time for IF, so long as there is no unbypassable dependence. Consider the
code execution below which is on a processor with an aggressive EX-to-ID bypass for the branch condition. The branch has the
direction and target ready in cycle 2, which is in time for the fetch of the target which starts in cycle 3. There is no need for a branch
prediction. If the branch condition were from a load instruction (or if the aggressive bypass were not possible) the branch would have
to stall and so branch prediction would help, but only a little.

# SOLUTION example

# Cycle 0 1 2 3 4 5 6 7

sub r1, r2, r3 IF ID EX ME WB

bneq r1,r5 TARG IF ID EX ME WB

xor r9, r10, r11 IF ID EX ME WB

TARG:

add r12,r13,r14 IF ID EX ME WB

�Explain why a branch predictor would help implementation B much more than implementation A.

Because the branch would not be resolved until after several instructions past the delay slot instruction were fetched, these instructions
would have to be squashed if the prediction were wrong. In the example below three instructions, or and two others not shown, are
squashed because the branch is mispredicted not-taken.

# SOLUTION example

# Cycle 0 1 2 3 4 5 6 7

sub r1, r2, r3 IF I1 I2 I3 I4 EX ME WB

bneq r4,r5 TARG IF I1 I2 I3 I4 EX ME WB

xor r9, r10, r11 IF I1 I2 I3 I4 EX ME WB

or IF I1 I2x

TARG:

add r12,r13,r14 IF I1 I2 I3 I4 EX ME WB

�Consider the performance of implementation A and implementation B when branch prediction is perfect
for both. Which (if any) is faster, and by how much? Explain, state any assumptions made.

They would be the same performance because the only other events that could slow execution, dependence stalls, would be just as
frequent and just as long.

11
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(d) (6 pts) The code below executes on a two-way superscalar dynamically scheduled machine similar to the
one presented in class. The sub instruction reads the value of r1 from the register file in cycle 10, xori
writes a value for r1 in cycle 6 and lw writes a value for r1 in cycle 9.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

lw r1, 0(r2) IF ID Q RR EA ME WB C

add r3, r9, r1 IF ID Q RR EX WB C

or r6, r3, r8 IF ID Q RR EX WB C

xori r1, r4, 5 IF ID Q RR EX WB C

sub r5, r1, r3 IF ID Q RR EX WB C

�Briefly explain why the code runs correctly despite the fact that lw writes after xori.

Because registers are renamed, meaning lw writes a different physical register than xori and so there is no confusion.

(e) (6 pts) Modern VLIW ISAs are designed with modern implementations in mind, unlike decades old RISC
ISAs.

�Show the contents of a typical VLIW bundle.

A bundle typically contains three RISC style instructions plus some dependency information.

�Provide an example of a VLIW feature that’s designed to make implementation easier. Explain how it
does so.

The dependency information eases design of the control logic, perhaps shortening critical paths.

12
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Problem 1: In the MIPS implementation below some wires are labeled with cycle numbers and values that
will then be present. For example, c1:15 indicates that at cycle 1 the wire will hold a 15. Other wires
are labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any labeled
wire is changed the code would execute incorrectly. Note that the last instruction and the address of two
instructions have been provided. [40 pts]

©Finish a program consistent with these labels.

©All register numbers and immediate values can be determined.

©Be sure to fill the three blocks marked Fill In.

format
immed

IR

Addr25:21

20:16

IF ID

EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

=

30 2
"0"

+
15:0

25:0

29:26

29:0

01

15:0

c1:15
c4:12

c1:14

Fill In
c3:0x24

c5:0x5e1f

c2:6

c3

c3

Fill In
c6:_3

c4:0x1006

Fill In
c7:_0

c4:19

c6

c5

c3:0

# Solution Below

#

# Cycle 0 1 2 3 4 5 6 7 8

0x1000 xor r19, r15, r14 IF ID EX ME WB

0x1004 lhu r6, 0x5e1f(r19) IF ID EX ME WB

0x1008 bne r19, r0, TARG IF ID EX ME WB

0x100c or r4, r12, r6 IF ID EX ME WB

0x1030 sb r17, 3(r4) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8

Instruction at 0x1000: The c1:15 and c1:14 directly provide the two source registers and c4:19 directly provides the destination
register. Because it uses an rt register and writes back it must be a format R instruction, though it could be almost any arithmetic
or logical format R instruction (such as add, sub, slt, or). Of these xor was chosen arbitrarily.
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Instruction at 0x1004: The destination register, r6, is determined directly by the c2:6 . The c3 in EX indicates that this
instruction bypasses its rs register value from the previous instruction and so the rs register of this instruction must be the same as
the destination of the previous instructions, r19. The c4:0x1006 indicates that this is a memory instruction of size either byte

or half, and since it writes back it must be some kind of a load. The size of loaded value, c5:0x5elf , rules out a lb or lbh, so
the instruction must be a lh or a lhu. Peculiarly, the address being loaded from is actually the two least significant bytes of the
instruction itself and so the loaded value provides the instruction’s immediate field value: 0x5elf. (Determining this instruction’s
immediate value was probably the subtlest part of this problem. )

Instruction at 0x1008: The ID-stage c3 indicates that this is a branch, and that the rs register is r19. The c3:0 indicates an rt
register of 0. The last instruction has address 0x1030 and so the branch must have been taken. Because the previous instruction
loaded from address 0x1006 the value in register r19 could not have been zero, and so the branch must be bne. The value for the

Fill In: c3: is the number of instructions to skip, the target address minus the delay slot address: 0x1030 - 0x100c = 0x24

or for those proud of their ten fingers, 36.

Instruction at 0x100c: The c4:12 directly indicates the rs register. The bypass indicated by the EX-stage c6 indicates that this

instruction’s destination register value is bypassed to the following one and so this instruction must write register r4. The c5 in
the EX stage indicates that this instruction reads an rt register, since it also writes a register it must be format R. As with the first
instruction there is no way to tell which one it is, or is an arbitrary choice.

Instruction at 0x1030: This instruction itself is given, but there are the fill-in blocks in EX and ME. The c6: fill-in block points to
the lower input of the ALU when this instruction is in EX. For stores (and also loads), the lower input is the immediate value, which

in this case is 3. The c7: fill-in block points to the destination register number. This instruction is a store, since stores don’t
write registers the destination register number is 0. (Register r17 specifies the value to write to memory.)

3
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Problem 2: Answer each question below.

(a) Show the encoding of the MIPS xor instruction below. In particular, show the name of each field in the
encoded instruction, the fields’ bit positions, and the fields’ values. If you don’t know the value of a field
(there’s one or two you’re not expected to know) make up a value and label it “made up.” Hint: It is not
cheating to look at the diagram for Problem 1.

xor r5, r7, r10

© [10 pts] Encoding showing field names, bit positions, and values.

Fields shown below. Only the func field can have a value marked “made up.” One was expected to know that for common format
R instructions the opcode field value would be zero.

Format R:

opcode

0

31 26

rs

7

25 21

rt

10

20 16

rd

5

15 11

sa

0

10 6

func

0x26

5 0

(b) Unlike some other benchmark suites, in SPECcpu the tester compiles the benchmarks (rather than having
SPEC provide the benchmarks already compiled). [10 pts]

©How does this difference make SPECcpu valuable to those in the area of computer architecture?

Those in the area of computer architecture are interested in the performance potential of new designs. Because they are usually
testing products they would like to sell, it is in the testers’ interests to get results reflecting the full potential of their systems so they
will select compilers and other build tools appropriate for the new design and make the best use of these tools.

If SPEC were to provide compiled (built) benchmarks then they might be compiled for some average system, and so would not make
full use of a new designs’ special features. If a new design implemented a new ISA then SPEC binaries would not run at all, which of
course would disappoint the computer architecture research community.

©Why might this difference make SPECcpu less valuable to those looking for the fastest computer to run their
favorite game?

SPEC shows the performance of a program compiled specially for a particular machine. Games are compiled for some typical machine.
If you have a system with some uncommon special feature, the SPECcpu benchmarks might show performance when that feature
is used, but games, intended for a broad audience, might not be compiled for that uncommon feature. So one might get lower
performance on a game than would be led to expect by looking at similar SPECcpu benchmark numbers.

(c) A company is considering adding a BCD data type to their new ISA. An analysis of a suite of Cobol
programs, widely used by their customers, shows that the ISA’s BCD data type would be extensively used.
[10 pts]

©What more does the company need to know to make the decision?

The company needs to know how much faster a system would be with the new data type.

If the hardware didn’t have the data type then BCD arithmetic would have to be done in software. That would be slower, but would
only have a significant impact if a large amount of BCD arithmetic were performed.

Note that issues such as precision or the ability to represent decimal fractions in binary are irrelevant because BCD would be used
whether or not the data type were present. If not present, numbers would still be represented in BCD but rather than using, say, a
BCD add instruction they’d use a whole bunch of shift, and, and add instructions.
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Problem 3: Answer each question below.

(a) The MIPS code below loads a character from memory and places it in bit positions 15:8 of register r3.
[10 pts]

lbu r1, 0(r2) # Note: r2 can be any address.

sll r1, r1, 8

and r3, r3, r4 # r4 = 0xffff00ff

or r3, r3, r1

©Explain how the operation performed by this code is similar to, and differs from, the operation performed by
lwl and lwr (from Homework 1). Note: the phrase “the operation performed by this code” was not present
on the original exam.

Similar: loaded value shifted and combined with existing contents. Difference: Can place any byte in a specific position.

© Suppose the operation performed by the code above is something that important benchmarks do often.
Given that MIPS already has lwl and lwr is it worthwhile adding an instruction that performs the same
operation as the code above? Explain, stating any necessary assumptions or made-up data.

The problem indicates that the operation performed by the code is important and done often. It should also be clear that a machine
instruction could perform the operation faster since three of the four instructions it would replace just drop a value in a particular
bit range.

Whether it is worthwhile to add this instruction then depends upon how much it would cost. The problem clearly states that lwl
and lwr are already present. Since the hardware to implement these instructions can load something from memory and place it in
parts of the destination register without changing the register’s other contents, the additional hardware needed for the new instruction
would be minimal. And for that reason it would be worthwhile.

Grading Note: Very few saw the point of this question.
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(b) The first code fragment below, standard MIPS, uses a slt to perform a comparison for a branch. The
second uses a proposed MIPS branch instruction that does the comparison itself and as a result the target is
fetched one cycle sooner. The first execution is on sImp, an implementation of standard MIPS, the second
execution is on bImp, an implementation of the proposed MIPS; bImp includes blt but is otherwise identical
to sImp. [10 pts]

# Standard MIPS Cyc: 0 1 2 3 4 5 6 7

slt r1, r2, r3 IF ID EX ME WB

bne r1, r0, TARG IF ID EX ME WB

nop IF ID EX ME WB

TARG: xor r4, r5, r6 IF ID EX ME WB

# Proposed MIPS Cyc: 0 1 2 3 4 5 6 7

blt r2, r3, TARG IF ID EX ME WB

nop IF ID EX ME WB

TARG: xor r4, r5, r6 IF ID EX ME WB

©Why might the clock frequency of bImp be lower than sImp?

The hardware needs to know whether the branch is taken by the end of its ID stage. In sImp the comparison used for the branch
starts at the beginning of the branch’s ID stage (when slt is in EX). In bImp the comparison is also done when the branch is in ID,
but it starts only after the registers are retrieved from the register file so there is less time to do so. If comparison takes long enough
then bImp’s clock frequency would be forced to be lower.

©How does knowing the percentage of branches in a program help determine if bImp can run the program
faster than sImp (when compiled for the respective implementation)?

With bImp there would be fewer instructions, and if the clock frequency were identical it would run faster. But if bImp had a lower
clock frequency then the only way for it to be faster than sImp would be bImp programs to be small enough to overcome the clock
frequency disadvantage. The reduction in the number of instructions is based on the number of slt / branch pairs, so knowing that
can help one estimate performance.
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(c) All a compiler needs to know about the target (the implementation being compiled for) is its ISA.
However, if the compiler also knows the implementation it can produce faster code. [10 pts]

©What’s wrong with the following statement: If the compiler also knows the target implementation it can
make better register assignment decisions since it knows the exact number of registers available.

The exact number of registers is something specified in the ISA, not the implementation.

©How can the compiler produce better code knowing operation latencies, such as the time needed for a mul

instruction?

With a knowledge of operation latencies the compiler could choose the best code for an operation that can be performed several ways.
For example, to multiply by a small constant, say 6, one might use an integer multiply or one could use a series of shifts and adds.
Without knowing operation latencies one can’t tell which method is faster.

Scheduling (rearranging instructions) is another thing the compiler can do better knowing operation latencies. (Scheduling is not
something covered before the exam and so that was not expected as an answer.)
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format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPCInt Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2M
1

xw xw

fd

we

"0"
"2"
"1"

30 2
"0"

+ 15:0 29:0

0
1

2

A B C

D

Stall
ID

Problem 1:
(20 pts) The
statically sched-
uled MIPS
implementa-
tion illustrated
to the right
is taken from
the class notes.
To avoid mak-
ing things too
easy some de-
scriptions were
removed from
logic blocks
in the lower-
left corner.

(a) The execution of a code
fragment is shown below, fol-
lowed by a table with rows
corresponding to labeled wires
in the diagram (including
Stall ID). Fill in the table
showing values on those wires
only for cycles in which those
values are used. That is, if
a value in the table is changed
execution must be incorrect.

©Complete the table, omitting unused values.

# Cycle 0 1 2 3 4 5 6 7 8 9 10

mul.d f2, f12, f18 IF ID M1 M2 M3 M4 M5 M6 WF

add.d f8, f10, f16 IF ID A1 A2 A3 A4 WF

sub.d f6, f20, f14 IF ID -> A1 A2 A3 A4 WF

lwc1 f4, 0(r1) IF -> ID ----> EX ME WF

# Cycle 0 1 2 3 4 5 6 7 8 9 10

A 1 0 1 <- Solution

B 8 2 6 <- Solution

C 0 0 0 1 <- Solution

D 1 2 1 0 <- Solution

Stall ID: 0 0 0 1 0 1 1 0 0 0 0 <- Solution

# Cycle 0 1 2 3 4 5 6 7 8 9 10

Solution Discussion

A: This control signal is used to insert add and other instructions that use the floating-point adder. When the signal is 0 fd passes
through unchanged and xw is set to take the multiplier output. An instruction is inserted when the control signal is 1: the fd value
from ID stage will enter and the xw control signal will be set to take the adder output.
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In the code above the add.d and sub.d need the FP adder. The 1 in cycle 2 is generated for the add.d, it arrives at A1 in cycle
3. Also in cycle 3 a 0 is generated for the sub.d instruction, it is refused entry because it would have arrived at WF in the same
cycle as mul.d. In cycle 4 the signal is 1 and so the sub.d enters A1 in cycle 5. If there is no instruction being inserted and there
is no multiply passing through it does not matter what the value is and so those entries are blank (cycles 0, 1, and 5 · · · 10).

B: This signal provides the floating-point register to write for the instruction in stage A1/M3. Note that add-unit and multiply-unit
instructions pass through this stage but instructions that use the integer pipeline to get a floating-point register value do not pass
through this stage. That’s why f4 is not present here (it is inserted in the next stage).

C : This control signal is used to insert instructions that get their value from the integer pipeline. In the example, that’s lwc1,
another such instruction is mtc1, seen in part b. The lwc1 is inserted in cycle 7, which is its last cycle in ID. The signal must be
0 when other instructions pass through, that happens in cycles 4, 5, and 6. At other cycles it doesn’t matter what the value is.

D: This is the control signal for the WF-stage multiplexor. A value of 0 selects the value from the integer pipeline, 1 selects the
floating-point add unit, and a 2 selects the multiply unit. The value has no effect if there isn’t an instruction in WF in the next
cycle, for that reason values are blank in cycles 0 to 5 and cycle 10.

Stall ID: This value is 1 if there is a stall. Note that a stall starts in the cycle before the beginning of an arrow (cycles 3 and 6) and
the stall ends in the cycle before the arrowhead. Unlike the other signals this one must be shown every cycle to achieve the given
execution.

Grading Note: For Stall ID very few showed 0’s for every cycle without a stall.
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format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPCInt Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2M
1

xw xw

fd

we

uses FP mult

uses FP add

WF by int

"0"
"2"
"1"

30 2
"0"

+ 15:0 29:0

0
1

2

Stall
ID

=

15:11

20:16
=

byp

(b) Show the execution of the code below on the implementation assuming that all needed bypass are present.
Don’t forget to check for dependencies. (Instruction mtc1 moves a value from an integer register to a floating-
point register.)

©Pipeline diagram.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

mtc1 f2, r7 IF ID EX ME WF <- Solution

add.s f3, f4, f2 IF ID A1 A2 A3 A4 WF <- Solution

add.s f6, f3, f8 IF ID -------> A1 A2 A3 A4 WF <- Solution

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

Diagram shown above. Note that it’s possible to bypass f2 from mtc1 to the add.s without a stall.

Grading Note: Most did not realize a mtc1-to-add.s bypass was possible and so showed a stall in cycle 3.
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(c) Add the bypass paths needed by the code above and show the control logic for the added paths. Do not
add unneeded bypass paths. Hint: Control logic should consist of two one-bit signals.

©Bypass paths for code above.

Bypass paths shown in red. Note that the bypass from mtc1 to add.s is taken from the ME stage by extending the ME-to-EX bypass
connection.

Also, it would probably make more sense to connect the outputs of added bypass multiplexors to both the add and multiply units.
The reason for not doing it in the diagram was just space. Those solving the problem might have avoided doing so since unneeded
bypass paths were not to be added. Points would not have been deducted for that since those ME-to-M1 paths are free.

©Control logic for added bypass paths.

Control logic shown in blue. The control signals are computed in ID, pass through the ID/A1 latch and are used in A1. Computing
the control signals in A1 is not a good idea because extra pipeline latch space would be needed for fs and ft (ten bits versus two)
and worse the floating point add would have to wait for the comparison units.
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Problem 2: (20 pts) Illustrated is the execution of some code on our dynamically scheduled MIPS imple-
mentation along with the contents of the ID register map, the commit register map, and the physical register
file. The implementation itself is shown on the next page.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.d f2, f4, f6 IF ID Q RR M1 M2 M3 M4 WF C

add.d f4, f2, f10 IF ID Q RR A1 A2 A3 WF C

ldc1 f2,0(r1) IF ID Q EA ME WF C

sub.d f2, f2, f8 IF ID Q RR A1 A2 A3 WF C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID Register Map

F2: 12 9 71 99

F4: 18 51

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Commit Register Map

F2: 12 9 71 99

F4: 18 51

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Physical Register File

9 [ 2.1 ]

12 2.0 ]

18 4.0 ]

51 [ 4.1

71 [ 2.2 ]

99 [ 2.3

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(a) Answer the following

©Which physical register was allocated for f4 in add.d?

Physical register 51.

© If one used the ID map to determine the value of f2 in cycle 11, what value would one obtain? Hint:
It’s a two-step process.

Value of 2.3 (from physical register 99).

© If one used the commit map to determine the value of f2 in cycle 11, what value would one obtain?
Hint: It’s a two-step process.

Value of 2.1 (from physical register 9).

© In cycle 11 where is the value of f2 from ldc1 located?

In the physical register file, in physical register 71.
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Problem 2, continued: Dynamically scheduled processor shown for reference.
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20:16
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Problem 2, continued:
# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.d f2, f4, f6 IF ID Q RR M1 M2 M3 M4 WF C

add.d f4, f2, f10 IF ID Q RR A1 A2 A3 WF C

ldc1 f2,0(r1) IF ID Q EA ME WF C

sub.d f2, f2, f8 IF ID Q RR A1 A2 A3 WF C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID Register Map

F2: 12 9 71 99

F4: 18 51

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Commit Register Map

F2: 12 9 71 99

F4: 18 51

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Physical Register File

9 [ 2.1 ]

12 2.0 ]

18 4.0 ]

51 [ 4.1

71 [ 2.2 ]

99 [ 2.3

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(b) Suppose that in cycle 11 the contents of physical register number 71 was somehow changed, perhaps due
to a one-time problem. If the code executes as shown then the program runs correctly. But if a hardware
interrupt happens (is taken) at the wrong time execution would be incorrect because of this change. Explain
why, illustrate timing details on the diagram.

©Reason for incorrect execution.

Physical register 71 holds the value of f2 used as a source by sub.d. If the value were changed in cycle 11 that would not affect
sub.d since it already read (actually bypassed) the value in cycle 7 (if it got it from the register file it would be in cycle 6). If by
chance the handler for the hardware interrupt starts right after ldc1 then execution would have to resume at sub.d (and since it’s
a hardware interrupt there’s no reason to think any of the instructions above caused the problem). When the handler returns sub.d
will again execute (it didn’t commit the first time) but this time it will read the changed 71 from the physical register file.

The key feature is the handler starting between ldc1 and sub.d.

Grading Notes: Many solutions described the handler as starting, say, in cycle 12. Instead, the solution should have indicated the last
instruction to commit before the handler starts.

©Timing details on diagram.

See the answer above.
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Problem 3: (20 pts) The MIPS code below runs on a system using a bimodal branch predictor of the
indicated sizes. Branch outcomes are shown for each branch, the outcome patterns will continue to repeat.

BIGLOOP:

B1: 0x1000 beq r1, r2 T T T T T N T N N T T T T T T N T N N T ...

... nonbranch insn.

...

B2: 0x1100 bne r3, r4 N N N N N N N N N N N N N N N N N N N N ...

nop

j BIGLOOP

nop

(a) What is the accuracy after warmup of a bimodal branch predictor with a 214-entry BHT on branch B1?

© 214-entry BHT bimodal accuracy on B1.

Accuracy is 60%.

(b) What is the accuracy after warmup of a bimodal branch predictor with a 24-entry BHT on branch B1?

© 24-entry BHT bimodal accuracy on B1.

With a 24-entry BHT branches B1 and B2 will share the same entry. Since B2 always executes after an execution of B1 it will be as
though the counter were unchanged when B1 is taken and decremented by 2 when B1 is not taken. The counter will soon reach zero

and only the not-taken outcomes will be correctly predicted and so the accuracy is 30% .

(c) What is the smallest BHT size for which one can obtain the same accuracy on branch B1 as a 214 entry
table? Explain.

©Smallest size for 214 entry accuracy.

Smallest size: 27 entries.

©Reason.

That is the smallest size at which B1 and B2 use separate entries. It’s the sharing of entries that results in the lower accuracy in part
b.

(d) Normally the BHT in a MIPS implementation is indexed starting at bit position 2 (omitting the 2
least-significant bits) of the branch PC (address). For the following questions think about answers to the
preceding parts but answer the question for ordinary programs, not the code sample above.

©Why might starting at position 3 or 4 be better?

Better means reducing the number of collisions (sharing of entries, as in part b). Taking, say, the 14 PC bits from 16:3 instead of 15:2
would separate branches that differed at bit 16 but whose lower bits are identical. That’s good. That might be offset by collisions
from branches which differ only in bit position 2; those branches would be adjacent and since that’s unlikely there would probably be
a benefit by starting at 3.

©Why might starting at position 10 or 11 be worse?

About one out of six instructions is a branch, so starting at 10 would certainly result in collisions by nearby branches.

9
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Problem 4: (20 pts) The diagram below is for a 4-MiB (222-character) set-associative cache with a line
size of 16 characters on a system with the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

©Fill in the blanks in the diagram.

CPU
Addr

Data

Data

 Addr
Out

Tag

 Addr

=Tag

Valid
Data

 Addr
Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32 b

32 b

31:21

20:2

31:2120:4

20:4

20:2

©Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 21

Index

20 4

Offset

3 2 1 0

©Associativity:

The cache is 2-way set associative.

©Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity plus 2 × 221−4 (32 − 21 + 1) bits.

©Show the bit categorization for a 64-way set-associative cache with the same capacity and line size.

Address:

Tag

31 16

Index

15 4

Offset

3 2 1 0

10
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Problem 4, continued:

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

©What is the hit ratio running the code below? Explain

double sum = 0.0;

short *a = 0x2000000; // sizeof(short) = 2 characters.

int i;

int ILIMIT = 1 << 10; // = 210

for(i=0; i<ILIMIT; i++) sum += a[ i ];

The line size of 16 characters is given, the size of an array element is two characters. The miss on the first iteration will bring in 16
characters, a line. The second iteration will access data on this line. The line will be “used up” at i = 16

2 = 8, and so for each miss

there are 7 hits. The hit ratio is 7
8 . .

(c) The code below runs on a direct mapped cache with the same line size and capacity as the cache from the
first part. Initially the cache is empty; consider only accesses to the arrays. Choose b, ILIMIT, and ISTRIDE

so that the cache is completely filled in the minimum number of iterations (minimum ILIMIT). (Every access
should be a miss.)

© b, ILIMIT, and ISTRIDE

©Briefly explain each choice.

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

char *b = 0x3000010; // SOLUTION

int i;

int ILIMIT = 1 << 17; // SOLUTION

int ISTRIDE = 1 << 5; // SOLUTION

for(i=0; i<ILIMIT; i++)

sum += a[ i * ISTRIDE ] + b[ i * ISTRIDE ];

Since the cache is direct mapped generate each index exactly once. Accesses to a generate even indices and b odd indices.

11
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Problem 5: Answer each question below.

(a) (5 pts) Consider trap instructions and instructions that raise exceptions.

©What are trap instructions typically used for?

Trap instructions allow code running in user mode to call operating system routines. Those routines can do things that user code is
not allowed to do, such as accessing hardware. A trap instruction might be used for system calls, for example, to open or read from
a file.

© Sometimes when an instruction in a program raises an exception the program ultimately is allowed to
continue. Give an example of such an exception, and what the handler might do.

Load and store instructions frequently encounter routine problems that the operating system can fix. This might include moving a
page of memory from the disk into memory. After the handler fixes such a problem it will restart the program at the load or store
that raised the exception, with the expectation that the load or store would now complete normally.

(b) (5 pts) When a MIPS instruction raises an exception the type of exception is written to the cause register.
SPARC V8 lacks an equivalent of a cause register, so what does it use as a substitute? Explain.

©SPARCs alternative to MIPS’ cause register.

SPARC calls different exception handlers for each type of exception so there is no need to check a cause register. For example,
suppose a FP instruction raises an exception due to an arithmetic error. On SPARC a handler just for that exception would be called
(located at entry 8 in the trap table), in MIPS a generic handler would be called which would have to examine the cause register to
discover, for example, that a FP exception was raised. It would then jump to the appropriate handler.

12
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(c) (5 pts) An early critic might have said that the improvements realized by dynamically scheduled systems
could be achieved on much less expensive statically scheduled systems by using better compilers. The
particular compiler improvements would help statically scheduled systems but have no impact on dynamically
scheduled ones. Consider two-way superscalar statically and dynamically scheduled systems for the examples
needed below.

©Explain what the compilers would have to do and why.

A two-way statically scheduled superscalar system would likely suffer from stalls due to true dependencies, see the first code fragment
below. A compiler could avoid those stalls by scheduling (re-arranging) instructions, see the second fragment below.

©Provide an example, showing code before and after optimization.

# Solution

# Before optimization, execution on statically scheduled 2-way superscalar.

# Execution is same as a less-expensive scalar system.

add r1, r2, r3 IF ID EX ME WB

sub r4, r1, r5 IF ID -> EX ME WB

or r6, r7, r8 IF -> ID EX ME WB

and r9, r6, r10 IF -> ID -> EX ME WB

# Before optimization, execution on dynamically scheduled 2-way superscalar.

# Though SUB and AND instructions wait other instructions aren’t delayed.

add r1, r2, r3 IF ID Q RR EX WB C

sub r4, r1, r5 IF ID Q RR EX WB C

or r6, r7, r8 IF ID Q RR EX WB C

and r9, r6, r10 IF ID Q RR EX WB C

# After optimization: Execution is ideal, same as a more-expensive DS system.

add r1, r2, r3 IF ID EX ME WB

or r6, r7, r8 IF ID EX ME WB

sub r4, r1, r5 IF ID EX ME WB

and r9, r6, r10 IF ID EX ME WB

(d) (5 pts) What is it about loads that allow dynamically scheduled systems to outperform statically scheduled
systems even with good compilers?

©Explain.

Unlike most other integer instructions, loads take two cycles to produce a result and so a compiler will need to find at least n
instructions to place between a load and an instruction sourcing the loaded value. What’s worse than that is that sometimes loads
miss the cache. If the compiler misses the L1 cache but hits the L2 cache it might be ten cycles before a result is ready, so the
compiler might be able to at least schedule away some stalls for a particular load. However, it can’t do that for all loads.

In contrast a dynamically scheduled system will allow non-dependent instructions following a missing load to execute.

13
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Problem 1: In the MIPS implementation below the data memory port is in an unusual position that avoids
a stall and allows the implementation of a new (to MIPS but not CISC ISAs) instruction. Some wires are

labeled with cycle numbers and values that will then be present. For example, C1:10 indicates that at
cycle 1 the wire will hold a 10. Other wires are labeled just with cycle numbers, indicating that the wire is
used at that cycle. If a value on any labeled wire is changed the code would execute incorrectly. [50 pts]

©Write a program consistent with these labels.

©All register numbers and immediate values can be determined.

© Identify the new (to MIPS) instruction and describe what it does.

format
immed

IR

Addr25:21

20:16

IF

ID EX

WB

ME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

rtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

30 2
"0"

+
15:0

25:0

29:26

29:0

01

15:0

Addr
Data
In

Mem Port

Data
Out

C1:10

C5:8

C4:8

C3:6

C7:9

C3 C4

C5
C6

C6:12

C2

C4

C5

C5

C7

C2: 0010 0000 0100 0111 0000 0000 0000 1010

New Mem Port
Connections

Original Mem
Port Connections

# SOLUTION. See next page for discussion.

#

# Stage labels: eX: EX stage used for arithmetic / logical computation.

# eA: EX stage used for effective address computation.

# eM: EX stage used for memory access.

# me: Memory stage not used.

# mM: Memory stage used.

#

0 1 2 3 4 5 6 7 8

I1: lW r2, 0(r10) IF ID eM me WB

I2: addI r7, r2, 4 IF ID eX me WB

I3: lW r6, @(r7) IF ID eM mM WB

I4: lW r9, 8(r7) IF ID eA mM WB

I5: sW r6, 12(r8) IF ID eA mM WB

0 1 2 3 4 5 6 7 8
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The implementation diagram shows the data memory port moved from its home in ME to between the EX and ME stages. The
connections highlighted in green are also present in the usual five-stage pipeline used in class, and so the memory port can be used
by instructions in ME in the usual way. (The highlighting of differences and similarities is only present in the solution.) The new
connections, highlighted in blue, allow an instruction in EX to use the memory port, with the address taken from the upper ALU
input and the loaded data placed in the EX/ME.ALU latch. Each instruction is discussed below.

I1: The C2 at the memory port can be for an instruction in EX or ME, but in cycle 2 there is no listed instruction in ME and so

it must be the instruction in EX, which is I1, and so I1 must be a memory instruction. The C1:10 indicates that its rs register
is r10 and because it’s not using the ALU to compute its effective address the immediate must be zero (otherwise the control logic

would have it use the memory port when in ME). The C3 at the ALU input indicates a dependence with the following instruction,
I2, and so I1 must be some kind of load, the dependence also fixes the destination register to r2 since that’s what the rs register of
I2 will turn out to be.

I2: The C2:0010 0000... provides the entire instruction. Those who happen to know that 8 is the opcode for addi could get the

whole instruction here, for the rest of us there are hints. The C5 in WB indicates that I2 is writing back a value from the ALU,
so it must be an arithmetic or logical instruction. If I2 were a type R instruction the rd register would be zero, but since only useful
wires are labeled the destination register must be non-zero and so I2 is type I. From the IR value it’s easy to find that rs is r2, rt
(the destination) is r7, and the immediate is 10. It could be any arithmetic or logical instruction and so addi is possible but not
certain.

I3: The C3:6 provides the destination register, r6. The C4 at the ALU output indicates that this instruction uses the memory

port when it’s in EX. The C5 in ME indicates that it also uses the memory port when it’s in ME. How odd! This must
be the new instruction since no existing instruction uses the data memory port twice. The first use of the memory port would use
the rs register as an address, the second use would use the loaded value as the address, so I3 must be a memory indirect load.

I4: The C4:8 in ID limits I4 to a type-I instruction. The C5 in EX shows a bypass from I2 which means the rs register is r7

(there is no way the bypass could be to the rt register in a type I ALU instruction). The C7 in WB reveals that this instruction
used the memory port in ME for a load, so it must be an ordinary load instruction.

I5: C5:8 in ID gives the rs register, r8. It’s a store since it uses the store value bypass path, C6 in EX, that connection also

gives us the rt register: r6. The offset is provided by C6:12 in EX.

Instruction I1 is an ordinary load instruction but executes in EX instead of ME, and in doing so avoids stalling I2. The control logic
presumably determined that the immediate was zero and so had it execute in EX since it didn’t need the ALU. I1 could also be a
new load instruction, one that does not have an offset. Unless the immediate field were used for something else there would be no
benefit in that since, as shown above, an ordinary load instruction with a zero offset can use the memory port when in EX.

Instruction I3 is a memory indirect load, an instruction that MIPS does not have. And probably won’t. In the original implementation
the memory port gets the address in the beginning of the cycle, here it must wait for the signal to pass through two multiplexers; in
the original implementation the output of the memory port goes straight to the pipeline latch, here it must go through a multiplexer,
for a total of three added multiplexers for what is probably already the critical path. Also, if a load from the memory port required
more than one cycle then several stages would have to be added to have two loads per instruction.
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Problem 2: Answer each question below.

(a) Both the SPARC subcc and MIPS slt instructions below determine if the contents of r1 (g1) is less than
r2 (g2).

! SPARC

subcc g1, g2, g3

# MIPS

slt r3, r1, r2

© [5 pts] Show where each writes the comparison result, what is written, and how the result is used for a
branch.

SPARC: Comparison result is written in the CC register which consists of four bits: NZCV, N is set if result is negative, Z is set if
result zero, C if a carry, and V if an overflow. Branch instructions check the CC register.

MIPS: Comparison result written to r3, 0 if false, 1 if true. Branch instructions check if register is zero.

© [5 pts] Describe two ways in which the SPARC instruction is more powerful.

Advantages:

The cc instructions do useful computation in addition to setting the condition-code register.

A cc instruction sets four condition bits so several different kinds of branches could use them, for example, one branch might be taken
if result positive, another if an overflow, etc.

The use of a cc register gives the compiler (or programmer) one more general purpose register to use (between the time of the
comparison and the last branch that uses it).

The control logic needed to test the four CC bits can be made faster than the logic needed in a MIPS implementation that must test
a pair of 32- or 64-bit registers.

Grading Note: Several (incorrectly) gave the following advantage: instructions can be placed between the cc instruction and the
branch. That’s wrong because the same is true for MIPS, so it’s not an advantage of SPARC over MIPS. (It is an advantage of
SPARC and MIPS over those ISAs in which every arithmetic instruction sets condition code bits.)

4

← → Fall 2006 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4720/2006f/mt_sol.pdf


(b) One advantage of variable-length ISAs is that programs are shorter (take up less memory). For each code
fragment below show how CISC instructions can reduce code size using the MIPS code below as the starting
point of an example: Make up CISC instruction(s) for the code below, show how they might be encoded,
and indicate how much smaller the code fragments are with the CISC instructions.

© [5 pts] New CISC instruction(s). Encoding. Size Reduction.

lui r1, 0x1234

ori r1, r1, 0x5678

add r2, r2, r1

# Solution

# If r1’s value not used again:

#

add.rri r2, r2, 0x12345678

Coding: ! opcode ! operand types ! rd ! rs1 ! immed32 !

Size: 8 6 5 5 32 = 56 bits = 7 bytes

# If r1’s value is used again:

#

move.ri r1, 0x12345678

add.rrr r2, r2, r1

Coding: ! opcode ! operand types ! rd ! immed32 !

Size: 8 3 5 32 = 48 bits = 6 bytes

Coding: ! opcode ! operand types ! rd ! rs1 ! rs2 !

Size: 8 6 5 5 5 = 29 bits = 4 bytes

Total : 10 bytes.

Original MIPS code: 3 * 4 = 12 bytes

Reduction: 2 bytes (r1 needed) or 5 bytes (r1 not needed)

The “operand types” field specifies the types of each operand. That field is set to 6 bits for a 3-operand instruction and 3 bits for a
2-operand instruction, based on a rough guess.

Grading note: The sizes above are rounded up to the nearest byte, that’s something most did not do on their solutions.

Some solutions gave size reductions in “lines of code.” That’s wrong because the problem is asking for the reduction in the amount
of memory used by the program. Lines of code is a relevant (albeit imperfect) measure for things like the amount of human effort
needed to write or modify a program.

5
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© [5 pts] New CISC instruction(s). Encoding. Size Reduction.

jr r31

# Solution

# Return instruction.

#

return

Coding: ! opcode !

Size: 8 = 1 byte.

Reduction: 3 bytes.

# Jump register instruction.

#

jr r31

Coding: ! opcode ! operand type ! rs !

8 3 5 = 16 bits = 2 bytes

Reduction: 2 bytes

The instruction jr r31 can be used for procedure returns. Since returns are frequent it would make sense to have a CISC instruction
just for that, it would be just one byte. That’s the first solution. The second is for a CISC instruction that could use any register
for the address. Either solution received full credit.

Grading Notes: In several solutions the CISC instruction encoded the full return address. That won’t work because a procedure can
have more than one caller, and so a single return address could not be used.

Some solutions mentioned displacement. That’s not an issue because the register holds the entire address, there is no need to add
the register value to anything.

6
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Problem 3: Answer each question below.

(a) The SPECcpu2006 benchmark contains two suites, CINT2006 and CFP2006.

© [8 pts] Why are there two suites? What would be the disadvantage of combining them into one suite?

There are two suites because the characteristics of integer and FP programs are very different. If they were combined then it would
be harder to find systems that were, say, good at floating point.

(b) A company develops a new ISA and some implementations of it. It sells the implementations, but keeps
the ISA secret.

© [8 pts] What’s wrong with that?

Can’t program the implementation without the ISA definition. You’d be limited to using the software that the manufacturer supplied,
and if that didn’t include a compiler then you could not write your own software. (Real Programmers don’t use interpreted languages.)

(c) Operations on packed operand data types often use saturating arithmetic.

© [7 pts] What is it and why is it used? Explain using a typical application for packed-operand instructions.

It’s arithmetic that uses the maximum representable value for overflow. (Or minimum, for negative overflow.) It is used because in
many packed operand applications overflow is likely and a maximum value would be suitable. In graphics applications, for example,
the instruction might be computing a pixel intensity, so using the maximum for an overflow will produce an acceptable result.

(d) One reason to not use optimization is to make debugging (using a debugger) easier.

© [7 pts] Describe two ways optimization makes debugging more difficult. Hint: Consider single-stepping
through code and printing variable values.

Instructions can be re-arranged and so single-stepping will jump around code that the user would expect to execute sequentially.
Common sub-expression elimination is one optimization that would cause code to be rearranged.

Through dead-code elimination variables may be optimized out so one could not print their values.
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Problem 1: In the MIPS implementation on the next page some wires are labeled with cycle numbers and
corresponding values. For example, c3:1 indicates that at cycle 3 the pointed-to wire will hold a 1. Other
wires are labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any
labeled wire is changed the code would execute incorrectly. The ALU label shows the arithmetic operation
performed at the indicated cycle.(20 pts)

• There are no branches or other control-transfer instructions.

• There are no stalls.

• Every instruction writes the floating-point register file.

• Some instruction(s) read the integer register file.

• One instruction has only briefly been covered, make up a reasonable name for it if you don’t
remember it.

©Write a program consistent with these labels.

© Some registers can be determined exactly, others must be made up. Use as many different register
numbers as possible while still being consistent with the labels.

©Fill in the block in the lower-left of the diagram.
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Problem 1, continued:

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPCInt Reg File

FP Reg File

fdfd

WF
Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16

M6

we we
Decode
dest. reg

ID

A4

fd
we

fd
we

A3A2A
1

M3 M4 M
5

fd
we

fd
we

M2M
1

fd
we

uses FP add

uses FP mul

FP load

30 2
"0"

+ 15:0 29:0

ad
ml

ad ad
ml ml ml

ad ad
ml ml ml

c3:1 c4:10 c10:1 c10:20

c5

c6

c5

c3:24

s

t
x

 c3: x = s + t
 c4: x = t

c3:5

c1:12

c5:6

c1: 1
c2: 0
c3: 0
c4: x’
c5: x

c1: 0
c2: 0
c3: 0
c4: 1’
c5: 1

PLEASE
FILL IN

# Solution Below and Above in Red

#

# Upper case shows single correct instruction or register, lower case

# shows one of several possible correct instructions or registers.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

0x1000: ADD.s F10, F12, f14 IF ID A1 A2 A3 A4 _5 _6 WF

0x1004: LwC1 f16, 24(r1) IF ID EX ME _3 _4 _5 _6 WF

0x1008: MTC1 F20, R5 IF ID EX ME _3 _4 _5 _6 WF

0x100c: mul.s f4, f16, f8 IF ID A1 A2 A3 A4 _5 _6 WF

0x1010: MUL.s f2, F10, F6 IF ID M1 M2 M3 M4 M5 M6 WF

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

Instruction at 0x1000: The c1:12 in ID indicates that the first source register is f12. The c4:10 in stage 3 directly provides

the destination register, f10. The c6 in stage 5 indicates that this can’t be a multiply, and since it reads the floating point
register file it can only be an add.

Instruction at 0x1004: The c3:24 in EX indicates that this starts out in the integer pipeline (using an immediate of 24), the
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c5 in WB indicates that it’s a load, and the c5 in stage 1 shows that it must be a floating point load, such as lwc1 (load word
co-processor 1). There is no way to determine the destination or base register.

Instruction at 0x1008: Like the previous instruction, this starts in the integer pipeline, indicated by the c3:5 in ID. The c4:x=t

in EX indicates that its result is the rt register value (the instruction performs no computation). The c10:20 in WF indicates that
this instruction writes register f20. Since it uses an rt value it can’t be a load, so it’s probably an mtc1 (move to coprocessor 1),
an instruction that moves a value from the integer register file to the floating-point register file.

Instruction at 0x100c: The c5 in 1 indicates that this instruction bypasses from the instruction in WB (the integer pipe) and
so the second source register of this instruction must match the destination of the instruction at 0x1004. Note that there is not
enough information to determine what that register is, f16 is an arbitrary choice.

Instruction at 0x1010: The c10:1 in 1 indicates that this is a multiply. The c6 in 1 (or 5 from 0x1000’s perspective)

indicates a bypass with the instruction at 0x1000, revealing the first source register, f10. The c5:6 in ID gives the second source
register, f6. There is no way to determine the destination register.

AD Mux Control Signal Fill In: Values for the first fill-in are the control signals for the stage- 5 mux. A value of 0 indicates that the
instruction will write a value from the integer pipeline (such as a lwc1 or mtc1), a value of 1 indicates it will write a value produced
by the floating-point adder (such as add.s or sub.s). For other instructions it doesn’t matter what the value is. In the solution,
shown in red, the x indicates either value is okay. This solution is valid when the instruction at 0x100c is a mul.s; it could have
been an add.s and if it were the value at c4 would be 1.

ML Mux Control Signal Fill In: Values for the second fill-in are the control signals for the WF-stage mux. The value should be 1
for multiply, or 0 for other instructions that write the FP register file. If an instruction doesn’t write the FP register file the value
doesn’t matter. The solution appears in red. If the instruction at 0x100c were an add the value at c4 would be a 0.

4
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PC

BHT PHT

addr d addr d

local history

2

predict taken if >1

511:2

Predictor X

4:2

Problem 2: The code below runs on three sys-
tems which are identical except for the branch
predictors. One system uses a bimodal predic-
tor with a 1024-entry BHT, one uses a local his-
tory predictor with a 1024-entry BHT and a five-
outcome history, and one uses Predictor X, illus-
trated below. (The PHT input is a concatenation
of the local history and three branch PC bits.)
The code below has two branches, B1 and B2,
which execute in a repeating pattern as shown.
There are no other branches in the code.(20 pts)

Note: In the original problem the input to Predictor X used an exclusive or rather than a concatenation.

LOOP:

..

0x1000: B1: bne r1,r2 SKIP1 N N N T T N N N T T N N N T T N N N T T ...

..

SKIP1:

..

0x1124: B2: bne r3,r4, SKIP2 N N N T T T N N N T T T N N N T T T ...

..

SKIP2

..

j LOOP

©What is the accuracy of the bimodal predictor on branch B1 after warmup?

Accuracy on B1: 2
5 . Solution is straightforward.

Note: In the original exam the questions below asked about B1 rather than B2.

©What is the accuracy of the local predictor on branch B2 after warmup? (Do not ignore branch B1 when
answering this part.)

Accuracy on B2: 5
6 . Branch B2 is predicted using six distinct local history patterns, three of which (TNNNT, NNNTT and TTNNN)

are shared with B1. With one of the shared patterns, NNNTT, the next outcomes disagree: not-taken for B1 and taken for B2. Since
B1 occurs slightly more often the PHT entry at address 3 (NNNTT) will eventually start predicting only B1 correctly. Therefore the
predictions made using only five out of six patterns in B2 will be correct and the accuracy will be 5

6 .

5
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©What is the minimum local history size for the local predictor to achieve 100% accuracy on branch B2
(without ignoring B1)?

Eight outcomes.

With eight outcomes B1 and B2 won’t share patterns.

©What is the accuracy of Predictor X on branch B2?

Accuracy is 100% . Predictor X is similar to the local predictor except that by concatenating branch address bits with local history,
two different branches (or at least those that differ in PC bits 4:2) with the same local histories will be stored in separate PHT entries.
This will avoid the interference suffered by B1 and B2 in the five-outcome local history predictor.

©What is the minimum local history size for the Predictor X to achieve 100% accuracy on branch B2
(without ignoring B1)?

Minimum history size is three outcomes . With X one can ignore B1 because B1 and B2 will use separate entries. Then considering
B2 alone, only three outcomes are needed.

©Explain why predictor X has lower or higher accuracy than the local predictor on branch B2.

Because it avoids interference.

©As indicated above, B1 is at address 0x1000 and B2 is at address 0x1124. How would different branch
addresses affect the answers above?

If bits 4:2 were the same then predictor X would perform the same as the local predictor. If bits 11:2 of the two branches were the
same then the local predictor would perform more like a global predictor.

6
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Problem 3: Consider the execution of MIPS code below. The code follows a large number of nop instruc-
tions. As can be seen the system below is statically scheduled. In the questions below “relatively simple”
means simple compared to dynamic scheduling.

(15 pts)

# PC Cycle: 0 1 2 3 4 5 6 7

0x1ff0: lh r1, 0(r2) IF ID EX ME WB

0x1ff4: lw r4, 8(r2) IF ID -> EX ME WB

0x1ff8: addi r6, r6, 1 IF ID -> EX ME WB

0x1ffc: xor r8, r9, r10 IF ID -> EX ME WB

0x2000: sub r11, r8, r13 IF -> ID EX ME WB

0x2004: and r14, r11, r16 IF -> ID -> EX ME WB

# PC Cycle: 0 1 2 3 4 5 6 7

©What is the minimum fetch/decode width of a system that could produce that execution? (The x in
x-way superscalar)

Minimum width: 4 . It must be at least 4 because in cycle zero four instructions are being fetched at the same time.

©Why is the fetch/decode width above a minimum and not an exact number?

It’s still possible that the system is wider, say 8-way, but is limited to aligned fetch groups and that would explain why the instruction
at 0x2000 was fetched in cycle 1 rather than 0.

©What caused the and to stall in cycle 4? Could the stall be avoided?

True data dependence with the sub. That could not be avoided.

©What might have caused lw to stall? Suggest a relatively simple change to the implementation to avoid
such stalls.

There may have been only one memory port in the ME stage, to be shared by all four instructions. A solution would be to include a
second memory port.

©What might have caused addi and xor to stall? Note: The original question also asked for a “relatively
simple solution.”

If addi and xor did not stall and if new instructions moved into ID then the instructions in ID would be out of order (because of the
lw which must stall). One could modify the control logic so that it could handle instructions being out of order in ID, the complexity
would probably not be worth the effort.

7
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Problem 4: Consider the dynamically scheduled implementation below. (15 pts)

25:21

20:16
rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

PC

ID:dst
ID:St: C,X

0,0

WB:ROB #
WB:C,X

Addr

D In

Re
or

de
r B

uf
fe

r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

Fr
ee

 L
ist



ID:dstPR
ID:dstPR

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q EX

dstPR
dstVal.

WB

RR

WB

Decode
dest. reg

ID:incm
b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

Re
co

ve
r

EA*

A1

M1

ME*

* Were called
L1 and L2.

(a) Where is the logic for finding the (data) dependencies that requiring bypassing most likely to be?

© Indicate on diagram.

Within the scheduler and instruction queue.

(b) Suppose due to a manufacturing error every entry in the ID register map is initialized to 12 after each
reset, but the commit register map was properly initialized. Initial register values are not defined, so getting
the wrong value for a register that was never written is not a problem here.

©Which code fragment below is more likely to encounter a problem? Hint: It has something to do with
the connection from the ID Register Map to the ROB.

The first one.
# Fragment A

add r1, r2, r3

add r2, r1, r5

add r1, r6, r7

add r2, r8, r9

nop

..

# Fragment B

add r0, r2, r3

add r0, r1, r5

nop

...

©Explain what goes wrong.

Because of the flaw the first instruction gets p12 as an incumbent for r1 and the second instruction also gets p12 as an incumbent
for r2. After the third and fourth instructions commit p12 will appear in the free list twice, and so later when they are removed
from the free list the same physical register (p12) could be simultaneously assigned to two in-flight instructions. Each of these two
instructions will expect to write its own register, instead they will be writing the same register, causing problems.

8
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© Suppose millions of these defective implementations have already been manufactured. Suppose when
turned on the processor starts executing code at address 0x1000. What code could be put there to fix the
problem? (It’s not one of the fragments above because one of them only avoids it, later code could still
trigger it.) Hint: There’s enough room for the answer below.

If the instruction at 0x1000 raises an exception then the recovery mechanism will copy the commit map to the ID map, fixing the
problem. The only tricky part is getting the exception handler in place before the first instruction executes.

9
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Problem 5: The diagram below is for a 64-MiB (226-character) set-associative cache on a system with the
usual 8-bit characters. (15 pts)

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

©Fill in the blanks in the diagram.

CPU
Addr

Data

Data

 Addr
Out

Tag

 Addr

=Tag

Valid
Data

 Addr
Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

:

::5 .

:63:2416

64

256 bits

23

63 24

23 8

23 5

©Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

63 24

Index

23 8

Offset

7 5 4 0

©Associativity:

The cache is 4-way set associative.

©Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity plus 4 × 224−8 (64 − 24 + 1) bits.

©Line Size (Indicate Unit!!):

Line size is 28 = 256 characters.

©Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

63 26

Index

25 8

Offset

7 5 4 0

10
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Problem 5, continued: For the problems on this page use the cache from the previous page.

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

©What is the hit ratio running the code below? Explain

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

int i;

int ILIMIT = 1 << 10; // = 210

for(i=0; i<ILIMIT; i++) sum += a[ i * 4 ];

The line size is 28 = 256 characters and the size of an array element is one character. The miss on the first will bring in 256
characters, a line. The second iteration will access data on this line. The line will be “used up” at i = 256

4 = 64, and so for each

miss there are 63 hits. The hit ratio is 63
64 . .

(c) The code below also runs in the cache from part a. Find the minimum values of JLIMIT and JSTRIDE

that will result in the code below having a 0% hit ratio.

© JSTRIDE and JLIMIT

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

int i, j;

int ILIMIT = 1 << 10;

int JLIMIT = // FILL IN

int JSTRIDE = // FILL IN

for(i=0; i<ILIMIT; i++)

for(j=0; j<JLIMIT; j++)

sum += a[i + j * JSTRIDE ];

Notice that the pattern of accesses when i=0 is the same as when i=1, etc., so the strategy is to make sure that whatever is cached
when j=0 is evicted by the time j=JLIMIT.

One way of doing that is to set JSTRIDE so large that each access will use a different tag (but have the same index). Since the tag

bits start at bit 24 and the array element size is a character, JSTRIDE = 1 << 24 . Since the cache is four-way set associative
it can only hold four lines with the same index and different tags. So with JSTRIDE = 1 << 24 the line brought in when j=0 will
be evicted (assuming LRU replacement) when j=4. By setting JLIMIT=8 no data brought in on one i iteration will be present
in the next one.

11
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Problem 6: Answer each question below.

(a) In MIPS, SPARC, and many other RISC ISAs memory accesses are aligned and so any instruction that
uses an un-aligned address, such as 0x1001 for a MIPS word, will raise an exception usually resulting in the
program exiting with a Bus Error.

Perhaps due to the stress of an upcoming code freeze for a product release, a mysterious programmer at
Software Company X secretly hacked the operating system of their SPARC computers so that loads and
stores to un-aligned addresses would complete correctly, as though un-aligned accesses were not forbidden.
There would be no more bus errors. (5 pts)

©How might the mysterious programmer have done it?

Modify the exception handler that is used for un-aligned accesses. If the exception were raised by a load the handler might get the
data using two load instructions, say one to address 0x1000 and one to address 0x1004, and then put together the low three bytes
of the data from 0x1000 and the high byte of 0x1004, and put that data in the destination register of the faulting load instruction.
Finally, the handler would resume execution at the instruction following the load. To the program it would appear as though the load
worked.

©Should Software Company X reward or punish the mysterious programmer? Explain.

Punish! The unaligned accesses are due to bugs in the program. The modified handler hides the bugs from the company’s
programmers but customers, since they don’t have the hacked OS, will see them. Even if customers could be given the modified
handler the programmers might still want to avoid unaligned access since it slows the program down.

(b) The SRAM used to implement caches is costly but in many cache designs can provide 1- or 2-cycle hit
latencies. If cost were not an issue, could one use SRAM for the entire memory system and get 1- or 2-cycle
latencies on all memory accesses?(5 pts)

©Explain.

No, because the time for a cache hit includes not just the time to retrieve the data from the SRAM but also the time needed for
decoding the addresses and moving the data to the CPU. If SRAM were used for all memory it would have to be spread over many
chips and so the part of the access latency would be chip crossing delays, contributing to an access latency larger than 1 or 2 cycles.

(c) Manufacturers have a great interest in having their processors score high in SPECcpu. Given this strong
interest how can we be sure that benchmark selection and the run & reporting rules have not been chosen
to favor a particular manufacturer? (This isn’t kindergarten, so “because it’s not allowed” is not a good
answer.)(5 pts)

©Explain.

