Outline

MIPS Pipelined Implementations

Outline

Unpipelined Implementation. (Diagram only.)

Pipelined MIPS Implementations: Hardware, notation, hazards.
Dependency Definitions.

Data Hazards: Definitions, stalling, bypassing.

Control Hazards: Squashing, one-cycle implementation.

Outline: (Covered in class but not yet in set.)
Operation of nonpipelined implementation, elegance and power of pipelined implementation. (See text.)

Computation of CPI for program executing a loop.

Practice Problems
Practice Problems

The problems below provide practice for the material covered in this set.

Easier Branch Hardware Problems
2015 Homework 2 Problem 3 — Control logic for IF-stage PC mux.

2016 Homework 2 Problems 1,2 — Taken signal for a bltz, and bypass hardware and control.

Easier Non-Branch Hardware

2012 Midterm Problem 1 — PED and logic to generate stalls due to missing bypasses.

Slightly More Difficult Branch Problems
2019 Midterm Problem 3 — Avoid stall for slt/bne dependences.
2018 Homework 3 Problem 2 — Modify hardware (incl PC mux logic) so that bgt is resolved in EX

2017 Homework 3 Problem 1 — Implement bgezall (annulled and link)

Practice Problems

2015 Homework 2 Problem 2 — New MIPS bfeq. Reg fields are two bits each.

Slightly More Difficult Non-Branch Problems
2020 Homework 2 — An integer multiplier with quicker results for special cases.

2017 Homework 5 Problem 3 — Bypass paths that can only accommodate 12 bits.

Some Components > Edge-Triggered Register
Some Components

Edge-Triggered Register

clk

enable J

data

val 0O X7

register_en
enable
H en
-+ data val -+
T D T
+ clk
L]

13

s AR

Very Simple MIPS Implementations > Minimum Hardware Multi-cycle Implementation

Very Simple MIPS Implementations

Minimum Hardware Multi-cycle Implementation

From EE 3755 (as offered by dmk).

enpc

en

NPC

epc

en

PC

opcode 31:26 > to control logic

xalul

Y

func 5:0 -
omem —1 0p eir 5591 xwr P Reg File
xma rs 25: rsv
Mem L | addr data
i Port en rt 20:16 rtv
md IR addr data
addr data rd 15:11 |_
L~
data in 5d31— addr
> 0 o data in
, prepare uimmY
imm 15:0 imm simm
[imm
XIWS 4@ bimrT)

32d4

oalu

op

xalu2

alu

Very Simple MIPS Implementations > Minimum Hardware Multi-cycle Implementation

Features

Avoid duplication of hardware: One Memory Port, One Adder (ALU).

Relatively complex control logic needed to re-use ALU, etc.

enpc epc
L en L en
NPC PC
> >

xalul
opcode 31:26 5. to control logic ¢
func 5:0 N
omem — op eir 59y TP ~ Reg File u
Xma Mem L rs : | addr data rsv y
i Port en rt 20:16 rtv
md |IR [addr data N
addr data rd 15:11
L~ -
data in 5d31— addr
> 5d0 o data in |—{
32d4
, prepare uimmY
imm 15:0 imm simm
limm
XIWS 4@ bimm)

oalu

op

xalu2

alu

Very Simple MIPS Implementations > Unpipelined Implementation

Unpipelined Implementation

In this implementation hardware is duplicated.

16@32

. Execute/ .
Instruction fetch Instrughon decode/ address Memory : Write
register fetch calculation access § back
M
u ;
X :
Add NPC :
_ Zero? Branch Cond g g
4 :* 1% Naken | 7" : §
1~
PC > : M 5
: |] :
. Ll Y :
Instruction . n X : :
R L : : :
memory IR egisters 5 >< ALU | ALU | :
=1 (M output | §
|E| > u : Data L »| LMD » M
’_»\X/ memory : u

FIGURE 3.1 The implementation of the DLLX datapath allows every instruction to be executed in four or five clock

cycles.

