
LSU EE 4720 Homework 4 Due: 19 Mar 2025 at 09:30 CDT
Solution Formatted 17:23, 19 March 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. It is each student’s duty to him or herself to resolve frustrations and roadblocks quickly,
hopefully helped along by the satisfaction of making progress. There are plenty of old problems
and solutions to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

Resources
See old homework and exams. There are a few questions about VAX in past assignments. There
are question about RISC-V in many of the more recent assignments.

1

https://www.ece.lsu.edu/ee4720/

Problem 1: Remember that VAX is one of the few examples of a good CISC ISA. CISC ISAs
are not considered suitable for current implementation technology, but those who do not learn
by history are doomed to repeat it, so look over the summary of the VAX instruction set which
can be found in Chapter 2 of the VAX 11/780 Architecture Handbook Volume 1, 1977-78. Focus
on Section 2.4, which summarizes the instruction set. Consider item 5 in that section, which
starts “Instructions provided specifically for high-level language constructs.” Three examples of
such instructions are given, ACB, CALLS, and CASE. As guided by the check boxes below, explain
how a register-only version of suitable each instruction is for implementation in a RISC ISA. The
instruction descriptions in the architecture handbook use metasyntactic symbols rx, mx, and wx

to sources and destinations. (In MIPS rs, rt, and rd are metasyntactic symbols.) Symbol rx is
used for a read (source) operand (signified by the r) that can come from a register, immediate,
or memory (signified by the x). Similarly the w in wx signifies an argument that is written (a
destination), and the m in mx signifies an argument that is read and then written. The questions
below ask about hypothetical register-only versions of these instructions in which arguments rx,
mx, and wx refer only to register arguments.

The instructions are explained in the architecture manual, but feel free to seek out other
references. The description of ACB is fairly straightforward. The CALLS instruction is clear but
may be difficult to understand for those who are less familiar with bit masks or bit vectors. In
addition to the Architecture Handbook, see VAX MACRO and Instruction Set Reference Manual
for a description of the CASE instruction and an example of its use. Note that for CASES the table
(displ) is in memory immediately after the instruction. The operation performed by the CASE

instruction is similar to the MIPS assembly code for the dense switch statement presented in the
class control flow demo code. Of course, CASE does most of that with one instruction.

�A register-and-displacement-operand-only version of the ACB instruction © is definitely not suit-

able for a RISC ISA, ×© arguably possible for a RISC ISA, © fits well into a RISC ISA.

�Explain. In your explanation consider how easy it would be to �encode in a RISC ISA (allow

some flexibility) and how easy it would be �to implement in a five-stage pipeline.

Page 8-10 of the Architecture Handbook describes ACB as taking four operands, a limit, add (increment amount),

an index, and a displacement. To execute the branch the hardware computes index+add compares, the sum to limit,

and branches to PC + displacement if the sum is greater than limit (if add is positive) or less than limit (if add is negative).

Encoding all of these operands would be possible, but not easy because there would not be much room for an

immediate and three register fields in a 32-bit instruction. In MIPS one could use sa and func for the displacement

(which would be 11 bits), but that would require a new opcode. (Less radical type-R instructions use the func field as

an opcode extension.) Another possibility is to consider a variation without the add (increment) field, and instead always

just add one. Or, one could dispense with the limit field, and instead take the branch if the result were positive (and so

add [the increment] would have to be negative).

Resolving the branch requires both an addition and a comparison. If using the five-stage MIPS pipeline the comparison

would have to be after EX, in ME. Without branch prediction there would be a two or three instruction penalty (depending

on how long the comparison takes). This would not be a problem with branch prediction. The extra comparison unit

adds to cost, as would the need to carry the branch target to the ME or WB stage. So it’s doable, but it would add

significantly to cost. If the comparison were done before the addition then it would be possible to resolve the branch in

ID so this would be much easier to add to a RISC ISA because it could use the some comparison unit used by existing

branch instructions. In MIPS only equality could be tested without requiring a new comparison unit, but other RISC ISAs

do allow magnitude-comparison jumps so that a new comparison unit would not need to be added.

�The CALLS instruction ×© is definitely not suitable for a RISC ISA, © arguably possible for a

RISC ISA, © fits well into a RISC ISA.