SPEC has representatives from many manufacturers. If someone proposed benchmarks or rules that favor one manufacturer’s products
representatives from other manufacturers can be expected to forcefully object.

12
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Problem 1: The MIPS code below runs on the illustrated implementation. [10 pts]

© Show the execution of the code below on the illustrated pipeline.

format
immed

IR

Addr25:21

20:16

IF
ID EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

=

30 2
"0"

+
15:0

25:0

29:26

29:0

01

# Solution

# Cycle 0 1 2 3 4 5 6 7

lw r1, 0(r2) IF ID EX ME WB

add r1, r1, 7 IF ID -> EX ME WB

sw r1, 0(r2) IF -> ID EX ME WB

There is a stall in cycle 3 because the add must wait for the loaded value. (That value is bypassed in cycle 4.)

Note: To keep the test from getting too long the following parts were not included on the original exam.
There should be at least one stall.

Think about the questions below for a few moments, then look at the problem on the next page.

© Is it possible to add bypass connections to eliminate the stall and gain performance?

No, because without the stall the add would need the value of r1 before the lw retrieved it from memory.

© If bypasses won’t work does that mean it’s impossible to eliminate the stall?

It’s not impossible if the pipeline can be re-arranged. See the next problem.

2
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Problem 2: The five-stage MIPS implementation below has an ALU in the MX (new name for MEM)
stage (connections for that ALU are shown bold) and what was the ALU in the EA (new name for EX)
stage is now just an adder and is to be used only for loads and stores.

format
immed

IR

Addr25:21

20:16

IF
ID EA WBMX

rsv

rtv

IMM

NPC

eaAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

rxv
MD

dst dst dstDecode
dest. reg

NPC

=

30 2
"0"

+
15:0

25:0

29:26

29:0

Addr
Data
In

Mem
Port

Data
Out

alu

IMM
rtv

rsv

+

Now for loads and stores only.

LAS-4
(lw/add)

LAS-4 (add/sw, method 1)

LAS-5
(add/sw,

method 2)

(a) Add bypass connections needed so that the code below (same as last problem) executes as shown. Label
those bypass connections: LAS-c, where c is the cycle number in which the bypass connection is used. Do
not add unneeded bypass connections!

© [10 pts] Add bypass connections, label with LAS-c.

See diagram. One bypass is shown for the lw/addi dependency, two possible bypasses are shown for the addi/sw dependency; either
would be correct.

# Cycle 0 1 2 3 4 5 6

lw r1,0(r2) IF ID EA MX WB

addi r1, r1, 7 IF ID EA MX WB

sw r1, 0(r2) IF ID EA MX WB

# Cycle 0 1 2 3 4 5 6

(b) Several connections to the EA-stage adder are now unneeded (but were needed when it was an ALU).
(Don’t add new connections here.)

© [10 pts] Label unneeded EA-adder connections with an X at mux inputs.

The X’s are shown in red in the diagram. The EA adder is now only used to compute effective addresses. For MIPS that’s computed
by adding the rs register value to an immediate. Inputs for the rt value, bypassed or from the register file, are not needed. The value
bypassed from the EA stage is never needed since it’s not a register value. NPC is also never used to compute an address. The table
below summarizes the reasons:

Upper Multiplexer:

3
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0:X Bypass from EA is prior instruction’s ea value. Never needed.

1:X NPC. Not used to compute loads or store addresses.

2: rsv. Needed.

3: Bypass from WB. Needed to bypass newer rs value.

Lower Multiplexer:

0:X Bypass. Addresses are never computed using an rt register value.

1:X rtv. Addresses are never computed using an rt register value.

2: IMM. Needed.

3:X Bypass. Addresses are never computed using an rt register value.

4
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Problem 2, continued: The implementation below is identical to the one on the previous page. But solution
on diagram is different on the two pages.

format
immed

IR

Addr25:21

20:16

IF
ID EA WBMX

rsv

rtv

IMM

NPC

eaAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

rxv
MD

dst dst dstDecode
dest. reg

NPC

=

30 2
"0"

+
15:0

25:0

29:26

29:0

Addr
Data
In

Mem
Port

Data
Out

alu

IMM
rtv

rsv

+

Now for loads and stores only.

AS-4

AL-4,
LL-4

(c) For each code fragment below: Add reasonable bypass connections to eliminate stalls (if any). Show the
execution and label the bypass connections that are used (new or existing) with a cycle number. If there
is a stall circle Yes if an EX-stage ALU (in addition to the ME stage ALU) would remove the stall, if an
EX-stage ALU wouldn’t help circle No; if there is no stall don’t circle anything. [20 pts]

©Add bypasses (if needed). Label bypasses used AS-c. Show execution. EX ALU would help: Yes No.

# Cycle 0 1 2 3 4 5 6

add r1, r2, r3 IF ID EA MX WB

sub r4, r1, r5 IF ID EA MX WB

©Add bypasses (if needed). Label bypasses used AL-c. Show execution. EX ALU would help: Yes No.

# Cycle 0 1 2 3 4 5 6

add r1, r2, r3 IF ID EA MX WB

lw r4, 4(r1) IF ID -> EA ME WB

©Add bypasses (if needed). Label bypasses used LL-c. Show execution. EX ALU would help: Yes No .

# Cycle 0 1 2 3 4 5 6

lw r1, 12(r2) IF ID EA MX WB

lw r3, 16(r1) IF ID -> EA MX WB

©Add bypasses (if needed). Label bypasses used AB-c. Show execution. EX ALU would help: Yes No.

# Cycle 0 1 2 3 4 5 6 7

addi r1, r1, 1 IF ID EA MX WB

beq r1,r2 TARG IF ID ----> EA MX WB

nop

5
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Problem 3: Answer each question below.

(a) A computer’s scores on SPECint2000 are baseline, 2011; and result (peak) 2014. These baseline and
result scores are close, who might be responsible and should they be proud or ashamed: [10 pts]

©How might the people who conducted the test be responsible for the close scores? Should they be proud or
ashamed?

Rather than trying every combination of compiler switch they could, they just tried a few (because it was a sunny Friday afternoon)
and so did not get as much performance as they could have. They should be ashamed.

Detailed explanation: The people that conduct the test compile and run the code. They are free to set compiler switches (and make
other build choices) as long as they comply with SPEC’s rules for SPECcpu2000.

If they are responsible for the close scores then it must be because of the way they set the compiler switches. For the base tests
reasonable optimization options should be set, but for peak (result) scores much more optimization can be done. For the scores to
be close the compiler options for the peak case were not set as well as they could be.

It would not be correct to say that the scores are close because the base scores are already close to the highest performance possible.
If that were true then the testers would not be responsible, which would be avoiding the question.

©How might the people who wrote the compiler be responsible for the close scores? Should they be proud or
ashamed?

They wrote a compiler that is very good at choosing optimizations: Just provide the -fast switch and the compiler will make the
right choices. A human could not improve on things by specifying that this optimization should not be performed, or that optimization
should be. They should be proud because they save programmers time and make the hardware and programmers look good.

Another possible answer is that there are only a few optimization choices and that there is nothing to do beyond base optimization.
Specialized optimizations that other compilers performed have been omitted. In this case the compiler writers should be ashamed.

(b) On a SPARC system the handler for trap number 4 is located at address 0xa0001000 and is 100 instruc-
tions long. [10 pts]

© Show the Trap Base Register (TBR) value and Trap Table contents needed so that execution of a trap
instruction will reach this handler. (Don’t worry about returning.)

The trap table can be placed anywhere in system memory (as long as the address is a multiple of 16); the TBR holds that address.

Picking an address above 231 and a multiple of 16: TBR = 0xe12340000 . The entry for trap 4 will be at address TBR+ 4×
16 = 0xe12340040. The contents of that entry is a call to the handler itself: call 0xa0001000.

©Why isn’t a user program allowed to call the handler directly, for example, using the ordinary call instruction
call 0xa0001000. (The SPARC call has a 30-bit immediate field so the target address is not too far away.)

The user program might try to call something other than the OS’s “official” handlers or it might try to jump into the middle to avoid
being denied access to something.

©What would happen if the user tried to execute the call instruction above?

The calling instruction would raise an exception. The exception handler would probably kill the program.

6
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Problem 3, continued:

(c) Packed integer and BCD data types are very superficially similar. [10 pts]

©Describe a situation in which a packed integer data type would be useful.

Two long arrays of smaller numbers need to be added together. If each array element is an integer in the range 0-255 and eight values
are packed into a 64-bit register then one packed add instruction would add eight pairs together whereas in conventional code one
add instruction would add just one pair together.

©Describe a situation in which BCD would be useful.

When there is frequent need to show the decimal representation of a number and conversion is too slow (say, an old fashioned
computer).

Rounding error is to be avoided and well behaved floating-point formats are not available or not trusted.

(d) Describe the contents of a typical bundle in a VLIW ISA. [10 pts]

©Bundle contents.

Several instructions (three is common), information on dependencies between the instructions within the bundle and between bundles,
and possibly other information about the instructions.

(e) Which is it more important to do a good job on, the ISA or the implementation? Explain. [10 pts]

©Good job on ISA or implementation? Explain.

The ISA, because it’s long-lasting and so if a mistake is made the only options are to live with it or to discard the ISA and all of its
implementations (risking loss of customers).
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Problem 1: The execution of code on a dynamically scheduled scalar MIPS implementation using Method
3 (the only one covered in class) is shown below. Beneath the diagram are signal labels, for example, ID:dst.
(25 pts)

(a) On the next page show the values of the signals at the cycles they are used.

• Some values are shown, they are needed to determine other values.

• All values can be determined.

• Ignore the distinction between integer and FP registers.

• The free list contents at cycle zero is shown on the lower right-hand side of the figure on the next
page.

Solution appears on next page in blue. The values of ID:rsPR in cycles 1 and 3 (appearing in the problem, not just the solution) tell
us that register f2 is initially mapped to physical register 56, f4 is initially mapped to physical register 63, r5 is initially mapped
to physical register 30, and r6 is initially mapped to physical register 54.

Because they are not written in the code fragment the mappings for f4 and r6 don’t change. Registers f2 and r5 get new mappings,
the physical registers are taken from the free list.

The ID:dst row shows an “r” or “f” in addition to the register number. In a real implementation there might be separate maps for
integer and floating point registers. If not, a bit might be used to indicate whether the register is floating point.

25:21

20:16
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R
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EA*

A1

M1

ME*

* Were called
L1 and L2.

Tables for answer on next page.
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Problem 1, continued:

25:21
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EA*

A1

M1

ME*

* Were called
L1 and L2.

Free list at cycle zero: 47, 49, 61, 32, 50, 46, 73, 60, 48, 95

LOOP: # First Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LOOP: # Second Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ID:rsPR 56 30 30 47 49 49

ID:rtPR 63 54 63 54

ID:dst f2 r5 f2 r5

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ID:dstPR 47 49 61 32

ID:incmb 56 30 47 49

RR:rsPR 56 30 30 47 49 49

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RR:rtPR 63 54 63 54

WB:dstPR 49 47 32 61

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C:incmb 56 30 47 49

C:dstPR 47 49 61 32

C:dst f2 r5 f2 r5

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3
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Problem 1, continued: The diagram below is for the same code on the same system as the previous part,
except now three iterations are shown.
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EA*
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M1

ME*

* Were called
L1 and L2.

LOOP: # First Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LOOP: # Second Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LOOP: # Third Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

(b) What is the CPI for a large number of iterations? Hint: It’s not 1.

�CPI?

The quick, common sense way to solve this problem is to note that each add.s will start right after the completion of the add.s
in the previous iteration and the add.s will commit in the cycle after WB (since the sub and bgtz finish much faster), and so
execution will proceed at a rate of four cycles per iteration or a CPI of 4

3 .

The regular way to determine CPI is to find a repeating pattern. Normally, we look for two cycles in which the first instruction of
the loop is in IF and in which the state of the system is identical. That doesn’t happen in the three iterations appearing above, and
it won’t happen for a while because at each iteration there are more instructions in flight.

An alternative way to find CPI is to look at the state of the system when the first instruction is in commit. In each case add.s in
the following iteration is in A2. Assuming nothing interferes with the add.s in the next iteration starting execution on time, the
processor will sustain a commit rate of four cycles per iteration. (Note that with the regular technique there is no need to make such
assumptions.)

Therefore CPI = 17−13
3 = 4

3 .
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Problem 1, continued:

(c) Suppose the ROB can hold 256 entries and there are an unlimited number of physical registers. Assuming
a very large number of iterations, at about what cycle will fetch stall?

�Fetch will stall at cycle ≈
Instructions are being fetched at 1 instruction per cycle and committed at a rate of 3

4 IPC. Let n(c) denote the number of instructions
in the reorder buffer at cycle c, then n(c) = c − 3

4 (c − 9) for c ≥ 9. (Note that no instructions are committed until cycle 9.)

Solving for c yields c = 4n(c) − 27, substituting n(c) → 256 gives c = 997 cycles .

(d) Would the code above run faster on a four-way superscalar dynamically scheduled system with the same
clock frequency and pipeline depth? Explain.

�Circle One: Faster Not Faster .

�Because

Execution above is limited by the execution of the add.s. A superscalar system would fetch instructions faster but since the next
add.s starts as soon as the previous one finishes, that won’t help.

5
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Problem 2: The code fragments below run on three systems which are identical except for the branch
predictor: One uses a bimodal predictor with a 214-entry BHT, one uses a local predictor with an 8-outcome
local history and a 214-entry BHT, and one uses a global predictor with an 8-outcome global history. (25 pts)

(a) Provide the information requested below.

• All accuracies are after warmup.

• For the warmup time show the approximate number of times the predicted branch needs to be
executed before the predictor reaches its warmup accuracy. Assume the 2-bit counters start out
at 0 or 3, whichever is worse.

BIG:addi r3, r0, 3

LP: bne r3, r0 LP # Iterates four times.

addi r3, r3, -1

lw r1,0(r2)

C2: beq r1, 0 SK # T N T T N T N T T N T N T T N T N T T N ...

nop

nop

SK: j BIG

addi r1, r1, 4

�Bimodal: accuracy on C2: 60%

�Bimodal: warmup time on C2: 8 executions

�Local: accuracy of C2: 100%

�Local: warmup time on C2: ≈ 8 + 2 × 5 = 18 executions

�Local: smallest history size needed for 100% accuracy on C2: 5 (If LP ignored would be 4 outcomes.)

�Global: accuracy on C2: 80%

�Global: warmup time on C2: ≈ 1 + 6 + 2 = 9 executions

�Global: smallest history size needed for 100% accuracy on C2: 4 × 5 = 20

See next page for discussion of solution.

6
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Problem 2, continued:

The code below is repeated from the previous page with stuff added to show how to compute bimodal prediction accuracy.

BIG:addi r3, r0, 3

LP: bne r3, r0 LP # Iterates four times.

addi r3, r3, -1

lw r1,0(r2)

# Comments show solution work for bimodal accuracy.

# Execution Num # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C2: beq r1, 0 SK # T N T T N T N T T N T N T T N ...

# Counter: 0 1 0 1 2 1 2 1 2 3 2 3 2 3 3 2 ...

# Prediction: N N N N T N T N T T T T T T T T

# Correct x x x x x x x x x x

nop

nop

SK: j BIG

addi r1, r1, 4

# Global history, C2 outcomes in upper case, LP outcomes in lowercase.

# T tttn N tttn T tttn T tttn N tttn T tttn N tttn T tttn T tttn N tttn ...

General: Branch C2 has an outcome pattern of length 5: TNTTN.

A branch is warmed up when the 2-bit counters it uses reach the correct value. Bimodal is easiest since it uses just one counter. If
the branch is highly biased it will take two executions to warm up a counter. Branch C2 is biased, but not highly so it will take more.
More on bimodal further below. For the other predictors you need to compute how many counters they use (by finding the number
of local or global history patterns used to predict them). See the discussion of those predictors, below.

Bimodal: The code above shows the 2-bit counter used by the bimodal predictor to predict branch C2. A repeating pattern is
established after execution 9 (see the numbers in the diagram), in which the counter value is 2, it is also 2 after 14, and so the pattern
will repeat. With 3 out of 5 correct the accuracy is 60%.

Bimodal just uses one counter. Since C2 is not highly biased it will take more than 2 executions to warm it up, from the diagram
above it can be seen that it takes about 8.

Local: The 5-outcome pattern easily fits in the 8-outcome history so prediction accuracy is 100%. After 8 executions (the length of
the local history) there will be 5 different local histories for C2: TNTTNTNT, NTTNTNTT, TTNTNTTN, TNTNTTNT, NTNTTNTN. At
worst, each will take two executions to warm up, so the warmup time is 8 + 5 × 2 = 18 executions.

If ignoring the LP branch the smallest history size would be 4. Two would not be enough because NT can be followed by an N or T;
three is not enough because TNT can be followed by an N or T. If the LP branch is considered then 4 is not enough because patterns
TTNT and TNTT occur with both branches, LP and C2, and the subsequent outcomes differ. Five outcomes are sufficient.

Global: The first step in solving this is determining the global histories seen when making the prediction. Between each outcome of
C2 there are four executions of LP (SK doesn’t count because it’s a jump, not a branch). The global history is shown in the bottom
of the code above, the history used when predicting C2 is the eight outcomes just before an upper-case letter, for example, ttn N

tttn and ttn T tttn. In fact, these are the only two distinct global histories see when predicting C2. Pattern ttn N tttn is
seen twice, in both cases before a taken branch, so its predictions will always be correct. Pattern ttn T tttn is seen three times,
once before a T outcome and twice before an N outcome, and so after warmup it will predict N and be correct 2

3 of the time. The
overall prediction accuracy is 1

5

(
2 × 1 + 3 × 2

3

)
= 4

5 .

A hand analysis shows that the counter for ttn T tttn warms up in 6 executions (assuming a worst-case start value of 3), being
highly biased, the counter for ttn N tttn warms up in 2 executions. The patterns above will not be seen until after the first
iteration, so the total warmup time is 1 + 6 + 2 = 9 executions.

For 100% accuracy the global history must hold four outcomes of C2 (see the discussion for the local predictor). It takes 5 global
outcomes to capture one C2 outcome, so for four C2 outcomes the global history length must be 20 outcomes.

7
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Problem 2, continued:

(b) The code below is similar to the code on the previous page except the four-iteration loop has been
replaced by two random branches. Each random branch will be taken with probability .5 and the outcome
is independent of everything, including the other random branch.

BIG:lb r3, 0(r4)

beq r3, r0 S2 # Random.

lb r3, 1(r4)

S2: beq r3, r0 S3 # Random.

addi r4, r4, 2

S3: nop

lw r1,0(r2)

C2: beq r1, 0 SK # T N T T N T N T T N T N T T N T N T T N ...

nop

nop

SK: j BIG

addi r1, r1, 4

# Solution - Global History.

# Upper case is C2, r is first random branch, s is second random branch;

# r and s can be either taken or not-taken.

# T r s N r s T r s T r s N r s r s T r s N r s T r s T r s N r s ..

�Global: accuracy on C2: 80%

�Explain using GHR values.

�Global: warmup time on C2: ≈ 3 + 2 × 3 × 26 executions

�Explain using GHR values.

�Global: smallest history size needed for 100% accuracy on C2: 4 × 3 = 12

�Explain using GHR values.

This loop brings good news and bad news. The good news is that an eight-outcome global history will hold two C2 outcomes. The
bad news is that it doesn’t help, and warmup time is worse.

Accuracy: The global history patterns when predicting C2 are: rsTrsTrs, rsNrsTrs, and rsTrsNrs, where each r and s can
be either taken or not taken. A pattern of the form rsTrsTrs occurs once and is always followed by an N so it predicts at 100%.
Form rsNrsTrs occurs twice and is followed by an N or T, its accuracy will be discussed further below. Form rsTrsNrs occurs
twice and is always followed by a T, so it predicts at 100%.

As the alert reader guessed, rsTrsNrs is being called a “form” because it represents 26 = 64 patterns, one for each distinct
outcome of the random branches. For forms rsTrsNrs and rsTrsTrs the only impact of this diversity is increased warmup time.
Each pattern still takes at worst 2 outcomes to warm up, but each form represents 64 patterns.

For pattern rsNrsTrs there is also an impact on accuracy. If r and s were always taken, then the counter for rsNrsTrs would
see outcomes T N T N T ..., and so the prediction accuracy would be 50% if the initial value of the counter were 0, 2, or 3; if
the counter were 1 the accuracy would be 0%. Since r and s are random each counter sees a random subset of T N T N T N,
since that subset is balanced between T’s and N’s, it is equally likely that the counters predict taken or not taken. (Actually, when

8
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the next C2 outcome is T there is a tiny bias towards predicting N, and vise versa.) So the prediction is random, uniform (between
T and N), so the prediction accuracy for form rsNrsTrs will be 50%. The overall prediction accuracy is then still 80%.

As stated above, the worst-case warmup time for the highly biased patterns is 2 outcomes each. Assume the same is true for
rsNrsTrs, though it will actually be larger. If the random branches uncharacteristically did not repeat a pattern, the total warmup
time for all three forms would be 3 + 3 × 26 × 2, but that’s unlikely. Since branches are random there is no precise warmup time,
instead the solution will be to find the number of executions at which the probability that the 2-bit counter used for a prediction is
warmed up is .05. Let x denote the number of times form rsNrsTrs appears, and suppose without loss of generality that we are
predicting ttNttTtt (the x + 1 time the form appears). The probability that ttNttTtt is seen a particular time is 1

64 , the

probability it’s not seen a particular time is 1− 1
64 and the probability it’s not been seen in the past x executions is

(
1 − 1

64

)x
. The

probability that it’s been seen exactly once is
(
1 − 1

64

)x−1 1
64x. The probability that it’s been seen less than 2 times is the sum,(

1 − 1
64

)x
+

(
1 − 1

64

)x−1 1
64x. So to find the warmup time for this pattern solve

(
1 − 1

64

)x
+

(
1 − 1

64

)x−1 1
64x = 0.05

for x. Using a symbolic math program (Mathematica) that yields x = 301.7. So the total warmup time is 3 × 301.7. Grading
note: no one got it quite that close.

An acceptable answer to the problem would be a warmup time of 3 × 2 × 26 executions, which is the boxed answer before the
explanation.

The minimum history size has to be large enough to hold 4 C2 outcomes. It takes three global outcomes to hold one C2 outcome, so
the minimum history size is 12 outcomes.

9
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Problem 3: The diagram below is for a 64-MiB (226-character) 16-way set-associative cache on a system
with the usual 8-bit characters. (20 pts)

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

64 b

32 b

:9

31:22 31:22

21:3

21:9 21:

21:3

�Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 22

Index

21 9

Offset

8 3 2 0

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity plus 16 × 222−9 (32 − 22 + 1) bits.

�Line Size (Indicate Unit!!):

Line size is 29 = 512 characters.

�Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

31 26

Index

25 9

Offset

8 3 2 0

10
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Problem 3, continued: For the problems on this page use the cache from the previous page.

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

�What is the hit ratio running the code below? Explain

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

int i;

int ILIMIT = 1 << 27; // = 227

for(i=0; i<ILIMIT; i++) sum += a[ i ];

for(i=0; i<ILIMIT; i++) sum += a[ i ];

The line size is 29 = 512 characters and the size of an array element is one character. Therefore each miss will be followed by 511
hits. The hit ratio for the first loop will be 511

512 . Will a[0] still be cached when the second loop starts? The cache capacity is given
as 226 characters and the first loop accesses 227 characters, so they can’t all fit. The cache will replace the least-recently used line
within a set, and so a[0] won’t be cached when the second loop starts. In fact, nothing brought in by the first loop is used in the

second loop so the overall hit ratio is 511
512 .

(c) The slightly different code below runs on the same cache as the first part of this problem. Initially the
cache is empty; consider only accesses to the array.

�Find the hit ratio. Very briefly explain.

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

int i;

int ILIMIT = 1 << 27;

for(i=0; i<ILIMIT; i++) sum += a[ i ];

for(i=ILIMIT-1; i>=0; i--) sum += a[ i ];

The only difference here is that the second loop iterates backward. The last element accessed by the first loop is a[227 − 1], which
is also the first element accessed by the second loop and so the second loop will start out with a hit (and 511 more while it consumes
the line). Since the cache can hold half the array, half of the execution of the second loop will have a 100% hit ratio. The overall

hit ratio is 3
4
511
512 + 1

4
512
512 .
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Problem 4: Answer each question below.

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv
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ALUAddr

Data

Data

Addr D In
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fdfd
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20:16 M6

we we
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dest. reg
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fd

we
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we

A3A2A1

M3 M4 M5

xw
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we

xw
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we

xw
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M
1

xw xw

fd
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uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+
15:0

29:0

0
1

2

(a) The execution of some code
fragments on the illustrated im-
plementation appear below. Ex-
plain why each execution is im-
possible and show a corrected
pipeline execution diagram. (7 pts)

# Cycle 0 1 2 3 4 5 6

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r3 IF -> ID EX ME WB

Fix: IF ID -> EX ME WB

�Fix.

�Was impossible because:

The add did need to stall so the r2 value could be bypassed from the lw. However there is no way the control logic could know this
in cycle 2 because the add had not yet arrived.

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r3 IF ID -> EX ME WB

xor r5, r6, r7 IF ID -> EX ME WB

Fix: IF -> ID EX ME WB

�Fix.

�Was impossible because:

In cycle 3 the ID stage holds two instructions, add and xor. It only has room for one.

add.d f0, f2, f4 IF ID A1 A2 A3 A4 ME WB

Fix: IF ID A1 A2 A3 A4 WF

�Fix.

�Was impossible because:

Floating point instructions do not pass through the ME stage, and they use WF for writeback.

12
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(b) For each feature below indicate whether it is usually a feature of the ISA or the implementation, and
explain why it’s not a feature of the other. (7 pts)

Feature: The opcode can be found in bits 31:26.

� ISA or Implementation?

�Why not the other?

The ISA should define everything you need to know to write a program (or to write a compiler). That would have to include instruction
coding, including the position of the opcode field. If it were in the implementation then a compiler would have no idea where to place
the opcode and different implementations could expect the opcode bits in different positions, so there would be no compatibility.

Feature: The add in the code below will stall for one cycle.

lw r1, 0(r2)

add r3, r1, r4

� ISA or Implementation ?

�Why not the other?

The ISA in principle could specify that the add should stall, but that would overly constrain implementations. If an implementation
technique were developed that would allow the add execute without a stall it could not be used in the implementation of this ISA.

Feature: Two consecutive delayed (as in MIPS) branches will yield unpredictable results.

bneq r1, r2 DEST1

beq r3, r4 DEST2

addi r5, r6, r7

� ISA or Implementation?

�Why not the other?

The ISA specifies what programs do. Normally, an ISA would either say such pairs are illegal, in which case an implementation might
raise an exception on such code, or it might say such pairs are fine (just execute one instruction at DEST1 then continue at DEST2),
in which case the implementation must handle them properly. Leaving it up to the implementation would break compatibility because
each might handle such pairs differently.

Feature: Integer addition overflow raises exception.

� ISA or Implementation?

�Why not the other?

The ISA specifies the behavior of the program, including whether instructions raise exceptions. If it were up to the implementation
then code would not be portable.

Note that the question is about whether overflow raises an exception, it is not about what the exception handler should do. The
handler is part of the operating system, not the ISA or implementation.

13
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(c) Consider the use of a packed-operand 8-bit add (of the type described in class) to speed up the code
fragments below. For each fragment indicate whether it’s certainly feasible, feasible with certain assumptions,
or not feasible. (6 pts)

extern char *a, *b, *c;

for(i=0; i<1024; i++) a[i] = b[i] + c[i];

�Circle One: No. Yes! Yes, assuming . . .

�Explain.

Yes assuming that saturating arithmetic is okay. That is, if the program expects 120 + 10 = −126 (because of overflow), then
saturating arithmetic would break the program. If, on the other hand the program works correctly with 120 + 10 = 127 (because
of saturation), then packed operand instructions should work fine.

extern int *a, *b, *c;

for(i=0; i<1024; i++) a[i] = b[i] + c[i];

�Circle One: No. Yes! Yes, assuming . . .

�Explain.

Assuming that despite the use of integers, array elements are in the range [−128, 127] and a sum is also in the range or that
saturation is okay.

extern char *a, *b, *c;

for(i=1; i<1024; i++) a[i] = a[i] + a[i-1];

�Circle One: No. Yes! Yes, assuming . . .

�Explain.

To compute a[i] element a[i-1] is needed so there is no easy way to do this in parallel with packed operand instructions.

14
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(d) MIPS and other RISC ISAs typically have instructions using displacement addressing but lack register
deferred addressing. (See the examples below.)

lw r1, 4(r2) # Displacement addressing.

lw r1, (r2) # Register deferred addressing.

Given that RISC and CISC ISAs have displacement addressing:

� (5 pts) Why is register deferred addressing helpful for CISC but not helpful for RISC?

Register deferred addressing lacks the displacement that is included in the displacement addressing already present in the two ISAs,
they are otherwise identical. Because CISC instructions have variable length, an instruction with register deferred addressing can be
shorter than one with displacement addressing, making programs smaller. In RISC all instructions are the same size so there is no
advantage in omitting the displacement.

(e) Dead-code elimination (DCE) is a common compiler optimization.

� (5 pts) What is it? Illustrate using an example.

The removal of code that’s either never executed or that produces values that are never used. See the example below.

a=1; // This line would be removed by DCE.

a=2;

15
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Problem 1: The partially completed routine on the next page is called with the address of a string which
may contain characters that look like letters, for example, “g0!1y.” The routine should replace those
characters with the letters they look like; the example would be converted to “golly.”

The string DMAP (see the next page) specifies the look-alikes. It specifies a letter (always lower case)
followed by one or more look-alike characters followed by a comma (possibly followed by another group). For
example, “o0,l1!,” indicates that the letter oh’s look-alike is the digit zero and the letter el’s look-alikes
are the digit 1 and an exclamation point.

The routine on the next page is almost finished. The part at the end uses a look-up table to translate the
string, and the part at the beginning has started setting up the look-up table. Write the code that finishes
setting up the look-up table based on DMAP. [50 pts]

©Write the code that sets up the look-up table.

©The code must be reasonably efficient.

©The only synthetic instructions that can be used are nop and la.

Solution on next page.

Grading Notes: To check for a comma in, say, t4 many solutions used a sub t3, t4,t5 followed by something like beq t3,0,
COMMA (remember that t5 held the comma character). The easier way to do it is just beq t4,t5, COMMA.

Use the next page for the solution.
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## Register Usage

#

# $a0: Procedure call argument. Address of string to translate.

# There are no return values.

DMAP: .asciiz "o0,l1!,c([,t+,s$," # Translate 0->o, 1->l, !->l, (->c, etc.

LUT: .space 256

la $t0, LUT

addi $t1, $0, 255

# First, initialize look-up table so every character is mapped to itself.

#

LOOP0: add $t3, $t0, $t1 # Compute address of LUT entry.

sb $t1, 0($t3) # Write default entry. (A->A, B->B, etc.)

bne $t1, $0 LOOP0

addi $t1, $t1, -1

# Next, set up look-up table based on DMAP string. (Finish in solution.)

#

la $t0, DMAP

la $t1, LUT

addi $t5, $0, 44 # ’,’ Comma character separates groups.

# Start solution here. (Can be done in 9 insn.)

# Solution Starts Here -- Solution Starts Here -- Solution Starts Here

LOOP1:

lb $t4, 0($t0)

beq $t4, $0 EXIT

addi $t0, $t0, 1

LOOP2:

lb $t3, 0($t0)

beq $t3, $t5 LOOP1

addi $t0, $t0, 1

add $t3, $t3, $t1

j LOOP2

sb $t4, 0($t3)

EXIT:

# Solution Ends Here -- Solution Ends Here -- Solution Ends Here

# Use the look-up table to translate the string.

la $t1, LUT

LOOP3: lb $t2, 0($a0) # Load character of string.

beq $t2, $0, EXIT2

add $t2, $t2, $t1 # Compute address of look-up table entry.

lb $t2, 0($t2) # Load translated character.

sb $t2, 0($a0) # Write translated character to string.

j LOOP3

addi $a0, $a0, 1

EXIT2: jr $ra

nop
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Problem 2: Answer each question below. The instruction format descriptions are provided for reference.

MIPS R:

Opcode

31 26

RS

25 21

RT

20 16

RD

15 11

SA

10 6

Function

4 0

MIPS I:

Opcode

31 26

RS

25 21

RT

20 16

Immed

15 0

MIPS J:

Opcode

31 26

II

25 0

(a) A proposed new MIPS branch instruction compares a register value to a constant to determine if the
branch should be taken. For example, the branch below is taken if the contents of t1 is 123. [10 pts]

beqi $t1, 123, TARGET

nop

©Why isn’t it feasible to code such an instruction using any of the existing MIPS formats?

Because that instruction uses two constants, the value to compare (123) and the branch target (TARGET). Since none of the three
MIPS formats has two immediate fields it can’t be coded. One could split the immediate field in Format I in half, use 8 bits for the
value and 8 bits for the displacement, but then it would not be correct to say beqi used Format I. This is more than being picky
about words because the fields in the format correspond to data paths in the implementation and so adding or modifying fields means
adding or modifying hardware in the implementation.

©How could a conditional control transfer instruction that compared a register to an immediate be coded
using the MIPS formats? (The instruction would be different than beqi.)

Put the branch target in a register. For example, beqir t1, 123, t2, in which the contents of t1 is compared to 123, if they
are equal branch to the address in register t2 (after the delay slot). Like jr and jalr the target address is in a register. This
instruction would be coded in Format I: beqir rs, immed, rt.

© Show the instruction in assembly language.

See above.

4
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(b) Show the results of addition for the 32-bit data types shown below. [10 pts]

©Unsigned Integer:

0x0999

+ 0x0109

0x0aa2

©BCD:

0x0999

+ 0x0109

0x1108

©Packed 4-bit integers with saturating arithmetic.:

0x0999

+ 0x0109

0x0a9f

(c) The MIPS ISA specifies that the sa (shift amount) field in the add instruction must be zero (an add

instruction with a non-zero sa field value should cause an execution error). [10 pts]

©Describe a difficulty that might have arisen if the MIPS ISA had specified that implementations should
ignore the sa field in an add instruction (and so the sa field could contain any value).

If implementations ignored the field then programmers would be free to put any value in the field without changing what the add
does. Because programmers might do this a later version of the ISA could not use the field for an extended opcode or for an improved
add instruction because existing code expects the add to be an add, regardless of the value in the field. As an extended opcode field,
a non-zero value in sa wold specify completely different instructions, say a 1 in sa would specify a andn (and-not) instruction. An
improved add instruction might use the sa field as a shift amount to be applied to the second operand (called a scaled add).

©Describe a difficulty that might have arisen if the MIPS ISA said nothing about the sa field in an add
instruction.

The same difficulty as the previous case. If the ISA says nothing then some implementors would assume ignoring the field is okay and
programmers for those implementations might put values in the field.

©Describe a difficulty that might have arisen if the MIPS ISA did specify that sa must be zero but did not
say what should happen if the field were non-zero.

Not a very good ISA, since it’s not fully describing the behavior of the add instruction. If some implementors chose to ignore non-zero
values then there would be the same problem as the previous cases.

5
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(d) Consider a benchmark suite that’s similar to SPECcpu in that the tester is responsible for compiling the
programs but that unlike SPEC, specifies that the tester should not use any optimizations when compiling
the benchmarks. [10 pts]

©Compared to SPECcpu base and peak (result) scores, how useful would such results be? Explain.

Not very useful since there is no reason not to optimize code. A machine that is outperformed by its competitors on optimized code
but outperforms its competitors on unoptimized code might be doing something clever, but also unnecessary since optimizing code is
no big deal.

(e) Using a new compiler optimization a program’s dynamic instruction count is cut in half. The values for
CPI, IC, and φ are available for a run of the program compiled without the new optimization. Other than
the instruction count, nothing has been measured for the program using the new optimization. How useful
is the CPU performance equation for estimating the run time with the new optimization on the same system
in this situation? Explain. [10 pts]

The CPU performance equation, T = 1
φ × IC×CPI, would not be very useful in estimating the run time. After the optimization

we know IC (because that’s given: half the previous value) and φ (its the same machine so it would be the same), but we don’t
know CPI. Since for a given machine CPI depends upon the instruction mix and arrangement we would expect them to change by a
substantial amount with the new optimization because the new optimization had such a big effect on instruction count.

6
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Problem 1: The implementation of a version of MIPS with loop count instructions is shown below, these
are the same instructions used in Homework 5. Instruction mtlc rt moves the contents of the rt register
into a special loop count register, lc, and instruction mtlci immed moves a 16-bit immediate, immed, into
lc. The loop-counted branch bclz is taken unless the lc register is zero, it also decrements lc. (In the
diagram the upper input to the lc register is the data input and the lower input, we, is a write enable.)

Three wires in the implementation are labeled ( A , B , and C ). Show the values present on those wires
for each cycle of the illustrated execution of the program in the space provided. Leave a value blank if the
value has no effect, assume that instructions before and after the illustrated code are nops. Note that two
iterations of the loop are shown. (15 pts)

# Cycle 0 1 2 3 4 5 6 7 8

mtlci 100 IF ID EX ME WB

LOOP:

bclz LOOP IF ID EX ME WB

add r2, r2, r3 IF ID EX ME WB

# (2nd iteration)

bclz LOOP IF ID EX ME WB

add r2, r2, r3 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8

A: 1 0 2 0 2 0* 2* 0* <- SOLUTION

B: 2 3 3* 3* <- SOLUTION

C: 0 0 0 0 1 1 0 1 0 <- SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8

See next page for discussion of solution.

format
immed

IR

Addr25:21

20:16

IF
ID

EX

WB

MEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

=

30 2
"0"

+
15:0

25:0

29:26

29:0

01

=0

-1

15:0

wlc
Writes lc

wlc wlc

we
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1
2

0
1

3
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A

Control Logic B
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Discussion of solution on previous page.

The loop count branch examines the lc register (or a bypassed value) when it is in the ID stage. (If it examined it in a later stage
the first branch would have to stall.) Control signal B selects whether the lc register itself is used, 1, or a value in EX, 2, in MEM,
3, or in WB, 0. Register lc is updated by bclz, mtlc, and mtlci, but to maintain precise exceptions the update is done in the
WB stage. The new value for the lc register passes through the existing ID/EX.rtv latch, then goes through two new latches,
EX/MEM.lcv and MEM/WB.lcv. Wire A controls an ID-stage mux that selects which value to send to the ID/EX.rtv latch. A 2
on A selects the rt value, this would be used for mtlc and also for existing type R and store instructions. A 1 selects the immediate,
for mtlci, and a 0 selects the decremented lc value, for bclz. Signal C is the write-enable for the lc register.

For the mtlci instruction A is set to 1 in cycle 1 to select the immediate. The value for B in cycle 1 is left blank because the value
of lc is not being used. When mtlci reaches writeback, in cycle 4, C is set to 1, writing the immediate to lc.

Signal C is set to 1 when the bclz instructions reach writeback, cycles 5 and 7 and should be 0 at other times to avoid overwriting
a good value. That is, in a correct solution a blank could not appear anywhere for C.

When bclz is in ID signal A is 0 to select the decremented value for writeback, that’s in cycles 2 and 4. In cycle 2 B is set to 2 to
bypass the lc value from EX (written by mtlci); in cycle 4 B is set to 3 to bypass the lc value from MEM (written by the previous
bclz). If the loop proceeds for another two iterations B would be set to 3 in cycles 6 and 8. All other values for B should be blank
because the output of the mux will be ignored in those cycles.

The add instruction is in ID in cycles 3 and 5 at which time A is set to 2 to pass the rt register value. If the loop continues A is 2 in
cycle 7 and 0 in cycles 6 and 8.

3
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Problem 2: Complete the pipeline execution diagrams for the different MIPS implementations below. Pay
attention to the type of implementations in each part, they’re not all the same. Don’t forget to check for
dependencies.

© (5 pts) Scalar (not superscalar), statically scheduled, as illustrated in the previous problem.

# SOLUTION

#

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r4, 6(r1) IF ID EX ME WB

xor r7, r4, r8 IF ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6 7

In all of the parts below the floating-point multiply unit has four stages and is fully pipelined, the stage labels

are M1-M4 . The floating-point add unit is two stages and fully pipelined, the stage labels are A1 and A2 .

© (5 pts) Scalar, statically scheduled, full set of bypass paths.

# SOLUTION

#

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

mul.d f2, f4, f6 IF ID M1 M2 M3 M4 WF

add.d f8, f2, f10 IF ID -------> A1 A2 WF

mul.d f2, f4, f14 IF -------> ID M1 M2 M3 M4 WF

sub.d f12, f2, f10 IF ID -------> A1 A2 WF

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Common mistake:

Many solutions showed a MEM stage. The MEM stage is only used in the integer pipeline.

4
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Problem 2, continued:

© (5 pts) Two-way superscalar, statically scheduled, full set of bypass paths. No alignment restriction on
instruction fetches.

# SOLUTION

#

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

mul.d f2, f4, f6 IF ID M1 M2 M3 M4 WF

add.d f8, f2, f10 IF ID ----------> A1 A2 WF

mul.d f2, f4, f14 IF ----------> ID M1 M2 M3 M4 WF

sub.d f12, f2, f10 IF ----------> ID ----------> A1 A2 WF

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Common Mistake:

Some did not show a stall for the second multiply. There is room in ID for the second multiply in cycles 2-5, but it would require
more complex control logic to accommodate it (since the instructions in ID would be out of order) and so the default behavior in this
class is a stall.

© (5 pts) Two-way superscalar, dynamically scheduled, with a full set of bypass paths. No alignment
restriction on instruction fetches.

# SOLUTION

#

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

mul.d f2, f4, f6 IF ID Q RR M1 M2 M3 M4 WB C

add.d f8, f2, f10 IF ID Q RR A1 A2 WB C

mul.d f2, f4, f14 IF ID Q RR M1 M2 M3 M4 WB C

sub.d f12, f2, f10 IF ID Q RR A1 A2 WB C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Not-too-common-but-more-common-that-it-should-have-been-mistake: Some solutions showed the second multiply waiting in one way
or another for the add. There is no reason for the wait, this is a dynamically scheduled processor.

5
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Problem 3: The diagram below is for a cache on a system with the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants. (7 pts)

©Fill in the blanks in the diagram.

CPU
Addr

Data

Data

 Addr
Out

Tag

 Addr

=Tag

Valid
Data

 Addr
Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32 b

32 b

14:6

31:15 31:15

14:2

14:6

14:2

©Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 15

Index

14 6

Offset

5 2 1 0

©Cache Capacity (Indicate Unit!!):
Capacity is 2 × 215 characters (64 kiB).

©Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity plus 2 × 215−6 (32 − 15 + 1) bits.

©Line Size (Indicate Unit!!):

Line size is 26 = 64 characters.

©Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

31 16

Index

15 6

Offset

5 2 1 0

6
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Problem 3, continued: For the problems on this page use the cache from the previous page.

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

© (5 pts) What is the hit ratio running the code below?

double sum = 0.0, *a = 0x2000000; // sizeof(double) = 8 characters

int i, j;

for(j=0; j<3; j++)

for(i=0; i<32; i++)

sum += a[ i ];

The code above sequentially accesses elements of size 8 characters and so there are 64/8 = 8 elements per line. On the first j
iteration the first access to an element on a line will miss and the others will hit, for a hit ratio of 7

8 . Only four lines will be used
which is much smaller than the cache capacity and so on the second and third j iterations all access will hit. The overall hit ratio is
7+8+8
8+8+8 = 23

24 = 0.95833333 .

(c) The slightly different code below runs on the same cache as the first part of this problem. Initially the
cache is empty; consider only accesses to the array.

© (5 pts) Set ILIMIT to the smallest value that will fill the cache.

double sum = 0.0, *a = 0x2000000; // sizeof(double) = 8 characters

int i;

int ILIMIT = 1 << 13; // 1 << 13 == 8192 <- SOLUTION

for(i=0; i<ILIMIT; i++)

sum += a[ i ];

The cache capacity was found to be 216 characters. The code above starts on a nice round address (many low bits are zero) and
accesses data sequentially and therefore does not waste any space on a line. Each array element is 23 characters and so the cache will

be exactly filled if 216

23 = 213 = 8192 elements are accessed. (For those rusty on their C operators, << is the left-shift operator.)

7
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Problem 4: Answer each question below.

(a) An n-way superscalar processor need not have n copies of everything that an ordinary scalar implemen-
tation has.

© (5 pts) Which of the following is it most important that an n-way superscalar processor does have n of
(explain):

• Mem-stage memory ports.

• Write ports to the register file.

• Floating-point adders.

Most important: Write ports to the register file. .

Suppose a 2-way statically scheduled superscalar processor had one memory port. Then it would stall whenever a fetch group had
two memory instructions. Similarly, such a system with two write ports to the register file would stall whenever a fetch group had two
instructions that write the register file. Since more instructions write the register file (in fact, most of them) than use the MEM-stage
memory ports it’s better to have two register write ports. The same argument can be made for the floating-point adder.

The answer would be the same for a dynamically scheduled system but the argument would be slightly different.

(b) In the dynamically scheduled MIPS implementation covered in class:(5 pts)

©When is a physical register allocated (removed from the free list and assigned to an instruction)?

When an instruction is in ID.

©When is the physical register put back in the free list. Show an example that includes register numbers.

When the next instruction that writes the same architected register commits. In the example below a physical register (say p123)
is assigned to the add when it is in ID, in cycle 1. The xor is the next instruction that writes the same architected register as the
add, r1. When xor commits, in cycle 8, register p123 is put back in the free list.

# Cycle 0 1 2 3 4 5 6 7 8

add r1, r2, r3 IF ID Q RR EX WB C

sub r9, r1, r10 IF ID Q RR EX WB C

xor r1, r4, r6 IF ID Q RR EX WB C

# Cycle 0 1 2 3 4 5 6 7 8

(c) Describe the contents of an Itanium (IA-64) bundle or a bundle in a typical VLIW ISA.

© (5 pts) Bundle Contents

In the Itanium ISA a bundle contains three 41-bit instructions and 5 template bits. The template bits specify whether the instructions
are dependent and also the functional units that they will use.

For a typical ISA a bundle contains several instructions (three is a popular number) along with some dependency and possible other
information about the instructions.

8

← → Fall 2005 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2005f/fe_sol.pdf


Problem 5: Answer each question below.

(a) When a company wants to benchmark a new computer using SPECcpu it gets the benchmark suite
from SPEC, compiles the code, runs the benchmarks, and proudly publishes the results. (The last step is
optional.)

Below are two variations on this procedure, for each explain how the results might differ from those obtained
using the usual SPEC procedure, and explain how useful the results would be to the typical user of SPECcpu
results. (7 pts)

The key difference between the scenarios below and the standard testing procedure is in who chooses the compiler and in who runs
the compiler; normally the company does both. The choice of compiler is important because the full potential of the processor may
only be realizable with specially tailored compiler optimizations and code generation. It is in the company’s interest to develop such
a compiler and its development should go hand-in-hand with developing the processor implementation used in the new computer.
SPEC’s interest is in having useful benchmark results so if they did choose a compiler they would try to pick one suitable for the
computer, but they lack the company’s expertise and they certainly would not take the trouble to write one. (In reality they would
ask the company to provide one, but in this problem that doesn’t happen.) So, if SPEC were to choose the compiler it may not
choose one best suited to the processor and so the results may not be as good.

Users who compile their own code would probably use the company’s compiler to get the best results and so procedure (1) would not
be very realistic.

In procedure (2) the company’s compiler is used but SPEC is doing the compilation. The company may have had well-motivated
experts doing the compilation who would have gotten better results than SPEC’s not-as-expert and not-as-motivated people. The
base scores might not differ because only basic optimizations should be used and so SPEC and the company would compile identically.
Whether the peak (“result”) results would be better than procedure (1) depends on how important the compiler is. (Either answer
would be correct if properly justified.) The results would certainly be more useful than (1) for users since if more closely reflects how
they would develop code.

(1) SPEC gives a compiler (in addition to the usual material) to the company and allows the company to
compile and run the suite following the usual SPECcpu rules (but using SPEC’s compiler).

©Compared to actual SPEC rules and to (2), how might the results differ? Explain.

Not as high as actual SPEC or (2) because the company can produce a much better compiler. (See discussion above.)

©Compared to actual SPEC rules and to (2), how useful would results be? Explain.

Not as useful as actual SPEC or (2) because real users would use company’s compiler. (See discussion above.)

(2) The company gives the new computer and a compiler to SPEC and SPEC compiles and runs the
benchmark suite using the usual SPECcpu rules.

©Compared to actual SPEC rules and to (1), how might the results differ? Explain.

The results would be better than (1) because a better compiler is used but not as good as actual SPEC because tuning not as good
as the company’s.(See discussion above.)

©Compared to actual SPEC rules and to (1), how useful would results be? Explain.

Results would be more useful than both (1) and actual SPEC because they were obtained by skilled people but not super-motivated
experts, so one might expect to get similar performance with reasonable skill and expertise.(See discussion above.)

9
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(b) There is much less advantage in unrolling one of the loops below when the code is to run on a two-way
statically scheduled superscalar MIPS implementation. Note: The original problem did not mention the code
was to run on a superscalar implementation.(6 pts)

©Unroll the loop below or explain why it shouldn’t be unrolled.

addi r9, r0, 1024

LOOP_A:

lw r1, 0(r2)

lw r1, 0(r1)

add r3, r1, r3

addi r2, r2, 4

bneq r9, r0 LOOP_A

addi r9, r9, -1

Unrolling loops provides more flexibility to schedule away stalls. In the code above the stalls are between the first two loads and the
load and the add. These can be scheduled away on a scalar implementation but not on a 2-way superscalar.

Unrolling only works if the only dependencies between iterations are carried by things like steadily increasing loop indices, such as
those carried by r2 and r9 in the loop above. To unroll the loop twice two iterations of the original loop are made one iteration of
the new loop; that’s shown below. On a scalar system all stalls are eliminated, the 2-way superscalar system would still have stalls
so it would have to be unrolled four times.

# SOLUTION

addi r9, r0, 1024

LOOP_AU:

lw r1, 0(r2)

lw r10, 4(r2)

lw r1, 0(r1)

lw r10, 0(r10)

add r3, r1, r3

add r13, r10, r13

addi r2, r2, 8

bneq r9, r0 LOOP_AU

addi r9, r9, -2

add r3, r3, r13

©Unroll the loop below or explain why it shouldn’t be unrolled.

addi r9, r0, 1024

LOOP_B:

lw r1, 0(r2)

add r3, r3, r1

lw r2, 4(r2)

bneq r9, r0 LOOP_B

addi r9, r9, -1

There is not much benefit in unrolling the loop above because r2 used in the beginning of an iteration is produced by a lw from the
previous iteration so there is no way two iterations could overlap.

10
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(c) Which are smaller, RISC programs or CISC programs. Provide some instruction examples to illustrate
your answer. (5 pts)

©Example and explanation.

CISC programs are smaller because their instructions, being variable size, do not waste space. Also, instructions can do more such as
accessing operands from memory, doing arithmetic, and storing the result back in memory. In the example below one CISC instruction
does the work of four RISC instructions. Three of the RISC instructions waste 16-bits on an unused immediate. In additional the
RISC code uses four opcodes and uses space for 9 register numbers, while the CISC code uses one opcode and space for three registers.

BTW, the size advantage of CISC is outweighed by the disadvantage of more complex implementations so don’t get the wrong idea.

# SOLUTION EXAMPLE

# CISC

add (r1), (r2), (r3)

# RISC

lw r4, 0(r2) # Load instruction wastes 16 bits on an immediate thats zero.

lw r5, 0(r3) # Ditto

add r6, r4, r5

sw r6, 0(r1) # Also wastes 16 bits.

(d) The cost of implementing a rarely used instruction is deemed too high and so is omitted from an
implementation. How can an operating system enable the implementation to run code that uses the rare
instruction without modifying the code or examining it in advance. (5 pts)

The rarely used instruction will raise an illegal instruction exception (since it’s not implemented). The operating system will have
the handler check the opcode and if it’s the rarely used instruction the handler will do exactly what the instruction would (reading
the same registers, computing the result, and writing the result in the correct register) using implemented instructions.

11
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(e) BCD data types were once popular ISA features. (5 pts)

©Were BCD data types absolutely necessary?

No, could use integer data types but that would be inconvenient. When it comes to computers—and many other areas—very few
things are absolutely necessary.

©What were the reasons for including BCD data types in an ISA?

It eliminated the need to convert to decimal, as when preparing human-readable output. It also allowed for the exact representation
of fixed point decimal numbers and eliminated rounding errors in many calculations.

©Why might a BCD data type be considered old fashioned and so not worthy of adding to an ISA now?

Computers are much faster and so decimal conversion is very fast. With floating-point standards, in particular IEEE 754, rounding
errors are predictable and are minimized in calculations using fixed point decimal numbers.

(f) MIPS-I is big endian but more recent MIPS versions can run in either big-endian or little-endian modes.

© (5 pts) Complete (possibly modifying) the MIPS program below so that it writes v0 with a 0 if it is
running on a system using big endian byte order or a 1 if running on a system using little-endian byte order.

# At finish: $v0: 0, if big endian; 1, if little endian.

lui $t1, 0x1122

ori $t1, $t1, 0x3344

sw $t1, 0($t2)

# SOLUTION

# At finish: $v0: 0, if big endian; 1, if little endian.

ori $t1, $0, 0x1

sw $t1, 0($t2)

lb $v0, 0($t2)

Note that the operands for ori were changed and lui was eliminated. Byte order does not effect non-memory instructions,
including lui and ori. The ori sets t1 to 1 which is written to memory. On a little-endian system the least-significant 8 bits of
t1, 0x01, is written to address t1, the next 8 bits, 0x00, are written to t1+1, etc. On a big-endian system the most-significant
8 bits, 0x00, is written to t1. If the lb reads a 0x01 it must be a little endian system.

Grading Note: Many solutions were correct but most were more complicated than they needed to be, some using branches.

12
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Problem 1: In the diagram below some wires are labeled with cycle numbers, indicating that the wire is
used at that cycle. If a value on any labeled wire is changed the code would execute incorrectly.

• There are no branches or other control-transfer instructions.

© [15 pts] Write a program consistent with these labels.

©All register numbers must be made up; use as many different register numbers as possible while still being
consistent with the labels.

© [10 pts] Why would there be no solution to the problem if the C5:1 label in WB were changed to C5:0 ?

