LSU EE 4720 Homework 4 Due: 19 Mar 2025 at 09:30 CDT
solution Formatted 17:23, 19 March 2025

Collaboration Rules

Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of Al LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations

Some of the problems require thought, and students are expected to persevere until they find a
solution. It is each student’s duty to him or herself to resolve frustrations and roadblocks quickly,
hopefully helped along by the satisfaction of making progress. There are plenty of old problems
and solutions to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

Resources
See old homework and exams. There are a few questions about VAX in past assignments. There
are question about RISC-V in many of the more recent assignments.

https://www.ece.lsu.edu/ee4720/

Problem 1: Remember that VAX is one of the few examples of a good CISC ISA. CISC ISAs
are not considered suitable for current implementation technology, but those who do not learn
by history are doomed to repeat it, so look over the summary of the VAX instruction set which
can be found in Chapter 2 of the VAX 11/780 Architecture Handbook Volume 1, 1977-78. Focus
on Section 2.4, which summarizes the instruction set. Consider item 5 in that section, which
starts “Instructions provided specifically for high-level language constructs.” Three examples of
such instructions are given, ACB, CALLS, and CASE. As guided by the check boxes below, explain
how a register-only version of suitable each instruction is for implementation in a RISC ISA. The
instruction descriptions in the architecture handbook use metasyntactic symbols rx, mx, and wx
to sources and destinations. (In MIPS rs, rt, and rd are metasyntactic symbols.) Symbol rx is
used for a read (source) operand (signified by the r) that can come from a register, immediate,
or memory (signified by the x). Similarly the w in wx signifies an argument that is written (a
destination), and the m in mx signifies an argument that is read and then written. The questions
below ask about hypothetical register-only versions of these instructions in which arguments rx,
mx, and wx refer only to register arguments.

The instructions are explained in the architecture manual, but feel free to seek out other
references. The description of ACB is fairly straightforward. The CALLS instruction is clear but
may be difficult to understand for those who are less familiar with bit masks or bit vectors. In
addition to the Architecture Handbook, see VAX MACRO and Instruction Set Reference Manual
for a description of the CASE instruction and an example of its use. Note that for CASES the table
(displ) is in memory immediately after the instruction. The operation performed by the CASE
instruction is similar to the MIPS assembly code for the dense switch statement presented in the
class ‘control flow demo code. Of course, CASE does most of that with one instruction.

M A register-and-displacement-operand-only version of the ACB instruction O is definitely not suit-
able for a RISC ISA, ® arguably possible for a RISC ISA, Q fits well into a RISC ISA.

M Explain. In your explanation consider how eagy it would be to Mencode in a RISC ISA (allow
some flexibility) and how easy it would be to implement in a five-stage pipeline.

Page 8-10 of the Architecture Handbook describes ACB as taking four operands, & limit, add (increment amount),
an index, and a displacement. To execute the branch the hardware computes index+add compares, the sum to limit,
and branehes to PC + displacement if the sum is greater than limit (if add is positive) or less than limit (if add is negative).

Encoding all of these operands would be possible, but not easy because there would not be mueh room for an
immediate and three register flelds in 2 32-bit instruction. In MIPS one could use sa and func for the displacement
(which would be 11 Dits), but that would require & new opeode. (Less radical type-R instructions use the func feld as
an opeode extension.) Another possibility is to consider a variation without the add (increment) fleld, and instead always
just add one. Or, one could dispense with the limit fleld, and instead take the braneh if the result were positive (and so
add [the incremaent] would have to be negative).

Resolving the branch requires both an addition and a comparison. 17 using the flve-stage MIPS pipeline the comparison
would have to be after EX, in ME. Without braneh prediction there would be 4 two or three instruction penalty (depending
on how long the comparison takes). This would not be & problem with braneh prediction. The extra comparison unit
adds to cost, as would the need to carry the branch target to the ME or WB stage. So it's doable, but it would add
signifieantly to cost. I the comparison were done before the addition then it would be possible to resolve the braneh in
ID S0 this would be mueh easier to add to & RISC ISA because it could use the some comparison unit used by existing
braneh instruetions. in MIPS only equality could be tested WIthout requiring a new comparison unit, but other RISC 1SAs
do allow magnitude-comparison jumps so that & new comparison unit would not need to be added.

M The CALLS instruction ® is definitely not suitable for a RISC ISA, O arguably possible for a
RISC 1SA, () fits well into a RISC ISA.

https://www.ece.lsu.edu/ee4720/doc/vax-11780-arch-handbook.pdf
https://www.ece.lsu.edu/ee4720/doc/vax.pdf
https://www.ece.lsu.edu/ee4720/2025/lcontrol-flow.s.html

@ Explain. In your explanation consider how §fy it would be to Mencode in a RISC ISA (allow

some flexibility) and how easy it would be to implement in a five-stage pipeline.

