b RISC

RISC-V Bit-Manipulation ISA-extensions

Version 1.0.0-38-g865e7a7, 2021-06-28: Release candidate

Table of Contents

Colophon
Acknowledgments
Bit-manipulation a, b, c and s extensions grouped for public review and ratification
Word Instructions
Pseudocode for instruction semantics
1. Extensions
1.1. Zba extension
1.2. Zbb: Basic bit-manipulation
1.2.1. Logical with negate
1.2.2. Count leading/trailing zero bits
1.2.3. Count population
1.2.4. Integer minimum/maximum

1.2.5. Sign- and zero-extension

1.2.6.
1.2.7.
1.2.8.

Bitwise rotation
OR Combine

Byte-reverse

1.3. Zbc: Carry-less multiplication
1.4. Zbs: Single-bit instructions
2. Instructions (in alphabetical order)

2.1. add.uw

2.2. andn
2.3. bclr
2.4. bclri
2.5. bext
2.6. bexti
2.7. binv
2.8. binvi
2.9. bset
2.10. bseti
2.11. clmul
2.12. clmulh
2.13. clmulr
2.14. clz
2.15. clzw
2.16. cpop
2.17. cpopw
2.18. ctz
2.19. ctzw
2.20. max
2.21. maxu
2.22. min
2.23. minu
2.24. orc.b

© © ©W 0O W 0 W ~N & G & W N =

W W W W W W NN N DN DN DN DN DNDNDNDDN R B 2o = =
Gk W NN RO O 00 N O sEW N RO V0N G RW NN OO O o

2250 0PN 36

2.26. reV8 . . 37
2.27.vol . 38
2.28.rolw . 39
229,000 40
2.30. rOri L 41
231 r0MW 42
2.32.000W. .« 43
2.33.sext.b. 44
234 sext.h. 45
2.35.shladd 46
2.36. shladd.uw. 47
2.37.sh2add 48
2.38.sh2add.uw. 49
2.39.sh3add 50
2.40. sh3add.uw. 51
241 sllicuw . 52
242 XNOT. . 53
243, zext.h. . 54
Appendix A: Software optimization guide 55
AL strlen 55

A20SErCmp. 56

Colophon | Page 1

Colophon

This document is released under the Creative Commons Attribution 4.0 International License.

It describes the BitManip Zba, Zbb, Zbc and Zbs extensions being submitted for public review.

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

https://creativecommons.org/licenses/by/4.0/

Acknowledgments | Page 2

Acknowledgments

Contributors to this specification (in alphabetical order) include:

Jacob Bachmeyer, Allen Baum, Ari Ben, Alex Bradbury, Steven Braeger, Rogier Brussee, Michael Clark, Ken
Dockser, Paul Donahue, Dennis Ferguson, Fabian Giesen, John Hauser, Robert Henry, Bruce Hoult, Po-wei
Huang, Ben Marshall, Rex McCrary, Lee Moore, Jifi Moravec, Samuel Neves, Markus Oberhumer, Christopher
Olson, Nils Pipenbrinck, Joseph Rahmeh, Xue Saw, Tommy Thorn, Philipp Tomsich, Avishai Tvila, Andrew
Waterman, Thomas Wicki, and Claire Wolf.

We express our gratitude to everyone that contributed to, reviewed or improved this specification through their
comments and questions.

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

Bit-manipulation a, b, ¢ and s extensions grouped for public review and ratification | Page 3

Bit-manipulation a, b, c and s extensions grouped for
public review and ratification

The bit-manipulation (bitmanip) extension collection is comprised of several component extensions to the base
RISC-V architecture that are intended to provide some combination of code size reduction, performance
improvement, and energy reduction. While the instructions are intended to have general use, some instructions
are more useful in some domains than others. Hence, several smaller bitmanip extensions are provided, rather
than one large extension. Each of these smaller extensions is grouped by common function and use case, and
each has its own Zb*-extension name.

Each bitmanip extension includes a group of several bitmanip instructions that have similar purposes and that
can often share the same logic. Some instructions are available in only one extension while others are available in
several. The instructions have mnemonics and encodings that are independent of the extensions in which they
appear. Thus, when implementing extensions with overlapping instructions, there is no redundancy in logic or
encoding.

The bitmanip extensions are defined for RV32 and RV64. Most of the instructions are expected to be forward
compatible with RV128. While the shift-immediate instructions are defined to have at most a 6-bit immediate
field, a 7th bit is available in the encoding space should this be needed for RV128.

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

Word Instructions | Page 4

Word Instructions

The bitmanip extension follows the convention in RV64 that w-suffixed instructions (without a dot before the w)
ignore the upper 32 bits of their inputs, operate on the least-significant 32-bits as signed values and produce a
32-bit signed result that is sign-extended to XLEN.

Bitmanip instructions with the suffix .uw have one operand that is an unsigned 32-bit value that is extracted
from the least significant 32 bits of the specified register. Other than that, these perform full XLEN operations.

Bitmanip instructions with the suffix .b, .h and .w only look at the least significant 8-bits, 16-bits and 32-bits of
the input (respectively) and produce an XLEN-wide result that is sign-extended or zero-extended, based on the
specific instruction.

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

Pseudocode for instruction semantics | Page 5

Pseudocode for instruction semantics

The semantics of each instruction in Instructions (in alphabetical order) is expressed in a SAIL-like syntax.

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

Chapter 1. Extensions | Page 6

Chapter 1. Extensions

The first group of bitmanip extensions to be released for Public Review are:

e Address generation instructions
e Basic bit-manipulation
e Carry-less multiplication

e Single-bit instructions

Below is a list of all of the instructions (and pseudoinstructions) that are included in these extensions along with

their specific mapping:

RV32 RV64 Mnemonic

v add.uw rd, rs1, rs2

andn rd, rsl, rs2
clmul rd, rs1, rs2
clmulh rd, rs1, rs2

clmulr rd, rs1, rs2

<< << X

clz rd, rs

clzw rd, rs

cpop rd, rs
cpopw rd, rs

ctz rd, rs

ctzw rd, rs

max rd, rsl, rs2
maxu rd, rsl, rs2
min rd, rsl, rs2
minu rd, rs1, rs2
orc.b rd, rs1, rs2
orn rd, rsl, rs2

rev8 rd, rs

<< << < <X < X

rol rd, rs1, rs2

rolw rd, rs1, rs2

<

ror rd, rs1, rs2

rori rd, rs1, shamt

<< 1 1 KX

rorw rd, rs1, rs2

roriw rd, rs1, shamt

Instruction

Add unsigned word

AND with inverted operand
Carry-less multiply (low-part)
Carry-less multiply (high-part)
Carry-less multiply (reversed)
Count leading zero bits