If the label were changed then the second instruction would have to be a load. The third instruction bypasses the result of the second
instruction without a stall, and there’s no way that can be done if the second instruction is a load.

format
immed

IR

Addr25:21

20:16

IF
ID EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

=

30 2
"0"

+
15:0

25:0

29:26

29:0

01

C2

C3

C4

mxmx

mx C5
C5:1

# Solution

Cycle 0 1 2 3 4 5 6 7 8 9

add r1, r2, r3 IF ID EX ME WB

addi r4, r5, 6 IF ID EX ME WB

sub r6, r7, r4 IF ID EX ME WB

or r8, r9, r4 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9
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Problem 2: In the diagram on the next page some wires are labeled with cycle numbers and corresponding

values. For example, C1:8 indicates that at cycle 1 the pointed-to wire will hold an 8. Other wires are
labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any labeled wire
is changed the code would execute incorrectly.

• Unlike other problems of this type all registers are different and there are no dependencies.

• The code contains at least one floating-point add and one floating-point multiply.

© [10 pts] Write a program consistent with these labels; if a register number cannot be determined use rX or
fX.

© [5 pts] Complete the pipeline execution diagram.

© [5 pts] Fill in the box on the lower-left of the diagram.

© [5 pts] Your answer should have a FP multiply instruction. Explain how you knew it was a multiply. (Don’t
answer “because I already found the add.”)

The C4:2 in A1/M3 indicates that in cycle 4 there is a multiply in M3. Working backward, that multiply had to be in ID in cycle 1,
and so it’s the first instruction.

© [5 pts] Your answer should have a FP add instruction. Explain how you knew it was an add. (Don’t answer,
“because I already found the multiply.”)

The C3:1 in the lower right indicates a stall in cycle 3. Such a stall could be because the decoding instruction (the third one, since
it’s cycle 3) is an add or a load. If it were an add then it would indeed have a structural hazard (thus requiring a stall) with the first
instruction, a multiply. If it were a load then the only instruction it could have a structural hazard with is the second one, but there
is no instruction type that would need the WF register at the same time, so it has to be an add.

The second instruction is a FP load. We know that because it’s using the Data Out of the memory port, and when it reaches WB/F
the WB register is zero (from the C2:0) and the WF register is 20 (from the C3:20). Many realized it was a load, few got the correct
destination register.
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Problem 2, continued:

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPCInt Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2M
1

xw xw

fd

we

uses FP mul

uses FP add

FP load
Stall
ID

"0"
"2"
"1"

30 2
"0"

+ 15:0 29:0

C2:0 C4

C1:4

C1:16

C1:8

C4:2

0
1

2

C3:20
C3:1
C4:0

C3:24

C0:
C1:
C2:
C3:
C4:
C5:
C6:
C7:
C8:
C9:
C10:
C11:

Fill In

See WE
in PED
below.

# Solution

Cycle 0 1 2 3 4 5 6 7 8 9

mul.d f8, f4, f16 IF ID M1 M2 M3 M4 M5 M6 WF

lwc1 f20, 24(rX) IF ID EX ME WF

add.d fX, fX, fX IF ID -> A1 A2 A3 A4 WF

WE: 0 0 0 0 0 1 0 0 1 1 0 0 <- Values for Fill-In box.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11

Be sure to complete all parts, including the justification for add and multiply.
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Problem 3: Answer each question below.

(a) The encoding of the PowerPC lwzx r1, r2, r3 instruction is illustrated below, followed by the Type-R
MIPS instruction format. [6 pts]

© If a field in the illustrated PowerPC instruction format has a counterpart in the MIPS R format draw an
arrow between the fields. For example, an arrow should be drawn from OPCD to Opcode. Pay close attention
to the register fields.

© If fields connected by an arrow are different sizes explain the significance of the difference. (What advantage
or disadvantage would the format with the larger field have, if any.)

The smaller function field means that Type R can specify fewer functions than the PowerPC field. Having more opcode space is an
advantage if those opcodes are needed.

PowerPC:

OPCD

31

0 5

RT

1

6 10

RA

2

11 15

RB

3

16 20

XO

23

21 30

1

31 31

OPCD −→ Opcode, RT −→ RD, RA −→ RS, RB −→ RT, XO −→ Function,

MIPS R:

Opcode

31 26

RS

25 21

RT

20 16

RD

15 11

SA

10 6

Function

4 0
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(b) Suppose that your favorite program is both in the SPEC CPU2000 suite and in the suite used by a popular
personal computing magazine and that the input data used for testing the program are also identical. You
are considering buying two computers, A, and B. The spec testing shows that your favorite program is faster
on A but the magazine’s test shows that it is faster on B. The exact same model of machine A is used for
running the spec test and the magazine’s test, likewise for B. [6 pts]

©Provide a possible reason for the discrepancy, the reason should help explain why SPEC is used by the CPU
research and development community. Note: In the original exam the text after discrepancy was offered as
a hint.

Short answer: unlike the magazine’s, the spec test would be specially compiled for each machine and might have taken advantage of
some unique features of A.

When doing the spec testing the program can be compiled just for the tested machine. Personal computer magazines test programs in
the form they are sold to customers, which is already compiled (and so in binary form). Therefore the magazine would test the same
binary on both machines whereas those doing the spec testing would specially compile it for each machine, possible taking advantage
of special features of A.

Grading Notes: Most missed the key point, that spec benchmarks are compiled for each test whereas end-user benchmark suites, as
used by magazines, use just one binary.

Another common misconception is that spec does the testing. They don’t, they provide the suite and specify the rules, but they don’t
actually test.

(c) SPEC members and associates are drawn from computer manufacturers, other industries, academia, and
elsewhere. [6 pts]

©Would you trust SPEC benchmark results more (or less) if computer manufacturers were not allowed to join
SPEC? Explain.

Both answers would be considered correct (that includes the reasoning):

I would trust them less because manufacturers have a very strong incentive to keep each other honest.

I would trust them more because manufacturers might want to make it look like future machines are faster by putting in benchmarks
which would be faster on future processors but which are not the kinds of programs that many users would run.

6
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(d) In class we saw that the optimized π program (reproduced below) ran faster than the unoptimized version
(good) but also had higher CPI than the unoptimized version (bad). Note: the words “than the unoptimized
version” was not included in the original exam. [7 pts]

©Why was the CPI higher?

Hint: It has to do with something you learned early in grade school.

double i, sum = 0;

for(i=1; i<5000; )

{

sum = sum + 4.0 / i;

i += 2;

sum = sum - 4.0 / i;

i += 2;

}

Optimization eliminated many instructions though not divides. Since divides take the longest the CPI went up, performance improved
because there were much fewer instructions.

Grading Note: A surprising number of people answered that the optimizations included loop unrolling. The optimized example used
in class did not, perhaps because there would be no performance improvement because execution time is dominated by the division
dependencies and loop unrolling won’t help that. What the optimizer did do is eliminate unneeded loads and stores and other
instructions (reducing instruction count) and scheduled (re-arranged) the code to reduce stalls.
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Problem 4: Answer each question below.

(a) MMX and VIS are examples of ISA extensions that add packed-operand data types and instructions.[7 pts]

©How do packed-operand data types and instructions improve performance?

They allow simultaneous operations on several pairs of operands, a set of operands are packed together in a register and operated on
by special instructions.

© Show a code example that can use such instructions and explain how they would be used.

// Before

extern char *a, *b, *c;

for(i=0; i<1024; i++) c[i] = a[i] + b[i];

// Before, assembler.

LOOP: // Iterates 1024 times.

lb t0, 0(t1)

lb t2, 0(t3)

add t4, t0, t2

sb t4, 0(t5)

addi t1, t1, 1

addi t3, t3, 1

bne t5, t6, LOOP

addi t5, t5, 1

// After, assembler.

LOOP: // Iterates 256 times.

lw t0, 0(t1)

lw t2, 0(t3)

add.pack8 t4, t0, t2 // Add assuming 8-bit quantities packed into register.

sw t4, 0(t5)

addi t1, t1, 4

addi t3, t3, 4

bne t5, t6, LOOP

addi t5, t5, 4

8
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(b) Name an advantage and a disadvantage that RISC’s fixed-size instructions have over CISC’s variable
length instructions.[6 pts]

©Advantage:

Branch displacements can be in instructions rather than bytes, allowing for further jumps for the same instruction size. Simplified
fetch and decoding.

©Disadvantage:

Some instructions are larger than they have to be. Another disadvantage, what could be done with one instruction in CISC, say
loading a 32-bit constant, needs at least two instructions in RISC because of space limitations.

(c) A trap instruction is something like a subroutine call to the operating system. [7 pts]

© So why couldn’t it just specify the address of the trap handler?

Because then it might bypass protections that the operating system tries to impose. For example, suppose the address of a file read
system call were 0x1000, and that the first part of this routine checked if the user had permission to read that file, followed at address
0x1800 by the code that does the read. The user might trap to address 0x1800 and bypass the protection.

Grading Note: Many answered that a user program would not be allowed to execute in the system area. That’s not an issue here
because the trap instruction already changes the processor from user to system mode.

©What does the trap instruction specify (in SPARC but not MIPS) in place of an address and how does
execution actually reach the trap handler.

It specifies an index into (entry number in) the trap table. The hardware will combine this index with the contents of the trap base
register (address of the beginning of the trap table) obtaining the address of the handler itself (within the trap table). This address
will make it to the PC, and so execution will proceed in the handler.

9
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Problem 1: (25 pts) The madd.s fd, fr, fs, ft instruction writes floating-point register fd with
(fr×fs)+ft. The fr field is in bits 25:21, the other fields are in their usual places. The instruction is used
in the code below:

# With ordinary instructions:

mul.s f1, f2, f3

add.s f1, f1, f4

# With a madd.s instruction:

madd.s f1, f2, f3, f4

(a) Add datapath connections (including any connections to the register file) to the implementation on the
next page (also shown below) to implement the madd.s instruction. The code below should execute as shown
(pay attention to f4).

madd.s f1, f2, f3, f4 IF ID M1 M2 M3 M4 M5 M6 A1 A2 A3 A4 WF

lwc1 f4, 0(r2) IF ID EX ME WF

add.s f5, f6, f7 IF ID A1 A2 A3 A4 WF

• Use the existing multiplier and adder.

• It should still be possible to execute ordinary floating point multiply and add instructions.

(b) Modify the logic so that xw, we, and fd work correctly for the madd.s instruction (and continue to work
correctly for existing instructions).

(c) Without a madd.s instruction there is no possible structural hazard on WF in the implementation below
for multiply because multiply is the longest latency instruction implemented. With madd.s that’s no longer
true; add control logic to detect this new structural hazard and generate the Stall ID signal.

USE NEXT PAGE FOR SOLUTION.
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uses FP mul

uses FP add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+ 15:0 29:0

0
1

2

USE NEXT PAGE FOR SOLUTION.
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Problem 1, continued:

©Datapath for madd.s, don’t break add.s or mul.s.

©Code on previous page must run as shown.

©Modify xw, we, and fd for madd.s, don’t break other instructions.

©Detect and handle new structural hazard when mul.s in ID.

Solution on next page.

3
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Solution shown below.

Part(a): Datapath changes are shown in blue. A third read port was added to the floating-point register file to retrieve the fr value
(frv). For the madd.s instruction the frv is used for the multiply, a multiplexor is added in M1 to handle that. Register value
ftv is sent down the pipeline in a new set of latches for use by the add in a second pass through the pipeline. The first add stage
has new multiplexors to select ftv and multiply result from the WF stage.

In the code sample on the previous page a lwc1 writes f4, in the illustrated implementation that’s no problem. There would be
incorrect results if an implementation did not read the ft register until the cycle before it was needed, when madd.s reaches M6.
That’s what “pay attention to f4” was warning about.

Control logic changes are shown in purple. A new logic block, uses both PF mul, add , detects multiply add instructions. The
existing multiply- and add-unit detection blocks now (and perhaps always did) only assert their outputs if an instruction just does
a multiply or just does an add. A ma (multiply-add) signal is sent down the pipeline and used to inject the product, ftv, fd (the
destination register number), the output mux signal (xw), and write enable (we) into the A1 stage when madd.s reaches WF the
first time. After that the madd.s looks like an ordinary FP add to the pipeline.

The logic to detect the new hazard appears in green. If a madd.s instruction is in M4 (it’s first trip) and an ordinary multiply is in
ID a stall signal is generated.

format
immed

IR

Addr
25:21

20:16

IF EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPCInt Reg File

FP Reg File

fdfd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we we

Decode
dest. reg

ID

A4

fd

we

fd

we

A3A2A1

M3 M4 M5

xw

fd

we

xw

fd

we

xw

M2M
1

xw xw

fd

we

uses just FP
mul

uses just FP
add

FP load

Stall
ID

"0"
"2"
"1"

30 2
"0"

+ 15:0 29:0

0
1

2frvAddr Data25:21 ftv
ma ma

uses both FP
mul, add

ftv ftv ftv ftv ftv
ma ma ma ma ma

"1"

Datapath
Changes

Control
Changes Hazard Detection Change
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Problem 2: (15 pts) The execution of a MIPS program on a dynamically scheduled system using method
3 appears below. Complete the ID Register Map, Commit Register Map, and Physical Register File tables
for registers f2 and f4.

• The initial value of f2 is 2.0, the mul.d writes 2.1, ldc1 writes 2.2, and sub.d writes 2.3. The
initial value of f4 is 4.0, the add.d writes 4.1. Make up physical register numbers as needed.

©As always, show table contents.

©Show where registers are removed from and placed back in the free list.

©Show initial values.

The solution shown below, there is nothing interesting about this problem.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.d f2, f4, f6 IF ID Q RR M1 M2 M3 M4 WF C

add.d f4, f2, f10 IF ID Q RR A1 A2 A3 WF C

ldc1 f2,0(r1) IF ID Q EA ME WF C

sub.d f2, f2, f8 IF ID Q RR A1 A2 A3 WF C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID Register Map

# Solution

F2 12 9 71 99

F4 18 51

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Commit Register Map

# Solution

F2 12 9 71 99

F4 18 51

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Physical Register File

# Solution

12 2.0 ]

18 4.0 ]

9 [ 2.1 ]

51 [ 4.1

71 [ 2.2 ]

99 [ 2.3

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HARDWARE SHOWN ON NEXT PAGE.

5

← → Spring 2005 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2005/fe_sol.pdf


Problem 2, continued: Dynamically scheduled processor shown for reference.

25:21

20:16
rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

PC

ID:dst
ID:St: C,X

0,0
WB:ROB #
WB:C,X

Addr

D In

Re
or

de
r B

uf
fe

r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

Fr
ee

 L
ist



ID:dstPR
ID:dstPR

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q EX

dstPR
dstVal.

WB

RR

WB

Decode
dest. reg

ID:incm
b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

Re
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r

EA*

A1

M1

ME*

* Were called
L1 and L2.
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Problem 3: (20 pts) The code below runs on three systems, one using a bimodal predictor (B) with a
210-entry BHT, a local predictor (L) with a 210-entry BHT and a 16-bit local history, and a global predictor
(G) with a 16-bit GHR. The outcomes of B2 are shown but not B1’s so pay attention to where B1’s outcomes
are located.

LOOP:

SHORT:

# B1 Iterates 10 times

B1: bne r3,r4 SHORT

addi r4, r4,1

...

B2: beq r1, r2 SKIP N N T N T N N T N T ...

...

SKIP:

j LOOP

nop

(a) Find the prediction accuracy of each predictor on each branch after warmup. Briefly explain.

©Accuracy predicting B1 on B: 90%

©Accuracy predicting B1 on L: 100%

©Accuracy predicting B1 on G: 100%

©Accuracy predicting B2 on B: 60%

©Accuracy predicting B2 on L: 100%

©Accuracy predicting B2 on G: 80%

(b) Determine the number of table entries used by branch B2 on each predictor:

©Entries for B2 on B: 1 BHT.

©Entries for B2 on L: 1 BHT + 5 PHT.

©Entries for B2 on G: 1 BHT + 2 PHT.

(c) Suppose the history sizes were reduced.

©What is the smallest local history size for which the accuracy on B2 will be unchanged (from the previous
answer) when using the local predictor. Briefly explain.

Four bits. With three bits a local history of NTN would appear before both a T and N outcome so the PHT entry counter will
mis-predict the T, the N, or even both. With four bits all outcomes can be distinguished.

©What is the smallest global history size for which the accuracy on B2 will be unchanged when using the
global predictor. Briefly explain.

Eleven bits. For the global history size of 16 used above the GHR holds (global predictor can “see”) just one previous outcome of
B2. At 11 bits the GHR still holds that previous outcome, at 10 bits is does not and so prediction accuracy will be reduced.

7
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Branch B1 is a simple ten-iteration loop, so there will be nine taken outcomes followed by a not-taken. The diagrams below show
the counter values, predictions, and prediction outcomes using a bimodal predictor on branches B1 and B2. Prediction accuracy is
computed over a range of cycles that will repeat. For B1 that is cycles 5-10, for B2, that is 0-5 (and 5-10).

# Analysis for computing bimodal prediction accuracy on B1.

# B1 Iteration 0 1 2 3 4 5 6 7 8 9 10

# Counter 0 1 2 3 3 2 3 3 3 3 2

# Prediction n n t t t t t t t t t

# Mispredict x x x x

B1: bne r3,r4 SHORT T T T T ... N T T T T ... N

addi r4, r4,1

...

# Analysis for computing bimodal prediction accuracy on B2.

# B2 Iteration 0 1 2 3 4 5 6 7 8 9 10

# Counter 0 0 0 1 0 1 0 0 1 0 1

# Prediction n n n n n n n n n n n

# Mispredict x x x x

B2: beq r1, r2 SKIP N N T N T N N T N T ...

The local predictor will predict both with 100% accuracy because their patterns are each less than 16 outcomes. The global predictor
will predict B1 with 100% accuracy because the GHR will hold more than the last 9 iterations of B1, which is enough to predict with
100% accuracy. For B2, the GHR will hold only one previous outcome of B2 (the other 15 bits are outcomes of B1 which do not help
in predicting B2). Therefore two PHT entries are used with the global predictor predicting B2, one for the previous outcome being
taken and one for the previous outcome being not taken. After warmup the not-taken entry will predict taken (because that’s the
outcome 2 out of 3 times it is used, per iteration) and be wrong once. The taken entry will predict not taken and always be right.
Therefore the prediction accuracy will be 80%.

8
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Problem 4: The diagram below is for a 256-kiB (218 byte) 4-way set-associative cache with a line size of
16 characters on a system with 8-bit characters. (20 pts)

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

©Fill in the blanks in the diagram. Pay attention to the width of the CPU address port.

CPU
Addr

Data

Data

 Addr
Out

Tag

 Addr

=Tag

Valid
Data

 Addr
Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

64 b

44 b

43:16 43:16
15:4

15:3

15:4

15:3

©Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

43 16

Index

15 4

Offset

3 3 2 0

©Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity plus 4 × 216−4 (44 − 16 + 1) bits.

©Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

43 18

Index

17 4

Offset

3 3 2 0

9
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Problem 4, continued:

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

©What is the hit ratio running the code below?

On the first j iteration the hit ratio is 0.5 because the line size is only 16 characters and a data element is 8 characters. The number
of i iterations is large enough so that the array does not fit in the cache and so on the second j iteration the hit ratio will also be
0.5, so the overall hit ratio is, of course, 0.5 .

double sum = 0.0, *a = 0x2000000; // sizeof(double) = 8 characters

int i, j, ILIMIT = 0x1000000;

for(j=0; j<2; j++)

for(i=0; i<ILIMIT; i++)

sum += a[ i ];

The code in the problems below is to be run on a cache of unknown configuration, though it will be one of the
types discussed in class (direct mapped or set-associative). In all cases the cache is empty when the program
starts. Routine get miss count() returns the number of cache misses at the time of the call (and does not
cause any misses).

(c) Complete the code so that line size is assigned the correct line size based on the number of misses
encountered and the nature of the code. Assume that all misses are due to access to a.

int ILIMIT = 0x10000;

char *a;

int miss_count_before = get_miss_count();

for(i=0; i<ILIMIT; i++) sum += a[i];

int miss_count_during = get_miss_count() - miss_count_before;

int line_size = ILIMIT / miss_count_during; // SOLUTION

There will be one miss for each line used to cache the array. The total size of the array accessed is ILIMIT characters so the line
size is that divided by the number of misses.

(d) Complete the code so that associativity is aptly assigned. Assume that the cache is smaller than 256
MiB (228)(but the exact size is not known), that the associativity is no larger than 64, and that there is a
64-bit address space.

int ISHIFT = 28; // SOLUTION

int JSHIFT = 28; // SOLUTION

char *a; // Pointer to a really large array.

int miss_count_before = get_miss_count();

for(i=0; i<64; i++) sum += a[ i << ISHIFT ];

for(j= 63; j>=0; j-- ) // SOLUTION

sum += a[ j << JSHIFT ];

int miss_count_during = get_miss_count() - miss_count_before;

int associativity = 128 - miss_count_during; // SOLUTION

Use the i loop to load 64 lines with different tags and the same index by setting ISHIFT to 28 (since the cache size is no more than
228 bytes). The i loop will miss 64 times, once for each iteration. Have the j loop check for the lines, starting with the most recent
one (j=63) which should be a hit. Then check j=62, if the cache is direct mapped it will be a miss, otherwise a hit, check j=61,
if the cache is less than 3-way it will be a miss, etc.

10
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Problem 5: Answer each question below.

(a) Suppose in a five-stage statically scheduled MIPS implementation (like the one in class) an instruction
could raise an exception in the WB stage. Explain why that would make precise exceptions for that instruc-
tion impossible. Use a code example to explain what should happen for a precise exception and why its
impossible (or very difficult) if the exception is raised in WB. (5 pts)

If the instruction after the faulting instruction were a store it could not be stopped from writing to memory, and so the exception
could not be precise. (In a precise exception the handler should start at a point in the program just before the faulting instruction.)
In the example below the jalr instruction uses an illegal destination register (it can’t be the same as the source). If that illegal
register were detected in WB rather than ID, then it would be too late to stop the sw. When the handler started it would see the
effect of the sw, which means the jmpl’s exception was not precise.

jalr r1, r1 IF ID EX ME WB

sw r3, 0(r4) IF ID EX ME WB

(b) Arrange the ISA families below in order by code (program) size, the one for which programs are smallest
should be first. Starting at the second ISA in the arranged list, explain why code size is larger than the ISA
above. (That is, provide three reasons why code size is larger.) (5 pts)

ISA families (in alphabetical order): CISC RISC Stack VLIW

© ISA families in code size order.

©Reasons for size differences.

Smallest: Stack. Unlike CISC and the other ISAs, Stack instructions refer to the stack and so register operands are not used in
arithmetic instructions, making them small. In those cases where operands are not in the right place in the stack rearrangement
instructions are needed, but even so stack programs are smaller than programs in other ISAs.

CISC. Unlike RISC instructions, CISC instructions are variable size and so they are no larger than they have to be. All RISC
instructions are the same size, so some have unused space.

RISC. Unlike VLIW, a RISC program consists only of RISC instructions and other than four-byte (usually) alignment there is little
restriction on where instructions can be placed. In VLIW they must be arranged into bundles with restrictions on placement, for
example, it might not be possible to put a floating-point instruction in the first slot of a bundle. Because of these restrictions slots
may occasionally be filled with nops. The bundles also include template information. In Itanium three RISC-like instructions take
128 bits, a RISC ISA could fit four instructions in the same space. Branches must be to the beginning of a bundle, further wasting
space.

Largest programs: VLIW.

11
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(c) Deciding on a line size for a cache is a tough decision. (5 pts)

©Describe the behavior of programs that run better on caches with smaller line sizes.

The programs should have low spatial locality, meaning if they access an address they probably won’t be accessing something nearby
anytime soon. Small line sizes help because less space is wasted bringing in data near something which is accessed.

©Describe the behavior of programs that run better on caches with larger line sizes.

The programs should have high spatial locality. For example, they might access data sequentially.

(d) Answer the following question on cost.(5 pts)

© Name two parts of an n-way superscalar processor that cost about n times as much as a comparable
scalar processor.

The fetch hardware. The integer ALUs. In each case no more than n of them are needed.

© Name two parts of an n-way superscalar processor that cost about n2 times as much as a comparable
scalar processor.

The control logic for detecting dependencies because the source of each of n instructions being decoded must be compared with the
destinations of other instructions in the same stage, and n instructions in each of the next few stages. That’s proportional to n2

comparisons.

The bypass connections. It should be possible to bypass results to any of the n instructions in EX; each ALU input will have a
multiplexor connecting to n pipeline latches in each of the next two stages (for the five stage design used in class).

12
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Problem 1: The routine below is to do a binary search on an array and return 1 if the item is found, 0
otherwise. Complete the MIPS program using the C++ code as a guide. [30 pts]

©The only allowable synthetic instruction is nop.

©Fill as many delay slots as possible. The order of the assembly code does not have to match the order of the
C code.

# unsigned int delta = size; int pos = 0;

# while( true ) {

# delta = delta >> 1;

# int next_pos = pos + delta;

# int e = array[next_pos];

# if( e == target ) return 1;

# if( !delta ) return 0;

# if( e < target ) pos = next_pos;

# }

# CALL VALUE: $a0, array: Address of array. Each element is a WORD-SIZED int.

# CALL VALUE: $a1, size: Number of elements in array. A power of 2.

# CALL VALUE: $a2, target: Value to find.

# RETURN VALUE: $v0, 1, if target in array; 0, if not in array.

# Can modify registers $a0-a3, $t0-$t9

# Solution

#

# Common problems highlighted. Solution below shows correct code.

#

bsearch:

# $a1 is delta

addi $t0, $0, 0 # pos = 0;

LOOP:

srl $a1, $a1, 1 # delta = delta >> 1;

add $t1, $t0, $a1 # next_pos = pos + delta

# COMMON PROBLEM: Index not scaled.

sll $t2, $t1, 2 # Scale array index since elements are four bytes.

add $t2, $a0, $t2 # t2 = &array[next_pos]

lw $t2, 0($t2) # t2 = e, array[next_pos]

bne $t2, $a2 SKIP1

nop

jr $ra # Element found, return 1.

addi $v0, $0, 1

SKIP1:

bne $a1, $0 SKIP2

nop # Delta zero, return 0.

jr $ra

addi $v0, $0, 0 # COMMON PROBLEM: Jump delay slots ignored.

SKIP2:

# if ( element < target ) pos = next_pos

#

slt $t3, $t2, $a2

beq $t3, $0 LOOP

nop

j LOOP

addi $t0, $t1, 0

2
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Problem 2: In MIPS and many other ISAs floating-point instructions read and write a FP register file while
most other instructions read and write general-purpose (integer) registers. Suppose MIPS-I were modified
so that FP instructions used the same registers as the integer instructions. The registers are still 32 bits and
can be used in pairs by instructions operating on double-precision operands. The new version of MIPS is
not compatible with MIPS-I, don’t worry about that.

(a) For each MIPS-I instruction below indicate whether it will be retained in the new ISA, “KEEP”, or will
not be needed, “OMIT.” Also add any new instructions that might be needed. If an instruction is kept but
operates differently describe the difference. [15 pts]

© Indicate KEEP or OMIT.

© If omitted show an existing instruction that would be used in its place.

© If kept, explain how it would operate differently.

lwc1: OMIT, use lw instead.

ldc1: KEEP, but writes GPRs (call it ld now).

cvt.w.d: KEEP (but operates on the integer registers.) Still need to convert from integer to FP.

cvt.d.w: KEEP (but operates on the integer registers.) Still need to convert from FP to integer.

mfc1: OMIT. No longer an FP reg file to move values from.

mtc1: OMIT. No longer an FP reg file to move values to.

add.s: Keep, but operates on integer registers.

add.d: KEEP, but operates on integer register pairs.

c.lt.s: KEEP, write result (0 or 1) to register.

c.le.d: KEEP, write result (0 or 1) to register.

bc1t: OMIT. Use bne or beq.

Hint: In bc1t b is for branch, t is for true.

Grading Notes:

Many suggested eliminating c.lt.s and using slt instead. This will almost work because if one IEEE 754 number is larger than
another then its binary encoding interpreted as a two’s complement number is larger than the other and so an integer comparison can
be performed. Perhaps many had that in mind when they suggested using slt (I hope). The problem is that IEEE 754 has several
non-number encodings and the comparison instruction is supposed to raise an exception if an attempt is made to compare them, slt
won’t do that.

3
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The original exam had c.gt.d. There is no such instruction, ooops.

(b) If your answer for bc1t above was “OMIT” describe below how the instruction can be kept (possibly
modified). If your answer was “KEEP” explain how it can be omitted. This will affect other instructions,
list them and explain how they are affected.

Instruction bc1t branches if the FP condition code register is true. The instruction was omitted above because the comparisons
write a general purpose register.

In this part keep bc1t and modify the comparison instructions c.lt.d, etc. so that they write the FP condition code register
instead of an integer register, as they did in the previous part.

4
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Problem 3: Using an interesting technique the program below returns the value of register X, where X is
a number in register $a0. For example, if $a0 held an 8 the program would return the value of $8 (or $t0

using the register name) in register $v0. Consider:

jal copyreg

addi $a0, $0, 8

# After copyreg returns $v0 has contents of $t0.

addi $v0, $t0, 0 # $t0 is $8, register number 8

# At this point $v0 has contents of $t0.

From the code above it looks like the copyreg routine is doing things the hard way. The one advantage is that
it can copy a source register known only at run time or that might change. In contrast, the addi instruction
always copies $t0. Note: In the original exam the description and example above were not included.

(a) Modify the program so that it takes a second call value, a1, which holds a second register number. The
return value is put in that register. For example, if a0 holds a 12 and a1 holds a 3 then the routine copies
the value in r12 to r3. [17 pts]

© Show additions and changes. The added code must use a similar technique to the existing code.

Hint: Can be solved with two added instructions and a few minor modifications.

# Solution.

# CALL VALUE: $a0 A register number. (Except v0)

# CALL VALUE: $a1 A register number.

# RETURN VALUE: Return value in register specified by $a1

copyreg:

la $v0, template # Put address of label "template" into $v0.

lw $v0, 0($v0) # Load template instruction into $v0.

sll $a0, $a0, 21 # Shift register number to rs position.

add $a0, $v0, $a0 # Insert source register number into instruction.

# Solution (Next two instructions, and modification of template.)

sll $a1, $a1, 11 # Shift register number to rd position.

add $a0, $a0, $a0 # Insert destination register into instruction.

la $v0, mod # Load address of last instruction in this routine.

sw $a0, 0($v0) # Store created instruction at end of this routine.

jr $ra # Return ...

mod:

add $v0, $0, $0 # ... and move registers.

template:

# add $v0, $0, $0 Original instruction had dest of v0.

add $0, $0, $0 # In solution make that a $0 since it’s modified.

Format R:

opcode

31 26

rs

25 21

rt

20 16

rd

15 11

sa

10 6

func

5 0

5
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Problem 3, continued:

(b) Suppose one were considering adding a new machine instruction, copyreg, that does the same thing
as the routine above (before modification for part 1). Provide arguments for and against adding the new
instruction. The arguments can include made-up data as long as it does not conflict with what has been
given in this problem or in class. At least one of the arguments must refer to features of the code from
part 1. [8 pts]

©Provide an argument in favor of adding the instruction.

Programs needing to copy a register known only at run time would work much faster if they had a machine instruction to do it.

Grading Note: Though the routine above performs a load and a store, that’s not the way an implementation would do it.

©Provide an argument against adding the instruction. Do not simply reverse an assumption made above.

Instructions like this are not needed very often.

6
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Problem 4: Answer each question below.

(a) A company is developing an implementation of an ISA. To guide their design they are using a SUBSET
of the SPECcpu benchmark programs. [7 pts]

Grading Note: A surprising number of students seemed to miss the word subset and answered the question as though it were about
the full set of SPEC CPU benchmarks, not a subset.

©Describe a situation in which that’s a foolish thing to do and explain why it’s foolish.

It is foolish if the intended customers run a wide range of programs similar to the full set of benchmarks. By omitting certain programs
the company will not be designing their implementation to run those programs fast.

©Describe a situation in which that’s a smart thing to do.

It’s smart if the subset matches what the intended customers to run. This way time is not wasted optimizing a design for programs
their customers won’t be running.

7
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(b) Compiler optimizations are important. [8 pts]

©Describe a compiler optimization for which the compiler needs no knowledge of the ISA.

© Show an example.

Common subexpression elimination.

// Before

if( a+b < c ) x = a + b;

// After (optimization shown in C, but actually done in compiler intermediate

// representation.)

int s = a + b;

if ( s < c ) x = s;

©Describe a compiler optimization for which the compiler does need to know the target ISA.

Register assignment. Compiler needs to know how many registers there are, not to mention what are the instructions which need
register values in the first place.

8
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(c) A goal in the design of MIPS and other RISC ISAs is to minimize the number of registers with specialized
purposes. In MIPS r31, a.k.a. $ra, does have a specialized purpose. [7 pts]

©Why was it necessary to make an exception in this case?

The jal instruction stores the return address in register ra. It is coded in format J which only has an opcode and immediate (ii)
field, there is no room for a register number. Therefore if there was to be a jump and link with a 26 + 2-bit region it would have to
save the return address in a fixed register.

(d) The target in MIPS branch instructions is specified by indicating the number of instructions to skip.
[8 pts]

©Why couldn’t such an approach be used in CISC ISAs?

Because CISC instructions are variable size and so computing a target address using a number of instructions to skip cannot be
done by just multiplying that number by the instruction size. The implementation would have to know the sizes of the intervening
instructions which would be extremely impractical. Instead branch targets typically specify the number of bytes to skip.

© Specifying the number of instructions to skip saves two bits over what is needed for CISC targets. Why is
saving two bits not as important in the design of CISC instructions?

Because instructions are variable length their size can be increased to accommodate the size of any needed operands. In the case of a
branch the instruction encoding can be made as large as needed to hold the displacement, even if the displacement is two bits larger
(which isn’t very much anyway) than in most RISC ISAs.

9
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Computer Architecture

EE 4720
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Alias EE MVDCCXX

Problem 1 (15 pts)

Problem 2 (25 pts)

Problem 3 (25 pts)

Problem 4 (10 pts)

Problem 5 (25 pts)

Exam Total (100 pts)

Good Luck!
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Problem 1: The MIPS code below executes as shown on the illustrated dynamically scheduled scalar
implementation. There are no exceptions or recoveries; the result (value to be written in r2) of the first
instruction is 101, the second is 102, etc. (15 pts)

25:21

20:16

rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

P
C

ID
:dst

ID
:S

t: C
,X

0,0

WB:ROB #

WB:C,X
Addr

D In

R
eo

rd
er

 B
uf

fe
r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

F
re

e 
Li

st

ID
:dstP

R
ID

:dstP
R

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q
EX

dstPR

dstVal.

WB

RR

WB

Decode
dest. reg

ID
:incm

b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

R
ec

ov
er

EA*

A1

M1

ME*

* Were called
L1 and L2.

©Show where each instruction commits.©The initial value of r1 is 111 and the initial value of r2 is 222. Fill in the tables to show these values.©Complete the tables for the execution of the code. Take into account the results (see first paragraph).©Show where registers are removed from and put back in the free list.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

lw r2, 0(r4) IF ID Q RR EA ME WB C

add r1, r2, r3 IF ID Q RR EX WB C

sw r1, 0(r4) IF ID Q RR EA ME WB C

xor r2, r5, r3 IF ID Q RR EX WB C

and r2, r2, r6 IF ID Q RR EX WB C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

# ID Map

Reg Initial PR

r1 17 66

r2 43 63 83 88

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

# Commit Map

Reg Initial PR

r1 17 66

r2 43 63 83 88

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

Physical Register File

PR Initial State

17 111 r1 ]

43 222 r2 ]

63 [r2 101 ]

66 [r1 102

83 [r2 104 ]

88 [r2 105

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

2
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The solution is shown on the previous page. This problem is uninteresting and so it would be a good first study problem for those
reading this in the future.

Common Mistake: Allocating a register for sw. The sw instruction does not write a register and so it is not allocated a physical
register.

Common Mistake: Freeing the wrong register. When an instruction commits the correct physical register to free is not the one
assigned to the instruction but the incumbent, the previous one assigned to the same register. For example when the add, which
was assigned physical register 66, commits it is physical register 17 which gets tossed back into the free list. The incumbent can be
found in the commit (or ID) map to the left of the register assigned to the instruction.

3
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Problem 2: An extended version of MIPS, called MMMIPS, includes memory-to-memory (MM) arithmetic
instructions that can read the first source operand from memory and write a result to memory; the second
source operand is always an immediate and the MM’s are encoded in format I. Their mnemonics end with
.mm, .mr, or .rm and they operate as described in the comments below. (25 pts)

lw r1, 2(r3) # r1 = Mem[r3+2] (Existing instruction, for your reference.)

add.mm (r4),(r5), 3 # Mem[r4] = Mem[r5] + 3

sub.rm r6, (r7), 3 # r6 = Mem[r7] + 3

or.mr (r8), r9, 3 # Mem[r8] = r9 + 3

(a) Shown below is a partially completed implementation of MMMIPS. It includes a new stage, MS (the S
is for source), that has a memory port for the source operand, shown unconnected. For use in a later part of

this problem, boxes mem src and mem dst identify an instruction as having a memory source operand

(output 1) or a memory destination operand (output 1) (an instruction can have both). An output of 0
means the respective operand is not from or to memory.

©Connect the MS-stage memory port for the MM instructions.

©Modify connections to the MEM-stage memory port for the MM instructions.

©Make sure existing MIPS load and store instructions continue to work correctly.

©For this part don’t add bypassing or control logic.

format
immed

IR

Addr
25:21

20:16

IF
ID EX WB

MEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

D out

rtv

dst dst
Decode
dest. reg

30 2
"0"

+
15:0

25:0

29:26

29:0

Addr

Mem
Port

D out

Addr

D in

Mem
Port

D out

ALU

MD

dstdst

rsv

rtv

IMM

MS

mem dst
mem src

(rsv)

=

mem dst

mem src

mem dst

BYP

part (a)

part (b):
existing
bypass
used in
cycle 4

part (c): Bad idea, critical-path-busting bypass, use in cycle 3 if you must.

part (a)

part (d): added control
logic for existing bypass

connection.

part (d) existing bypass used in cycle 4.

Solution to this part appears above in green along with solution to other parts.

4
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For the problems below use either the diagram below or the one on the previous page.

format
immed

IR

Addr
25:21

20:16

IF
ID EX WB

MEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

D out

rtv

dst dst
Decode
dest. reg

30 2
"0"

+
15:0

25:0

29:26

29:0

Addr

Mem
Port

D out

Addr

D in

Mem
Port

D out

ALU

MD

dstdst

rsv

rtv

IMM

MS

mem dst
mem src

(rsv)

=

mem dst

mem src

mem dst

BYP

part (a)

part (b):
existing
bypass
used in
cycle 4

part (c): Bad idea, critical-path-busting bypass, use in cycle 3 if you must.

part (a)

part (d): added control
logic for existing bypass

connection.

part (d) existing bypass used in cycle 4.

(b) Add a bypass connection so that the code below can execute without a stall or show which existing bypass
connection can be used.

©Add or identify the connection.

©Show which cycle the bypass connection is used.

# Cycle 0 1 2 3 4 5 6

add r1, r2, r3 IF ID MS EX ME WB

sub.mr (r1), r4, 5 IF ID MS EX ME WB

The value can use the exiting MEM-to-EX bypass connection, the bypassed value goes through the mux to EX/MEM.rtv. The value
would be bypassed in cycle 4 for use in the memory write in cycle 5.

(c) Can a bypass connection be added for the code below? If yes, should it be added? Explain.

©Show how and/or explain why not.

# Cycle 0 1 2 3 4 5 6

add r1, r2, r3 IF ID MS EX ME WB

sub.rm r6, (r1), 5 IF ID MS EX ME WB

Yes it can be added, but it shouldn’t because of critical path impact. Added connection is shown above in red.

The subtract needs the address in the beginning of cycle 3, while it’s in MS, but the value is computed at the end of cycle 3. If a
bypass connection were provided then the cycle time would have to be long enough for both an add and a memory access, substantially
lowering the clock frequency.

5
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(d) Show the bypass connections (if any) and control logic so that the code below executes without a stall
(and without causing other instructions to execute incorrectly, of course). The control logic should deliver
a BYPASS signal to the EX stage at the right time, it should be 1 if a bypass of the type needed below is
necessary. Do not connect it to anything.

©Show the control logic generating BYPASS.

©Add the bypass connection or show which existing one would be used.

# r1 = 0x1000, r5 = 0x1000

# Cycle 0 1 2 3 4 5 6

add.mr (r1), r2, 3 IF ID MS EX ME WB

sub.rm r4, (r5), 6 IF ID MS EX ME WB

The bypass is only necessary if the two addresses are the same and so the control logic must compare the addresses as well as checking
if the earlier instruction writes a memory location and the later one reads one. The control logic and existing bypass path are shown
above in blue.

6
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Problem 3: Answer each question below. Be sure to check each code fragment for dependencies. (25 pts)

(a) Show a pipeline execution diagram for the code fragment below running on the usual statically scheduled
and bypassed scalar MIPS implementation. Note: Bypassing and static scheduling not mentioned in the
original exam.

# Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2)

add r3, r1, r4

# Solution:

# Cycle 0 1 2 3 4 5 6

lw r1, 0(r2) IF ID EX ME WB

add r3, r1, r4 IF ID -> EX ME WB

©Solve this easy problem.

Grading Note: The original test omitted the kind of implementation. Some did it on an unbypassed statically scheduled, a few did it
on a dynamically scheduled system, and one on a superscalar statically scheduled implementation.

(b) The sub.s instruction below stalls in IF.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

add.s f4, f5, f6 IF ID A1 A2 A3 A4 WF

sub.s f7, f4, f8 IF -------> ID A1 A2 A3 A4 WF

add.s f9, f10, f11 IF ID A1 A2 A3 A4 WF

©What’s wrong about the stall?

©Show correct execution.

It’s stalling because of the dependency through f4, but how could the implementation know that in cycle 1 to 4 if sub.s does not
yet been decoded. The correct execution appears below.

# Solution

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

add.s f4, f5, f6 IF ID A1 A2 A3 A4 WF

sub.s f7, f4, f8 IF ID -------> A1 A2 A3 A4 WF

add.s f9, f10, f11 IF -------> ID A1 A2 A3 A4 WF

7
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Problem 3, continued:

(c) The code below executes on a dynamically scheduled machine of the type used in the first problem and
in class. The mul.s stalls in ID.

# ROB initially empty.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

add.s f4, f5, f6 IF ID Q RR A1 A2 A3 A4 WF C

sub.s f7, f4, f8 IF ID Q RR A1 A2 A3 A4 WF C

mul.s f9, f10, f11 IF ID -------> Q RR M1 M2 M3 M4 M5 M6 WF C

©What’s wrong about the stall?

©Show correct execution.

This is a dynamically scheduled system and so sub.s waiting for an operand does not stall mul.s. Instruction sub.s moves out
of ID and into the instruction Q, and so mul.s is not blocked.

© If the “ROB initially empty.” comment was not there then the execution above would be possible,
albeit misleading. How would the stall be possible?

Dynamically scheduled systems stall when some resource is exhausted. The comment indicates that the three instructions have the
entire processor to themselves and so it’s unlikely that it has run out of anything. But without the comment there might be lots more
instructions present and so the processor might have run out of something, for example, ROB slots or physical registers. If it runs
out it must stall the instruction in ID. Unlike waiting in the instruction queue, this is a real stall of the fetch/decode pipeline that
will block later instructions.

(d) Show a pipeline execution diagram for the code below executing on a 2-way statically scheduled super-
scalar MIPS implementation. Note: In the original exam “statically scheduled” was omitted so an answer
for either type of system would be correct.

©Execution must be for decode logic of ordinary complexity. (See next item.)

©Execution must allow precise exceptions.

# solution

# Cycle 0 1 2 3 4 5 6 7

0x1000:

lw r4, 0(r5) IF ID EX ME WB

add r1, r2, r3 IF ID EX ME WB

lh r6, 0(r4) IF ID -> EX ME WB

xor r7, r1, r9 IF ID -> EX ME WB

sll r10, r11, 12 IF -> ID EX ME WB

srl r14, r15, 16 IF -> ID EX ME WB

8
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Problem 4: (10 pts) The diagram below is for a two-way set-associative cache on a system with 8-bit
characters. Answer the following, formulæ are fine as long as they consist of grade-time constants.

©Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32 b

32 b

15:8 31:16

15:2

31:16

15:8

15:2

©Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 16

Index

15 8

Offset

7 2 1 0

©Cache Capacity (Indicate Unit!!):
Capacity is 2 × 216 characters (128 kiB).

©Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity plus 2 × 216−8(32 − 16 + 1) bits.

©Line Size (Indicate Unit!!):

Line size is 28 characters.

©Show the bit categorization for an eight-way cache with the same capacity and line size.

Address:

Tag

31 14

Index

13 8

Offset

7 2 1 0

9
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Problem 5: Answer each question below.

(a) The register renaming technique used in the dynamically scheduled processor (what the register maps
do) solves a problem encountered when instructions execute out of order.(5 pts)

©What is the problem and how does it solve it?

©Provide an example showing what would go wrong without renaming.

The problem is that because instructions write back their results out of order and also read source registers out of order an instruction
might read the wrong register value because (1) a later instruction already wrote the same register, overwriting the value that was
supposed to be read, or (2) earlier instructions wrote the registers out of order. See the examples below. The solution is to assign a
different physical register to each instruction that writes a destination so that there is no ambiguity. The ID register map is used to
find which physical register is assigned to a given architected (from the ISA) register. Since the register map is read and updated in
program order it will be correct.

# Case (1): add reads wrong value of r2.

add r1, r2, r3 ..RR.. # Ooops, got wrong r2.

sub r2, r4, r5 ..WB..

# Case (2): xor reads wrong r1.

add r1, r2, r3 ..WB..

...

or r1, r6, r7 ..WB..

xor r8, r1, r9 ..RR.. # Ooops, got wrong r1.

(b) When it comes to caches one line size does not fit all.(5 pts)

©When is it better to have larger line sizes (while holding cache size constant)? Explain how the larger
lines help.

When programs do alot of sequential access. The larger the line the more data is brought in on a cache miss. Since access is sequential
that data will soon be accessed if the missing instruction is part of a piece of code accessing data sequentially.

©When is it better to have smaller line sizes (while holding cache size constant)? Explain how larger lines
would hurt.

Suppose there is a miss on a system with large lines by a program doing no sequential access and with little spatial locality of any
kind. The accessed data will be read but the other data on the line will not, wasting cache capacity. It would not hurt to have smaller
line sizes since only the part which is first accessed is used, it would in fact help to have smaller lines because there would be more
of them, increasing the hit ratio in many cases.

10
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(c) Why would the SPEC CPU benchmark suite be less useful if it contained one integer program and one
floating-point program? (5 pts)

©Why not just one of each?

Different programs have different characteristics making it difficult to choose one typical program. It might happen that the chosen
program on a particular implementation does particularly well but that other programs don’t do as well on that implementation. So
if the suite had just one program it would not do a good job of predicting overall performance on a mix of programs.

(d) How would you answer a critic who said that the SPEC CPU benchmarks were rigged to make rich and
powerful company I’s products look good? (5 pts)

©They are not rigged because . . .

. . . the benchmarks are chosen by SPEC members. Anyone can join SPEC and that includes I ’s competitors. If I were pushing
benchmarks that favored its products the other members of SPEC, with their own hardware to sell, would object and the benchmarks
would not be included in the suite.

Grading Note: The question is asking about the benchmarks themselves, some answered as though it were asking about the testing
procedures.

Some answered that they are not rigged because SPEC is a non-profit who’s mission is to provide fair tests. That does not make
them immune to being influenced. The Washington, DC phone book would be alot lighter if one removed all non-profits (PACs, etc)
that were not as impartial as they claim to be. What’s important for SPEC is that its members have competing interests and so they
will keep each other honest.

(e) What is the difference between a hardware interrupt, an exception, and a trap (as defined in class)?
(5 pts)

©A hw interrupt’s unique feature.

It has nothing to do with what’s executing, it’s triggered by a signal on a special processor port.

©An exception’s unique feature.

It’s tied to a particular instruction in which there was some problem with execution.

©A trap’s unique feature.

It is an instruction, inserted to call a handler routine.

11
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Problem 1: In the diagram below some wires are labeled with cycle numbers and values that will then be

present. For example, C3:0 indicates that at cycle 3 the pointed-to wire will hold a 0. Other wires are
labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any labeled wire
is changed the code would execute incorrectly. There are no stalls during the execution of the code. The
first instruction (or) is shown (but don’t forget to add the registers). [40 pts]

©Write a program consistent with these labels.

© Show the address of every instruction.

© Show every register number that can be determined and use r10, r11, etc. for other register numbers.

© Show the exact instruction (they can all be determined). For example, not just a load, but a load .

format
immed

IR

Addr25:21

20:16

IF ID
EX

WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

=

30 2
"0"

+
15:0

C5:0xabcd

C4:0x2002
C3:0x2000

C3C3:-3

C5

C4:1

C4:4

C4:1

C3:0

C5:7

# Solution:

# Cycle: 0 1 2 3 4 5 6 7 8

0x1000: or r4, r10, r7 IF ID EX ME WB

0x1004: lhu r1, 2(r4) IF ID EX ME WB

0x1008: bne r4, r5 TARG IF ID EX ME WB

0x100c: sb r11, 1(r4) IF ID EX ME WB

0x1000: or r4, r10, r7 IF ID EX ME WB

# Cycle: 0 1 2 3 4 5 6 7 8

Detailed discussion on next page.
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Register numbers can be determined from boxes such as C4:4 and by the use of bypass paths (which tell you that the two registers

are the same) such as C3:0x2000 (this indicates that rs register number of the second instruction is the same as the destination
of the first; the 0x2000 provides additional information).

Each instruction can be determined from a variety of clues. The first instruction is given (or), the others are determined as follows:

lhu: The use of MD in cycle 5 tells us it’s some kind of load. The effective address, C5:0x2002 , is a multiple of two but not a
multiple of 4, so it cannot be a load word. The loaded data, 0xabcd, spans 16 bits so it can’t be a load byte. It can’t be an lh

because the bit at position 15 is 1 and would have been sign extended (the data would be 0xffffabcd) if it were. Therefore it
must be a lhu (load half unsigned).

bne: The C3:-3 tells us it is a branch and that the branch is taken. (Because the problem description states that labeled wires

are being used.) The C3:0 tells us it is either bne or beq (it can’t be bgtz, etc. because those branches do not test equality or

use the rt register value). The C3:0 also tells us that the two operands are not equal, since the branch is taken it must be a bne
(branch not equal).

sb: This instruction uses both an immediate ( C4:1 ) and the rt register value ( C5 ) beyond the ID stage, so it must be a store.
(Branches use the rt register value and an immediate in ID, not beyond it.) The store address is 1(r4), while the lhu is 2(r4),
since r4 does not change the store address is not a multiple of 2 and so it can only be a sb (store byte).

or: The C3:-3 tells us that the branch is branching up three instructions (the delay slot instruction, sb, is zero), so we know the
branch target is the first instruction, an or. So the last instruction is the same as the first.
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Problem 2: Consider a new ISA, F-MIPS, similar to MIPS-I except that it has 64 rather than 32 general
purpose registers. F-MIPS has R, I, and J instruction formats like MIPS-I but with modifications to handle
the larger number of registers. A goal of F-MIPS is to have all of MIPS-I instructions.

Possible instruction formats are shown below. Some details of Format R are omitted and are the subject of
the first question.

Format-R:

Opcode

31 26

rs

25 20

rt

19 14

rd

13 8

sa

7 ?

func

? 0

Format-I:

Opcode

31 26

rs

25 20

rt

19 14

immed

13 0

Format-J:

Opcode

31 26

ii

25 0

© [6 pts] Describe a problem with Format-R F-MIPS instructions using the Format R shown above.

Field sa or func (or both) would have to be shrunk. If sa were shrunk there would be no way to specify all shifts. If func were shrunk
it might not be possible to code all instructions.

© [7 pts] Fix the problem in Format R (show the changes in the illustration above). Explain the impact (this
is important) on the coding of F-MIPS instructions.

Keep the func field six bits and change the sa field to a reserved-for-future-use field. The immediate shift instructions can be encoded
in Format I or the rs field can be used for the shift amount.

© [6 pts] Explain an impact on typical F-MIPS Format-I instructions (compared to their MIPS-I counterparts)
that would not apply to Format-R instructions.

The immediate is smaller so branches can’t branch as far and code that would require one immediate instruction in MIPS-I might
require two instructions in F-MIPS.

© [6 pts] Why is something going to have to be done about lui? Describe a new version of lui, possibly using
a new format, that would fix the problem. Hint: That’s load upper immediate.

There should be some way to load a 32-bit immediate in two instructions, with the immediate now at 14-bits that can’t be done with
two Format I instructions. Code frequently needs to load a 32-bit immediate and so a solution that requires three or more instructions
would have a significant impact on performance and code size. A two-instruction solution would be to have a new format, say Format
Ib in which the immediate field extends into rt and rs is used for the destination.
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Problem 3: Answer each question below.

(a) A company has to choose between developing two new implementations of their ISA. Implementation
A would have a peak (result) score of 2200 and a base (baseline) score of 2000 on the SPEC CINT2000
benchmarks. Implementation B would have a peak (result) score of 2150 and a base score of 2100 on the
benchmarks.

© [0 pts] Which implementation should the company choose? Hint: Either answer is correct.

Implementation A. Implementation B. (Both answers are discussed below.)

© [9 pts] Why? Your reason should say something about the difference between the peak and base scores and
about the company’s customers.

The base numbers are obtained by compiling the benchmarks with ordinary optimizations, the peak numbers are obtained by compiling
the benchmarks with great skill and effort to get the best results.

Implementation A: This implementation gives the better peak performance, which is appropriate for our customers since they compile
the code for each implementation and their conscientious programmers are experts at optimization.

Implementation B: This implementation gives the better base performance. Our customers do want high
performance but not enough to choose programmers skilled in performance tuning over those who can get
code out the door quickly.

(b) Should a BCD data type be added to a modern general-purpose ISA?

© [8 pts] Explain why or why not, using the criteria discussed in class for adding data types to an ISA.
(Discuss specific features of BCD, don’t give an answer that could apply to any data type.)

BCD represents numbers as a string of decimal digits, encoding each digit using four bits. Any fixed point decimal number (within
range) can be represented exactly in BCD, such as 0.3. Such numbers cannot be represented exactly in fixed- or floating-point binary.
For example, 0.3 is 0.010011001100110011002.

