
Name Solution

Computer Architecture

LSU EE 4720

Midterm Examination

Friday, 21 March 2025 9:30-10:20 CDT

Alias Does it have to be good?

Problem 1 (30 pts)

Problem 2 (30 pts)

Problem 3 (40 pts)

Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/ee4720/

Problem 1: [30 pts] Appearing on the facing page is the MIPS implementation that includes the addsc

from Homework 3.

(a) The first four code fragments below will execute as shown with the illustrated control logic (from the
Homework 3 solution), but the logic won’t generate the stall for the last fragment.

�Add control logic to the implementation so that all of the code fragments execute as shown. That is, add
logic to generate the stall signal �for the last fragment �without changing whether the others stall.

Solution and discussion on the next page.

lw R5, 8(r2) IF ID EX ME WB # Correctly stalls with existing logic.

addsc r3, r4, R5, 7 IF ID -> EX ME WB

lw R4, 8(r2) IF ID EX ME WB # Correct with existing logic.

addsc r3, R4, r5, 7 IF ID EX ME WB

xori R4, r2, 8 IF ID EX ME WB # Correct with existing logic.

and r6, R4, r5 IF ID EX ME WB

lw R5, 8(r2) IF ID EX ME WB # Correctly stalls with existing logic.

xor r6, r4, R5 IF ID -> EX ME WB

Cycle 0 1 2 3 4 5 6

lw R4, 8(r2) IF ID EX ME WB # Should stall but doesn’t with existing logic.

xor r6, R4, r5 IF ID -> EX ME WB

(b) Notice that in the first two fragments below the addsc shift amount is zero, and so those instructions
just add. In the first fragment addsc executes in ME due to the load dependence, but in the second fragment
it executes in EX so it can avoid stalling the or. Note: The material about doADDSC described below was not
in the original exam.

�Modify the control logic so that an addsc with a zero shift executes as shown below. Do so by �relabeling
the isADDSC pipeline latches to doADDSC. Set this signal to 1 only if there is an addsc in ID that needs to
execute in ME. �The logic should not break correct behavior for other cases, such as the ones above.

Solution and discussion on the next page.

Cycle 0 1 2 3 4 5 6 7 Fragment b1 - addsc adds in ME.

lw R2, 8(r9) IF ID EX ME WB

addsc r1, R2, r3, 0 IF ID EX ME WB

or r5, r10, r6 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 Fragment b2 - addsc adds in EX

andi R2, r9, 8 IF ID EX ME WB

addsc R1, R2, r3, 0 IF ID EX ME WB

or r5, R1, R6 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 Fragment b3 - addsc adds in ME.

lw R6, 8(r9) IF ID EX ME WB

addsc R1, r2, r3, 4 IF ID EX ME WB

or r5, R1, R6 IF ID -> EX ME WB

2

The solution to Part a appears below in blue. The last code fragment stalls because of a dependence between a load, lw in particular,

and the rs register of an ALU instruction, xor. The stall occurs in cycle 2, when the xor is in ID and the lw is in EX. (The xor

is also in ID during cycle 3, but it is not stalled, it’s free to leave in the next cycle.) For this discussion refer to cycle 2 in the last

code fragment. A new AND gate checks for the dependence, its output is commented “Dependence: load; insn rs.” There should not
be a stall if the instruction in ID is an addsc because it is possible to bypass the loaded value without a stall. That case is handled

by the second blue AND gate which suppresses the stall if there is an addsc in ID.

The solution to Part b appears in green. The goal is to execute addsc in EX in some cases and ME in other cases. When addsc is

executed in EX it is treated like an ordinary add instruction. The control signal isADDSC that appeared in the pipeline latches has

been renamed to doADDSC. When doADDSC=0 an addsc is treated like an add instruction, executing in EX. When doADDSC=1

the ALU will execute the x=a operation and the C select signal will route the ME-stage adder output to the WB.ALU pipeline latch

(otherwise it routes the EX.ALU value to the WB.ALU latch).

The value of doADDSC is set to 1 if there is an addsc in ID and either the sa field is non-zero (and so it must use the ME-stage

adder) or the rs source of the addsc depends on a load in EX (and so uses the ME-stage adder to avoid a stall). The logic computing

this is on the lower left.

Grading Note: Many students mistakenly thought that a stall signal was needed. The problem as given did
not mention the doADDSC signal which might have contributed to this mistake.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

10:6

When doADDSC = 1
ALU performs
operation
x=a.

Left
Shift

amt

+

a

b
x

B
C

A

isADDSC

='rs 25:21

isLoad

doADDSC doADDSC

isLoad

='

Stall

rt 20:16

Dependence: addsc ; insn src

Dependence: load ; insn rt rt Souce

isADDSC

10:6

Dependence: load ; insn rs

Solution Part (a): Stall
if rs register of insn in
ID depends on a
load in EX, unless
insn in ID is an addsc.