Pipelining Terminology and Concepts > Pipelined MIPS Implementation

Pipelining Terminology and Concepts

Pipelined MIPS Implementation

IF 1D EX ME WB
N[= — —
— ALU
+1 2521 Taddr Data|—]rsv } Mem
A 20:10 fAddr Data rtv | AL | Port
]]— HAddr
Addr D In DI vp
| 7
250 15:0|format vl
3 O:-'iz immed E |- Zz:trrzrl,f:gic
Addr
Mem (Decode)
dst dst dst |+
Port Data i \ dest. reg)
Out

Pipelining Terminology and Concepts > Pipelining Idea
Pipelining Idea

Split hardware into n equally sized (in time) stages ...

... separate the stages using special registers called pipeline latches ...

. increase the clock frequency by S nx ...
... avoid problems due to overlapping of execution.

EX

ME

’ I NPC

Addr Data

Addr Data

15:0|format

Addr D n

NPC

immed

(Decode)

rsv

rtv

IMM

dst

ALU

rtv

dst

WB

ALU

Mem
L | Port

Addr

[

D

——In Out

| To branch
control logic.

\ dest. reg)

MD

dst

Pipelining Terminology and Concepts > Pipeline Stages and Latches >> Stages
Pipeline Stages and Latches

Pipeline divided into stages.

Each stage occupied by at most one instruction.

At any time, each stage can be occupied by its own instruction.

Stages given names: IF, ID, EX, ME, WB

|F ID EX ME
Sometimes ME written as MEM.
NPC NPC ALU
+1 25:21 Ihqdr Data rsv Mem
A 20:16 Addr Data rtv ALV | Port
— H Addr
Addr D n Dl mo
> PC rtv f—{in Out —e
] —7
250 15:0|format
304 42 immed IMM g | mobranch
? control logic.
Addr
Mem (Decode)
dst dst dst
Port Data R \ dest. reg)
Out

WB

Pipelining Terminology and Concepts > Pipeline Stages and Latches > Latches

Pipeline Latches:

Registers separating pipeline stages.

Written at end of each cycle.

To emphasize role shown in diagram as bar separating stages.
Registers named using pair of stage names and register name.

For example, IF/ID.IR, ID/EX.dst, ID/EX.rsv (used in text, notes).
For brevity first stage name dropped: ID.IR, EX.dst, EX.rsv.

if id ir, id ex ir, id ex rs_val (used in Verilog code).

EX

ME

Addr

Port pata

out | |

NPC

2521 Addr Data

20:16 Addr Data

—Addr D n

15:0(format

NPC

rsv

rtv

immed

(DecodeY)

IMM

dst

ALU

rtv

ALU

Mem
L | Port

Addr

[

D
L in Out

| 7o branch
control logic.

\ dest. reg)

dst

dst

WB

Pipelining Terminology and Concepts > Pipeline Execution Diagram
Pipeline Execution Diagram

Pipeline Execution Diagram:

Diagram showing the pipeline stages that instructions occupy as they execute.

Time on horizontal axis, instructions on vertical axis.

Diagram shows where instruction is at a particular time.

Cycle o 1 2 3 4 5 6
add r1, r2, r3 IF ID EX ME WB

and r4, r5, r6 IF ID EX ME WB

1w r7, 8(xr9) IF ID EX ME WB

A vertical slice (e.g., at cycle 3) shows processor activity
at that time.

In such a slice a stage should appear at most once ...

... if it appears more than once execution not correct ...

... since a stage can only execute one instruction at a time.

IF ID EX ME
NPC NPC ALU
+1 2521 IAddr Data rsv Mem
A 20:16 Iaddr Data rtv | AL | Port
—— | HAddr
Addr Din D D mo
P> PC rtv _|n Out L7
250 15:0|format]
304 42 immed MM :Ei E |- Tobranch
control logic.
Addr
Mem (Decode
dst dst dst |+
Port Data " \ dest. reg)
Out

WB

Pipelining Terminology and Concepts > Instruction Decoding and Pipeline Control
Instruction Decoding and Pipeline Control

Pipeline Control:
Setting control inputs to devices including . ..
.. multiplexor inputs ...
. function for ALU ...

. operation for memory ... |F 1D EX ME
. whether to clock each register ... |_j — — — —
NPC NPC ALU
. et cetera. —
+1 2521 Taddr Data|—{ rsv } Mem
A 2010 I addr Data rtv > AL|- | Port
- - Haddr
Addr Dln D D wp
> P|C rtv f—in Out
260 15,0|format mmEL
012 immed = & e
Addr
Mem (Decode)
dst dst dst
Port Data i \ dest. reg)
Out

Pipelining Terminology and Concepts > Instruction Decoding and Pipeline Control

Options for controlling pipeline:

e Decode in ID

Determine settings in ID, pass settings along in pipeline latches.

e Decode in Each Stage
Pass opcode portions of instruction along.

