
Outline

MIPS Pipelined Implementations

Outline

Unpipelined Implementation. (Diagram only.)

Pipelined MIPS Implementations: Hardware, notation, hazards.

Dependency Definitions.

Data Hazards: Definitions, stalling, bypassing.

Control Hazards: Squashing, one-cycle implementation.

Outline: (Covered in class but not yet in set.)

Operation of nonpipelined implementation, elegance and power of pipelined implementation. (See text.)

Computation of CPI for program executing a loop.

Imp-1 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-1

Practice Problems

Practice Problems

The problems below provide practice for the material covered in this set.

Easier Branch Hardware Problems

2015 Homework 2 Problem 3 — Control logic for IF-stage PC mux.

2016 Homework 2 Problems 1,2 — Taken signal for a bltz, and bypass hardware and control.

Easier Non-Branch Hardware

2012 Midterm Problem 1 — PED and logic to generate stalls due to missing bypasses.

Slightly More Difficult Branch Problems

2019 Midterm Problem 3 — Avoid stall for slt/bne dependences.

2018 Homework 3 Problem 2 — Modify hardware (incl PC mux logic) so that bgt is resolved in EX

2017 Homework 3 Problem 1 — Implement bgezall (annulled and link)

Imp-2 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-2

Practice Problems

2015 Homework 2 Problem 2 — New MIPS bfeq. Reg fields are two bits each.

Slightly More Difficult Non-Branch Problems

2020 Homework 2 — An integer multiplier with quicker results for special cases.

2017 Homework 5 Problem 3 — Bypass paths that can only accommodate 12 bits.

Imp-3 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-3

Some Components � Edge-Triggered Register

Some Components

Edge-Triggered Register

D Q

register_en

data val

clk

enable
en

clk

data

val

t 0 1 2

7 3 1 24 98

0 7

6

9

enable

Imp-4 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-4

Very Simple MIPS Implementations � Minimum Hardware Multi-cycle Implementation

Very Simple MIPS Implementations

Minimum Hardware Multi-cycle Implementation

From EE 3755 (as offered by dmk).

PC
en

NPC
en

IR
en

op

data in

dataaddr

Mem
Port

addr

addr

addr

data

Reg File

data

data in

xma

rt 20:16

rs 25:21

rd 15:11

prepare
imm

uimm
simm
limm

bimm

imm 15:0

32d4

xrwr

xrws

xalu1

xalu2

oalu

omemenpc epc
eir op

5d31
5d0

rsv

rtv
md

alu

opcode 31:26

func 5:0
to control logic

Imp-5 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-5

Very Simple MIPS Implementations � Minimum Hardware Multi-cycle Implementation

Features

Avoid duplication of hardware: One Memory Port, One Adder (ALU).

Relatively complex control logic needed to re-use ALU, etc.

PC
en

NPC
en

IR
en

op

data in

dataaddr

Mem
Port

addr

addr

addr

data

Reg File

data

data in

xma

rt 20:16

rs 25:21

rd 15:11

prepare
imm

uimm
simm
limm

bimm

imm 15:0

32d4

xrwr

xrws

xalu1

xalu2

oalu

omemenpc epc
eir op

5d31
5d0

rsv

rtv
md

alu

opcode 31:26

func 5:0
to control logic

Imp-6 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-6

Very Simple MIPS Implementations � Unpipelined Implementation

Unpipelined Implementation

In this implementation hardware is duplicated.

Instruction fetch
Instruction decode/

register fetch

Execute/

address

calculation

Memory

access

Write

back

B

PC

4

ALU

16 32

Add

Data

memory

Registers

Sign

extend

Instruction

memory

M

u

x

M

u

x

M

u

x

M

u

x

Zero?
Branch

taken
Cond

NPC

lmm

ALU

output

IR
A

LMD

FIGURE 3.1 The implementation of the DLX datapath allows every instruction to be executed in four or five clock

cycles.
Imp-7 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-7

Pipelining Terminology and Concepts � Pipelined MIPS Implementation

Pipelining Terminology and Concepts

Pipelined MIPS Implementation

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed = To branch
control logic.

