
Name Formatted For 2-Sided Printing

Computer Architecture

LSU EE 4720

Midterm Examination

Friday, 21 March 2025 9:30-10:20 CDT

Alias

Problem 1 (30 pts)

Problem 2 (30 pts)

Problem 3 (40 pts)

Exam Total (100 pts)

Good Luck!

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

https://www.ece.lsu.edu/ee4720/

Problem 1: [30 pts] Appearing on the facing page is the MIPS implementation that includes the addsc

from Homework 3.

(a) The first four code fragments below will execute as shown with the illustrated control logic (from the
Homework 3 solution), but the logic won’t generate the stall for the last fragment.

Add control logic to the implementation so that all of the code fragments execute as shown. That is, add
logic to generate the stall signal for the last fragment without changing whether the others stall.

lw R5, 8(r2) IF ID EX ME WB # Correctly stalls with existing logic.

addsc r3, r4, R5, 7 IF ID -> EX ME WB

lw R4, 8(r2) IF ID EX ME WB # Correct with existing logic.

addsc r3, R4, r5, 7 IF ID EX ME WB

xori R4, r2, 8 IF ID EX ME WB # Correct with existing logic.

and r6, R4, r5 IF ID EX ME WB

lw R5, 8(r2) IF ID EX ME WB # Correctly stalls with existing logic.

xor r6, r4, R5 IF ID -> EX ME WB

Cycle 0 1 2 3 4 5 6

lw R4, 8(r2) IF ID EX ME WB # Should stall but doesn’t with existing logic.

xor r6, R4, r5 IF ID -> EX ME WB

(b) Notice that in the first two fragments below the addsc shift amount is zero, and so those instructions
just add. In the first fragment addsc executes in ME due to the load dependence, but in the second fragment
it executes in EX so it can avoid stalling the or. Note: The material about doADDSC described below was not
in the original exam.

Modify the control logic so that an addsc with a zero shift executes as shown below. Do so by relabeling
the isADDSC pipeline latches to doADDSC. Set this signal to 1 only if there is an addsc in ID that needs to
execute in ME. The logic should not break correct behavior for other cases, such as the ones above.

Cycle 0 1 2 3 4 5 6 7 Fragment b1 - addsc adds in ME.

lw R2, 8(r9) IF ID EX ME WB

addsc r1, R2, r3, 0 IF ID EX ME WB

or r5, r10, r6 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 Fragment b2 - addsc adds in EX

andi R2, r9, 8 IF ID EX ME WB

addsc R1, R2, r3, 0 IF ID EX ME WB

or r5, R1, R6 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 Fragment b3 - addsc adds in ME.

lw R6, 8(r9) IF ID EX ME WB

addsc R1, r2, r3, 4 IF ID EX ME WB

or r5, R1, R6 IF ID -> EX ME WB

2 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

10:6

For scaled
add ALU performs
operation
x=a.

Left
Shift

amt

+

a

b
x

B
C

A

isADDSC

='rs 25:21

isLoad

isADDSC isADDSC

isLoad

='

Stall

rt 20:16

Dependence: addsc ; insn src

Dependence: load ; insn rt rt Souce

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3

Problem 2: [30 pts] In the MIPS implementation below pay attention to bypass paths and how the branch
is resolved.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=
30 2

2'b0

PC

+
15:0

25:0

29:26
29:0

15:0

D

dstdst

msb lsb

msb

lsb
targ

To
 b

ra
n
ch

co
n
tro

l lo
g

ic.

Show the execution of this code on the implementation above. Don’t forget to check for dependencies!

add r1, r2, r3

sub r4, r1, r5

and r6, r7, r4

sw r1, 0(r6)

Show the execution of this code on the implementation above. Don’t forget to check for dependencies!

addi r1, r1, 1

sw r1, 0(r2)

sw r1, 4(r2)

4 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

Show the execution of this code on the implementation above. Don’t forget to check for dependencies!

lw r1, 0(r2)

lw r4, 4(r2)

sw r1, 0(r3)

sw r4, 4(r3)

Show the execution of the code below with the branch taken on the implementation above. Don’t
forget to check for dependencies! Pay attention to branch behavior.

add r1, r2, r3

beq r1, r4, TARG

sw r1, 0(r8)

and r5, r1, r6

ori r5, r5, 0x6

sw r5, 4(r8)

TARG:

lw r1, 8(r8)

Show how the inputs to the = box in EX can be changed to eliminate stall(s) in the example above,

and stalls for other kinds of dependenices. Do not add hardware, just change the inputs.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

5

Problem 3: [40 pts] Answer each question below.

(a) In the routine below r4 holds an integer, call its value x, and f1 holds a single-precision float, call its
value y. Complete the routine so that register f9 holds x× y in single-precision floating point.

Complete the routine so that f9 is written with the product of the values of r4 and f1. The solution only
requires a few instructions, don’t try to fill the entire page.

add r4, r5, r5

add.s f1, f2, f3

At this point r4 holds an integer and f1 holds a single-precision float.

6 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

(b) The three MIPS code fragments below each do the same thing, and infinite loops are not the problem.

loop: # Fragment A

sw $t4, 0($t5)

bne $t5, $t3, loop

addi $t5, $t5, 4

loop: # Fragment B

sw $t4, 0($t5)

sw $t4, 4($t5)

bne $t5, $t3, loop

addi $t5, $t5, 8

loop: # Fragment C

sb $t4, 0($t5)

sb $t4, 1($t5)

sb $t4, 2($t5)

sb $t4, 3($t5)

bne $t5, $t3, loop

addi $t5, $t5, 4

Which code fragment is the fastest, © Fragment A, © Fragment B, or © Fragment C?

Which code fragment is the slowest, © Fragment A, © Fragment B, or © Fragment C?

Explain choice of fastest and slowest fragment, and include a good definition of fast.

Assume that the contents of t5 and t3 refer to a range of valid memory addresses. Which fragment(s) put

a restriction on the value of t5? Explain. Assume that t3 is always chosen to avoid an infinite loop.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

7

(c) When designing a RISC ISA what is the most important criterion when considering possible instructions
based on the material presented in class?

Most important factor when deciding whether an instruction should be added to a RISC ISA.

Give an example of an instruction unsuitable for RISC and explain how the criterion makes it unsuitable.

(d) CISC ISAs have powerful instructions, such as add 4(r1), (r2), ((r3)) or a call instruction that
automatically saves registers.

What is the benefit of powerful instructions, especially in the days when memory was made by people sewing
wires around little metal rings.

8 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

(e) Intel has updated IA-32 (a.k.a. x86) since the 1980s, and later added a 64-bit variant, Intel-64. Recall
that nobody actually likes IA-32.

So why did Intel’s customers continue to buy implementations of IA-32 and Intel 64 rather than switching
to a better-designed ISA? (Note that Apple is an exception to the rule that computer makers don’t switch
ISAs.)

(f) MIPS uses the func field as an opcode extension field.

Why is an opcode extension field needed?

Why didn’t they just make the opcode longer when designing MIPS?

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

9