Due in part to the inexact representation, certain computations on certain arithmetic hardware would produce results that are off by
a small amount. The problem might occur with financial calculations and of course is considered unacceptable. An early solution to
that problem was to include a BCD data type and have BCD arithmetic instructions.

In the IEEE 754 floating point standard rounding is precisely specified and the default rounding mode was chosen so rounding results
in the expected answer. Most modern systems implement this standard and so financial computations can use floating-point arithmetic
without fear of rounding errors.

Note: Both answers below were marked correct.

No, because few modern computer languages use BCD and so there is no need to support it in hardware. Compilers for languages
that still use BCD can use software to perform BCD computations, so it will still be possible to run old code.

Yes, because there is still alot of COBOL code (smoking as killed off or incapacitated most, but not all, COBOL programmers) and
there are other languages that still use BCD and their code must be supported.
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(c) Re-write the SPARC code fragment below in MIPS-I. Use as few instructions as possible. [9 pts]

The subcc instructions performs a subtraction and sets the condition-code (CC) register bits based on the result. It also writes an
ordinary destination register, in this case r0. The branch (and a few other) instructions read the CC register to determine if the
branch (or other action) should be taken. The be instruction means branch if the result of the last cc instruction is equal to zero
(assuming a subcc that can be interpreted as meaning branch if the operands are equal). Since the subcc writes the zero register
there is no need for the MIPS code to include a subtract instruction, it can just compare the two registers.

! Notes: r0 is the zero register; destination is rightmost register;

! be means branch if equal. Use the same register names.

! Note: Comments in SPARC code are part of solution.

subcc %r1, %r2, %r0 ! r0 = r1 - r2, set CC register.

add %r3, %r4, %r5

be TARG ! Branch if result (from last cc insn) is zero.

xor %r6, 10, %r6 ! Delay slot instruction.

# Solution shown below.

add r5, r3, r4

beq r1, r2, TARG

xori r6, r6, 10

(d) The code below includes a hypothetical MIPS predicated instruction. Re-write the code using real MIPS
instructions. [9 pts]

The add is the predicated instruction. It is executed if r1 is nonzero. In the equivalent code a branch instruction checks if r1 is
nonzero, if not the add instruction is skipped.

sub r3, r6, r7

(r1) add r2, r3, r4

xor r5, r8, r7

# Solution below.

beq r1, r0 SKIP

sub r3, r6, r7

add r2, r3, r4

SKIP:

xor r5, r8, r7
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Problem 1: The MIPS code below executes on the illustrated implementation. (19 pts)

• The implementation makes backup copies (not illustrated) of the ID map for each predicted
branch instruction.

• The implementation is scalar, but there can be any number of writebacks per cycle.
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L1 and L2.

The pipeline execution diagram on the next page shows the complete execution of the first instruction, a
branch, and partial execution of the others. (Because of instructions before it, the branch enters RR after a
wait of four cycles and commits after waiting another two.) The branch is mispredicted and some instructions
will have to be squashed.

(a) Complete the pipeline execution diagram.

©Show where instructions are squashed.

©Show correct path instructions.

©Show each instruction until it is squashed or commits.

(b) Complete the tables:

©Physical register file. Assume the result of the load is 101, xor is 102, and add is 103. You can make up
your own physical register numbers!

©Show where registers are removed from and put back in the free list.

©Complete the ID map. Don’t forget to include the effect of branch misprediction recovery.

©Complete the commit map.
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Problem 1, continued: Continued from previous page.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

bneq r1, r2 SKIP IF ID Q RR B WB C

lw r3, 0(r4) IF ID Q RR EA ME WB C

xor r3, r8, r6 IF ID Q RR EX WB x

SKIP:

add r3, r3, r7 IF ID Q RR EX WB x IF ID Q RR EX WB C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

# ID Map

Reg Initial PR

r1 19

r2 20

r3 27 10 4 15 10 4

r4 2

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

# Commit Map

Reg Initial PR

r1 19

r2 20

r3 27 10 4

r4 2

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Physical Register file

PR Initial State

2 [r4

4 ] [r3 102 x] [ 103

10 ] [r3 101 ]

15 ] [r3 103 x]

19 [r1

20 [r2

27 [r3 ]

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Branch Misprediction Recovery: The branch resolves (taken or not taken is determined) in cycle 8 but the misprediction recovery does
not start until WB. To recover from the misprediction the wrong-path instructions xor and add are squashed and the ID register
map is returned to the state it was when the branch was decoded (register r4 mapped to 10). In the next cycle fetch proceeds on the
correct path, fetching the add for a second time. The first time around, on the wrong path, the rs source for the add was mapped
to physical register 4; the second time around it maps to physical register 10. Note that the add is fetched twice even though it is
on both the taken and not-taken paths. It would be possible but probably not worth the trouble to build a processor that would not
have to fetch the add a second time in this situation.

Before recovery starts in cycle 10 the xor and add execute normally, unaware of the squash which they are fated to suffer.

Note: WB occurs as soon as the result is computed (after EX, ME, etc), it never stalls. In hand-solved problems there can be any
number of WB per cycle (to reduce tedium).

A common mistake was to show add being fetched once, it is fetched twice as explained above.

3

← → Spring 2004 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2004/fe_sol.pdf


Problem 2: Answer each question about the illustrated MIPS implementation. (18 pts)

(a) Complete a pipeline execution diagram for the code below running on the illustrated implementation.
Assume that any needed bypass connection is available and please check for dependencies.

# Solution

# Cycle 0 1 2 3 4 5 6 7 8 9 10

add.d f6, f2, f4 IF ID A1 A2 A3 A4 WF

add.d f4, f6, f2 IF ID -------> A1 A2 A3 A4 WF

Note that the stall is in ID, an IF stall for the second add.d is impossible because there is no way to detect the dependency while
the second add.d is still being fetched.

(b) In the diagram below add the bypass connection(s) needed for the code above. Do not add bypass
connections that are not needed. (Don’t worry if it’s a tight squeeze in the diagram, but be legible.)

Solution shown in red bold. The output of the added multiplexor connects to both A1 and M1, though the problem would be
correctly solved if it just connected to A1. By connecting it to both it can be used to bypass results to instructions that use the
multiply unit. Similarly, the input of the added multiplexor comes from the output of the WF mux, though it could have come from
the adder output in WF.

(c) Add control logic that generates the stall signal encountered in the code above.

Solution shown in blue bold. To generate a stall the hardware needs to detect a match between registers to be written back, in the
fd pipeline latches, and the fs register number. If there is a match between fs and the fd in A4, the value can be bypassed and
there is no need to stall. If there is no such match but there is a match between fs and an instruction in A1, A2, or A3 then a stall
signal is generated. A match between fs and fd is detected by comparing register numbers using a = and checking whether the
respective instruction writes anything at all, by looking at the WE (write enable) bit.

(d) Add control logic for the bypass multiplexor added in a previous part.

Solution shown in green bold. The logic used to generate the stall signal already checks if there is a match between fs and the
fd of the instruction in the stage before writeback. That signal is used as the multiplexor control signal. Note that when the mux
control signal is zero it will bypass otherwise it will use fsv.
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*** Larger implementation diagram on next page.
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Problem 3: The following questions refer to the assembly language code below. Branch outcomes are
shown. (19 pts)

LOOP:

0x1000:

B1: beq r1,r2 SKIP1 T T T N N T T T N N T T T N N

nop !

add r5, r6, r7 A

SKIP1: !

# **Ten** arithmetic instructions only until next branch, no other instructions.

# !

B2: beq r3,r4 SKIP2 T N T N T N T N T N T N T N T N

nop

add r8, r9, r10

SKIP2:

add r11, r12, r13

j LOOP

nop

(a) Suppose the code above runs on a system using a bimodal branch predictor with a 256-entry branch
history table. What would be the best prediction accuracy of branch B1 and B2 after warmup. Hint: “Best”
applies to B2 but not B1.

©Accuracy of B1. Just 40%.

©Accuracy of B2. At best, 50%.

©Why is there a “best” accuracy?

For B2, if its entry in the BHT starts out at 1 it will mispredict B2 consistently, for an accuracy of 0%.

(b) Suppose the code above runs on a system using a local predictor with a 256-entry BHT. What is the
smallest local history size that would allow the two branches above to be predicted with 100% accuracy?

©Smallest size. Explain

The smallest local history size is three bits. If it were two bits then for B2 it could not distinguish the third consecutive taken from
the first not taken because both would have a local history of TT. With three bits the local history would be NTT for the third taken
and TTT for the first not-taken. Branch B1 would only need one bit (but in a real system that would interfere with other branches),
the local history would be the larger of the two, 3. Note that there would be no interference.
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Problem 3, continued:

(c) Suppose the code runs on a system using a gshare branch predictor with a 10-bit GHR. Show the contents
of the GHR at time A (see the right-hand side of the diagram).

©Gshare GHR contents:

The global history register would hold: NTNNTTTNTT, with the most recent outcome the rightmost character.

(d) Suppose the code runs on a PPC970 (or a POWER4) processor. Show the contents of what it uses for
a GHR at time A. State any assumptions. Note: This part based on a homework assigned Spring 2004, and
would not be asked other semesters.

©PPC970 GHR contents:

The PPC970 predictor GHR inserts one bit per fetch group, which has as many as eight instructions and must be contiguous. A fetch
group that does not contain a branch is treated like one having a not-taken branch.

To solve the problem one must figure out where the fetch groups are. Start at B2. That fetch group would end at B2+1 (the nop)
and start with one of the arithmetic instructions, B2-6. The table below shows the last ten fetch groups (before A). The GHR would
be TnTtTntTnT, as in the homework, an uppercase T or N is for a branch instruction, lower-case t is for the jump and lower-case
n is for a group of instructions without a control transfer.

Fetch Groups:

Instructions Branch/Jump/none Outcome

B1 to B1+1 B1 Taken: T

SKIP1 to B2-6 No cti. n

B2-6 to B2+1 B2 Taken: T

SKIP2 TO SKIP+2 Jump. t

B1 to B1+1 B1 Taken: T

SKIP1 TO SKIP2-6 NO cti. n

SKIP2-5 to SKIP2+2 B2 not taken, jump: t

B1 to B1+1 B1 Taken: T

SKIP1 to B2-6 No cti. n

B2-6 to B2+1 B2 Taken: T
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Problem 4: (19 pts) The diagram below is for a four-way set-associative cache on a system with 8-bit
characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

©Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid
Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

64 b

32 b

9 9

Yes, it’s nine bits,
but which nine bits?

31:23

22:11

22:3

31:23

22:11

22:3

©Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 23

Index

22 11

Offset

10 3 2 0

©Cache Capacity (Indicate Unit!!):

Capacity is 4 × 223 characters (32 MiB).

©Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity plus 4 × 223−11(32 − 23 + 1) bits.

©Line Size (Indicate Unit!!):

Line size is 211 characters.

Note: Too many gave “bits” for the unit (but meant characters).

©Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

31 25

Index

24 11

Offset

10 3 2 0
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Problem 4, continued:

(b) The code below runs on the cache from the previous part. When the code below starts running the cache
is empty. Consider only accesses to the array and assume the cache is cold (empty) when the code starts.

short int *a = 0x1000000; // sizeof(short int) = 2 characters

int sum, i, j;

int ILIMIT = 1024;

for(j=0; j<2; j++)

for(i=0; i<ILIMIT; i++)

sum += a[ i ];

©What is the hit ratio for the program above?

The array element size is two characters (sizeof(short int). The line size is 211 = 2048 characters and so 1024 consecutive i
iterations will access the same line. The first access will miss, the rest will hit. So for the first j iteration the hit ratio is 1023/1024.
The total amount of memory accessed is 1024 characters, which is much smaller than the 32 MiB capacity so on the second j iteration
every access will hit.

The overall hit ratio is 1
2

(
1023
1024 + 1

)
= 2047

2048 .

(c) Choose values for the address of b, ILIMIT, and ISTRIDE so that the cache is completely filled with the
minimum number of accesses. Note: The original exam read “minimum number of misses,” is easier to do.
The address of b must be greater than a and as small as possible.

short int *a = 0x1000000; // sizeof(short int) = 2 characters

int sum, i;

short int *b =

int ILIMIT =

int ISTRIDE =

for(i=0; i < ILIMIT; i++)

sum += a[ i * ISTRIDE ] + b[ i * ISTRIDE ];

The cache is four-way set associative with a tag field that starts at bit 22, which would be the fifth hexadecimal digit in the array
a’s starting address. To fill the array with the fewest accesses each array access must be to a different line, that is, no line can be
accessed twice. This can be achieved by setting ISTRIDE to half the line size. That is, ISTRIDE = 1 << 10; (that is, 210).
Half because the array element size is two and so, for example, a[0] and a[1] will be on different lines and the indices of those
lines will differ by 1. We would like a and b to access different lines and obviously a would load one half of the cache and b would

load the other half. Therefore b should be set to a’s address plus half the cache capacity and so b = a + ( 1 << 24 );

which is b = 0x200000; (that is, b = a + 4×223

2 = a + 2 × 223 = a + 224). There are many ways to determine what
ILIMIT should be. Using the approach taken so far, ILIMIT should be set so that a[0] to a[ILIMIT*ISTRIDE] is half the

cache capacity. Solve 2*ILIMIT*ISTRIDE==1<<24 or in math notation 2ilimitistride = 224, rearranging: iilimit = 224

2istride
,

substituting: iilimit = 224

2210 = 213. So ILIMIT = 1 << 13; .
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Problem 5: Answer each question below.

(a) One way to improve the performance of an implementation is to redesign the processor so that it uses
more stages. Increasing the number of stages beyond five will yield a big improvement in performance, but
at some point adding stages will have little effect.(5 pts)

©Give a reason for this limit having to do with the pipeline latches.

Signals must remain stable a certain amount of time at the input to a pipeline latch. In a five stage implementation the total time to
execute an instruction includes five of these delays. With more stages there will be more delay, and eventually this will be a majority
of the time needed to execute an instruction. One place this delay is seen is in misprediction recovery.

©Give a reason for this limit having to do with program characteristics.

If a functional unit is split across multiple stages then an instruction closely following and dependent on one using the unit must stall
on a statically scheduled implementation. Adding stages will only add stalls in such cases. This limiter of performance gain is more
severe for programs with more close dependencies. (If there are few close dependencies then there would be fewer stalls.) The limit
also applies to dynamically scheduled systems in which the rate at which instructions commit would not increase linearly with higher
clock frequency when there are enough dependencies.

(b) An instruction does not raise precise exceptions (because the ISA says it does not have to). (5 pts)

©Name something its handler cannot do (but could do if the exception were precise).

It cannot resume execution at the instruction immediately following the faulting instruction, nor can it re-execute the instruction
itself. This is because if exceptions are not precise the handler might be called when the program executes several instructions past
the faulting instruction.

(c) The code below uses an indirect load. Re-write it using MIPS instructions. (5 pts)

lw r1, @(r2) # Load using indirect addressing.

# Solution.

lw r1, 0(r2)

lw r1, 0(r1)

10

← → Spring 2004 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2004/fe_sol.pdf


(d) Every integer instruction that reads a GPR uses the rs and rt fields (or just one of them). What would
be the disadvantage of a modified ISA in which some instructions use other fields to specify GPR source
registers? (5 pts)

Multiplexors would be needed at the register file read ports to select the correct field for the instruction being decoded.

(e) Consider two options for the design of a load/store unit (LSU) for a dynamically scheduled system. The
aggressive option would execute the code below quickly, while the conservative option would execute it more
slowly. Hint: the conservative option is how the LSU was described in class. Note: The original problem
used r1 for the address, which was not intended, but the answer with r1 is similar.

(5 pts)

div.d f2, f4, f6

sw r1, 0(r9)

sh r2, 0(r9)

sb r3, 0(r9)

lw r4, 0(r9)

©What is it about that code that requires special treatment?

The value to load is spread across three stores, bits 31:24 from the store byte, bits 23:16 from the sh, and bits 15:0 from the sw
(assuming big-endian byte ordering).

©Describe how the aggressive option would execute the code.

An aggressive LSU would combine the data from the three stores when bypassing to the load.

©Give a brief argument for the conservative option, feel free to include made-up data (for the purposes of this

test only!).

Studies show that only 1% of loads [warning, made up data] get their data from multiple stores (as in the example above). The cost
of implementing an LSU that can handle such rare cases is high and so it is not worth implementing. The conservative solution would
be cheaper and would be almost as fast.
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Problem 1: The routine below is called with an unsigned integer in register $a0 and the address
of some allocated memory in register $a1. When it returns the memory at should $a1 contain the
hexadecimal representation of $a0 as a null-terminated (C format) string. Complete the routine,
follow the guidelines in the comments. (For partial credit write a routine that converts a string
holding a hexadecimal number to an integer.) [25 pts]

A solution including test code can be found at http://www.ece.lsu.edu/ee4720/2003f/mtconv.html

################################################################################

# utoh: Convert unsigned integer to hexadecimal string.

#

# $a0: Call Value: Unsigned integer to convert.

# $a1: Call Value: Address of allocated memory.

# Write converted string to this address, assume there is enough.

# Sample strings: "1F3", "1", "0" written at $a1.

# [ ] String should not have leading zeros. (Good: "123", Bad "00123".)

# [ ] Fill as many delay slots as possible.

# [ ] Registers $a0-$a3 and $t0-$t7 can be modified.

# The ASCII value of ’0’ is 48, the ASCII value of ’A’ is 65

## Step 1: Count number of leading zeros in hexadecimal representation

# of $a0 (actually $a0 1 ) and use count to set $t3 to the

# address of what will be the last character in the string.

#

utoh: lui $t1, 0xf000 # Mask used for extracting digits (starting at MSD).

addi $t3, $a1, 7 # Init $t3 to address of last char of 8-digit number.

ori $t5, $a0, 1 # OR in a 1 so that when a0 = 0 output is not "".

ILOOP: and $t0, $t5, $t1 # Extract a digit.

slti $t4, $t0, 1 # Set $t4 to 1 if digit is zero.

sub $t3, $t3, $t4 # Adjust end-of-string pointer.

bne $t4, $0, ILOOP # Loop if digit is zero.

srl $t1, $t1, 4 # Shift the mask to the next digit.

## Step 2: Convert the number to a string.

#

sb $0, 1($t3) # Null-terminate the yet-to-be-written string.

LOOP: andi $t0, $a0, 0xf # Extract LSD (least significant digit).

slti $t1, $t0, 10 # Check if it will be 0-9 or A-F

bne $t1, $0, SKIP

srl $a0, $a0, 4 # Shift in next digit (for next iteration).

addi $t0, $t0, 7 # Add 7 to digit if it is a letter.

SKIP: addi $t0, $t0, 48 # Add 48 to digit. (Seven also added if it’s a letter.)

sb $t0, 0($t3) # Store the ASCII value in string.

bne $t3, $a1, LOOP # Loop if we have not written the first character.

addi $t3, $t3, -1

EXIT: jr $ra

nop
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Problem 2: Code similar to the histogram program presented in class appears below. MIPS
instruction formats are shown below for reference. [15 pts]

(a) Design three new MIPS instructions to reduce the size of the program fragment below

• Each new instruction should replace at least two related instructions in the program below.
(Do not combine two unrelated instructions, such as j and sw.)

© Show the coding for the new instruction, making up the opcode and other field values as necessary.
The coding should use one of MIPS’ existing formats and should fit as naturally as possible.

• Do not worry whether the instruction is appropriate for a RISC ISA.

The solution is on the next page.

addi $t7, $0, 26

LOOP:

lbu $t1, 0($t0)

addi $t0, $t0, 1

beq $t1, $0, DONE

addi $t1, $t1, -65

sltu $t2, $t1, $t7

beq $t2, $0, LOOP

sll $t1, $t1, 2

add $t3, $a1, $t1

lw $t4, 0($t3)

addi $t4, $t4, 1

j LOOP

sw $t4, 0($t3)

Format R:

opcode

31 26

rs

25 21

rt

20 16

rd

15 11

sa

10 6

func

5 0

Format I:

opcode

31 26

rs

25 21

rt

20 16

immed

15 0

Format J:

opcode

31 26

ii

25 0

(b) Show an instruction that can be created by combining several instructions from the program
but that would be impossible to code. Explain why it would be impossible to code.

The solution is on the next page.
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Solution to part (a).

Combine lbu and addi to form an autoincrement add, lbu.ai. The coding for lbu provides all the information
needed by lbu.ai so the only difference is in the opcode field. (The amount to autoincrement by is the size of the item
loaded, in this case one character, it would be two characters for a lhu.ai, etc.)

MIPS does not include an autoincrement load because a non-superscalar implementation would either have to write back
to two registers simultaneously (an added cost) or else would be subject to stalls. (An n-way superscalar implementation
might have to write back to 2n register per cycle.) At least one RISC ISA, PA-RISC, has an autoincrement add despite
the difficulties.

Combine:

lbu $t1, 0($t0)

addi $t0, $t0, 1

Into:

lbu $t1, 0($t0)+

Format I:

opcode

lbu.ai

31 26

rs

8 (t0)

25 21

rt

9 (t1)

20 16

immed

0

15 0

The sltu and beq can be combined to create a bltu instruction. As with the lbu.ai instruction, no new fields are
needed, the coding would be the same as the beq instruction except for the opcode.

(MIPS does not include such an instruction because the time needed to compare to values would be a bit too long. Some
other RISC ISAs do include branch instructions that can compare if one register is less than another, for example, SPARC
V9.)

Combine:

sltu $t2, $t1, $t7

beq $t2, $0, LOOP

Into:

bltu $t1, $t2, LOOP

Format I:

opcode

bltu

31 26

rs

9 (t1)

25 21

rt

15 (t7)

20 16

immed

-6 (LOOP)

15 0

The sll and add could be combined to make a scaled add, in which the second source operand is shifted by two. But
why stop there, the lw could also be included to create a scaled indexed load, lw.si. The scaled indexed load has three
register arguments and so format R must be used. This means that it cannot use a 16-bit displacement. If the scaled
indexed load is used only to load word-sized array elements then there would be no need to include the shift amount in
the instruction (for the same reason there is no need to include the increment amount in an autoincrement instruction).
The sa field might be used for small displacements or it might be used for other shift amounts (for example, loading a
word from an array of 64-character structures). Since neither is needed here, the field will be unused and set to zero.

If lw.si is used then a value for t3 is not written and so something must be done for the sw. The natural thing to do
would be to add a sw.si instruction.

4
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(MIPS does not include an instruction like lw.si because of implementation complexity. At least one other RISC ISA
does, PA-RISC.)

Combine:

sll $t1, $t1, 2

add $t3, $a1, $t1

lw $t4, 0($t3)

Into:

lw.si $t4, ($t3,$t1)

Format R:

opcode

0

31 26

rs

11 (t3)

25 21

rt

9 (t1)

20 16

rd

12 (t4)

15 11

sa

0

10 6

func

lw.si

5 0

Solution to part (b):

An instruction is impossible to code if there is not enough room in the format for all the registers and constant needed.
One handy instruction that can’t be coded is bgei, a branch that compares a register’s contents to an immediate. Since
the immediate field is also needed for the displacement that would be impossible.

It is possible to add a new format to MIPS in which this instruction can be coded, but the problem stated existing formats
must be used. Though it is possible to add a new format, doing so would increase the complexity of implementations
because additional paths must be added to move the immediate values to where they are needed.

Combine:

addi $t7, $0, 26

sltu $t2, $t1, $t7

beq $t2, $0, LOOP

Into:

bgei $t1, 26, LOOP

5
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Problem 3: Answer each question below.

(a) In MIPS (and similar ISAs) there is a lb, lbu (load byte unsigned), and a sb but there is no
sbu (store byte unsigned). Why not? [6 pts]

Because an unsigned variant is only needed when writing a value to a location that’s larger than the value. For lb an
8-bit value is written to a 32-bit register, and so the instruction must specify what to do with the other 24 bits (sign
extend for lb, set to zero for lbu). For sb an 8-bit value is written to an 8-bit memory location and so there are no
extra bits to set.

(b) Explain why the MIPS instruction below won’t work: [6 pts]

add.d $f1, $f2, $f3

The instruction uses double-precision floating-point operands, these can only be retrieved from even-numbered registers.

(c) Show the result of each add instruction below. The instructions execute on a machine with
32-bit registers that is capable of BCD, and packed integer, and ordinary integer arithmetic. The
packed integer operations all use saturating unsigned arithmetic. [6 pts]

# r1 = 0x8080888

# r2 = 0x1020999

Solution Shown Below

# Ordinary Integer Add

add r3, r1, r2 r3 = 0x90a1221 = 151654945 (decimal)

# BCD Add

add.bcd r3, r1, r2 r3 = 0x9101887 = 9101887 (decimal)

# Packed Integer (4 bits per int.)

add.p4 r3, r1, r2 r3 = 0x90a0fff = { 9, 0, 10, 0, 15, 15, 15 } (decimal)

# Packed Integer (8 bits per int.)

add.p8 r3, r1, r2 r3 = 0x90a11ff = { 9, 10, 17, 255 } (decimal)

6
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Problem 4: Answer each question below.

(a) A company compiles and runs the SPECint2000 benchmarks on its new system, complying with
all rules except one: it refuses to divulge the steps it used to compile the programs. Nevermind
that it’s against the rules, is it in the company’s interest to keep this information secret? Explain.
[6 pts]

No, because customers would want to know how to compile their programs to run quickly, and it would only help the
company it they succeed.

(b) A program is compiled two ways, one for ISA A, implementation x, the other also for ISA A,
but for implementation y. Explain what would be common to the two executables and what would
be different. Provide an example. [6 pts]

The kinds of instructions would be the same since it’s the same ISA. The choice of instructions in a particular place and
their order would be different.

Grading Note: An executable is the compiled and linked program. Many answered the question as though an executable
were a system running a program.

(c) Explain the dead-code elimination (DCE) optimization using an example. [6 pts]

A compiler performing the DCE optimization ignores code that writes register values that are never used.

Before:

a = 3;

a = b + 1;

After:

a = b + 1;

7
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Problem 5: Answer each question below.

(a) CISC ISAs have variable length instructions. What advantages over RISC ISAs does that
enable? Name at least two and briefly explain each advantage. [6 pts]

Smaller code size because when space isn’t needed it’s not there.

Larger immediates, because the instruction can be made as large as necessary to fit the immediates.

Grading Note: Many gave advantages of CISC that were unrelated to variable instruction size, such as arithmetic instruc-
tions being able to load operands from memory. To get maximum credit, please answer the question that was asked.

(b) RISC ISAs have fixed length instructions. What advantages over CISC ISAs does that enable?
Name at least one and briefly explain each advantage. [6 pts]

Branch displacements can go further since they can specify the number of instructions to skip rather than the number of
characters to skip. The instruction fetch mechanism is easier to design.

(c) Why are programs written in a stack ISA small? Be brief but as specific as possible. [6 pts]

Because there is no need to provide space for register operands in many instructions.

8
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(d) Listed below are several behaviors or features. For each, explain whether it is usually an ISA
feature, an implementation feature, or an ABI (application binary interface) feature. Briefly explain
why. If it can fit into more than one category (for example, ISA or implementation) say so and
explain why. [6 pts]

©An add instruction raises an exception on an overflow.

ISA. Because this determines what a program would do and so it should be part of the ISA.

©The unused field in an instruction must be set to zero.

ISA. Specifies what instructions should look like and specifies the behavior of an illegal instruction (an otherwise legal
instruction with an unused field that is not set to zero).

©Procedure call saves return address in a particular register.

ABI or ISA. Many ISAs do not have special call instructions, instead they have jump-and-link instructions that can save a
return address in any register. The ABI defines which of those registers should be used for a return address. Some ISAs
do have special call instructions that save to a particular register.

©Multiply instruction takes four cycles.

Implementation.

9
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Problem 1: (20 pts) The execution of a MIPS code fragment on a dynamically scheduled machine is shown

on the next page. The diagram shows the values on certain wires at certain cycles. For example, 4:65
means that at cycle 4 the labeled wire holds value 65. The physical register file table is completed, ID- and
commit-map tables are blank.

• The FP add unit has 3 stages, the FP multiply unit has 5, and the EA and ME are used for loads
and stores.

• All destination registers are floating point.

• WB and commit can be done in the same cycle (indicate with a WC).

• To keep things simple the result of every instruction is zero and there are no cache misses.

(a) The ID and commit register map tables are blank . . .

© . . . complete them (the ID and commit register map tables.)

©Show the correct architected register numbers, or for partial credit make them up. (Two are easy, the rest

are interesting.)

©Show the initial values (just before cycle 0) in the ID and commit map tables.

Solution appears on next page.

(b) Complete the pipeline execution diagram.

©Be sure to show Q, RR, WB, C (or WC), and a possible functional unit.

(c) Write a program consistent with these tables and labels.

©Choose consistent instructions.

©Choose consistent registers. If a register number cannot be determined, use a question mark.

• Hint 1: In the physical register file table, put a “1” next to the first (earliest) register removed
from the free list, put a “2” next to the second register removed from the free list, and so on.
Similarly, put a “1” next to the first register put back in the free list, etc. To figure out which
physical register belongs to which instruction destination (easy) use the fact that certain events
occur in program order.

• Hint 2: To figure out which architected register an instruction is writing (interesting) remember
what causes a register to be put back in the free list.

The solution appears on the next page. The key to completely solving the problem is understanding the physical register file. Physical
registers are assigned in ID and that occurs in program order, and so the first physical register to be assigned (7) goes to the first
instruction, the second physical register to be assigned (49) goes to the second instruction, etc. Physical registers are returned to the
free list when instructions commit, so the first instruction commits at cycle 9, the second instruction commits at cycle 12, etc. When
an instruction commits it does not free its own physical register, instead it frees the incumbent, the physical register used
by the last instruction to write the same architected register. For example, when ldc1 commits it frees physical register 7 which was
assigned to mul.s because mul.s is the most recent instruction that writes f12, the same architected register that ldc1 writes.

Every instruction goes to Q in the cycle after ID. The time an instruction uses RR is determined from the diagram (see the big bubble
pointing to dstPR), the time it uses WB is determined by the physical register file (when it writes a value, 0. in each case here). The
type of instruction is determined by the amount of time between RR and WB. For example, for the first instruction there are five
cycles between RR and WB so it can only be using the multiply functional unit, and so it is most likely a multiply. (It’s possible some
other instruction uses the FP multiply unit, but in class it was always a multiply.)
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Problem 1, continued: See previous page for instructions.

25:21

20:16

rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

P
C

ID
:dst

ID
:S

t: C
,X

0,0

WB:ROB #

WB:C,X
Addr

D In

R
eo

rd
er

 B
uf

fe
r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

F
re

e 
Li

st

ID
:dstP

R
ID

:dstP
R

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

dstPR

OutIn

Scheduler

Q
EX

dstPR

dstVal.

WB

RR

WB

Decode
dest. reg

ID
:incm

b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

R
ec

ov
er

EA

A1

M1

ME

1:12, 2:6

A3

M5

3:7, 5:88, 7:78, 8:49, 11:57

Op, ROB#

2:14, 4:18

# Solution

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

mul.s f12, f14, f16 IF ID Q RR M1 M2 M3 M4 M5 WC

add.s f6, f12, f14 IF ID Q RR A1 A2 A3 WC

ldc1.s f12, 0(r1) IF ID Q RR EA ME WB C

add.s f12, f12, f18 IF ID Q RR A1 A2 A3 WB C

add.s f6, f12, f6 IF ID Q RR A1 A2 A3 WC

# ID Map Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f6 95 49 57

f12 33 7 88 78

# Commit Map Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f6 95 49 57

f12 33 7 88 78

# Phys. Reg. File Cy 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

7 [ 0. ]

33 ]

49 [ 0. ]

57 [ 0.

78 [ 0.

88 [ 0. ]

95 ]

# Phys. Reg. File Cy 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Problem 2: (20 pts) In all of the problems below please check the code samples carefully for dependencies.
All implementations below are fully bypassed. Please check the code samples carefully for dependencies.

Grading Note: A latency of 3 means a four-stage adder. Most people did not get this right, but points were not deducted for using
a four-stage adder. (The initiation interval still has to be correct.) I think this will be the last test where the term latency in this
sense is used.

(a) The code below executes on a 1-way statically scheduled machine in which the add FP functional unit
has a latency of 3 and an initiation interval of 2.

©Show a pipeline execution diagram for the code.

# Solution

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

add.s f2, f4, f6 IF ID A1 A1 A2 A2 WF

add.s f8, f2, f12 IF ID -------> A1 A1 A2 A2 WF

add.s f14, f10, f16 IF -------> ID -> A1 A1 A2 A2 WF

Solution above. Note that the stage names are A1 and A2.

(b) The code below executes on a 1-way statically scheduled machine in which the add FP functional unit
has a latency of 3 and an initiation interval of 1.

©Show a pipeline execution diagram for the code.

# Solution

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

add.s f2, f4, f6 IF ID A1 A2 A3 A4 WF

add.s f8, f2, f12 IF ID -------> A1 A2 A3 A4 WF

add.s f14, f10, f16 IF -------> ID A1 A2 A3 A4 WF

4

← → Fall 2003 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2003f/fe_sol.pdf


Problem 2, continued:

(c) The code below executes on a 2-way statically scheduled machine in which the add FP functional unit
has a latency of 3 and an initiation interval of 1.

©Show a pipeline execution diagram for the code.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

# Solution

LINE: # LINE = 0x1000

add.s f2, f4, f6 IF ID A1 A2 A3 A4 WF

add.s f8, f2, f12 IF ID ----------> A1 A2 A3 A4 WF

add.s f14, f10, f16 IF ----------> ID A1 A2 A3 A4 WF

and r1, r2, r3 IF ----------> ID EX ME WB

Note that the third instruction does not enter ID even though there is space. This ensures that instructions in ID are in program
order. Though its possible to design control hardware to handle out-of-order instruction in ID its probably not worth the trouble.

Grading Note: Many solutions used a second FP adder. It’s not wrong, but its not necessary.

(d) In a correct solution to the problem above there should be at least one instruction for which a precise
exception is impossible. If that describes your solution, show a pipeline execution diagram below in which
all instructions could raise precise exceptions (even though they don’t). It’s also possible that in a correct
solution to the problem above all instructions can raise precise exceptions. If so, show a pipeline execution
diagram below in which some instructions cannot raise a precise exceptions. In the absence of exceptions all
pipeline execution diagrams must show correct execution.

©Show the appropriate pipeline execution diagram, or show how the one above would be different.

© Identify those instructions for which precise exceptions are impossible (above or below) and explain why.

# Solution

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

LINE: # LINE = 0x1000

add.s f2, f4, f6 IF ID A1 A2 A3 A4 WF

add.s f8, f2, f12 IF ID ----------> A1 A2 A3 A4 WF

add.s f14, f10, f16 IF ----------> ID A1 A2 A3 A4 WF

and r1, r2, r3 IF ----------> ID ----> EX ME WB

An instruction cannot raise a precise exception if an instruction after it writes back before the exception is detected. In the previous
part suppose the third add.s raised an exception in cycle 10. It could not be precise because of the and instruction’s writeback in
cycle 9. One solution is to stall and so that it does not write back before the third add.s, that is what is shown above.
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Problem 2, continued:

(e) The code below executes on a 2-way superscalar dynamically scheduled machine using method 3 (the
only one covered this semester), the same one used in Problem 1. The FP add unit has a latency of 3 and
an initiation interval of 1.

©Show a pipeline execution diagram. Don’t forget the commit stage.

Assume an unlimited number of reorder buffer entries and physical registers.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

# Solution

LINE: # LINE = 0x1000

add.s f2, f4, f6 IF ID Q RR A1 A2 A3 A4 WC

add.s f8, f2, f12 IF ID Q RR A1 A2 A3 A4 WC

add.s f14, f10, f16 IF ID Q RR A1 A2 A3 A4 WF C

and r1, r2, r3 IF ID Q RR EX WB C

Grading Note: Many solutions had only one instruction committing in cycle 12. A 2-way superscalar processor must be able to commit
two instructions per cycle. Also, many solutions used a second adder. A second FP adder is not needed in any of the problems.

6
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Problem 3: (20 pts) Two MIPS implementations are illustrated below, the right one has a multiplexor at
the input to the EX/MEM.rtv pipeline latch, the left one does not.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

format
immed

IR

Addr
25:21

20:16

IF ID EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

15:0

0
1
2

(a) Provide two code samples, one in which the multiplexor is useful and one in which it is not. Briefly
explain.

# Mux Useful

add r1, r2, r3

sw r1, 0(r4) # Mux used to bypass r1

# Mux Not Useful

add r1, r2, r3

add r4, r5, r1

sw r5, 0(r4) # Not useful, r5 read from register file.

(b) Suppose version 5.11 of a compiler was written for the implementation on the left and is in the hands of
customers. Version 5.99 of the compiler also includes the right implementation and is being released soon.
Which two compilation options would you have to use to take advantage of the changes made for the right
implementation? (The exact names of the compiler options is unimportant, but it should be obvious what
they do.) Briefly explain why each option is necessary and how it would affect the code.

A compiler option is something put on the compiler command line or selected from a dialog box which tells the compiler how or what
to compile.

The compiler for the left implementation would schedule instructions before a store so that the instruction producing the store value
was more than two instructions before the store (the Mux Not Useful case). To take advantage of the new mux we would need to tell
the compiler it is compiling for the right implementation and that it should optimize code. The options might be -O for optimization
and -impl=right to select the right implementation. (Since many customers have the left implementation it would not be a good
idea to compile for the right implementation by default.)

Grading Note: Many solutions correctly described what the compiler should do but did not specify anything like a compiler option.
The question is asking about how compilers are used and so such answers did not receive full credit.
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Problem 3, continued:

(c) Design the control logic for the rtv multiplexor. Unlike Homework 4, the logic must be in the EX stage.
Where appropriate, show which bits are being used, e.g., 12:5.

Changes shown in red below.

Grading Note: Too many solutions used rtv instead of rt in the =’ . If it’s not obvious why this is wrong then please review the
basics of how the pipelined MIPS implementation works.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBMEM

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

15:0

0
1
2

=’ =’

0 mem

1 rtv

2 wb

20:16

lsb

msb

rt

(d) There is a good reason why the control logic for the ALU input multiplexors should be in the ID stage
that does not apply to the rtv multiplexor control logic. What is the reason, and why does it not apply to
the rtv logic?

The ALU probably needs most of a clock cycle to compute. If the ALU input multiplexor logic were in EX then the ALU would not
start useful computation until after the control logic generated the correct mux inputs and the muxen switched their inputs. Thus
the control logic would be part of the critical path. Moving the logic to ID shortens the critical path. On the other hand, the rtv
multiplexor is not part of a critical path, its output goes straight to the pipeline latch.

Grading Note: Some answered that the control logic for the ALU muxen would need information only available in ID, for example,
the opcode. However, the rtv mux also needs information from ID (though not the opcode) so that reason applies to both. The
ALU muxen would need the rs field value (and also rt) and one bit specifying whether the instruction uses the immediate, which
could easily be passed through the pipeline latches.

8
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Problem 4: (20 pts) The diagram below is for a 32-MiB (225 bytes) cache with 512-byte (29-byte) lines on
a system with 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

©Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

128 b

40 b

39:24

23:9

23:4

39:24

23:9

23:4

©Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

39 24

Index

23 9

Offset

8 4 3 0

©Associativity: 2

©Memory Needed to Implement (Indicate Unit!):

It’s the cache capacity plus 2 × 224−9(40 − 24 + 1) bits.

©Show the bit categorization for a fully associative cache with the same capacity and line size. Note: Emphasis
not included in original exam.

Address:

Tag

39 9

Index (not used)

X X

Offset

8 4 3 0

9
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Problem 4, continued:

(b) The code below runs on the cache from the previous part. When the code below starts running the cache
is empty. Consider only accesses to the array and assume the cache is cold (empty) when the code starts.

char *a = 0x1000000; // sizeof(char) = 1 character

int sum, i, j;

int ILIMIT = 1024;

for(j=0; j<2; j++)

for(i=0; i<ILIMIT; i++)

sum += a[ i ];

©What is the hit ratio for the program above?

The element size is one character. The line size is 29 = 512 characters and so 512 consecutive i iterations will access the same
line. The first access will miss, the rest will hit. So for the first j iteration the hit ratio is 511/512. The total amount of memory
accessed is 1024 characters, which is much smaller than the 32 MiB capacity so on the second j iteration every access will hit.

The overall hit ratio is 1
2

(
511
512 + 1

)
= 1023

1024 .

(c) Find the hit ratio for the code below running on the cache from the first part. Consider only accesses to
the arrays and assume the cache starts out cold. State any assumptions made.

char *a = 0x1000000; // sizeof(char) = 1 character

char *b = 0x2000000; // sizeof(char) = 1 character

char *c = 0x3000000; // sizeof(char) = 1 character

int sum, i, j;

int ILIMIT = 1024;

for(j=0; j<2; j++)

for(i=0; i<ILIMIT; i++)

sum += a[ i ] + b[ i ] + c[ i ];

The cache is two-way set associative with a tag field that starts at bit 24, which would be the sixth hexadecimal digit in the arrays’
starting address. Therefore the three arrays will have the same index (for the same value of i). Since at most cached two lines can
have the same index the first access to c will result in the eviction of either a or b, if an LRU replacement policy is used then a will
be the unlucky line. The next access to a will therefore be a miss instead of a hit, with LRU replacement b will be evicted. This
pattern will continue resulting in a hit ratio of 0%.

(d) Modify the addresses of a, b, and c to maximize hit ratio. Explain how the modified addresses improve
hit ratio.

The misses will be avoided if the three arrays use disjoint indices. There are many ways of doing this. One way is to keep the arrays
close together, in that case: a = 0x1000000, b = a + 1024 = a + 0x400 = 0x1000400, and c = b + 0x400 =

0x1000800.

10
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Problem 5: (20 pts) Answer each question below.

(a) The diagram below shows the branch outcome patterns for two branches.

# Loop contains only the branches shown.

BIGLOOP:

Solution: Counter Value: 0 0 0 0 0 1 2 1 0 0 0 1 2 1 0 0 0 1 2

B1: 0x1000 beq $t1, $t2, SKIP1 N N N N T T N N N N T T N N N N T T

Solution: Misprediction N- N- N- N- NX NX TX N- N- N- NX NX TX N- N- N- NX NX

...

B2: 0x1200 beq $v0, $v1, SKIP2 T T T T T T T T T T T T T T T T T

...

0x2010 j BIGLOOP

©How accurately would branch B1 be predicted by a bimodal (one-level) branch predictor with a 214-entry

branch history table (BHT)?

The prediction accuracy is 50% (for a large number of iterations).

Grading Note: There were two common errors.

Error 1: Many predicted a branch after updating the counter using the branch outcome. (It should be obvious why this is wrong, or
if not wrong, cheating.)

Error 2: Many computed the prediction ratio using the wrong number of branches. The repeating pattern contains six branches and
that’s what the prediction should be based on. The prediction outcomes have to repeat too which is why one should not base the
prediction ratio on the first few branches.

©What is the minimum size of the BHT for which the accuracy in the previous part is possible? Explain.

The minimum size is 28 = 256 entries.

If the first and second branch use the same entry in the BHT then they will interfere with each other. The first nine bits of the
addresses of the two branches are identical. If those bits were used to index (as an address for) the BHT then the two branches would
share an entry. The two low bits, being zero, are not used to index the BHT, and so in a table with a 7-bit address (27 entries) the
two branches share an entry. If the table had an 8-bit address then the two branches would use separate entries and so the prediction
accuracy would be preserved.

©Why might it be pointless to perform branch prediction in the ID stage of the 1-way statically scheduled
pipeline used in class?

Because the branch outcome is determined in the ID stage and so there is no need to predict it there.

11
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(b) Answer the following questions about exception codes as defined for SPARC V8 and using the class
terminology.

©What is an exception code number (or trap type)? Note: In the original exam the question was shorter:
“What is an exception code?”

It is a number that identifies the type of trap, hardware interrupt, or exception.

©How is it obtained for traps?

The trap instruction adds its rs1 operand to an immediate or rs2 operand, the low seven bits of the sum is the exception code.

©How is it obtained for hardware interrupts?

The exception code corresponds to the interrupt request port that was used to raise the interrupt.

©How is it obtained for exceptions?

It originates with the hardware that detects the exception, for example, an illegal opcode by the instruction decode hardware or
segmentation fault by the data memory port.

©How is it used to start the handler?

The exception code is combined with the contents of trap base register to form the address of the handler. The high bits of the
address are the contents of the TBR, the middle eight bits are the exception code, and the low four bits are zero (each table entry is
16 characters [4 instructions]).

12
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(c) Consider two processors, one is a 6-way superscalar implementation of an ordinary ISA, say MIPS, the
other is a 6-way implementation of a VLIW ISA, say Itanium (IA-64).

©Describe two features of Itanium (or some other VLIW ISA) that would allow it to execute faster than the
superscalar implementation. Explain how the features allow faster execution.

Feature 1: Dependencies are specified in the bundle. This allows faster implementations by reducing the complexity of—and critical
path length through—the logic checking for dependencies. With a shorter critical path the clock frequency can be higher.

Feature 2: Instructions arranged into bundles and CTI targets limited to bundle starts. In a non-VLIW superscalar processor in which
instruction fetch is aligned on fetch groups unneeded (and ultimately unused) instructions may be fetched that precede the branch
target because they are part of the same fetch group. With targets limited to bundle starts VLIW implementations do not suffer this
inefficiency. A superscalar processor that was not restricted to fetch-group aligned fetches would have more complex logic in the fetch
stage (or the cache port) to rearrange instructions, that would impact clock frequency or add stages, increasing branch penalty.

Feature 3: Instruction placement in VLIW is limited, for example, a VLIW ISA could forbid memory instructions in the first slot of a
bundle. With such restrictions an implementation would require fewer multiplexors to send instructions to the proper functional unit.
This certainly simplifies the logic (providing more room for cache or for other performance improving features) and might reduce
critical path length.

Grading Note: Many people described the features but did not describe how they would improve performance.

© If the implementation for the VLIW ISA were faster why might the superscalar implementation still be
better from a business perspective?

Suppose a company has many customers using an existing non-VLIW ISA. If the company were to offer a VLIW processor to customers
using implementations of the non-VLIW ISA as the only way of getting higher performance from the company, those customers would
have to re-compile their applications or buy new applications. Not every customer would be willing to do so. Some customers may be
choosing the company’s processor over competitors’ to avoid the hassle of porting their applications to the competitors ISA. If such
customers have to re-compile anyway they may switch to the competitors product.

13
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Problem 1: In the diagram below certain wires are labeled with cycle numbers and values that

will then be present. For example, C5:8 indicates that at cycle 5 the pointed-to wire will hold an
8. Other wires are labeled just with cycle numbers, indicating that the wire is used at that cycle.
There are no stalls during the execution of the code.[30 pts]

©Write a program consistent with these labels.

©The branch is taken. Use labels for branch targets and label the target line.

© Show the address of every instruction.

©Fill in every register number that can be determined and use r10, r11, etc. for other register
numbers.

format
immed

IR

Addr
25:21

20:16

IR

IF
ID EX

WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr
Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dstDecode
dest. reg

NPC

C5

C4

C2:20

C4:7

C5:8

15:0

C0: 0x1000

C2: 0x1008

C6

C5:16

C4

The solution appears below. One unusual feature is the branch. That the instruction in ID at cycle 2 is a branch can

be determined by signal on the PC mux, C2:0x1008 . The signal indicates that the branch target is 0x1008 which
happens to be the delay slot instruction, and so the add executes twice, once as the delay slot instruction and once as
the target. (The C0:0x1000 indicates that the first instruction’s address is 0x1000.)

Grading Notes: Most people got this substantially correct. One relatively common error was omitting the branch.

The problem as given did not specify that there was a branch. Also, as given there was nothing to indicate that the branch
was taken and so a solution with a not-taken branch was correct.

Solution: Note that the add is executed twice.

Cycle 0 1 2 3 4 5 6 7 8

0x1000 lw $7, 20($10) IF ID EX ME WB

0x1004 bgt $11, TARG IF ID EX ME WB

TARG:

0x1008 add $8, $7, $8 IF ID EX ME WB

0x1008 add $8, $7, $8 IF ID EX ME WB [sic]

0x100c sw $8, 16($12) IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8
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Problem 2: The CISC-A ISA is making its world premier in this exam!

• It has 32 integer registers (the MIPS names can be used) and the address size is 32 bits.

• Each operand in each instruction can use any appropriate addressing mode, including register,
immediate, and the full range of memory addressing modes described in class.

• Instructions are variable size, the entire first byte is the opcode.

(a) Re-write the code below in CISC-A, making up appropriate instructions as needed. [10 pts]

©Take advantage of CISC-A’s characteristics to reduce code size within the loop (primary goal) and
outside the loop (secondary goal). (See the next problem.)

©Take advantage of: the available addressing modes (memory, register, and immediate), the variable
instruction size, and operand flexibility.

©A correct solution includes at least three big-improvement-over-MIPS instructions.

© Identify non-MIPS addressing modes used.

lui $t0, 0x1234

ori $t0, $t0, 0x5678

lw $t2, 0($s0)

lw $t2, 0($t2)

addi $t3, $t0, 0x1000

LOOP:

lw $t1, 0($t0)

addi $t0, $t0, 4

bne $t0, $t3 LOOP

add $t2, $t2, $t1

mov $t0, 0x12344578 # Uses 32-bit immediate.

mov $t2, @($s0) # Uses memory-indirect addressing.

add $t3, $t0, 0x1000

LOOP:

add $t2, $t2, ($t0)+ # Uses autoincrement addressing in an arithmetic insn.

bneq $t0,$t3 LOOP # No delayed branches.

3
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(b) Describe a possible coding for three of the CISC-A instruction used above. Don’t choose three
similar instructions. [10 pts]

© It should be obvious (to a computer engineer) that the full range of operands is available.

©The coding must follow the • bulleted • points above.

© Instruction size should be small, though not the absolute minimum size.

Coding:

Every instruction consists of an opcode byte followed by zero or more sets of operand bytes. Each set of operand bytes
specifies information about an operand (destination or one of the sources).
opcode OPINFO1 [OPEXT1] [IMMED1] OPINFO2 [OPEXT2] [IMMED2] ...

The first operand byte is OPINFO which is split into a 3-bit MODE field and a 5-bit NUM field. The MODE field specifies
the addressing mode (see table) and the NUM might specify a register number, an immediate size, or something else. The
OPEXT field is only used by some addressing modes as an extension of the MODE field (since the MODE field is only 3
bits it cannot specify all the addressing modes needed). The IMMED field, if present, holds an immediate, with the size
specified in the size specified in OPINFO and possibly OPEXT.

MODE field values.

0: Register, NUM field holds register number.

1: Immediate, NUM field holds size and padding of immediate.

The immediate itself is in the next NUM bytes.

2: Register indirect, NUM holds register number.

3: Register indirect autoincrement, NUM holds register number.

4: Register indirect autodecrement, NUM holds register number.

5: Memory indirect, NUM holds register number.

6: Direct, address in next four bytes.

7: Additional modes, NUM has mode details.

4
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Problem 2, continued: Consider a second ISA, CISC-B, which differs from CISC-A in the
following RISCy ways:

• Only load and store instructions can access memory.

• Each instruction has a fixed set of operand types, for example, an addi might be limited to
one register destination, one register source and one immediate source.

• CISC-B still has variable-size instructions.

(c) Show how one such instruction might be coded. Try to choose a good example from the problem
above. [5 pts]

©The coding should reflect and exploit CISC-B’s operand restrictions.

Since the operand types are fixed there is no need for a MODE field. With the field omitted it is possible to specify three
register operands in two bytes, rather than three bytes if each register number had to be accompanied by a MODE field.

(d) Show two program fragments: [5 pts]

© Show a program fragment that would be smaller in CISC-B than CISC-A. (No more than four
instructions.)

add $t0, $t1, $t2

# CISC-A Coding: opcode opinfo1 opinfo2 opinfo3 (Four bytes)

# CISC-B Coding: opcode rd-rs1-rs2 (Three bytes, rd-rs1-rs2 is two bytes.)

© Show a program fragment that would be larger in CISC-B than CISC-A. (No more than four
instructions.)

CISC-A:

add $t0, $t1, ($t2) # Four bytes.

CISC-B:

load $t3, ($t2) # Three bytes.

add $t0, $t1, $t3 # Three bytes. (Total six bytes.)

5
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Problem 3: Answer each question below.

(a) Answer the following optimization questions. [10 pts]

©Explain the difference between front-end and back-end optimizations.

Back-end optimizations are performed at the machine-language level or close to it. Front-end optimizations are performed
closer to the high-level language level.

©Can typical front-end optimizations be performed by the back end? Explain using an example.

Yes. For example, dead-code elimination. The optimizer would remove instructions that write registers that are never
read (before being written again).

©Can typical back-end optimizations be performed by the front end? Explain using an example.

No. Many of these optimizations are based on machine instructions, or something close to it. For example, instruction
scheduling. Since machine instructions are chosen after front-end optimization is done, there is no way for the front end
to schedule (re-arrange) instructions.

6
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(b) It is important to computer manufacturers to have high SPEC benchmark ratings. For each
technique of improving SPEC ratings, describe whether it will work, and if it won’t describe why
not. [10 pts]

©Try to have a favorable benchmark added to the suite by sending the name of the benchmark and
a little something for their trouble (a bribe) to morally weak SPEC members. In the exam as given
the sentence started “Have a favorable . . .”.

Some SPEC members work for the competition so they would not be easy to bribe. Could Compaq bribe Dell into making
poor computers? If bribery did work the system would be corrupt and of little value because SPEC results could not be
trusted. Without an accepted and trusted way of measuring performance, manufacturers would have little incentive to
improve it. Societies that cannot control bribery will be doomed to non-competitive industries.

©Modify the source code to the benchmarks, honestly improving performance on your system.

It will not work because SPEC rules prohibit modifying source code.

©Modify your compiler so that it honestly produces faster benchmark executables.

This can be done, as long as the modified compiler is made available to the public (for free or as an ordinary product). If
a company honestly improves its compiler it has every reason to make it available to their customers.

Grading Note: A common mistake was confusing compiler optimization switches with modifying the compiler itself.

©Report results with certain benchmarks omitted.

Not allowed. All benchmarks must be used.

7
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(c) The typical ISA has one-, two-, four-, and eight-byte integers. [10 pts]

©Explain a possible benefit of having five-byte integers.

Smaller data size.

Grading Note: Many people gave the answer as smaller program size. This would be true to a small extent because of
constant data, which could be five bytes, but the much larger benefit for most programs using the data type would be the
reduction in space taken up by the data written to memory while the program is running.

©Explain a difficulty with adding five-byte integers, taking in to account a certain feature (some
would call it a restriction) of many RISC ISAs. Hint: The name of the feature begins with an “a”.

