
LSU EE 4720 Homework 6 Due: 23 April 2025
Solution Formatted 18:21, 30 April 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. It is each student’s duty to him or herself to resolve frustrations and roadblocks quickly,
hopefully helped along by the satisfaction of making progress. There are plenty of old problems
and solutions to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

Resources
Questions about superscalar MIPS implementations can be found in most final exams.

1

https://www.ece.lsu.edu/ee4720/

Problem 1: The following questions are based on 2021 Final Exam Problem 2(c), but it is not
identical.

(a) Appearing below is a 4-way superscalar MIPS implementation which is slightly different in an
important way from the one appearing in the 2021 Final Exam. In both this implementation and
the one on the 2021 exam fetch is not aligned (which makes things easier). Also, there is no branch
prediction, which is how we have been doing things in class.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+16

Mem
Port

Addr

Addr

Mem
Port

md
0

dst0Dest. reg

Addr
25:21

20:16
rsv0

rtv0Addr
Data
Data

+
31:2

15:0

alu0

rtv0

rtv3

Addr
25:21

20:16
rsv3

rtv3Addr
Data
Data

A
d
d
r

D
 I
n

dst3

imm0

imm3

1
2

8

15:0

alu3
Addr

Mem
Port

md
3

dst0

dst3

Register File

ir0

ir3

PC

npc

2'b0

Dest. reg
Data
Out

dst0

dst3

alu3

alu0

Data
Out

Data
Out

Immed

D
In

D
In

Magic
Cloud

� Show the execution of the code below for enough iterations to determine instruction throughout
(IPC). (Note: There is no need to put slot numbers on the stage labels.) �Don’t forget that it
is 4-way superscalar.

The solution is on the next page.

2

The difference between the implementation above and the one in the exam is that the one above has multiplexors on the

path to the memory port D In connections, and so store instructions can bypass store values. This reduces the number of

stalls suffered by the sw instruction.

Solution appears below. To keep instructions in order in ID, the stall of one instruction in ID stalls all instructions

ahead in ID. So, in cycle 1 and 2 the add is stalling for the lw value. That forces the sw and addi to stall too, even

though the bne and addi are not waiting for anything. The branch resolves in ID and so the target is not fetched until

the branch is in EX, resulting in the squash of six instructions, the first two are shown, the next four are the instructions

after the xor which are not shown.

The first iteration starts in cycle 0, the second starts in cycle 6, and so the instruction throughput is 6
6−0 =

1 insn/cycle.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 First Iteration

lw R10, 0(r1) IF ID EX ME WB

add R3, R10, r3 IF ID ----> EX ME WB

sw R3, 0(r5) IF ID -------> EX ME WB

addi r5, r5, 4 IF ID -------> EX ME WB

bne r1, r9, LOOP IF -------> ID EX ME WB

addi r1, r1, 4 IF -------> ID EX ME WB

lb r8, 0(r9) IF -------> IDx

xor r11, r8, r10 IF -------> IDx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Second Iter

lw R10, 0(r1) IF ID EX ME WB

add R3, R10, r3 IF ID ----> EX ME WB

sw R3, 0(r5) IF ID -------> EX ME WB

addi r5, r5, 4 IF ID -------> EX ME WB

bne r1, r9, LOOP IF -------> ID EX ME WB

addi r1, r1, 4 IF -------> ID EX ME WB

lb r8, 0(r9) IF -------> IDx

xor r11, r8, r10 IF -------> IDx

3

(b) The code from the solution to Final Exam 2021 2(c) has an instruction throughput of Θc =
0.75 insn/cycle. The solution to part 2(d) did not give the instruction throughput of the solution
but did explain that the unrolled code is four times faster.

�What is the instruction throughput (IPC) of the 2(d) solution? (The pipeline execution diagram
is in the solution, use that!)

The instruction throughput is 10 insn
(4−0) cyc = 2.5 insn/cycle

.

�Why can’t we use the instruction throughput of parts (c) and (d) to show how much faster part
(d) is?

In general, one can’t compare the execution time of two different code fragments by comparing their instruction throughput

(IPC) because one also need to know how many instructions each code fragment executes. It does make sense to use IPC

to compare the execution time of the same code fragment on two different implementations, which is something that is

frequently done in this class.

Also note that the code for part (d) is unrolled degree 2, and so it operates on two elements per iteration, while the

original code in (c) just operates on one element per iteration. Just comparing IPC we would conclude that the part-(d)

code is 2.5
0.75 = 3.33 times faster, which isn’t bad. But to compare the two we should look at how much work is done

per cycle. For the part (c) code that would be 1
8−0 = 0.125 work items per cycle. For part (d) it is 2

4−0 = 0.5 work

items per cycle, and so the part (d) code is 0.5
0.125 = 4 times faster, even better than 3.33.

(c) In part (d) the loop was to be unrolled degree 2. Here, unroll the loop degree 3 (start with three
copies of the loop body) but for the implementation shown here (not from the exam). A correct
solution should execute without stalls, but instructions will be squashed due to the branch (which
can’t be avoided in a 4-way superscalar without branch prediction).

�Unroll degree 3 and optimize so there are no stalls.

The solution appears below. The prologue and epilogue are omitted. Notice that the add instructions are positions so

that they will be in different fetch groups.

SOLUTION

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10

sw r13, 0(r5) IF ID EX ME WB

sw r3, 4(r5) IF ID EX ME WB

sw r23, 8(r5) IF ID EX ME WB

add r13, r10, r3 IF ID EX ME WB

addi r5, r5, 12 IF ID EX ME WB

add r14, r12, r13 IF ID EX ME WB

lw r10, 0(r1) IF ID EX ME WB

lw r12, 4(r1) IF ID EX ME WB

add r3, r22, r14 IF ID EX ME WB

lw r22, 8(r1) IF ID EX ME WB

bne r1, r9, LOOP IF ID EX ME WB

addi r1, r1, 12 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10

sw r13, 0(r5) IF ID EX ME WB

sw r3, 4(r5) IF ID EX ME WB

sw r23, 8(r5) IF ID EX ME WB

add r13, r10, r3 IF ID EX ME WB

addi r5, r5, 12 IF ID EX ME WB

add r14, r12, r13 IF ID EX ME WB

4

lw r10, 0(r1) IF ID EX ME WB

lw r12, 4(r1) IF ID EX ME WB

add r3, r22, r14 IF ID EX ME WB

lw r22, 8(r1) IF ID EX ME WB

bne r1, r9, LOOP IF ID EX ME WB

addi r1, r1, 12 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10

Problem 2: Solve 2024 Final Exam Problem 2 (all parts), in which code for a 2-way superscalar
MIPS implementation is to be completed (a) and the execution of code on a 4-way superscalar
MIPS implementation is to be found.

See the final exam solution at https://www.ece.lsu.edu/ee4720/2024/fe_sol.pdf.

5

https://www.ece.lsu.edu/ee4720/2024/fe_sol.pdf

	Problem 1
	Part a
	Part b
	Part c

	Problem 2

