
LSU EE 4720 Homework 3 Due: 7 March 2025
Solution Formatted 18:16, 21 March 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. It is each student’s duty to him or herself to resolve frustrations and roadblocks quickly,
hopefully helped along by the satisfaction of making progress. There are plenty of old problems
and solutions to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

Resources
For examples of pipeline execution diagrams of given code fragments running on given MIPS im-
plementations see past midterm exams (and final exams, but mostly midterms). The solutions to
almost all past midterms in this course are available. A good place to start would be 2023 Midterm
Exam Problem 2, 3, 4, and 5.

Homework Background
This assignment asks about hypothetical MIPS instruction addsc (scaled addition) that was the
subject of 2014 Homework 3 Problem 3. See that assignment and its solution for a description of
the addsc instruction.

1

https://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/2014/hw03.pdf
https://www.ece.lsu.edu/ee4720/2014/hw03_sol.pdf

Problem 1: Appearing below is a solution to 2014 Homework 3 Problem 3, though not the same
as the posted solutions. Three of the multiplexors have labels on their select signals: A, B, and C.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

10:6

For scaled
add ALU performs
operation
x=a.

Left
Shift

amt

+

a

b
x

B
C

A

isADDSC

The incomplete pipeline execution diagram below shows the progress of instructions through
the implementation and also the value of the select signals A, B, and C in some cycles. If a select
signal value is blank, such as C in cycle 5, then its value does not matter. For example, execution
would be correct whether C = 0 or C = 1 in cycle 5, and so it is blank.

� Fill in instructions, including at least one addsc, that could have resulted in the execution. �Take
care to choose registers so that dependencies and �the use of bypass paths are consistent with
the select signal values.

Solution on next page.

2

The solution appears below.

Signal A selects a value headed for two possible destinations, the Left Shift unit in EX and the D In connection to

Mem Port in the ME stage. The Left Shift unit in EX is only used by addsc and the D In connection is only used by store

instructions (sw, for example). There for if a value is shown for A the instruction in EX must be either an addsc or

some kind of store instruction. The value of A indicates whether the RT value is from the register file, A = 1, bypassed

from ME, A = 0, or bypassed from WB, A = 2.

Signal B selects a value for the adder used by addsc; if B = 0 the value is from ME.ALU (which means it is

probably not bypassed), if B = 1 the value is bypassed from WB. If a value is given for B then the instruction in ME

must be an addsc.

If signal C = 1 the value to be written back (in the next cycle) comes from an addsc instruction, if C = 0 the

output of ME.ALU is used. Signal C is blank for load instructions, and for instructions that don’t write back at all.

For the first instruction A is blank (in cycle 2 when it is in EX) so it can’t be an addsc nor a store. When the first

instruction is in ME B is also blank, which is consistent with A being blank in the previous cycle. But C = 0, telling is

that the instruction writes a result coming from the ALU. Any arithmetic or logical function would do, a sub was chosen.

For the second instruction A = 0 when it is in EX, indicating that it is an addsc or store, and that it is bypassing

the result of the previous instruction. Because it is bypassing a value the rt register of the second instruction and the

destination of the first must be the same. Register r3 was chosen. Then the second instruction is in ME the B = 1 and

C = 1 values tell us that it is an addsc and that the rs value is bypassed from the preceding instruction, so the rs

register for the addsc is also r3.

The reasoning for choosing the next two instructions is similar.

Cycle 0 1 2 3 4 5 6 7

A 0 2 2

B 1 0

C 0 1 1

Cycle 0 1 2 3 4 5 6 7

sub R3, r5, r6 IF ID EX ME WB

addsc R1, R3, R3, 4 IF ID EX ME WB

sw R3, 0(r8) IF ID EX ME WB

addsc r5, r9, R1, 9 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7

3

Problem 2: Consider the load/use stall in the execution of the code below on an ordinary MIPS
implementation (one without addsc):

Cycle 0 1 2 3 4 5 6

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r3 IF ID -> EX ME WB

(a) Suppose that instead of the code above the assembly code were generated by a compiler that is
aware of the addsc instruction and run on an implementation that implements addsc.

�Explain how the compiler could avoid the stall.

It is the compiler that reads source code in some high-level language and emits assembly language instructions based

on the source code. Of course, the compiler could avoid the stall in the usual way by separating the lw and add with

some useful instruction. However, the question is about how a compiler aware of addsc could eliminate the stall.

The add is stalling because the load value arrives in ME near the end of the clock period in cycle 3, and so there is

no way to bypass it to EX where the add needs it. But, an addsc instruction does not need its rt value until it is in the

ME stage, and so it could bypass it. Knowing this, the compiler could emit an addsc r1, r2, r3, 0 instead of the

regular add instruction. That’s shown below.