The a-word is alignment. If the memory system can only provide power-of-two aligned accesses then there would be no
reasonable way of storing arrays of five-byte integers. If the first element of an array of five-byte items was stored in an
aligned address the second one would not be.

(d) Provide the requested code examples and answer the questions. Two instructions suffice. [10 pts]

© Show code having a data dependency; circle the registers carrying the dependency.

add $t0, $t1, $t2 # Register t0 carries the dependency.

sub $t4, $t0, $t5

©What is the name of the corresponding hazard?

RAW hazard.

© Show code having an anti dependency; circle the registers carrying the dependency.

sub $t4, $t0, $t5 # Register t0 carries the dependency.

add $t0, $t1, $t2

©What is the name of the corresponding hazard?

WAR hazard.
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Problem 1: The execution of a MIPS code fragment on a dynamically scheduled machine is shown in the
tables and in the labels on the diagram, both on the next page. The tables show the contents of the ID
Register Map, Commit Register Map, and the Physical Register File at each cycle. The diagram shows the
values on certain wires at certain cycles. For example, 4:65 means that at cycle 4 the labeled wire holds
value 65.

The following are functional unit segment labels: Load/store, L1 L2; floating-point add, A1 A2 A3 A4;
floating-point multiply, M1 M2 M3 M4 M5 M6; integer, EX. The register maps handle both integer and
floating-point registers.

(a) Write a program consistent with these tables and labels.(12 pts)

©Show a pipeline execution diagram, be sure to show where each instruction commits.

©Choose consistent instructions.

©Choose consistent registers. If a register number cannot be determined, use a question mark.

(b) Complete the tables on the next page as follows:(8 pts)

©Show where registers are added to, “]”, and removed from, “[”, the free list.

©Show the values on the line marked X in the illustration.

Solution is on the next page. Here is how the problem is solved:

Entries in the ID map are used to determine the destination registers (of the instruction in ID at that cycle) and when a physical
register is removed from the free list.

Entries in the commit map are used to determine when an instruction commits. When an instruction commits the incumbent register
(the same architected destination register used by an earlier instruction) is put back in the free list. The incumbent register is to
the left of the committing register in the commit map table. (For example, at cycle 11 the instruction writing physical register 93
commits, the incumbent is 50 [and both are f12]). The incumbents are shown in the “X” row of the table, these physical registers
are put back in the free list.

The big label in the diagram (“2:50, 3:65, etc.”) shows when instructions are removed from the instruction queue to start execution.
Qs are put in the pipeline execution diagram for this.

Entries in the physical register file table show when instructions write back. The time between Q and WB is spent in an execution
unit, the amount of time (say four cycles) determines the type of unit and the type of instruction.

The three small labels in the diagram provide information about source registers, two are in ID, one is in Q.

The completed tables are on the next page.

2
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Problem 1, continued: See previous page for instructions.

25:21

20:16

rsPR

dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

P
C

dst
S

t: C
,X

0,0

ROB #

C,X
Addr

D In

R
eo

rd
er

 B
uf

fe
r

dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ROB #
tail

head

IDIF

rtPR

F
re

e 
Li

st

dstP
R

dstP
R

dstPR

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

EX

dstPR

dstVal.

Decode
dest. reg

incm
b

Addr

Addr

Data

Data

Addr
D In
D Out

dst

incmb
dstPR

Addr

D In

C Reg. Map

Data

incmb

dstPR

R
ec

ov
er

Q

2:50, 3:65, 5:20,
6:93,10:59

10:93

3:12

4:65

X

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X (Solution) 7 3 50 10 93

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

# Solution

add.s f12, f??, f?? IF ID Q A1 A2 A3 A4 WC

or r5, r?, r? IF ID Q EX WB C

add.s f12, f12, f?? IF ID Q A1 A2 A3 A4 WC

LwC1 f10, 0(r5) IF ID Q L1 L2 WB C

add.s f12, f??, f12 IF ID Q A1 A2 A3 A4 WC

# ID Map Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f12 7 50 93 59

r5 3 65

f10 10 20

# Commit Map Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f12 7 50 93 59

r5 3 65

f10 10 20

# Phys. Reg. File Cy 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

# Solution

3 0 ]

7 0. ]

10 0. ]

20 [ 0.

50 [ 0. ]

59 [ 0.

65 [ 100

93 [ 0. ]

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Problem 2: The diagram below shows the branch outcome patterns for a branch. (15 pts)
BIGLOOP:

B1: 0x1000 beq $t1, $t2, SKIP1 N N N T T N N N T T N N N T T

...

B2: 0x1020 beq $v0, $v1, SKIP2

...

0x2010 j BIGLOOP

©How accurately would branch B1 be predicted by a bimodal (one-level) branch predictor with a 214-entry
branch history table?

For the version using a 2-bit counter the accuracy is 2
5 = 40%. See the diagram below.

Counter: 0 0 0 0 1 2 1 0 0 1 2 1 0 0 1

B1: N N N T T N N N T T N N N T T

Predict: N N N N N T N N N N T N N N N

Correct: Y Y Y N N N Y Y N N N Y Y N

Repeating pattern has two correct, three wrong predictions.

©How accurately would branch B1 be predicted by a local history predictor with a 10-bit local history and a

214-entry branch history table?

The repeating pattern can easily be handled by a 10-bit local history so the accuracy is 100%.

©What is the minimum local history size needed to predict B1 with 100% accuracy (after warmup). No partial
credit without an explanation.

Three outcomes. Just 3. See the table of patterns (NNN, etc.) and predictions.

Pat Pred

NNN T

NNT T

NTT N

TTN N

TNN N

©Find a pattern for branch B2 that will reduce the accuracy of the local predictor on branch B1. The branch

history table (not to be confused with the pattern history table) remains 214 entries and the history length
remains 10 bits.

The pattern below has and extra “T” at the end. So the pattern history table entry for NNNTTNNNTT would be used by both
branches, B1 would decrement the entry and B2 would increment it.

B2: N N N T T N N N T T T N N N T T N N N T T T

4
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Problem 3: Answer the following load/store unit questions.

(a) Why don’t store instructions write to the cache until they commit? (5 pts)

There’s a chance they will be squashed, if they wrote to the cache there would be no way (ordinarily) to recover the data that was
overwritten.

5
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For the two problems below consider the four instructions (repeated) which are in the reorder buffer of a
dynamically scheduled 1-way system. On a cache miss data will arrive in four cycles or more. The effective
address for the second load is 0x1000. (10 pts)

(b) Describe a scenario in which the data for address 0x1000 is not cached but the second load does not wait
for its data more than a few cycles.

©Show a pipeline execution diagram.

©Explain the involvement of the load/store queue and why the second load does not wait more than a cycle
or two.

The effective address of the second load (0x1000) is the same as that of the store and so the second load gets its data from the
store value (there is no need to check the cache and it doesn’t matter that the data is not there). For this to happen the store address
must not be delayed (see the next part) which means the first load must hit the cache.

Involvement of the load/store queue: At cycle 7 the LSQ processes the second load. It scans “upward” (toward the head where the
older instructions are) looking at each store instruction. The first entry it finds is the store instruction, since the addresses match
and the store data is ready the load data will be taken from the store data.

# Cycle 0 1 2 3 4 5 6 7 8

First: lw $t1, 0($t2) IF ID Q L1 L2 WB

addi $t0, $0, 4720 IF ID Q EX WB

sw 0($t1), $t0 IF ID Q L1 L2 WB

Second: lw $t3, 0($t4) IF ID Q L1 L2 WB

(c) Describe a scenario in which the data for address 0x1000 is cached but the second load waits for its data
at least four cycles.

©Show a pipeline execution diagram.

©Explain the involvement of the load/store queue and why the second load waits.

In this scenario the first load misses the cache and so the store cannot determine its effective address until cycle 10. Since the store
address is unknown the second load cannot safely check the cache (because the store address might match the second load address).
At cycle 11 the load can finally be processed. The timing below is correct for a store address of 0x1000 or some other address,
either way the load waits until cycle 11 at which time it gets its data.

Involvement of load/store queue: The load store queue processes the second load at each cycle from 7 to 11. At cycles 7 to 10 it
finds the store with an unresolved address and so the load cannot be completed. Finally at cycle 11 the store address is available. If
it matches the second load address the store data is bypassed to the load, otherwise the cache is checked.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

First: lw $t1, 0($t2) IF ID Q L1 L2 L2 WB

addi $t0, $0, 4720 IF ID Q EX WB

sw 0($t1), $t0 IF ID Q L1 L2 WB

Second: lw $t3, 0($t4) IF ID Q L1 L2 WB

6
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Problem 4: The diagram below is for a 2-MiB (221 bytes) cache on a system with 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants. (7 pts)

©Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32

:8

:3

:8

:3

Fill in

Number of
bits

64

31:20

19

19

31:20

19

19

©Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 20

Index

19 8

Offset

7 3 2 0

©Associativity: 2

©Memory Needed to Implement (Indicate Unit!):

It’s the cache capacity plus 2 × 220−8(32 − 20 + 1) bits.

©Show the bit categorization for a four-way set-associative cache with the same capacity and line size.

Address:

Tag

31 19

Index

18 8

Offset

7 3 2 0
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Problem 4, continued:

(b) The code below runs on the cache from the previous part. When the code below starts running the cache
is empty. Consider only accesses to the array. (7 pts)

char *a = 0x1000000; // sizeof(char) = 1 character

int sum, i, j;

int ILIMIT = 1024;

for(j=0; j<2; j++)

for(i=0; i<ILIMIT; i++)

sum += a[ i * 2 ];

©What is the hit ratio for the program above?

The element size is one character but the code accesses every other element. The line size is 28 = 256 characters and so 256
2 = 128

will access the same line. The first access will miss, the rest will hit. So for the first j iteration the hit ratio is 127/128. The total
amount of memory accessed is 1024 characters, but that covers 2048 characters of memory because of the skipping. That is much
smaller than the 2 MiB capacity so on the second j iteration every access will hit.

The overall hit ratio is 1
2

(
127
128 + 1

)
= 255

256 .

©What is the minimum value of ILIMIT needed to fill the cache?

The cache capacity is 221 characters each iteration covers two characters (one read, one skipped) so to fill the cache ILIMIT=220 .

8
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Problem 4, continued:

(c) The code below runs on the same cache as parts above. Initially the cache is empty; consider only accesses
to the arrays. (6 pts)

©Choose values for KLIMIT, MLIMIT, KSHIFT, and MSHIFT so that array matrix is completely removed from

the cache with the minimum number of accesses (to b). That is, each j iteration must begin with matrix

reloaded. Don’t forget that the cache is set associative.

The first step is to determine how much space matrix takes. Since each element is a 4-character integer and 1024 of them are being
accessed it covers 4096 characters or 4096/256 = 212−8 = 16 lines. The addresses range from 0x1000000 to 0x1000ffc.
Those addresses have indices from 0 to 0xf. (The index bits start at the third hexadecimal digit.)

To remove matrix from the cache accesses to b must use each of those indices twice (because the cache is two-way set associative)
and with a different tag each time. To generate each index with the minimum number of accesses set MLIMIT = 0xf; and MSHIFT
= 8;, this shifts the m into the index part of the address. To generate each tag twice set KLIMIT = 2; and KSHIFT = 20;,
this shifts k into the tag part of the address. The solution would also work with k and m swapped and with a larger KSHIFT.

Array matrix can be evicted with a small number of accesses because its index bits are the same as b, zeros. If index bits 12 or
higher were different, say b == 0x1001000, it would take many more accesses (using the code below) to evict matrix.

Note: The exam was given on the opening day for The Matrix Reloaded.

int *matrix = 0x1000000; // sizeof(int) = 4 characters

char *b = 0x2000000;

int sum, dummy, i, j, k, m;

// Solution

int KLIMIT = 2; int MLIMIT = 16;

int KSHIFT = 20; int MSHIFT = 8;

for(j=0; j<3; j++)

{

for(i=0; i<1024; i++)

sum += matrix[ i ];

for(k=0; k<KLIMIT; k++)

for(m=0; m<MLIMIT; m++)

dummy += b[ ( k << KSHIFT ) + ( m << MSHIFT ) ];

}

9
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Problem 5: Answer each question below.

(a) Suppose the instructions below are being considered for the latest extension of the MIPS ISA. For each
new instruction explain why it should be added or why it should not be added. Consider a variety of factors
related to the ISA and implementation. (10 pts)

©A mask instruction. Based on analysis of benchmarks.
New Instruction

mask $t1, $t2, 5

Equivalent Code Using Existing Instructions

srl $t1, $t2, 5

sll $t1, $t1, 5

Yes, it saves an instruction and looks easy implement. Saving one instruction may not sound like much but if that one instruction is
5% of the dynamic instruction count the minor addition would be very cost effective.

Grading Note: Some students pointed out that an andi instruction can perform the same function and so the mask instruction is
not needed. That’s only partly correct since the immediate value is limited to 16 bits whereas mask could mask any number of bits.

©An integer negate instruction. Based on analysis of existing code. With this extension sub does not have to
be used for negation!!!

New Instruction

neg $t1, $t2

Equivalent Code Using Existing Instructions

sub $t1, $0, $t2

Since sub does the exact same thing there is no reason to add neg. Adding neg would waste an opcode and complicate decoding.
A better alternative is to have the assembler recognize neg as a synthetic instruction and have it substitute sub.

©An indirect load. Useful based on most existing benchmarks.

New Instruction

lwi $t1, 0($t2)

Equivalent Code Using Existing Instructions

lw $t1, 0($t2)

lw $t1, 0($t1)

This would require using the MEM stage twice, something no other instruction does and which does not follow RISC principles (which
are intended to simplify implementation). It should not be added.

10
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Continued from previous page.

©Added functionality for the sllv instruction. The existing sllv looks at the low 5 bits of the rt register,
ignoring the other bits. It only shifts left. The improved instruction also shifts right if the rt register holds
a negative value and left if it’s positive.

Improved Instruction

sllv $t1, $t2, $t3 # Shifts right if $t3 negative.

Equivalent Code Using Existing Instructions

bltz $t3, SHIFTRIGHT

nop

sllv $t1, $t2, $t3

j DONE

SHIFTRIGHT:

sub $at, $0, $t3

srlv $t1, $t2, $at

DONE:

If bidirectional shifts were used a bidirectional shift instruction should be added, but NOT by changing the behavior of an existing
instruction. There might be programs in which sllv instructions execute with a negative value in rt. The new behavior would
break those programs and the programmers could rightly point out that “ignored” is not the same thing as “assumed to be zero.”
(And even if they didn’t have a good argument it doesn’t matter because the customer is always right!) The behavior of sllv should
not be changed, instead a new instruction could be added.

Grading Note: No one got this one right. Maybe next semester I’ll bring in an actual pair of golden handcuffs when talking about ISA
compatibility and IA-32. Hmmm, would the student tech fee cover the cost?

11
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(b) Answer the following questions about exceptions. (5 pts)

©Why are precise exceptions necessary for instructions like lw but optional for instructions like div?

If an instruction raises a precise exception then it can be re-executed after the handler does whatever it is it has to do. If an instruction
raises an exception that is not precise then the best the handler can do is restart the program several instructions after the faulting
instruction, there is no way to re-execute it.

In normal use lw (and other memory access instructions) will raise exceptions. The exception handler tends to the memory system
(updating the TLB or swapping pages) and then restarts lw and the program proceeds as if nothing happened. Without precise
exceptions there would be no easy way to implement modern memory systems.

A divide would raise an exception because of a division by zero or some other problem. In general, there is nothing the handler can
do to fix the problem since the divide instruction gave the best answer it could. With no reason to restart there is no need for precise
exceptions. There still may be situations where they are useful, say substituting a large value on a division by zero, but that’s not as
critical as handling TLB misses.

©What can handlers for instructions that raise precise exceptions do that handlers for other instructions
cannot? Explain how that capability is used for lw.

They can see the state of the program just before the faulting instruction executed. That enables the handler to restart the instruction,
if appropriate. It is used to restart lw after performing a routine memory system task.

(c) Delayed branches are common in RISC ISAs. (5 pts)

©Explain why delayed branches were useful in early RISC processors, such as the 1-way statically scheduled
MIPS implementation covered in class.

Early RISC processors (and some modern ones too) used short pipelines, say five stages (as used in class). The delay slot instruction
is fetched in IF while the branch computes its direction and target in ID; in the next cycle the target or fall-through is fetched. Since
the delay slot instruction is executed either way (normally) there is no branch penalty on a taken branch (bubble).

©Why are delayed branches of less benefit with more recent implementations?

In a two-way or higher superscalar processor at least one instruction past the delay slot is fetched by the time the branch is resolved.
If the branch is mispredicted those instructions will have to be squashed. The number of squashed instructions is one less than without
delayed branches, in deeply pipelined systems that might mean squashing 15 instead of 16, the difference is greater with dynamic
scheduling. This small benefit is only realized on a misprediction (say 5% of the time). It is not worth the complexity of the control
logic.

Comment: Once an instruction is in an ISA it cannot be removed. If a new ISA were designed for compact implementations (say,
embedded on a chip with other logic and memory and used to control something like a cell phone) it could use a delayed branch. If
an ISA were designed for high-speed implementations (for general-purpose use) then a delayed branch would be omitted.

12

← → Spring 2003 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2003/fe_sol.pdf


(d) Why might a gshare branch predictor with a longer global history register (GHR) have a significantly
longer warm up time? (5 pts)

With a longer GHR there are more possible GHR values for a particular branch. (In an extreme case the branch is in a loop with
another branch having random outcomes.) There is a pattern history table (PHT) entry for each GHR value, each of these entries
must be warmed up for the branch. The more possible GHR values there are for the branch the longer it takes the GHR to warm up
for the branch.

Grading Note: Many answered that it takes longer for the GHR to fill up with branch outcomes. Suppose the GHR were increased
from 10 to 16 bits. That change would affect six branches, out of say, 100 million.

A correct answer could start with “It takes longer for the GHR to full up. . .” but it would have to explain that this was important
when entering a loop and that the problem was the irrelevant outcomes from the part of the GHR written before the loop was entered.

(e) Why might a functional unit with an initiation interval of 4 and latency of 3 be less costly (as in dollars)
than a functional unit with an initiation interval of 1 and a latency of 3?(5 pts)

Include an illustration with your answer.

Sorry, no illustration. If someone asks I’ll put one in.

If a functional unit has an initiation interval of 1 then new instructions can enter every cycle and so there must be enough hardware to
simultaneously execute 4 instructions. If the initiation interval were 4 then the same small piece of hardware could be used repeatedly
for the same instruction, as in a multiplier or divider. Multipliers usually are pipelined (initiation interval 1) but dividers are not.

13
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Problem 1: A new MIPS branch instruction, bieq rt,(rs) disp (branch indirect equal) compares a
register value to a memory location, if they are equal the branch is taken. The target is computed in the
same way as other branches. In the code below, the contents of register $s1 is compared to the contents of
the memory location at address $s2. Like all MIPS control transfers, bieq has one delay slot. [30 pts]

(a) Modify the pipeline so that it can execute this new instruction. Show comparison units, multiplexors,
and wires. Do not show control logic. For partial credt replace bieq ... with bneq $s1,$s2, LOOP.

See next page for solution discussion.

©Use as much existing hardware as possible. Do not add a new memory port.

©The change should not reduce the clock frequency.

© Include the comparison unit for the branch condition.

©Add bypass paths so that the code below executes as shown.

©Label bypass paths with the cycle in which they are used. Include existing and any added bypass paths.

©Label the path carrying the branch target address with the cycle in which it is used.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

Targ Targ Targ

rtv

=

To
Control

4

4

5

6

LOOP: # Assume bieq always taken. # Solution

# Cycle 0 1 2 3 4 5 6 7 8 9 10

srl $s1, $s1, 1 IF ID EX ME WB IF

addi $s2, $s2, 1 IF ID EX ME WB

bieq $s1, ($s2), LOOP IF ID EX ME WB

sw $s1, 100($s2) IF ID EX ME WB

add $0, $0, $0 IF ID EXx

sub $0, $0, $0 IF IDx

or $0, $0, $0 IFx

xor $0, $0, $0

2
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Problem 1, continued:

(b) The pipeline execution diagram on the previous page only shows the first iteration.

©Continue the pipeline execution diagram to the beginning of the second iteration (when srl is fetched),
consistent with your solution to the first part.

See diagram on previous page.

© Show which instruction is in each stage of the pipeline a cycle eight. Include squashed instructions, if any.

Solution:

IF: addi ID: srl EX: or(sq) MEM: sub(sq) WB: add (sq)

sq indicates the squashed remains of an instruction.

©Determine the CPI for a large number of iterations.

Iterations start at cycles 0 and 7. There are no stalls or other reasons why later iterations would be any different, therefore the
number of cycles per iteration is 7. The loop has 4 instructions, for a CPI of 7

4 .

Part (a) discussion.

Changes shown in blue bold. The branch condition is resolved in WB when one of the data items is retrieved from memory. (A
MEM-stage comparison would stretch the critical path, lowering clock frequency.) In addition to the memory value, the value of the
rt register is needed, a new path from MEM to WB is added for that, as well as an EX-stage bypass path. The existing ID-stage
adder is used to compute the target address, which is sent through the pipeline and used in the WB stage. (An alternative design
would use the ALU to compute the branch target, but that would require a mux at the memory address input to select the address,
which might be held in a new rsv pipeline latch.)

The circles show the cycle numbers. Note that the arrows point unambiguously to the path that’s being used. (In some solutions the
arrows would point to a bypass path, say, coming from memory before it reached the upper ALU mux, so one could not tell if it was
a bypass into the upper or lower ALU mux.

Note: the problem as originally given did not explicitly mention clock frequency and the diagram had a path from MEM to the IF-stage
mux.
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Problem 2: Convert the MIPS program below to SPARC, making use of condition codes. [13 pts]

©Make reasonable guesses about instruction names. Reasonable guesses will receive full credit.

©For the branch instructions, explain what the name stands for.

©Explain how each line of code uses the condition codes.

©Use the minimum number of registers.

©Do not rearrange instructions.

sub $s6, $s1, $s2

blt $s6, TARGET1

and $s3, $s6, $s4

beq $s3, $0, TARGET2

nop

beq $s6, $0 TARGET3

add $s5, $s6, $s3

Discussion: In SPARC, condition-code versions of arithmetic and logical instructions (such as addcc, orcc) set the condition codes
based on the operation result, this is in addition to writing the result in the specified register. So the first instruction in the solution
writes the difference in register l6 and also writes the condition code register. For this first instruction the result of the subtraction
is needed, by the add instruction.

The condition code register consists of four bits, Zero, Negative, Carry, and Overflow. Each is set based on the result of the operation.

subcc %l1, %l2, %l6 ! l6 = l1 - l2

bl TARGET1 ! Branch if < 0. (Negative, mnemonic assumes subtract.)

andcc %l6, %l4, %l3 ! l3 = l6 & l4

be TARGET2 ! Branch if equal to zero.

nop

subcc %l1, %l2, %g0 ! Set condition codes again. MIPS doesn’t have to.

be TARGET3 ! Branch if equal to zero.

add %l6, %l3, %l5 ! Ordinary add.

4
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Problem 3: Sometimes it’s necessary to jump to a location specified in the program. [13 pts]

(a) SPARC V8 includes an instruction that can jump anywhere in the address space using an address specified
in the instruction, for example, call 0xabcd1234.

©How does the call instruction, which is 32 bits, manage to specify a 32-bit jump target?

Because instruction addresses are aligned the least significant two bits of a jump target are always zero, so the instruction does not
need to store them. The opcode in a SPARC instruction is just two bits, so the instruction can store a 30-bit immediate. (That
immediate is a displacement, not the high 30-bits of the target address, but it can still jump anywhere in a 32-bit address space.)

© Switching now to MIPS, show the minimum number of instructions needed to jump to address 0xabcd1234.
(If jr is used the instructions must put the address in a register. The address cannot be loaded from
memory.)

The solution appears below, followed by common mistakes.

# Correct

lui $l0, 0xabcd

ori $l0, $l0, 0x1234

jr $l0

## Common Mistakes Below

# Partial credit, could have used lui to reduce number of instructions.

addi $l0, $0, 0xabcd

sll $l0, $l0, 16

ori $l0, $l0, 0x1234

jr $l0

# Partial credit, could have used lui to reduce number of instructions.

# Wrong shift amount

addi $l0, $0, 0xabcd

sll $l0, $l0, 4 # WRONG, a hexadecimal digit is four bits.

ori $l0, $l0, 0x1234

jr $l0

## Common Mistakes Above

(b) Without introducing a new format, add a new instruction to MIPS that would allow a jump to an
arbitrary address using two instructions. The address must be specified in the instructions themselves.

The new instruction is jri rs, IMMED16 (jump register immediate). It jumps to an address constructed by oring the contents of
register rs with IMMED16. It is a Type I instruction.

©Use the instruction in an example.

lui $s0, 0x1234

jri $s0, 0x5678 # Jumps to address 0x12345678.

© Show the coding for the new instruction.

Type I with low 16 bits of target address in the immediate field and the register number in the rs field.

5
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Problem 4: Answer each question below.

(a) Certain RISC ISA features are intended to facilitate pipelined implementations. [12 pts]

©Using the diagram below, briefly explain how RISC implementations benefit from fixed-length instructions
and how things would be different with variable-length instructions.

Fixed length instructions allow implementations to easily compute the fetch address and to easily decode the instructions once
fetched. With variable-length instructions the decode hardware might have to consider the instruction type before fetching registers.
For example, different size formats might have the register numbers in different places, and so multiplexors would be needed at the
input to the register file address ports. The IF stage could not just add 4 to get the next fetch address, the amount to add would
have to be supplied by ID (if not slowing the fetch rate, requiring a shift-and-mask circuit to properly position the instruction).

©Using the diagram below, briefly explain how RISC implementations benefit from load/store instructions
(restricting memory access to load instructions) and how relaxing the restriction would complicate things.

If source operands for ALU instructions could come from memory then either another memory stage would have to be added (adding
to cost) or instructions would have to use the MEM stage before the EX stage, adding expensive new paths and greatly complicating
the control logic (think about the logic for setting bypass paths).
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Addr
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IR

IF ID EX WBMEM

IR IR
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rtv
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(b) Before there was MMX there was BCD. [12 pts]

©Why are binary coded decimal (BCD) and packed-integer data types superficially similar? What is an
important difference between them?

Discussion: A misconception (at least on the exam solutions) is that there are four integers packed into a register. The number of
integers packed varies with the size of the integer (and the register). For example, a 64-bit register can hold 8 8-bit integers, 16 4-bit
integers, etc. BCD digits are always four bits.

Answer: They are superficially similar because a decimal digit in a BCD representation might resemble a 4-bit number in a packed
integer representation. An important difference is that the digits in a BCD representation are for one number whereas a packed
integer holds a collection of numbers.

©Describe a computation in which packed integer data types yield a performance advantage over ordinary
integers. Show a brief advantage of the computation.

// Part of solution.

int *a, *b, *c; // Elements range from 0 to 15.

for(i=0; i<1024; i++) c[i] = a[i] + b[i];

The loop above compiled for an ordinary ISA would perform one addition per add instruction. If the compiler targeted a packed-
operand ISA it might use an add instruction that adds two packed operands, each, say, holding sixteen numbers. (The compiler would
have to know that numbers stored in the array are limited to 0-15.) The resulting code would require one sixteenth iterations. (Other
code which accessed the arrays would also have to be written to handle the packed format.)

©Why were BCD data types added to some ISAs?

To avoid certain rounding errors.

(c) Describe two compiler optimizations that reduce instruction count. [8 pts]

Dead code elimination. If, say, the value of a variable is never used no instructions will be emitted for the code that computes a value
for the variable.

Common subexpression elimination. If an expression appears multiple times then instructions for it might be emitted in one place,
the instructions would store a value that would be used for each subsequent appearance of the expression.

7
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(d) The BAPCO benchmarks used by PC magazine and others evaluates a computer by timing the execution
of a suite of benchmarks. The suite of benchmarks is drawn from common applications, such as Adobe
Photoshop. The applications are in executable form, source code is not used.

Like BAPCO, SPEC CPU2000 consists of a suite of common applications, unlike BAPCO source code is
used. Assume that the BAPCO and SPEC benchmarks are both well chosen and aimed at roughly the same
user community. [12 pts]

©How is source code used in preparing the SPEC CPU 2000 benchmark results?

The source code is carefully compiled for the system it will run on. Since manufacturers prepare the benchmarks for their own
systems and knowledgeable customers respect the SPEC benchmarks every effort is made to select compiler options for the best
possible compilation.

©Consider two processors, A and B. Suppose BAPCO ranks A faster but SPEC ranks B faster. How might
the use of source code account for this difference?

Processor B had special instructions or scheduling characteristics that a compiler could take advantage of. Since SPEC benchmarks
are compiled for the target system the results reflect their benefit. The BAPCo benchmarks are compiled by the software vendors
and they target an average system, probably not taking advantage of B’s special features. Without the special features A is faster.

©Taking in to account the differences due to the use of source code, who should make buying decisions based
on BAPCO results? Who should make buying decisions on SPEC results?

Users buying “shrink wrapped” (or at least already compiled) software should use BAPCO results, especially if their applications are
similar to BAPCO’s. Those compiling their own applications or those buying code compiled for their particular system might use
SPEC results.

8
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Problem 1: In the diagram below certain wires are labeled with cycle numbers and, in some cases, values
that will then be present, for example, 2:9 indicates that at cycle 2 the wire will hold a 9. Other wires are
labeled just with cycle numbers, indicating that the wire is used at that cycle. Write a program consistent
with these labels. There are no stalls during the execution of the code. The code should use five instructions,
use the PED to help solve the problem. (10 pts)

©Write a program consistent with these labels.

©Use labels for branch targets (if any) and label the target line.

Solution shown below.

Grading Note: Many people got this 100% correct, but I was hoping everyone would. For those currently taking EE 4720, study this
well, it’s not that difficult to get full credit.
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Cycle 0 1 2 3 4 5 6 7 8

LOOP:

add $10, $2, $1 IF ID EX ME WB

add $9, $4, $10 IF ID EX ME WB

lw $11, 8($6) IF ID EX ME WB

bneq $1, LOOP IF ID EX ME WB

sw 0($11), $7 IF ID EX ME WB
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Problem 2: The PED below shows execution on a defective 1-way dynamically scheduled machine using
Method 3. A diagram appears on the next page. The circuitry that’s supposed to restore the ID map after
a branch misprediction is not working, the ID map is left unchanged. Everything else works correctly, in
particular the free list is correctly restored to the exact state it was right after the lw. (17 pts)

(a) For this incorrect execution:

©Show where each instruction commits.

©Complete the ID map. (See the phys. reg. file for the free list.)

©Complete the commit map, include the initial state.

©Complete the physical register file.

© In addition to other information the physical register file should include a [ in the cycle a register is removed
from the free list and a ] in the cycle it is returned to the free list.

©Circle incorrect entries (due to the defect) in the tables below.

# SOLUTION. (See next page for notation and discussion.)

# lw loads a 0x200, lb loads a 0x202

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

bne $s1, $s2 SKIP IF ID Q B WC

lw $t1, 16($t1) IF ID Q L1 L2 WC (18)

addi $t4, $t4, 3 IF ID Q EX WB x (squash) (20)

ori $t5, $t4, 0x30 IF ID Q EX WB x (squash) (23)

nop ... (lots of nops)

SKIP:

lb $t1, 16($t1) IF ID Q L1 L2 WC (20)

addi $t4, $t4, 3 IF ID Q EX WB (23) C

ori $t5, $t4, 0xc0 IF ID Q EX WB (30) C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ID Map

t1 3 18 20

t4 7 20 23

t5 10 23 30

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Commit Map

t1 3 18 20

t4 7 23

t5 10 30

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Physical Reg File. All values in hex. Free List: 18, 20, 23, 30, 37

3 100 ]

7 101

10 102

18 103 [ 200 ]

20 104 [ 104 ] [ 202{]}

23 105 [ 134] [ {107} {]}

30 106 [ {1c7}

37 107

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

3
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Problem 2, continued: The illustration below is similar to one used in class; it is provided for reference.

In the solution on the previous page incorrect entries are surrounded by braces, for example 107. The numbers in parenthesis on the
PED lines are the physical register numbers assigned to the instructions. They are there as an aid in solving the problem.

Because of the defect the ID map is not recovered after the branch misprediction. This causes two execution problems. First (most
people got this) the addi on the correct path reads the wrong t4: it should read the one in physical register 7 but it reads the one in
20. As a result the values written in the physical register file are wrong. The second problem (few got this) is that when instructions
pass through ID they read the wrong incumbent. For example, the addi on the correct path should read 7 as the incumbent, but
instead it reads 20. As a result the wrong register will be placed in the free list when addi commits, which is what part (b) is about.
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(b) Suppose 1000 instructions later an instruction finds 0x4720 in register t4 despite the fact that the code
above wrote something else and no instruction wrote t4 after that. (If the free list is used improperly the
question might apply to t5, not t4. See the diagram for hints on proper use of the free list.)

Note: On the original exam register t5 was used instead of t4. Register t5 can not change unexpectedly,
though it still has an incorrect value.

©How could that have happened? Be specific in how it’s due to the defect.

As explained above, the correct path addi reads the wrong incumbent and so frees the wrong physical register, in particular the
physical register holding t4. At some point that physical register will be assigned to a new instruction which will write a value in it,
perhaps 0x4720.

(c) How could the defect have gone undetected?!? (That’s not the question.)

©Suppose the lw raised an exception in L2 on this defective hardware. Would the code above execute incor-
rectly? Explain. Remember, the only defect is with recovering the ID map on a branch misprediction. Note:
Original exam omitted “on a branch misprediction.”

The mechanism used to recover the ID map on a branch misprediction is different than the one used for exceptions. The problem
stated that other than ID recovery on a branch misprediction, everything was working correctly. The lw and lb instructions execute
before the addi and ori instructions. When the load reaches the ROB head exception recovery will start, part of that is copying
the Commit Map to the ID Map, replacing the incorrect ID Map with a correct one. For that reason the code executes correctly.

©Now suppose the lb raised an exception in L2 on this defective hardware. Would the code above execute
incorrectly? Explain. Once again, the only defect is with recovering the ID map on a branch misprediction.

See the solution to the part above.
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Problem 3: The code below runs on three systems: one using a bimodal (one-level) predictor, I; one using
a two-level local history predictor, L; and one using a two-level gshare predictor, G. The global history
register is 16 bits and the local history is 16 bits. The branch history tables have 256 entries. Assume
that each branch below has its own BHT entry. The branch outcomes for B2 and B3 are provided for your
solving convenience. Note that B3 has the same pattern as B2 but at a different phase, the phase difference
is important. (11 pts)

BIGLOOP: LOOP:

B1: bne $t1, $0, SKIP # Random, independent, taken 25% of time.

...

SKIP:

B2: bne $t2, $t5, SKIP2 # Pattern: N N N N N N T T N N N N N N T T N N N N N N T T ....

...

SKIP2:

B3: bne $t7, $t8, SKIP3 # Pattern: N N N N N T T N N N N N N T T N N N N N N T T N ....

...

SKIP3:

B4: bne $t9, $t10, LOOP # Iterates 50 times.

...

j BIGLOOP

nop

(a) Determine the prediction accuracy for each branch and each predictor. The accuracies should be after
warmup. Do not compute the number of entries. Approximate the accuracy of B1 predictions.

©B1 on I: Accuracy: 70%

©B1 on L: Accuracy: 70%

©B1 on G: Accuracy: 70%

©B2 on I: Accuracy: 62.5%

©B2 on L: Accuracy: 100%

©B2 on G: Accuracy: 100%

©B3 on I: Accuracy: 62.5%

©B3 on L: Accuracy: 100%

©B3 on G: Accuracy: 85%

©B4 on I: Accuracy: 98%

©B4 on L: Accuracy: 98%

©B4 on G: Accuracy: 98%

Since branch B1 is taken 25% of the time the two-bit counter used to predict it will likely be 0 or 1 (with probability 36
40 ), therefore

the prediction accuracy of B1 is about 75% (it is exactly 70%, explained below). The accuracy is the same on all predictors because
correlating the prediction with past occurrences of the same branch (local) or other branches (gshare) does not help predict the
random branch.

The bimodal prediction accuracy for B2, B3, and B4 is straightforward.

5
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Branch B2 and B3 follow a regular pattern that repeats every eight occurrences. This is small enough for the local predictor to
achieve a 100% prediction accuracy. Each iteration of the loop has four branches, so the 16-bit GHR can “remember” four iterations.
It so happens that B2 does whatever B3 did on the previous iteration. Gshare easily remembers one iteration back, so the prediction
accuracy of gshare for B2 is 100%.

Determining the gshare prediction accuracy for B3 is more involved. The prediction accuracy depends upon how much of the repeating
pattern the GHR holds. The pattern consists of four branches (B1-B4):

B1: x x x x x x x x ...

B2: n n n n n n t t ...

B3: n n n n n t t n ...

B4: T T T T T T T T ...

GHR: xnnTxnnTxnnTxnnTxnnTxntTxttTxtnT (repeats)

Iter: 0 1 2 3 4 5 6 7 0 1 ...

The x outcome for B1 can be either N or T, the outcomes for B2 and B3 are shown in lower case so they can be distinguished from
B4 when looking at the GHR. The predictability of B3 depends on the iteration (see the diagram above). First consider iteration
0. The outcome is N and this outcome only occurs when the outcomes in the previous iteration (7) are xtnT. For iteration 0 the
GHR needs to be five bits to see enough: tnTxn (the last x isn’t needed). Similarly, iterations 6 and 7 can be predicted using only
the previous iterations. Since the GHR is sixteen bits it is large enough to predict these iterations with 100% accuracy. Iterations
1 through 5 require more than five bits. Iteration 1 needs to see iteration 7, requiring 9 bits (which we have). For similar reasons
iteration 2 needs 13 bits, iteration 3 needs 17 bits (bzzzt! [that’s the GHR-is-too-small buzzer]), and iteration 4 needs 21 bits (bzzzt!).
Iteration 5 also needs 21 bits (bzzzt!) since the GHR value at B3 for iterations 4 and 5 would be different. Since the GHR is only 16
bits the GHR contents will be identical when predicting B3 in iterations 3, 4, and 5. This would not be a problem if the outcome of
B3 was the same in all these iterations (all taken or all not taken), but it’s not taken in iterations 3 and 4 but taken in iteration 5.
As a result the two-bit counter will mostly predict not taken but the branch will sometimes be taken. Because of the random branch
there are really sixteen (four x’s) two-bit counters for iterations 3-5 and they are accessed in random order. They will mostly be
at zero or one. As a rough estimate, (which is enough for full credit) assume the counter is always zero or one, then the prediction
accuracy of iterations 3 and 4 will be 100% and iteration 5 will be 0%. Taking into account that the counter is sometimes 2 and 3,
(see below) we get a prediction accuracy of 12

15 = 80% for iterations 3 and 4 and a prediction accuracy of 20% for iteration 5.

The overall prediction accuracy for branch B3 is the average of each iteration: 1
8 (5 * 100% + 2 * 80% + 20%) = 85%. So

gshare’s accuracy on B2 is 85%.

To precisely determine the prediction accuracy on B1 (and also B2, and to a very minor extent, B4) one needs to compute the
probability that the counter value is less than 2. In the other cases the counter value is not effected by the random branch so their
exact value can be computed, usually 0 or 3. Consider B1 using the bimodal predictor. Because it’s taken only 25% of the time
the counter will mostly be less than two, but because outcomes are independent there is a chance the branch will be taken twice
in a row, leaving the counter at 2 (or even 3). Computing these probabilities is straightforward, and uses a standard technique in
queuing theory: Markov chains. A Markov chain is a mathematical model that can be used to represent the counter and other systems
which can be represented by state transition diagrams with probabilities associated with arcs. There are four states, denote them s0
(count is 0), s1 (count is 1), etc. There is an arc from s0 to s1 and it is associated with the transition probability (branch taken
probability), 0.25, which we will denote p. There are similar arcs from s1 to s2 and s2 to s3. There are also arcs from s3 to s2,
etc. representing the not-taken cases, they are associated with the not taken probability, 0.75 or 1 − p.

It turns out it is surprisingly easy to solve for the state probabilities. The key observation is that the number of times the counter
is incremented from 0 to 1 (or 1 to 2, etc) must be equal to the number of times it is decremented from 1 to 0 (or 2 to 1, etc)
(plus or minus 1, which is insignificant). Overloading the notation, let s0 denote the probability of the counter being 0. Then
s0p = s1(1 − p) (what goes up must come down, or more formally, a balanced flow equation). Generalizing, sip = si+1(1 − p)

for i ∈ {0, 1, 2}. With a few substitutions and some manipulation we find si = s0

(
p

1−p

)i

. Obviously
∑3

i=0 si = 1 and so

∑3
i=0 s0

(
p

1−p

)i

= 1. Solving for s0 we get s0 = 1

/[∑3
i=0

(
p

1−p

)i
]
. Since the summation is only over four terms one

could compute s0 at this point, but we don’t have to since there is a closed-form expression for that summation:
∑n−1

i=0 xi = xn−1
x−1
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and so

s0 =

[
p

1 − p
− 1

]/[(
p

1 − p

)4

− 1

]
.

For branch B1 p → 0.25 and so s0 = 27
40 , s1 = 9

40 , s2 = 3
40 , and s3 = 1

40 . The branch prediction accuracy for all predictors
on B1 is exactly 3

4
27+9
40 + 1

4
3+1
40 = 70%, reasonably close to the 75% estimate based on the assumption that the counter never

reaches 2.

Grading Notes: Way too many people got B1 wrong, the most common wrong answer was 25%. That would only be correct if
a taken prediction were made every time. (Yes, I understand that with more time . . .) No one realized that 75% would be an upper
bound on B1’s prediction accuracy. Many had trouble with gshare, or decided not to spend time on it.

(b) A gshare predictor using a 15-bit GHR (instead of the 16-bit GHR used above) should give the same
prediction accuracy for branch B2. How small can the GHR be made without changing the prediction
accuracy of B2? Assume there are no collisions. Note: The original question asked about B3.

Branch B2 does whatever B3 did in the previous iteration, so the GHR can predict it at 100% accuracy with as few as three bits.

The original question asked about B3. Prediction accuracy is determined by how many previous branches the predictor can see. At
four branches per iteration a 16 bit GHR holds four previous B3 outcomes. Reducing to 15 bits looses the oldest B3 outcome, however
that information is in B2 because its outcome is the same as B3 in the previous iteration. Therefore the GHR can be reduced to 13
bits without changing predictor accuracy. (At 13 bits B2 is the oldest outcome.)

(c) For the local predictor, how small can the local history be made without affecting the prediction accuracy
of B2 and B3?

To distinguish the first of the two taken branches from the last not-taken branch the local history must be at least six bits.
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Problem 4: The diagram below is for a cache with 256-character lines on a system with 8-bit characters.
(17 pts)

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

©Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32

32 b

31:2431:24

23:8

23:2

23:8

23:2

©Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 24

Index

23 8

Offset

7 2 1 0

©Associativity: 2

©Cache Capacity (Indicate Unit!):

It’s 2 * 224 characters (bytes in this case) or 32 MiB.

©Memory Needed to Implement (Indicate Unit!):

It’s the cache capacity plus 2 * 216(32 − 24 + 1) bits.

©Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

31 25

Index

24 8

Offset

7 2 1 0

8
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Problem 4, continued:

(b) The code below runs on the cache from the previous part. When the code below starts running the cache
is empty. Consider only accesses to the array.

int *a = 0x100000; // sizeof(int) = 4 characters

int sum, i, j;

for(j=0; j<2; j++)

for(i=0; i<1024; i++)

sum += a[ i ];

©What is the hit ratio for the program above?

There are 256
4 = 64 elements per line. During the first iteration the hit ratio is 63

64 , during the second it is 1 since the entire array

can be cached. The total hit ratio is 127
128 .

(c) In the problem below, only consider accesses to the arrays.

int *a = 0x10000; // sizeof(int) = 4 characters

int *b = 0x20000;

int sum, i, j;

for(j=0; j<2; j++)

for(i=0; i<1024; i++)

sum += a[ i ] + b[ i ];

©What is the minimum size of a direct mapped cache for which the program above will have a 100% hit ratio
on the second j iteration? Explain.

The total size of the two arrays is 8192 characters but if the cache were 8192 characters the index bits for the two arrays would
be the same and they could not be simultaneously cached. The only way for the two arrays to have different index bits is to make
sure the index part of the address includes bit 16 (bit 16 of 0x10000 is 1, bit 16 of 0x20000 is zero). Such a cache would be

217 = 131, 072 characters. What a difference!

©What is the minimum size of a two-way, set-associative cache for which the program above will have a 100%
hit ratio on the second j iteration?

In this case the cache can be made the combined size of the arrays, 8192 characters . Corresponding elements (say, when i=3)
have the same index but the cache can handle the two different tags.

©What is the minimum size of a three-way, set-associative cache for which the program above will have a

100% hit ratio on the second j iteration?

Again, waste. Why couldn’t it be a four-way? One third of the cache goes to waste, the size is 3 * 4096 . Note that if it were a
four way the size could be 8192 characters.

9
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Problem 5: Answer each question below.

(a) In the PED below for a statically scheduled 2-way superscalar machine the xor instruction stalls in IF
even though there is an empty space in ID. (5 pts)

add s1, s2, s3 IF ID EX ME WB

or s4, s1, s5 IF ID -> EX ME WB

xor s6, s7, s8 IF -> ID EX ME WB

and s9, s10, s11 IF -> ID EX ME WB

©Why?

If xor did move in to ID then the instructions in ID would be out of order and ordinarily the decode logic is designed for in-order
instructions, so it couldn’t handle them.

©Would it be difficult or would it be impossible to modify the implementation (but keeping it statically

scheduled) so that such an instruction could move to ID? Explain.

Tedious but not impossible. Logic would have to consider case where instruction in slot zero follows instruction in slot one.

(b) In a dynamically scheduled system why should store instructions wait until they are ready to commit
before storing the data? (6 pts)

Because it might be squashed, and if it wrote before being squashed there would be no way easy to recovery the previous memory
contents.

10
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(c) The same code fragment executes on 1-way, statically scheduled systems with the specified FP add
functional unit(s). For each show a pipeline execution diagram. Don’t forget to consider all structural
hazards and check carefully for dependencies. All adders take a total of four cycles to compute a result
(latency is 3). (5 pts)

©One adder, A, initiation interval: 1.

# Solution

add.d f0, f2, f4 IF ID A1 A2 A3 A4 WB

add.d f6, f0, f8 IF ID -------> A1 A2 A3 A4 WB

add.d f10, f0, f12 IF -------> ID A1 A2 A3 A4 WB

©One adder, A, initiation interval: 2.

# Solution

add.d f0, f2, f4 IF ID A1 A1 A2 A2 WB

add.d f6, f0, f8 IF ID -------> A1 A1 A2 A2 WB

add.d f10, f0, f12 IF -------> ID -> A1 A1 A2 A2 WB

©One adder, A, initiation interval: 4.

add.d f0, f2, f4 IF ID A1 A1 A1 A1 WB

add.d f6, f0, f8 IF ID -------> A1 A1 A1 A1 WB

add.d f10, f0, f12 IF -------> ID -------> A1 A1 A1 A1 WB

©Two adders, A and B, each has initiation interval: 4.

add.d f0, f2, f4 IF ID A1 A1 A1 A1 WB

add.d f6, f0, f8 IF ID -------> A1 A1 A1 A1 WB

add.d f10, f0, f12 IF -------> ID B1 B1 B1 B1 WB

11
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(d) One problem in Homework 5 was to analyze the execution of an unoptimized program to compute π.
Many people got the question below wrong, here’s your chance to get it right! (5 pts)

©Should computer engineers analyze the performance of processors running unoptimized code? Explain.

They should analyze the kinds of programs that people run, which is optimized. Software is compiled without optimization only for
special circumstances such as debugging.

(e) Consider a new data type, binary coded trianary. This 32-bit data type consists of 16 radix-3 digits, each
coded with two bits, in the same way a BCD data type would consist of 8 radix-10 digits. (8 pts)

©Why might 3-fingered, three-armed aliens (one hand per arm) find this data type useful?

For the same reason we’ve adopted a radix-10 number system they might adopt a radix-9 or radix-3 number system. Binary-coded
trianary would have the same advantage for them.

©Explain how the data type would be useful in accessing arrays in which the element size was a power of
three.

Suppose the size were 33 = 81 and we wanted to access element 21. Instead of multiplying by 21 * 81 we would shift the trianary
21 by six bits (three trianary digits). Either we would use a new machine instruction to convert it to binary or the array would be
25% padding.

Grading Note: A common incorrect answer was that it would be easy to increment an index. That’s easy anyway since it would take
one cycle to add 81 (incrementing the address by one element).

In a meeting next week you plan to argue that this data type should be included in the next revision of the
ISA, one of several proposed new data types. Only one will be chosen. Note: The following sentence was not
in the original exam. Three-fingered aliens are not expected to make up a large portion of your customer
base.

©How will you argue that the data type should be included?

First, show that multiplying by a power of three and computing modulo 3 (or a power) would be only a single cycle with the new
data type, versus many cycles (especially for modulo now). Then argue that existing software performs enough modulo-3 arithmetic
to benefit from the extension (if recompiled).

Grading Node: Many answers involved aliens. They were fun to read.

©What will you do in the next week to prepare your argument?

Analyze existing code to find how often they perform power-of-three multiplication and modulo operations.

The following incorrect answer was common: write example programs to demonstrate the data types usefulness. It’s wrong because
the example programs don’t tell us how often the data type would be used in real programs, which is very important. A sample
program should not be necessary to demonstrate that a modulo 3 operation can be done in 1 cycle rather than 15 (it would be argued
by the design of the arithmetic unit, in this case comparing an existing division/modulo unit to a shifter or logic unit [for masking to
do the modulo]).

12
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(f) In Homework 6 the performance of a linear search of an array and linked list were compared. On the
dynamically scheduled systems the search was much faster on the array. Now consider the array program
on a statically scheduled system. (8 pts)

\scoreable Would the array program perform as well compared

it the linked list program? Consider

the effect of memory latency and line size.\par

\solution{The array program would still perform better than the linked

list program, but with longer memory latency or shorter line size the

array program on the dynamically scheduled system would run

substantially faster. }

©Explain. Hint: the solution above was intentionally included.

The array program does better because a single miss brings in multiple lines. Both statically and dynamically scheduled systems enjoy
this benefit. If the line size is short or memory latency is large the dynamically scheduled system could have misses to more than one
line at once, overlapping two time consuming memory accesses. This is something the statically scheduled processor could not do.

(g) Predicated instructions can be used to avoid branches. (8 pts)

©Why do predicated instructions have maximum benefit over branches that skip over one instruction (com-

pared to predicated instructions used to avoid branches that skip over more than one instruction)?

Because of the overhead needed for branches, especially in superscalar machines. Even on a one-way machine the branch overhead
is worse than sometimes wasting time by executing a predicated instruction with a false predicate. As more instructions are skipped
over by the branch, the benefit of predication drops since the branch overhead remains fixed while the waste of executing predicated
instructions increases.

©Suppose the compiler is considering whether to replace a branch that skips n instructions with predicated
instructions on a dynamically scheduled machine. How could the compiler use an estimate of prediction
accuracy, fcorrect, and resolution time, tresolve, as well as implementation details to make its decision?

The performance potential lost due to mispredicted branches is proportional to the resolution time (the time needed to determine
the branch condition). If a branch has a low prediction accuracy and a high resolution time then it will be responsible for squashing
many instructions, and so the waste of predication is a better alternative. The higher tresolve(1 − fcorrect) the more instructions
(higher n) one could predicate.

13
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Problem 1: In the diagram below certain wires are labeled with cycle numbers and values that

will then be present, for example, C2:9 indicates that at cycle 2 the wire will hold a 9. Other
wires are labeled just with cycle numbers, indicating that the wire is used at that cycle. Write a
program consistent with these labels. There are no stalls during the execution of the code. The code
should use five instructions. Note: The diagram in the original exam had an error that resulted in

contradictory information about the third instruction (fetched in cycle 2). The error was a C3:5
pointing to the input to the ID/EX.dst latch; that now points to the rt address input to the register
file. [35 pts]

©Write a program consistent with these labels.

©Use labels for branch targets (if any) and label the target line.

format
immed

IR

Addr
25:21

20:16

IR

IF
ID EX

WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

C2: 9

C4

C6

C5 C4

C4

C3: 12

C5:3C2: 9

C3:5

15:0

C1: 2

C0: 0x1000

C2: 0x1008

Solution shown below. Upper-case letters in instruction mnemonics indicate parts that are fixed. For example, Sw indicates
that the instruction must be some kind of a store instruction, but instead of sw it could be sh or sb. Register numbers
below £10 are based on the labels above, registers £10 and above are arbitrary. For example, £3 in the and must be £3,
but £14 could be £15.

# Cycle 0 1 2 3 4 5 6 7 8 9

Bne $10,$10 TARG IF ID EX ME WB

addI $9, $9, 12 IF ID EX ME WB

Sw $11, 0($9) IF ID EX ME WB

TARG:

JALR $31, $12 IF ID EX ME WB

and $3, $14, $31 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9
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Problem 2: Consider the CISCy instruction below: [25 pts]

(a)
add 0x123456(r1), 8(r2), r3 # 0x123456(r1) is the destination.

©What makes it CISCy? (CISCy means characteristic of CISC ISAs.)

It’s an ALU instruction and it accesses memory, that’s CISCy. Also, because of the large immediates that can be present,
a reasonable coding would have variable-size instructions, another CISCyness.

© Ignoring instruction size, why would it be difficult to implement such an instruction on the kind of
five-stage pipeline used in class for MIPS?

Lots of reasons. For one, because execution of the instruction includes memory access before the addition (to get the first
operand) but in the five-stage pipeline memory is accessed after the execute stage.

3
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Problem 2, continued:
add 0x123456(r1), 8(r2), r3 # 0x123456(r1) is the destination.

(b) How could the single-issue (not superscalar) pipeline used in class be modified so that instruc-
tions like the one above could be executed with a potential for a CPI of 1 without impacting clock
frequency? (Instructions like the one above have one destination and two sources, the destination
and first source can either use a register value or memory value specified with displacement ad-
dressing, the second source can be either a register value or an immediate.) Feel free to throw
hardware at the problem, but do not assume that the hardware is any faster than what we’ve been
using.

© Show a sketch of the pipeline, briefly explaining what should be done in each stage.

Here are the stages that would be needed. A correct solution might include a quick sketch.

IF: Same (pretend, because instructions are variable width).