The CALLS instruction extends the stack (gn area of memory used for Stor‘mg YleS’LQY values, local variables, and
othar information agssociated with a called pfOQQdUYQ), and the writes the stack with several ng'\SIQY values, 'me\ud‘mg q
return address and caller-save ng'\StQYS. The list of the caller save ng'\StQY is SpQQ'\ﬂQd in 2 it mask p\&QQd in the Tirst
pMI of the called pfOQQGUFQ.

F_neodmg calls is not a prob\em hecause it has two mguments, numarg SpQQ'\T\QS the number of pgrameters in
the called function, and dst speemes the address of the targ@t. A TQgiSIQF or small immediate could hold numarg, and
Q \MgQT immediate could hold dst as & d'\Sp\&QQQO from PC, for st;mp\@.

lmp\@memmg the instruction is d@ﬂmté\y q prob\@m Decause the hardware must Tirst 10ad the entry mask af the
bo,gmn'mg of an instruction, then store the value of those YQg'\SthS SpQQde in the ery mask, in addition to &\W&yS-SQVQ
values such as the return address. In g p'\pQ\'de '\mp\gm@nmuon there is one memory p()\”'t for 10ads and stores, and that
isin ME (usmg MIPS stage anQS). An instruction Oﬂ\y gats 1o use ME for one QyQ\@, $0 1t could not perform the load and
stores that are needed. So that rules it out. Do not QXpQQt 10 convinee manggfem@nt otherwise.

Those who nevertheless want to make a case for such an instruction, read on. The Om\j way 1o 1mp\em@m this in
what before this instruction was a IypiQ&\ p'\pQ\H\QG RISC '\mp\emenm'\on would be for the CALLS instruction 1o "take
over" the p\p@\me and OPQY&IQ it as 9 CISC '\mp\@,m@nmﬂon would, meaning it would execute over mump\e SIQPS, using
the ALU and memory pOYt mump\e Times as directed by aither YQ&\\y Qomp\ex control \Og\Q or a smaller eomputer, called
8 microprogrammed control unit. AS Mmost have probably guessed, CISC implemaentations use mieroprogrammed
QONTrol units.

M A register-operand-only version of the CASE instruction O is definitely not suitable for a RISC
ISA, ® arguably possible for a RISC ISA, O fits well into a RISC ISA.

@ Explain. In your explanation consider how Eﬁy it would be to Mencode in a RISC ISA (allow

some flexibility) and how easy it would be to implement in a five-stage pipeline.

The CASE instruction has three operands, selector (s), base (b), and limit ([). Also, immediately following each
CASE instruction is a table of memory addresses. If s </ execution continues after the table. Otherwise execution jumps
10 PC+ M[PC + 2(s — b)], where M [a] is the two Dytes of memory starting at address a.

Because it has three source operands, it is easy enough to encode in & RISC ISA(WIth the source operands all being
registers).

An implementation would need to compute address PC + 2(s — b). For b = 0 this would be little diTerent than
computing braneh target. (For MIPS multiply by 4 instead of 2, but for RISC-V branch displacements are in units of
half-instructions.) To tack this on to a RISC implemaentation one might design an ALU that can compute PC +2(s —b)
in one cycle. That's not impossible but it is doable. Expect an argument from management. An alternative would be
10 add a second EX stage. If this is a five-stage pipeline before the change then getting that additional stage approved
Just Tor this would be very dieult. Perhaps the easiest thing to do i to implement a version of CASE that lacks a base
argument, meaning that the EX stage would just have to compute PC + 2s. This is almost like & MIPS branch, except
that in a branch the s would be the immediate value.

In EX the value of PC + 2(s — b) (or PC + 2s) is connacted to the Addr input of the memory port and & read
operation i performed, reading the address to jump to. In WB the value loaded from memory is connected to the PC
(rather than being written to memory). This last part, writing the PC when an instruction is in WB rather than ID, also
might make RISC purists defensive. There is the cost of another input to the multiplexor feeding PC, and also the large
penalty. Assuming there is a delay slot, the penalty would be three cycles. In the example below the first six elements of
the dependency table (two bytes each) are fetehed as though they are instructions. They are squashed in eycle 4. The
control logic could also have stalled feteh in eycle 2, since by then it had seen the CASE pass through ID 4 cycle earlier.

Cycle 0 1 2 3 4 5 6 7 8 9
CASE r1, r2, r3 IF ID EX ME WB

nop IF ID EX ME WB

dep[0] depl1] IF ID EXx

dep[2] depl[3] IF IDx

dep[4] depl[5] IFx

casex:

sw rl, 2(re) IF ID EX ME WB
Cycle 0 1 2 3 4 5 6 7 8 9

S0 this is doable, QSPQQ'\‘A\\y without the base. App@&ﬂﬁg Dalow is what MIPS code might De used without & CASE
instruction, (b&SQd on the course example for coding a dense switeh stgtemgnt). With & CASE instruction the correct
target is reached in 5 cycles, Without such an instruction it takes 7 cycles, and that's for a base of zero and without
checking whether t1 is out of range.