Decoding performed as needed.

Many systems decode in ID.

Example given later in this set.

WB

|F ID ME
:D NPC NPC ALU
+1 2521 [Addr Data rsv Mem
A 2016 | Addr Data rtv ALUf | Port
—— 4 Addr
Addr Dn DI vp
| 7
250 15:0|format
304 42 immed IMM E LT btra'/vfh,
T control logic.
Addr
Mem (Decode)
dst dst dst |
Port pata| | \ dest. reg)
Out

Dependencies and Hazards
Dependencies and Hazards
Remember that sources read from registers in ID and results written to registers in WB.

Consider the following incorrect execution:

Cycle 0 1 2 3 4 5 6 7
add Rr1, r2, r3 IF ID EX ME WB

sub R4, R1l, rb IF ID EX ME WB

and r6, R1l, r8 IF ID EX ME WB

xor 19, R4, rlil IF ID EX ME WB

Execution incorrect because ...
. sub reads r1 before add writes (or even finishes computing) rl, ...
. and reads r1 before add writes rl, and ...

. xor reads r4 before sub writes r4.

Dependencies and Hazards

Cycle
add R1,
sub R4,
and 16,
xor 19,

r2,
R1,
R1,
R4,

0
r3 IF
rb5
r8
rii

ID
IF

EX
ID
IF

ME
EX
ID
IF

WB
ME
EX
ID

5 6 7
WB

ME WB

EX ME WB

Incorrect execution due to. ..

... dependencies in program. . .

... and hazards in hardware (pipeline).

Incorrect execution above is the “fault” of the hardware. ..

... because the ISA does not forbid dependencies.

Dependencies and Hazards >> Distinguishing Definitions
Distinguishing Definitions

Dependency:
A relationship between two instructions ...

. indicating that their execution should be (or appear to be) in program order.

Hazard:

A potential execution problem in an implementation due to overlapping instruction execution.
There are several kinds of dependencies and hazards.

For each kind of dependence there is a corresponding kind of hazard.

Dependencies and Hazards >> Dependencies
Dependencies

Dependency:
A relationship between two instructions ...
. indicating that their execution should be, or appear to be, in program order.

If B is dependent on A then B should appear to execute after A.

Dependency Types:
True, Data, or Flow Dependence (Three different terms used for the same concept.)
Anti Dependence
Output Dependence

Control Dependence

Anti- and Output-Dependencies are both Name Dependencies.

Dependencies and Hazards > Dependencies > Data Dependence
Data Dependence

Data Dependence: (a.k.a., True and Flow Dependence)
A dependence between two instructions ...
. indicating data needed by the second is produced by the first.

Example:

add R1l, r2, r3
sub R4, R1l, 1rb
and r6, R4, 17

The sub is dependent on add (via r1l).
The and is dependent on sub (via r4).

The and is dependent add (via sub).

Execution may be incorrect if ...
... a program having a data dependence ...
... 1s run on a processor having an uncorrected RAW hazard.

Dependencies and Hazards > Dependencies > Anti Dependence
Anti Dependence

Anti Dependence:
A dependence between two instructions ...

. indicating a value written by the second ...
... that the first instruction reads.

Antidependence Example

add rl1l, R2, r3
sub R2, 14, rb

sub is antidependent on the add.

Execution may be incorrect if ...
... a program having an antidependence . ..
... 1s run on a processor having an uncorrected WAR hazard.

Dependencies and Hazards > Dependencies >> Output Dependence
Output Dependence

Output Dependence:
A dependence between two instructions ...
. indicating that both instructions write the same location ..

. (register or memory address).

Output Dependence Example

add R1l, r2, r3
sub R1l, r4, rb

The sub is output dependent on add.

Execution may be incorrect if ...
... a program having an output dependence ...
... 1s run on a processor having an uncorrected WAW hazard.

Dependencies and Hazards > Dependencies >> Control Dependence
Control Dependence

Control Dependence:
A dependence between a branch instruction and a second instruction ...
. indicating that whether the second instruction executes ...