Imp-8 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-8

Pipelining Terminology and Concepts � Pipelining Idea

Pipelining Idea

Split hardware into n equally sized (in time) stages . . .

. . . separate the stages using special registers called pipeline latches . . .

. . . increase the clock frequency by / n× . . .

. . . avoid problems due to overlapping of execution.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed = To branch
control logic.

Imp-9 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-9

Pipelining Terminology and Concepts � Pipeline Stages and Latches � Stages

Pipeline Stages and Latches

Pipeline divided into stages.

Each stage occupied by at most one instruction.

At any time, each stage can be occupied by its own instruction.

Stages given names: IF, ID, EX, ME, WB

Sometimes ME written as MEM.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed = To branch
control logic.

Imp-10 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-10

Pipelining Terminology and Concepts � Pipeline Stages and Latches � Latches

Pipeline Latches:

Registers separating pipeline stages.

Written at end of each cycle.

To emphasize role shown in diagram as bar separating stages.

Registers named using pair of stage names and register name.

For example, IF/ID.IR, ID/EX.dst, ID/EX.rsv (used in text, notes).

For brevity first stage name dropped: ID.IR, EX.dst, EX.rsv.

if id ir, id ex ir, id ex rs val (used in Verilog code).

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed = To branch
control logic.

Imp-11 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-11

Pipelining Terminology and Concepts � Pipeline Execution Diagram

Pipeline Execution Diagram

Pipeline Execution Diagram:

Diagram showing the pipeline stages that instructions occupy as they execute.

Time on horizontal axis, instructions on vertical axis.

Diagram shows where instruction is at a particular time.
Cycle 0 1 2 3 4 5 6

add r1, r2, r3 IF ID EX ME WB

and r4, r5, r6 IF ID EX ME WB

lw r7, 8(r9) IF ID EX ME WB

A vertical slice (e.g., at cycle 3) shows processor activity
at that time.

In such a slice a stage should appear at most once . . .

. . . if it appears more than once execution not correct . . .

. . . since a stage can only execute one instruction at a time.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed = To branch
control logic.

Imp-12 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-12

Pipelining Terminology and Concepts � Instruction Decoding and Pipeline Control

Instruction Decoding and Pipeline Control

Pipeline Control:

Setting control inputs to devices including . . .

. . . multiplexor inputs . . .

. . . function for ALU . . .

. . . operation for memory . . .

. . . whether to clock each register . . .

. . . et cetera.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed = To branch
control logic.

Imp-13 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-13

Pipelining Terminology and Concepts � Instruction Decoding and Pipeline Control

Options for controlling pipeline:

• Decode in ID

Determine settings in ID, pass settings along in pipeline latches.

• Decode in Each Stage

Pass opcode portions of instruction along.

Decoding performed as needed.

Many systems decode in ID.

Example given later in this set.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed = To branch
control logic.

Imp-14 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-14

Dependencies and Hazards

Dependencies and Hazards

Remember that sources read from registers in ID and results written to registers in WB.

Consider the following incorrect execution:

Cycle 0 1 2 3 4 5 6 7

add R1, r2, r3 IF ID EX ME WB

sub R4, R1, r5 IF ID EX ME WB

and r6, R1, r8 IF ID EX ME WB

xor r9, R4, r11 IF ID EX ME WB

Execution incorrect because . . .

. . . sub reads r1 before add writes (or even finishes computing) r1, . . .

. . . and reads r1 before add writes r1, and . . .

. . . xor reads r4 before sub writes r4.

Imp-15 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-15

Dependencies and Hazards

Cycle 0 1 2 3 4 5 6 7

add R1, r2, r3 IF ID EX ME WB

sub R4, R1, r5 IF ID EX ME WB

and r6, R1, r8 IF ID EX ME WB

xor r9, R4, r11 IF ID EX ME WB

Incorrect execution due to. . .

. . . dependencies in program. . .

. . . and hazards in hardware (pipeline).

Incorrect execution above is the “fault” of the hardware. . .