2

https://www.ece.lsu.edu/ee4720/doc/vax-11780-arch-handbook.pdf
https://www.ece.lsu.edu/ee4720/doc/vax.pdf
https://www.ece.lsu.edu/ee4720/2025/lcontrol-flow.s.html

�Explain. In your explanation consider how easy it would be to �encode in a RISC ISA (allow

some flexibility) and how easy it would be �to implement in a five-stage pipeline.

The CALLS instruction extends the stack (an area of memory used for storing register values, local variables, and

other information associated with a called procedure), and the writes the stack with several register values, including a

return address and caller-save registers. The list of the caller save register is specified in a bit mask placed in the first

part of the called procedure.

Encoding calls is not a problem because it has two arguments, numarg specifies the number of parameters in

the called function, and dst specifies the address of the target. A register or small immediate could hold numarg, and

a larger immediate could hold dst as a displacement from PC, for example.

Implementing the instruction is definitely a problem because the hardware must first load the entry mask at the

beginning of an instruction, then store the value of those registers specified in the entry mask, in addition to always-save

values such as the return address. In a pipelined implementation there is one memory port for loads and stores, and that

is in ME (using MIPS stage names). An instruction only gets to use ME for one cycle, so it could not perform the load and

stores that are needed. So that rules it out. Do not expect to convince management otherwise.

Those who nevertheless want to make a case for such an instruction, read on. The only way to implement this in

what before this instruction was a typical pipelined RISC implementation would be for the CALLS instruction to “take

over” the pipeline and operate it as a CISC implementation would, meaning it would execute over multiple steps, using

the ALU and memory port multiple times as directed by either really complex control logic or a smaller computer, called

a microprogrammed control unit. As most have probably guessed, CISC implementations use microprogrammed

control units.

�A register-operand-only version of the CASE instruction © is definitely not suitable for a RISC

ISA, ×© arguably possible for a RISC ISA, © fits well into a RISC ISA.

�Explain. In your explanation consider how easy it would be to �encode in a RISC ISA (allow

some flexibility) and how easy it would be �to implement in a five-stage pipeline.

The CASE instruction has three operands, selector (s), base (b), and limit (l). Also, immediately following each

CASE instruction is a table of memory addresses. If s < l execution continues after the table. Otherwise execution jumps

to PC + M [PC + 2(s− b)], where M [a] is the two bytes of memory starting at address a.

Because it has three source operands, it is easy enough to encode in a RISC ISA(with the source operands all being

registers).

An implementation would need to compute address PC + 2(s− b). For b = 0 this would be little different than

computing branch target. (For MIPS multiply by 4 instead of 2, but for RISC-V branch displacements are in units of

half-instructions.) To tack this on to a RISC implementation one might design an ALU that can compute PC+2(s− b)
in one cycle. That’s not impossible but it is doable. Expect an argument from management. An alternative would be

to add a second EX stage. If this is a five-stage pipeline before the change then getting that additional stage approved

just for this would be very difficult. Perhaps the easiest thing to do is to implement a version of CASE that lacks a base

argument, meaning that the EX stage would just have to compute PC + 2s. This is almost like a MIPS branch, except

that in a branch the s would be the immediate value.

In EX the value of PC + 2(s− b) (or PC + 2s) is connected to the Addr input of the memory port and a read

operation is performed, reading the address to jump to. In WB the value loaded from memory is connected to the PC

(rather than being written to memory). This last part, writing the PC when an instruction is in WB rather than ID, also

might make RISC purists defensive. There is the cost of another input to the multiplexor feeding PC, and also the large

penalty. Assuming there is a delay slot, the penalty would be three cycles. In the example below the first six elements of

the dependency table (two bytes each) are fetched as though they are instructions. They are squashed in cycle 4. The

control logic could also have stalled fetch in cycle 2, since by then it had seen the CASE pass through ID a cycle earlier.

3

Cycle 0 1 2 3 4 5 6 7 8 9

CASE r1, r2, r3 IF ID EX ME WB

nop IF ID EX ME WB

dep[0] dep[1] IF ID EXx

dep[2] dep[3] IF IDx

dep[4] dep[5] IFx

casex:

sw r1, 2(re) IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9

So this is doable, especially without the base. Appearing below is what MIPS code might be used without a CASE

instruction, (based on the course example for coding a dense switch statement). With a CASE instruction the correct

target is reached in 5 cycles, without such an instruction it takes 7 cycles, and that’s for a base of zero and without

checking whether t1 is out of range.