... depends on the outcome of the branch.

beq $1, $0 SKIP # Recall that branch has a delay slot.
nop

add $2, $3, $4
SKIP:

sub $5, $6, $7

The add is control dependent on the beq.

The sub is not control dependent on the beq.

Dependencies and Hazards > Pipeline Hazards > Types of Hazards
Pipeline Hazards

Hazard:
A potential execution problem in an implementation due to overlapping instruction execution.

Interlock:
Hardware that avoids hazards by stalling certain instructions when necessary.

Hazard Types:

Structural Hazard:
Needed resource currently busy.

Data Hazard:
Needed value not yet available or overwritten.

Control Hazard:
Needed instruction not yet available or wrong instruction executing.

Dependencies and Hazards >> Pipeline Hazards > Data Hazards > Types of Data Hazards
Data Hazards
Identified by acronym indicating correct operation.

RAW: Read after write, akin to data dependency.

WAR: Write after read, akin to anti dependency.

WAW: Write after write, akin to output dependency.

MIPS implementations above only subject to RAW hazards.

RAR not a hazard since read order irrelevant (without an intervening write).

Dependencies and Hazards >> Pipeline Hazards >> Data Hazards > Stalls
Stalls
When threatened by a hazard:

e Stall (Pause a part of the pipeline.)

Stalling avoids overlap that would cause error.
This does slow things down.

e Add hardware to avoid the hazards.

Details of hardware depend on hazard and pipeline.

Several will be covered.

Dependencies and Hazards > Pipeline Hazards > Structural Hazards
Structural Hazards

Cause: two instructions simultaneously need one resource.
Solutions:

Stall.

Duplicate resource.

Pipelines in this section do not have structural hazards.

Covered in more detail with floating-point instructions.

Avoiding Data Hazards
Avoiding Data Hazards
Pipelined MIPS Subject to RAW Hazards.

Consider the following incorrect execution of code containing data dependencies.

Cycle 0 1 2 3 4 5 6 7
add Rr1, r2, r3 IF ID EX ME WB

sub R4, R1l, rb IF ID EX ME WB

and r6, R1l, r8 IF ID EX ME WB

xor 19, R4, rlil IF ID EX ME WB

Execution incorrect because ...
. sub reads r1 before add writes (or even finishes computing) rl, ...
. and reads r1 before add writes rl, and ...

. xor reads r4 before sub writes r4.

Problem fixed by stalling the pipeline.

Avoiding Data Hazards > Stalling

Stall:

To pause execution in a pipeline from IF up to a certain stage.
With stalls, code can execute correctly:

For code on previous slide, stall until data in register.

Cycle 0 1 2 3 4 5 6 7 3 9 10
add Rr1, r2, r3 IF ID EX ME WB

sub R4, R1, rb IF ID --——- > EX ME WB

and r6, R1l, r8 IF -———- > ID EX ME WB

xor 19, R4, rlil IF ID -> EX ME WB

Arrow shows that instructions stalled.
Stall creates a bubble, stages without valid instructions, in the pipeline.

With bubbles present, CPI is greater than its ideal value of 1.

Avoiding Data Hazards > Stalling > Stall Implementation

Stall Implementation

Stall implemented by asserting a hold signal ...

... which inserts a nop (or equivalent) after the stalling instruction ...

... and disables clocking of pipeline latches before the stalling instruction.

Cycle
add RI1,
sub R4,
and 16,
xor 19,

r2,
R1,
R1,
R4,

0
r3 IF
rb5
r8
riil

1
ID
IF

2 3 4
EX ME WB
ID ---—-
IF ---——-

EX
ID
IF

ME
EX
ID

7 8 9 10

WB
ME WB
-> EX ME WB

During cycle 3, a nop is in EX.

During cycle 4, a nop is in EX and ME .

The two adjacent nops are called a bubble ...

... they move through the pipeline with the other instructions.

A third nop is in EX in cycle 7.

Avoiding Data Hazards > Bypassing
Bypassing
Some stalls are avoidable.