. . . because the ISA does not forbid dependencies.

Imp-16 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-16

Dependencies and Hazards � Distinguishing Definitions

Distinguishing Definitions

Dependency:

A relationship between two instructions . . .

. . . indicating that their execution should be (or appear to be) in program order.

Hazard:

A potential execution problem in an implementation due to overlapping instruction execution.

There are several kinds of dependencies and hazards.

For each kind of dependence there is a corresponding kind of hazard.

Imp-17 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-17

Dependencies and Hazards � Dependencies

Dependencies

Dependency:

A relationship between two instructions . . .

. . . indicating that their execution should be, or appear to be, in program order.

If B is dependent on A then B should appear to execute after A.

Dependency Types:

• True, Data, or Flow Dependence (Three different terms used for the same concept.)

• Anti Dependence

• Output Dependence

• Control Dependence

Anti- and Output-Dependencies are both Name Dependencies.

Imp-18 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-18

Dependencies and Hazards � Dependencies � Data Dependence

Data Dependence

Data Dependence: (a.k.a., True and Flow Dependence)

A dependence between two instructions . . .

. . . indicating data needed by the second is produced by the first.

Example:

add R1, r2, r3

sub R4, R1, r5

and r6, R4, r7

The sub is dependent on add (via r1).

The and is dependent on sub (via r4).

The and is dependent add (via sub).

Execution may be incorrect if . . .

. . . a program having a data dependence . . .

. . . is run on a processor having an uncorrected RAW hazard.

Imp-19 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-19

Dependencies and Hazards � Dependencies � Anti Dependence

Anti Dependence

Anti Dependence:

A dependence between two instructions . . .

. . . indicating a value written by the second . . .

. . . that the first instruction reads.

Antidependence Example

add r1, R2, r3

sub R2, r4, r5

sub is antidependent on the add.

Execution may be incorrect if . . .

. . . a program having an antidependence . . .

. . . is run on a processor having an uncorrected WAR hazard.

Imp-20 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-20

Dependencies and Hazards � Dependencies � Output Dependence

Output Dependence

Output Dependence:

A dependence between two instructions . . .

. . . indicating that both instructions write the same location . . .

. . . (register or memory address).

Output Dependence Example

add R1, r2, r3

sub R1, r4, r5

The sub is output dependent on add.

Execution may be incorrect if . . .

. . . a program having an output dependence . . .

. . . is run on a processor having an uncorrected WAW hazard.

Imp-21 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-21

Dependencies and Hazards � Dependencies � Control Dependence

Control Dependence

Control Dependence:

A dependence between a branch instruction and a second instruction . . .

. . . indicating that whether the second instruction executes . . .

. . . depends on the outcome of the branch.

beq $1, $0 SKIP # Recall that branch has a delay slot.

nop

add $2, $3, $4

SKIP:

sub $5, $6, $7

The add is control dependent on the beq.

The sub is not control dependent on the beq.

Imp-22 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-22

Dependencies and Hazards � Pipeline Hazards � Types of Hazards

Pipeline Hazards

Hazard:

A potential execution problem in an implementation due to overlapping instruction execution.

Interlock:

Hardware that avoids hazards by stalling certain instructions when necessary.

Hazard Types:

Structural Hazard:

Needed resource currently busy.

Data Hazard:

Needed value not yet available or overwritten.

Control Hazard:

Needed instruction not yet available or wrong instruction executing.

Imp-23 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-23

Dependencies and Hazards � Pipeline Hazards � Data Hazards � Types of Data Hazards

Data Hazards

Identified by acronym indicating correct operation.

• RAW: Read after write, akin to data dependency.

• WAR: Write after read, akin to anti dependency.

• WAW: Write after write, akin to output dependency.

MIPS implementations above only subject to RAW hazards.

RAR not a hazard since read order irrelevant (without an intervening write).

Imp-24 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-24

Dependencies and Hazards � Pipeline Hazards � Data Hazards � Stalls

Stalls

When threatened by a hazard:

• Stall (Pause a part of the pipeline.)

Stalling avoids overlap that would cause error.