ID: Same (pretend, because instructions are variable width).

EA: Compute effective addresses for destination and source operands (if needed).

M1: Load first source operand from memory (if needed).

EX: Same

M2: Store result in memory (if necessary).

WB: Store result in register file (if necessary). WB and M2 might be combined.

© Show a pipeline execution diagram for the following code on your new pipeline, assuming no
dependencies.

Solution appears below.

# Solution

add 0x1234(r1), 8(r2), r3 IF ID EA M1 EX M2 WB

or r4, 7(r5), r6 IF ID EA M1 EX M2 WB

and 0x1234(r7), r8, r9 IF ID EA M1 EX M2 WB

© In the part above, why was it necessary to assume no dependencies?

First, about that word “assume.” I might assume that you had breakfast this morning, but I never assume that I had
breakfast because I know for sure whether I did or didn’t. So the question above is asking why the code might still have
dependencies alluding to the fact that there are no registers in common. The question does NOT ask “why was an example
with no dependencies chosen for the problem.”

Back to the question. The assumption was made because dependencies are still possible, through memory. The effective
address of the destination of the add instruction might be the same as the first source operand of the or instruction.
That is, the add writes the memory location that the or reads, a true dependency. (Such dependencies do not affect
statically scheduled RISC processors because load and store instructions pass through the same memory stage in order.)

4
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Problem 3: Answer each question below.

(a) What’ll it be? One FP adder with an initiation interval of 2 and a latency of 3 (four cycles of
computation) or two FP adders each with an initiation interval of 4 and a latency of 3? [10 pts]

©What is the maximum number of FP adds per second with each alternative on a 1 GHz system?

In either alternative a result can be produced every two cycles, at 1 GHz thats 500 million FP adds per second.

For some reason few answered this question correctly.

© Show a code fragment in which one of the alternatives is slightly faster. For the alternative with
two adders, use label “A” for one adder and “B” for the other.

# Solution.

# On first alternative

add.d f0, f2, f4 IF ID A1 A1 A2 A2 WB

add.d f6, f8, f10 IF ID -> A1 A1 A2 A2 WB

# On second alternative

add.d f0, f2, f4 IF ID A1 A1 A1 A1 WB

add.d f6, f8, f10 IF ID B1 B1 B1 B1 WB

© Ignoring the cost of the adders themselves, which alternative would be more costly and why?

The second alternative, since the outputs of the two adders have to be multiplexed together.

5
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(b) SPEC benchmark numbers are provided in “base” and “peak” forms. [10 pts]

©How are they different?

Programs compiled for the base numbers are prepared with normal (actually, a bit on the aggressive side) optimization.
Programs compiled for the peak numbers are prepared with your-life-depends-on-it extreme optimizations.

©When should an intelligent (passed EE 4720) computer buyer use the base numbers, and when
should the buyer use the peak numbers?

Use base numbers when you plan to use purchased software or when you can’t put alot of effort in to tuning code. Use
the peak numbers when compiling your own software and have the expertise and time to super-optimize, or if purchasing
super-optimized software.

(c) Stack ISAs had burrowed their way in to our past and percolated to the fore in the past decade.
[10 pts]

©Why are programs compiled for stack ISAs smaller than the same programs compiled for other
ISAs? (Assume all compilers are of high quality.)

Many instructions in stack ISAs refer to the stack so they don’t need register operands, and so they can be small, say one
byte.

©Why would superscalar implementations of stack ISAs be less efficient (further from the ideal CPI)
than superscalar implementations of RISC and some other “conventional” ISAs? Ignore instruction
fetch problems. Consider the simple stack programs presented in class.

If the instructions in a fetch group in a statically scheduled superscalar processor (the only kind covered so far) are
dependent some will stall. The stack organization forces dependent instructions to be near each other, guaranteeing lots
of stalls in a superscalar implementation.

6
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(d) At last superscalar implementations and VLIW ISAs will wage their epic [tm] battle now at the
dawn of the twenty-first century.[10 pts]

©What distinguishes a superscalar implementation from a nonsuperscalar implementation? (VLIW
isn’t part of this question).

Superscalar processors can sustain execution of more than one instruction per cycle by duplicating fetch, decode, register
read, and other parts of the system.

©Explain two ways in which VLIW machines overcome problems encountered in superscalar imple-
mentations of conventional (say RISC) ISAs?

The dependency information in VLIW bundles reduces the need for the dependency-checking hardware that is present in
superscalar processors. Limiting branch targets to bundles reduces the inefficiencies due to un-aligned fetch groups.

7
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Problem 1: The (hopefully familiar) code fragment on the next page executes as shown on the dynamically
scheduled system illustrated below.

(a) For each entry in the Physical Register File table on the next page place a “[” at the cycle(s) at which a
physical register is allocated (removed from the free list) and place a “]” at the cycle(s) at which it is placed
back in the free list. (This was part of the solution to Homework 5.) (10 pts)

(b) The diagram below includes circled letters, these letters appear in a Signals Values Table on the next
page.

© (10 pts) Fill in the table showing the signals that will appear on the labeled wires.

• Use register names (f0, $1, etc.) for architected registers (but not for physical registers!).

• Use a question mark for a physical register number that cannot be determined from the tables.

• Since the machine is four-way superscalar each wire holds four values. Do not show values for the
instructions that are not in the table, such as the two instructions following sub.

• Assume that values have been correctly computed, even if they depend upon preceding instructions
in the same group. (This affects row E in the table.)

25:21

20:16

rsPR

dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

P
C

dst
S

t: C
,X

0,0

ROB #

C,X
Addr

D In

R
eo

rd
er

 B
uf

fe
r

dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ROB #
tail

head

IDIF

rtPR

F
re

e 
Li

st

dstP
R

dstP
R

dstPR

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

EX

dstPR

dstVal.

Decode
dest. reg

incm
b

Addr

Addr

Data

Data

Addr
D In
D Out

dst

incmb
dstPR

Addr

D In

C Reg. Map

Data

incmb

dstPR

R
ec

ov
er

Q

M
E

D
A

The filled-in tables appear on the next page.

The D row shows the physical register used for the rs operand being read for instructions starting execution. Instructions start
execution when their operands are ready, with one exception that is the cycle after the instruction is decoded. The exception is
multiply which waits two cycles.

The M row shows the physical register number for instructions being written back. The easy way to fill this row is to check when
entries are written in the physical register file table.

2

← → Spring 2002 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2002/fe_sol.pdf


LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ldc1 f0, 0($1) IF ID Q L1 L2 WC

IF ID Q L1 L2 WB C

IF ID Q L1 L2 WB C

IF ID Q L1 L2 WB

mul.d f0, f0, f2 IF ID Q M1 M2 M3 M4 M5 M6 WC

IF ID Q M1 M2 M3 M4 M5 M6 WC

IF ID Q M1 M2 M3 M4 M5 M6 WC

IF ID Q M1 M2 M3 M4 M5

sdc1 0($1), f0 IF ID Q L1 L2 WC

IF ID Q L1 L2 WC

IF ID Q L1 L2 WC

addi $1, $1, 8 IF ID Q EX WB C

IF ID Q EX WB C

IF ID Q EX WB C

bne $2, $0 LOOP IF ID Q B WB C

IF ID Q B WB C

IF ID Q B WB C

sub $2, $1, $3 IF ID Q EX WB C

IF ID Q EX WB C

IF ID Q EX WB C

# ID Map 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

f0 99 97,96 94,93 91,90

$1 98 95 92 89

# In cycle one first 97 is assigned to f0, then 96 (replacing 97). The

# same sort of replacement occurs in cycles 4 and 7.

# Commit Map 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

f0 99 97 96 94 93 91 90

$1 98 95 92 89

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Physical Register File

99 1.0 ]

98 0x1000 ]

97 [ 10 ]

96 [ 11 ]

95 [ 0x1008 ]

94 [ 20 ]

93 [ 2.2 ]

92 [ 0x1010 ]

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

# Signal Values 0 1 2 3 4 5 6 7 8 9 10 11 12

# Solution

A f0 $2 f0 $2 f0 $2 f0 $2

f0 f0 f0 f0

$1 $1 $1 $1

D 98 ? 97 95 ? 94 92 ...

98 95 95 92 92 ...

98 95 92 ...

E 99 ? 96 ? 93

97 94 91

98 95 92

M 95 97 92 94 96

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
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Problem 2: The add instruction below is a predicated version of a MIPS instruction (for this exam). If
the contents of register $s5 (for the example) is non-zero the add instruction executes normally. If it’s zero
then it’s as though the add never executed. Any GPR can be used to hold the predicate.
# Cycle 0 1 2 3 4 5 6

xor $v1, $a0, $a1 IF ID EX ME WB

lw $s5, 0($t2) IF ID EX ME WB

($s5) add $s1, $s2, $s3 IF ID EX ME WB

(a) Suppose there are predicated versions of other two-source, one-destination instructions. How might they
be coded in MIPS? The coding should be chosen to ease implementation. (5 pts)

Use the Type-R format and use the SA field to hold the predicate register number.

(b) Modify the pipeline below to implement predication; it should run the code above correctly and without
stalls (as illustrated). The added hardware must detect whether the predicate is true or false and take
appropriate action. It should include bypassing, for example, to handle the dependency carried by $s5 or
from xor if the predicate were $v1.

Hint: A correct solution uses multiplexors, an is P (box that recognizes a predicated instruction), assorted
gates, and some modifications to existing components.

(9 pts)

Changes shown in blue bold.

In the ID stage a port has been added to the register file to read the predicate value, it feeds a NOR gate (to test if it’s equal to zero)
and is written to a new pr pipeline latch. The predicate is examined in the MEM stage, it its true (pr is 1) and the instruction is
predicated (PE is 1) the “0” is select from the dst multiplexor, changing the destination register to zero. It’s necessary to put this
hardware in the MEM stage so that predicated instructions with dependencies like add can execute without stalling.

Bypass multiplexors are included in the EX and MEM stages, the EX mux would be used if the predicate were v1, the MEM mux is
used, to bypass s5.

Note that the pr pipeline latches are just one bit. An alternative would be to store a full 32-bit value and check if it’s zero in the
MEM stage, but that would be more costly.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst

NPC

10:6 Addr Data

pr
PE

= P
PE

pr

"0"Decode
dest. reg

=0
=0
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Problem 2, continued:

(c) Assume predicates were implemented as requested in the previous part. Explain why bypassing of the
dependency carried by $s1 in the program below won’t work for the hardware below. Explain how the
problem might be fixed. (8 pts)

It won’t work because the bypass control logic is in the ID stage. The or will need to bypass a value from add only if its predicate
is true, otherwise it will read s1 from the register file. When the or is in ID the predicate on add is not yet resolved and so there
is no way the bypass logic, which is in ID, can set the ALU multiplexors correctly.

A solution would be to move at least some of the control logic to the EX stage, and have that logic compute bypass connections based
on how predicates are resolved. A less expensive and lower performance solution would be to stall instructions in ID if they depend
on a value produced by an unresolved predicated instruction in EX or ME.
# Cycle 0 1 2 3 4 5 6

xor $s5, $a0, $a1 IF ID EX ME WB

lw $s5, 0($t2) IF ID EX ME WB

($s5) add $s1, $s2, $s3 IF ID EX ME WB

or $s4, $s1, $v0 IF ID EX ME WB

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

Control
Logic

c1

c2

5
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Problem 2, continued: Consider such predicated instructions in a dynamically scheduled implementation
using method 3. The implementation without predicate prediction (the next two parts) should realize the
benefit of predicated instructions: avoiding the need for branches.

(d) How might the ID Register Map be updated for predicated instructions? (For partial credit: Why is this
a good question?)(5 pts)

Update the ID map for a predicated instruction in the same way as an ordinary instruction: write the physical register number assigned
to the destination. If the predicate turns out to be false just copy the value from the incumbent physical register to the one assigned
to the instruction.

(e) Based on your answer above, how is execution affected if the predicate turns out to be false? (5 pts)

The only impact on execution is the need to copy a physical register and the ultimately unnecessary waiting of instructions dependent
on the destination register.

(f) Consider a dynamically scheduled system using predicate prediction. What should be done when a
predicate is mispredicted? Under what circumstances (properties of program being run) would it be faster
than a system without predicate prediction? Under what circumstances would it be slower? (5 pts)

First things first. There is a big difference between a false predicate and a mispredicted one. When a predicate is mispredicted
following instructions may read the wrong data. For example, if a predicate is mispredicted true then some instructions may read
the value written by the predicated instruction or if its mispredicted false they read an “outdated” value rather then the one the
predicated instruction would have written. In either case they read the wrong value and so will have to be squashed or re-executed.
The problem is that following instructions started executing based on a predicted predicate value, not the real one. If there is no
predicate prediction following instructions will wait for the predicate to resolve so they will always execute with the correct data,
whether or not the predicate is true or false.

Now back to the solution: What one does on a predicate misprediction depends on how the ID map was updated. If the ID map was
updated as described above then on a misprediction instructions dependent on the result can be re-executed (not something covered
in class), a simpler solution would be to squash all instructions following the predicated instruction, restore the ID map and re-start
fetching after the predicated instruction. If instructions are re-executed the ID map does not have to be restored because it is correct,
only the values in the physical registers are wrong.

Another way to handle the ID map is to not update it for predicates that are predicted false. In that case squashing would be necessary
(re-execution would not be possible) since the ID map would be invalid.

Programs benefit from predicate prediction if predicates become available later than other operands to predicated instructions and
there are close dependencies with predicated instructions. It would be slower if prediction accuracy were low since valid instructions
would be squashed and re-executed. There would be little benefit if predicates were never available later than other operands to the
instruction. (The little benefit would be from scheduling latency, something not covered in class very much.)

6
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Problem 3: The diagram below is for an 2MiB (221 byte) 16-way set-associative cache, with a line size of
128 characters, for a system with 8-bit (how ordinary) characters.

(a) Answer the following, formulæ are fine as long as they consist of literals and grade-time constants. (10 pts)

©Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

32

64 b
16-Way

31:17

16:7

16:3

31:17

16:7

16:3

©Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 17

Index

16 7

Offset

6 3 2 0

©Memory Needed to Implement (Indicate Unit!):

It’s 221 characters (data) plus (32 − 17 + 1) 16 217−7 = 218 bits for the tag store.

©Show the bit categorization for a direct mapped cache with the same capacity and line size.

Since it’s 16-way set associative the index will need to be made log2 16 bits larger. Since the line size can’t change the offset bits
can’t be expanded (or shrunk) and so the tag size is reduced.

Address:

Tag

31 21

Index

20 7

Offset

6 3 2 0

7

← → Spring 2002 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2002/fe_sol.pdf


Problem 3, continued: Continue to use the set-associative cache from the previous part.

When the code below starts running the cache is empty. Consider only accesses to the array.

short *h = 0x100000; // sizeof(short) = 2 characters

int sum;

int i,j;

int ISTRIDE = 1;

int ILIMIT = 1024;

for(j=0; j<4; j++)

for(i=0; i<ILIMIT; i++)

sum += h[ ISTRIDE * i ];

(b) Answer the following. (10 pts)

©What is the hit ratio for the program above?

Each line holds 27

2 = 64 short integers. Since data is read sequentially on the first j iteration there will be a miss followed by 63
hits for a hit ratio of 63

64 . The total data read in a single j iteration is 1024 2 characters, which is much less than 2 MiB and so
on subsequent j iterations all accesses will hit.

The total hit ratio is thus
63+3 64

4 64 = 255
256 = 0.996094

.

©Find the minimum value of ISTRIDE needed to maximize the miss ratio. (That is, minimize the hit ratio,

make things really slow.) Don’t forget that the cache is set associative. Do not modify ILIMIT.

On a single j iteration the hit ratio can be maximized by accessing a different line every i iteration, that is done by setting ISTRIDE
to one half the line size, (26), (since each element is two characters). But every access would be a hit on the next j iteration. So
we need to make sure that a line cached in one j iteration is evicted by the next j iteration. Since its a 16-way cache a line is evicted
after 16 different lines having the same index are accessed (assuming LRU replacement). Making ISTRIDE really big and a power
of two would do this since then every access would have the same index. But the problem asked for the minimum ISTRIDE so we
need to think a little more.

Think of i as a 10-bit number (since it iterates from 0 to 210 − 1). In order to get exactly 32 distinct tags for each index we need
to “shift” i so that its five most significant bits are in the tag region, and the rest are in the index region. This way, for each index
there will be 32 tags, forcing evictions. (If there were just four bits in the tag region then the cache would be able to hold the first
j iteration.) To do that, set ISTRIDE to 211, and so the address will be computed by shifting i 12 places to the left (one extra
place since a short is two characters).

So the answer is ISTRIDE=211 .

8
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Problem 4: Answer each question below.

(a) In the pipeline execution diagram below the multiply is squashed to avoid the WAW hazard. How does
this make a precise exception impossible? (5 pts)

mul.d f0, f2, f4 IF ID M1x

add.d f0, f6, f8 IF ID A1 A2 A3 A4 WB

Suppose the add.d raises an exception. The exception handler will not see the value of f0 written by mul.d (because it was
squashed). For an exception to be precise the handler must see the effect of all instructions that precede the faulting instruction.

(b) How do processes share memory in a virtual memory system? Provide an example in which two processes
share address 0x12000 but address 0x34000, used by each process, is not shared. The addresses must be
used in the example. (5 pts)

They share memory by having virtual addresses map to the same physical address. Call the two processes A and B. The page tables
for process A and B might both map 0x12000 to physical page 0x1000, and so reads and writes would be writing the same memory.
Process A’s page table might map 0x34000 to physical address 0x2000 while process B’s page table might map it to 0x3000 and
so virtual address 0x34000 would be separate for each process.

9
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(c) Show how the branch history table and pattern history tables are connected in a local history branch
predictor. Show how the table is indexed and how its contents are used to make a prediction. (5 pts)(For
partial credit show a one-level [bimodal] predictor.)

The address input of the BHT is connected to the low bits of the program counter (or maybe NPC). The output of the BHT contains
the local history for the branch, it is connected to the address input of the PHT. The PHT output is a two-bit counter, if the upper
bit is 1 predict taken. A correct answer should include a sketch.

10

← → Spring 2002 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4720/2002/fe_sol.pdf


(d) One way to improve performance is to divide the pipeline into more stages, as in the Pentium 4 compared
to the Pentium III. This does not reduce the amount of time it takes to compute things, such as sums, though.
Given that: (8 pts)

©How are dependencies potential performance limiters when dividing pipeline stages?

The more pipeline stages are divided the higher the latency for functional units, such as the integer unit. In the classical case the
integer functional unit has zero latency so dependent instructions can start in the next cycle. If it’s divided in two the latency becomes
one and so dependent instructions that are decoded in the next cycle will have to stall. At some point dividing pipeline stage will
yield no additional performance because every instruction would be stalling.

©How does the Pentium 4 Fast ALU get around that?

By dividing the ALU in to low and high halves and allowing data from the output of the low half to be bypassed to the input of the
low half. The same is done for the high half. Therefore even though it takes two cycles to compute a complete result (three counting
conditions) a bypassable value is available in one cycle.

©Are dependencies still a problem or can we now use zillion-stage pipelines (at least as far as dependencies

are concerned)? Explain.

Yes. This trick only works for certain integer operations, so other instructions would dominate performance. Even without those
other operations, the number of bits in an integer operation is a limit.

©Why is branch prediction accuracy more important when there are more stages?

Because the number of instructions that are fetched between the time a prediction is made and the time it resolves is higher. For
a given branch prediction accuracy more pipeline stages mean more instructions squashed. This doesn’t mean lower performance, it
means that performance gained by dividing pipeline stages is limited. If each pipeline stage were divided in two clock frequency and
so performance, could be nearly doubled. (Nearly because of greater logic complexity, register setup times, etc.) But because roughly
the same amount of time is needed to resolve a mispredicted branch (regardless the number of pipeline stages) at best the part of
execution which does not include resolving mispredicted branches will nearly double.

11
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Problem 1: The DLX implementation below lacks bypass paths and, worse than that, lacks the
hardware needed for control-transfer instructions.

Changes and cycles shown in blue in the diagram below.

sign
ext.

IR

Addr
6:10

11:15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Data

NPC

Decode
RD RD RD RD

363

9

10

© [5 pts] Add exactly the hardware needed so that the control-transfer instructions execute as shown

below. Include a connection to the =0 box used in determining whether a branch is taken.

© [5 pts] Add exactly those bypass paths necessary so that the code below executes as shown. Check
the code carefully for dependencies, including all those related to the jalr instruction.

© [5 pts] Show the cycles in which each added wire will be used.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

ori r1, r1, #15 IF ID EX ME WB

bnez r1, SKIP IF ID EX ME WB

add r0, r0, r0 IF IDx

xor r0, r0, r0 IFx

SKIP:

sub r20, r20, r21 IF ID EX ME WB

jalr r20 IF ID EX ME WB

xor r0, r0, r0 IFx

...

add r15, r31, r0 IF ID EX ME WB

or r16, r16, r15 IF ID EX ME WB

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

2
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Problem 2: The DLX implementation below includes bypass paths into the EX/MEM.B register.

sign
ext.

IR

Addr
6:10

11:15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Data

NPC

Decode
Rd

RD RD RD

Bx

0
1

2

=’

=’

11:15

11:15

LSB

MSB

© [5 pts] Write a program that uses all three paths into the EX/MEM.B register. Hint: It’s easy.

addi r2, r2, #1 IF ID EX ME WB

sw 0(r1), r2 IF ID EX ME WB

sw 4(r1), r2 IF ID EX ME WB

sw 8(r1), r2 IF ID EX ME WB

© [10 pts] Design the control logic for the multiplexor feeding the EX/MEM.B register. The control
logic should be in the ID stage and feed into the ID/EX.Bx pipeline latch provided in the diagram
above.

Changes shown in blue.

3
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Problem 3: Registers r1 and r2 each contain a signed integer, call them i and j. Register r10

contains a double-word-aligned address, call the address A. Let p = i j.

© [10 pts] Starting at address A write p in three formats: integer, double-precision floating-point, and
single-precision floating-point. Maintain as much precision as possible.

Hint: A reasonable solution would use movitof and cvtXtoY instructions.

! Initially: r1 and r2 each contain an integer, i and j.

! r10 contains an address.

!

! At Mem[r10] write i * j (integer format).

! At Mem[r10+?] write i * j (double-precision FP)

! At Mem[r10+??] write i * j (single-precision FP)

# DLX Solution

movitofp f0, r1

movitofp f2, f2

cvtitod f0, f0

cvtitod f2, f2

multd f4, f0, f2

cvtdtoi f6, f4

sf 0(r10), f6

sd 8(r10), f4

cvtdtos f4, f4

sf 16(r10), f4

# MIPS Solution

mtc1 $1, $f1 # Move to FP (co-processor 1) register.

mtc1 $2, $f2

cvt.d.w $f10, $f1 # Convert from integer to double FP.

cvt.d.w $f20, $f2

mul.d $f4, $f10, $f20

sdc1 $f4, 8($10) # Store double-sized item (from $f4 and $f5).

cvt.s.d $f6, $f4

swc1 $f6, 16($10) # Store word-sized item

cvt.w.d $f6, $f4

swc1 $f6, 0($10)

4
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Problem 4: Answer each question below.

(a) In the two pipelined functional units below an instruction must pass through each segment
twice. The A’s are for FP addition and M’s are for FP multiplication.

A1

P
ipeline Latch

A2
P

ipeline Latch

M1
P

ipeline Latch
M2

P
ipeline Latch

© [10 pts] Complete the pipeline execution diagram below for a system using these functional units.
Don’t overlook the dependency through f6.

! Solution

addd f0, f2, f4 IF ID A1 A1 A2 A2 WB

addd f6, f8, f10 IF ID -> A1 A1 A2 A2 WB

muld f12, f6, f14 IF -> ID -------> M1 M2 M1 M2 WB

muld f16, f18, f20 IF -------> ID M1 M2 M1 M2 WB

5
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(b) The code below, which of course is not DLX, uses memory-indirect and autoincrement address-
ing.

lw r1, @(r2) ! Memory-indirect load.

lw r4, (r5)+ ! Autoincrement

lh r6, (r7)+ ! Autoincrement

© [10 pts] Rewrite the code in DLX.

lw r1, 0(r2)

lw r1, 0(r1)

lw r4, 0(r5)

addi r5, r5, #4

lh r6, 0(r7)

addi r7, r7, #2

(c) The three types of interrupts discussed in class are traps, hardware interrupts, and exceptions.

© [6 pts] For each one explain how the exception code (number) is determined.

Traps: the code is specified in the trap instruction itself. Hardware Interrupts: the code is based on the interrupt request
line that was asserted. Exceptions: the code is based on what went wrong with the faulting instruction.

© [6 pts] For each one explain where control returns after the handler completes.

Trap: The instruction following the trap instruction. Hardware Interrupt: The instruction just after the last one to
complete. Exception: the faulting instruction.

6
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(d) An ISA has two implementations, A and B; each implementation has a well-written compiler.

© [5 pts] Would the code compiled by A’s compiler run on implementation B? Briefly explain.

Yes, since they are compiled for the same ISA.

© [5 pts] A program is compiled using A’s compiler and B’s compiler. How might the compiled code
differ? Provide a reason for the difference.

Scheduling of instructions might be different because of differences in functional unit latencies. For example, in A loads
might have a latency of 1 (as in Chapter 3 DLX) while in B they might have a latency of 2, and so for B the compiler
try to move two instructions, rather than one, between a load and a use of the loaded value.

(e) You have become the owner of a large American computer company, congratulations.

© [6 pts] How can you (legally) influence the decision-making process so that SPECs next benchmark
suite does not unfairly put your company’s products at a disadvantage? (Note: Bribery is illegal
in the U.S.)

Become a member of SPEC and help create, and vote for, benchmarks fair benchmark suites.

7
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(f) DLX does not have delayed branches, but many other RISC ISAs do.

© [6 pts] What is a delayed branch and how does it help?

A delayed branch is one in which the instruction following the branch (or the d instructions following the branch, though
d is almost always 1) in program order is executed regardless of whether the branch is taken, followed by the branch
target if the branch is taken. Many implementations will be forced to squash the instruction following a taken non-delayed
branch, with a delayed branch the instruction following the branch is not squashed and so can do useful work.

(g)

© [6 pts] How and why is the CPI affected in an implementation re-designed for a higher clock
frequency?

With a higher clock frequency less work can be done per clock cycle. This might increase the latency of certain instructions
(for example, from six to twelve multiply segments), increasing the number of stall cycles and thus increasing CPI.

8
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Problem 1: The code fragment below executes as shown on a single-issue dynamically scheduled system
using a physical register file (Method 3). Initially register f0 contains a 0, f2 contains a 0.2, and f4 contains
a 0.4. The value computed by each instruction is shown near the right margin. (20 pts)

©Show where each instruction commits.

©Complete the ID- and commit-stage register map tables.

©Complete the physical register file table.

©Be sure to show the initial values for f0, f2, and f4 in the register maps and the register file.

© In the physical register file use a [ to indicate when a register is removed from the free list and use a ] to
indicate when it’s put back.

!Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

addd f0, f0, f2 IF ID Q A1 A2 WC (.2)

addd f4, f2, f4 IF ID Q A1 A2 WB C (.6)

addd f2, f0, f8 IF ID Q A1 A2 WC (1.)

addd f0, f4, f8 IF ID Q A1 A2 WB C (1.4)

addd f4, f2, f8 IF ID Q A1 A2 WC (1.8)

!Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

!Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ID:

f0 0 3 6

f2 1 5

f4 2 4 7

!Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Commit:

f0 0 3 6

f2 1 5

f4 2 4 7

!Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

PRF:

0 0 ]

1 .2 ]

2 .4 ]

3 [ .2 ]

4 [ .6 ]

5 [ 1.

6 [ 1.4

7 [ 1.8

8

9

!Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

2
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Problem 2: The code fragment below executes on three different systems, I, L, and G, each using a different
branch predictor:

I: One-level predictor, 216-entry BHT. L: Sixteen-bit (two-level) local history. G: Sixteen-bit (two-level)
gshare.

In the spaces provided below show the accuracy of, and the number of entries used by, the indicated branch
on the indicated system. The accuracy and number of entries should be after warmup. The number of
entries used for the gshare scheme can be approximate. If there is more than one table, show the number of
entries in each table separately.(20 pts)

©B1 on I: Accuracy: 50% Entries: One entry.

©B2 on I: Accuracy: 99% Entries: One entry.

©B3 on I: Accuracy: 662
3% Entries: One entry.

©B1 on L: Accuracy: 50% Entries: 1 + 216

©B2 on L: Accuracy: 99% Entries: 1 + 17

©B3 on L: Accuracy: 100% Entries: 1 + 3

©B1 on G: Accuracy: 50% Entries: ≈ 28

©B2 on G: Accuracy: 99% Entries: ≈ 28

©B3 on G: Accuracy: 100% Entries: ≈ 1 + 29

BIGLOOP:

LOOP2: ! Iterates 100 times

! Random, 0 or 1

lw r1, 0(r2)

addi r2, r2, #4

B1: bnez r1, SKIP1

add r10, r10, r11

SKIP1:

sub r3, r2, r12

B2: bnez r3, LOOP2

addi r1, r0, #3

LOOP3:

subi r1, r1, #1

B3: bnez r1, LOOP3

j BIGLOOP

3
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Problem 3: The diagram below is for an 8MiB (223 byte) set-associative cache for a system with 8-bit
(how ordinary) characters.

(a) Answer the following, formulæ are fine as long as they consist of literals and grade-time constants. (10 pts)

©Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

19:8 19:8

19:5 19:5

32

256

31:20 31:20

©Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 20

Index

19 8

Offset

7 5 4 0

©Associativity:

Eight-way.

©Line Size (Indicate Unit!):

It’s 28 characters.

©Memory Needed to Implement (Indicate Unit!):

It’s 223 characters (data) plus 8 × 212(12 + 1) bits for the tag store.

©Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

31 23

Index

22 8

Offset

7 5 4 0

4
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Problem 3, continued: Continue to use the set-associative cache from the previous part.

When the code below starts running the cache is empty. Consider only accesses to the array.

double *d = 0x100000; // sizeof(double) = 8 characters

double sum;

int i;

int ISTRIDE = 1;

int ILIMIT = 64;

for(i=0; i<ILIMIT; i++)

sum += d[ ISTRIDE * i ];

(b) Answer the following. (10 pts)

©What is the hit ratio for the program above?

It’s 31
32 . (Note that the size of a double is 8 characters.)

©Modify ISTRIDE and ILIMIT so that the cache, which remember is set-associative, is completely filled with
the minimum number of accesses.

Set ISTRIDE so that successive values of i access successive lines. That would be the line size divided by the array element size,

ISTRIDE = 28

23 = 25. Set ILIMIT to the number of lines, which is the associativity times the number of sets (two to the power of
the number of index bits): ILIMIT = 8 × 220−8 = 23+20−8 = 215.

5
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Problem 4: Answer each question below.

(a) The contents of the load/store queue in a dynamically scheduled system is shown below for t = 4720. At
this particular time the cache is empty, but with a load/store queue full of instructions it won’t be empty
for long. The instruction in entry L0 is the oldest.

The EA field indicates the effective address, a #1 in this field indicates that the effective address cannot be
computed until the instruction in ROB entry #1 (not shown) completes. It completes at t = 7700.

The Data field indicates the data that will be written by the store instruction in the entry.

The cache is nonblocking and the load/store queue can process an unlimited number of instructions per
cycle.

© (5 pts) For each load instruction at t = 4721 if it’s complete show what data it has loaded otherwise indicate
the first thing it’s waiting for.

Solution under the “Data loaded or reason for waiting” column.

Type EA Data Data loaded or reason for waiting.

L8: load #1 Need value from instruction in ROB entry #1 for EA

L7: load 0x1000 Loaded 55

L6: store 0x2000 66

L5: store 0x1000 55

L4: load 0x1000 Waiting for L3 to compute its address (could be 0x1000)

L3: store #1 33

L2: store 0x1000 22

L1: load 0x2000 Waiting for the cache.

L0: load 0x1000 Waiting for the cache.

6
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(b) The exception recovery mechanism in the R10000 does not need a commit map, the one in Method 3
does.

© (5 pts) But the R10000 takes longer to recover. Why does it take longer and how much longer does it take?

It takes longer because rather than replacing the ID map with a commit map it re-creates the older ID map by reversing the changes
made by the soon-to-be-squashed instructions four at a time. If there are sixteen instructions in the ROB that would take 4 steps.

(c) In some schemes for recovering from branch mispredictions on dynamically scheduled systems recovery
can start at completion rather than waiting for commitment.

© (5 pts) What additional hardware is needed for this? How is it used?

Storage for backup copies of the ID map. When a branch is predicted a backup copy of the ID map is stored. In the writeback stage
of a mispredicted branch the ID map is replaced by the backup copy corresponding to the mispredicted branch.

(d)

© (5 pts) Show how bits are categorized in a real address and a physical address in a system with a 64-bit
virtual address space, a 40-bit real address space and 214-character pages.

Bits 0 to 13 in real and virtual addresses are the offset. In a virtual address bits 14 to 63 are the virtual page number and in a real
address bits 14 to 39 are the real page number.

7
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(e) Connections for the jr instruction are omitted from the pipeline below.

© (5 pts) Add them.

Change shown in blue below.

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

RD RD RD
Decode

RD

© (5 pts) Show a pipeline execution diagram for the code below consistent with the modified hardware above.

slli r10, r1, 2 IF ID EX ME WB

addi r10, r10, r2 IF ID EX ME WB

lw r10, 0(r10) IF ID EX ME WB

jr r10 IF ID ----> EX ME WB

... IF ---->x

TARG: !Target of jr.

add r20, r21, r22 IF ID EX ...

8
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(f) Here are the IA-64 instructions used in the solution to Homework 3: ld1 (load byte), cmp.eq (compare
equal), cmp.le (compare less than or equal), cmp.gt (compare greater than), add (add of course), st1 (store
byte), and br (branch).

© (5 pts) Convert the DLX code below to IA-64, be sure to use predicated instructions.

©Show the stops.

sle r1, r2, r3

beqz r1, SKIP

add r10, r10, r11

j CONT

SKIP:

sub r12, r12, r13

CONT:

add r14, r12, r10

cmp.le p1,p2 = r2, r3;;

(p1) add r10 = r10, r11

(p2) sub r12 = r13, r13;;

add r14 = r12, r10

© (5 pts) Besides needing fewer instructions, how does predication speed execution? (Not necessarily in IA-64
implementations.) Modify the DLX program (without changing the branch and jump) so that predication
would be less useful.

With predication branches can be eliminated, along with their inefficiencies. The inefficiencies include the time needed to fetch the
target and the un-executed instructions in the fetch group following a taken branch.

sle r1, r2, r3

beqz r1, SKIP

add r10, r10, r11

j CONT

SKIP:

sub r12, r12, r13

CONT:

add r14, r12, r10

9
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Problem 1: In the DLX implementation below six paths are marked with a number, a cycle in
which the path will be used. Write a DLX program that uses those six paths at the indicated
cycles. Some marked paths are bypass paths and some are not; the bypass paths can be used only
at the cycles indicated. A pipeline execution diagram is provided for your convenience.

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A

B

IMM

NPC

ALU
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Addr

Data

Addr D In

+4

PC

Mem
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Addr

Data

Addr
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Mem
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Data
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Control
Logic

RD RD RD

5

5

6

6

3

5

© [15 pts] Choose the register operands so the bypass paths are used only at the cycles indicated.

© [15 pts] Choose the instructions so that the marked paths will be used as indicated. There need be
only one control transfer instruction.

© [5 pts] One instruction will be squashed. Show where by crossing out the segment labels (ID, etc.)
in the diagram.

Solution:

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

nop IF ID EX MEM WB

lw r1,0(r20) IF ID EX MEM WB

addi r2, r21, #1 IF ID EX MEM WB

sw 0(r2), r1 IF ID EX MEM WB

add r22, r23, r2 IF ID EX MEM WB

jr r24 IF ID EX MEM WB

nop IFx

nop IF ID EX MEM WB

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

2
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Problem 2: The DLX code below runs on a dynamically scheduled system that uses reorder
buffer entries to name destination registers (Method 1). The floating-point adder has five stages,
A1 through A5, and is fully pipelined. The common data bus (CDB) can handle an unlimited
number of writebacks per cycle, but other parts of the implementation are ordinary. The cache
is non-blocking. The cvtftoi instruction uses the FP adder; the movfptoi instruction uses the
integer (EX) functional unit. The pipeline is fully bypassed.

(a) For this part no instructions raise exceptions.

© [7 pts] Show a pipeline execution diagram for the code. Reorder buffer and reservation station
numbers do not have to be shown.

© [5 pts] Indicate where each instruction commits.

Check the code carefully for dependencies! Register r1 is part of a long chain of dependencies. Pay
attention to the register equality and inequality comment.

! Solution

! r4 = r2, r6 != r2, r6 != r1

!Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

addf f0, f1, f2 IF ID A1 A2 A3 A4 A5 WC

cvtftoi f0, f0 IF ID RS A1 A2 A3 A4 A5 WC

movdtoi r1, f0 IF ID RS EX WC

subd f0, f4, f6 IF ID A1 A2 A3 A4 A5 WB C

sd 0(r1), f10 IF ID RS L1 L2 WC

sd 0(r2), f0 IF ID L1 L2 WB C

ld f12, 0(r4) IF ID L1 L2 WB C

ld f14, 0(r6) IF ID L1 L2 WB C

!Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Notes on the solution: Load and store instructions compute their effective addresses (use the L1 stage) as soon as possible.
The first sd does not move in to the L1 stage until the rs1 operand, r1, is available in cycle 13. The second sd moves in
to L1 in cycle 7 but waits for the store value before moving to L2. The first load uses the L2 stage in cycle 11 to bypass
a result from the second sd (since their effective addresses are the same). The second ld must wait for the address of
the first store to be computed. Without that address there is no way to tell whether the first store writes to the same
location that the second load reads from.

(b) Suppose an arithmetic exception is discovered for the subd instruction when it is in the first FP
adder stage, A1, in an execution of the program above.

© [6 pts] At what cycle is the reorder buffer flushed and the handler fetched?

When subd reaches the head of the reorder buffer, at cycle 14.

© [7 pts] Show the contents of the reorder buffer when the status of the subd instruction is set to
exception. (For partial credit show the contents of the reorder buffer halfway through execution,
be sure to indicate the cycle.)

The status is set to exception when subd is in writeback, at cycle 10. The contents of the reorder buffer from head (next
to commit) to tail (last to enter) is: cvtftoi, movdtoi, subd, sd, sd, ld, ld.

3
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Problem 3: Answer each question below.

(a)

© [8 pts] Design the control logic for the WB-stage multiplexor. The control logic itself must be in
the ID stage. Show the connection to the mux and number the mux inputs. Hint: This is an easy
problem.

Changes shown in red.
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(b) In the pipeline execution diagram below multd is delayed because of a true dependency with
the addd instruction.

© [8 pts] Why can’t any realistic implementation do things this way?

addd f0, f2, f4 IF ID A1 A2 A3 A4 WB

multd f6, f0, f8 IF ID M1 M2 M3 M4 M5 M6 WB

subd f10, f12, f14 IF ID A1 A2 A3 A4 WB

Because the true dependency could not be detected before the instruction is fetched and decoded.

(c) Unlike DLX, many ISAs, such as SPARC, use a condition code register for integer branch
conditions.

© [4 pts] In what way is DLX’s method more flexible?

Since any register can be used for a condition the code can test one condition, another condition, and then the first one
without recomputing it.

© [4 pts] In what way is a condition code register more flexible?

Condition code registers typically have flags indicating that a value is negative, zero, overflowed, etc, and these can be
set by an instruction doing normal computation. A branch instruction can test various combinations of these conditions.
After executing a single set condition-code instruction, several different tests can be made on the conditions, such as ≥ 0,
overflow, etc.

5
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(d) An ISA may have variable-width instructions, fixed-width instructions, and bundled instruc-
tions.

© [4 pts] How do the different alternatives affect displacement branches?

If the instructions are variable width then the displacement in displacement branches must be the number of characters
away the branch target is. If the instructions are fixed width the displacement is the number of instructions to skip, which
spans a larger area of memory (assuming instructions are aligned). With bundled instructions the displacement is the
number of bundles to skip, and so an even larger area of memory is covered.

[4 pts] Name an ISA category (type) that uses each instruction format:

©Variable-Width Instructions:

CISC

©Fixed-Width Instructions:

RISC

©Bundled Instructions:

VLIW

(e) Packed-operand data types and instructions are de rigueur for any au courant fin-de-siècle ISA.
(Are a must-have for any up-to-date end-of-the-century ISA.)

© [8 pts] What are packed-operand data types and instructions? Show a short program that would
benefit from these. The program can be in a high-level language or even pseudo code. Do not show
the packed-operand instructions, just explain what they would do.

A data type in which several values are held in a single register, for example four eight-bit values in a 32-bit register.
A packed-operand instruction operates on all of the values in parallel. For example, a single add would, using the last
example, sum four pairs of eight-bit numbers.

extern unsigned char *a, *b, *c;

for(i=0; i<1024; i++) a[i] = b[i] + c[i];

6
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Problem 1: The reference count of a value stored in a register is the number of times the value is referenced
(read) by instructions before being overwritten. In the example below the reference count of the value written
by the add is zero because it is overwritten before being read. The reference count of the value written by
the lw is two.
add r1, r2, r3 ! A first value for r1 is defined (written).

lw r1, 0(r4) ! A second value for r1 is written, the first one is never used.

sub r5, r5, r1 ! The second value is referenced (read).

xor r6, r1, r7 ! The second one is referenced again.

or r1, r0, r0 ! A third value for r1 is defined.

Three new instructions are to be added to DLX to obtain reference count information. The instructions
refer to two registers, rc.z and rc.nz. Register rc.z holds the number of values written to r1 with a zero
reference count and rc.nz holds the number of values written to r1 with a non-zero reference count. The
counts are updated on either the first reference or when a new value is defined, whichever is earlier.

Instruction rc.reset sets both of these registers to zero. Instruction movstoi RD, rc.z moves the contents
of rc.z to a general-purpose register (shown as RD), movstoi RD, rc.nz moves the contents of rc.nz to a
general-purpose register.

The instructions are used in the code below.

rc.reset ! rc.z -> 0, rc.nz -> 0

add r1, r2, r3

lw r1, 0(r4) ! rc.z -> 1

sub r5, r5, r1 ! rc.nz -> 1

xor r6, r1, r7

and r1, r0, r0

or r1, r0, r0 ! rc.z -> 2

slli r1, r1, #1 ! rc.nz -> 2

movstoi r8, rc.z ! r8 -> 2

movstoi r9, rc.nz ! r9 -> 2

add r10, r8, r9 ! Total number of writes to r1.

The new instructions should work for r1 and no other register. (25 pts)

(a) For each new instruction below cross out the instruction type that could not reasonably be used to code
it. Circle the type that would best be used to code it.

© rc.reset Possible types: Type R , Type I, Type J.

© movstoi RD,rc.z Possible types: Type R , Type I, XXXXXType J.

(b) As the alert test taker has noticed, there is already a movstoi instruction, used to move a special-purpose
register (such as the processor status word, not covered much in class) to a general-purpose register.

©The new movstoi RD,rc.z instruction can be coded as a new instruction (with its own opcode) or as a new
use of movstoi. That would depend on how the existing movstoi is defined. Explain that. Hint: Suppose
there was only one special register in DLX.

If the rs1 field in movstoi in the existing instruction is always set to some specified value, say 1, then the existing instruction can
be used by indicating that rs1 specifies which special register to move. A might 1 indicate the special purpose register, a 2 might
indicate the new rc.z register, and a 3 might indicate the new rc.nz register.

Problem continued on next page.

2
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(c) Modify the pipeline below to implement the new instructions. The code on the previous page should
execute properly.

Assume that all Type-R instructions have two source operands and all Type-I instructions have one source

operand. Use is Type R and is Type I to recognize these instruction types.

Assume that Decode RD in the diagram can recognize the new instructions

©The counts should not include squashed instructions.

©Show control logic for all multiplexor and registers that you add. Use symbols like =rc.reset to recognize
instructions, show the inputs to these boxes.

©Don’t forget the modifications for movstoi RD, rc.z and movstoi RD, rc.nz.

Changes shown in the diagram below in blue. The “ref’d” box is a D flip flop that indicates whether r1 has been references. Input
“EN” is an enable and “D” is the data input.
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Problem 2:

(a) The code below executes on a dynamically scheduled single-issue (not superscalar) machine using Method
1, register names are reorder buffer entry numbers. The multiply unit is six stages and is fully pipelined
(latency 5, initiation interval 1). The add unit has a latency of 3 and an initiation interval of 2. The CDB
can handle an unlimited number of writebacks per cycle. Floating point exceptions are not precise. (15 pts)

©Show a pipeline execution diagram.

©Show where instructions commit.

©Show changes to the reorder buffer, register map and register file at each cycle. Register f0 initially contains
zero, f2 initially contains 20.0; f4, 40.0; etc. Use line numbers for reorder buffer entry numbers.

L1:multd f0, f2, f4

L2:addd f0, f0, f6

L3:addd f2, f2, f8

L4:addd f10, f12, f14

! Solution

multd f0, f2, f4 IF ID M1 M2 M3 M4 M5 M6 WC

addd f0, f0, f6 IF ID RS A1 A1 A2 A2 WC

addd f2, f2, f8 IF ID A1 A1 A2 A2 WB C

addd f10, f12, f14 IF ID RS A1 A1 A2 A2 WB C

ID Map

f0 0 L1 L2 860

f2 20.0 L3 100.

f10 40.0 L4 260

Commit File

f0 0 100. 860

f2 20.0 100.

f10 40.0 260.

ROB L4 L4 L4 L4 L4

L3 L3 L3 L3 L3 L3 L4 L4 L4 L4

L2 L2 L2 L2 L2 L2 L2 L3 L3 L3 L3 L4

ROB Head L1 L1 L1 L1 L1 L1 L1 L1 L2 L2 L2 L2 L3 L4

©The pipeline execution diagram above is the same whether or not exceptions are precise. Why?

Because when a ROB is used for exception recovery there is no need to delay the write back or otherwise change the way long-latency
instructions execute.

4
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(b) The code below executes on a two-way superscalar statically scheduled DLX implementation with perfect
branch and jump target prediction. (10 pts)

©Show a pipeline execution diagram for the worst-case execution of the code below for two iterations. (The

worst case is achieved by proper choice of the labels, LOOP and THERE.)

©Explain why it’s worst case.

For LOOP = 0x1004, the subi is the second instruction in an aligned group, so after the first iteration the addi and bnez will
be fetched uselessly. Similar reasoning for THERE = 0x2004.

©What is the CPI of the for a large number of iterations?

Solution not yet available.

! Solution not yet available.

addi r1, r0, #2000

LOOP:

subi r1, r1, #1

j THERE

HERE:

bnez r1, LOOP

THERE:

add r2, r2, r3

j HERE

5
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Problem 3: The cache for a system implementing an ISA with 10-bit characters is described by the following
incomplete schematic diagram and address bit categorization.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

64

40

19:3

19:2

63:20 19:3 63:20

19:2

Address:

Tag

63 20

Index

19 3

Offset

2 2

Alignment

1 0

(a) Answer the following, formulæ are fine as long as they consist of literals and grade-time constants. (10 pts)

©Fill in the blanks in the diagram.

Changes shown in blue.

© In the diagram above the processor’s data out port is not shown. Given what is shown is the cache probably
write back or write through? Argue your answer in terms of what is missing or what is present.

Write through because there’s no dirty bit. In a write through cache whenever data is written to the cache it is also written to
memory. In a write back cache data written to a line in the cache is not written to memory until the line is replaced. A line that has
not been modified does not have to be written to memory, the dirty bit is used to distinguish them. It is set to zero when a line is
loaded into the cache and it is set to one when the line is written.

©What is the associativity of this cache? (Look carefully.)

Four, there are four inputs to the hit or gate.

©What is the capacity of the cache? Specify units!

The capacity is 4 × 10 × 220 bits. The formula above would get full credit, no need to write it in another form such as forty-one
million, nine hundred forty-three thousand, forty.

©How much memory does it take to implement the cache? Specify units!

The storage used for the tag store is 4× 44 + 1)× 217 bits, the total amount of memory is 4× 44 + 1)× 217 + 4× 10× 220

bits.
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Problem 3, continued: Continue to use the cache from the previous part.

(b) When the program below starts execution no data is cached. Consider only memory accesses needed for
the array access. The address bits are repeated for convenience. (15 pts)

Address:

Tag

63 20

Index

19 3

Offset

2 2

Alignment

1 0

extern char *a; // & a[ 0 ] = 0x1000000;

int i, j, k, t;

int ISTRIDE = 1024;

for(k=0; k<2; k++) for(i=0; i<256; i++) for(j=0; j<32; j++)

t += a[ ISTRIDE * i + j ];

©What is the hit ratio?

The hit ratio is 15
16 .

Each line holds eight characters. In the inner loop the array is accessed sequentially. When k=0 it is being accessed for the first time,
and so the hit ratio there will be 7

8 . When k=1 it is being accessed the second time. Since the entire array fits in the cache the hit
ratio is 1

2

(
7
8 + 1

)
= 15

16 .

©What is the smallest line size that would maximize the hit ratio?

The smallest line size would be 218 characters, which is unreasonably large.

The hit ratio is maximized when the entire array fits on one line. It fits on one line if the tag and index parts of every address are
the same. Loop variable j “modifies” bits 4:0 of the address. (The address is a + ISTRIDE * i + j, where a is the address
of the first element of the array a.) Loop variable i modifies bits 17:10. The other bits of the address are the same for every array
element. Neither i nor j modify tag bits, and so the entire array can be cached. The highest bit number modified is bit 17, and so
bits 19:18 of the index are the same for every element. If the line size were increased to 218 characters without changing the cache
size the index bits would be 19:18, and so the entire array would fit on one line.

©What is the smallest reasonable line size that would maximize the hit ratio?

25 characters.

Increasing it to 26 would not improve hit ratios; improvements do not occur until it’s increased to 211 which is moving in to
unreasonable territory.

©What is the smallest power-of-two value of ISTRIDE for which a two-way set-associative cache is necessary
to avoid conflict misses?

ISTRIDE = 213.

A two-way set-associative cache is necessary when two elements have the same index but different tags. That will happen when
exactly one of the bits affected by i is part of the tag. For that to happen, ISTRIDE = 213. With that value of ISTRIDE 256
values of i yields two different tag values and 128 different indices (ignoring j). The elements for i=0 have a tag of zero and those
for i=128 have a tag of 1. For j=0 both have an index of 0. As long as it’s a power of two ISTRIDE shifts i to the left.

© If ISTRIDE were larger than the answer to the previous question but not a power of two, would there be
lots of conflict misses? Explain.
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There would be few conflict misses because potentially all parts of the address would be affected by i, so for 256 different values of
i there would be 256 distinct index values.

For example, suppose ISTRIDE = 213 + 22. Now i affects bits 20:13 and bits 9:2. There will be a distinct index or offset for each
value of i.
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Problem 4: Answer each question below.

(a) One-level predictors are usually outperformed by two-level predictors. (5 pts)

©Write a code fragment containing a branch that would be predicted well by a two-level predictor such as
gshare but poorly by a one-level predictor.

! Solution

lw r1, 0(r2) ! r1 hard to predict

bnez r1, SKIP ! Not predicted well by any predictor.

SKIP:

beqz r1, SKIP2 ! Since it’s correlated with the last branch

! a two-level predictor that uses global history will do well.

(b) Virtual memory allows two processes on the same processor to use the same address as though they were
on different systems, that is, one process never loads what the other stores. (5 pts)

©Why doesn’t one process loading from, say, address 0x1000 get data previously stored by another process
at address 0x1000?

Because the real page numbers in their addresses are different, and so different locations are being accessed.

9
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(c) A processor implementing a 64-bit ISA has the following integer add latencies: 8- and 16-bit integers, 0
cycles; 32-bit integers, 1 cycle; 64-bit integers, 2 cycles; 128-bit integers, 3 cycles. (5 pts)

©Why are these latencies not appropriate for a 64-bit ISA? In what important way would the processor suffer?

Because 64-bit integer operations are needed to compute memory addresses. Since these are done frequently the processor will suffer.

(d) Precise exceptions are optional for floating-point instructions but required for integer instructions. (5 pts)

©Why is this so?

Because load and store instructions encounter exceptions in normal use (in virtual memory systems) and they must be re-started after
exceptions as though nothing happened.

© Illustrate your answer with an example showing an integer instruction that raises an exception.

! Illustration for Answer:

! Cycle: 0 1 2 3 4 5 6 7

lw r1,0(r2) IF ID EX *M WB ! <- Faulting instruction.

add r30, r29, r28 IF ID EX ME WB

addi r2, r1, #4 IF ID EX ME WB ! <- Last before handler.

and r27, r26, r25 IF ID EX ME WB ! <- Resume here.

©Explain what goes wrong if the exception is not precise.

In the example above lw raises an exception but addi is the last instruction, it executes with a wrong value in r1. Execution
resumes at the and and so the correct value is never put in r1.

10
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(e) What are stops and lookaheads? (5 pts)

©How are they used?

Stops are placed between instructions (in assembler source) to indicate that there is a true dependency between an instruction before
the stop and an instruction after the stop. The assembler places this information in an instruction bundle’s template.

The lookahead of a bundle, call it x, is the number of following bundles that can be executed before finding a bundle that has a true
dependency with bundle x.

©What benefit to they have to implementations?

They lower the cost and increase the speed of implementations by eliminating the need for some dependency checking hardware.

©Explain the similarities and differences between stops and lookaheads.

They both provide dependency information. Lookaheads only indicate dependencies between bundles, while stops can specify intra-
bundle dependencies.
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Problem 1: The program below executes on the pipeline below as illustrated in the pipeline
execution diagram below. Bypass paths do not appear in the illustration (below).
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! Cycle 0 1 2 3 4 5 6 7 8 9 10 11

andi r8, r8, #31 IF ID EX ME WB

add r10, r9, r8 IF ID EX ME WB

bnez r8, LINEX IF ID EX ME WB

jalr r10 IF ID EX ME WB

xor IFx

...

subi r31, r31, #8 IF ID EX ME WB

sw 0(r10), r31 IF ID EX ME WB

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11

© [10 pts] Add exactly those bypass paths that are needed so that the code (above) executes as shown.
Credit will be deducted for unneeded bypasses. Please, please, please check the code carefully for
dependencies.

The bypass paths are shown in red bold.

© [7 pts] Next to each bypass path indicate the cycle(s) in which it will be used.