Consider again:

Cycle 0 1 2 3 4 5 6 7 8 9 10
add Rr1, r2, r3 IF ID EX ME WB

sub R4, R1l, rb IF ID EX ME WB

and r6, R1l, r8 IF ID EX ME WB

xor 19, R4, rlil IF ID EX ME WB

Note that the new value of r1 needed by sub ...
... has been computed at the end of cycle 2 ...
... and isn’t really needed until the beginning of the next cycle, 3.

Execution was incorrect because the value had to go around the pipeline to ID.
Why not provide a shortcut?

Why not call a shortcut a bypass or forwarding path?

Avoiding Data Hazards >> Bypassing > Possible 5-Stage MIPS Bypass Paths

Non-Bypassed MIPS

|F ID EX ME
I_W R —— ———— R
NPC NPC
,_J ALU
+1 2521 Taddr Data|—]{rsv } Mem
A 20:16 Iaddr Data rtv }> ALUf | Port
—— HAddr
Addr D In D D wvp
P PC rctv In Out 1?
| 7
250 15:0|format IMM
3 0:;;2 immed — E - Z—c.;r?trrirl"l:ggic
Addr
Mem (Decode)
dst dst dst |-
Port Data i \ dest. reg)
Out

WB

Avoiding Data Hazards >> Bypassing > Possible 5-Stage MIPS Bypass Paths

Bypassed MIPS

IF ID EX ME
—— — — —
NPC NPC
,7J i ALU
+1 2521 [Addr Data rsv __} Mem
A 2010 Iaddr Data rtv _}> AL | Port
—— - Addr
Addr D In B D Dl mp
|
50 15,0, format MM

30;~_'_~|~_2 Nimmed/

Addr

Mem (Decode)
dst dst dst
Port Data \ dest. reg)

Out

Avoiding Data Hazards >> Bypassing > Possible 5-Stage MIPS Bypass Paths

MIPS Implementation With Some Bypass Paths

Cycle

add R1,
sub R4,
and 716,
xor 1r9,
It works!

r2,
R1,
R1,
R4,

0
r3 IF
r5
r8
ril

IF

2

EX
ID
IF

3

ME
EX
ID
IF

4

WB
ME
EX
ID

5 6

WB

ME WB
EX ME

WB

WB

IF ID EX ME
F_Eii] NPC NPC ALU
+1 2521 Tnddr Data}—{rsv 5§ Mem
A 20:16 Jaddr Data rtv I ALUL- | Port
—— HAddr
Addr Dn B D D vp
> PC rtv |—in Out jv
| =7
304755 15ﬂ\;iiii;/ . —
:;|i imme (= E I
Addr
Mem (Decode)
dst dst dst |+
Port Data R \ dest. reg)
Out

Avoiding Data Hazards >> Bypassing > Unbypassable Hazards

Some stalls unavoidable.

Cycle 0 1 2 3 4 5 6
1w rR1, 0(r2) IF ID EX ME WB

add R1l, R1l, r4d IF ID -> EX ME WB
sw 4(r2), r1 IF -> ID -----

addi r2, r2, 8

Stall due to 1w could not be avoided with a by-
pass path (data not available in cycle 3).

Stall in cycles 5 and 6 could be avoided with a
new bypass path.

WB

8 9 10
WB
ME WB
IF ID EX ME
’ I NPC NPC ALU
+1 2521 Tnddr Data}—{rsv =5 Mem
A 2016 fAddr Data rtv I ALUL | Port
—— - Addr
Addr Din B D D{dvp
> PC rtv f—{in Out —e
| 7
0 15;0/formaty
0, 12 Nimmeg ™" Chm L5
Addr
Mem (Decode
dst dst dst |
Port Data IR \ dest. reg)
Out

Control Logic Design Example(s)
Control Logic Design Example(s)

In this part design logic to determine dst ...
. and using that the bypass control logic for lower ALU mux.

2926
25:0 29:0
IF r+15,0 ID = EX ME
}-{npc NPC ALU
[1]
+1 2521 [addr Data rsv Mem
A 20:10 fAqdr Data revi | ALUL | Port
- Addr
Addr D n ’ D
> PC D H{MD
| } rtvi—{in_ out
260 15;0|format vl
m?tp;ﬁizlsb immed
Addr Dsqségljn mx1
Mem (Decode dst dst dst
Port dest. reg S S S
Data R — Me too!
Out > > = >

Control Logic Design Example(s) > Logic to Determine Dst

Logic to determine dst for register file.