Count leading zero bits in word
Count set bits

Count set bits in word

Count trailing zero bits

Count trailing zero bits in word
Maximum

Unsigned maximum

Minimum

Unsigned minimum

Bitwise OR-Combine, byte granule
OR with inverted operand
Byte-reverse register

Rotate left (Register)

Rotate Left Word (Register)
Rotate right (Register)

Rotate right (Immediate)
Rotate right Word (Immediate)

Rotate right Word (Register)

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

Zba Zbb Zbc Zbs

v

<< 1 1 KX X

1.1. Zba extension | Page 7

RV32 RV64 Mnemonic Instruction Zba Zbb Zbc Zbs
V4 V4 belr rd, rs1, rs2 Single-Bit Clear (Register) v
v v bclri rd, rs1, imm Single-Bit Clear (Immediate) v
V4 V4 bext rd, rs1, rs2 Single-Bit Extract (Register) v
v v bexti rd, rs1, imm Single-Bit Extract (Immediate) v
V4 V4 binv rd, rs1, rs2 Single-Bit Invert (Register) v
v v binvi rd, rs1, imm Single-Bit Invert (Immediate) v
V4 V4 bset rd, rs1, rs2 Single-Bit Set (Register) v
Vv V4 bseti rd, rs1, imm Single-Bit Set (Immediate) v
V4 v sext.b rd, rs Sign-extend byte v
Vv v sext.h rd, rs Sign-extend halfword v
V4 V4 shladd rd, rs1, rs2 Shift left by 1 and add v

v shladd.uw rd, rs1, rs2 Shift unsigned word left by 1 and add V4
V4 V4 sh2add rd, rs1, rs2 Shift left by 2 and add V4
v sh2add.uw rd, rs1, rs2 Shift unsigned word left by 2 and add V4
V4 V4 sh3add rd, rs2, rs2 Shift left by 3 and add V4
v sh3add.uw rd, rs1, rs2 Shift unsigned word left by 3 and add V4
v slli.uw rd, rs1, imm Shift-left unsigned word (Immediate) V4
V4 v/ xnor rd, rsl, rs2 Exclusive NOR V4
V4 v zext.h rd, rs Zero-extend halfword V4

1.1. Zba extension

| y| The Zba extension is frozen.

The Zba instructions can be used to accelerate the generation of addresses that index into arrays of basic types
(halfword, word, doubleword) using both unsigned word-sized and XLEN-sized indices: a shifted index is added
to a base address.

The shift and add instructions do a left shift of 1, 2, or 3 because these are commonly found in real-world code
and because they can be implemented with a minimal amount of additional hardware beyond that of the simple
adder. This avoids lengthening the critical path in implementations.

While the shift and add instructions are limited to a maximum left shift of 3, the slli instruction (from the base
ISA) can be used to perform similar shifts for indexing into arrays of wider elements. The slli.uw — added in this
extension — can be used when the index is to be interpreted as an unsigned word.

The following instructions comprise the Zba extension:

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

1.2. Zbb: Basic bit-manipulation | Page 8

RV32 RV64 Mnemonic Instruction
v/ add.uw rd, rs1, rs2 Add unsigned word
V4 v/ shladd rd, rs1, rs2 Shift left by 1 and add
v/ shladd.uw rd, rs1, rs2 Shift unsigned word left by 1 and add
V4 v/ sh2add rd, rs1, rs2 Shift left by 2 and add
v/ sh2add.uw rd, rs1, rs2 Shift unsigned word left by 2 and add
V4 v/ sh3add rd, rs2, rs2 Shift left by 3 and add
v sh3add.uw rd, rsi1, rs2 Shift unsigned word left by 3 and add
v slliuw rd, rs1, imm Shift-left unsigned word (Immediate)

1.2. Zbb: Basic bit-manipulation

Z The Zbb extension is frozen.

1.2.1. Logical with negate

RV32 RV64 Mnemonic Instruction
V4 v/ andn rd, rs1, rs2 AND with inverted operand
v v/ orn rd, rs1, rs2 OR with inverted operand
v v/ xnor rd, rsl, rs2 Exclusive NOR

Implementation Hint

| y The Logical with Negate instructions can be implemented by inverting the rs2 inputs to the
base-required AND, OR, and XOR logic instructions. In some implementations, the inverter
on rs2 used for subtraction can be reused for this purpose.

1.2.2. Count leading/trailing zero bits

RV32 RV64 Mnemonic Instruction
V4 v clzrd, rs Count leading zero bits
v clzw rd, rs Count leading zero bits in word
V4 vV ctzrd, rs Count trailing zero bits
v ctzw rd, rs Count trailing zero bits in word

1.2.3. Count population

These instructions count the number of set bits (1-bits). This is also commonly referred to as population count.

RV32 RV64 Mnemonic Instruction

v v cpop rd, rs Count set bits

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

1.2. Zbb: Basic bit-manipulation | Page 9

RV32 RV64 Mnemonic Instruction

v cpopw rd, rs Count set bits in word

1.2.4. Integer minimum/maximum

The integer minimum/maximum instructions are arithmetic R-type instructions that return the smaller/larger of
two operands.

RV32 RV64 Mnemonic Instruction
V4 v' max rd, rsl, rs2 Maximum
V4 v/ maxu rd, rsl, rs2 Unsigned maximum
V4 v' min rd, rsl, rs2 Minimum
v v minu rd, rsl, rs2 Unsigned minimum

1.2.5. Sign- and zero-extension

These instructions perform the sign-extension or zero-extension of the least significant 8 bits, 16 bits or 32 bits
of the source register.

These instructions replace the generalized idioms s11i rD,rS, (XLEN-<size>) + srli (for zero-extension) or
s11i + srai (for sign-extension) for the sign-extension of 8-bit and 16-bit quantities, and for the zero-extension
of 16-bit and 32-bit quantities.

RV32 RV64 Mnemonic Instruction
4 v sext.b rd, rs Sign-extend byte
v v sext.h rd, rs Sign-extend halfword
V4 v zext.h rd, rs Zero-extend halfword

1.2.6. Bitwise rotation

Bitwise rotation instructions are similar to the shift-logical operations from the base spec. However, where the
shift-logical instructions shift in zeros, the rotate instructions shift in the bits that were shifted out of the other
side of the value. Such operations are also referred to as ‘circular shifts'.

RV32 RV64 Mnemonic Instruction
v v rol rd, rs1, rs2 Rotate left (Register)
v rolw rd, rs1, rs2 Rotate Left Word (Register)
v v ror rd, rsl, rs2 Rotate right (Register)
v v rori rd, rs1, shamt Rotate right (Immediate)
v roriw rd, rs1, shamt Rotate right Word (Immediate)
v rorw rd, rsl, rs2 Rotate right Word (Register)

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

1.3. Zbc: Carry-less multiplication | Page 10

Architecture Explanation

|y| The rotate instructions were included to replace a common four-instruction sequence to
achieve the same effect (neg; sll/stl; srl/sll; or)

1.2.7. OR Combine

orc.b sets the bits of each byte in the result rd to all zeros if no bit within the respective byte of rs is set, or to
all ones if any bit within the respective byte of rs is set.