.data

Dispatch table, holding address of case statements.
DTABLE:

.word CASE0

.word CASE1

.word CASE2

.word CASE3

.word CASE4

.word CASE5

.text

Cycle 0 1 2 3 4 5 6 7 8 9 10 11

lui $t5, hi(DTABLE) IF ID EX ME WB

ori $t5, $t5, lo(DTABLE) IF ID EX ME WB

sll $t6, $t1, 2 IF ID EX ME WB

add $t6, $t6, $t5 IF ID EX ME WB

lw $t7, 0($t6) IF ID EX ME WB

jr $t7 IF ID EX ME WB

nop IF ID EX ME WB

....

CASEx:

xor $s1, $s2, $s3 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11

4

Problem 2: RSMIPS is a hypothetical ISA with similarities to MIPS. Appearing below is
RSMIPS’ instruction format R, which is identical to MIPS’ format R (except for the names of
the source fields). Unlike MIPS, in RSMIPS all instructions that write a result to a register use
the rd field for the register number (and the rd field is always in bits 15:11). Yes, RSMIPS is Real
Strict about source and destination register fields, hence the name. Also notice that different from
MIPS the RSMIPS source fields are named rs1 and rs2. Remember that in MIPS, rt can be used
as either a source or destination, depending on the instruction.

RSMIPS R:

Opcode

31 26

rs1

25 21

rs2

20 16

rd

15 11

tba

10 6

Function

4 0

RSMIPS I:

Opcode

31 26

rs1

25 21

rs2

20 16

Immed

15 0

Because of this Real Strict provision, something like MIPS’ format I can’t be used for instruc-
tions such as addi and lw, but format I can be used for instructions such as sw and beq.

(a) In RSMIPS format DI is used for immediate instructions that write a result. Show a possible
format DI. This is easy for those that understand what an instruction format is. (Note that RISC-V
also follows this Real Strict philosophy, but the answer to this question is not an exact copy of a
RISC-V instruction format.)

� Show a possible format DI.

Solution appears below. There are two new fields, immhi and immlo, both are used for the 16-bit immediate.

RSMIPS DI:

Opcode

31 26

rs1

25 21

immhi

20 16

rd

15 11

immlo

10 0

5

(b) Convert the MIPS implementation below into an RSMIPS that works with format DI, format
I, and format R RSMIPS instructions as requested in the checkbox items below. The illustration
in SVG format can be found at https://www.ece.lsu.edu/ee4720/2025/hw04-rsmips.svg. It
can be modified with your favorite SVG editor, even if it’s not Inkscape.

�Modify the control logic to extract the correct destination register.

�Modify the datapath and control logic to provide the correct immediate.

�Be sure that the logic works with RSMIPS’ format I, DI, and R instructions.

The solution appears on the lower part of the next page. The low 11 bits of the format immed input are always

connected to bits 10:0 of the instruction. For the remaining bits of the format immed input a multiplexor selects

either bits 20:16 (for format DI instructions) or bits 15:11 (for format I instructions). The No dest logic (finishing

with the big OR gate) detects format I (and harmlessly format J), and is used as a select signal for the new blue format

immed mux.

Since the destination register now never comes from the (now non-existent) rt field, that input to the dst mux

was removed, as was the control logic selecting the rt input. This simplifies the remaining control logic: the is Type R

is no longer needed and the two-input OR gates are now just wire.

6

https://www.ece.lsu.edu/ee4720/2025/hw04-rsmips.svg

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst

NPC

30 2

PC

+
15:0

25:0

29:26

29:0

15:0

D
0

1

dstdst

2'b0

msb lsb

=

is Type R

is Store

is Branch

is J

is JAL

Dest is rd.

No dest (use r0).

Dest is r31.

Dest is rt.

rt 20:16

rd 15:11

5'd0

5'd31

00

11

01

10

lsb

msb

fo
rm

a
t im

m
e
d

Control logic is for MIPS,
modify for RSMIPS.

Original above, solution below.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst

NPC

30 2

PC

+
15:0

25:0

29:26

29:0

10:0

D
0

1

dstdst

2'b0

msb lsb

=

is Store

is Branch

is J

is JAL

No dest (use r0).

Dest is r31.

rd 15:11

5'd0

5'd31

00

01

10

lsb

msb

fo
rm

a
t im

m
e
d

lsb

15:11

20:16

msb

7

	Problem 1
	Problem 2
	Part a
	Part b