The cycle numbers are shown in blue.
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Problem 2: As described in class, postincrement instruction lw r1,(r2+) loads the value at
memory address r2 into register r1 and stores r2+4 in r2. Postincrement stores are similar. The
pipeline below is to be modified so that it can execute postincrement loads and stores for bytes,

half words, and words. A logic block size can be used; its input is the opcode and func fields;
the output is 0 for a postincrement with a byte-size load or store value, 1 for a postincrement with
a half-word value, 2 for a postincrement with a word-size value, and 3 if the instruction is not a
postincrement load or store.
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© [10 pts] Show the datapath changes needed so that the pipeline can execute postincrement store
instructions. Include the control logic for obtaining the amount to increment the address by but
do not include any other control logic.

These changes are shown in red bold.

© [7 pts] Show the additional datapath changes needed so that the pipeline can execute postincrement
loads. These changes must not add structural hazards and the load must execute without stalling
the pipeline (assuming favorable dependencies).

These changes are shown in purple bold. The changes include a second register file write port so the loaded value and
incremented address can be stored at the same time. Also shown is a new control field, rs1, which is the rs1 register
number used in the postincrement instruction, or zero if any other instruction is used. The rs1 was not required for the
solution, but is included anyway.
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Problem 3: The four-stage (no WB) pipeline below includes an Express Writeback feature, elimi-
nating the need for bypass connections. Instructions proceed through the pipeline slightly differently
than the DLX pipeline presented in class. Do not add or assume the presence of bypass connections.
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© [6 pts] Show a pipeline execution diagram for the code below on this pipeline. (Don’t forget to look
for dependencies.) State any assumptions about how the register file operates.

add r1, r2, r3 IF ID EX ME

lw r4, 8(r1) IF ID EX ME

sw 12(r5), r4 IF ID -> EX ME

One disadvantage of Express Writeback is that it introduces a structural hazard.

© [6 pts] Show a program that encounters the hazard and a pipeline execution diagram showing how
the hazard can be avoided by stalling. (Hint: the program can be just two instructions.)

lw r1, 0(r2) IF ID EX ME

add r3, r4, 45 IF ID -> EX

© [4 pts] Explain how Express Writeback affects the critical path.

The register write occurs in the same cycle as the ALU operation or memory operation, and so the critical path is longer.

Part II on Wednesday at 12:40 precisely.
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Problem 4: The diagram below includes näıve hardware for implementing the jal and jalr

instructions. With this hardware precise exceptions are impossible.
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© [6 pts] Explain why precise exceptions are impossible here.

Because the return address is written before it is certain that a preceding instruction will not raise an exception. If a
preceding instruction does raise an exception there is no way to restore the registers to the state they were in before the
faulting instruction was executed.

© [7 pts] Show a program including a jalr that encounters an exception and which does not run
correctly (after the exception handler returns) because of the way jalr is implemented. Briefly
explain why it does not run correctly. (For partial credit answer the question using an instruction
other than jalr.)

sw 0(r1), r31 IF ID EX*ME*WB

jalr r4 IF ID EXx

The sw encounters a page fault. When it is re-executed r31 will have the value stored by jalr rather than its previous
value.
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Problem 5: For some, 16 bits is just not enough. Consider a new DLX instruction, mbi (move
big immediate), which moves a large immediate into register r1. (Register r1 is always used, a
different register cannot be specified.) The following code uses the new instruction:

mbi 0x12345 ! Move 0x12345 into register r1.

add r2, r1, r2 ! Use 0x12345 in an add.

© [5 pts] Describe how the instruction could be coded using an existing DLX instruction type to get
the biggest immediate possible. Specify the size of the immediate.

The instruction type with the largest immediate is type J, so code it as a type-J instruction. The immediate would be 26
bits.

Ignoring the previous part, suppose one wanted the immediate to be 30 bits.

© [4 pts] Why are 30-bit immediates impossible using an existing instruction type?

Because no existing type has a 30-bit immediate field, or any 30-bit field for that matter.

© [4 pts] Describe how a 30-bit immediate mbi could be coded using a new DLX instruction type.
(See the next subpart before answering.)

Have a new type, call it type B, with a two-bit opcode and a 30-bit immediate.

Whether it is possible to add a 30-bit immediate instruction and maintain compatibility depends
on certain details of DLX which during lectures were usually made up on the spot.

© [4 pts] What kind of details were those? Make them up so that the new instruction is compatible.

Opcodes. The mbi opcode will be 112, and so no other instruction can have an opcode starting with two 1’s.
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Problem 6: Answer each question below.

(a) Loads and stores in DLX are aligned.

© [6 pts] What does that mean? Provide examples of aligned and unaligned accesses.

That means the address of the item being loaded or stored must be a multiple of its size. For words, the address must be
a multiple of 4 and for shorts a multiple of 2. Aligned: lw r1,0x4(r0). Unaligned: lw r1,0x2(r0).

(b) As described in class, an ISA implementing a time data type might have instructions to determine
the number of days between two times. (Say between 18 October 2000 and 15 December 2000.)

© [7 pts] Give two reasons why an ISA should not include such a time data type.

It wouldn’t be used very often and it would’nt be much faster.

(c) RISC and CISC are sometimes seen as two competing architectural styles.

© [7 pts] Name two features that distinguish RISC processors from CISC processors.

Fixed size instructions (RISC). ALU instructions that can access memory (CISC).
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Problem 1: New DLX instruction jalr.safe is like a jalr instruction except that it automatically returns
after a certain number of instructions in the called routine have been executed. Suppose r1 contains 0x1000
and r2 contains 23 when jalr.safe r1, r2 is executed. Execution would jump to address 0x1000 and PC+4

would be saved in r31. Nothing special happens if a jr r31 (a return) is executed within 23 instructions. If
after 23 instructions a return is not executed control will automatically return to the instruction following
jalr.safe. When jalr.safe is used the called procedure cannot call another procedure.

Note: The jalr.safe instruction might be used in time-critical systems to prevent a procedure from taking too long (though
it would probably be better to base the automatic return on time rather than an instruction count). A procedure called using
jalr.safe might compute a rough estimate of a return value first, then start working on an accurate return value. If it returned
automatically the rough value would be used.

The instruction would be “safe” if used properly but if used improperly would be very dangerous. Any procedure called with
jalr.safe must be written so that it could return any time. Otherwise, data structures might be left half-updated, code accessing
them later might execute incorrectly.

Real systems using watchdog timers rather than instructions like jalr.safe. A calling procedure would set a timer (sort of
like an alarm clock) to expire after the called procedure was supposed to return. If the called procedure return on time the timer is
cancelled. Otherwise the timer expires and a timer-expiration interrupt handler is called. That handler might terminate the overdue
procedure.

(a)

© (5 pts) Show how jalr.safe might best be coded.

A good coding is one that is similar to the coding of existing instructions. Since jalr.safe is similar to jalr it would be best
to use the same instruction type as jalr, if possible. The jalr instruction uses one source register, jalr.safe uses two. This
can be accommodated in the type I coding used by jalr by using the rd field as the second source.

(b) Modify the pipeline on the next page so that it executes the jalr.safe instruction.

• The output of the Live box is 1 if the corresponding stage contains a non-squashed instruction

that will advance to the next stage in the next cycle. (The instruction is neither squashed nor
stalled.)

• =Ret can be used for detecting return instructions, =jalr.safe for jalr.safe instructions, etc.

Continued on next page.
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Problem 1, continued:

© (7 pts) Show the hardware needed to properly save the automatic return address and count. (For the
automatic return address do not use the contents of r31, instead add a register for this address.)

© (2 pts) Base the return on the number of instructions that will complete, squashed instructions should not
be counted.

© (2 pts) Make sure jalr.safe can be squashed before it sets a return address.

© (2 pts) Generate a signal named Auto Return, it shall be true when there is to be an automatic return and
false other times.

© (2 pts) Explain what the controller must do when Auto Return is asserted.

The modifications appear in red below. When Auto Return is asserted instructions in IF, ID, and EX are squashed and new input
to the PC mux is selected.

Since the added hardware is in the MEM stage jarl.safe can be squashed. (If it were in the ID stage, for example, it might set a
return address before being squashed in the EX stage by an instruction in the MEM stage.)
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Problem 2: The programs below run on statically and dynamically scheduled systems. All systems are
single issue (not superscalar), have perfect branch prediction, have an unlimited number of functional units,
and use non-blocking caches. The programs run for a large number of iterations, and the first lw in every
iteration will miss the cache. On a cache miss data arrives 10 cycles after MEM or L2 is entered. The line size
is 1024 characters.

! Program 1 ! Program 2

LOOP: LOOP:

lw r1, 0(r2) lw r1, 0(r2)

addi r2, r2, #1024 lw r2, 4(r2)

add r3, r3, r1 add r3, r3, r1

bneq r1, LOOP bneq r1, LOOP

(a) Suppose the programs were are run on a statically scheduled machine and loop unrolling was being
considered. Note: The following important point was not included in the 2000 final exam. The statically
scheduled machine treats load misses like floating-point operations: it allows them to complete out of order
if there are no name or data dependencies with following instructions.

© (1 pts) For a statically scheduled system applying loop unrolling to Program 1 would improve performance:

(a) ©by a large amount; (b) by a small amount; (c) not at all; (d) none of the above.

© (1 pts) For a statically scheduled system applying loop unrolling to Program 2 would improve performance:

(a) by a large amount; (b) by a small amount; (c) ©not at all; (d) I do not wish to reveal my
intent.

© (5 pts) Explain the two answers above. In particular explain, if appropriate, why loop unrolling is more
effective on one program than the other.

Program 1 can easily be unrolled. Without loop unrolling the processor would have to suffer one miss at a time, so the execution time
is at least the number of iterations times the miss delay. In the unrolled loop there can be several misses being serviced in parallel
(since the cache is nonblocking), so the execution time is roughly the number of iterations in the unrolled loop times the miss delay.
The number of iterations in the unrolled loop is the number of iterations in the original loop divided by the degree of unrolling, so
the execution time is a lot lower.

In program 2 the data to fetch on one iteration depends on the data fetched in the previous iteration so it cannot be unrolled.

(b) Suppose the programs were to be run as is (not unrolled).

© (1 pts) Compared to a statically scheduled machine, a dynamically scheduled machine would run Program

1: (a) ©much faster; (b) slightly faster; (c) about the same speed; (d) dimple.

© (1 pts) Compared to a statically scheduled machine, a dynamically scheduled machine would run Program

2: (a) much faster; (b) ©slightly faster; (c) about the same speed; (d) I assume that if my answer
below is correct points will not be deducted for this choice.

© (5 pts) Explain the two answers above. In particular explain, if appropriate, why the dynamically scheduled
machine is more effective on one program than the other.

With dynamic scheduling several loads in program 1 can be active at once, and so execution time will be greatly reduced.

There is little dynamic scheduling can do for program 2 for the same reason it could not be unrolled.
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Problem 3: The code below executes on a dynamically scheduled system with branch prediction but without
branch target prediction. The branch is predicted taken but it ultimately is not taken. The processor is
single-issue (not superscalar) but, conveniently, has an unlimited number of functional units and can handle
any number of write-backs per cycle. At most one instruction per cycle can be committed.

(a) The code below executes on such a machine in which the register map is not backed up when branches
are decoded. Registers are intentionally omitted from the last three instructions, assume those instructions
are not data-dependent on the loads.

© (6 pts) Complete the pipeline execution diagram for this system until all instructions complete.

© (2 pts) Show instruction commitment and squashing.

• Don’t forget to check for dependencies!

! Solution:

! Branch predicted taken, but branch is NOT taken.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r3, 0(r4) IF ID L1 L2 RS RS RS RS RS L2 WC

lw r1, 0(r2) IF ID L1 L2 RS L2 WB C

bneq r1, TARGET IF ID RS B WB C

xor r5, r6, r7 IFx IF ID EX WC

sgt r8, r9, r10 IF ID EX WC

...

TARGET:

add r11, r12, r13 IF ID EX WB x

sub r14, r15, r16 IF ID EX WB x

and r17, r18, r19 IF ID EX WB x
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Problem 3, continued: (b) The code below executes on a version of the machine in which the register
map is backed up (checkpointed) when branches are decoded.

© (6 pts) Complete the pipeline execution diagram for this system until all instructions complete.

• Show instruction commitment and squashing.

! Solution:

! Branch predicted taken, but branch is NOT taken.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r3, 0(r4) IF ID L1 L2 RS RS RS RS RS L2 WC

lw r1, 0(r2) IF ID L1 L2 RS L2 WB C

bneq r1, TARGET IF ID RS B WB C

xor r5, r6, r7 IFx IF ID EX WB C

sgt r8, r9, r10 IF ID EX WB C

...

TARGET:

add r24, r25, r26 IF ID EX WB

sub r21, r22, r23 IF ID EX WBx

and r9, r20, r30 IF ID EXx

(c) Suppose the processor from the previous part has the following defect: it does not back up or restore the
register map, but it executes instructions as though it did. Suppose execution up until the code fragment
above is okay.

© (6 pts) Add registers to the last three instructions in the previous part so that the xor instruction executes
correctly but the sgt (set greater than) executes incorrectly.

The registers have been added. For sgt to execute incorrectly the register map entry for one of its source registers must be incorrect.
For that to happen an instruction past TARGET with destination r9 or r10 must be decoded. (It does not have to go any farther
than ID, since the new register specified in the register map for r9 or r10 will have the wrong value whether or not the instruction
completes write back.)

6
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Problem 4: A system has a 1-megabyte (220 byte) two-way set-associative cache with 256-character blocks
and a 50-bit address space addressing 16-bit characters.

© (7 pts) Fill in the rounded boxes in the diagram below so that it describes this cache.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

Hit

Out

Out

Out

64

50

17:8 49:18 17:8 49:18

17:2 79:2

© (5 pts) Show the smallest set of addresses that cannot all be in this cache at the same time.

Because the associativity is 2 the smallest set of addresses would have three elements. They would have the same index and different
tags. For example, {0x543210, 0x643210, 0x743210}.

© (5 pts) What would be the associativity of a fully associative cache with the same capacity and block size
as this one?

The associativity of a fully associative cache is equal to the number of blocks in the cache. The cache in part (a) has 211 blocks, so
a fully associative cache with the same capacity and block size would have an associativity of 211.

7
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Problem 5: Answer each question below.

(a) The DLX program below runs on a system using a one-level branch predictor with a 216-entry BHT,
each BHT entry is a two-bit saturating counter. The loop iterates many times.

Please do not confuse andi with addi.

LOOP:

addi r1, r1, #1

andi r2, r1, #1

bneq r2, SKIP

nop

nop

nop

nop

SKIP:

sub r3, r1, r4

bneq r3, LOOP

© (4 pts) What are the best-case and worst-case prediction accuracies for the first branch. Briefly explain.

The worst case occurs when the counter is 2 when a not-taken branch is being predicted. The prediction will always be wrong. (Worst
case accuracy of 0%.) Otherwise the prediction accuracy will be 50%.

© (3 pts) What is the smallest BHT size for which there will not be a collision between the two branches?

The two branches are six (1102) instructions away from each other, and so their addresses will be the same at bit position 2 and
different at bit position 3. Bit position 2 is the LSB of the BHT address. If the BHT had two entries the two branches would share
an element, if it had four or more, they would be in different entries.

(b) Consider a dynamically scheduled four-way superscalar processor with a common data bus (CDB) that
can handle two write-backs per cycle.

© (3 pts) Compare its speed to that of an ordinary dynamically scheduled two-way superscalar processor.
Justify your answer.

Ordinary n-way superscalar processors can write back n instructions per cycle.

The four-way will be able to fetch and decode faster than the two-way. Since write back is not always a bottleneck, it will be faster.

© (3 pts) Compare its speed to that of an ordinary dynamically scheduled four-way superscalar processor.
Justify your answer.

Since it can’t do as many write backs it will be slower.

8
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(c)

© (4 pts) Why is branch target prediction potentially more useful for DLX jalr instructions than it is for bneq
and beqz instructions?

Because the target address from the branch instruction can be determined from the NPC and the instruction itself, whereas for the
jump a register value is needed, which might not be available for several cycles.

(d)

© (4 pts) What is a predicated instruction? Show how predicated instructions can be used in the code below.
(Exact syntax is not important.)

beqz r1, SKIP

add r2, r2, r3

SKIP:

or r4, r4, r5

A predicated instruction is one that writes its result only if a condition (the predicate) is true.

(r1) add r2, r2, r3 ! r2 only written if r1 nonzero.

or r4, r4, r5 ! Always executed.

9
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(e) Consider a statically scheduled DLX implementation in which the floating-point add functional unit is
two stages and the floating-point multiply functional unit is four stages, and both are fully pipelined. An
exception can occur in any stage of the FP functional units.

© (4 pts) Show how the code below would execute to ensure precise exceptions.

muld f0, f2, f4 IF ID M1 M2 M3 M4 WB

addd f2, f8, f10 IF ID ----> A1 A2 WB

or r1, r2, r3 IF ----> ID EX ME WB

© (4 pts) Suppose that floating-point instructions did not have precise exceptions. Show how a test instruction
could be used to ensure that an exception in muld was precise. Illustrate with a pipeline execution diagram.

muld f0, f2, f4 IF ID M1 M2 M3 M4 WB

testexc IF ID ----> EX ME WB

addd f2, f8, f10 IF ----> ID A1 A2 WB

or r1, r2, r3 IF ID EX ME WB

10
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Problem 1: The DLX implementation below has six stages. (The work done by ID is now done
by ID and RR.)

sign
ext.

Addr
6..10

11..15

16..20
or

11..15

IR

RR EX WBMEM

IR IR

A
B

IMM

ALU

=0

Addr

Data

Data

Addr D In

Addr

In

Mem

Out
B

ALU

MD

NPC

IR

IF

NPC

+4

PC

Mem
Port

Addr

Data IR

NPC

IMM

Control

ID 4

5,6

6

(a) The execution of some code on this pipeline is shown below. Add exactly the bypass paths
needed so that the code executes as illustrated. Next to each bypass path indicate the cycle(s) in
which it will be used. (Do not add bypass paths that won’t be used in the execution of the code
below.) (10 pts)

! Cycle 0 1 2 3 4 5 6 7 8

add r1, r2, r3 IF ID RR EX ME WB

lw r5, 10(r1) IF ID RR EX ME WB

xor r4, r1, r2 IF ID RR EX ME WB

and r6, r5, r4 IF ID RR EX ME WB

The changes are shown in the diagram above in blue bold.

(b) Show the execution of the code below on this pipeline until bneq reaches IF a second time. The
branch is taken. Be sure to base the CTI behavior on the hardware shown above. Show where
instructions are squashed. (10 pts)

The RR stage adds a cycle of branch penalty, but one cycle is saved, compared to the original pipelined DLX implemen-
tation, because the ALU output, rather than the EX/MEM.ALU latch, is fed back to the PC multiplexor.

LOOP:

! Solution.

! Cycle 0 1 2 3 4 5 6 7 8

bneq r1, SKIP IF ID RR EX ME WB IF

add r2, r3, r4 IF ID RRx

sub r5, r6, r7 IF IDx

and r8, r9, r10 IFx

or r11, r12, r13

SKIP:

j LOOP IF ID RR EX ME

add r2, r3, r4 IF ID RRx

sub r5, r6, r7 IF IDx

and r8, r9, r10 IFx

or r11, r12, r13

2
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Problem 1, continued: The figure and code below are identical to the ones on the previous
page.

(c) Add branch and jump hardware so that the code executes as quickly as possible. Additional
adders can be used, the fewer the better. Branches and jumps can be handled separately. The
register file cannot be moved or duplicated and cannot be read before the RR stage. (Jumps and
branches both use displacement addressing. In branches the displacement is in bits 16 to 31 and
in jumps the displacement is in bits 6 to 31.) Do not show control hardware. (10 pts)

Solution to be added by May 2000.

sign
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IR IR
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Data IR

NPC

IMM
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ID

(d) Show how the code below executes on the modified pipeline. As before, show execution until
bneq enters IF a second time. (5 pts)

LOOP:

! Solution.

! Cycle 0 1 2 3 4 5 6 7 8

bneq r1, SKIP IF ID RR EX ME WB

IF ID RR EX

add r2, r3, r4 IF IDx

sub r5, r6, r7 IFx

and r8, r9, r10

or r11, r12, r13

SKIP:

j LOOP IF ID RR EX ME WB

add r2, r3, r4 IFx

sub r5, r6, r7

and r8, r9, r10

or r11, r12, r13
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Problem 2: The code below executes on a dynamically scheduled processor that uses reorder buffer entry numbers to name registers.
There are 128 reorder buffer entries, the next free entry is #1.

(a) Show when each instruction commits and show the contents of the register map, register file and reorder buffers using the space
provided. Show only the instruction line numbers (A, B, C, D) in the reorder buffer. Indicate cycle numbers above the reorder buffer.
(10 pts)

Pipeline Execution Diagram

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A:addd f0, f2, f0 IF ID A0 A1 A2 A3 WC

B:addd f6, f0, f6 IF ID RS RS RS A0 A1 A2 A3 WC

C:addd f0, f0, f6 IF ID RS RS RS RS RS RS A0 A1 A2 A3 WC

D:addd f6, f2, f8 IF ID A0 A1 A2 A3 WB C

Register Map

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Arch. Reg. Val. or ROB#

f0 10 #1 #3 120

f2 20

f6 60 #2 #4 100

f8 80

Register File

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Arch. Reg. Val.

f0 10 30 120

f2 20

f6 60 90 100

f8 80

Cycle:

Reorder buffer:

4
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Problem 2, continued: (b) The code below is identical to the code above, however the second add instruction raises an exception in
cycle 9 (indicated by a star). Complete the pipeline execution diagram and other tables for this situation for the instructions shown.
(Do not show the trap handler.) Show the contents of the reorder buffers after each change. (10 pts)

Pipeline Execution Diagram

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A:addd f0, f2, f0 IF ID A0 A1 A2 A3 WC

B:addd f6, f0, f6 IF ID RS RS RS A0 A1 A2 *A3*WF

C:addd f0, f0, f6 IF ID RS RS RS RS RS RS A0x

D:addd f6, f2, f8 IF ID A0 A1 A2 A3 WB x

Register Map

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Arch. Reg. Val. or ROB#

f0 10 #1 #3 30

f2 20

f6 60 #2 #4 100 60

f8 80

Register File

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Arch. Reg. Val.

f0 10 30

f2 20

f6 60

f8 80

Cycle:

Reorder buffer:

5
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Problem 2: Answer each question below.

(a) Why do DLX Type-R instructions have a func field? (7 pts)

Type R:

Opcode

0

0 5

rs1

6 10

rs2

11 15

rd

16 20

func

21 31

Because there is not enough room in the opcode field to code all DLX instructions. If the func field were eliminated and
the size of the opcode field were increased Type I and Type J instructions would have to have smaller immediates.

(b) Would there be any advantage in pipelining the integer ALU used in the statically scheduled
DLX implementation? Explain. (7 pts)

No, since it produces an answer in one cycle. Well, maybe. If functional units in the other stages could be pipelined then
the clock frequency could be doubled.

(c) Why do ISAs include one-byte integers? (What are the advantages of using them when running
on typical implementations.) (7 pts)

They take less space and so are useful for storing large amounts of small numbers. The are not faster than full-size
integers, arithmetic operations on both can be completed in one cycle.

6
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(d) The DLX implementations covered in class start reading registers before the instruction is
decoded. Why is this possible? Modify the instruction codings so that it is no longer possible.
That is, with the modified codings decoding would have to be performed before register read (as
in problem 1). (8 pts)

The DLX codings are given below for reference and can be used to explain your answer.

Type R:

Opcode

0

0 5

rs1

6 10

rs2

11 15

rd

16 20

func

21 31

Type I:

Opcode

0 5

rs1

6 10

rd

11 15

Immediate

16 31

Type J:

Opcode

0 5

Offset

6 31

Swap the rd and rs1 fields in the Type R instructions.

7
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(e) Ignoring floating-point instructions, how can precise exceptions be implemented on the statically
scheduled (Chapter 3) DLX implementation? Illustrate your answer with an example in which
exceptions occur out of order but are handled in order. Show the code and a pipeline execution
diagram, indicate where the exceptions are occurring. (9 pts)

Pass an exception bit and other information down the pipeline, test for an exception at the end of the MEM stage. In the
example below the illegal instruction exception occurs before the page fault, but the page fault is seen at MEM before the
illegal instruction exception.

lw r4, 0(r5) IF ID EX *ME* WB

ant r1, r2, r3 IF *ID* EX ME WB

(f) What is an advantage of a stack ISA over a RISC ISA? What is a disadvantage of a stack ISA
over a RISC ISA? (7 pts)

Advantage of stack: smaller code. Disadvantage: slower implementations.

8
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Problem 1: An extended DLX ISA, Triple-DLX [tm], includes new three-operand integer ALU in-
structions. (Assume that the integer ALU can perform integer multiply.) Some sample instructions
appear below:

add_add r1, r2, r3, r4 ! r1 = r2 + r3 + r4

add_mul r5, r6, r7, r8 ! r5 = ( r6 + r7 ) * r8

mul_add r5, r6, r7, r8 ! r5 = ( r6 * r7 ) + r8

(a) (8 pts)A new instruction type, Type-T, will be used for these instructions. Show how the new
Type-T instructions can be coded. The coding should be chosen to ease implementation and should
allow for at least 64 three-operand instructions. Assume that there are six free opcode field values
and seven free func-field values available for your use.

• Explain how to distinguish Type-T instructions from Type-R, Type-I, and Type-J in-
structions.

• How many Type-T instructions can be provided using your coding?

The DLX codings are given below for reference and can be used to explain your answer.

Type R:

Opcode

0

0 5

rs1

6 10

rs2

11 15

rd

16 20

func

21 31

Type I:

Opcode

0 5

rs1

6 10

rd

11 15

Immediate

16 31

Type J:

Opcode

0 5

Offset

6 31

The instruction format is similar to Type R, except an rs3 field is added. It’s added after rd, rather than before, so that
decoding logic would not have to look for rd in a third place. Type T instruction use one of the 6 opcodes, opcode 1 is
used in the example. The funcette field, at 6 bits, specifies which of 64 instructions to perform.

Type T:

Opcode

1

0 5

rs1

6 10

rs2

11 15

rd

16 20

rs3

21 25

funcette

26 31

2
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(b) Modify the pipeline below so that it can execute the three-operand instructions. A second ALU
has been placed in the MEM stage; it should be used to help implement the instructions. The
register file is among the parts that need to be modified. (6 pts)

Changes to the pipeline are shown in red bold.
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(c) Show a pipeline execution diagram for the code below assuming that all needed bypass paths
are available. The code should execute as fast as possible. Add any needed bypass paths to the
diagram above. Do not add any bypass paths that are not needed by the code below. Label each
bypass path (added or already present) with the cycle in which it is used. Please be sure not to
miss any true dependencies. (6 pts)

The pipeline execution diagram is shown below. Note that the MEM stage has been labeled E2 to emphasize its role. Also
note that in cycle 8 r6 is bypassed to the second ALU in the E2 (MEM) stage. The bypass paths and the cycles in which
they are used are shown in blue in the illustration above.

! Solution

! Cycle 0 1 2 3 4 5 6 7 8 9

add_add r1, r2, r3, r4 IF ID EX E2 WB

add_sub r5, r1, r2, r3 IF ID -> EX E2 WB

sub_sub r6, r1, r5, r6 IF -> ID -> EX E2 WB

sub_add r7, r1, r5, r6 IF -> ID EX E2 WB

3
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Problem 2: The code appearing on the next page executes on a dynamically scheduled machine
using physical registers to name destination registers.

Complete the tables, showing only changes. Show where instructions commit. Show only entries
associated with registers f0 and f6 in the physical register file.

At cycle zero, register f0 contains a 5, f2 contains a 20, f4 contains a 40, and f6 contains a 60.
None of the instructions raise exceptions. The diagram below is provided for convenience; it is the
same one used in class. (10 pts)
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Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

add f0,f2,f4 IF ID Q A0 A1 WC

add f6,f0,f4 IF ID Q A0 A1 WC

add f0,f4,f4 IF ID Q A0 A1 WB C

add f6,f0,f4 IF ID Q A0 A1 WB C

sub f0,f2,f4 IF ID Q A0 A1 WB C

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Arch. Reg. ID Register Map

f0 17 12 8 3

f6 6 7 4

ID Free List

12
7
8
4
3

7
8
4
3

8
4
3

4
3 3 17

17
6

17
6
12

17
6
12
7

17
6
12
7
8

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Commit Register Map

f0 17 12 8 3

f6 6 7 4

Commit Free List

12
7
8
4
3

7
8
4
3
17

8
4
3
17
6

4
3
17
6
12

3
17
6
12
7

17
6
12
7
8

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Phys Reg. Physical Register File

3 -20

4 120

6 60

7 100

8 80

12 60

17 5
5
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Problem 3: Provide a pipeline execution diagram for the code below running on a dynamically
scheduled two-way superscalar machine using reorder buffer entry numbers to name destination
operands. Be sure to show when instructions complete.

There are more than enough reservation stations and reorder buffer entries. Do not show reservation
station numbers in the diagram. There are two load-store units and the cache is nonblocking.

The first lw misses the cache, the data arrives 6 cycles after it first enters the L1 stage; the second
lw also misses the cache, its data arrives 4 cycles after it first enters the L1 stage. (10 pts)

Carefully check the code for dependencies before working on a solution.

The pipeline execution diagram appears below. Note: Because the effective address of the second store is not known in
cycle 4, the last load cannot proceed (because of a possible dependency).

! Solution

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

lw r3, 0(r1) IF ID L1 L2 RS L2 WC

lw r5, 0(r2) IF ID L1 L2 RS L2 WB C

sw 0(r4), r5 IF ID L1 RS L2 WB C

lw r7, 0(r9) IF ID L1 L2 WB C

sw 0(r3), r1 IF ID RS L1 L2 WC

lw r8, 0(r10) IF ID L1 L2 WC

6
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Problem 4: A system uses the following cache:
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(a) Determine the value of the following parameters for the cache illustrated above. Be sure to
specify units (bits, bytes, etc.). Answers can be in the form of mathematical expressions. (8 pts)

Associativity: 4

Number of Sets: Solution: 220−9+1 = 212.

Address Space Size: 64 bits

Block (Line) Size: Solution: 29 = 512 characters

Cache Capacity: Solution: 4 × 221 characters.

Amount of Memory to Implement Cache: Solution: 4 × 221 characters plus 4 × 212 ((63 − 21 + 1) + 1) bits.

Character Size: 8

Tag Bits: (Can show on diagram.) Solution: 63:21.

7
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(b) Write a program that will fill the cache using the minimum number of accesses. (Ignore instruc-
tion accesses.) (8 pts)

void fill()

{

extern char *a;

int line_size_lg = 9;

int line_size = 1 << line_size_lg;

int associativity = 4;

int set_count_lg = 12;

int line_count = associativity * ( 1 << set_count_lg );

int i, dummy;

for(i=0; i<line_count; i++) dummy += a[ i * line_size ];

}

(c) Determine the parameters for a direct-mapped cache with the same block size and the same
capacity designed for the same system. (5 pts)

Associativity: One, because it’s direct mapped.

Number of sets: Solution: 212+2

Address Space Size: Solution: 64, no change.

Block (Line) Size: (Same, don’t answer.)

Cache Capacity: (Same, don’t answer.)

Character Size: Same, 8 bits.

Tag Bits: Two less: 63:23.

8
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Problem 5: Answer each question below.

(a) The program below runs on a system using a gselect branch predictor. What is the minimum
global history size needed so that there is a good chance that the last branch will be correctly
predicted at the last iteration (after warmup)? Assume that there are no collisions. Explain your
answer. (7 pts)

addi r1, r0, #10

add r5, r0, r0

LOOP:

lw r2, 0(r3)

add r5, r5, r2

subi r1, r1, #1

addi r3, r3, #4

bneq r1, LOOP

If execution is at the last branch and at least one of the previous 9 branches was not taken, then execution surely has not
reached the 10th iteration. It would take a global history length of 9 to hold this information. Prediction would not be
perfect, it would depend on whether the last branch encountered before reaching the loop is taken.

(b) What is the advantage of backing up (checkpointing) the register map when a branch is encoun-
tered in a system using branch prediction and dynamic scheduling? Explain how execution would
be different if the register map were not backed up. (7 pts)

If the register map is backed up and a branch misprediction is discovered the register map can be restored to the state
it was in when the branch was encountered without having to wait for preceding instructions to commit. With a register
map backup recovery can start in the WB stage of the branch, without a backup recovery must wait for the commit stage.

9
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(c) Why are three-way superscalar machines difficult to build but three-instruction-bundle VLIW
ISAs are common? (5 pts)

Superscalar machines are built on existing ISAs, many of which use 32-bit instructions. If 32-bit instructions were fetched
in groups of three the fetches would be unaligned and so would take more expensive hardware. In many VLIW ISAs, three
instructions are placed in 128-bit bundles, so their addresses are aligned.

While its true that VLIW ISAs allow for less expensive hardware, a three-way superscalar machine is still small and so the
hardware needed for dependency checking, register renaming, and scheduling would be less than difficult.

(d) An ISA is almost like DLX except, oops, the lbu (load byte unsigned) instruction was omitted,
and so the program below won’t run on an implementation of this ISA. Modify the program so
that it will run, and run as though an lbu instruction was used. (In other words, replace lbu r1,

1(r2) by instructions that do the same thing.) (5 pts)

lbu r1, 1(r2)

! A correct answer:

lb r1, 1(r2)

andi r1, r1, #0xff

! A WRONG answer:

lw r1, 1(r2) ! Error, since address may not be aligned.

andi r1, r1, #0xff

10
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(e) The table below shows virtual and physical addresses in use in a virtual memory system having
a 32-bit address space. What is the largest possible page size this system can have? Using this
page size (or some other one, but show what page size is being used) show the possible contents of
a two-level page table storing this virtual-to-physical mapping. State any assumptions made. (For
partial credit solve the problem for a one-level page table.) (10 pts)

Virtual Physical

0xfea34b62 0x74b4b62
0xfeb92b90 0x14b2b90
0xeaa31f16 0x77b1f16

The number of offset bits is the log-base-2 of the page size. The offset bits of physical and virtual addresses are the same,
so the largest possible page size here is 217 characters (because the low 17 bits of 9xfea34b62 and 0x74b4b62 are the
same, the low 17 bits of 0xfeb92b90 and 0x14b2b90 are the same, and the low 17 bits of 0xeaa31f16 and 0x77b1f16 are
the same). Note that it’s possible the page size is smaller.

The solution below is for a 216 character page. The level-one table is index using the upper 8 bits of the address and the
second-level table is index using the next 8 bits.

Level One Page Table:

Address Level Two Base

...
...

0xea 3000
...

...
0xfe 7000
...

...

Level Two Page Table:

Address Physical Page Number

...
...

3000
...

...
...

30a3 77b
...

...

7000
...

...
...

70a3 74b
...

...
70b9 14b
...

...

(f) Describe two ways that loop unrolling improves performance. (5 pts)

11
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Fewer branches are needed, eliminating the instruction themselves plus the branch penalty. Certain operations, such as
index variable increments can be eliminated. Greater scheduling freedom.

12
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Problem 1:

(a) Add exactly the bypass paths that are needed so the code below executes as shown in the pipeline
execution diagram. (Don’t add any bypass paths that are not needed by the code.) (15 pts)

Added bypass paths appear in red bold in the diagram below.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

! r1 = 0x1010 r2 = 0x2020, r3 = 0x3030, r4 = 0x4040, r5 = 0x5050

! Cycle 0 1 2 3 4 5 6 7

LINE1: LINE1 = 0x100

lw r1, 16(r2) IF ID EX MEM WB IF ID EX ...

addi r2, r2, #4 IF ID EX MEM WB IF ID ...

sw 20(r2), r1 IF ID EX MEM WB IF ...

beqz r2, LINE1 IF ID EX MEM WB ...

and r3, r4, r5 IFx

(b) Show the values of the registers listed below in cycle 4 of the execution above using the added
bypass paths. Assume that the load instruction retrieves a 0x1234 from memory. Instructions are
squashed by replacing them with an or r0, r0, r0. (18 pts)

IF.PC

0x110

IF/ID.NPC

0x110

IF/ID.IR

beqz

ID/EX.A

0x2020

ID/EX.B

0x1010

ID/EX.IMM

0x20

ID/EX.IR

sw

EX/MEM.ALU

0x2024

EX/MEM.B

0x2020

EX/MEM.IR

addi

MEM/WB.ALU

0x2030

MEM/WB.MD

0x1234

MEM/WB.IR

lw
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Problem 2:

(a) Show a pipeline execution diagram for the code below on the implementation shown until lw
is fetched a second time. The first branch is not taken but the last one is. The only bypass paths
available are the ones shown. (18 pts)

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

LOOP:

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lw r1, 0(r2) IF ID EX MEM WB IF

andi r3, r1, #4 IF ID --> EX MEM WB

beqz r3, LINE1 IF --> ID -----> EX MEM WB

add r4, r4, r1 IF -----> ID EX MEM WB

j LINE2 IF ID EX MEM WB

LINE1:

add r5, r5, r1 IFx

LINE2:

sw 4(r2), r1 IF ID EX MEM WB

addi r2, r2, #8 IF ID EX MEM WB

bneq r2, LOOP IF ID -----> EX

xor r5, r6, r7 IF ----->x

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3
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(b) Rewrite the code below (which is the same as the code on the previous page) using one-cycle
delayed branches and predicated instructions and schedule the code so that it executes as quickly
as possible. (Do not unroll the loop.) Assume that bypass paths are provided for the predicated
instructions. It should be possible to remove all stalls, but if any remain point them out (for partial
credit). (15 pts)

LOOP:

lw r1, 0(r2)

andi r3, r1, #4

beqz r3, LINE1

add r4, r4, r1

j LINE2

LINE1:

add r5, r5, r1

LINE2:

sw 4(r2), r1

addi r2, r2, #8

bneq r2, LOOP

xor r5, r6, r7

Predicated instructions are used in a straightforward manner.

To remove the stall between lw and andi the addi instruction is placed between them. Since addi was moved above
sw eight is subtracted from the immediate in sw.

Now that branches have one-slot delays, sw can be placed after the branch.

Note that the code below encounters no stalls (assuming cache hits) and something useful is done in the branch delay slot.

LOOP:

lw r1, 0(r2)

addi r2, r2, #8

andi r3, r1, #4

(~r3) add r4, r4, r1

(r3) add r5, r5, r1

bneq r2, LOOP

sw -4(r2)

4
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Problem 3: Answer each question below.

(a) Why do DLX branches (and branches in many other ISAs) use displacement addressing? Why
don’t branches use indirect addressing (destination address in a register) instead of displacement
addressing? (8 pts)

The target of branches are usually nearby so the displacement (in the immediate field) in a type-J instruction would
usually be large enough. If indirect addressing were used a register would have to be loaded with the target address, which
would require two instructions before most branches.

(b) The code below executes on an implementation that uses a reservation register to detect WB
structural hazards. At cycle zero the reservation register contains all zeros. Show the state of the
reservation register at the end of each cycle below. Indicate which (if any) bit positions are tested
in each cycle. (9 pts)

! Cycle 0 1 2 3 4 5 6 7 8 9 10

multf f0, f1, f2 IF ID M0 M1 M2 M3 M4 M5 WB

addf f3, f4, f5 IF ID A0 A1 A2 A3 WB

subf f6, f7, f8 IF ID -> A0 A1 A2 A3 WB

gtf f9, f10, f11 IF -> ID A0 A1 A2 A3 WB

nop

nop

...

! Solution:

! Cycle 0 1 2 3 4 5 6 7 8 9 10

Pos

7 1* 0 0 0 0 0 0 0 0 0

6 0 1 0 0 0 0 0 0 0 0

5 0 1* 1* 1* 1* 0 0 0 0 0

4 0 0 1 1 1 1 0 0 0 0

3 0 0 0 1 1 1 1 0 0 0

2 0 0 0 0 1 1 1 1 0 0

! Cycle 0 1 2 3 4 5 6 7 8 9 10

The contents of the reservation register is shown vertically each cycle except zero. An asterisk marks the bit position that
is checked.

5
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(c) Many packed operand instructions perform saturating arithmetic. What is saturating arith-
metic? Provide an example. (8 pts)

In saturating arithmetic if the result of an operation is too large to represent (e.g., 10 using 3 bits) it is replaced by
the largest representable value (7 using 3 bit unsigned integers). Similarly if the result is too small, it is replaced by the
smallest representable value.

Example: Eight-bit unsigned integers 100 + 200 = 255.

(d) In homework 3, a special return address register (ERA) was used to hold exception return
addresses. The jump and link instructions, jal and jalr, use r31 for the return address; is this
an option for exceptions? Explain. (9 pts)

It’s not an option because r31 must be left unchanged. After some exceptions (e.g., page fault) execution is supposed
to resume normally, so all register values must be left unchanged. The interrupted program might have been using r31
for a jump and link return address, or for some other purpose.

6
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Problem 1: The code in the table on the next page executes on a dynamically scheduled machine
using reorder buffer entry numbers to rename registers. The implementation performs branch and
branch target prediction.

There are an unlimited number of reorder buffer entries, reservation stations, and functional units.
Integer instructions use the EX functional unit, branches use the B unit, and loads and stores use
the load/store unit, consisting of segments L1 and L2.

When the code in the table starts to execute all register values are available, as shown in the tables
on the next page.

The lw instruction will suffer a miss; it will finish L2 five cycles after entering L2, loading a 100.

The bneq instruction is predicted not taken but is, in fact, taken.

(a) For this subproblem the register file is not backed up when branches are encountered. Using the
tables provided on the next page show a pipeline execution diagram for the code and the changes to
the register map and register file at the end of each cycle. Do not show reservation station numbers
or reorder buffer entries in the pipeline execution diagram itself. The entry number for the next
available reorder buffer entry is 1. Register values are in hexadecimal. Show when instructions
commit or when they are squashed. (15 pts)

(b) Explain how execution would be different if the register file were backed up when branches
are encountered. A second diagram is not necessary, just show where execution differs and how it
differs. (5 pts)

If the register map were backed up the fetching on the correct path would start one cycle after the branch reached WB,
instead of one cycle after it committed. (The one-cycle delay is needed to detect the misprediction and move the correct
address into the PC.

There is one more part.

2
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Problem 1, continued: Completed table appears below. Only changes to register map and file are shown.

Pipeline Execution Diagram

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r4, 0(r5) IF ID L1 L2 RS L2 WC

add r1, r2, r3 IF ID EX WB C

or r2, r1, r3 IF ID EX WB C

bneq r4, SKIP IF ID RS B WB C

sub r1, r2, r5 IF ID EX WB x

SKIP:

add r2, r1, r2 IF ID EX WB x IF ID EX WC

Register Map

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Arch. Reg. Val. or ROB#

r1 10 #2 50 #5 20 50

r2 20 #3 70 #6 90 70 #5 c0

r3 30

r4 40 #1 100

r5 50

Register File

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Arch. Reg. Val.

r1 10 50

r2 20 70 c0

r3 30

r4 40 100

r5 50

3
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Problem 1, continued:

(c) The DLX code in the table below executes on the dynamically scheduled machine described above. The machine uses a load/store
queue and a nonblocking (lockup free) cache as described in class. For this part the cache miss latency is lower: If an instruction in L2

encounters a cache miss it returns to its reservation station for three cycles then returns to L2.

Show the execution of the code in the table below. Show when instructions commit but do not show reservation station or reorder
buffer entry numbers.

The instructions at lines Line1 and Line3 miss the cache. The contents of each register is different. (5 pts)

Completed table appears below.

Pipeline Execution Diagram

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Line1: sw 0(r1), r2 IF ID L1 L2 RS L2 WC

Line2: lw r3, 0(r2) IF ID L1 L2 WB C

Line3: lw r1, 0(r4) IF ID L1 L2 RS L2 WC

Line4: sw 0(r1), r2 IF ID RS L1 L2 WC

Line5: lw r5, 0(r2) IF ID L1 RS L2 WC

Don’t forget part (b)!!!!

4
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This problem consists of four parts. For full credit do parts (a), (b), and (c) only. For reduced

credit do parts (a) and (d). If you have time but lack confidence do all parts, the grade will be
max{a + b + c, a + d}.
Problem 2: The code below is run on systems having a 32-bit address space, 1-byte characters,
and using 256-kibibyte (218-byte) caches as described below. Before the code is run the cache is
cold (empty). Only consider accesses to the array, a.

// sizeof(int) = 4 characters

int *a = 0x1000000; // Storage allocated elsewhere.

for(x=0; x<4; x++)

for(i=0; i<512; i++)

for(j=0; j<8; j++)

sum += a[ i * 1024 + j ];

(a) Find the hit ratio encountered executing the code above on a direct-mapped 218-byte cache
with a line size of 8 characters. How much of the cache is filled? (9 pts)

Each 8-byte line holds two four-byte integers. The innermost loop accesses integers sequentially so initially the hit ratio
will be 1

2 . Each iteration of the middle loop skips ahead 1024 integers. Each iteration of the outermost loop is identical
(the same addresses are used) so maybe there will be more hits in the second iteration.

Because the cache is direct mapped no two lines can have the same index. (An access to a second line would evict the
first.) In the cache the index bits are 3:17. The access to the array varies address bits 2:4 (the j loop) and 12:20 (the i
loop). Three bits, 18, 19, and 20 are in the tag (outside the index). Therefore there will be eight different addresses that
use the same index. When the second iteration of the outermost loop starts the lines needed (in the beginning) will have
been evicted. Therefore the overall hit ratio is 1

2 .

To find the amount of data cached, find the number of bits in the intersection of the index and offset bits with the bits
varied by the code. The intersection is bits 17:12 and 4:2 for a total of 9 bits. The amount of the cache filled is 29 = 512
integers or 2048 bytes.

(b) Suppose the associativity of the cache could be increased while fixing the cache capacity at
218-byte and the line size at 8. What would the hit ratio be if the associativity were 2? What
is the smallest associativity needed to achieve the maximum hit ratio on the code above? Is that
associativity practical? Explain. (8 pts)

The hit ratio is still 1
2 when the associativity is 2. Because doubling the associativity reduces the number of index bits

by one, it would take an associativity of 512 to maximize the hit ratio. This associativity is impractically high.

5
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Problem 2, continued:

(c) Suppose any address bits could be used to form the index (set number, address used in the tag
store) and any line size could be used. (Lines must still be contiguous.) In the diagram below show
which address bits should be used (using the rounded boxes) to maximize the hit ratio of the code
above. The capacity of the cache must still be 218-byte. (8 pts)

Figure includes solution.

CPU

Addr

Data

Data

Tag

 Addr

=
Tag

Valid

Hit

Out

Out

32

 Addr

 In
Tag

32 {31:21,7:5}

{20:8}

{31:21,7:5}

{20:8,4:2}

The line size is increased to 32 bytes to minimize cold misses. To eliminate conflict misses the index bits are moved to
positions 20:8 (so that none of the bits varied by the code are in the tag).

6
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(d) Optional: Only solve this part if you cannot solve parts (b) and (c). Total credit will be lower.

This part is unrelated to the previous parts. Show how 234 × 32 b memory devices should be
connected to implement a 40-bit address space on a system with four-bit (one-nibble) characters
and a bus width of 64 bits. Include the alignment network. (8 pts)

Solution:

CPU

Addr

Data

Op

Addr Data
37:4

Addr Data
37:4

Align

3:0 39:38

Addr Data
37:4

Addr Data
37:4

32

32

32

32

64

64

64

Addr Data
37:4

Addr Data
37:4

Addr Data
37:4

Addr Data
37:4

32

32

32

32

64

64

64

7
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Problem 3: The code below is compiled and run on two machines, one using a one-level branch
predictor and the other using a two-level gselect branch predictor. Both predictors use a 4096-entry
BHT, the gselect predictor uses a 3-branch global history. Each entry holds a 2-bit saturating
counter.

for(i=0; i<100000; i++)

{

Line1: if( a == 1 ) aa++;

Line2: if( b == 1 ) bb++;

Line3: if( c == 1 ) cc++;

Line4: if( i & 0x2 ) { x++; } /* N N T T N N T T N N T T N N T T ... */

Line5: if( i & 0x4 ) { y++; } /* N N N N T T T T N N N N T T T T ... */

Line6: if( i & 0x2 ) { z++; }

}

(a) The ISA has a 32-bit address space, all instructions are 32 bits (four characters) and must be
aligned. How is the address for the BHT in the gselect predictor obtained? Be sure to specify bit
positions. (9 pts)

Since there are 4096 entries the BHT must have 12 address bits. In gshare the global branch history is concatenated with
some instruction address bits. There are 3 bits of global history so 9 instruction address bits are needed. Bits are taken
from the low end, skipping the alignment. In this case bits 10:2.

Note: i & 0x2 is the bitwise and of the value of i and 2. (0x2 is the hexadecimal representation of 2). The if is taken
when the second bit of i is 1. For example:

i i & 0x2

000 0 (False)

001 0 (False)

010 10 (True)

011 10 (True)

100 0 (False)

101 0 (False)

110 10 (True)

111 10 (True)

Note that a value of zero is false and any non-zero value is true.

(b) Assume that exactly one branch instruction is generated for each if statement and that the com-
piler does no optimizing. What is the prediction accuracy for each of the last three if statements
using the one-level predictor after a large number of iterations? (8 pts)

The branches at Line4 and Line6 suffer a prediction “accuracy” of 25% and Line5 has an accuracy of 50%.

(c) As above, assume that exactly one branch instruction is generated for each if statement and
that the compiler does not do any optimizing. What is the prediction accuracy for each of the
last three if statements using the gshare predictor after a large number of iterations? Hint: The
solution to this part does not require tedious computation or the construction of lengthy tables.
(8 pts)

The global history is not much help to the branch at Line4 because the preceding three branches are always taken
the same way, so the prediction accuracy remains 25%. Knowing whether the branch at Line4 was taken is no use in
predicting the branch at Line5, so its accuracy remains at 50%. The outcome of Line4 is useful in predicting Line5,
in fact it can be predicted with 100% accuracy.

8
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Problem 4: Answer each question below.

(a) Synthetic instruction clr 12(r2) writes a zero to the memory location at address 12 + r2.
How could it be added to DLX? (5 pts)

This would correspond to DLX instruction sw 12(r2),r0.

(b) Besides the large amount of storage, what would be the disadvantage of a RISC ISA that had
1048576 (220) integer (general-purpose) registers? (5 pts)

It would take 20 bits to specify each operand and so the instructions would be too large.

(c) Why would it be inappropriate to add a memory indirect load instruction to DLX. (For example,
lw r1,@(r2).) Justify your answer for the statically scheduled DLX implementation. Weigh the
complexity of changes needed for the implementation against expected benefit over a software-only
solution. Be brief. (5 pts)

Such an instruction would require two accesses to memory. In the static DLX implementation this would require either a
second MEM stage (too expensive and only used for a few instructions) or the instruction would have to make two passes
through MEM, complicating the simple integer pipeline. Two load instructions would be just as fast.

9
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(d) The code below runs on a dynamically scheduled 4-way superscalar machine with perfect branch
target prediction and a cache that never misses. There are an unlimited number of reorder buffer
entries, reservation stations, and functional units. This machine is not 100% perfect: its fetch
mechanism is the type described in class. What is the minimum and maximum CPI executing the
code below for a large number of iterations? Explain the conditions under which minimum and
maximum CPI are encountered. (5 pts)

LOOP:

lb r1, 0(r2)

addi r2, r2, #1

bneq r1, LOOP

The minimum CPI is 1
3 , the maximum CPI is 2

3 . The minimum CPI is encountered when all three instructions lie on one
(aligned) fetch block, as when LOOP is a multiple of 16. The maximum occurs when the instructions fall on two fetch
blocks.

(e) What is the difference between a write-through cache and a write-back cache? Which one needs
a dirty bit and why? (5 pts)

In a write-through cache stores are always immediately written through to the next level of the hierarchy, for example, to
memory. In a write back cache data is not written to the next level of the hierarchy until a line is replaced. (Or under
other circumstances covered in later courses.)

10
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Problem 1: Design control logic to generate the control signal for the multiplexor at the lower
input to the ALU. The control logic should be located in the ID stage and should generate a
two-bit integer for the multiplexor. The integer specifies which multiplexor input to use, they are
numbered from zero starting at the top. (Input 0 connects to ID/EX.B, 1 connects to EX/MEM.ALU,

etc.) The logic can use units that test for equality of their two inputs, = , and units that test for

instruction formats,
= Type I

,
= Type R

, and
= Type J

, and can use the usual logic gates.
Base the setting on instruction type, rather than the exact opcode. Show how the control signal is
connected to the multiplexor. (25 pts)
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IR

Addr
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Solution:
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+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

= Type R

=’
11..15

16..20

31
0

= JAL
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Problem 2: Consider the code below.
LOOP:

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lw r1, 0(r2) IF ID EX MEM WB IF ID EX

addi r3, r1, #12 IF ID --> EX MEM WB IF ID

sw 4(r2), r3 IF --> ID -----> EX MEM WB IF

add r5, r5, r1 IF -----> ID EX MEM WB

addi r2, r2, #8 IF ID EX MEM WB

slt r6, r2, r7 IF ID EX MEM WB

bneq r6, LOOP IF ID -----> EX MEM WB

xor r8, r9, r10 IF -----> x

(a) Show a pipeline execution diagram for execution up to the second time lw enters instruction
fetch. Use the pipeline from problem 1. As with homework 3, a bypass path is unavailable if it’s
not shown. What is the CPI for a large number of iterations? (10 pts)

The pipeline execution diagram appears above. The CPI is 13
7 = 1.857 CPI.

(b) Unroll the loop so that two iterations of the code above is performed by one iteration of the
unrolled loop. (Assume the number of iterations in the original loop is a multiple of two.) Schedule
the unrolled loop to minimize stalls. (10 pts)

LOOP:

!Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lw r1, 0(r2) IF ID EX MEM WB IF ID EX MEM

lw r11, 8(r2) IF ID EX MEM WB IF ID EX

addi r3, r1, #12 IF ID EX MEM WB IF ID

addi r13, r11, #12 IF ID EX MEM WB IF

addi r2, r2, #16 IF ID EX MEM WB

slt r6, r2, r7 IF ID EX MEM WB

add r5, r5, r1 IF ID EX MEM WB

add r5, r5, r11 IF ID EX MEM WB

sw -12(r2), r3 IF ID EX MEM WB

sw -4(r2), r13 IF ID EX MEM WB

bneq r6, LOOP IF ID EX MEM WB

xor r8, r9, r10 IF x

(c) What is the CPI of the unrolled and scheduled loop found above? What conclusions about per-
formance improvement can and cannot be made by comparing the CPI of the original and unrolled
loop? What is the performance improvement? (Give a number for performance improvement, don’t
just say “it’s good.”) (10 pts)

The unrolled loop has 11 instructions and only suffers a 1-cycle branch delay, for a CPI of 12
11

= 1.091 CPI.