Note: dst is the register that will be written .|. Y

... or 0 if no register is written.

Depending on the instruction ...
... the value is in the rd or rt field ...
... or is the constant O or 31.

WB

29:26
25:0 29:0
IF + o | 1D =" EX ME
15:0
}—{nec NPC ALU
— L
+1 25:21 Addr Data rsv Mem
20:16)addr Data v | AL | Port
f HAddr
Addr D lIn D
L pC H o[l | ™[22
I Out —
N z-bzg 15:0 ifarmg; iy =
msb ';!i|5b
Mem dst dst dst -
Port pata R
out | b > — —
Dest is rd.
_@ rd 15;11
00
ﬂ sa0
: \ No dest (use r0). 5431
B h 10|
—is ranc} 4 t 20,16
] 11
D Isb J
— Dest is r31. _DLSb
_C
—Q

Control Logic Design Example(s) > Bypass Control Logic for Lower ALU Mux

29:26
Bypass Control Logic for Lower ALU Mux 25 550
|F I ID =~ EX ME WB
15:0
j NPC NPC ALU
[— —
+1 2521 [Addr Data rsv Mem
A 20:1 fAddr Data rtvih | [P ALUL- | Port
— . HAddr
PC Addr Dln 8 D oy H IV
[||
rev o 1
I } In _ Out 1___7
50 15:0|format
304 2+b2 immed mmr
Msh em—— |5
Addr —Imx1
Mem (Decode
l | dst dst dst |
Out > D> D> >
rt 20:16 5@7
—iisTypeR}
ID.IR signals in purple.

Control Logic Design Example(s) > Bypass Control Logic for Lower ALU Mux
Notes about logic:
Control logic not minimized (for clarity).
Control Logic Generating dst.
Present in previous implementations, just not shown.

Determines which register gets written based on instruction.

Instruction categories used in boxes such as|= is Store | (some instructions omitted):

= is Type R|[All Type R instructions.

is Store | All store instructions.

= is Branch | branches such as beq and bltz.

is JAL|, |= is J| Matches the exact instruction.

Control Logic Design Example(s) > Bypass Control Logic for Lower ALU Mux

Logic Generating ID/EX.MUX.

=" | box determines if two register numbers are equal.

Register number zero is not equal register zero, nor any other register.

(The bypassed zero value might not be zero.)

Branch Hardware > Branch Execution

Branch Hardware

Consider:
IF ID EX ME
N o] [ed]
NPC NPC ALU
— I
+1 2521 [addr Data|—{rsv __} Mem
A 2010 Iaddr Data rtv i > AL | Port
—— _} HAddr
Addr D n D
. pC D — MD
rtv In Out
|
w0 15:0| format | — E |-
30\;2'_%2 immed MM =3
= Z <3
Addr . §3
7 N —
31:31
Mem (Decode) dst dst dst
Port \ dest. reg)
out | "

Branch Hardware > Branch Execution

D
rtv l—in Out

.0/ format ‘
15:0 MM

immed

NPC NPC —L ALU
25:21
#~{Addr Data|—{rsv - Mem
20:26 [r4qr pata bl rev L ALVl | Port
m - Addr
—Addr Din D
|= |7

ecoae
dest. reg dst dst dst

Example of incorrect execution . | | -

#I Adr Cycle 0 1 2 3 4 &5 6 7 8
100 bgtz r4, TARGET IF ID EX ME WB
104 sub r4, r2, r5 IF ID EX ME WB
108 sw 0(r2), ri IF ID EX ME WB
10c and 16, rl, 8 IF ID EX ME WB

110 or ri2, r13, ri4

TARGET: # TARGET = 200
200 xor r9, r4, riil IF ID EX ME WB

Branch is taken yet two instructions past delay slot (sub) complete execution.
Branch target finally fetched in cycle 4.

Problem: Two instructions following delay slot.

Branch Hardware > Branch Execution

Handling Instructions Following a Taken Branch Delay Slot

ID EX ME
. ’ = T | — m
Option 1: Don’t fetch them. 2521 i Dara] sy | Memn
2018 Iaddr Data || rtv | AW | Port
. —Addr Din i 7Qddr Dl {wo
Possible (with pipelining) because ... wfn_
... fetch starts (sw in cycle 2) ... : =}
NE
... after branch decoded. (Decode) | L B ast
- \ dest. reg)

(Would be impossible . . .