This does slow things down.

• Add hardware to avoid the hazards.

Details of hardware depend on hazard and pipeline.

Several will be covered.

Imp-25 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-25

Dependencies and Hazards � Pipeline Hazards � Structural Hazards

Structural Hazards

Cause: two instructions simultaneously need one resource.

Solutions:

Stall.

Duplicate resource.

Pipelines in this section do not have structural hazards.

Covered in more detail with floating-point instructions.

Imp-26 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-26

Avoiding Data Hazards

Avoiding Data Hazards

Pipelined MIPS Subject to RAW Hazards.

Consider the following incorrect execution of code containing data dependencies.

Cycle 0 1 2 3 4 5 6 7

add R1, r2, r3 IF ID EX ME WB

sub R4, R1, r5 IF ID EX ME WB

and r6, R1, r8 IF ID EX ME WB

xor r9, R4, r11 IF ID EX ME WB

Execution incorrect because . . .

. . . sub reads r1 before add writes (or even finishes computing) r1, . . .

. . . and reads r1 before add writes r1, and . . .

. . . xor reads r4 before sub writes r4.

Problem fixed by stalling the pipeline.

Imp-27 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-27

Avoiding Data Hazards � Stalling

Stall:

To pause execution in a pipeline from IF up to a certain stage.

With stalls, code can execute correctly:

For code on previous slide, stall until data in register.

Cycle 0 1 2 3 4 5 6 7 8 9 10

add R1, r2, r3 IF ID EX ME WB

sub R4, R1, r5 IF ID -----> EX ME WB

and r6, R1, r8 IF -----> ID EX ME WB

xor r9, R4, r11 IF ID -> EX ME WB

Arrow shows that instructions stalled.

Stall creates a bubble, stages without valid instructions, in the pipeline.

With bubbles present, CPI is greater than its ideal value of 1.

Imp-28 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-28

Avoiding Data Hazards � Stalling � Stall Implementation

Stall Implementation

Stall implemented by asserting a hold signal . . .

. . . which inserts a nop (or equivalent) after the stalling instruction . . .

. . . and disables clocking of pipeline latches before the stalling instruction.

Cycle 0 1 2 3 4 5 6 7 8 9 10

add R1, r2, r3 IF ID EX ME WB

sub R4, R1, r5 IF ID -----> EX ME WB

and r6, R1, r8 IF -----> ID EX ME WB

xor r9, R4, r11 IF ID -> EX ME WB

During cycle 3, a nop is in EX.

During cycle 4, a nop is in EX and ME .

The two adjacent nops are called a bubble . . .

. . . they move through the pipeline with the other instructions.

A third nop is in EX in cycle 7.

Imp-29 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-29

Avoiding Data Hazards � Bypassing

Bypassing

Some stalls are avoidable.

Consider again:

Cycle 0 1 2 3 4 5 6 7 8 9 10

add R1, r2, r3 IF ID EX ME WB

sub R4, R1, r5 IF ID EX ME WB

and r6, R1, r8 IF ID EX ME WB

xor r9, R4, r11 IF ID EX ME WB

Note that the new value of r1 needed by sub . . .

. . . has been computed at the end of cycle 2 . . .

. . . and isn’t really needed until the beginning of the next cycle, 3.

Execution was incorrect because the value had to go around the pipeline to ID.

Why not provide a shortcut?

Why not call a shortcut a bypass or forwarding path?

Imp-30 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-30

Avoiding Data Hazards � Bypassing � Possible 5-Stage MIPS Bypass Paths

Non-Bypassed MIPS

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed = To branch
control logic.

Imp-31 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-31

Avoiding Data Hazards � Bypassing � Possible 5-Stage MIPS Bypass Paths

Bypassed MIPS

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=30 2
2'b0

PC

15:0

D

dstdst

E

Imp-32 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-32

Avoiding Data Hazards � Bypassing � Possible 5-Stage MIPS Bypass Paths

MIPS Implementation With Some Bypass Paths

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=30 2
2'b0

PC

15:0

D

dstdst

E

Cycle 0 1 2 3 4 5 6 7

add R1, r2, r3 IF ID EX ME WB

sub R4, R1, r5 IF ID EX ME WB

and r6, R1, r8 IF ID EX ME WB

xor r9, R4, r11 IF ID EX ME WB

It works!