One use-case is string-processing functions, such as strlen and strcpy, which can use orc.b to test for the
terminating zero byte by counting the set bits in leading non-zero bytes in a word.

RV32 RV64 Mnemonic Instruction

V4 v orc.brd, rs Bitwise OR-Combine, byte granule

1.2.8. Byte-reverse

rev8 reverses the byte-ordering of rs.

RV32 RV64 Mnemonic Instruction

v v revBrd, rs Byte-reverse register

1.3. Zbc: Carry-less multiplication

| y| The Zbc extension is frozen.

Carry-less multiplication is the multiplication in the polynomial ring over GF(2).

clmul produces the lower half of the carry-less product and clmulh produces the upper half of the 2XXLEN
carry-less product.

clmulr produces bits 2 X XLEN—2:XLEN-1 of the 2 X XLEN carry-less product.

RV32 RV64 Mnemonic Instruction
v v clmul rd, rs1, rs2 Carry-less multiply (low-part)
v v clmulh rd, rs1, rs2 Carry-less multiply (high-part)
v v clmulr rd, rs1, rs2 Carry-less multiply (reversed)

1.4. Zbs: Single-bit instructions

z The Zbs extension is frozen.

The single-bit instructions provide a mechanism to set, clear, invert, or extract a single bit in a register. The bit
is specified by its index.

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

RV32 RV64 Mnemonic

V4

<< << < < X

v

<< < < < < X

belr rd, rs1, rs2
belri rd, rs1, imm
bext rd, rs1, rs2
bexti rd, rs1, imm
binv rd, rsl1, rs2
binvi rd, rs1, imm
bset rd, rs1, rs2

bseti rd, rs1, imm

1.4. Zbs: Single-bit instructions | Page 11

Instruction

Single-Bit Clear (Register)
Single-Bit Clear (Immediate)
Single-Bit Extract (Register)
Single-Bit Extract (Immediate)
Single-Bit Invert (Register)
Single-Bit Invert (Immediate)
Single-Bit Set (Register)

Single-Bit Set (Immediate)

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.1. add.uw | Page 12

Chapter 2. Instructions (in alphabetical order)

2.1. add.uw

Synopsis
Add unsigned word

Mnemonic
add.uw rd, rsl, rs2

Pseudoinstructions

zext.w rd, rs1 — add.uw rd, rs1, zero

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 0 0 01 00O rs2 rsi 0 0 O rd o1t 1t 1 0 1 1
ADD.UW ADD.UW OP-32
Description
This instruction performs an XLEN-wide addition between rs2 and the zero-extended least-significant word of
rsl.
Operation

let base = X(rs2);
let index = EXTZ(X(rs1)[31..0]);

X(rd) = base + index;

Included in
Extension Minimum version Lifecycle state
Zba (Address generation instructions) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.2. andn | Page 13

2.2. andn

Synopsis
AND with inverted operand

Mnemonic

andn rd, rsl, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

0 1 0 0 0 0O rs2 rsi 1 1 1 rd o1t 1 0 0 1 1
ANDN ANDN OoP

Description

This instruction performs the bitwise logical AND operation between rsI and the bitwise inversion of rs2.

Operation

X(rd) = X(rsl) & “X(rs2);

Included in
Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.3. bclr | Page 14

2.3. bclr

Synopsis
Single-Bit Clear (Register)

Mnemonic
belr rd, rs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
01 0 0 1 0O rs2 rsi 0 0 1 rd o 11 0 0 1 1
BCLR/BEXT BCLR OoP
Description

This instruction returns rsI with a single bit cleared at the index specified in rs2. The index is read from the
lower log2(XLEN) bits of rs2.

Operation

let index = X(rs2) & (XLEN - 1);
X(rd) = X(rsl1) & ~(1 << index)

Included in
Extension Minimum version Lifecycle state
Zbs (Single-bit instructions) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.4. bclri

Synopsis
Single-Bit Clear (Immediate)

Mnemonic

belri rd, rs1, shamt

Encoding (RV32)

2.4. bclri | Page 15

31 25 24 20 19 15 14 12 11 7 6 0
01 0 0 1 0O shamt rsi 0 0 1 rd 0O 01t 0 0 1 1
BCLRI BCLRI OP-IMM

Encoding (RV64)

31 26 25 20 19 15 14 12 11 7 6 0
0O 1 0 0 1 O shamt rsi 0 0 1 rd 0O 01t 0 0 1 1
BCLRI BCLRI OP-IMM

Description

This instruction returns rsI with a single bit cleared at the index specified in shamt. The index is read from
the lower log2(XLEN) bits of shamt. For RV32, the encodings corresponding to shamt[5]=1 are reserved.

Operation

let index = shamt & (XLEN - 1);
X(rd) = X(rs1l) & ~(1 << index)

Included in

Extension

Zbs (Single-bit instructions)

Minimum version Lifecycle state

0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.5. bext | Page 16

2.5. bext

Synopsis
Single-Bit Extract (Register)

Mnemonic

bext rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

01 0 0 1 0O rs2 rsi 1 0 1 rd o1t 1 0 0 1 1
BCLR/BEXT BEXT OP

Description

This instruction returns a single bit extracted from rsI at the index specified in rs2. The index is read from
the lower log2(XLEN) bits of rs2.

Operation

let index = X(rs2) & (XLEN - 1);
X(rd) = (X(rsl1) >> index) & 1;

Included in
Extension Minimum version Lifecycle state
Zbs (Single-bit instructions) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.6. bexti

Synopsis
Single-Bit Extract (Immediate)

Mnemonic

bexti rd, rs1, shamt

Encoding (RV32)

2.6. bexti | Page 17

31 25 24 20 19 15 14 12 11 7 6 0
01 0 0 1 0O shamt rsi 1 0 1 rd 0O 01t 0 0 1 1
BEXTI/BCLRI BEXTI OP-IMM

Encoding (RV64)
31 26 25 20 19 15 14 12 11 7 6 0
0O 1 0 0 1 O shamt rsi 1 0 1 rd 0O 01t 0 0 1 1
BEXTI/BCLRI BEXTI OP-IMM
Description

This instruction returns a single bit extracted from rsI at the index specified in rs2. The index is read from
the lower log2(XLEN) bits of shamt. For RV32, the encodings corresponding to shamt[5]=1 are reserved.