Cycle 0 1 2 3 4 5 6

lw r2, 0(r4) IF ID EX ME WB

addsc r1, r2, r3, 0 IF ID EX ME WB

xor r4, r5, r6 IF ID EX ME WB <- Trouble if r5 changed to r1

Using addsc is fine in the code above with the xor. But if one of the sources of the xor were r1 then the xor

would have to stall, meaning that substituting and addsc for an add this way eliminates one stall but adds another, and

so there is no net gain. Having to consider all of these possibilities is why people who write compiler optimization code

deserve great respect.

(b) Suppose instead that the original code (at the beginning of the problem) is run on an imple-
mentation which includes addsc and where addsc was encoded (choice of opcode, register fields,
etc.) to avoid such stalls. (This could be the same implementation as the previous part.)

�Explain how such a stall could be avoided on the original code, with the add, by the design of the
encoding of addsc.

In this problem the original code must be used as-is, with the add instruction. Suppose in the design of addsc the

opcode and func field value for the addsc instruction were the same as those of the add instruction: opcode 0 (type

R) and func field value 2016. For the add instruction the sa field is defined to be zero. For addsc the sa is the shift

amount. That means the encoding of addsc r1, r2, r3, 0 is identical to add r1, r3, r3. The hardware

might execute add instructions the same way it executes addsc, meaning it would use the ME-stage adder. If so, then

the stall above is avoided. It might also try to be smart about it, treating an add like an addsc only if that avoids a

stall. Possible midterm question?

There’s another problem on the next page.

4

Problem 3: Design the following control logic. Some of the logic will need the isADDSC logic
block in ID, which detects whether an addsc instruction is in ID. An SVG of the diagram can be
found at https://www.ece.lsu.edu/ee4720/2025/hw03-scadd.svg. It can be edited by Inkscape
or any other SVG editor, and by plain-text editors for those who are so disposed.

�Design control logic for select signal C. Note: This is easy.

�Design control logic for select signal B.

� Show control logic generating a stall signal for the stalls like those shown in the diagram below.

Cycle 0 1 2 3 4 5 6

addsc r1, r2, r3, 4 IF ID EX ME WB

add r4, r1, r5 IF ID -> EX ME WB

Cycle 0 1 2 3 4 5 6

lw r3, 0(r4) IF ID EX ME WB

addsc r1, r2, r3, 4 IF ID -> EX ME WB

Solution appears below. Notice that the control signals are computed in ID and then carried through the pipeline

to ME where they are used. Remember that when addsc is in ID some other instruction is in ME.

It should be easy to see that C should be 1 iff there is an addsc in ME, so compute the value in ID, and carry it

along the pipeline until it is needed in ME. Signal B should be 1 when there is a dependency with the prior instruction.

That is computed in ID by the purple comparison unit and then carried along the pipeline. Because B is only used for

addsc instructions one might be tempted to put an AND gate in there to check. But there’s no need to do so because

it doesn’t matter what value B is when the instruction is not an addsc, so there’s no point wasting an AND gate.

The stall signals are computed by checking dependencies. For the first code fragment the control logic generates the

stall in cycle 2 (the arrow head is where the stall ends, it starts in ID) when the add is in ID and the addsc is in EX.

The logic compares the destination register of the instruction in EX (r1 for the fragment) against the rs and rt sources

of the instruction in ID. The logic assumes that the instruction uses rs as a source (not wise) but uses the rt Source

logic block to check whether the instruction uses rt as a source. (For example, add r1, r2, r3 uses rt, register

r3, as a source but addi r1, r2, 4 does not use rt as a source. [The rt field holds the destination, r1, in this

instruction.]) The stall signal for the first code example is labeled Dependence: addsc ; add src in the diagram.

For the second code fragment the logic checks just for an rt dependence, because there would be no need to stall if

the dependence were through the rs register. That is if the lw wrote r2 instead of r3 there would be no need to stall.

The control logic for A was not part of this problem. Designing that logic was asked on Problem 3c in the Fall 2003

Final Exam.

Diagram on next page.

5

https://www.ece.lsu.edu/ee4720/2025/hw03-scadd.svg

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

10:6

For scaled
add ALU performs
operation
x=a.

Left
Shift

amt

+

a

b
x

B
C

A

isADDSC

='rs 25:21

isLoad

isADDSC isADDSC

isLoad

='

Stall

rt 20:16

Dependence: addsc ; add src

Dependence: lw ; addsc rt rt Souce

6

	Problem 1
	Problem 2
	Part a
	Part b

	Problem 3