Imp-33 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-33

Avoiding Data Hazards � Bypassing � Unbypassable Hazards

Some stalls unavoidable.

Cycle 0 1 2 3 4 5 6 7 8 9 10

lw R1, 0(r2) IF ID EX ME WB

add R1, R1, r4 IF ID -> EX ME WB

sw 4(r2), R1 IF -> ID -----> EX ME WB

addi r2, r2, 8 IF -----> ID EX ME WB

Stall due to lw could not be avoided with a by-
pass path (data not available in cycle 3).

Stall in cycles 5 and 6 could be avoided with a
new bypass path.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=30 2
2'b0

PC

15:0

D

dstdst

E

Imp-34 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-34

Control Logic Design Example(s)

Control Logic Design Example(s)

In this part design logic to determine dst . . .

. . . and using that the bypass control logic for lower ALU mux.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

+
15:0

25:0

29:26

29:0

15:0

D
0

1

dstdst

mx1
Design

me!

Me too!

2'b0

msb lsb

=

format
immed

Imp-35 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-35

Control Logic Design Example(s) � Logic to Determine Dst

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst

NPC

30 2

PC

+
15:0

25:0

29:26

29:0

15:0

D
0

1

dstdst

mx1
Design

me next!

2'b0

msb lsb

=

format
immed

is Type R

is Store

is Branch

is J

is JAL

Dest is rd.

No dest (use r0).

Dest is r31.

Dest is rt.

rt 20:16

rd 15:11

5'd0

5'd31

00

11

01

10

lsb

msb

Logic to determine dst for register file.

Note: dst is the register that will be written . . .

. . . or 0 if no register is written.

Depending on the instruction . . .

. . . the value is in the rd or rt field . . .

. . . or is the constant 0 or 31.

Imp-36 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-36

Control Logic Design Example(s) � Bypass Control Logic for Lower ALU Mux

Bypass Control Logic for Lower ALU Mux

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

imm

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst

NPC

30 2

PC

+
15:0

25:0

29:26

29:0

15:0

D
0

1

dstdst

mx1

is Type R

lsb

msb

Decode
Dest

='
rt 20:16

ByME

rtv

ByWB

imm

ByME

rtv

ByWB

imm

00

01

10

11

ID.IR signals in purple.

2'b0

msb lsb

='

=

format
immed

Imp-37 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-37

Control Logic Design Example(s) � Bypass Control Logic for Lower ALU Mux

Notes about logic:

Control logic not minimized (for clarity).

Control Logic Generating dst.

Present in previous implementations, just not shown.

Determines which register gets written based on instruction.

Instruction categories used in boxes such as = is Store (some instructions omitted):

= is Type R : All Type R instructions.

= is Store : All store instructions.

= is Branch : branches such as beq and bltz.

= is JAL , = is J : Matches the exact instruction.

Imp-38 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-38

Control Logic Design Example(s) � Bypass Control Logic for Lower ALU Mux

Logic Generating ID/EX.MUX.

=′ box determines if two register numbers are equal.

Register number zero is not equal register zero, nor any other register.

(The bypassed zero value might not be zero.)

Imp-39 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-39

Branch Hardware � Branch Execution

Branch Hardware

Consider:

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=
30 2

2'b0

PC

15:0

D

dstdst

Eformat
immed

=0
Z

N
31:31

To
 b

ra
n
ch

co

n
tro

l lo
g
ic.

Imp-40 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-40

Branch Hardware � Branch Execution

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=
30 2

2'b0

PC

15:0

D

dstdst

Eformat
immed

=0
Z

N
31:31

To
 b

ra
n
ch

co

n
tro

l lo
g
ic.