Operation

let index = shamt & (XLEN - 1);
X(rd) = (X(rsl) >> index) & 1;

Included in

Extension

Zbs (Single-bit instructions)

Minimum version Lifecycle state

0.93

Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.7. binv | Page 18

2.7. binv

Synopsis
Single-Bit Invert (Register)

Mnemonic

binv rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

o1t 1 0 1 00 rs2 rsi 0 0 1 rd o1t 1 0 0 1 1
BINV BINV OoP

Description

This instruction returns rsI with a single bit inverted at the index specified in rs2. The index is read from the
lower log2(XLEN) bits of rs2.

Operation

let index = X(rs2) & (XLEN - 1);
X(rd) = X(rs1) - (1 << index)

Included in
Extension Minimum version Lifecycle state
Zbs (Single-bit instructions) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.8. binvi

Synopsis
Single-Bit Invert (Immediate)

Mnemonic

binvi rd, rsl1, shamt

Encoding (RV32)

2.8. binvi | Page 19

31 25 24 20 19 15 14 12 11 7 6 0
o1 1 0 1 0O shamt rsi 0 0 1 rd 0O 01t 0 0 1 1
BINVI BINV OP-IMM

Encoding (RV64)

31 26 25 20 19 15 14 12 11 7 6 0
o1 1 0 1 0 shamt rsi 0 0 1 rd 0O 01t 0 0 1 1
BINVI BINV OP-IMM

Description

This instruction returns rsI with a single bit inverted at the index specified in shamt. The index is read from
the lower log2(XLEN) bits of shamt. For RV32, the encodings corresponding to shamt[5]=1 are reserved.

Operation

let index = shamt & (XLEN - 1);
X(rd) = X(rs1) - (1 << index)

Included in

Extension

Zbs (Single-bit instructions)

Minimum version Lifecycle state

0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.9. bset | Page 20

2.9. bset

Synopsis
Single-Bit Set (Register)

Mnemonic

bset rd, rs1,rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 01 01 0O rs2 rsi 0 0 1 rd o 11 0 0 1 1
BSET BSET OoP
Description

This instruction returns rsI with a single bit set at the index specified in rs2. The index is read from the
lower log2(XLEN) bits of rs2.

Operation

let index = X(rs2) & (XLEN - 1);
X(rd) = X(rs1) | (1 << index)

Included in
Extension Minimum version Lifecycle state
Zbs (Single-bit instructions) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.10. bseti | Page 21

2.10. bseti

Synopsis
Single-Bit Set (Immediate)

Mnemonic

bseti rd, rs1,shamt

Encoding (RV32)

31 25 24 20 19 15 14 12 11 7 6 0

0'0'1'0'1'0'0 'S'har’r;t | | 'rs1' | 0'0'1 ' 'rd' ' '0'1'0'0'1'1
— B.SE'II'I — - - B.SE'II'I - — OIID—IIViM —

o

Encoding (RV64)

31 26 25 20 19 15 14 12 11 7 6 0
0 01 0 10 shamt rsi 0 0 1 rd 0o 01t 0 0 1 1
BSETI BSETI OP-IMM

Description

This instruction returns rsI with a single bit set at the index specified in shamt. The index is read from the
lower log2(XLEN) bits of shamt. For RV32, the encodings corresponding to shamt[5]=1 are reserved.

Operation

let index = shamt & (XLEN - 1);
X(rd) = X(rs1) | (1 << index)

Included in
Extension Minimum version Lifecycle state
Zbs (Single-bit instructions) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.11. clmul | Page 22

2.11. clmul

Synopsis
Carry-less multiply (low-part)

Mnemonic

clmul rd, rs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6
0 0 0 0 1 0 1 rs2 rsi 0 0 1 rd o 1 1 0 O
MINMAX/CLMUL CLMUL OoP
Description

clmul produces the lower half of the 2.XLEN carry-less product.

Operation

let rsil_val = X(rsl);
let rs2_val X(rs2);
let output : xlenbits = O;

foreach (i from O to xlen by 1) {
output = if ((rs2_val >> i) & 1)
then output ~ (rsi_val << i);

else output;

X[rd] = output

Included in
Extension Minimum version
Zbc (Carry-less multiplication) 0.93

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

Lifecycle state

Frozen

2.12. clmulh | Page 23

2.12. clmulh

Synopsis
Carry-less multiply (high-part)

Mnemonic

clmulh rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

0 0 0 0 1 0 1 rs2 rsi o 1 1 rd o1t 1 0 0 1 1
MINMAX/CLMUL CLMULH OoP

Description

clmulh produces the upper half of the 2-XLEN carry-less product.

Operation

let rsil_val = X(rsl);
let rs2_val X(rs2);
let output : xlenbits = O;

foreach (i from 1 to xlen by 1) {
output = if ((rs2_val >> i) & 1)
then output ~ (rsi_val >> (xlen - i));

else output;

X[rd] = output

Included in
Extension Minimum version Lifecycle state
Zbc (Carry-less multiplication) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.13. clmulr | Page 24

2.13. clmulr

Synopsis

Carry-less multiply (reversed)

Mnemonic

clmulr rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

0 00 0O 1 0 1 rs2 rsi 0 1 0 rd o 11 0 0 1 1
MINMAX/CLMUL CLMULR OoP

Description

clmulr produces bits 2. XLEN—2:XLEN-1 of the 2-XLEN carry-less product.

Operation

let rsil_val = X(rsl);
let rs2_val X(rs2);
let output : xlenbits = O;

foreach (i from 0 to (xlen - 1) by 1) {
output = if ((rs2_val >> i) & 1)
then output ~ (rsi_val >> (xlen - i - 1));

else output;

X[rd] = output

Note
| y The clmulr instruction is used to accelerate CRC calculations. The r in the instruction’s
mnemonic stands for reversed, as the instruction is equivalent to bit-reversing the inputs,

performing a clmul, then bit-reversing the output.

Included in
Extension Minimum version Lifecycle state
Zbc (Carry-less multiplication) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.14. clz | Page 25

2.14. clz

Synopsis

Count leading zero bits

Mnemonic
clz rd, rs
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
01t 1 00 O0 0|0 OO0 O0OTUDO rsi 0 0 1 rd 0o 01t 0 o0 1 1
CLz CLz CLz OP-IMM
Description

This instruction counts the number of 0's before the first 1, starting at the most-significant bit (i.e., XLEN-1)
and progressing to bit 0. Accordingly, if the input is 0, the output is XLEN, and if the most-significant bit of
the input is a 1, the output is 0.