Solution Part (b): execute addsc in ME
(doADDSC) if sa field is non-zero or if
rs source depends on a load in EX.

3

Problem 2: [30 pts] In the MIPS implementation below pay attention to bypass paths and how the branch
is resolved.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=
30 2

2'b0

PC

+
15:0

25:0

29:26
29:0

15:0

D

dstdst

msb lsb

msb

lsb targ

To branch
control logic.

� Show the execution of this code on the implementation above. �Don’t forget to check for dependencies!

Solution appears below. The and stalls because its rt register, R4, could not be bypassed in cycle 4 since in this particular

implementation there is no bypass path to the lower ALU input. The other dependencies are with the rs register, and those can be

bypassed (to the upper ALU input).

SOLUTION
Cycle 0 1 2 3 4 5 6 7 8 9

add R1, r2, r3 IF ID EX ME WB

sub R4, R1, r5 IF ID EX ME WB

and R6, r7, R4 IF ID ----> EX ME WB

sw r1, 0(R6) IF ----> ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9

� Show the execution of this code on the implementation above. �Don’t forget to check for dependencies!

Solution appears below. There is a dependency from the addi to the two sw instructions. The EX-stage mux routing a value to the

ME.rtv input can bypass a value from WB but not ME, and so the first sw must stall one cycle. Note that there is no problem for

the second sw because it is in ID when addi is in WB and so it can get the value from the register file.

SOLUTION
Cycle 0 1 2 3 4 5 6 7

addi R1, r1, 1 IF ID EX ME WB

sw R1, 0(r2) IF ID -> EX ME WB

sw R1, 4(r2) IF -> ID EX ME WB

4

� Show the execution of this code on the implementation above. �Don’t forget to check for dependencies!

There are no stalls here because each sw can use the bypass from WB.

SOLUTION
lw r1, 0(r2) IF ID EX ME WB

lw r4, 4(r2) IF ID EX ME WB

sw r1, 0(r3) IF ID EX ME WB

sw r4, 4(r3) IF ID EX ME WB

� Show the execution of the code below with �the branch taken on the implementation above. �Don’t
forget to check for dependencies! �Pay attention to branch behavior.

Solution appears below. The beq stalls two cycles because there are no bypass paths to the EX-stage comparison unit needed by the

branch. Also notice that the branch is resolved in EX, and so the correct target is not fetched until the branch is in ME. As a result

the and instruction is fetched and then squashed.

SOLUTION
Cycle 0 1 2 3 4 5 6 7 8 9 10

add R1, r2, r3 IF ID EX ME WB

beq R1, r4, TARG IF ID ----> EX ME WB

sw R1, 0(r8) IF ----> ID EX ME WB

and r5, r1, r6 IFx

ori r5, r5, 0x6

sw r5, 4(r8)

TARG:

lw r1, 8(r8) IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10

� Show how the inputs to the = box in EX can be changed to eliminate stall(s) �in the example above,

and stalls for other kinds of �dependenices. �Do not add hardware, just change the inputs.

Solution appears on the diagram in blue. The rs value is taken from the mux at the upper ALU input. That works here because

the ALU is not computing the branch target. The rt value is taken from the mux for the store value, which can bypass from WB. In

contrast the lower ALU mux can’t bypass at all.

With these changes the branch would not stall. However, because it is resolved in EX there would still be a squashed instruction.

5

Problem 3: [40 pts] Answer each question below.

(a) In the routine below r4 holds an integer, call its value x, and f1 holds a single-precision float, call its
value y. Complete the routine so that register f9 holds x× y in single-precision floating point.

�Complete the routine so that f9 is written with the product of the values of r4 and f1. The solution only
requires a few instructions, �don’t try to fill the entire page.

add r4, r5, r5

add.s f1, f2, f3

At this point r4 holds an integer and f1 holds a single-precision float.

SOLUTION

#

Let x denote the value in r4.

At this point r4 holds an integer representation of x.

#

Let y denote the value in f1.

At this point f1 holds a single-precision floating point representation of y.

#

mtc1 f4, r4 # Move x to f4.

At this point f4 holds an integer representation of x.

cvt.s.w f5, f4 # Convert x to a single-precision FP representation.

At this point f4 still holds an integer representation of x ...

... but f5 now holds a single-precision FP representation of x.

mul.s f9, f1, f5 # Perform the multiplication.

6

(b) The three MIPS code fragments below each do the same thing, and infinite loops are not the problem.

loop: # Fragment A

sw $t4, 0($t5)

bne $t5, $t3, loop

addi $t5, $t5, 4

loop: # Fragment B

sw $t4, 0($t5)

sw $t4, 4($t5)

bne $t5, $t3, loop

addi $t5, $t5, 8

loop: # Fragment C

sb $t4, 0($t5)

sb $t4, 1($t5)

sb $t4, 2($t5)

sb $t4, 3($t5)

bne $t5, $t3, loop

addi $t5, $t5, 4

�Which code fragment is the fastest, © Fragment A, ×© Fragment B, or © Fragment C?