... for non-delayed branch.)

#I Adr Cycle 0 1 2 3 4 65 6 7 8
100 bgtz r4, TARGET IF ID EX ME WB
104 sub r4, r2, r5 IF ID EX ME WB
108 sw 0(r2), ri IF ID EX ME WB
10c and 16, rl, 18 IF ID EX ME WB

110 or ri2, r13, ri4

TARGET: # TARGET = 200
200 xor r9, r4, riil IF ID EX ME WB

Branch Hardware > Branch Execution
Handling Instructions Following a Taken Branch
Option 2: Fetch them, but squash (stop) them in a later stage.

This will work if instructions squashed ...

... before modifying architecturally visible storage (registers and memory).

Memory modified in ME stage and registers modified in WB stage . ..
... so instructions must be stopped before beginning of ME stage.

Can we do it? Depends depends where branch instruction is.
In example, need to squash sw before cycle 5.

During cycle 3 bgtz in ME . ..

... it has been decoded and the branch condition is available ...
... so we know whether the branch is taken ...

... s0 sw can easily be squashed before cycle 5.

Option 2 will be used.

Branch Hardware > Instruction Squashing
Instruction Squashing

In-Flight Instruction::
An instruction in the execution pipeline.

Later in the semester a more specific definition will be used.
Squashing:: [an instruction]

preventing an in-flight instruction ...

... from writing registers, memory or any other visible storage.
Squashing also called: nulling, abandoning, and cancelling..

Like an insect, a squashed instruction is still there (in most cases) but can do no harm.

Branch Hardware > Instruction Squashing
Squashing Instruction in Example MIPS Implementation
Two ways to squash.
e Prevent it from writing architecturally visible storage.
Replace destination register control bits with zero. (Writing zero doesn’t change anything.)

Set memory control bits (not shown so far) for no operation.

e Change Operation to nop.
Would require changing many control bits.
Squashing shown that way here for brevity.

[llustrated by placing a nop in IR.

Branch Hardware > Instruction Squashing
Why not replace squashed instructions with target instructions?

Because there is no straightforward and inexpensive way ...
... to get the instructions where and when they are needed.

(Curvysideways and expensive techniques covered in Chapter 4.)

Branch Hardware > Instruction Squashing

MIPS implementation used so far.

IF ID EX ME
Lj NPC NPC
J —‘ i ALU
+1 2521 Inddr Data|—]{rsv __} Mem
A 2010 fAqdr Data revi— ||| > AL | Port
— _} - Addr
Addr D n D D mD
> PC rtv In Out
|
w0 15:0| format — E I
30_2&2 immed MM gs
z 3%
Addr o g3
/ N | &
31:31
e (@]
out | L"

Branch Hardware > Instruction Squashing

Example of correct execution

#I Adr Cycle 0 1 2 3 4 5 6 7 8
100 bgtz r4, TARGET IF ID EX ME WB
104 sub r4, r2, r5 IF ID EX ME WB
108 sw 0(r2), rl IF 1IDx
10c and 16, rl, r8 IFx

110 or rl2, ri13, ri4

TARGET: # TARGET = 200
200 xor 1r9, r4, ril IF ID EX ME WB

Branch outcome known at end of cycle 2 ...
... wait for cycle 3 when doomed instructions (sw and and) in flight ...
... and squash them so in cycle 4 they act like nops.

Two cycles (2, and 3), are lost.
The two cycles called a branch penalty.

Two cycles can be alot of cycles, is there something we can do?

Branch Hardware > Zero-Cycle Branch Delay Implementation

Zero-Cycle Branch Delay Implementation

WB

msb 29’:,26
Isb 7
25:0—29:0 57
IF r+1§_0 ID =% EX ME
—InpPC NPC
— L~ ALU
+1 2521 Taddr Data -] rsv — Mem
A 20:10 fAddr Data tvh [FD > AL Port
i D i oo
r n o D DH MD
> PC rtv In Out L
| 7
2'b0 15:0{format N
m?bo: 2Isb ’ Immed MM
Addr
Mem (Decode)
dst dst dst
Port dest. reg
Out > > > >

Compute branch target address in ID stage.