Example of incorrect execution

#I Adr Cycle 0 1 2 3 4 5 6 7 8

0x100 bgtz r4, TARGET IF ID EX ME WB

0x104 sub r4, r2, r5 IF ID EX ME WB

0x108 sw 0(r2), r1 IF ID EX ME WB

0x10c and r6, r1, r8 IF ID EX ME WB

0x110 or r12, r13, r14

...

TARGET: # TARGET = 0x200

0x200 xor r9, r4, r11 IF ID EX ME WB

Branch is taken yet two instructions past delay slot (sub) complete execution.

Branch target finally fetched in cycle 4.

Problem: Two instructions following delay slot.

Imp-41 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-41

Branch Hardware � Branch Execution

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=
30 2

2'b0

PC

15:0

D

dstdst

Eformat
immed

=0
Z

N
31:31

To
 b

ra
n
ch

co

n
tro

l lo
g
ic.

Handling Instructions Following a Taken Branch Delay Slot

Option 1: Don’t fetch them.

Possible (with pipelining) because . . .

. . . fetch starts (sw in cycle 2) . . .

. . . after branch decoded.

(Would be impossible . . .

. . . for non-delayed branch.)

#I Adr Cycle 0 1 2 3 4 5 6 7 8

0x100 bgtz r4, TARGET IF ID EX ME WB

0x104 sub r4, r2, r5 IF ID EX ME WB

0x108 sw 0(r2), r1 IF ID EX ME WB

0x10c and r6, r1, r8 IF ID EX ME WB

0x110 or r12, r13, r14

...

TARGET: # TARGET = 0x200

0x200 xor r9, r4, r11 IF ID EX ME WB

Imp-42 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-42

Branch Hardware � Branch Execution

Handling Instructions Following a Taken Branch

Option 2: Fetch them, but squash (stop) them in a later stage.

This will work if instructions squashed . . .

. . . before modifying architecturally visible storage (registers and memory).

Memory modified in ME stage and registers modified in WB stage . . .

. . . so instructions must be stopped before beginning of ME stage.

Can we do it? Depends depends where branch instruction is.

In example, need to squash sw before cycle 5.

During cycle 3 bgtz in ME . . .

. . . it has been decoded and the branch condition is available . . .

. . . so we know whether the branch is taken . . .

. . . so sw can easily be squashed before cycle 5.

Option 2 will be used.

Imp-43 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-43

Branch Hardware � Instruction Squashing

Instruction Squashing

In-Flight Instruction::

An instruction in the execution pipeline.

Later in the semester a more specific definition will be used.

Squashing:: [an instruction]

preventing an in-flight instruction . . .

. . . from writing registers, memory or any other visible storage.

Squashing also called: nulling, abandoning, and cancelling..

Like an insect, a squashed instruction is still there (in most cases) but can do no harm.

Imp-44 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-44

Branch Hardware � Instruction Squashing

Squashing Instruction in Example MIPS Implementation

Two ways to squash.

• Prevent it from writing architecturally visible storage.

Replace destination register control bits with zero. (Writing zero doesn’t change anything.)

Set memory control bits (not shown so far) for no operation.

• Change Operation to nop.

Would require changing many control bits.

Squashing shown that way here for brevity.

Illustrated by placing a nop in IR.

Imp-45 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-45

Branch Hardware � Instruction Squashing

Why not replace squashed instructions with target instructions?

Because there is no straightforward and inexpensive way . . .

. . . to get the instructions where and when they are needed.

(Curvysideways and expensive techniques covered in Chapter 4.)

Imp-46 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-46

Branch Hardware � Instruction Squashing

MIPS implementation used so far.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=
30 2

2'b0

PC

15:0

D

dstdst

Eformat
immed

=0
Z

N
31:31

To
 b

ra
n
ch

co

n
tro

l lo
g

ic.

Imp-47 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-47

Branch Hardware � Instruction Squashing

Example of correct execution

#I Adr Cycle 0 1 2 3 4 5 6 7 8

0x100 bgtz r4, TARGET IF ID EX ME WB

0x104 sub r4, r2, r5 IF ID EX ME WB

0x108 sw 0(r2), r1 IF IDx

0x10c and r6, r1, r8 IFx

0x110 or r12, r13, r14

...