Operation

val HighestSetBit : forall ('N : Int), 'N >= 0. bits('N) -> int

function HighestSetBit x = {
foreach (i from (xlen - 1) to O by 1 in dec)
if [x[i]] == Obl then return(i) else ();

return -1;

let rs = X(rs);
X[rd] = (xlen - 1) - HighestSetBit(rs);

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.15. clzw | Page 26

2.15. clzw

Synopsis

Count leading zero bits in word

Mnemonic
clzw rd, rs
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
01t 1 00 O0 0|0 OO0 O0OTUDO rsi 0 0 1 rd o o1t 1 0 1 1
CcLzw CLZW cLzw OP-IMM-32
Description

This instruction counts the number of 0's before the first 1 starting at bit 31 and progressing to bit 0.
Accordingly, if the least-significant word is 0, the output is 32, and if the most-significant bit of the word

(i.e., bit 31) is a 1, the output is 0.

Operation

val HighestSetBit32 : forall ('N : Int),

function HighestSetBit32 x = {
foreach (i from 31 to 0 by 1 in dec)

'N >= 0. bits('N)

if [x[i]] == Obl then return(i) else ();

return -1;

let rs = X(rs);
X[rd] = 31 - HighestSetBit(rs);

Included in

Extension

Zbb (Basic bit-manipulation)

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

Minimum version

0.93

-> int

Lifecycle state

Frozen

2.16. cpop

Synopsis
Count set bits

2.16. cpop | Page 27

Mnemonic
cpop rd, rs
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
o 11 0 0 0 0f0 0 0 1 O rsi 0 0 1 rd 0o 01t 00 1 1
CPOP CPOP CPOP OP-IMM
Description

This instructions counts the number of 1's (i.e., set bits) in the source register.

Operation

let bitcount = 0;
let rs = X(rs);

foreach (i from O to (xlen - 1) in inc)

if rs[i] == Obl then bitcount = bitcount + 1 else ();

X[rd] = bitcount

Software Hint

This operations is known as population count, popcount, sideways sum, bit summation, or

Ely Hamming weight.

The GCC builtin function __builtin_popcount (unsigned int x) is implemented by
cpop on RV32 and by cpopw on RV64. The GCC builtin function __builtin_popcountl
(unsigned long x) for LP64 is implemented by cpop on RV64.

Included in

Extension

Zbb (Basic bit-manipulation)

Minimum version Lifecycle state

0.93

Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.17. cpopw | Page 28

2.17. cpopw

Synopsis

Count set bits in word

Mnemonic

cpopw rd, rs

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
01t 1 00 0 O0j]0 OO0 1T O rs 0 0 1 rd o 0ot 1 0 1 1
CPOPW CPOPW CPOPW OP-IMM-32
Description

This instructions counts the number of 1's (i.e., set bits) in the least-significant word of the source register.

Operation

let bitcount = 0;
let val = X(rs);

foreach (i from O to 31 in inc)
if val[i] == Obl then bitcount = bitcount + 1 else ();

X[rd] = bitcount

Included in
Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.18. ctz | Page 29

2.18. ctz

Synopsis

Count trailing zeros

Mnemonic
ctz rd, rs
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
o1t 1 00 O0 0|0 OO0 O 1 rsi 0 0 1 rd 0o 01t 0 0 1 1
CTzZ/CTZW CTZ/CTZW CTzZ/CTZW OP-IMM
Description

This instruction counts the number of 0's before the first 1, starting at the least-significant bit (i.e., 0) and
progressing to the most-significant bit (i.e., XLEN-1). Accordingly, if the input is 0, the output is XLEN, and
if the least-significant bit of the input is a 1, the output is 0.

Operation

val LowestSetBit : forall ('N : Int), 'N >= 0. bits('N) -> int

function LowestSetBit x = {
foreach (i from 0 to (xlen - 1) by 1 in dec)
if [x[i]] == Obl then return(i) else ();

return xlen;

let rs = X(rs);
X[rd] = LowestSetBit(rs);

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.19. ctzw | Page 30

2.19. ctzw

Synopsis

Count trailing zero bits in word

Mnemonic
ctzw rd, rs
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
o1t 1 00 O0 0|0 OO0 O 1 rsi 0 0 1 rd o 0ot 1 0 1 1
CTzZ/CTZW CTZ/CTZW CTzZ/CTZW OP-IMM-32
Description

This instruction counts the number of 0's before the first 1, starting at the least-significant bit (i.e., 0) and
progressing to the most-significant bit of the least-significant word (i.e., 31). Accordingly, if the least-
significant word is 0, the output is 32, and if the least-significant bit of the input is a 1, the output is 0.

Operation

val LowestSetBit32 : forall ('N : Int), 'N >= 0. bits('N) -> int

function LowestSetBit32 x = {
foreach (i from O to 31 by 1 in dec)
if [x[i]] == Obl then return(i) else ();

return 32;

let rs = X(rs);
X[rd] = LowestSetBit32(rs);

Included in
Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.20. max

Synopsis

Maximum

Mnemonic

max rd, rsl, rs2

2.20. max | Page 31

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 0 0 0 1 0 1 rs2 rsi 11 0 rd o1t 1 0 0 1 1
MINMAX/CLMUL MAX OoP
Description

This instruction returns the larger of two signed integers.

Operation

let rsil_val = X(rsl);
let rs2_val X(rs2);

let result = if rsl val <_s rs2_val
then rs2_val

else rsl_val;

X(rd) = result;

Software Hint

Calculating the absolute value of a signed integer can be performed using the following

| ﬁ sequence: neg rD,rS followed by max rD,rS,rD.

When using this common sequence, it is

suggested that they are scheduled with no intervening instructions so that implementations

that are so optimized can fuse them together.

Included in
Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.21. maxu | Page 32

2.21. maxu

Synopsis

Unsigned maximum

Mnemonic

maxu rd, rsl, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6
00001 01| 2 st 111 W 011 0 0
“MINMAX/CLMUL | — — MAXU — —op

Description

This instruction returns the larger of two unsigned integers.

Operation

let rsil_val = X(rsl);
X(rs2);

let rs2_val

let result = if

then rs2_val

else rsl_val;

X(rd) = result;

Included in

Extension

Zbb (Basic bit-manipulation)

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

rsl_val <_u rs2_val

Minimum version

0.93

Lifecycle state

Frozen

2.22. min

Synopsis

Minimum

Mnemonic

min rd, rsl, rs2

2.22. min | Page 33

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 0 0 0 1 0 1 rs2 rsi 1 0 0 rd o1t 1 0 0 1 1
MINMAX/CLMUL MIN OP
Description
This instruction returns the smaller of two signed integers.
Operation
let rsil_val = X(rsl);
let rs2_val = X(rs2);
let result = if rsl_val <_s rs2_val
then rsi_val
else rs2_val;
X(rd) = result;
Included in
Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.23. minu | Page 34

2.23. minu

Synopsis

Unsigned minimum

Mnemonic

minu rd, rsl, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6
00001 01| 2 st 101w 011 0 0
“MINMAX/CLMUL | — — MINU — —op

Description

This instruction returns the smaller of two unsigned integers.

