
LSU EE 4720 Homework 3 Due: 7 March 2025
Formatted 18:17, 21 March 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. It is each student’s duty to him or herself to resolve frustrations and roadblocks quickly,
hopefully helped along by the satisfaction of making progress. There are plenty of old problems
and solutions to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

Resources
For examples of pipeline execution diagrams of given code fragments running on given MIPS im-
plementations see past midterm exams (and final exams, but mostly midterms). The solutions to
almost all past midterms in this course are available. A good place to start would be 2023 Midterm
Exam Problem 2, 3, 4, and 5.

Homework Background
This assignment asks about hypothetical MIPS instruction addsc (scaled addition) that was the
subject of 2014 Homework 3 Problem 3. See that assignment and its solution for a description of
the addsc instruction.

1

https://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/2014/hw03.pdf
https://www.ece.lsu.edu/ee4720/2014/hw03_sol.pdf

Problem 1: Appearing below is a solution to 2014 Homework 3 Problem 3, though not the same
as the posted solutions. Three of the multiplexors have labels on their select signals: A, B, and C.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

10:6

For scaled
add ALU performs
operation
x=a.

Left
Shift

amt

+

a

b
x

B
C

A

isADDSC

The incomplete pipeline execution diagram below shows the progress of instructions through
the implementation and also the value of the select signals A, B, and C in some cycles. If a select
signal value is blank, such as C in cycle 5, then its value does not matter. For example, execution
would be correct whether C = 0 or C = 1 in cycle 5, and so it is blank.

Fill in instructions, including at least one addsc, that could have resulted in the execution. Take
care to choose registers so that dependencies and the use of bypass paths are consistent with
the select signal values.

Cycle 0 1 2 3 4 5 6 7

A 0 2 2

B 1 0

C 0 1 1

Cycle 0 1 2 3 4 5 6 7

IF ID EX ME WB

IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7

IF ID EX ME WB

IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7

2

Problem 2: Consider the load/use stall in the execution of the code below on an ordinary MIPS
implementation (one without addsc):

Cycle 0 1 2 3 4 5 6

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r3 IF ID -> EX ME WB

(a) Suppose that instead of the code above the assembly code were generated by a compiler that is
aware of the addsc instruction and run on an implementation that implements addsc.

Explain how the compiler could avoid the stall.

(b) Suppose instead that the original code (at the beginning of the problem) is run on an imple-
mentation which includes addsc and where addsc was encoded (choice of opcode, register fields,
etc.) to avoid such stalls. (This could be the same implementation as the previous part.)

Explain how such a stall could be avoided on the original code, with the add, by the design of the
encoding of addsc.

There’s another problem on the next page.

3

Problem 3: Design the following control logic. Some of the logic will need the isADDSC logic
block in ID, which detects whether an addsc instruction is in ID. An SVG of the diagram can be
found at https://www.ece.lsu.edu/ee4720/2025/hw03-scadd.svg. It can be edited by Inkscape
or any other SVG editor, and by plain-text editors for those who are so disposed.

Design control logic for select signal C. Note: This is easy.

Design control logic for select signal B.

Show control logic generating a stall signal for the stalls like those shown in the diagram below.

Cycle 0 1 2 3 4 5 6

addsc r1, r2, r3, 4 IF ID EX ME WB

add r4, r1, r5 IF ID -> EX ME WB

Cycle 0 1 2 3 4 5 6

lw r3, 0(r4) IF ID EX ME WB

addsc r1, r2, r3, 4 IF ID -> EX ME WB

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

10:6

For scaled
add ALU performs
operation
x=a.

Left
Shift

amt

+

a

b
x

B
C

A

isADDSC

4

https://www.ece.lsu.edu/ee4720/2025/hw03-scadd.svg

	Problem 1
	Problem 2
	Part a
	Part b

	Problem 3