TARGET: # TARGET = 0x200

0x200 xor r9, r4, r11 IF ID EX ME WB

Branch outcome known at end of cycle 2 . . .

. . . wait for cycle 3 when doomed instructions (sw and and) in flight . . .

. . . and squash them so in cycle 4 they act like nops.

Two cycles (2, and 3), are lost.

The two cycles called a branch penalty.

Two cycles can be alot of cycles, is there something we can do?

Imp-48 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-48

Branch Hardware � Zero-Cycle Branch Delay Implementation

Zero-Cycle Branch Delay Implementation

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb To
 b

ra
n
ch

co
n
tro

l
lo

g
ic.

Compute branch target address in ID stage.

Imp-49 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-49

Branch Hardware � Zero-Cycle Branch Delay Implementation

Compute branch target and condition in ID stage.

Workable because register values not needed to compute branch address and . . .

. . . branch condition can be computed quickly.

Now how fast will code run?

#I Adr Cycle 0 1 2 3 4 5 6 7 8

0x100 bgtz r4, TARGET IF ID EX ME WB

0x104 sub r4, r2, r5 IF ID EX ME WB

0x108 sw 0(r2), r1

0x10c and r6, r1, r8

0x110 or r12, r13, r14

...

TARGET: # TARGET = 0x200

0x200 xor r9, r4, r11 IF ID EX ME WB

No penalty, not a cycle wasted!!

Imp-50 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-50

Summary of MIPS Implementations � Control Logic for some Control Transfers

Control Logic for some Control Transfers

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2
2'b0

PC

+ 15:0
25:0

29:26

29:0

15:0

D

dstdst

is J

is BEQ

is BNE

is BGTZ

is BGEZ

opc 31:26

rt 20:16

=0

31:31

lsb

msb
10

01

jmp

t-br

jmp
t-br

inc

01

00

10

msb lsb

msb

lsb

format
immed

=

Imp-51 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-51

Summary of MIPS Implementations � Non-Bypassed MIPS

Non-Bypassed MIPS

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed = To branch
control logic.

Imp-52 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-52

Summary of MIPS Implementations � Bypassed MIPS

Bypassed MIPS

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=
30 2

2'b0

PC

15:0

D

dstdst

Eformat
immed

=0
Z

N
31:31

To
 b

ra
n
ch

co

n
tro

l lo
g

ic.

Imp-53 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-53

Summary of MIPS Implementations � ID Branch MIPS

ID Branch MIPS

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb To
 b

ra
n
ch

co
n
tro

l
lo

g
ic.

Imp-54 LSU EE 4720 Lecture Transparency. Formatted 9:11, 6 February 2026 from lsli06-TeXize. Imp-54

	Outline
	Practice Problems
	Some Components
	Edge-Triggered Register

	Very Simple MIPS Implementations
	Minimum Hardware Multi-cycle Implementation
	Unpipelined Implementation

	Pipelining Terminology and Concepts
	Pipelined MIPS Implementation
	Pipelining Idea
	Pipeline Stages and Latches
	Stages
	Latches

	Pipeline Execution Diagram
	Instruction Decoding and Pipeline Control

	Dependencies and Hazards
	Distinguishing Definitions
	Dependencies
	Data Dependence
	Anti Dependence
	Output Dependence
	Control Dependence

	Pipeline Hazards
	Types of Hazards
	Data Hazards
	Types of Data Hazards
	Stalls

	Structural Hazards

	Avoiding Data Hazards
	Stalling
	Stall Implementation

	Bypassing
	Possible 5-Stage MIPS Bypass Paths
	Unbypassable Hazards

	Control Logic Design Example(s)
	Logic to Determine Dst
	Bypass Control Logic for Lower ALU Mux

	Branch Hardware
	Branch Execution
	Instruction Squashing
	Zero-Cycle Branch Delay Implementation

	Summary of MIPS Implementations
	Control Logic for some Control Transfers
	Non-Bypassed MIPS
	Bypassed MIPS
	ID Branch MIPS