Operation

let rsil_val = X(rsl);
X(rs2);

let rs2_val

let result = if

then rsil_val

else rs2_val;

X(rd) = result;

Included in

Extension

Zbb (Basic bit-manipulation)

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

rsl_val <_u rs2_val

Minimum version

0.93

Lifecycle state

Frozen

2.24. orc.b

Synopsis
Bitwise OR-Combine, byte granule

2.24. orc.b | Page 35

Mnemonic
orc.b rd, rs
Encoding
31 20 19 15 14 12 11 7 6 0
o 01t o1t o0O0OTUO0OTI1T 11 rs 1 0 1 rd 0O 01t 0 0 1 1
OP-IMM
Description

Combines the bits within each byte using bitwise logical OR. This sets the bits of each byte in the result rd
to all zeros if no bit within the respective byte of rs is set, or to all ones if any bit within the respective byte

of rsis set.

Operation

let input = X(rs);
let output : xlenbits = O;

foreach (i from 0 to (xlen - 8) by 8) {
output[(i + 7)..1i] = if dinput[(d + 7)..i] ==

then Ob00000000

else Ob11111111;

X[rd] = output;

Included in
Extension Minimum version
Zbb (Basic bit-manipulation) 0.93

Lifecycle state

Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.25. orn | Page 36

2.25. orn

Synopsis
OR with inverted operand

Mnemonic

orn rd, rsl, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6

0 1 0 0 0 0O rs2 rsi 11 0 rd o1t 1 0 0 1
ORN ORN OoP

Description

This instruction performs the bitwise logical AND operation between rsI and the bitwise inversion of rs2.

Operation

X(rd) = X(rsl) | “X(rs2);

Included in
Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.26. rev8

Synopsis

Byte-reverse register

Mnemonic

rev8 rd, rs

Encoding (RV32)

2.26. rev8 | Page 37

31 20 19 15 14 12 11 7 6 0
0'1'1'0'1'0'0'1'1'0'0'0 | 'rs' | 1'0'1 | 'rd' | 0'0'1'0'0'1'1
- — — — — ObJMM —
Encoding (RV64)
31 20 19 15 14 12 11 7 6 0
0 '1 '1 'O '1 '0 '1 '1 '1 'O '0 'O ' 'rs' ' 1 '0 '1 ' 'rd' ' 0 '0 '1 '0 '0' 1'1
- " " — T~ oPIMM

Description

This instruction reverses the order of the bytes in rs.

Operation

let input = X(rs);
let output : xlenbits = O;
let j = xlen - 1;

foreach (i from 0 to (xlen - 8) by 8) {

output[i..(d + 7)] = input[(j - 7)..j];

i=3-8;

X[rd] = output

Dy Note

The rev8 mnemonic corresponds to different instruction encodings in RV32 and RV64.

Software Hint

| ﬁ The byte-reverse operation is only available for the full register width. To emulate word-sized
and halfword-sized byte-reversal, perform a rev8 rd,rs followed by a srai rd,rd.

Included in

Extension

Zbb (Basic bit-manipulation)

Minimum version Lifecycle state

0.93

Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.27. rol | Page 38

2.27. rol

Synopsis
Rotate Left (Register)

Mnemonic

rol rd, rs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6
01 1 0 0 0O rs2 rsi 0 0 1 rd o 1 1 0 O
ROL ROL OoP
Description

This instruction performs a rotate left of rsI by the amount in least-significant log2(XLEN) bits of rs2.

Operation

let shamt = if xlen == 32
then X(rs2)[4..0]
else X(rs2)[5..0];
let result = (X(rsl) << shamt) | (X(rsl) >> (xlen - shamt));

X(rd) = result;

Included in
Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.28. rolw | Page 39

2.28. rolw

Synopsis
Rotate Left Word (Register)

Mnemonic

rolw rd, rsl, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
01 1 0 0 0O rs2 rsi 0 0 1 rd o1t 1t 1 0 1 1
ROLW ROLW OP-32
Description

This instruction performs a rotate left on the least-significant word of rsI by the amount in least-significant 5
bits of rs2. The resulting word value is sign-extended by copying bit 31 to all of the more-significant bits.

Operation

let rsi1 = EXTZ(X(rs1)[31..0])

let shamt = X(rs2)[4..0];

let result = (rsl << shamt) | (rsl >> (32 - shamt));
X(rd) = EXTS(result);

Included in
Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.29. ror | Page 40

2.29. ror

Synopsis
Rotate Right

Mnemonic

ror rd, rsl, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6
011 0 0 0O rs2 rsi 1 0 1 rd 0o 11 0 0 1
ROR ROR OoP
Description

This instruction performs a rotate right of rsI by the amount in least-significant log2(XLEN) bits of rs2.

Operation

let shamt = if xlen == 32
then X(rs2)[4..0]
else X(rs2)[5..0];
let result = (X(rs1l) >> shamt) | (X(rsl) << (xlen - shamt));

X(rd) = result;

Included in
Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.30. rori | Page 41

2.30. rori

Synopsis
Rotate Right (Immediate)

Mnemonic

rori rd, rsl, shamt

Encoding (RV32)

31 25 24 20 19 15 14 12 11 7 6 0

0'1'1'0'0'0'0 'S'har’r;t' | 'rs1' | 1'0'1 ' 'rd' ' '0'1'0'0'1'1
— F.{ORII — - - IIRORII - — OIID—IIViM —

o

Encoding (RV64)

31 26 25 20 19 15 14 12 11 7 6 0
0o 1 1 0 0 O shamt rsi 1 0 1 rd 0O 01t 0 0 1 1
RORI RORI OP-IMM

Description

This instruction performs a rotate right of rsI by the amount in the least-significant log2(XLEN) bits of
shamt. For RV32, the encodings corresponding to shamt[5]=1 are reserved.

Operation

let shamt = if xlen == 32
then shamt[4..0]
else shamt[5..0];
let result = (X(rs1l) >> shamt) | (X(rsl) << (xlen - shamt));

X(rd) = result;

Included in
Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.31. roriw | Page 42

2.31. roriw

Synopsis
Rotate Right Word by Immediate

Mnemonic

roriw rd, rs1, shamt

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
011 0 0 0O shamt rsi 1 0 1 rd o o1t 1 0 1 1
RORIW RORIW OP-IMM-32
Description

This instruction performs a rotate right on the least-significant word of rsI by the amount in the least-
significant log2(XLEN) bits of shamt. The resulting word value is sign-extended by copying bit 31 to all of
the more-significant bits.