Though the CPI is lower, this doesn’t tell the whole story because fewer instructions do the same amount of work and so
the performance improvement is more than CPI improvement would suggest.

Performance improvement will be expressed as speedup. The speedup of the unrolled loop will be found using the time
needed to do two iterations of the original loop and dividing it by the iteration time of the unrolled and scheduled loop:
13×2

12 = 2.167. 3
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Problem 3: Answer each question below.

(a) Show an example of DLX code that encounters a WAW hazard on the Chapter-3 implementation
of DLX (in which the multiply floating-point functional unit has an initiation interval of 1 and a
latency of 6 and the add floating-point functional unit has an initiation interval of 1 and a latency
of 3) but which does not encounter a WAW hazard on a DLX implementation which is identical
except the FP add latency is 1 and the FP multiply latency is 4. The code should not encounter a
structural hazard on either implementation. (12 pts)

! Code execution on Chapter-3 DLX (unmodified).

! Cycle 0 1 2 3 4 5 6

addf f0, f1, f2 IF ID A0 A1 A2 A3 WB

lf f0, 0(r1) IF ID EX MEM WB

! Code execution on Chapter-3 DLX with fast FP functional units.

! Cycle 0 1 2 3 4 5 6

addf f0, f1, f2 IF ID A0 A1 WB

lf f0, 0(r1) IF ID EX MEM WB

(b) In DLX, why are there separate lh (load half) and lhu (load half unsigned) instructions, a sh

(store half) instruction but no shu (store half unsigned) instruction? (11 pts)

Because the register contents is stored into a location of the right size and so there is no need for sign extension and
therefore no need to distinguish a signed and unsigned value.

4
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(c) The code below is for a stack architecture. Rewrite the code below in DLX using as few
instructions as possible. Assume that ADDRA is in r10, ADDRB is in r11, ADDRX is in r12, and ADDRY

is in r13. The data at the addresses are double-precision floating-point values. (11 pts)

push ADDRX

push ADDRX

mult

push ADDRA

push ADDRB

add

push ADDRX

mult

push ADDRA

push ADDRB

mult

add

add

pop ADDRY

ld f0, 0(r10) ! A

ld f2, 0(r11) ! B

ld f4, 0(r12) ! X

multd f6, f4, f4

addd f8, f0, f2

multd f8, f8, f4

multd f10, f0, f2

addd f10, f10, f8

addd f10, f10, f6

sw 0(r13), f10

(d) Explain two ways in which precise exceptions can be made optional for floating-point instruc-
tions. That is, the programmer may choose to have precise exceptions where they are needed or
may choose to not have precise exceptions were performance is most important. Explain what the
programmer would have to do for each of the two ways. (11 pts)

Method 1: Provide precise and non-precise versions of floating-point instructions. The programmer uses the appropriate
version.

Method 2: Provide a test instruction that can be used after floating-point instructions for which exceptions must be
precise.

5
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Problem 1: With the following extension to the DLX ISA a program can get a count of how many
times a particular address has been read or written by load and store instructions. The count is
kept in a load/store counter (LSC) which is incremented whenever a load or store instruction uses
a particular effective address. Two new instructions are added, setlsc (type I) and getlsc (type
R). Instruction setlsc r1,r2+#3 sets the effective address to r1 and initializes the counter to
r2+#3. Instruction getlsc r3 copies the LSC to r3.

For example, consider the code below. The first instruction, setlsc, initializes the count to zero
and sets the address to watch to the value of r1. When lw executes the count will be incremented
because the addresses match. If r1=r10-8 then the count will be incremented again when sw

executes, otherwise the count will remain at one. The getlsc instruction will load r2 with a two,
if r1=r10-8, or a one, otherwise.
setlsc r1, r0+#0

lw r5, 0(r1)

sw 8(r10), r11

getlsc r2

add r3, r3, r2

add r4, r4, r2

(a) Show the changes necessary to add the two instructions to the pipeline below. (The illustration
and program are repeated on the next page for convenience.)(20 pts)

• Include the hardware, including control, needed to set, increment, and read the LSC.

• The code above (and any other valid DLX program) must execute correctly and with as
few stall cycles as possible.

• The solution can use basic gates, multiplexors, instruction recognizers (
=getlsc

,

=setlsc ,
=load/store

, etc.), equality testers ( = ), incrementers, and similar logic.

• Equality testers produce their output in 1
2 cycle, instruction recognizers produce an

output in much less than one cycle.

(b) If the solution above works correctly when instructions raise exceptions you’ve solved this part
too. Otherwise, explain how an exception could result in incorrect execution and how it might be
fixed. (Of course, the pipeline handled exceptions correctly before the changes for the first part.)
(5 pts)
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Use the next page for the solution.

2
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Problem 1, continued:

!Cycle 0 1 2 3 4 5 6 7 8 9

setlsc r1, r0+#0 IF ID EX MEM WB

lw r5, 0(r1) IF ID EX MEM WB

sw 8(r10), r11 IF ID EX MEM WB

getlsc r2 IF ID EX MEM WB

add r3, r3, r2 IF ID EX MEM WB

add r4, r4, r2 IF ID EX MEM WB

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR
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Addr
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Data
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LSC EA

=SETLSC

=Load/Store

=
+1

EXC

L

2

0
1

Truth table for L (mux logic)

=L/S =SETLSC = EXC Output

x 1 x x 0

0 0 0 x 2

1 0 0 x 2

1 0 1 0 1

1 0 1 1 2

Added portions shown above in red. The truth table describes the control logic for the LSC multiplexor. Logic is not
shown for the ALU-input and WB-stage multiplexors. The EXC output on the memory is 1 when the memory operation
raises an exception.

Operation: the added hardware includes two registers, LSC and EA, both are in the MEM stage.

When a setlsc instruction is in the MEM stage the effective address will be in the EX/MEM.B latch and the count
value will be in EX/MEM.ALU latch. These values will be clocked into the LSC and EA registers at the end of the cycle.

When a load or store instruction is in the MEM stage the effective address is in the EX/MEM.ALU latch; it is compared
to the current value in EA, and based on the comparison LSC is either loaded with the same or an incremented value.
(LSC could also have been implemented using a loadable counter.)

When a getlsc instruction is in the WB stage the current value of LSC will be selected from the WB-stage multiplexor.

LSC values can be bypassed back to the ALU using the existing WB-to-ALU path and a new LSC-to-ALU path. The new
bypass path would be used by the first instruction after getlsc in the code above (while getlsc is in MEM and the

3
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add is in EX). The existing bypass path is used by the second add.

If a load or store instruction raises an exception the memory’s EXC output is 1, the LSC multiplexor will select the
unchanged value (input 2). If the incremented value were selected (that is, if the exception were ignored), then LSC would
be incremented and incremented again when the instruction re-executes. The resulting value would be too high.

Correct operation can be verified by examining the pipeline execution diagram. For example, setlsc initializes LSC
before it is incremented by the following lw and after it might have been incremented by any preceding instructions.

4
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Problem 2: Provide pipeline execution diagrams for the code and machines indicated below. All
machines have the following features in common:

• Dynamically scheduled processor using register renaming with a reorder buffer. Registers
named using reorder buffer entries.

• Branch and branch target prediction (but no branch folding).

• Speculative execution past predicted branches with the reorder buffer used for mispre-
diction recovery.

• Functional unit inputs connect to CDB (and reservation stations).

• Functional units and reservation stations are as listed below. The quantity of functional
units is given for both an ordinary single-issue machine and a 4-way superscalar machine.

Quantity Functional Abbr. Latency Initiation Reservation
Single 4-Way Unit Interval Station Nums

1 1 Load/Store L 1 1 0-1
1 4 Integer EX 0 1 2-3,13-15
1 2 F.P. Add A 1 1 4-6
1 1 F.P. Mul. M 7 2 7-8
1 1 Branch BR 0 1 9-10
1 1 F.P. Divide DIV 22 23 11-12

(a) Show the execution of the code below on a single-issue (not superscalar) machine as described
above.

The branch is predicted taken and its target is correctly predicted. However, the branch is in
fact not taken. Show execution until the last instruction completes. Show when each instruction
commits; indicate canceled instructions with an X. (Note: ltf f0,f3 sets the floating-point
condition register to f0<f3; bfpt SKIP branches to SKIP if the floating-point condition is true.
The ltf instruction uses the FP add unit. (9 pts)

!Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

addf f0, f1, f2 IF ID A1 A2 WC

ltf f0, f3 IF ID RS A1 A2 WC

bfpt SKIP IF ID RS RS BR WC

lf f0, 0(r1) IF ID L1 L2 WC

SKIP:

addf f4, f0, f5 IF ID A1 A2 WX IF ID RS A1 A2 WC

addi r1, r1, #4 IF ID EX X IF ID EX WB C

5
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(b) Show the execution of the code below on a single-issue (not superscalar) machine as described
above. The branch is correctly predicted not taken. Show execution until the last instruction
completes. Show when each instruction commits. Show the state of the reorder buffer when addf

reaches writeback. (8 pts)

!Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

multf f0, f1, f2 IF ID M1 M1 M2 M2 M3 M3 M4 M4 WC

ltf f0, f3 IF ID 4:RS 4:RS 4:RS 4:RS 4:RS 4:RS 4:RS A1 A2 WC

bfpt SKIP IF ID 9:RS 9:RS 9:RS 9:RS 9:RS 9:RS 9:RS 9:RS BR WC

lf f0, 0(r1) IF ID L1 L2 WB C

SKIP:

addf f4, f0, f5 IF ID 4:RS A1 A2 WB C

addi r1, r1, #4 IF ID EX WB C

6
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(c) Show the execution of the code below on a 4-way superscalar processor as described above.
Instructions are fetched in aligned blocks of four. The branch is correctly predicted taken. All
targets are correctly predicted. Show execution until the last instruction completes. Show when
each instruction commits. (8 pts)

LINE0: ! LINE0 = 0x100c

beqz r1, LINE1 IF ID BR WC

addf f0, f0, f1 IF x

j LINE2 IF x

LINE1

addf f0, f0, f2 IF ID A1 A2 WC

add r2, r2, r3 IF ID EX WB C

and r2, r2, r4 IF ID EX WC

LINE2

addf f0, f0, f3 IF ID 4:RS A1 A2 WC

addf f5, f5, f0 IF ID 5:RS 5:RS 5:RS A1 A2 WC

addf f6, f6, f0 IF ID 6:RS 6:RS 6:RS A1 A2 WC

addf f7, f7, f0 IF ID 4:RS 4:RS 4:RS A1 A2 WC

addf f8, f8, f0 IF ID ---------> 5:RS A1 A2 WC

and r5, r6, r7 IF ID EX WB C

or r8, r9, r10 IF ID EX WB C

xor r11, r12, r13 IF ---------> ID EX WB C

sub r14, r15, r16 IF ---------> ID EX WB C

7
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Problem 3:

(a) A system is equipped with the cache shown below.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=

4:10

Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

128

Hit

Data

 Addr

Tag

 Addr

=Tag

Valid

7:107:10

4:10 4:10

7:10

48

Out

Out

Out

Out

Out

Determine a value for each of the following. Be sure to specify units (bits, bytes, etc.) (10 pts)

Character Size (Size of item at a single address.):8 bits

Associativity:3

Block Size:128 bytes or 1024 bits

Number of Sets: 16

Cache Capacity (Amount of data that can be stored.):3× = 6144 bytes

Memory Needed to Implement Cache: 3 × 16 × (128 × 8 + (37 + 1)) = 50976 bits = 6372 bytes

8
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The problems on this page are for the cache described below, not the cache from the previous page.

Consider a system with a 64-bit address space (a = 64) which addresses the usual 8-bit (1-byte)
characters (c = 8) and is equipped with a 2-way set-associative cache with 64-byte lines and 256
sets. The cache uses LRU replacement.

(b) Initially the cache is empty. What is the hit ratio for accesses to the array in the code below.
Ignore all other memory accesses. (7 pts)
extern char *the_array;

// Note: sizeof(char) = 1 byte.

// &the_array[0] = 0x10000

for(i=0; i<16; i++) a += the_array[ i * 8 ];

Hit ratio will be 7
8 = 0.875.

(c) Choose values for i_limit and stride so that the program below completely fills the cache with
the minimum number of accesses. Assume the cache is initially empty and only include accesses to
the array. (8 pts)
extern char *the_array;

// Note: sizeof(char) = 1 character. (What else?)

// &the_array[0] = 0x10000

int i_limit =

int stride =

for(i=0; i<i_limit; i++) a += the_array[ i * stride ];

Solution: i limit = 512 and stride = 64.

9
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Problem 4: Answer each question below.

(a) Show how the DLX instructions below are encoded. That is, write the instructions as numbers.
Make up numbers for opcode and func fields, but use actual values for other fields. Hint: If you
can’t remember field sizes look at the illustration for problem 1. (5 pts)

beqz r7, SKIP

add r1, r2, r3

xori r4, r5, #6

SKIP:

opcode

beqz
0 5

rs1
7

6 10

rd
?

11 15

immediate
8

16 31
opcode

Type R
0 5

rs1
2

6 10

rs2
3

11 15

rd
1

16 20

func
add

21 31
opcode

xori
0 5

rs1
5

6 10

rd
4

11 15

immediate
6

16 31

(b) Describe an advantage of VLIW over superscalar processors. Describe a disadvantage of VLIW
over superscalar processors. (Use the VLIW ISA described in class.) (5 pts)

Advantage of VLIW: dependencies specified, superscalar machine devotes alot of silicon to finding dependencies. Advantage
of superscalar: compatible with existing code.

(c) What is a translation lookaside buffer (TLB) and what does it do? (5 pts)

It is a cache indexed by virtual page number that stores real page numbers.

10
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(d) Show how an address can be constructed for the branch history table in an (m,n) two-level
correlating branch predictor. (Two ways were presented in class, show either one.) (5 pts)

Maintain the outcome of the last m branches in a shift register. Exclusive or the contents of the shift register with the
low-order m bits past the alignment bits of the address of the branch instruction being predicted. Voilá.

(e) Re-write the program below using DLX instructions. Additional registers may be used. (5 pts)

lw r1,@(r2) ! Memory indirect addressing.

add r3, r4, (r5) ! Register indirect addressing.

ld f0, (0xfedcba01) ! Direct addressing.

Solution:

lw r21, 0(r2)

lw r1, 0(r21)

lw r25, 0(r5)

add r3, r4, r25

lh r22, 0xfedc

ld f0, 0xba01(r22)

11
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Problem 1: The DLX implementation below uses ID-stage address calculation (as illustrated)
and bypassing (which is not illustrated) including the branch condition bypassing developed in
homework 3. The branches do not include delay slots.

sign
ext.

IR

Addr
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IR
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IR IR
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MD

! Initial values: r1=2028, r2=0xf11, r3=5, r4=5004, r5=-1000, LOOP=0x3000, MEM[0xf11]=0x97

LOOP: ! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

lb r1, 0(r2) IF ID EX ME WB IF ID EX ME WB

add r2, r2, r3 IF ID EX ME WB IF ID EX ME WB

lw r4, 3(r2) IF ID EX ME WB IF ID EX ME WB

sub r5, r1, r4 IF ID -> EX ME WB IF ID -> EX ME WB

bneq r5, LOOP IF -> ID EX ME WB IF -> ID EX ME WB

addi r2, r2, #1 IF IF

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a) Show a pipeline execution diagram for two iterations of the code on the DLX implementation.
Don’t forget, bypass paths are present but not shown. The space to the right of the program or a
separate sheet may be used. A description of some mnemonics appears on the next page. (7 pts)

(b) On the figure above show exactly those bypass paths needed to execute the code. (7 pts)

(c) What is the CPI while executing the loop (assuming a large number of iterations)? (7 pts) 7/5 = 1.4 CPI.

(d) Show the contents (values, not functions of register names) of the pipeline latches at the middle
of the first cycle that lb is in WB. Include PC and NPC. For IR contents, just show the mnemonic;
if an IR contains a nulled instruction show the original mnemonic and “(nulled).” Show the values
on the diagram above, write the value within the stage to which it applies with an arrow pointing
to the latch or register. (7 pts)
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(e) Show a pipeline execution diagram of two iterations of the loop below on the DLX implemen-
tation illustrated (it’s the same as the earlier one). As before, bypass paths are provided but not
shown, including hw3 bypass paths. The target of the beqz r2, SKIP2 instruction is really just
the next instruction. Assume that no special hardware optimizations have been made. (7 pts)
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! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

addi r1,r0,#0x200 IF ID EX ME WB

SKIP1:

andi r2, r1, #1 IF ID EX ME WB IF ID EX ME WB IF

beqz r2,SKIP2 IF ID EX ME WB IF ID EX ME WB

SKIP2:

subi r1, r1, #1 IF IF ID EX ME WB IF ID EX ME WB

bneq r1,SKIP1 IF ID EX ME WB IF ID EX ME WB

xor r1, r1, r1 IF

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(f) Compute the CPI of the execution
of the loop above for a large number of
iterations. (7 pts)

Note that first branch executes every other itera-
tion, so CPI should be based on two consecutive
iterations. 11

8
= 1.375 CPI.

For Reference:

Mnemonic Description
addi Add immediate
andi Logical “and” immediate
beqz r1, TARGET Branch if r1 equals zero.
bneq r1, TARGET Branch if r1 not zero.
lbu Load byte unsigned.
lb Load byte.
lw Load word.
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Problem 2: Consider an ISA, DLXPC, which is like DLX except it uses a condition code bit
and predicated execution. The condition code bit is set by the execution of new integer arithmetic
instructions, to zero if the result is zero and to one if the result is nonzero. The ISA also includes
predicated arithmetic instructions which complete only if the condition code bit (set by the most
recent condition-code setting instruction) is 1, otherwise they have no effect. The mnemonic for a
predicated instruction has a “p” appended, e.g., add p, and the mnemonic for an instruction that
sets the condition code has a “c” appended, e.g., add c. An instruction can be both predicated and
set the condition code; for example, add pc only executes if the condition code (set by a previous
instruction) is 1, and sets the condition code itself.

(a) Using these instructions rewrite the code below so that it uses fewer instructions and registers.
Assume that the value in register r1 is not used after beqz.(6 pts)

sub r1, r2, r3

beqz r1, SKIP

add r4, r5, r6

SKIP:

addi r4, r4, #1

Solution below:

sub_c r0, r2, r3

add_p r4, r5, r6

addi r4, r4, \#1

4

← → Spring 1998 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4720/1998/mt_sol.pdf


(b) The pipeline below implements DLXPC—almost: it will not execute predicated, condition-code
setting instructions (such as xor pc) correctly if an exception occurs at a certain time. Show code
and a pipeline execution diagram that illustrates the problem. Be sure to point out where the
exception occurs and what goes wrong. Hint: the problem would not occur if the execution of some
other instructions could be stopped in the cycle that an exception was detected. (9 pts)

In the figure below the ALU has a second output, which is 1 if the main output is not equal to

zero, 0, otherwise. The output of is C is 1 if the instruction is a type that sets the condition code

(e.g., add c); the output of is P is 1 if the instruction is predicated, zero otherwise.
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Condition-bit instructions change processor state (the condition bit register) one cycle earlier than other instructions.

Cycle 0 1 2 3 4 5

lw IF ID EX *ME* WB

xor_pc IF ID EX ME WB

In cycle 3, the lw instruction raises a page-fault exception in the same cycle xor pc is writing the condition bit. If the
condition bit is overwritten then it will be impossible to get the previous value and so when the trap handler returns,
xor pc may not execute, even though the condition bit was 1 (before being overwritten).

One possibility is to add a condition-bit-in-last cycle register. (This would have the condition bit value that was valid in
the previous cycle.) It would be used to restore the old bit value, details would be needed for a complete solution.(c) Modify the pipeline to fix the problem. (9 pts)
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(d) Suppose the ISA also includes a new branch instruction, mnemonic b p, that tests the condition
bit (instead of a register) and branches if it’s true. To implement the branch instruction an ID-
stage take branch signal is needed. The signal should be 1 when a b p instruction that will be
taken is in the ID stage (zero otherwise). Show how the pipeline below would have to be modified
to provide this signal. Be sure that the modified pipeline executes the code below correctly and
without adding an unnecessary stalls. (8 pts)

sub_c r0, r1, r2 ! Set condition code.

b_p TARGET

add_c r3, r4, r5 ! Set condition code.

add r6, r7, r8 ! Doesn’t affect condition code.

b_p TARGET2

sign
ext.
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Outline: In most cases the CC bit could be used to generate take branch, the exception is when the bit is set by the
instruction immediately preceding the branch. For that case the input to the condition bit register would be used (perhaps

stretching the clock cycle). A multiplexor would select the proper signal, controlled by the = C box.
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Problem 3: Answer each question below.

(a) In class execution time has been modeled using the equation t = 1
φ

∑
i ICiCPIi. Given what

has been covered in class so far, to what degree is CPIi a function of the implementation and to
what degree is CPIi a function of the program? Explain. (9 pts)

CPI is strongly determined by implementation, for example, bypass paths would reduce the CPI. CPI is effected to a small
degree by the program, since different instruction orderings might effect their execution. For example, if a program has a
load instruction immediately followed by an instruction that uses the loaded value than the CPIl, where l is the class of
lw would be larger than a program in which loads were followed by non-dependent instructions.

(b) Synthetic instruction neg r1 assigns register r1 to the negation of its previous value, that is,
r1 = -r1. How would such a synthetic instruction be defined in DLX? (8 pts)

Solution: sub r1, r0, r1

(c) Packed-operand instructions (as found in MMX or VIS) and elaborate procedure call instruc-
tions (that perform extensive stack-frame preparation actions including register saves) are similar
in that they can replace many individual instructions. Provide contrasting reasons on whether or
not such instructions should be added to an ISA, including implementation factors. For exam-
ple, instructions should be added because the implementation while

should not be added because though certainly if it
would , but that’s not enough1. (9 pts)

The procedure call instruction should not be added because not much time would be saved over individual instructions
that perform the same actions. A procedure call function would constrain how procedure could be called. Packed operand
instructions would (usually) take no more time to execute than ordinary arithmetic instructions. The instructions that a
packed-operand instruction replace would take many cycles to execute, so there is a good reason to add them to an ISA.

1 This is just an example, don’t try to fill in the blanks!
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Problem 1: An extended version of DLX is to include a new morph instruction, mnemonic mrph.
Morph takes two arguments, an instruction address and a new instruction. After executing mrph

IADDR INSTR, when execution reaches IADDR instead of executing the instruction at IADDR,
INSTR is executed. This substitution only happens once, if execution reaches IADDR a second
time the instruction at IADDR executes normally (unless mrph was executed again). For example
consider:

mrph POINTA, [subd f0, f2, f6]

...

LOOP:

subi r2, r2, #3

POINTA:

muld f0, f0, f2 ! On the first iteration subd will execute.

bneq r2, LOOP

addd f0, f0, f4

In the first iteration of the loop the subd instruction specified by mrph will be executed instead of
the muld. After that the loop will execute normally. Morph might be useful for debuggers (the
substituted instruction would be a jump to a debug routine).

A system can have at most one morph active at any time. The morph instruction cannot modify
memory1.

(a) Determine a format for the morph instruction that fits naturally into the DLX ISA. (An
instruction fits naturally if it uses an existing type and its implementation requires little new
hardware.) The format should include the type and how the arguments are specified, that is how
mrph’s arguments relate to IADDR and INSTR. In other words, how is the address specified (not
too difficult since many existing DLX instructions specify addresses) and how is the instruction
specified (the interesting part). (The three DLX formats types are type-R, used by add r1,r2,r3;
type-I, used by addi r1,r2,#3; and type-J, used by j LOOP. Don’t confuse the assembly language
instruction with the actual instruction format, the assembly language form used above may be
misleading.) Hint: If you’re not sure what to do in this part, attempt the next part first. (5 pts)

The morph instruction needs another instruction and an address. To fit “naturally” into the DLX ISA mrph would have to
be 32 bits, so there would be no way to literally have the address and instruction present. Two options for the address are
displacement addressing (as with branches) and register-indirect (as with some jumps). Register indirect is chosen because
it does not require addition and because it leaves a source register operand free. The instruction (INSTR) is specified by
a register, that is, the instruction itself is stored in a register. Since the type-R format has two source registers, it will be
used.

In summary, mrph is a type-R format instruction in which register rs1 holds the address of the instruction to replaced
(IADDR) and rs2 holds the instruction to substitute (INSTR).

1 Morph could be implemented in software by replacing the instruction at IADDR by a jump to a morph routine. The
morph routine would execute the substituted instruction and then return.
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(b) Modify the pipeline below to implement mrph using the format chosen above. The pipeline must
always execute the code below correctly. (The code itself is correct.) (For partial credit if your
design will not execute the code below correctly explain why and how it might be fixed.) (15 pts)

bneq r10,L1

mrph A,[add r1,r2,r3]

j L2

L1:

mrph SKIP,[add r0,r0,r0]

L2:

...

bneq r1, SKIP ! Hint: May cause trouble.

A:

sub r1, r2, r3 ! Maybe add r1, r2, r3 substituted.

lw r4, 0(r1) ! Hint: May cause trouble.

SKIP:

addi r4, r4, #12 ! Maybe add r0, r0, r0 substituted.
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Preliminary: The added hardware performs two actions: the execution of mrph, and substituting the instruction as
specified by the last mrph. To execute mrph the presence of mrph is detected in the MEM or WB stage, if present IADDR
and INSTR are clocked into special registers added for morph. (The values must be copied because the register contents
can change.) A morphactive bit is also set. If the steps above were done in ID there would be no way to cancel the
execution of mrph, for example if the preceding instruction encountered a page fault.

The hardware that performs the substitution is in the IF stage. The PC address which is being used for instruction fetch
is also compared with the stored morph IADDR. If they match and morphing is active then the stored morph INSTR is
clocked into the IF/ID.IR register rather than the value retrieved from memory and the morphactive bit is reset.

Solution continued on next page.
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To implement morph the stage latches have an extra bit, called the M bit. This bit is set to 1 in IF if the substitute
instruction is clocked into IF/ID.IR. The bit is passed down the pipeline unchanged. If a substituted instruction is
cancelled and the M bit is 1 the morphactive bit is set back to one. Two examples of morphed instructions being
cancelled appear in the code fragment above. Suppose the branch before A is taken after executing the first morph.
While the branch is in ID the sub will be in IF and will be replaced with the add, the M bit will be set to 1, and the
morphactive bit will be reset. Since the branch is taken the add (nee sub) will be cancelled in the next cycle. Since
the M bit will be one, morphactive will be set back to one. Next consider the second morph above. Suppose the lw
encounters a page fault. The morphed instruction add (nee addi) will be in EX when the fault occurs and (depending
on implementation) in EX or MEM when cancelled. Again, because of the M bit the morphactive bit can be set back
to 1.

In the original exam, the question asked “what might go wrong in the code above,” in the modified exam that was changed
to “if your design will not execute the code correctly explain why.” Many had misinterpreted the original phrase to mean:
“The programmer who wrote the code was careless and so the code has bugs. What did the programmer intend and
what will go wrong?” There was nothing in the question to indicate that the program was other than correct, so the
interpretation was not correct.

4
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Problem 2: The program below executes on a 2-way, dynamically scheduled superscalar processor.
The processor’s features are summarized in the list below, the table gives details of the functional
units. (The load/store unit computes the address in its first cycle and does the actual access in its
second cycle. An operation does not enter the load/store unit until all its operands are ready.)

♦ Two-way superscalar instruction issue.

♦ Dynamically scheduled (see table), register renaming.

♦ CDB can accommodate results from any two functional units in any cycle.

♦ Reorder buffer for speculative execution and precise exceptions.

♦ Reorder buffer can retire as many as two instructions per cycle.

♦ Reservation stations, not reorder buffer, used for renaming.

♦ Zero-delay branch and branch target prediction. No branch folding.

♦ Branches do not have delay slots.

Name Abbreviation Latency Initiation Reservation
Interval Station Nums

Load/Store L 1 1 0-1
Integer EX 0 1 2-3
F.P. Add A 1 1 4-5
F.P. Mul. M 5 2 6-7
Branch BR 0 1 8-9
F.P. Divide DIV 22 23 10-11

! When loop first entered r2-r1 large (loop iterates many times).

LOOP: ! LOOP = 0x1000

lf f0, 0(r1) ! Don’t overlook true dependencies on f0!

mulf f0, f0, f2

addf f0, f0, f3

sf 4(r1), f0

addi r1, r1, #8

slt r3, r1, r2

bnez r3, LOOP

div f4, f5, f6

(a) Using the grid on the next page show the execution of the code above up to and including the
last cycle shown on the grid. Assume perfect branch and branch target prediction, and no cache
misses. Include instructions even if they have not yet finished executing at the end of the grid.
(10 pts)

(b) Either determine and justify the CPI of an execution of a large number of iterations of the loop
(ignoring cache misses and assuming perfect target prediction) or explain why it cannot easily be
determined from the pipeline execution diagram. (A correct explanation of why it cannot be easily
determined will get full credit, a correct CPI that left no time for problems 3 and 4 will get full
credit for this subproblem and sympathy—but not credit—for omitting the others. ) (4 pts)

In the execution shown on the next page (solution to first part) no two iterations are the same, thus the CPI is not easily
determined given the severe time constraints imposed.

5
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! First & Third Iteration

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

lf f0, 0(r1) IF ID 0:L1 0:L2 0:WB

IF ID -------------> 1:LS 1:LS 1:WB

mulf f0, f0, f2 IF ID 6:RS 6:RS 6:M1 6:M1 6:M2 6:M2 6:M3 6:M3 6:WB

IF ID -------------> 6:RS 6:RS 6:M1 6:M1 6:M2 6:M2 6:M3

addf f0, f0, f3 IF ID 4:RS 4:RS 4:RS 4:RS 4:RS 4:RS 4:RS 4:A1 4:A2 4:WB

IF -------------> ID 4:RS 4:RS 4:RS 4:RS 4:RS 4:RS

sf 4(r1), f0 IF ID 1:RS 1:RS 1:RS 1:RS 1:RS 1:RS 1:RS 1:RS 1:RS 1:L1 1:L2 1:WB

IF -------------> ID --------> 1:RS 1:RS 1:RS 1:RS

addi r1, r1, #8 IF ID 2:EX 2:WB

IF --------> ID 2:EX 2:WB

slt r3, r1, r2 IF ID 3:RS 3:EX 3:WB

IF --------> ID 3:RS 3:EX 3:WB

bnez r3, LOOP IF ID 8:BR 8:WB

IF ID 8:BR 8:WB

dif fr,f5,f6 IF ID x

IF ID X

! Second & Fourth Iteration

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

lf f0, 0(r1) IF ID 0:LS 0:LS 0:WB

IF ID 0:L1

mulf f0, f0, f2 IF ID 7:RS 7:RS 7:M1 7:M1 7:M2 7:M2 7:M3 7:M3 7:WB

IF ID 5:RS

addf f0, f0, f3 IF ID 5:RS 5:RS 5:RS 5:RS 5:RS 5:RS 5:RS 5:A1 5:A2 5:WB

IF ID

sf 4(r1), f0 IF ID --------> 0:RS 0:RS 0:RS 0:RS 0:RS 0:RS 0:RS 0:L1 0:L2 0:WB

IF ID

addi r1, r1, #8 IF --------> ID 2:EX 2:WB

IF

slt r3, r1, r2 IF --------> ID 3:RS 3:EX 3:WB

IF

bnez r3, LOOP IF ID 8:BR --> 8:WB

dif fr,f5,f6 IF ID x

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
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(c) Suppose the second time the load (lf) executes it triggers a page fault exception, perhaps due
to a bad load address.

In what cycle will the exception occur? Show the contents of the reorder buffer at that cycle and
place a check mark next to instructions that have completed execution.

Explain how the reorder buffer will allow the exception to be precise. Specify what happens to the
reorder buffer as a result of the exception, when it happens, and the contents of the buffer before
and after it happens. At what cycle will the trap be inserted in the pipeline? (If solutions to the
previous parts are not ready, make up a pipeline execution diagram just for this question.) (8 pts)

The exception occurs in cycle 7, when the second execution of lf is in L2 (MEM).

The reorder buffer at cycle 7 appears to the right, with oldest instructions at the bottom. The faulting
instruction is marked with a ?.

addf
mulf
lf ?
bnez

√

slt
√

addi
√

sf
addf
mult

The reorder buffer maintains precise exceptions by insuring that all instructions before the faulting in-
struction (lf in this case) complete while ensuring that no instructions following the faulting instruction
can change anything. Permanent changes are made when instructions retire (write results and leave the
reorder buffer). Retirement must proceed in program order and can only occur after the instructions
complete. If an instruction at the bottom of the reorder buffer has faulted, all following instructions
are deleted and a trap is inserted in the pipeline. It’s important that the faulting instruction reach
the bottom of the reorder buffer before inserting the trap so that the trap starts when all preceding
instructions have committed. Based on the two-instruction-per-cycle retirement rate the lf reaches
the bottom of the reorder buffer at cycle 16, the contents before all following instructions are deleted is
shown to the right.

addf
mult
lf
bnez

√

slt
√

addi
√

sf
addf

√

mulf
√

lf ?

(d) What are the minimum number of reservation stations of each type needed to attain a minimum
CPI on the code above? What is that CPI? (There is a grid on the next page to work this out,
other methods may be faster.)(8 pts)

The number of reservation stations is found by completing a pipeline execution diagram up to when every instruction in
the first iteration finishes. The minimum number of reservation stations (without stalling execution) is used. The numbers
are: L, 4; M, 3; A, 3; EX, 2; DIV 0, and BR 1. With at least these many reservation stations execution will proceed at
4/7 CPI.

7
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First Iteration, Third Iteration, etc.?

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

lf f0,0(r1)

mulf f0,f0,f2

addf f0,f0,f3

sf 4(r1),f0

addi r1,r1,#8

slt r3,r1,r2

bnez r3,LOOP

div f4,f5,f6

Second Iteration, Fourth Iteration?, etc.?

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

lf f0,0(r1)

mulf f0,f0,f2

addf f0,f0,f3

sf 4(r1),f0

addi r1,r1,#8

slt r3,r1,r2

bnez r3,LOOP

div f4,f5,f6
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Problem 3: A system has a 64-bit address space (a = 64), addresses 16-bit characters (c = 16),
and has a 256-bit data bus (w = 256).

(a) Show how memory devices could be connected to construct a 2-way set-associative cache with
1024-bit lines and 64 sets. Memory devices of any size can be used, be sure to specify their sizes (e.g.,
xb × 2y). Show only the connections needed to retrieve the data and tag information, determine
if the access is a hit, and pass the data to the CPU. (10 pts)

CPU

Addr

Data

Data

 Addr

Out .

Tag

 Addr

Out .

=

12:63
6:11

4:11

Tag

Valid

Data

 Addr

Out .

Tag

 Addr

Out .

=
6:11

4:11

Tag

Valid

12:63

256

HitEach of the two data memories are
256 × 28 bits. Each of the two tag
memories are 53 × 26 bits.

(b) Suppose the cache is write-through. What is the capacity of the cache and how much memory
is needed to implement it? Be sure to specify units. (5 pts)

The capacity of the cache is 1024×2×26 = 217 = 131072 bits or 214 = 16, 384 bytes or 213 = 8192 characters.
To implement it (52 + 1) × 2 × 26 additional bits are needed. (No storage is needed for a dirty bit.)

(c) Find the addresses specified below. (5 pts)

• Three different address that are part of the same line and require exactly two loads to
access. (Assume there are 256-bit load instructions.)

All have identical index and tag, two have same offsets but different alignment: For example: 0x0, 0x1, 0x10.

• Two addresses that can be in different lines but the same set.

Same indices, different tags. For example: 0x0, 0x1000.

• Three addresses that are in different sets.

Different indices. For example, 0, 0x40, 0x80.
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Problem 4: Answer each question below.

(a) What is branch folding? In the implementations of DLX covered in class, why must the predic-
tions used for branch folding always be correct? (6 pts)

Branch folding is the substitution of a branch target for a branch so that the branch is never seen further down the pipeline.
It is implemented using a branch target buffer which holds the predicted target address and the target instruction. The
prediction must be correct because in the DLX implementations a folded branch instruction does not get a chance to
execute so there is no way to detect an incorrect prediction. Because predictions must always be correct branch folding
is only appropriate for unconditional branches, which are usually called jumps. Systems with special branch units and
flexible issue hardware can fold conditional branches, the branches execute in the branch unit leaving a bubble (wasted
issue slot).

(b) Why might the cost of a functional unit with an initiation interval of 2 be less than one
performing the same operations but with an initiation interval of 1 but having the same latency?
Given such a cost relationship, what should the minimum number of reservation stations be for a
functional unit with an initiation interval of ι and a latency of λ? Explain. (6 pts)

With an initiation interval of 2 only half the number of functional-unit segments may be needed, data would make two
passes through each segment. We want to keep all the functional-unit segments busy (we could have gotten a cheaper
functional unit with fewer segments, but we didn’t so we must have had a good reason) so we would need at least
d(λ + 1)/ιe + 1 reservation stations. The +1 is for write back.

(c) What are some difficulties that might be encountered in developing a superscalar implementation
of a stack ISA? (For partial credit, list some distinguishing features of a stack ISA.) (6 pts)

Stack ISAs typically have a variety of instruction sizes, making it difficult to fetch and decode several of them simultane-
ously. Code for stack ISAs have many consecutive instructions with true dependencies, forcing an implementation to rely
on dynamic scheduling.

10
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(d) Explain how a reservation register can be used to detect MEM-stage structural hazards while
an instruction is in the ID stage. (6 pts)

A reservation register is a shift register indicating the status of a resource, in this case the MEM stage. Each position in
the register is for a different number of cycles in the future. At each cycle the shift register is clocked, maintaining the
time relationship. An instruction in ID checks the reservation register to see if the MEM stage will be free when it needs
it. If so, it writes a 1 corresponding to the time it will be using MEM and will move to its functional unit in the next
cycle. If not, it waits for the next cycle to try again (stalling the pipeline).

(e) What is the difference between a RAW hazard and a true dependency? (6 pts)

Pipelines have hazards, instructions have dependencies.

11
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EE 4720 1997 Midterm Exam Solution

Problem 1

Part (a)

The modified pipe below implements a high-speed version of mems, the modified portions are shown in red.

mems executes as follows:

      0   1   2   3    4        19   20

mems  IF  ID  EX1 MEM1 MEM1 ... MEM1 MEM1 MEM2 WB

                  EX2  EX2      EX2  EX3   

As usual, the instruction is fetched in IF. In ID rs1 (e.g., r1) is loaded into latch buffer A and rs2 (e.g., r2) is
loaded into B. The EX stage is used three different ways, EX1, EX2, and EX3. In EX1 the address, rs2, is passed
through the ALU unchanged. The ID/EX latches are not clocked until the cycle after the element is found, so that
rs1 is held in the B buffer. (rs2 is also held, but is not needed.) In MEM1 the element is retrieved from memory
while at the same time the address of the next element is computed in EX2. Using an added comparison unit,
EX2 also compares the element retrieved in the previous cycle with rs1. The mems instruction will continue
using the EX and MEM stages (inserting NOPs into WB and stalling instructions in IF and ID), until the
comparison unit signals a match (cycle 19 in the example). In the cycle following a match (20) the execute stage
performs EX3, subtracting 4 to compute the address of the element found in the previous cycle. The address
makes its way back to rs2 in MEM2 and WB.

Part (b)

LOOP:

 lw   r3, 0(r2)

 addi r2, r2, #4 ! Words are four bytes long.

 seq  r3, r3, r1 ! Compare. Note that lw stall avoided.

 beqz r3, LOOP

 subi r2, r2, #4 ! Saves a branch inside or before loop.
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Part (c)
The mems instruction executes for three cycles before reaching MEM1. MEM1 is used once for each element
fetched, plus 1, for a total of 1001 cycles. Two more cycles complete execution for a total of 1006 cycles.

An iteration of the program above executes as follows (on a implementation that includes bypass paths)

      0   1   2   3   4   5   6   7

lw    IF  ID  EX  MEM WB          IF

addi   IF  ID  EX  MEM WB

seq       IF  ID  EX  MEM WB

beqz   IF  ID  EX  MEM WB

Each iteration takes seven cycles, one additional cycle is needed after the last iteration to complete the
subtraction. The total number of cycles is 7 × 1000 + 1 = 7001.

Advanced techniques, covered in chapter 4, will reduce mems advantage.

Problem 2

Part (a)

     0   1   2   3   4

lw   IF  ID  EX  MEM WB

add  IF  ID  EX  WB

The hazard occurs in cycle 4.

Part (b)

The modifications (additions) are shown in red.

If the "=ARITH" comparison unit in the EX stage detects an arithmetic instruction, the IR and ALU outputs are
written to the MEM/WB latches, skipping a stage. Note that this replaces whatever was in MEM, resulting in
incorrect execution if a WB structural hazard is present.
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Part (c)
The structural hazard could be avoided by adding a second write port to the register file (additional changes
would have to be made to the part (b) solution) or by having an arithmetic instruction execute normally if
skipping the MEM stage would result in a structural hazard.

Part (d)

The benefit of skipping the MEM stage is that registers are written one cycle early. If register forwarding is not
used then early writeback reduces the number of stall cycles due to RAW hazards, which is worthwhile. If
register forwarding is used, then there is no benefit to early writeback since results from any arithmetic
instruction are available to instructions immediately following.

Problem 3

Part (a)

An undefined instruction in an ISA might still do something useful in an implementation of that ISA. (This might
happen by accident.) Suppose programmers discover such an instruction in a current implementation and use it
in their code. These programs would run fine on the current implementation, but the computer engineers working
on the new implementation of the ISA may make no attempt to see that undefined instructions execute the same
way. (Why should they, the instructions were undefined and programmers were warned not to use them.)
Therefore, computers using the new chip may not be able to run the programs using the undefined instructions.

The problem is avoided if undefined instructions raise an illegal instruction exception.

Part (b)

The target address of a trap instruction is found in a table using an index provided in the instruction. The target
address of a subroutine call is given in the instruction, be it PC relative, register indirect, immediate, etc.

The target address of a trap instruction is typically in the system part of the address space while subroutines are
in the user part.

As a result of executing a trap, the processor switches to privileged mode, while subroutine calls do not change
the processor mode.

Part (c)

All instructions that read registers have the register numbers in the same place, bits 6..10 and 11..15, so they can
be fetched without knowing the identity of the instruction. There is no harm in fetching registers for an
instruction that does not need them, so registers can be fetched for any instruction and so no decoding is
necessary.

Part (d)

Program weights in a geometric mean of normalized execution times (or rates) do not depend on their run time
on the base machine, so a particular base machine will not exaggerate or diminish the impact of any program in
the suite.

Part (e)
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The clock rate might change because of faster technology (e.g., the new fabrication process has a smaller feature
size) or because engineers chose to make pipeline segments shorter, allowing for a faster clock.

The instruction count might change in two implementations of the same ISA because relative execution times for
individual instructions might change (although the instructions available in the old and new implementations are
the same), leading programmers to re-write time-critical portions. For example, an integer add might be replaced
by a speeded-up floating-point add, perhaps saving integer-to-floating-point and floating-point-to-integer
conversion steps.

CPI might change because the number of stall cycles was reduced using advanced techniques, etc.

  

David M. Koppelman - koppel@ee.lsu.edu Modified 17 Mar 1998 17:31 (23:31 UTC)
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EE 4720 1997 Final Exam Solution

Problem 1 (a),  EE 4720 1997 Final Exam Solution Top   Next

With a larger-immediate instruction:

lw rll, 0(r10)

addli #0x981234

Without larger-immediate instructions:

lw r11, 0(r10)

lhi r9, 0x98

ori r9, r9, 0x1234

add r11, r11, r9

Problem 1 (b),  EE 4720 1997 Final Exam Solution Top   Previous   Next

To implement larger-immediate instructions the processor needs some way of remembering which register
was used by the last arithmetic or logical (ALU) instruction. A last-destination register in the ID stage would
serve: whenever an ALU instruction is in ID it will write its rd field (the destination register number) into the
last-destination register. When a larger-immediate instruction is in ID it will use the contents of last-
destination as its destination and rs1 operand register number.
There is one problem with the solution so far: to retrieve operand 1 ID must first determine that a larger-
immediate instruction is present (otherwise it will use IR bits 6-10 for the register number). This may
lengthen the critical path, so the solution below uses a register to store the last destination.

In the solution above, changes are shown in red, and registers have bold outlines. The "=LI" block examines
the instruction opcode and returns 1 if it's a larger immediate, 0 otherwise. The "make xxxi" box combines a
larger-immediate instruction (or control bits) and the last destination register into a new IR value or control
bits; these are used if a larger-immediate instruction is present. The new IR value or control bits would be the
same as an immediate type instruction, with the LD contents appearing as rs1 and rd.
LD is the last-destination register, LDV is the last destination value. The controller must only clock the LD
and LDV registers during an ALU instruction writeback phase. The sign extension unit, since it is used for J-
type instructions, can already sign-extend 26-bit quantities.

Problem 1 (c),  EE 4720 1997 Final Exam Solution Top   Previous   Next
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The bypassing changes are minor, connections are added from MEM and WB back to the ALU. Unlike
general-purpose bypass connections, these only go to the top ALU input.

Consider the execution below:

Time              0  1  2  3  4  5

add   r1, r2, r3  IF ID EX ME WB

addli #123456        IF ID EX ME WB

In cycle 1 the identity of the destination register, r1, is written to LD. The actual data is written to LDV in
cycle 4. The addli instruction arrives in ID during cycle 2. The makexxxi box constructs an "addi r1, r1,
#123456" instruction, and the same interlock hardware that detects RAW hazards in regular instructions (not
shown) detects the RAW hazard with the newly constructed addi, and sets the control bits needed to use the
MEM-to-EX bypass paths (not shown). In cycle 3 the bypass path is used to connect the new r1 to the top
ALU input.
A simpler solution would place the LDV and LD registers in the EX stage, avoiding the need for bypass
paths.

Problem 2 (a),  EE 4720 1997 Final Exam Solution Top   Previous   Next

div f0,f10,f11 IF   ID    DV1 DV1 DV1 DV1 DV1 DV1 DV1 DV1 DV1 MF  WBX                   

mul f0,f3,f2        IF    ID  MU1 MU1 MU2 MU2 MF  WB                                    

add f8,f9,f0              IF  ID              A1  A2  MF  WB                            

add f0,f1,f2                  IF              ID  A1  A2  MF  WB                        

mul f3,f0,f4                                  IF  ID      MU1 MU1 MU2 MU2 MF  WB        

mul f5,f0,f6                                      IF      ID      MU1 MU1 MU2 MU2 MF  WB

Because the initiation interval of the multiply unit is 2, the last multiply instruction must wait an extra cycle.
The problem requires that "distinct pipeline segments have distinct names", so the multiply unit's segments
are labeled MU1 and MU2. With an initiation interval of 2, an instruction spends 2 cycles in each segment.
Even though its result won't be needed, the divide instruction is allowed to continue but it will not write the
register file (indicated by a WBX instead of WX.

Problem 2 (b),  EE 4720 1997 Final Exam Solution Top   Previous   Next

div f0,f10,f11 IF   ID    7:DV1 7:DV1 7:DV1 7:DV1 7:DV1 7:DV1 7:DV1 7:DV1 7:DV1 7:WB                        

mul f0,f3,f2        IF    ID    3:MU1 3:MU1 3:MU2 3:MU2 3:WB                                                

add f8,f9,f0              IF    ID    1:RS  1:RS  1:RS  1:RS  1:A1  1:A2  1:WB                              

add f0,f1,f2                    IF    ID    2:A1  2:A2  2:WB  2:WB                                          

mul f3,f0,f4                          IF    ID    4:RS  4:RS  4:RS  4:MU1 4:MU1 4:MU2 4:MU2 4:WB            

mul f5,f0,f6                                IF    ID    ID    3:RS  3:RS  3:RS  3:MU1 3:MU1 3:MU2 3:MU2 3:WB
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The last multiply spends an extra cycle in ID, waiting for a free multiply reservation station.

Problem 2 (c),  EE 4720 1997 Final Exam Solution Top   Previous   Next

div f0,f10,f11 IF   ID    7:DV1 7:DV1 7:DV1 7:DV1 7:DV1 7:DV1 7:DV1 7:DV1 7:DV1 7:WB      

mul f0,f3,f2   IF   ID    3:MU1 3:MU1 3:MU2 3:MU2 3:WB                                    

add f8,f9,f0        IF    ID    1:RS  1:RS  1:RS  1:RS  1:A1  1:A2  1:WB                  

add f0,f1,f2        IF    ID    2:A1  2:A2  2:WB                                          

mul f3,f0,f4              IF    ID    4:RS  4:RS  4:MU1 4:MU1 4:MU2 4:MU2 4:WB            

mul f5,f0,f6              IF    ID    ID                3:RS  3:MU1 3:MU1 3:MU2 3:MU2 3:WB

Problem 2 (d),  EE 4720 1997 Final Exam Solution Top   Previous   Next

div f0,f10,f11 IF   ID      DV1   DV1   DV1   DV1   DV1   DV1   DV1   DV1   DV1   WBX                  

mul f0,f3,f2   IF   ID      MU1   MU1   MU2   MU2   WB                                                

add f8,f9,f0        IF      ID                      A1    A2    WB                                    

add f0,f1,f2        IF      ID                            A1    A2    WB                              

mul f3,f0,f4                IF                            ID          MU1   MU1   MU2   MU2   WB      

mul f5,f0,f6                IF                            ID                      MU1   MU1   MU2   MU2   WB

Problem 3 (a),  EE 4720 1997 Final Exam Solution Top   Previous   Next

Bit positions: Alignment 0:2, Offset, 3:7; index, 8:19; tag, 20:63. (In a previous version of this solution bits
0:7 were specified for the offset. That's okay, as long as all of those bits are not used to construct an address
for the data part of the cache.)

Cache size: 3 × 4096 × 256 = 3 & 212× 28 = 3,145,728 bytes.
To implement include tag, valid, and dirty bit storage: 3 × 4096 (256+(44+1+1)/8)=3,216,384 bytes.

Problem 3 (b),  EE 4720 1997 Final Exam Solution Top   Previous   Next

Rewritten program:

double *a = 0x10000000;  /* Assume the entire address space is ours. */

/* Block size is 256 bytes or 32 doubles.  Touch consecutive blocks. */

for( i=0; i<4096; i++ ) total += a[ i * 32 ];

/* To fill set, touch two blocks with different tags than above. */

for( i=0; i<2048; i++ ) total += a[ 0x20000 + i * 32 ] + a[ 0x40000 + i * 32 ];

Problem 3 (c),  EE 4720 1997 Final Exam Solution Top   Previous   Next

The design is shown in the figure below. The lower part of the illustration shows a conventional cache, the
only difference is that the tag memory stores 8-bit HTags rather than the 44-bit tags an ordinary cache would
use. The upper half shows the hardware for converting the tag of the accessing address to an HTag. An HTag
memory is provided for storing the full 44-bit tags corresponding to each HTag, this is needed to detect
collisions.
(1)When an address with a new tag is presented, the lookup in the HTag memory will yield an invalid
(perhaps never written) HTag. The new tag will be written to the HTag memory. This could only be a cache
miss; the remainder of the accesses proceeds as a normal miss.
(2) If an address is presented with an already cached tag the value retrieved from the HTag memory will be
valid and will match the tag of the access address.
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(3) When an address collides with a tag the value retrieved from the HTag memory will not match the access
address. This means that two different addresses have the same HTag (a risk when squishing 44 bits to 8),
one of these is for cached item(s) the other is the current access. This is trouble because those already cached
items have to be evicted before the current access can be cached. (Otherwise there would be no way to
distinguish them.) The lines to be evicted could be anywhere, so eviction will be time-consuming, perhaps
performed by software (using a trap routine).

Not shown is the control input to the data multiplexor. That would be derived from the three HTag
comparison boxes (which connect to the or gage). The valid input to the and gate also comes from the tag
memories. Note that the collision signal is meaningless when the valid output of the HTag memory is false.

Problem 4 (a),  EE 4720 1997 Final Exam Solution Top   Previous   Next

The data to write will not be ready until the end of a cycle and will be needed at the beginning of the next
cycle. With many inputs and outputs, it can take longer for a signal to reach its destination on a CDB than on
a bypass path, which has fewer inputs and outputs.

Problem 4 (b),  EE 4720 1997 Final Exam Solution Top   Previous   Next

A benchmark suite is more appropriate for overall performance evaluation, the engineers might use it to
assess the net effect of many changes. Synthetic benchmarks might be designed to test and tune specific
hardware features. The engineers might use it to determine why a particular branch prediction scheme is or is
not effective.

Problem 4 (c),  EE 4720 1997 Final Exam Solution Top   Previous   Next

Time 0   1   2   3   4   5

lw   IF  ID  EX  MEM WB!

sub      IF  ID  EX  MEM EX

add          IF  ID! EX! MEM

mul              IF  ID  EX

sw                   

                         

<trap>               IF  ID  

The pipeline checks for exceptions in the WB stage. The add exception at cycle 2 results in add being nulled
and an exception code being passed along with the nulled instruction. (The exclamation point indicates the
instruction is in that stage and is nulled because of an exception.) Suppose memory access done by the lw
instruction results in a page fault; this would occur at cycle 3, and would result in a trap being inserted--for
the lw instruction--in cycle 4, replacing the sw that was being fetched.
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Problem 4 (d),  EE 4720 1997 Final Exam Solution Top   Previous   Next

It's similar since dependencies must span several instructions so that multiple instructions can be issued in
parallel. With superscalar processors that scheduling is optional, unscheduled code would run but with more
stalls. VLIW describes an ISA (although an implementation is often what's meant) so code in non-VLIW
ISAs must be recompiled. Unlike superscalar processors, VLIW sub-instructions issued in parallel cannot
have any dependencies (in correct code).

Problem 4 (e),  EE 4720 1997 Final Exam Solution Top   Previous   Next

As m increases prediction accuracy improves as a branch's global-history-dependent behaviors can be
individually maintained. As m increases further, two effects can reduce performance. First, a greater number
of branches might share the same entry. Second, a greater amount of irrelevant global history might spread a
branches counters thin. With 10 bits of correlation (m=10), each branch would have 1024 counters, if the
least recent five branches were irrelevant and evenly distributed, then each useful behavior would have to be
"learned" by 32 counters.
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