
LSU EE 4720 Homework 2 Due: 13 February 2026
Formatted 14:25, 10 February 2026

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS, RISC-V or their assembler syntax, how a part of the
problem might be solved, etc.) It is also acceptable to seek out resources for help on MIPS, RISC-
V, etc. For this assignment (2026 Homework 2), please read the MIPS and RISC-V documentation
before seeking out help. Attempt to learn by reading the indicated material.

Problem 1: Solve 2025 Final Exam Problem 5(a) and 5(b) by hand. Show all field values, in-
cluding the func and opcode fields. You can find MIPS 32 ISA (architecture) manuals linked to
the course references Web page. Solving by hand means to solve the problem by looking up the
instructions in the respective ISA (architecture) manuals and figuring out what to put in the fields.
Do not “solve” the problem by entering the code into a file and, say, using the SPIM simulator to
view encoded output. Also do not “solve” the problem by prompting an LLM.

There’s more problems on the next page.

1

https://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/reference.html

Problem 2: First, familiarize yourself with RISC-V by reading Chapter 1 of Volume I of the
RISC-V specification, especially the Chapter 1 Introduction and Sections 1.1 and 1.3. Skip Section
1.2 unless you are comfortable with operating system and virtualization concepts. Other parts of
Chapter 1 are interesting but less relevant for this problem. The questions in this assignment are
about RISC-V RV32I. Also read the material in Chapter 2 relevant to this question. Solve this
question by reading the material in Chapter 2 and other parts of the RISC-V specification, not by
other means. Test questions will be written for students that have read these chapters. Chapter
2 provides the format and details of base RV32I instructions, but it does not provide opcode and
related values. Those can be found in the chapter titled “RV32/64G Instruction Set Listing,” which
is Chapter 36 in the May 2025 version of the spec (it was Chapter 34 in 2024).

(a) Show the corresponding RISC-V instruction for the MIPS code below. Hint: The mnemonic is
not sll, but it’s close.

Show the corresponding RISC-V instruction.

Show encoding of the RISC-V instruction. Label fields, and show specific values. to the format
that this particular instruction uses.

sll r9, r8, 7

(b) Convert the MIPS I code fragment below to RISC-V RV32I. Pay attention to differences between
MIPS and RISC-V branch and load-upper-immediate instructions.

Convert fragment from MIPS I to RISC-V RV32I. Note the difference in RISC-V branch
behavior. Reduce the number of instructions where possible.

bne r5, r6, SKIP

sw r4, 5(r6)

lui r8, 0x5678

addi r8, r8, 0x4000

SKIP:

add r9, r8, r10

Show the encoding of the RISC-V branch instruction used in the converted code fragment. Pay
attention to the branch displacement (called and offset in the RISC-V documentation).

There’s another problem on the next page.

2

Problem 3: In a skeptical mood I prompted ChatGPT 5.2 with: “Is the RISC zero register
overrated?” It responded, in part:

Hot take: **the RISC zero register is neither overrated nor

sacred**its a very pragmatic hack that aged surprisingly well, but

its not universally best.

Lets unpack it like engineers, not cultists :-)

1. Instruction set simplification

You get a bunch of operations for free without extra opcodes:

* ‘move rd, rs‘ → ‘add rd, rs, x0‘

* ‘clear rd‘ → ‘add rd, x0, x0‘

* ‘neg rd, rs‘ → ‘sub rd, x0, rs‘

* Compare against zero without loading a literal

Thats real silicon and encoding savings, especially in early RISC

designs where every opcode bit mattered.

Yes, it’s important to reduce the number of opcodes. But is that really a good list of pseuodin-
structions that can be used by ISAs with a zero register so that they don’t need to have real
instructions, such as move, that would use a valuable opcode?

(a) In MIPS-I, which of the first three pseuodinstructions in the answer above (move, clear, neg),
can be done without a zero register?

If possible, show MIPS-I instruction without a zero register that can be used for move, clear, and
neg. Don’t just put a zero into some register and use that.

(b) The fourth “compare-against-zero” bullet might have referred to conditional branches. Consider
mnemonics bnez (branch not equal to zero) and bgtz (branch greater than zero).

Are bnez and bgtz examples of operations that one gets for free in MIPS? The word free is in
the sense used by ChatGPT 5.2 in the You get a bunch of operations "for free" sentence.
Answer for bnez and for bgtz.

3

	Problem 1
	Problem 2
	Part a
	Part b

	Problem 3
	Part a
	Part b