Operation

let rsl_data = EXTZ(X(rs1)[31..0];
let result = (rsi_data >> shamt[4..0]) | (rsi_data << (32 - shamt[4..0]));
X(rd) = EXTS(result[31..0]);

Included in
Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.32. rorw | Page 43

2.32. rorw

Synopsis
Rotate Right Word (Register)

Mnemonic

rorw rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

01 1 0 0 0O rs2 rsi 1 0 1 rd o1t 1t 1 0 1 1
RORW RORW OP-32

Description

This instruction performs a rotate right on the least-significant word of rs1 by the amount in least-significant
5 bits of rs2. The resultant word is sign-extended by copying bit 31 to all of the more-significant bits.

Operation

let rsi1 = EXTZ(X(rs1)[31..0])

let shamt = X(rs2)[4..0];

let result = (rsi1 >> shamt) | (rsl << (32 - shamt));
X(rd) = EXTS(result);

Included in
Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.33. sext.b | Page 44

2.33. sext.b

Synopsis
Sign-extend byte

Mnemonic
sext.b rd, rs
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
01t 1 00 0 0|0 O 1 0O rsi 0 0 1 rd 0o 01t 0 0 1 1
SEXT.B SEXT.B/SEXT.H OP-IMM
Description

This instruction sign-extends the least-significant byte in the source to XLEN by copying the most-significant
bit in the byte (i.e., bit 7) to all of the more-significant bits.

Operation

X(rd) = EXTS(X(rs)[7..01);

Included in

Extension

Zbb (Basic bit-manipulation)

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

Minimum version

0.93

Lifecycle state

Frozen

2.34. sext.h | Page 45

2.34. sext.h

Synopsis
Sign-extend halfword

Mnemonic
sext.h rd, rs
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
o1t 1 00 O0 OO0 01 0 1 rsi 0 0 1 rd 0o 01t 0 0 1 1
SEXT.H SEXT.B/SEXT.H OP-IMM
Description

This instruction sign-extends the least-significant halfword in rs to XLEN by copying the most-significant bit
in the halfword (i.e., bit 15) to all of the more-significant bits.

Operation

X(rd) = EXTS(X(rs)[15..0]1);

Included in
Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.35. shladd | Page 46

2.35. shladd

Synopsis
Shift left by 1 and add

Mnemonic
shladd rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6

0 01 0 0 0O rs2 rsi 0 1 0 rd o 1 1 0 O
SH1ADD SH1ADD OoP

Description

This instruction shifts rsI to the left by 1 bit and adds it to rs2.

Operation

X(rd) = X(rs2) + (X(rsl) << 1);

Included in

Extension

Zba (Address generation instructions)

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

Minimum version

0.93

Lifecycle state

Frozen

2.36. shladd.uw | Page 47

2.36. shladd.uw

Synopsis
Shift unsigned word left by 1 and add

Mnemonic
shladd.uw rd, rsl, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

0 01 0 0 0O rs2 rsi 0 1 0 rd o1t 1t 1 0 1 1
SH1ADD.UW SH1ADD.UW OP-32

Description

This instruction performs an XLEN-wide addition of two addends. The first addend is rs2. The second
addend is the unsigned value formed by extracting the least-significant word of rsI and shifting it left by 1
place.

Operation

let base = X(rs2);
let index = EXTZ(X(rsi1)[31..0]);

X(rd) = base + (index << 1);

Included in
Extension Minimum version Lifecycle state
Zba (Address generation instructions) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.37. sh2add | Page 48

2.37. sh2add

Synopsis
Shift left by 2 and add

Mnemonic
sh2add rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6

0 01 0 0 0O rs2 rsi 1 0 0 rd o 1 1 0 O
SH2ADD SH2ADD OoP

Description

This instruction shifts rsI to the left by 2 places and adds it to rs2.

Operation

X(rd) = X(rs2) + (X(rsl) << 2);

Included in
Extension Minimum version
Zba (Address generation instructions) 0.93

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

Lifecycle state

Frozen

2.38. sh2add.uw | Page 49

2.38. sh2add.uw

Synopsis
Shift unsigned word left by 2 and add

Mnemonic
sh2add.uw rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

0 01 0 0 0O rs2 rsi 1 0 0 rd o1t 1t 1 0 1 1
SH2ADD.UW SH2ADD.UW OP-32

Description

This instruction performs an XLEN-wide addition of two addends. The first addend is rs2. The second
addend is the unsigned value formed by extracting the least-significant word of rsI and shifting it left by 2
places.

Operation

let base = X(rs2);
let index = EXTZ(X(rsi1)[31..0]);

X(rd) = base + (index << 2);

Included in
Extension Minimum version Lifecycle state
Zba (Address generation instructions) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.39. sh3add | Page 50

2.39. sh3add

Synopsis
Shift left by 3 and add

Mnemonic
sh3add rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6

0 01 0 0 0O rs2 rsi 11 0 rd o 1 1 0 O
SH3ADD SH3ADD OoP

Description

This instruction shifts rsI to the left by 3 places and adds it to rs2.

Operation

X(rd) = X(rs2) + (X(rsl) << 3);

Included in
Extension Minimum version
Zba (Address generation instructions) 0.93

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

Lifecycle state

Frozen

2.40. sh3add.uw | Page 51

2.40. sh3add.uw

Synopsis
Shift unsigned word left by 3 and add

Mnemonic
sh3add.uw rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

0 01 0 0 0O rs2 rsi 11 0 rd o1t 1t 1 0 1 1
SH3ADD.UW SH3ADD.UW OP-32

Description

This instruction performs an XLEN-wide addition of two addends. The first addend is rs2. The second
addend is the unsigned value formed by extracting the least-significant word of rsI and shifting it left by 3
places.

Operation

let base = X(rs2);
let index = EXTZ(X(rsi1)[31..0]);

X(rd) = base + (index << 3);

Included in
Extension Minimum version Lifecycle state
Zba (Address generation instructions) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.41. slli.uw | Page 52

2.41. slli.uw

Synopsis
Shift-left unsigned word (Immediate)

Mnemonic

slli.uw rd, rs1, shamt

Encoding
31 26 25 20 19 15 14 12 11 7 6 0
0 00 0 1 O shamt rsi 0 0 1 rd o o1t 1 0 1 1
SLLLUW SLLLUW OP-IMM-32
Description

This instruction takes the least-significant word of rsl, zero-extends it, and shifts it left by the immediate.

Operation

X(rd) = (EXTZ(X(rs)[31..0]) << shamt);

Included in

Extension

Zba (Address generation instructions)

Dy Architecture Explanation

Minimum version

0.93

Lifecycle state

Frozen

This instruction is the same as slli with zext.w performed on rsI before shifting.

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.42. xnor

Synopsis
Exclusive NOR

Mnemonic

xnor rd, rsl, rs2

2.42. xnor | Page 53

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 1 0 0 0 0O rs2 rsi 1 0 0 rd o1t 1 0 0 1 1
XNOR XNOR OoP
Description

This instruction performs the bit-wise exclusive-NOR operation on rsI and rs2.