.data
Dispatch table, holding address of case statements.
DTABLE:

.word CASEO
.word CASE1
.word CASE2
.word CASE3
.word CASE4
.word CASE5
. text

Cycle 0 1 2 3 4 5 6 7 8 9 10 11

lui $t5, hi(DTABLE) IF ID EX ME WB

ori $t5, $t5, 1lo(DTABLE) IF ID EX ME WB

sll $t6, $t1, 2 IF ID EX ME WB

add $t6, $t6, $t5 IF ID EX ME WB

1w $t7, 0($t6) IF ID EX ME WB

jr $t7 IF ID EX ME WB

nop IF ID EX ME WB
CASEx:

xor $s1, $s2, $s3 IF ID EX ME WB
Cycle 0O 1 2 3 4 5 6 7 8 9 10 11

Problem 2: RSMIPS is a hypothetical ISA with similarities to MIPS. Appearing below is
RSMIPS’ instruction format R, which is identical to MIPS’ format R (except for the names of
the source fields). Unlike MIPS, in RSMIPS all instructions that write a result to a register use
the rd field for the register number (and the rd field is always in bits 15:11). Yes, RSMIPS is Real
Strict about source and destination register fields, hence the name. Also notice that different from
MIPS the RSMIPS source fields are named rs1 and rs2. Remember that in MIPS, rt can be used
as either a source or destination, depending on the instruction.

Opcode rsl rs2 rd tha Function
RSMIPS R: ‘ | | | ‘
31 26 25 21 20 16 15 11 10 6 4 0
Opcode rsl rs2 Immed
RSMIPS TI: ‘ | | | ‘
31 26 25 21 20 16 15 0

Because of this Real Strict provision, something like MIPS’ format I can’t be used for instruc-
tions such as addi and 1w, but format I can be used for instructions such as sw and begq.

(a) In RSMIPS format DI is used for immediate instructions that write a result. Show a possible
format DI. This is easy for those that understand what an instruction format is. (Note that RISC-V
also follows this Real Strict philosophy, but the answer to this question is not an exact copy of a
RISC-V instruction format.)

M Show a possible format DI.
solution appears Delow. There are two new fields, immhi and immlo, HOth are used for the 16-bit immediate.

OpQOGQ s immhi rd immlo

RSMIPS DI- |

31 26 25 21 20 16 15 11 10 0

(b) Convert the MIPS implementation below into an RSMIPS that works with format DI, format
I, and format R RSMIPS instructions as requested in the checkbox items below. The illustration
in SVG format can be found at https://www.ece.lsu.edu/ee4720/2025/hwO4-rsmips.svg. It
can be modified with your favorite SVG editor, even if it’s not Inkscape.

M Modify the control logic to extract the correct destination register.
M Modify the datapath and control logic to provide the correct immediate.
@(Be sure that the logic works with RSMIPS’ format I, DI, and R instructions.

The solution appears on the lower p&ft of the next page. The low 11 bits of the format immed ‘mput are mways
connected to bits 10:0 of the instruction. For the remmnmg bits of the format immed 'mput q mu\t'\p\exor selects
aithar bits 20: 16 (for format DI instructions) or bits 15: 11 (for format | instructions). The No dest logic (finishing
with the b\g OR g&t‘é) detects format | (zmd harm\ess\y format J), and is used as a select s'\gna\ for the new blue format
immed MUX.

Since the destination YQg'\SIQY NOW never comes from the (T\OW ﬂ()n-QX'\SIQM) rt ﬂQ\d, that ‘mput £o the dst mux

Was removed, as was the control logic selecting the rt input. This simplifies the remaining control logic: the |is Type R
is no longer needed and the two-input OR gates are now just wire.

https://www.ece.lsu.edu/ee4720/2025/hw04-rsmips.svg

Original above, solution below.

129:26

2'b0

2
msb Isb

Addr

Mem
Port pata
Out

WB

ID (Fj[} EX ME WB
[ied] [] m
2L [addr Data% L Mem
A6 fAddr Data il AL | Port
| HAddr
—Addr DIn H
I] [S e
15;0 %|»
dst dst |+
No dest (use r0) “;ji -
H rtZOlG;‘
Dest is r31 msb
NPC T ALU
2521 agdr Data - rsv — Mem
20:26 |\ y4r patabld v | [ALUH | Port
HAddr
Addr DlIn H— D D MD
|~ rtv —iIn Out 0 1
10:0 'Slb g —~
20:16 j_|>_§, MM~
15:11 3
!‘\ msb i
dst dst dst
[| > > >

(is store)

No dest (use r0).

—| is Branch)

Dest is r31.

—| is JAL

msb

	Problem 1
	Problem 2
	Part a
	Part b