�Which code fragment is the slowest, © Fragment A, © Fragment B, or ×© Fragment C?

�Explain choice of �fastest and �slowest fragment, and �include a good definition of fast.

Here fast will be defined as executing few instructions to complete a task. The task here is initializing an area of memory from t5 to

t3 with the value in t4. (This is taken from the solution Homework 1.) So the fastest fragment is the one that executes the fewest

instructions.

The number of iterations performed by the Fragment A and Fragment C loops is the same, call the number n. Because t5 is

incremented by 8 rather than 4, Fragment B runs for just n/2 iterations.

An iteration of Fragment A is 3 instructions, an iteration of B is 4 instructions, and an iteration of C is 6 instructions. The total

number of instructions is 3n for A, 4n
2 = 2n for B, and 6n for C. So B is the fastest and C is the slowest.

�Assume that the contents of t5 and t3 refer to a range of valid memory addresses. Which fragment(s) put

a restriction on the value of t5? �Explain. Assume that t3 is always chosen to avoid an infinite loop.

MIPS memory accesses are aligned, meaning the memory address must be a multiple of the access size. The access size for a sw is 4

and so t5 must be a multiple of 4. That restriction applies to Fragments A and B. The access size for sb is 1 and so Fragment C

imposes no restriction on t5.

7

(c) When designing a RISC ISA what is the most important criterion when considering possible instructions
based on the material presented in class?

�Most important factor when deciding whether an instruction should be added to a RISC ISA.

In class it was explained that the most criterion for RISC is easy pipelining. Other RISC characteristics, such as fixed instruction

size and restricting memory access to load and store instructions are ways of facilitating easy pipelining.

�Give an example of an instruction unsuitable for RISC and �explain how the criterion makes it unsuitable.

An instruction such as add r1, (r3), (r4) because that would require two memory accesses before the arithmetic operation.

A pipelined implementation that could implement it would need two memory ports before the ALU. Memory ports are expensive, so

it would not be worthwhile to pipeline it.

(d) CISC ISAs have powerful instructions, such as add 4(r1), (r2), ((r3)) or a call instruction that
automatically saves registers.

�What is the benefit of powerful instructions, especially in the days when memory was made by people sewing
wires around little metal rings.

Programs using such powerful instructions take up less space. Here is the equivalent MIPS code for the example instruction:

add 4(r1), (r2), ((r3))

lw r12, 0(r2) # Put value of (r2) into r12

lw r4, 0(r3)

lw r13, 0(r4) # Put value of ((r3)) into r13

add r11, r12, r13

sw r11, 4(r1)

The MIPS equivalent uses 5 instructions taking up 20 bytes of memory. The size of the CISC instruction would be less, maybe 4 or

5 bytes.

One cannot easily claim that the implementation of a RISC ISA would be faster or slower than a CISC ISA. Current CISC

implementations work by cracking CISC instructions into RISC-like micro-ops where they proceed through pipelined hardware.

This adds to complexity (and the latency of cracking) but if your sales are high enough you can pay for the computer engineers to

handle it.

8

(e) Intel has updated IA-32 (a.k.a. x86) since the 1980s, and later added a 64-bit variant, Intel-64. Recall
that nobody actually likes IA-32.

� So why did Intel’s customers continue to buy implementations of IA-32 and Intel 64 rather than switching
to a better-designed ISA? (Note that Apple is an exception to the rule that computer makers don’t switch
ISAs.)

Those Intel customers (or the customers’ customers) had lots of software for IA-32 (and later Intel 64). (One notable Intel customer

is IBM, using the processor in their PC. It is IBM’s customers that had lots of software.) When they buy a newer implementation of

IA-32 they can run their old software as is. But, if they switch to a new ISA then they must recompile or port their old software, a

time-consuming distraction. To get a customer to switch ISAs the implementation of the new ISA would need to be so much better

than the old ISA that its is worth the trouble.

The Apple Mac (Macintosh) did switch ISAs several times. It started with the Motorola 68020, then PowerPC, then Intel 64, and now

uses Arm A64. This worked for Apple in part because many layers of the software is Apple-written, and they’d make the effort to

port it to the newer ISA. Third-party software would call Apple-written libraries for many time-sensitive tasks (such as for the user

interface) and the remaining parts could run under emulation until ported. (Emulated code is run by simulating the older ISA for

which it was written.) And yes, there’s also the reality distortion field that insured everyone would go along without complaining.

(f) MIPS uses the func field as an opcode extension field.

�Why is an opcode extension field needed?

The opcode field is 6 bits, allowing for only 64 instructions. The func field enables a greater number of instructions to be encoded.

�Why didn’t they just make the opcode longer when designing MIPS?

In some formats, including Format I, they wanted to have as much space as possible for an immediate. If the opcode field were made

larger the immediate would be smaller.

9