Operation

X(rd) = “(X(rsl) =~ X(rs2));

Included in

Extension

Zbb (Basic bit-manipulation)

Minimum version Lifecycle state

0.93

Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

2.43. zext.h | Page 54

2.43. zext.h

Synopsis

Zero-extend halfword

Mnemonic

zext.h rd, rs

Encoding (RV32)

31 25 24 20 19 15 14 12 11 7 6 0
0 00 0O1T 000 OO OTPO® rs 1 0 O rd o 11 0 0 1 1
ZEXTH oP

Encoding (RV64)

31 25 24 20 19 15 14 12 11 7 6 0
0 0001 0 O0j]0 0 O0O0TUDO rs 1 0 0 rd o1t 1t 1 0 1 1

ZEXTH OP-32
Description

This instruction zero-extends the least-significant halfword of the source to XLEN by inserting Qs into all of
the bits more significant than 15.

Operation

X(rd) = EXTZ(X(rs)[15..0]);

Dy Note

The zext.h mnemonic corresponds to different instruction encodings in RV32 and RV64.

Included in
Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

A.1. strlen | Page 55

Appendix A: Software optimization guide

A.1. strlen
The orc.b instruction allows for the efficient detection of NUL bytes in an XLEN-sized chunk of data:

e the result of orc.b on a chunk that does not contain any NUL bytes will be all-ones, and
e after a bitwise-negation of the result of orc.b, the number of data bytes before the first NUL byte (if any)
can be detected by ctz/clz (depending on the endianness of data).

A full example of a strlen function, which uses these techniques and also demonstrates the use of it for
unaligned/partial data, is the following:

#include <sys/asm.h>

.text
.globl strlen

.type strlen, O@function

strlen:
andi a3, a0, (SZREG-1) // offset
andi al, a0, -SZREG // align pointer
.Lprologue:
1i a4, SZREG
sub ad, a4, a3 // XLEN - offset
s1li a3, a3, PTRLOG // offset * 8
REG_L a2, 0(al) // chunk
/*

* Shift the partial/unaligned chunk we loaded to remove the bytes
* from before the start of the string, adding NUL bytes at the end.

*/
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__

srl a2, a2 ,a3 // chunk >> (offset * 8)
#else

sll a2, a2, a3
#endif

orc.b a2, a2

not a2, a2

/*
* Non-NUL bytes in the string have been expanded to 0x00, while
* NUL bytes have become Oxff. Search for the first set bit
* (corresponding to a NUL byte in the original chunk).

*/

#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
ctz a2, a2

#else
clz a2, a2

#endif

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

A.2. strcmp | Page 56

/*

* The first chunk is special: compare against the number of valid
* bytes in this chunk.

3y

srli a0, a2, 3

bgtu a4, a0, .Ldone

addi a3, al, SZREG

1i ad, -1

.align 2

/*

* OQur critical loop is 4 instructions and processes data in 4 byte
* or 8 byte chunks.

*/

.Lloop:
REG_L a2, SZREG(al)
addi al, al, SZREG

orc.b a2, a2

beq a2, a4, .Lloop
.Lepilogue:
not a2, a2
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
ctz a2, a2
#else
clz a2, a2
#endif
sub al, al, a3

add a0, a0, al

srli a2, a2, 3

add a0, a0, a2
.Ldone:

ret

A.2. strcmp

#include <sys/asm.h>

.text

.globl strcmp

.type strcmp, @function
strcmp:

or a4, a0, al

1i t2, -1

and a4, a4, SZREG-1

bnez a4, .Lsimpleloop

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

A.2. strcmp | Page 57

Main loop for aligned strings
.Lloop:

REG_L a2, 0(a0)

REG_L a3, 0(al)

orc.b t0, a2

bne t0, t2, .Lfoundnull

addi a0, a0, SZREG

addi al, al, SZREG

beq a2, a3, .Lloop

Words don't match, and no null byte in first word.
Get bytes in big-endian order and compare.
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
rev8 a2, a2
rev8 a3, a3
#endif
Synthesize (a2 >= a3) 7?7 1 : -1 in a branchless sequence.
sltu a0, a2, a3

neg a0, a0

ori a0, a0, 1

ret
.Lfoundnull:

Found a null byte.
If words don't match, fall back to simple loop.
bne a2, a3, .Lsimpleloop

Otherwise, strings are equal.
1i a0, O

ret

Simple loop for misaligned strings
.Lsimpleloop:

lbu a2, 0(a0)

lbu a3, 0(al)

addi a0, a0, 1

addi al, al, 1

bne a2, a3, 1f

bnez a2, .Lsimpleloop

1:
sub a0, a2, a3
ret
.size strcmp, .-strcmp

RISC-V Bit-Manipulation ISA-extensions | (©) RISC-V

	RISC-V Bit-Manipulation ISA-extensions
	Table of Contents
	Colophon
	Acknowledgments
	Bit-manipulation a, b, c and s extensions grouped for public review and ratification
	Word Instructions
	Pseudocode for instruction semantics
	Chapter 1. Extensions
	1.1. Zba extension
	1.2. Zbb: Basic bit-manipulation
	1.2.1. Logical with negate
	1.2.2. Count leading/trailing zero bits
	1.2.3. Count population
	1.2.4. Integer minimum/maximum
	1.2.5. Sign- and zero-extension
	1.2.6. Bitwise rotation
	1.2.7. OR Combine
	1.2.8. Byte-reverse

	1.3. Zbc: Carry-less multiplication
	1.4. Zbs: Single-bit instructions

	Chapter 2. Instructions (in alphabetical order)
	2.1. add.uw
	2.2. andn
	2.3. bclr
	2.4. bclri
	2.5. bext
	2.6. bexti
	2.7. binv
	2.8. binvi
	2.9. bset
	2.10. bseti
	2.11. clmul
	2.12. clmulh
	2.13. clmulr
	2.14. clz
	2.15. clzw
	2.16. cpop
	2.17. cpopw
	2.18. ctz
	2.19. ctzw
	2.20. max
	2.21. maxu
	2.22. min
	2.23. minu
	2.24. orc.b
	2.25. orn
	2.26. rev8
	2.27. rol
	2.28. rolw
	2.29. ror
	2.30. rori
	2.31. roriw
	2.32. rorw
	2.33. sext.b
	2.34. sext.h
	2.35. sh1add
	2.36. sh1add.uw
	2.37. sh2add
	2.38. sh2add.uw
	2.39. sh3add
	2.40. sh3add.uw
	2.41. slli.uw
	2.42. xnor
	2.43. zext.h

	Appendix A: Software optimization guide
	A.1. strlen
	A.2. strcmp