Branch Hardware > Zero-Cycle Branch Delay Implementation
Compute branch target and condition in ID stage.

Workable because register values not needed to compute branch address and ...
... branch condition can be computed quickly.

Now how fast will code run?

#1 Adr Cycle 0 1 2 3 4 5 6 4 8
100 bgtz r4, TARGET IF ID EX ME WB
104 sub r4, r2, rb IF ID EX ME WB

108 sw 0(r2), ri
10c and 16, rl, r8
110 or ri2, ri13, ri4

TARGET: # TARGET = 200
200 xor 1r9, r4, ril IF ID EX ME WB

No penalty, not a cycle wasted!!

Control Logic for some Control Transfers

Summary of MIPS Implementations > Control Logic for some Control Transfers

is) jmp
10
is BGTZ msb
20,16 s BGEZ tbr
—'is BNE = 01 Isb
29:26 opc 31:26 —'is BEQ)' 3131
msb .
Isb =9
25:0 29,0 L
|F + |50 1D = EX ME WB
W% P [P P
T NPC NPC ALU
+1 2521 TAddr Data rsv Mem
A 20:10 fAddr Data rtv | > AW|- | Port
—— {Addr
Addr DIn D
> PC D MD
} rtv In Out 1__
| —7
2'b0 15:0|format
304° 15 : MM
msb = Isb Immed
Addr
Mem (Decode)
Port Data | dest. reg) dst dst dst |
IR
Out

Summary of MIPS Implementations >> Non-Bypassed MIPS

Non-Bypassed MIPS

ME

|F 1D EX
L
} NPC
—
+1 2521 Inddr Data }
T 20:16 Addr Data }
Addr D In
> PC y
|
250 15:0[format
30:_;2 immed
Addr
Mem (Decode)
Port Data i dest. reg
Out

Mem
Port
Addr

D D
In Out

To branch
control logic.

ALU

MD

dst

WB

Summary of MIPS Implementations >> Bypassed MIPS

Bypassed MIPS

IF 1D EX ME
NPC
Ii}] ALU
+1 2521 [nddr Data - Mem
A 2010 Jaddr Data _} Port
I Addr
Addr D In D DL vo
> PC X n Out
|
250 15;0| format
30:_;2 immed S 3
Addr 0 éj‘i
Mem (Decode) e dst
Port Data i dest. reg
Out

Summary of MIPS Implementations > ID Branch MIPS

ID Branch MIPS

msb__29;26
= 25/:0 29:0
+[
IF 15:0 ID
j NPC
—
+1 25721 Addr Data
) 20;16 Aqdr Data
>
L PC Addr D In
|
30 2'b02 15:0| format
msb 'N Isb Immed
Addr
Mem (Decode)
Port Data i dest. reg
Out S

V

S
338 EX ME
- ALU
— Mem
> ALU | Port
- Addr
o D D MD
rtv In Out
dst dst

WB

	Outline
	Practice Problems
	Some Components
	Edge-Triggered Register

	Very Simple MIPS Implementations
	Minimum Hardware Multi-cycle Implementation
	Unpipelined Implementation

	Pipelining Terminology and Concepts
	Pipelined MIPS Implementation
	Pipelining Idea
	Pipeline Stages and Latches
	Stages
	Latches

	Pipeline Execution Diagram
	Instruction Decoding and Pipeline Control

	Dependencies and Hazards
	Distinguishing Definitions
	Dependencies
	Data Dependence
	Anti Dependence
	Output Dependence
	Control Dependence

	Pipeline Hazards
	Types of Hazards
	Data Hazards
	Types of Data Hazards
	Stalls

	Structural Hazards

	Avoiding Data Hazards
	Stalling
	Stall Implementation

	Bypassing
	Possible 5-Stage MIPS Bypass Paths
	Unbypassable Hazards

	Control Logic Design Example(s)
	Logic to Determine Dst
	Bypass Control Logic for Lower ALU Mux

	Branch Hardware
	Branch Execution
	Instruction Squashing
	Zero-Cycle Branch Delay Implementation

	Summary of MIPS Implementations
	Control Logic for some Control Transfers
	Non-Bypassed MIPS
	Bypassed MIPS
	ID Branch MIPS

